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PREFACE

The work described in this report was supported by the Defense
Nuclear Agency under Contract DNAOO1-83-C-0262. The Contract Technical
Monitor was Mr. George Ullrich.

The experimental work was done under the direction of R. G. Colbert.
Mr. Colbert was also responsible for the test facility and instrumentation
recommendations for an extended test capability. The tests were done at
the TRW Technology Test Center by H. Rungaldier and K. L. Beach. The
analysis of the test results was carried out by A. W. Zimmerman.
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e NOMENCLATURE |

Cloud Diameter

o
[[]

Fireball Diameter at Pressure Equilibrium

.u.-
-~
= e??
1
-
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e Fo = (4/3)ﬂr3g[(p1-po)/p1] = (l/pl)x Total Buoyancy Released from the
Source at t = 0.
t"'t' . |
R 6 = -(g/py)(dpg/dx) |
:r g = Acceleration Due to Gravity
e |
H = (Cloud Height ‘
;i‘: N = Number of Bursts \
v " . |
%;'% R = Height Above Lens Axis of Symmetry (See Figure 3-7)
D,
; R = Nondimensional Cloud Radius (Section 4)
f}§§ Re = Reynolds Number
&
2$:§ r = Cloud Radius (Section 4)
.
e t = Time
' ; ty = Nondimensional Time
*3;; u = Vertical Velocity
;*{1 X = Cloud Altitude (to Cloud Center)
-0
) X = Nondimensional Altitude (to Cloud Center)
:::? Ax = Horizontal Spacing Between Bursts
it“ & = ax/D
:t"‘ FB
ey a = Entrainment Constant

_}-

K = Diffusivity

RIS
(‘{ C

*: v = Kinematic Viscosity
-~ . .
o o = Average Density Inside Cloud
T Pq = Average Initial Density Inside Cloud
D ."[',‘
%ﬁﬁg p = Ambient Density at Source Level
S 1
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808 pe = Ambient Density at Cloud Leve!
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Oy Subscripts
hk B = Bottom

c

Center
&. MB = Multiburst

o S = Single Burst

T,TOP = Top
K 1 = Center (Side 1)

i 2 = Center (Side 2)
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1. INTRODUCTION

Detonation of many nuclear weapons in a limited domain of time and
space may occur in an attack on existing or planned missile basing areas.
The mushroom clouds from such an attack may overlap and information about
the interaction between clouds is required. This requirement arises from
the fact that the dust and debris environment in these clouds may cause
severe or fatal damage to a vehicle (launch vehicle or reentry vehicle)
flying through such a cloud too soon after burst. Calculations and experi-
ment have been performed to quantify interaction effects but the uncertain-
ties remain very large.

The program reported here is part of a continuing experimental
effort to quantify multiburst cloud interactions. The program consists of
a series of experiments conducted in a tank filledwith a linearly strati-
fied saltwater solution. The stratification (density gradient) simulates
the density gradient in the atmosphere up to the tropopause. A slightly
heavier solution of dyed saltwater in a cup is released at the top of the
tank to simulate a weapon burst. The cloud falls, spreads and comes to
rest just as the mushroom cloud from a nuclear weapon burst rises, spreads
and reaches a stabilization altitude. Turbulent entrainment and the density
gradient governs the motion in both cases and similiar clouds occur.

Up to seven similtaneous bursts were simulated. This program is a
continuation of an earlier effort reported in Reference 1 and most of the
same hardware was utilized.

The specific objectives are given in the next section. Section 3
describes the experiments and the data reduction. The analysis of the data
is presented in Section 4. Section 5 discusses extensions to the test
facility and the instrumentation that are recommended to further exploit
this technique for doing multiburst tests. Finally, the conclusions and
recommendations are presented in Section 6.

P T e T N T T T N L N e L A
‘\" LIPS A P '-._ . ‘J" S . N I'. N - ~.’~.{~_ . S R S TN -
e o s e L T A T VAN

'''''''''



- - T T " - —

2. OBJECTIVES

The specific objectives of this program are:

1) to extend prior multiple cloud experiments in a water tank
to the largest number of simultaneous bursts using exist-
ing hardware,

2) to apply the data to nuclear clouds and

3) to design the apparatus to extend the experiments to larger
numbers of bursts or more general attacks.
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:§ 3. EXPERIMENTS

’

'

h 3.1 APPARATUS

fﬁ The cloud experiments were performed at the TRW Technology Test
g Center and all of the apparatus with the exception of the cloud release
3‘ mechanism was provided by the test center.

