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N Abstract

Classical or ordinary least squares (OLS) is one of the most commonly
used criteria for fitting data to models and for estimating parameters. This
is true even when a key assumption for its use, namely that the independent

" variables are known exactly, is violated. Orthogonal distance regression
‘ (ODR) extends least squares data fitting to problems with independent
variables that are not known exactly. Theoretical analysis, however. shows

3 OLS is preferable to ODR for strasght line functions under certain condi-
é;‘ tions, even when there are measurement errors in the independent variable.
f) This has lead some to conjecture that under some similar conditions OLS

will also be preferable to ODR for nonlinear functions even though there

y are errors in the independent variable. ~EXamind o

5 ——1 this paper. -we presentsthe results of an empmca] study designed to
:.' : examine whether ODR prov:des better results than OLS when there are er-
n rors in the independent variable. We ex#mine a variety of functions. both
: linear and nonlinear, under a variety of experimental conditions. The re-
. sults indicate that, for the data and performance criteria considered, ODR
o never performs appreciably worse than OLS and sometimes performs con-
by siderably better. This leadsyus to the conclusion that ODR is appropriate
¥ y prop

b for a wide variety of practical problems.
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1 Introduction

Of all of the criteria used for fitting data to models or for estimating param-
eters, classical or ordinary least squares (OLS) is the one most commonly
used. This continues to be the case even when the assumptions required
to fully justify its use are not completely met. Orthogonal distance regres-
sion, or ODR. is designed to extend least squares data fitting to a class of
problems which violate a key assumption for the use of OLS in parameter
estimation. namely that the independent variables, z;. are known exactly.
In this paper, we compare the performance of OLS with that of ODR when
this key assumption for OLS is violated.

The data fitting problem arises by considering a data set (zi,y:), t =
1..... n. that has been collected and a model that is purported to explain
the relationship of y, € R! to z, € R™. Specifically, if we assume there is
no error in (z,.y,) and the true or actual value of the parameter vector
3° € R? is known. then

v = f(z,: 3°)

where f is a smooth function that can be either linear or nonlinear in z, and
3. Alternatively. if we suppose that the observations y, contain actual, but
unknown, additive errors €2 € ', and that the observations z, are known
exactly, then y, satisfies

Vo= f(z;:8°)—¢€ 1=1....,n. (1.1)

Finally, if we allow there to be additive errors in both r, and y,, then the
data satisfy

yi=flz, +6:8%) - ¢ t=1,...,n. (1.2)

were 8 € R™ is the actual, but unknown, additive error in r;. (Note that
we have chosen the signs of ¢; and §, for convenience and consistency with
other work.)

Using OLS, 8° is approximated by finding the 3°LS for which the sum of
the squares of the n vertical distances from the curve f(z,: 8) to the n data
points is minimized. This is accomplished by the minimization problem

min )" w¥(f(2:3) - v.)? (1.3)
=1




te,
'y
::;:: where w,. 1 = 1,...,n, are non-negative numbers that allow the procedure
::t:', to be applied to problems when the observations should be weighted differ-
MUY ently. When (1.1) is satisfied and € = (¢;,...,€,)T ~ N(0,02I), then (1.3)
‘ with each v, = 1 results in the maximum likelihood estimator of 5°.
‘(:;.-."‘ Since ( 1j3) a§sigps all errors to y,, a cn’ticc.zl assumption ?f OLS in pa-
r:“,: rameter estimation is that there are no errors in z,. When this assumption
:2:: is violated. use of OLS does not appear to be fully justified. and may not
e produce good estimates [Ful87, Mor71].
ODR. on the other hand. does allow for errors in z,. ODR approximates
S 3° by finding that g for which the sum of the squares of the n weighted
A . . . . .
e orthogonal distances from the curve f(r;: 3) to the n data points is mini-
":' mized. The estimated parameters, PR are then those values that solve
By the minimization problem
‘Z". min g w? [(f(z;+6:8) - ) + &7 p,’é.-] . (1.4)
)
)
‘:.:". where p, e R™*™, 1 = 1..... n, is a set of positive diagonal matrices that
o allow ¢, and 6, to have different variances [BogBS85]. When (1.2) is satisfied
ol and e.§,.....6, are independent and distributed as ¢ ~ N(0,02I) and §; ~
o N(0.02p7?), then (1.4) with each u, = 1 results in the maximum likelihood
:;E?, estimator of 3°. In the most common use of ODR, it is assumed that each
5:&, p. = pl. where p is the ratio of the standard deviations of the errors in the
. y and r data. i.e., p = 0,./0s.
LR In this paper, we present the results of an empirical study designed to
o examine whether ODR provides better results than OLS when there are
*::::: : errors in both 7, and y,. We examine a variety of functions. including
::‘: functions nonlinear in r and 3. under a variety of experimental conditions.
N While the statistical properties of the estimators from ODR fits are not yet
L;,;;{L well understood. [ReiGL86. Ful87) show that there are theoretical reasons
:‘g:v to prefer OLS to ODR for a straight line function in certain situations even
;f::if though there are errors in the observations z,. This has led some to con-
_"?f jecture that under some similar conditions we should also ignore the errors
— in r;, when fitting models which are nonlinear in # or 2. The results of our
"é;: study indicate that this is probably not the case for. tht? measures we have
::::'é chosen. Specifically. for the data and performance criteria considered, ODR
A
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i never performs appreciably worse than OLS and sometimes performs con-
:: siderably better. This leads us to the conclusion that ODR is appropriate
! in a wide variety of practical problems.

