
7A-A*184 385 LEARNING A COLOR 
ALGORITHM FROM 

EXAMPLESCU) 

/

MASSACHUSETTS INST OF TECH CAMBRIDGE ARTIFICIAL
INTELLIGENCE LAS A HURIBERT ET AL JUN 87 AI-M-909

UNCLASSIFIED N888i4-85-bK-Wi4 F/G 6/4 UEEECE.EI~i
EEEomhhEEEmhhhEmlm.. mmo



IIII __* .8 2.

_ NATIO NAL BUREAU OF ST{ANOARDO 1963 A

=_J

"5

T  -v,-- .. - '1 . -O V* -- u" "I" w- lr- .v ". . w. w- wT-.:

'032 111_L



!UNCLASSIF IED iT' ~ ~ ~

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
I BEFORE COMPLETING FORM

909 SAr -.UWEOa 2. GOVT ACCESSION NO. 3 RECIPIENT'S CATALOG NUMSEO

909

TIT.. E, and S.bfs it) S TyPE Or REPORT * PERIOO COVERCO

L Learning a Color Algorithm from Examples AI Memo
00 6. PERFORMING ORG. REPORT NuMEIER

M AUTMORls) 11. CONTRACT o GRANT NUMIUER()

* j Anya Hurlbert and Tomaso Poggio N00014-85-K-0124

I rORMING ORGANIZATION NAME ANO ADORESS 10. PROGRAM ELEMENT. PROJECT. TASK

SArtificial Intelligence Laboratory AREA A WORK UNIT NUMERS

545 Technology Square

Cambridge, MA 02139

) I CONTROLLING OsFICE NAME AND ADDRESS 12. REPORT DATE

Advanced Research Projects Agency June 1987

1400 Wilson Blvd. 13. MUM F PAGES

Arlington, VA 22209 ,_0

14 MONITORING AGENCY NAME & AOORESS(t1 diffeent IgM ConftrelIno Office) II. SECURITY CLASS. (fi /tleo ref)

Office of Naval Research UNCLASSIFIED

Information Systems

Arlington, VA 22217 IS&. OCLAS$IICATION/O0WNGRAOING- SC14 1EOULEI

I, OISTRIiUTION STATEMENT (ol this Report)

Distribution is unlimited. D T IC
ELECT

17. OISTRIUTION STATEMENT (at IN. abtract teted In Blockt 20 I diffeet .in R epoI SEP I 0 198

5II. SUPPLEMENTARY NOTES

None

19. KEY WORDS (Cmiunstue on ,..ar.e old 100ar aem #0onfiDp NoceA abef)

Computer vision Regularization

4 Color constancy Optimal estimation

Learning Pseudoinverse

20 ANSTRACT (Cm,nu. r.wee 06O id ift1 010690MY and 111mnhlD1IF 6? U&a "mber)

We show that a color algorithm capable of separating illumination from reflect-

ance in a Mondrian world can be learned from a set of examples. The learned

algorithm is equivalent to filtering the image data -- in which reflectance

and illumination are mixed -- through a center-surround receptive field in in-

dividual chromatic channels. The operation resembles the "retinex" algorithm

recently proposed by Edwin Land. This result is a specific instance of our

earlier results that a standard regularization algorithm can be learned from

DD , 1473 EDITION Of 1 .OV 65 1S OUSOLETC UNCLASS IF IED
S/N 0:02-014.6601

SECURITY CLASSIFICATION O1 TNIS PAGE (Whenb# 80# 00ws.

87 9 8 079
....



Abstract (cont'd)

It illustrates that the natural constraints needed to solve a problem in inverse optics
can be extracted directly from a sufficient set of input data and the corresponding

solutions. The learning procedure has been implemented as a parallel algorithm on the
Connection Machine System.
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A

Computational vision has derived effective solutions to early vision prob-

lems such as edge detection, stereopsis and structure from motion by exploit-

ing general constraints on the imaging process and the natural world. An

_., important question is: how does a visual system learn the algorithms it uses?

Can they - and the underlying natural constraints - be learned automatically

from sets of examples? We have explored these questions for the computa-

tional problem of color vision, and implemented a parallel learning procedure

on the Connection Machine System.