: The experimental apparatus consisted of a water tank, cloud release
N mechanism, two 35 mm cameras, and one video camera. The tank measuring
i 1x1x1 meter has two glass walls for photography purposes and two steel
f’ walls. Figure 3-1 shows the details of the test tank.

The cloud release mechanism used was identical to the device used
in the previous multiple cloud experiments (Reference 1) only slightly

ﬁ modifed for use on the new test tank and using a new stiffer spring in the

S release mechanism. Replacing the spring may have some effect on cloud
development, this is discussed in more detail in Section 4. Figure 3-2 shows

,E a photograph of the release mechanism. The mechanism consisted of hemi-

;j spherical cups with a radius of 2.5 centimeters. The cups are mounted on

" a shaft that is spring loaded and causes the cups to rotate 180 degrees,
simultaneously releasing the heavy dyed salt water solution contained in all
); the cups into the test tank and forming clouds with negative buoyancy. The
% cloud release mechanism can be setup for a maximum of 7 clouds.
Fo

Two 35 mm cameras were used to obtain cloud data, one camera was
stationed for a side viewand the other for a top view of the developing
clouds. A video camera was used for the side view.

N
3.2 TEST
4

Single cloud and multiple cloud tests were conducted. The matrix
| of the tests performed is shown in Table 3-1. The primary objective of
)
" the tests was to obtain multiple cloud results up to the maximum possible
" (7) using the existing apparatus. Single cloud tests were done to provide
M

reference values of cloud dimensions to compare with multiple cloud results.

? Tests with two and three clouds were not conducted since they have been
: simulated in the previous experiments (Reference 1).
'l
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E: The multiple cloud tests consisted of 5, 6 and 7 clouds. The 6 and

el 7 cloud tests were arranged in a hexagonal pattern, one cloud at each corner

} and in the case of the 7 cloud test the additional cloud was located in the

. center of the cluster. The 5 cloud test was in the form of a square with

) one cloud at each corner and one in the center. The spacing parameter S

ﬁ referred to in the test matrix is depicted in Figure 3-3.
3.2.1 Test Procedures

b The test tank was filled with a salt water solution in such a manner

:j as to obtain the required linear density gradient. The Tinear density

1? gradient simulates a stratified atmosphere. Slight variations in the
gradients occured from test to test.

j? when the dyed cup fluid is released it forms a cloud that is

‘a, initially overdense driven by buoyancy it falls and mixes with the environ-

5L ment finally coming to a rest when the cloud density is the same as the

- average density in the test tank. )

ﬁj The volume of the test tank was 1 cubic meter, and it took about

r: two hours to fill. The fill was done very slowly to minimize mixing. After

a the filling, density measurements were taken in three inch increments along

R the depth. Density measurements were taken using a hydrometer and these

g} values used to verify that a proper density gradient had been obtained.

> Fifteen of the cloud tests used a specific gravity of 1.1 for the

] dyed cup fluid, and a density gradient shown in Figure 3-4 for the strati-

N fied atmosphere. The other three tests (all single cloud) had a cup specific

‘¥ gravity of 1.2 and a density gradient shown in Figure 3-5. These three

) tests were done in order to check scaling laws. Section 4 will discuss these

B tests in more detail. )

ji When the dyed cup fluid was released by the cloud release mechanism

ij the 35 mm cameras and video camera were activated. The 35 mm cameras were

55 triggered every 1/3 of a second for the first ten seconds of the test and
then every second for the next twelve seconds. This photographic data was

- then analyzed as described in the next section. The video data was not

EE analyzed in depth but was intended to be a qualitative record of the tests.
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Figure 3-3.
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Figure 3-4. Measured Density Versus Depth for
Three Tests.
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3.3 DATA REDUCTION

The 35 mm photographic data from the 17 cloud tests were reduced by
the fo]]owing method. Each picture was placed in a dark room enlarger and
the image projected upon a digitizing pad. The projected image or cloud
outline was digitized as was the cloud height, center height, and radius.
Figure 3-6 shows the details of how the height, center height and radius
were picked. Caution must be taken when analyzing the data on clouds heights
and radius. There were many cases when the cloud outlines take on odd
shapes and exact definitions of the cloud dimensions were uncertain. In
such cases it is wise to examine the cloud outlines as well as the cloud
time histories in order to identify cases when the cloud exhibits this
feature. Cloud time histories showing the cloud height, cloud middle
height and radius for each test are presented in the next section. In
addition, samples of the cloud outlines for each test are given.