To our knowledge, this is the first extensive computational study of the
errors in variable problem with nonlinear functions. Previous work [e.g..
Ful87, Mor71] has mainly concentrated on analytical analysis of the straight
line function. We believe that this is partially due to the fact that until now.
the ODR problem has been relatively expensive to solve and the necessary
software has not been readily available. [BogBS85]. however. presents a

£

' trust-region. Levenberg-Marquardt algorithm that exploits the structure of
‘:" the ODR problem to obtain a procedure that is both stable and efficient.
* The order of operations per iteration, and the constant for the highest order

term, are the same for the algorithm developed in [BogBS85] as for a trust
region. Levenberg-Marquardt solution of the OLS problem. namely O(np?)
0 operations per iteration. (A straight forward use of an OLS algorithm
Y on (1.4) would require O(n(n + p)?) operations per iteration [BogBS85)
;; which is clearly prohibitive for large values of n.) The algorithm described
in [BogBS83] has been implemented in the portable Fortran subroutine
library ODRPACK [BogBDS87]. The availability of ODRPACK makes it

. reasonable to conduct the study reported here.

:: We emphasize that this study is only a first step and that we have

i left many important questions unanswered. Some of these are discussed
in §2 where we detail the motivation for our study and its scope. We

o outline our Monte Carlo procedure in §3, and in §4 we summarize our

R observations and present our conclusions. Our plans for future work are

given in §5. A detailed description of our results and the accompanying
figures are presented in the Appendix.

2 Motivation

While ODRPACK provides an efficient means of solving ODR. it is not
known whether there is a “theoretical” penalty for using ODR since the
theoretical analysis of ODR is not yet available for functions other than a
" straight line.

Y For a straight line, [ReiGL86] notes that OLS results in a smaller mean
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square error of the slope than ODR when

B\’ _2
P n-2

where B is the slope of the line, p = ¢, /05, and it is assumed that ¢; and 6,
are independent. [BogBS85]. on the other hand, presents empirical results
for which ODR appears preferable to OLS. We are therefore interested in
studying the question
Under what conditions is ODR preferable to OLS. and, con-
versely. when ss OLS preferable to ODR?

This paper is a first approximation to answering this question.

The question actually has two parts. First. can we detect a practical
difference in performance between ODR and OLS? Second. assuming that
differences in performmance are detected. can we characterize the conditions
under which such differences occur in order to predict when one method
will be preferable to the other?

To detect a difference between ODR and OLS we must select a measure
of performance. As a first step, we have chosen to investigate the estimated
parameter values, 8, and function values, Jz,: B ). since these are commonly
of interest and easily understood. For both we use three standard measures
of performance: bias, variance and mean square error.

To determine performance predictors that can be used to characterize
a priori whether a data set should be solved using ODR or OLS, we re-
examine the results for a straight line function. The ODR solution for
a straight line can be derived by noting that the square of the weighted
orthogonal distance between the line 3,7 + 8, and the data point (z,.y,) is

(B].‘l', + ﬂ? - yi)z
—
1+(2)
If we assume that any function, whether linear or nonlinear in r and 5.
is at least approximately a straight line in the neighborhood about each

individual point (z,, y, ), then the square of the weighted orthogonal distance
between f(r.8) and (z,.y,) is

(f('r|: 3) - y:)2
1+ (8“:,;3“6:)2

[4

g(d)=

4




meaning that the ODR problem (1.4) can be approximated by

min 3" ug:(3). 21)

T3 |

As the ratios

h(z;8) = 2 2:8)/0

p
approach 0. (2.1) becomes equivalent to the OLS problem (1.3). The sizes
of the ratios h(r;: 3) should thus be related to the question of when ODR
is different from OLS.

Unfortunately. when f(z,: 8) is not linear in z,. 8f(z,; 3)/0r dénd there-
fore h(r;: 3) varies with z,. Consequently. in order to assess a single num-
ber as a performance predictor of ODR in relation to OLS we must map
Of(xy:3)/0r..... 0f(x,:8)/0z into a single value. For simplicity. we ini-
tially clhioose

Q = max{|0f(z,:3)/0r|. i =1....,n},
i.e.. the {, norm of [8f(zy: 3)/8r....,8f(xn:8)/0]" . as the mapping and

Q/r

as the performance predictor. We note that other norms could be chosen.