Color constancy points to a difficult computation underlying human

color vision. We do not merely discriminate between different wavelength-;

of light; we assign roughly constant colors to objects even tlough th, inte' -

sity signals they s( nd to our e. es chan,_e as the illu inat, ,n varie acrc. s

% space and chromatic spectrum. Perfect color constai *y w uld resi It fr( i

a computation that extracts the invariant spectral rel -ctai.,e prop( rties 'f

surfaces from the image intensity signal, in which reflectance and iliumina-

tion are mixed. The fact that the colors we see are not exactly invariant

suggests that our visual system performs a computation with a similar goal,

but less exact results. The computation is typical of the difficult problems of

inverse optics, in which the information supplied by a two-dimensional image

is insufficient by itself to solve for a unique three-dimensional scene. Natural

constraints must be found and applied to the problem in order to solve it.

"Retinex" lightness algorithms, pioneered by Land (Land, 1959. 1985,

1986; Land and McCann. 1971) and explored by others (Horn, 1974; Blake.

1985; Hnrlbert, 1986) illustrate one successful approach to the comnputation.

The retinex algorithms assune that the visual system performs the same

computation in each of three ineplendiint chromatic channels. The algo-

rithms further assume that in each channel, the image intensity signal, or .-

I
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more precisely, the image irradiance, s', is proportional to the product of

the illumination intensity e' and the surface spectral reflectance r' in that

channel:

s'(x, y) = r'(x, y)e'(x, y). (1)

This form of the intensity equation makes the implicit assumption that the

irradiance s' has no specular components and that the color channels have

been chosen appropriately. 1

Retinex algorithms seek to solve Equation (1) for lightness, which is an

approximation to r'(x, y), in each channel. The resulting triplet of lightnesses

labels a constant color in color space. To make a solution possible, retinex

algorithms restri,' their domain to a world of Mondrians, two-dimensional

suffaces covered with )atches of random colors (see Figure 1). The algo-

ritlims tien mak, the. xplicit assumptions th it (1) r'(x, y) is uniform within

p. ches )ut has harp discontinuiti( s at edge!- between patches and that (2)

ei x, y) varies smoothly across the -IMondrian.

Most retinex algorithms first take the logarithm of both sides of Equa-

tion (1), converting it to a sum:

-(x,y) r(.,y) + c(xy), (2)

where s = log s', r = log r' and c = log c'. The two assumptions are --

then exploited to break down the sum into its two conponents.

The most recent retinex algorithm (Land. 19SO ; 2,ploys an operator-

that divides the image irradiance of Equation (1) at each location by a

weighted average of the irradiance at all locations iHi a large surroivil. The

'For a detailed derivation of the iiteisity veq iation., S,v , Appenrdix ] ....
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Figure 1. A Mondrian under an illumination gradient, generated by adding together

two 320x320 images: one is the (log) reflectance image, an array of rectangles
each with a different, uniform grey-level (see Figure 2(a)); the other is the (log)
illumination image, in which the pixel values increase linearly in the same way
across each row.

log of the operator's result is called lightness. The triplets calculated by

the algorithm fall close to the colors humans see when viewing a Mondrian

under illuminants with strong spatial gradients. The form of this operator is

similar to that derived in our earlier formal analysis of the lightness problem

.V (see Hurlbert, 1986). The main difference between the two is that the ana-

lytically derived operator takes the log of irradiance before averaging, and so

is linear in the logs, whereas Land's algorithm averages before taking the log,

and so is not linear in the logs. As (lisc sse(d below, the numerical difference

between the two results is small.

We set out to sce wh .t her a simlple algorithm could learn from examples

how to extra't rle('ct anllee 1101 ilniage Ihilai 'ice, and whet her what, it woil('

4.

o.
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learn would resemble one of the above algorithms. The examples we use are

pairs of images: an input image of a Mondrian under illumination that varies

smoothly across space and an output array that displays the reflectance of the

Mondrian separately from the illumination. We then synthesize an operator

from the examples by finding the lincar estimator that best maps the input

into its two output components, using optimal linear estimation techniques.