The‘digitized data is not usable until corrections and scale factors
are applied so that the actual physical dimensions of the cloud are obtained.
Light from the object cloud passes through water, glass and air interfaces
before striking the camera lens. Because the 1ight passes these interfaces,
refraction* of the light takes place causing the image on the film to be
larger then the real cloud. Figure 3-7 shows a typical example. In this
case a point at the top of the cloud is distorted by refraction and is "seen"
by the camera to be R height above the camera lens plane. Using Snell's Law
the correct dimension R can be obtained.

A simple computer program was used to facilitate Snell's Law calcu-
lations to all digitized points, and produce data files used to make cloud
outline plots and time histories. The dimension D in the figure is uncertain
for any one point but is assumed to be 18 inches (mid point of test tank)
for all calculations. This procedure produces an error of less then 1/2

inch in R.
For the top view a similar procedure was used, and the dimension D

was assumed to be the cloud center height** determined from the front view
data.

*  The phenomenon of refraction is described by Snell's Law.

** The cloud center height is the average of the vertical coordinates of
H1 and H2 shown in Figure 3-6.
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o § 3.4 TEST RESULTS
:J

' Cloud time histories showing the cloud height, cloud middie height
and radius are shown in Figures 3-8 through 3-23* Figures 3-24 through
o, 3-39 show cloud outlines at the time of peak cloud height.

-

' AB Data for single cloud test 1.3 and multiple cloud test 5.2 were
o omitted because anomalies that occurred during these test invalidated the
Yo results.

Yo Sample photographs of test 6.1 are shown in Figure 3-40.
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Figure 3-8. Dimension Time Histories: Test No. 1.1.
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Figure 3-9. Dimension Time Histories: Test No. 1.2.
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Figure 3-12. Dimension Time Histories: Test No. 1.6.
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Figure 3-17. Dimension Time Histories: Test No. 6.3.
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Figure 3-21. Dimension Time Histories: Test No. 6.7.
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4. ANALYSIS OF TEST RESULTS

4.1 SCALING
4.1.1 General

How well do these experiments cimulate full-scale nuclear cloud
rise? The simulation would be valid in all respects if it could be shown
that the characteristic nondimensional parameters such as Reynolds number
and Froude number remain the same in a nuclear cloud and in the experiments.
However the length scale of the experiments is very much smaller than for
a nuclear burst and the Reynolds number of the two flows differ by six
orders of magnitude.

The experiments are nevertheless expected to be a good simulation.
The height to which a cloud will rise and its diameter depend primarily
on the efficiency of turbulent mass entrainment. Turbulent flows are
insensitive to the Reynolds numbers as long as the flow is turbulent. The
¢loud rise in the experiments is clearly turbulent as is nuclear ¢loud
rise and this is the primary requirement. According to Turner (Reference 2
p. 168), "Provided the Reynolds number Re = wb/v is large enough, neither
the molecular properties v and k of the fluid nor Re itself can enter
directly into the determination of the overall properties of a turbulent
plume". Plumes (steady sources) and thermals or clouds (instantaneous
sources) rise and spread by the same mechanisms. Townsend (Reference 3,
pg. 53) also states that turbulent flows are insensitive to the Reynolds
number provided that it is high enough.

Another indication that the simulation is adequate is that theories
of cloud rise (References 4 & 5 for example) are equally successful for
nuclear clouds and for small-scale experiments in a water tank. These
theories utilize the Taylor entrainment hypothesis (Reference §) that the
rate of entrainment is proportional to the mean vertical velocity of the
cloud. Only global properties are predicted such as height, width, vertical
velocity and buoyancy versus time.

4.1.2 Scaling Tests

A limited series of single-burst tests were conducted with the
initial cloud density and the density gradient in the tank both doubled
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. from the nominal values used in this program. This changes the Froude number
;3 (intertial force/gravity for'ce)l/2 to more nearly simulate the initial nuclear

N cloud budyancy when the fireball is still hot. It is possible that this is

not important because the density of the nuclear cloud rapidly approaches
a value near ambient and its late-time characteristics (height and radius)

ﬁ}_ are primarily determined by the entrainment and rise that occur after near
I . } . .
ambient density is attained.