Our approach for this initial pilot study. described in detail in §3. is rel-
atively simple. Briefly, we select seven functions that, although clearly not
exhaustive, are ubiquitous in science and engineering. and seven different
values of p that are used with each function. For each function, we also
choose two parameter sets that produce different values of Q. Treating p as
known. we then examine (a) how the performance of ODR and OLS varies
for an individual function as p changes. (b) how the results vary between
functions and (¢) how well the performance prediction value Q / p forecasts
the observed results.

We recognize that we are examining our data under ideal conditions.
Clearly. p and Q will frequently not be known exactly. but this does not
seem to be bothersome. In our experience. Q can be reasonably estimated
for most functions and data sets. Furthermore. if 3(p) is the estimate of
B° for a given value of p. we can show that when 6 is small, then df(p)/dp
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is also small. Thus, the value of 3 should not change much as p is varied.
This is observed in other experience not reported in this paper. For the
remainder of this paper, therefore, we assume that the true value of p is
known, but see §5.

3 Procedure

In this section. we briefly describe the details of our Monte Carlo study.
QOur study examines seven functional forms.

H(ziiB8) = Bz , (3.1)
fi(zi:8) = B’ + 8, " (3.2)
fo(zi:8) = B’ + B+ s (3.3)
fd2.:8) = Brexp(8:7) (3.4)
fs(z:8) = Byexp(3,r)+ 83 (3.5)
fe(zi:3) = PBysin(Jyr +2) (3.6)
fi(z;8) = Prisin(8r + B3) (3.7)
We have selected two sets of parameter values for each function. For both.
max {|y;]| = |f(z::8°)]. i=1....,n} = 1.

In addition, the first parameter set is chosen so that Q =~ 1 and the sec-
ond so that Q = 10. The data sets constructed for each function using
the first parameter set thus have some similar attributes, as do those for
the data sets constructed using the second parameter set. even though
the functional forms are different. The parameter sets are as follows.

Function Parameter Set 1 Parameter Set 2
h g = (1.1, 0.9)T B = (10.0, -2.0)T
f2 B = (0.3, 3.3)T B° = (4.5. -3.0)T
b3 g° =(0.3. 04. 3.3)T p*=(4.5, 1.0, —4.5)T
7 B° = (0.4, 1.0)T B = (1.2, 1.6)T
fs g = (04, 1.0. =1.0)T g°=(1.2. 1.6, -5.0)T
fe 8° =(0.9. 1.1)7 p° = (5.0, 2.0)T
Iz 8°=(09.11. 20)T  g°=(50. 2.0, 1.0)T
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For all functions and parameter sets. the number of observations, n, is
51, and 72,¢ = 1,...,n are the 51 equally spaced values over the interval
[-1.1]. The ranges of z? and y? are thus comparable.

We analyze each of the seven functions using both sets of parameters
and seven different values of p = ¢,/0;. namely p = ;‘5, %. 1.2.10,100, and
co. When p # oc, we analyze the data using both methods, ODR and OLS.
(When p = oc the two methods are equivalent.) A total of 182 combinations
of function. parameter set, p. and method are considered.

We generate two groups of 500 data sets each for this collection of 182
combinations. In the first group, a single set of values ¢ and é is used
to produce the actual errors €2 and 6° for each of the problems within the
collection. The problems analyzed within the collection of 182 combinations
in the first group, therefore. are not independent. In the second group.
a different set of errors ¢ and & are generated for each of the problems
within the collection. The problems analyzed within the collection of 182
combinations in the second group are independent. The first group allows
us to make pair-wise comparisons of the individual results obtained using
ODR and OLS. and enables us to ensure that variations in performance are
not artificially induced by variation in the data used within the collection.
The independent data used for the second group open our analysis to a
wider range of statistical tests.

For each of the 500 data sets in both groups, we generate the n i.i.d.
pseudo random values, €. ¢ = 1....,n. from a normal distribution with
mean 0 and standard deviation .05. and the n values §;, i = 1.... .n, also
i.i.d. normally distributed with mean 0 and standard deviation .05. This
set of values ¢ and & is used to produce the actual errors €? and 62, where

1/2
a 2 -
€(p)=p (m) €

0 \1/2_
8(p) = (p,;l) 5

for each of the seven values of p. (The expected sum of the squared errors
is thus constant over the seven different values of p.) These errors €(p)
and é°(p) are then used to generate the “observations™ y,(p) and z,(p) for

7




a given value of p, where

vi(p) = yi — € (p) = f(z};8°) — €} (p)

and
2= 20+ 62(p).

The errors are produced using the Marsaglia and Tsang [MarT84] pseudo-
normal random number algorithm as implemented by James Blue and
David Kahaner of the Scientific Computing Division of the National Bu-
reau of Standards. The ODR and OLS estimators are computed using
ODRPACK. Parameters are initialized to 3° for both the ODR and OLS
solutions, and for the ODR solutions the errors in z, are initialized to 6°
and p is set to the correct value. Using 8° and 67 for starting values is rea-
sonable since in this study we are only interested in the properties of the
ODR and OLS solutions and not in the properties of the estimation proce-
dures used to obtain them. The graphics package TENIPLATE [Meg8C] is
used to produce the plots.