For computational convenience we train the operator on one-dimensional

vectors that represent horizontal scan lines across the Mondrian images (see

Figure 2). We generate many different input vectors s by adding together

different random r and e vectors, according to Equation (2). Each vector r

represents a pattern of step changes across space, corresponding to one row

of he o, tput reflctam -e image (see Figure 3a). Each vector C represents a

sn )oth radient ,ro.- space with i random hffset and sl,,pe. corresponding

to -ne r ,w of tl ' out )ut illuininat on imag,. (In our implementation, we

ai ,end(,d r to e to cr...ate an output vector twice as long as the input.) We

then arrange the "training vectors" s amid r as the columns of two matrices

S and R, respectively. Our goal is then to compute the optimal solution L

of

LS = R, (3)

where L is a linear operator represented as a matrix.

It is well known that the solution of this equation that is optimal in the

least squares sense is

L = RS + , (4)

where S+ is the MoorpcPenrose ISendoinverse (see, for examtle, Albert

1972). \\W" compute L using t he tech lliql iC of regulari ting the pscudoinverse to

" °-a'
•

-.) 0
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Si w te imnao n t le c ee

Figure 2. (a) and (b) A pair of one-dimensional examples like those used to train the
algorithm. (a) shows the input data, which is a random Mondrian reflectance pat-
tern i s o a linear illumiation gradient with a random slope and offset.~Each example can be thought of as a horizontal scan line across a Mondrian such

~as the one in Figure 1 (which was generated by stacking similar one-dimensional

examples). Each example, 320 pixels inle hngth, has a different reflectance pattern

and a different linear illumination gradient. (b) shows the corresponding output
solution, in which the illumination and the reflectance have been separated and

concatenated. We used 1.500 su('h pairs of input-output examples to train the op-

.'. erator shown in Figure 4. (c) shows the result obtained by the trained operator
wheii it acts on the inp~ut d~t Ia (a), not Ipd rt of the training s et. 1I shoul be corn-

pared with (b). This result is fairly tYpi(al: ii sm,,e cases the prediction is even
better, in others it is worse. .71
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obviate numerical st' bility problems (see Appendix 3). The number of exam-

ples we use is significantly larger than the number of elements in each vector

in S, in order to overconstrain the problem. Once L is computed it is tested

on new scan lines, generated in the same way. The pseudoinverse may also

be computed by recursive techniques which improve its form as more data

become available (see Appendix 3). The latter procedure, although equiva-

lent to our "one-shot" computing technique, may seem intuitively more like

learning.

We find that the trained operator L, given a new s as input, recovers

a good approximation to the correct output vectors r and e. Operating

on a two-dimensional Mondrian, generated by stacking appropriately many

one-dimensional s vectors, L also yields a satisfactory approximation to the

correct output image (see Figure 3b).

It seems that our scheme has successfully learned an algorithm that per-

forms the color computation correctly in a Mondrian world. What algorithm

has been learned? What is its relationship to the filters described above?

To answer these questions we examine the structure of the matrix L. We

expect that because the operator should perforr le same action on each

point in the image, i.e. that it should be space-iivariant, the central part

of L should be a convolution matrix, in which each row is the same as the

row above but displaced by one element to the right. In the peripheral parts

of the matrix, this form will be corrupted by boindary effects. Inspection

of the matrix and appropriate averaging of the relvant rows (see Figure 4)

confirm these expectations. Like Land's psychophysically tested filter, it has

a narrow positive peak and a )road. slallow. negative surround (see Figure

4) that extends beyond tle rainge we, cal olbserve. but not over t le ('ntire

image.

V. . . . . . . ... . .. . ,, . . . .. .. . ., -,.. - : ... .-. .,. . .', .. %....' - .. ..
%.'1% .~r. a - .- '.%
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Figujre :3. (a) Trhe (log) reflectance image that is one component of the Mondriani

of F-igurec 1. TIhis image represents the Mondrian of Figure 1 under uiniformi illurni-
nat ion. (bh) The (log) reflectance image that the trained operator produces when

it acts on the Miondriani of Figure 1. The operator has b~eeni trained on a set of

one-dlimensional examples different fromt those uised to generate the MIoindrian of

Fi1-iire 1.