These scaling tests were conducted to verify the cloud rise

N theory*, i.e. that the change in Froude number did not alter the success of
:;: the simulation. The experimental results are compared with theory in Figure
i 4-1. The agreement is very good and not better or worse than for the single
o cloud tests (1.1 to 1.3) with nominal densities. The latter comparison
2?; and the theory are discussed in Section 4.2. The principal effect of the
iﬁ changes was to accelerate the cloud rise. The maximum height is about the
oy same but the peak occurs 2-3 seconds earlier than the tests with nominal
densities.
N
b 4.2 SINGLE CLOUD TESTS
\.:
‘A 4.2.1 Single Cloud Theory
28 The classical analysis of turbulent gravitational convection in a
:ﬁ; nonuniform environment is due to Morton, Taylor and Turner (Reference 4).
tj: They found a closed form solution for cloud rise in a linearly stratified
o environment. Their solution is directly applicable to cloud rise in the
;\ﬂ atmosphere since the atmosphere is approximately linearly stratified up to
s the tropopause.
b
33 Morton, Taylor and Turner found a solution of the equations for
X
:if conservation of mass, momentum and energy (buoyancy) for the cloud from an
.}: instantaneous point source of buoyancy using the following assumptions:
‘ii 1) The fluids are incompressible and miscible except that small
.53 variations in density are allowed in the buoyancy terms.
o
-~ 2) The cloud is spherical and profiles of velocity and buoyancy
N through the cloud have the same form.
' * The theory is discussed in Section 4.2
Y
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3) The rate of entrainment of ambient fluid is proportional to
the mean vertical velocity of the cloud.

Later investigators such as Maxworthy and Escudier (Reference 5)
and Wang (Reference 7) have analyzed more general cases. These always
require a digital computer to obtain a solution. Reference 5, in particular,
treats the case of a cloud with a finite initial size and relaxes the assump-
tion that variations in density must be small. This analysis also includes
the influence of the virtual mass ignored by previous investigators. The
analysis of Maxworthy and Escudier has been extended to the case of a linear
density density gradient and programmed. It is utilized here for comparisons
with single cloud results such as Figure 4-1 presented earlier.

4.2.2 Comparison of Test Results with Theory and with Earlier Tests

Figure 4-2 presents a comparison between average time-histories for
the single cloud tests (1.1 & 1.2)* and the theoretical predictions for the
test conditions. Very good agreement is obtained using an entrainment
coefficient of 0.25. This is a typical entrainment coefficient derived from
nuclear cloud rise-data.

Maximum cloud heights obtained in an earlier test series (Referenée
1) were significantly lower. A comparison like that in Figure 4-2 is shown
in Figure 4-3 taken from Reference 1. The experimental results are again
in agreement with predictions using the same code but a different entrain-
ment coefficient (0.3) has been used. Not surprisingly, the maximum cloud
height is fairly sensitive to the efficiency of mass entrainment. More
time (and height) is required for the cloud density to reach the density of
its surroundings if mixing with the surroundings is less efficient.

The tests reported here were done with the same apparatus as used
in the earlier tests except that one change was made. The spring which
rotates the cups and releases the initial bubbles (simulated fireballs) was
replaced with a stronger spring. This change apparently led to a cleaner
release and less efficient mixing-at least initially. The magnitude of the
change was unexpected but data exist which support this explanation.

* The first three tests were done before a clock was acquired
and there is substantial uncertainty in the starting time for
test 1.3.
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Reference 8 reports experiments in which entrainment coefficients from 0.18
to 0.3 were obtained using different techniques te release the buoyant bubble.

4.3 MULTIBURST TESTS
4.3.1 Test Data Summary

The test results for all the tests are presented in some detail in
Section 3. In this section, the cloud top height and horizontal radius at
the stabilization time are tabulated for comparison with a multiburst cloud
rise model. The theoretical stabilization time or time of the first peak is
approximately 10 seconds in the experiments according to the code based on
Reference 5. In an average sense, the experimental results agree but the
stabilization time for a particular experiment may differ somewhat.

Table 4-1 presents cloud top height and horizontal radius at 10
seconds for each single burst test, each multiburst test and the averages
for the tests at each test condition. The averages are used in the next
section for comparison with model predictions.

Two tests, 1.3 and 5.2, were not used in determining averages. The
first three tests were done before a clock was acquired and there is sub-
stantial uncertainty in the starting time for test 1.3. In test 5.2, one
~up emptied only partially and the test was for four and some fraction

bursts" rather than five.