All computations are performed in single precision on the CDC Cyber
205 at the National Bureau of Standards. Approximately 3400 seconds cpu
time are required to solve the 182000 optimization problems. There are 31
trials for which one of the 182 problems failed to converge in 200 iterations.
Each of these “failed” trails is omitted from the analysis, and another trial
substituted in its place. Such a small percentage of failures does not affect
our conclusions.

4 Conclusions

Our study addresses two main issues:

1. the relationship between the performance of ODR and OLS for pa-
rameter and function estimation as determined by the three measures,
bias. variance and mean square error (mse): and.

2. to a lesser extent. how the performance characteristics of ODR and
OLS vary for different values of Q and p.




The first item is important for determining whether there is a preferred
method. The second may be important in determining how to choose be-
tween the two methods. In this section, we summarize our observations
and conclusions regarding these two issues. A more detailed description of
the results from our study is given in the Appendix.

Our results indicate that ODR should always be used when our criteria
are relevant. A subroutine library such as ODRPACK is just as easy to use
as an OLS subroutine library and is no more computationally expensive
per iteration. More importantly, however, for all of the measures of per-
formance examined in our study. ODR is seldom seriously worse than OLS
and is frequently significantly better. especially for p < 2. We conclude
that. except for outliers, ODR results in smaller bias. variance. and mse for
both parameter and function estimates than does OLS.

o Our results for the bias of the parameter and function estimates are
especially clear.

— OLS is statistically better (as described in the Appendix) only
29 of the time.

— ODR. on the other hand, is appreciably better more than 50% of
the time, and the largest of the relative differences between the
ODR and OLS biases when the ODR bias is closer to 0 is more
than 250 times the largest of the relative differences observed
when the OLS bias is closer to 0.

e Our results for the variance of the parameter and function estimates
also decisively favor ODR over OLS.

— For both the variances of the parameter estimates and the vari-
ances of the function estimates, the ODR variance is appreciably
smaller than the OLS variance more than 23% of the time. and
in over 10% of the cases the ODR variance is less than 50% of
the the OLS variance.

— Conversely. OLS results in appreciably smaller variance than
ODR only 2% of the time.
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The 2% of the time that OLS has appreciably smaller variance than
ODR all occur for the same two data sets involving the sine function
(3.6) and (3.7) when p = L. The results for these two data sets, shown
in figures 4 and 5, are clearly different from any of the other data sets
we examined in that they contain significant outliers. Further analysis
will be required to explain their anomalous behavior.

e Our results for the mse of the parameter and function estimates are
essentially the same as those observed for the variance:

— ODR results in appreciably smaller mse approximately 25% of
the time with the ODR mse less than 50% of the OLS mse ap-
proximately 20% of the time, while

— OLS results in appreciably smaller mse only 2% of the time.

Again. the times OLS has smaller mse are all observed for the two
data sets that affected the variance in the analogous manner and will
require further study.

The 500 data sets used in our study is apparently not enough to confirm
the theoretical results reported in [ReiGL86) that indicate OLS should be
preferable under certain conditions when the function is a straight line.
OLS does. in fact, produce a smaller variance and mse than ODR for our
linear data sets. One would seldom, if ever, call the difference statistically
or practically significant, however. This. coupled with the bias data that
indicates that ODR is significantly better for a straight line, leads us to
conclude that ODR is the method of choice for our criteria.

Our final conclusion. based on a visual examination of the almost 200
plots generated for this study. is that Q/p does not adequately predict the
relationship between the performance of ODR and OLS, although as a crude
measure it does have its merits. Since our primary interest originally was
to predict when one should prefer ODR to OLS, or visa versa, and since we
conclude now that we always prefer ODR to OLS when there are errors in
7 and p is known, the failure of this performance predictor is not important
to our current results. Further analysis of the predictors mentioned in §2
ma) be required. however, when we examine other performance criteria, or
when we examine the effect of not knowing p exactly.
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;:E?: 5 Future Work
)
'73?:;3 As we have mentioned before. this is a pilot study, and as one would expect
from such a study. we have answered some questions and raised others.
.,;;: There are clearly additional questions to be answered from our cur-
3:‘.2 rent data. The anomalous results we noted for functions (3.6) and (3.7)
::::: definitely require further analysis. In addition. we would like to examine
gt other measures of performance. and the structure of the estimated resid-
uals. Further analysis may also raise the need for different values to help
R predict whether to use ODR or OLS as described in §2.
E}- Additional studies need to be performed. Our current plans include
'? an examination of the effect of using an incorrect value of p.. We also
i‘} plan to examine other functions with much steeper slopes than what we
- allowed in this study. and with unequally spaced r data. Finally. we note
:i"' that least squares estimates. whether OLS or ODR, are not robust in the
:::t presence of outliers [Ful87]. and that [Gol\'83] shows that ODR problems
i:' ‘ are more ill conditioned that the corresponding OLS problem. We would
" therefore like to experiment with diagnostics and resampling techniques
. such as bootstrapping that could be used to indicate when the ODR results
s:: might be affected by ill conditioning or outliers.
ke
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A Results and Observations

In this section, we present a detailed description of the results and obser-
vations that support the conclusions presented in §4.