Oii algorith lii s ilot exactly ideiit ira1 withI Lam1 ~s: thle filti r of Figivt

4 subtr-acts from the value at each po ilit the aver-age valie of thle logs" at

- 1 poll )its III the fwhld. r-ather- than thle lo- of tihe avuirage( values As meiL-

tlO)Iie,(l above. the (lifiereIilee betweenl the outpits, of thle two( it er-s Is siiiall InI

111o)~t "O~S.aild both aa2lt ell NN th 1 )Vho~lVia 1~il. ad.Prol

(,itun th, I 'NI iidtjiii 4 F'ire I %vith lx ,, lwna 'ymiv 11 11, difuI'i

ai'lt lu i cil eI Iu rI oI f t Ic I In ;I I gi pi 'I I i I tt I I Ike 11 1, 11i i

'I'ri I w T I -,, re Ilt in'1 a1- ;1 vs N i p i cdiul;'* 11, C( I : ua : v

@4

-~~~ -. .. . ., -
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-80 0 +80

"W"

-80 0 +80
Pixels

Figure 4. The learned filter, which extracts reflectance from a Mondrian image
under a linear illumination gradient. The operator that is learned is a matrix that

acts on one-dimtensionial vectors. Assuming that the operator is space invariant

when boundary effects can he ignloredl. we estimate the shape of the corresponding

filter hy summating the central rows of the matrix, shifting them appropriately.

The one-dimensional -receptivec field" that. results has ai shiArp pos.itive peak and a

shallow surrotind that extends b~eyond thle range we cat: est inmte reliably, which is

the range we show here. The filter shown here was leai ned :rorn a set of examples

with linear illuiirn nation gradients (see Figuire 2). XNhif ii loga ri th~mic ill uination

gradients are used, a qualitativelY similar receptive field is obtained. In a sep~arate

experimnieit we itsed( a traiing set of one-d iniierisiona-l \fondrna ns with cit her lin-

car iilluin at ion grad ient,,; or slowly vary' ing sim isoidal I llihim aion with random

wavelenigthI, phase mnd aruijlit ide. T[le resultinug filter is shown in tlie inset. The

inhibitory sirrroi i clearly decays kirk lo zero.

oy N
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To investigate the way in which the shape of the learned operator varies

with the type of illumination gradient on which it is trained, we constructed

a second set of examples. In addition to vectors with random linear illumi-

nation gradients, this set contained an equal number of vectors with random

sinusoidally varying illumination components. The operator trained on this

mixture of illumination types differs from the operator trained on strictly

linear ones in the shape of its surround. Whereas the latter has a broad

negative surround that remains virtually constant throughout its extent, tiM

new operator's surround (see Figure 4b) has a smaller extent and returns

smoothly to zero from its peak negative value in its center.

The difference between the two operators illustrates aii interesting fea-

ture of the learning algorithm: it adapts to, its environment. The results

imply that the optimal operator for images with strictly linear illumination

gradients is one whose surround takes a ccnstant averag,, ove, a range small, r

than the entire image. On the ,)ther hai,, th, surrou A cf the opti-nal o -

erator for images with smoothly varying illumination -adi( .its is a 1,)w-pi, s

filter that separates the illumination froin the sharply-varying reflectance.

Our learning procedure is motivated by our previous observation (Poggio

and Hurlbert, 1984; see also Poggio et al., 1985b) that standard regulariza-

tion algorithms in early vision define linear mappings between input and

output and therefore can be learned associatively under certain conditions

(see Appendix 3). Our algorithm synthesizes the optimal linear operator L

that maps as closely as possible. in the least squares sense, the image irradi-

ance into its reflectance and illumination components for this class of images

and illumination gradients. The technique of optimal linear estimation that

it uses is closely related to optimal Bayesian estimation (see Albert, 1972

and Appendix 4).
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to the correct output images. Note that the result of applying the matrix L

to a two-dimensional Mondrian image (see Figure 3) is not as good as the

one-dimensional examples suggest. The reason is that the matrix L has been

learned from one-dimensional examples, and in the case of Figure 3 it has

been applied to each row of the Mondrian independently. Small errors in

offsets and scaling factors for each row that would only slightly affect the

one-dimensional result become more obvious as they vary from row to row

in the two-dimensional case.