4.3.2 Comparison with Test Results with Multiburst Model

A multiburst cloud rise model was recently developed by TRW for DNA
(Reference 9). The model is based on the extension of Morton, Taylor and
Turner's analysis (Reference 4) from a spherical cloud to a disc-like cloud
appropriate to a large number of simultaneous bursts. This extension was
published by one of us (Zimmerman) in Reference 10. The model in Reference
9 is identical with that given in Reference 10 except that a better fit to
the data was obtained by eliminating the term for spacing between bursts.
The limited data available is for small numbers of bursts or for spacings
(as a number of fireball diameters) near unity and suggest little or no
dependence on spacing. More data will be required to determine the depen-
dence on spacing in a general case as opposed to a large number of bursts
distributed in a circular disc.

The ratios of multiburst to single burst cloud dimensions from

Reference 9 are given by 54
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TABLE 4-1.

5 Cloud Top Height and Horizontal Radius at 10 Seconds
N (Stabilization or Time of First Peak)
- Test Number Spacing H Avg. H 0 Avg. D
Number Bursts in. .TOP . ToP in. in.
in. in.
1.1 1 2.4 17.84 11.79
1.2 1 2.4 17.06 14.08
1.3* 1 2.4 17.31 12.71
1.1-1.3 1 2.4 17.45 12.94
5.1 5 2.4 20.76 17 .67
5.2* 5 2.4 17.47 20.69
5.3 5 2.4 17.78 17.20 17 .44
5.1,3 5 2.4 19.27
6.1 6 2.4 19.06 22.29
6.2 6 2.4 19.02 20.30
6.3 6 2.4 20.02 2.0 20.86
6.1-6.3 6 2.4 19.37
6.4 6 4.0 17.61 21.07
6.5 6 4.0 18.65 18.13 21.44 21.26
6.4,5
6.6 6 6.0 19.81 21.52
6.7 6 6.0 17.73 25.61 23.57
6.6,7 6 €.0 18.77
5 7.1 7 2.4 19.77 19.77
oy 7.2 7 2.4 19.33 20.80
= 7.1,2 7 2.4 19.55 20.29
;i; * Not used in averages. See text.
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(2 amg ) 1/4 3/8
S:-—.

where

cloud horizontal diameter
c¢loud height
number of bursts

154 = X O
{1}

entrainment constant (usually ~ .25 for individual clouds)

The quantity of uMB/aSB was chosen to give a good fit to the data and the
values chosen are

lMB/lsB = 0.6 air ) (3)
1.0 water ‘

These values were chosen solely to fit the data. The difference for the

two media was unexpected but consistent with qualitative observations. This
difference means that multiburst interactions lead to significantly higher
clouds in air (compared with single clouds) but not in water. This has been
observed. Further investigation of the entrainment process is necessary to
determine the source of this difference.

The multiburst data from this program are compared with this model
in Table 4-2. The comparison is seen to be quite good. This model is
compared with other multiburst data in Reference 9 and the comparison is
again found to be quite good.

4.4 APPLICATION TO NUCLEAR CLOUDS

The data from this program have been applied to verify a model which
relates multiburst cloud dimensions to the dimensions from one burst. This
model together with a single burst model can be used to predict multiburst
cloud dimensions. Detailed comparisons were made at only time time (stabi-
1ization) but the ratios HMB/HS and DMB/DS are theoretically applicable
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at any time. Experiments with better instrumentation or better hydrocode
calculations (probably three dimensional) are required to determine the
details of the particle mass distribution within the cloud.

Several single burst models exist. Reference has been made to the
models of Morton, Taylor and Turner (Reference 4) and Escudier and Maxworthy
(Reference 5). Another model of interest (Reference 11) is used in the DOD
Land Fallout Prediction System-DELFIC. This model takes account of the
atmospheric humidity. The latter may have a substantial impact on the
maximum cloud altitude.

The model of Morton, Taylor and Turner is most convenient (if
more approximate) in that a closed form solution is available. From
Reference 4

1/4
r= (%) o174 F01/4 674 R (4)
1/4 ;
. = %(%) L34 Fo1/4 VL (5)
t= 67V, (6)
R = (l-cost )1/4 0<ty<n
1 1
(7)
(3+cost )1/4 Tty < 2n
1 1
X = 4(1-cost1)1/ OStISv
(8)
= g.pl/4 -4(3+cos’c1)1/4 Tt <2

where FO is (1/:1)x total buoyancy released from the source at t = 0, G is
-(g/;l)x the density gradient, x is the entrainment coefficient (about .25
for a nuclear burst), and ‘1 is the ambient density at the source level.
The nondimensional time (tl) is - at stabilization. Refer to the Nomen-
clature for specific definitions.