Because of the large amount of data examined, our analysis is primarily
graphical. We have included in this paper only representative examples of
the almost 200 plots generated for this study. As noted in §3, our study
includes two groups of 500 data sets: the first with errors ¢® and 6° within
the collection of 182 combinations of function, parameter set, p. and method
that are not independent; and the second with errors ¢ and 6° within
the collection of 182 combinations that are independent. All plots shown
here are from the first group. The text describes additional observations
derived from the second group. The full graphical analysis of both groups
is available in [BogDSS87).

A.1 Parameter Estimates
A.1.1 Bias

Results. To determine how close our estimated parameter values. 3.
come to the actual or true values, 3°, we examine the bias of the estimated
parameters. i.e., the values

8, - 8
where 3, designates the estimated value of the j-th parameter for a given
problem and data set. and 3 is the corresponding true value of the param-
eter.

For each of the two groups of data sets, we display the 500 parameter
biases obtained for each of the parameters in the collection of 182 combi-
nations of function, parameter set, p, and method. We then examine each
of the resultant pairs of bias estimates obtained using the two methods.

Figures 1, 2 and 3 show these results for each of the parameters and
values of p for three representative combinations of function and param-
eter set. These three figures correspond to three functions of increasing
complexity. Figure 1 shows function (3.1) parameter set 2. a straight line
function with slope of 10. Figure 2 shows function (3.3) parameter set 1.
a quadratic function in r with maximum slope 1 for r € [~1,1). Figure 3
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shows the results for function (3.5) parameter set 2, an exponential func-
tion that is nonlinear in both r and 8 and that has maximum slope 10 for
z € [-1,1].

Figures 4 and 5 show the bias results for the sine functions (3.6) and
(3.7), respectively, both using parameter set 2, and are analogous to figures
1, 2 and 3. These two figures are not typical in that they show a small
number of outliers when p = & no outliers are observed in any of the
other parameter bias plots. These outliers appear to adversely affect the
corresponding variance and mean square error estimates. as discussed in
the following sections. as well as the resu'ts for the function estimates for
these data sets.

Each column of icons in these figures represents a modified.box-and-
whisker plot [Tuk77):

o designates the median.
+ designates the quartiles. and
o designates the maximum and minimum.

The remaining bias values from each of the 500 data sets are designated by
a dot (-). The values are grouped by p. then by parameter and finally by
method. Thus, the first column of icons on each of these figures displays the
bias observed using ODR for 8, when p = L. the second column displays
the bias using OLS for 8, when p = . etc.

If the median parameter bias is determined to be different from 0 at the
.05 significance level using a8 two-sided sign test, the median is “flagged™
with a check (/) plotted above the corresponding icon for the maximum
value. (See. e.g.. figure 1, p = L. B estimated using OLS.) If it is not
different at the .05 significance level, no flag is shown.

Observations. The parameter bias results are essentially the same for
both groups of data.

o In more than 33% of the ODR/OLS pairs. the sign test indicates that
the median ODR bias is 0 (i.e.. that the hypothesis that the median
ODR bias is equal to 0 would not be rejected at the .05 significance
level) when the median OLS bias is not 0.

13




o In fewer than 2% of the ODR/OLS pairs. the sign test indicates the
ODR median is not 0 when the OLS median is 0.

e In approximately 25% of the ODR/OLS pairs. the sign test indicates
that both medians are not 0. Of these cases. when it is possible to
visually detect a difference in the medians of these pairs, the median
ODR bias almost always closer to zero.

For the largest of the differences between the median ODR and OLS
biases. the median ODR bias is always closer to 0 than the median OLS
bias. The largest differences occur for values of p < 1, with the differences
increasing as p decreases. As noted in the next section. the variance of the
ODR results is generally as small or smaller than that of the OLS results.

A.1.2 Sample Variance

-

Results. The sample variance. &?3,. of the parameter estimate. 3,. is a
measure of the variability of the estimate about its average value. To
examine the relationship between the variance of the ODR parameter es-
timates and variance of the OLS parameter estimates. we plot the base 10
logarithm of the ratios of the sample variances for each of the estimated
parameters. i.e.,

500 , Zsoo 20DR\ 2
2oor z (B.?DR - soz )
log [—’—] = log | =2

& o )

$00

g

These plots allow us to examine the relationship between the individual
variance pairs as well as how the relationship changes as a function of Q
and p. All resultant variance ratios are examined.