Training of the operator on two-dimensional examples is possible, but

computationally very expensive if done in the same way. The present com-

puter simulations require several hours when run on standard serial com-

puters (up to 20 hours on a Symbolics 3640 for 512x512 images). The two-

dimensional case will need mucli more tiime. We expec that it will 1 e fem- -

*ble only on the latest version of the Coni cctioii Machi ie (tl, 65K-pi ocess r

CM-2 with floating point hardware) of TI inking Machi ies ( ,rporati, n. 0 r

one-dimensional learning scheme runs orders of magnitude faster on a CT\1-

1 Connection Machine System with 16K-processors. It is possible to use

much more efficient methods of computing the pseudoinverse and especially

approximations to it (see for example Albert, 1972 and Kohonen, 1977).

The calculation of a regularized pseudoinverse may also be implemented

by parallel networks of simple processors or by analog networks that bear

some resemblance to biological systems. In particular, it could be computed

by so-called "neural" networks using a gradient descent method (also called

back-propagation in recent papers, see Rumelhart et al., 1986) and linear

units. Since the pseudoinverse is the best linear approximation in the L 2

norm, gradient descent minimizing the square error between the actual out-

put and desired output of a fully connected linear network is guaranteed to
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converge, albeit slowly. Thus gradient descent in weight space would give the

same result we obtain, the global minimum. In terms of a network of linear

units, the training scheme we have run, using one-dimensional Mondrians

512 pixels long, corresponds to learning the equivalent of up to about half a

million weights.

The significance of our result lies not so much in the specific estimation

technique we used, but in the form of the filter we obtain. It is qualitatively

the same as that which results from the direct application of regularization

methods exploiting the spatial constraints on reflectance and illumination

described above (see Table 1 in Poggio et al., 1985a; Poggio and staff, 1985b;

Appendix 2). The Fourier transform of the filter of Figure 4 is approxi-

m tely a bandp,.ss filter that cuts out low frequencies due to slow gradients

of illumination and preserves intermediate frequencies due to step changes

in reflectance. The large "inhibitory" surround also provides normalization

to average grey in the field (see Hurlbert, 1986).

We do not think that our results mean that color constancy may be

learned during a critical period by biological organisms. It seems more rea-

sonable to consider them simply as a demronst, i,,, on a toy world that

evolution may recover and exploit natural constraints hidden in the physics

of the world. The shape of the filter in Figure 4 is suggestive of the "non-

classical" receptive fields that have been found in V4, a cortical area im-

plicated in mechanisms underlying color constancy (Desinione et. al., 1985:

Wild et al., 1985; Zeki. 1983a.b).

Finally, it is important to stress that the general solution of the problvm

of color constancy requires nich i1we W)rk: real iniages are noisy. oljc-ts

.[ . are three-dimensional, and there are shliilig, shad,,,Vs. a id' specularitis. We

e r
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are presently extending the simple learning technique described here in ordr

to deal with the full complexity of real scenes.

V%
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Appendix 1

The Intensity Equation

This appendix illustrates the transformation of the photoreceptor activ-

ity necessary in order to decompose the intensity equation into a sum of two

components representing the surface reflectance and the source illumination

intensity.

In most natural scenes, the light reflected from objects includes both

diffuse and specular components. To simplify the intensity equation, we

assume that all reflection is Lambertian. or that there are no specularities. In

this case, the light reflected by a surface is solely the product of its spectral

reflectance and the illumination intensity that falls on it. The amount of

reflected light that reaches the eye further depends on the angles between the

illumination source, the reflecting strface, and the eye, and the response of

th -eye lo the lig ht de;)ends oni the : pectral s,'nsitivity of its photorceptors.

N e ma% therefoic write the intensity signal rgistered by the eye as:

s'(I) = log a"(A )r'(A..r)c'(A. x)d., (.41.1)

where v labels the spectral type of the photoreceptor (v 1 ... 4 for humans,

counting 3 cone types and 1 rod type). aL'( A) is the npectral sensitivity of

the vti-type photoreceptor arid .*i'v(.r) its activit. r'(A., ) is the surface

slctral reflectance and ('(.k,.r) the .:(Jjctv: zrradiun' . We group together

the geometric factors infliwncing the iltesllity signal by defining the effective

irrad i;ce as the ambient illhiiiittio in mlodified by the orientation, shape.