Figures 6, 7 and § are representative examples of the variance plots.
and show the variance ratios for the data shown in figures 1, 2 and 3.
respectively. The icon used for each ratio is the number of the subscript of

against
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e A - -

o B. i.e., the ratio of the variances of 8, are plotted using the symbol “1,” the
o ratio of the variances of 3, are plotted using the symbol “2,” etc. Note that
" the columns of icons in these figures are in the same order with respect to
. p as the “Parameter Bias” plots.

::, For the first group of data. the errors, and therefore the variances, are
’,:' not independent. We thus use a two-sided Pitman Nearness Test [Rao86)
i";" to make a pair-wise comparison of the 500 deviations

. 3, — median{?,}l

50

3‘ obtained for each parameter of each function and parameter set using each
::: of the values of p. Note that we expect the dependence introduced by the
i sample median to be small. If, using this test. we reject the hypothesis that
> the deviations from the two methods are the same at the .05 significance
& lever. we “flag™ the appropriate icon with an asterisk (*). On these variance
.": plots. we also indicate the magnitude of the ratios with the two lines marked
;;: “20 PERCENT.” An icon falling above the upper of these two lines indicates
" the ODR variance is more than 207 bigger than the OLS variance. An
. icon falling below the lower of these two lines indicates the OLS variance
::: is more than 20% bigger than the ODR variance.

" For the second group of data, the errors. and therefore the variances,
:}: are independent. We are thus able to test whether each variance ratio is

different from 1 at the .05 significance leve] using a two-sided F-test.

o Observations. In the first group of data. the two-sided Pitman Nearness
::. Test indicates the deviations from the ODR fit are different than those
N - obtained from the OLS fit 101 times out of the resultant 204 pairs.

X e In 83 of the 101 cases. the ODR variance is smaller than the QLS
:: variance. These 83 cases include all 62 cases where the QLS variance
::. is more than 20% larger than the ODR variance. and the 41 times
-:: that the OLS variance is more than twice the OLS vanance.

,»‘ e In 18 of the 101 cases. the OLS variance is smaller than the ODR

variance. These 18 cases include only 2 of the 5 times that the ODR
variance is more than 20% larger than the OLS variance, and they
" include neither of the 2 times that the ODR variance is more than

- 15
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twice the OLS variance. (Each of the 5 cases where the ODR variance
is more than 20% larger than the OLS variance occur for the sine
functions (3.6) and (3.7) using parameter set 2 at p = &)

For the second group of data. the F-test indicates that the variances
using ODR and OLS are different at the .05 significance level 69 times.

o In 64 of these 69 cases, the ODR variance is significantly smaller than
the OLS variance. and in 36 of the 64 cases the ODR vanance is less
than 50% of the OLS variance.

e In 5 of these 69 cases. the OLS variance is significantly smaller than
the ODR variance. and the OLS variance is less than 50% of the ODR
variance in 2 of these 5. Both of these 2 cases occurred in the sine
functions results using parameter set 2 at p = ;15. The bias results for
these two functions, like the results shown in figures 4 and 5 for the
first group of data. include a small number of outliers which appear
to be responsible for the increased ODR variance. Such outliers were
not observed in any of the other results. including functions (3.6) and
(3.7) using parameter set 2 when p > 1.

For both the first and second data groups. the largest differences be-
tween the variances occur for the smaller values of p, and, with the exception
of the sine function data using parameter set 2 at p = 1. when the differ-
ence between the ODR and OLS variances are large, the ODR variance is
the smaller of the pair.

A.1.3 Mean Square Error

Results. The mean square errors (mse) of the estimated parameters are
measures of the variability of the estimate 5, about its true value. 8. We
examine the relationship between the mse observed using ODR and OLS
in the same manner that we analyze the sample variance of the parameter
estimates. We plot the base 10 logarithm of the ratios of the mse of the
estimated parameters. i.e.,

[ fﬁ(s‘fm—a:r}

s00 (gjoz,s _ 5;)2
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against

nfg]

All resultant mse ratios are examined.

Figures 9, 10 and 11, corresponding to the data shown in figures 1, 2
and 3. respectively. are representative examples of these plots. Like the
sample variance plots discussed in §A.1.2. the icon used for each ratio is
the number of the subscript of 8. For both groups of data. we indicate
the magnitude of the ratios with the two lines marked =20 PERCENT.” For
the first group of data, we also use a two-sided Pitman Nearness Test to

: make a comparison of the 500 values of IB, - ﬁ;l observed for each of the
" parameters of each of the functions at each of the values of p. ‘' If. using
this test. we reject the hypothesis that the magnitudes of the biases for the
two methods are not the same at the .05 significance lever. we “flag™ the
N appropriate icon with an asterisk (#).

¢ Observations. For the first group of data. with errors that are not inde-
pendent. the Pitmman Nearness Test indicates that the deviations from the
ODR fit are different than those obtained from the OLS fit 119 times out
of the 204 resultant ODR/OLS pairs.

¢ o In 100 of the 119 cases, the ODR mse is smaller than the OLS mse.
These 100 include most of the 91 ratios for which the OLS variance is
more than 20% larger than the OLS variance. and all of the 53 cases
for which the observed ODR mse is less than 507 of the OLS mse.

e In 19 of the 119 cases. the OLS mse is smaller than the ODR mse,
including all 3 cases (each resulting from the sine functions with pa-
rameter set 2 at p = &) for which the ODR variance is more than
20% larger than the OLS variance.

For the second group of data. with errors that are independent. we have
not performed any statistical test of significance.

o We observe. however. that for 90 of the 204 resultant ratios the OLS
K mse is more than 20% bigger than the ODR mse. and in 54 of these
the OLS mse is more than twice the ODR mse.
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e Also, the ODR mse is more than 20% larger than the OLS mse in
only 4 of the 204 resultant ratios. and the ODR mse is more than
twice the OLS mse in only 2 of these. (Both of the two ratios for
which the ODR mse is twice the OLS mse again result from the sine
functions using parameter set 2 for p = %)

Like the variance results, for both groups of data the largest differences
occur for the smaller values of p. Also. for the largest differences, the ODR
mse is almost always the smaller of the two mse.

A.2 Function Estimates
A.2.1 Bias

Results To determine how close the function estimates. f(r,: 3). come to
the actual or true values. f(z,: 3°). we examine the biases of the function
estimates. i.e.. the values

flz:3) = flz,: 3°)

where 3 designates the estimated value of the parameters for a given prob-
lem and data set. These are computed for 3 representative values of r; over
the interval [-1.1]. namely. z = —1.0 and 1. The data for each of the two
groups of data sets are examined using modified box-and-whisker plots as
were the parameter bias data. All resultant pairs of function estimates are
examined.

Figures 12. 13 and 14 show representative examples of these plots, and
present results for the same data sets as those analyzed in figures 1, 2
and 3. These figures are completely analogous to the parameter bias plots
discussed in §A.1.2. Again. we test whether the median bias of the function
estimate is different from 0 at the .05 significance level using a two-sided
sign test. indicating medians that are not 0 according to this test with a

check (/).

Observations. The bias results for the function estimates are almost
exactly the same for both data groups.
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¢ In more than 40% of the ODR/OQLS pairs, the sign test indicates that
the median ODR function bias is 0 while the median OLS function
bias is not 0.

e In fewer than 2% of the ODR/OLS pairs. the sign test indicates that
the median OLS function bias is 0 while the median ODR function
bias is not 0.

e In the approximately 20% of the ODR/OLS pairs that both medians
are not 0. the ODR median is almost always closer to 0 than the OLS
median. and sometimes appreciably so.

For the largest of the differences between the medians. the median ODR
function bias is alway's closer to 0 than the corresponding median OLS func-
tion bias. As was true for the parameter bias results. the largest differences
occur for values of p < 1, with the differences increasing as p decreases.
Also. as noted in the next section. the variance of the ODR results are
generally as small or smaller than the corresponding OLS variance.

A.2.2 Sample Variance

Results. The sample variance, & , is a measure of the variability of

2

X I(z.:8)
the function estimate f(z,:8) about its average value. To examine the
relationship between the variance of the ODR function estimates and the

variance of the OLS function estimates. we plot

500 R 2:00 .gopR\?
[.2 ] Z(f(:.:3ODR)— !;;',’3 ,)

Oy(z,.800R) | _ i=)
log | = = log | 5 - 7

aﬂz';goz.s) z (f(:t ] BOLS) _ Zsoo !(,‘:501.5))

—1 1 m

against
QJ
-log|—]|.
& [ P

for each of the function estimates observed at the three selected values of
r,. All resultant variance ratios are examined.
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KX Figures 15, 16 and 17 are representative examples of these variance
" plots. and show the variance ratios corresponding to the function bias data
R shown in figures 12, 13 and 14. respectively. The format is analogous to
that used for the parameter variance plots. discussed in §A.1.2. For the
\ first data group, in which the errors are not independent. we test whether
s the deviations

If(.r,: BODR) - median {f(.r,: BODR)}I

are different from

i: lf(:r.':ém's)-median{f(.r,:&m's)}l
¢
N at a .05 significance leve] using a two-sided Pitman Nearness Test, “flag-
ging” with an asterisk (*) the ratios for which the absolute values of the
deviations are found to differ at this significance level. For the second
‘ group. in which the errors are independent. we test whether each variance :
e ratio is different from 1 at the .05 significance leve] using a two-sided F-test.
. Observations. In the first group of data. the above mentioned two-sided
: Pitman Nearness Test indicates that the deviations obtained using ODR
b, are different from those obtained using OLS at the .05 significance leve] 117
" times out of 252.