'Ne,

U c' -
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;,nd loctioi of the reflecting surface. The effective irradiance is the intensity

that the surface would reflect if it were white, that is, if r'(.\, x) = 1.

Equation A1.1 is not separable into a product of reflectance and illumi-

nation components in a single color channel. To make it separable, we must

make a transformation to new color channels that are combinations of the

photoreceptor activities. We first choose basis functions pi(A) and q'(A) such

that for most naturally-occurring illuminants and surface reflectances

(A1.2)

The basis transformation (for a review of the origins of this idea see

Maloney, 1985; see also Buchsbaum, 1980 and Yuille, 1984) leads to the

following equation

= T',,c (x)r j(x), (A1.3),

where the tensor T is defined as

: :T -,, = ( ,a )p '( )j ( )

where v, = 1. ... 4 and i. j = 1....N, the p's and the q's are the basis functions

for the illminant and for the albedo, respectively, and the sum is taken over

repeat'd indices.

To sinplifv further analysis, we i1)os( the conditions that the p'

.and that the p'(A) are orthogonal with respect to the a'(A). This orthogonal-

ity is insured if, for example, the p'(A) d( it overlap witli respct to A. In th

s. nil lst case. the 1);isis fin,'tion- may b" i l liro ii at p' A) = 6( , .

*e

€,*J* **4 ~
.- - - - - - - 1 .,. - . -
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, Substituting A1.2 into A1.1 then yields:

s'(X)= log e i(x)r i(S) f dAav(A)pz(A)pI(A) (A1.4)

If we define the matrix T7 fdAa"(A)p'(A)p'(A), where / = 1,...4

and i = 1,...N, we obtain

antilog [5 V(xi T e •(x)r'(x)

If the pt (A) are suitably chosen, Ti is invertible. Then the linear equa-

tions represented in A1.5 yield the following solution:

(To,)- l antilog [s '(.r)] C'3(:rr(x) (41.6)

Alit. or,

1 S (x) = c(x)r'(x) (.41.7)

where s''(x) = (T ,,)-'antilog [s'"(.r)]. Taking logarithms of A1.7 yields

,4

-4

log s'(x) = log c i(.r) + log r'(x)

or
' i. '.r) '.r)+ r'(.,) i = 1. ..V. .18

where .,'(.x) loq ."(.r) and so on.i which is tlie desired equation. The

extension to the two-dimensional case is clear.

q .'(x) is a linear combination of the activity of (ifferent types of photore-

e qti rs. It is iplortant to not( thalt tli iiidlex i lalIlls not the color channels

-9) ', . ;1s-,,'i;, t,., ' with tilf . 'tral s,,,sitijit i, ,f th,' diff, 1,.I cut phi , ,re,',)t,, types

- IP
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but new channels which may be similar to the biological color-opponent chan-

nels. There is no a priori limit on the uunlxr of new chunnels forncx by

linear combinations, but efficiency of information transmission would require

it to be close to the number of photoreceptor types.

_MM*0 ~

.4 Qw • q € 4 ,
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Appendix 2
A Regularization Algorithm for Color Computation

2.1 The regularization approach

Consider the equation

y= Az (A2.1)

where A is a known operator. The direct problem is to determine y given z.

The inverse problem is to find z, given y - the function y becomes the "data"

and z the solution. Although the direct problem is usually well-posed, the

inverse problem is often ill-posed.

Standard regularization theories for "solving' ill-posed problems have

been developed by Tikhonov (Tikhonov and Arsenin, 1977) and others. The

basic idea underlying regularization techniques is to restrict the space of

acceptable solutions by choosing the one solution that minimizes an appro-

priate functional. Among the methods that can be employed (see Poggio, et.

al. 1985a), the main one is to find z that mini;'iz,.

IIAz - Y112 + AIIPZII 2 . (.42.2)

The choice of the norm 11 11, usually quadratic as in Equation A2.2, and of

the linear stabilizing functional jIPz jI, is dictated by mathematical considera-

tions, and most importantly, by a physical analysis of the generic constraints

on the problem. The regularization parameter A controls the compromise

1ietwecn the degree of regidarizati ini f to H i solitiij and its clos.uiess to Ii,

data.
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2.2 Regularizing the Color ComputationK,

Equation A1.8 is impossible to solve in the absence of additional con-

straints: there are twice as many unknowns as equations for each x. Formally,

the problem is ill-posed. Regularization techniques can be used to restrict

the number of allowed solutions for d(x) and r'(x), and thereby reduce the

number of unknowns, by imposing constraints on the imaging process and

the physical properties of the surfaces and the source illuminant.

One constraint that may be used is spatial regularization (for other con-

straints - spectral regularization and the single source assumption - see Hurl-

bert, 2001 and Poggio, 1985b). The spatial regularization constraint formal-

izes and extends the retinex assumptions that (a) r'(x) is either constant or

changes sharply at boundaries between different materials, and (b) e'(X) is ei-

ther constant or changes more smoothly than r'(x) across space. One retinex

algorithm (Horn, 1974), for example, imposes the strong constraint (in two-

dimensions) that all values of V 2 si(x, y) strictly below a fixed threshold are

due to e'(x, y). The regularization assumption requires only that e(x) vary

less sharply across space than r'(x) and effectively allows the limit on the

spatial variation of e(x) to be reset for each scene.

Standard regularization techniques enforce this constraint on Equation

A1.8 by requiring that its solution minimize the following variational princi-

ple:

--s - (r0 + Ci)12 + A [ j ']t  + 3[G * r ± iy r I (A 2.3)

where G i a gaussi:n fil or wit standa;d deviation . I] e first t. rm r, -

quire-; that the solut on (r' + d) le clo-w to s': the second f erm enforces the

constraint that the illumination vary snicothly across space; and the third

%AAA
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t( ni en orces th con- raint thiat th, reflecta :ce vary not t )o smooti ly across

sl tce.

Minimizing Equation A2.3 demonstratts that the solutions r and e'

may be obtained by filtering s' through a linear filter. In the Fourier domain

we derive the result:

= (1 + fl-,,W. + w2 + 1W -Pw 2e 2 + 0-),W4)(1 + \ 2 ) - 1

(A2.4)

Note that the quadratic variational principle of standard regularization

cannot enforce the spatial regularization constraint with full generality. A

more general regularization scheme based on Markov random fields, which

leads to standard regularization as a special case, is sketched by Poggio and

staff (1985).

Afk
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Appendix 3

Learning a Regularization Algorithm

3.1 Associative Learning of Standard Regularizing Operators

Minimization of the regularization principle A2.2 corresponds to deter-

mining a regularizing operator that acts on the input data y and produces

as an output the regularized solution z. Suppose now that instead of solv-

ing for z, we are given y and its regularized solution z and we want to find

the operator that effects the transformation between them. This appendix

demonstrates that the regularizing operator can be synthesized by associa-

tive learning from a set of examples. The argument consists of two claims,

explored in detail below. The first claim is that the regularizing operator

corresponding to a quadratic variational principle is linear. The second is

that any linear mapping between two vector spaces can be synthesized by

an associative scheme based on the computation of the pseudoinverse of the

data.

3.1.1 Linearity of the regularized solution

To show that variational principles of the form of Equation A2.2 lead

• to a regularized solution that is a linear transformation of the data, we start

with the discrete form of Equation A2.2:

IIAz - y1l + AjPzjj2 , (A3.1)

in which z and y are vectors and A and the Tikhonov stabilizer P are ma-

trices, A does not depend on the data, and 1. -) is a norm.

The minimum of this functional will occur at its unique stationary point

z. To find z, we set to zero the gradient with respect to z of Equation
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A3.1. The solutiii to the resulting Euler-Lagrange equations is the minimum

v -ctorz:

(A T A + AP 7P)z = ATy. (A3.2)

It follows that the solution z is a linear transformation of the data y:

z = Ly, (A3.3)

where L is the linear regularizing operator. (If the problem were well-posed,

the operator L would equal simply the inverse of A.) It is important to note

that L may depend on the given lattice of data points.