e In 84 of the 117 cases. the ODR vanance is smaller than the OLS

o variance. These 84 cases include 59 of the 68 cases where the OLS
W variance is more than 20% larger than the ODR variance, and all of
:: - the 32 cases where the OLS variance is more than twice the ODR
2 vanance.

s e In 33 of the 117 cases. the OLS variance is smaller than the ODR

variance. These 33 cases include 4 of the 5 cases that the ODR
variance is more than 20% larger than the OLS variance. and 3 of the

0 4 cases where the ODR variance is more than twice the OLS variance.
. (The 5 cases that the ODR variance is more than 20% larger than
Ly

: the OLS variance all occur for the sine functions using parameter set
2 when p = 515.)
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‘q.%"» ’s,;’l?r O 5, 1) ,g.i:,gll"‘ ‘3,!_ nx NI A IO _5{ AR 1} XANAUN 3 i




In the second group of data, the F-test indicates that the variances
using ODR and OLS are different at the .05 significance level 71 times out
of the 252 resultant ra.ios.

e In 63 of the 71 cases, the ODR variance is significantly smaller than
the OLS variance. and in 28 of these 63 cases the ODR variance is
less than 50% of the OLS variance.

e In 8 of the 71 cases. the OLS variance is significantly smaller than the
ODR variance. and the OLS variance is less than 50% of the ODR
variance in 2 of these 8. Both of these 2 again result from the sine
functions using parameter set 2 at p = 335.

For both groups. the largest differences between the variances occur for
the smaller values of p. and. with the exception of the sine function results
for parameter set 2 when p = 5. when the differences between the ODR
and OLS variances are large. the ODR variance is the smaller of the two.

A.2.3 Mean Square Error

Results. The mse of the function estimate is a measure of the variability
of the estimate f(z,: 3) about its true value. f(z;:9°). We examine the
relationship between the mse of the function estimate observed using ODR
and OLS in the same manner that we analyze the mse of the parameter
estimates. namely. we plot

3 (flz,: 8°PR) - f(z,:8%)"
30 (f(z::80L5) = f(zi:80))

nfg]

All resultant mse ratios are examined.

Figures 18. 19 and 20. corresponding to the data shown in figures 12, 13
and 13, respectively. are representative examples of these plots. The format
for these plots. and the analysis performed. is analogous to that described
in §A.1.3.
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Observations. For the first group of data, with errors that are not inde-
pendent. the Pitman Nearness Test indicates that the deviations from the
ODR fit are different than those obtained from the OLS fit 157 out of the
252 resultant ODR/OLS pairs.

e In 132 of the 157 cases. the ODR mse is smaller than the OLS mse.
These 132 include all of the 111 ratios when the OLS mse is more
than 207 larger than the ODR mse. and all of the 64 ratios when the
OLS mse is more than twice the ODR mse.

e In 25 of the 157 cases. the OLS mse is smaller than the ODR mse.
including all 4 ratios for which the ODR mse is more than 20% of the
OLS mse. and the 3 ratios for which the ODR mse is more than twice
the OLS mse. (All 4 of these cases again occur for the sine functions
using parameter set 2 when p = i?a.)

For the second group of data. with errors that are independent. we have
not performed any statistical test of significance.

e \We observe. however. that in 112 of the resultant 252 ratios. the OLS
mse is more than 207 larger than the corresponding ODR mse. and
in 39 cases the OLS mse is more than twice the corresponding ODR
mse.

e Also. we observe that the ODR mse is more than 20% larger than the
OLS mse in only 3 cases. and is more than twice the corresponding
OLS mse in only 2 cases.

The mse results are thus similar to those we observed for the other
performance measures in that both groups of data show that the differences
in the mse increase as p decreases. Again. for the larger differences, with
the exception of the outlier data in the sine function results. the ODR mse
is always smaller than the OLS mse.
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RATiO OF SAMPLE VARIANCES OF FUNCTION ESTIMATES
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Classical or ordinary least squares (OLS) is one of the most commonly used criteria for fiting data 1o models and for
estimating parameters. This is true even when a key assumption for its use, namely that the independent variables are known
exactly, is violated. Orthogonal distance regression (ODR) extends least squares data fitting to problems with independent
variables that are not known exactly. Theoretical analysis, however, shows OLS is preferable to ODR for straight line func-
tions under certain conditions, even when there are measurement errors in the independent variable. This has lead some 10
conjecture that under some similar conditions OLS will also be preferable to ODR for nonlinear functions even though there
are errors in the independent variable.

In this paper, we present the results of an empirical study designed to examine whether ODR provides better results than
OLS when there are errors in the independent variable. We examine a variety of functions, both linear and nonlinear, under
a variety of experimental conditions. The results indicate that, for the data and performance criteria considered, ODR never
performs appreciably worse than OLS and sometimes performs considerably better. This leads us to the conclusion that
ODR s appropriate for a wide variety of practical problems.
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