3.1.2 Learning a linear mapping

Given that the mapping between a set of input vectors y and their

regularized solutions z is linear, how do we solve for it? We start by arranging

the sets of vectors in two matrices Y and Z. The p.oblem of synthesizing the

regularizing operator L is then equivalent to "so' ving" the following equation

for L:

Z = LY (A3.4)

A general solution to this problem is given b)

4

L = ZY + ,  (A3.5)

where Y+ is the pseudoinverse of Y. This is the solution which is most robust

against errors, if Equation A3.4 admits several solutions and it is the optimal

solution in the least-squares sense, if no exact sobltion of Equation A3.4

exists. This latter case is the one of int.rest to us: in order to overon',stvaiII
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the problem, and so avoid look-up table solutions, we require that the number

of examples (columns of Y) be larger than the rank of the matrix L. In this

case, there is no exact solution of Equation A3.4 and the matrix L is chosen

instead to minimize the expression

l = lILY - Z112 . (A3.6)

L may be computed directly by minimizing A3.6, which yields

L =z YT(yyT)- 1 (A3.7)

In practice, wc compute L using Equation A3.7, but ficst regularize ;t

by adding a stabilizing functional to obviate problems f nu.nerical scability

(Tikhonov and Ars'nin, 1977).

These results show that the standard regularizing operator L (parame-

trized by the lattice of data points) can be synthesized without need of an

explicit variational principle, if a sufficient set of correct input-output pairs is

available to the system. Note that by supplying as examples the physically

correct solutions z, we assume that they are identical to the regularized

solutions z, and enforce both regularization and correctness on the linear

operator we obtain.

3.2 Recursive estimation of L

It is of particular import for practical applications that the pseudoinverse

can be computed in an adaptive way by updating it when new data become

available (Albert, 1972). Consider again Equation A3.7. Assume that the

matrix Y consists of it - 1 input vectors and Z of the corresponding correct

outputs. We rewrite Equation A3.7 as

AtZ .
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L,,_ := ,,-s ;+_l(.43.8)

If another input-output pair y,, and z,, becomes available, we can compute

L,, recursively by

L L i + (z,, - LY )t,,., (.43.9)

where

T ,

1it + y Yr )-1 " (.43.10)I+ Y,,, t - n- -

provided that (y,_1yT1 )-1 exists ki.e.. that the number of columns in Y is

greater than or equal to the dimension of y). The case in which (1Y,_- li T I)-I

does not exist is discussed together with more general results in Albert

(1972). Note that (z, - L,a- t,) in the updating E, quation A3.9 is the error

b iweeii the desireld (.ultput aid the )redict(d oii(. in terms of the current

L The coeffici, it t,, is the weight of the correction: with the value given

b, Equation A3.10 the correction is optimal and cannot be improved by any

iteration without new data. A different value of the coefficient is suboptimal

but may be used to converge to the optimal soh.tioii by successive iterations

of Equation A3.10 using the same data.

-6u
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Appendix 4
Optimal Linear Estimation,

Regression and Bayesian Estimation

The optimal linear estimation scheme we have described is closely related

to a special case of Bayesian estimation in which the best linear unbiased

estimator (BLUE) is found. Consider Equation A3.3: the problem is to

construct an operator L that provides the best estimation Ly of z. We assume

that the vectors y and z are sample sequences of gaussian stochastic processes

with, for simplicity, zero mean. Under these conditions the processes are fully

specified by their correlation functions

E[y. YT] = Cyl, E[zyT] = CZY (A4.1)

where E indicates the expected value. The BLUE of z (see Albert, 1972) is,

given y,

est Lr, -y ,(4.2
,.,R = t. Yc .v g, (A4.2)

"SY'p

which is to be compared with the regression equation

Ly = ZYI"(YT)-ty. (A4.3)
J

The quantities ZYT and yyT are approximations to C ., and CY,, re-

spectively, since the quantities are estimated over a finite imiilbr of observa-

tions (the training examph s). Thus there is a direct relation between BLUEs

,iand optimal linear estimation. The learned operator capturs the stochastic

regularities of the input an d ot tlt sigii,.Is. Note that if . input vector'.

y are orthonormal. then 1 . Z)"7' and tie prollein re('iic(' o construct in

N..

,UL
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a simple correh.,tion -memory of thi lh,,hirapli, type (see Poggio. 1973a,b).

Under no restrictions oin the vectors U, the cor,.lation iiatrix Z "' may

still be considered ats a low-order a ppr,,xi )IIla t ion to the opt imal operator (se

oiohonen, 1977).
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