Equations (4) through (8) together with Equations (1), (2) and (3)
in Section 4.3 specify the cloud dimensions as a function of time for mult:-
burst clouds from simultaneous energy releases. The energy release may be

a nuclear burst or a cup of liquid with negative buoyancy.




f 5. RECOMMENDED TEST FACILITY AND INSTRUMENTATION

- FOR EXTENDED CAPABILITY

- 5.1 INTRODUCTION

) The objective for performing more multiple cloud tests would be

) to obtain data for more than the maximum of 7 clouds that was obtained on
this contract, and to expand the data acquisition system so that a better
2 picture of the dynamics of the problem can be obtained.

R, 5.2 EXPERIMENTAL APPARATUS

N 5.2.1 Tank and Fill Apparatus

The tank used for the current contract is undersized: being one
cubic meter in volume, it can only accomodate a maximum of 7 clouds; there-
fore a new and much larger test tank must be fabricated in order to simulate
Y - a significant part of an attack. One capable of handling up to about 70
bursts is considered adequate. The new tank can be constructed in such a
- way as to permit incremental changes in its volume. This has the advantage
< of running tests with possibly 30 clouds and then expanding the volume of
§ the test tank to accomodate 70 clouds.

‘ The tank required for.a 70 cloud test has a volume of about 14
;: cubic meters (3 x 4 x 1.2 meters). The tank will be constructed with %
. inch tempered glass walls so that photographs of the developing clouds
could be taken. One wall of the tank will have taps spaced 2-3 inches

¢ apart along the depth of the tank. The taps will be used to draw off

N small samples of water so that density measurements can be made with a

" refractometer.

Filling this new test tank with a stratified salt water solution

f will require a different technique then that used in the previous experi-
5: ments. In the previous experiments, the volume of the tank was small.

f: This made it relatively easy to fill the tank using the gravity feed method

shown in Figure 5-1. The gravity feed method is not practical in filling
the larger volume test tank because the water/salt water solution cannot
be mixed well enough before it drains into the test tank.

e st 2

o A method using a metering pump and mixing pipe can be employed;
Figure 5-2 shows the details of this setup. The water and salt water are
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pumped from the storage tanks by the combined flow metering pump and then
enter a mixing pipe which drains into the test tank. The metering pump
requlates the flow of salt water and fresh water 1n the proper proporations
so0 that a linear density gradient can be obtained.

5.2.2 Cloud Release Mechanism

The cloud release mechanism must be designed so that it satisfies
two basic requirements: 1) each cup or series of cups in the mechanism
can be rotated independently and 2) that this rotation occurs at a precise
time. These design requirements are needed so that walk attacks as well
as spike attacks can be simulated.

Two designs are being considered. Both designs may be developed
into prototypes and tested so that the best design can be chosen. Both
designs are simple in concept; but a substantial amount of machinist Tlabor
is required to fabricate them.

The first design has each source (cup) released (rotated) individ-
ually. Each cup would be equipped with a solenoid release pin arrangement
such that when a current is supplied to the solenoid it will pull out the
locking pin thus causing the cup to rotate. Figure 5-3 shows some details
of this design. This design has one disadvantage: the large number of
solenoids will add complexity to the timing control system. The second
design 1s a slight variation of the first. Instead of each cup being
controlled individually, a series of cups will be controlled by one
solenoid. Five or six cups will be rigidly connected together by a sinale
shaft which 15 spring loaded and will rotate when the locking pin s pulled
out by the solenoid. Figure 5-4 depicts some details of this desian.

This design has the advantage (over the first design) of a simpler timing
control system. However this design does not allow for simulation of
walk attacks that proceeed along a row because all cups in the row are
released simultaneously. Another disadvantage is that the shaft that
connects the cups will be submerged in the water and will add to the dis-
turbance at the water surface that is already produced by the rotation of
the cups.

5.3 INSTRUMENTATION
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Figure 5-3. Release Mechanism Design #1.
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‘EI 5.3.1 General

f:; Several techniques are available to obtain data on cloud densities,
* velocities, size, and mixing processes. The following describes the

Q: techniques and the instrumentation required by these techniques.

"

o~ 5.3.2 Laser Induced Fluorescence (LIF)

“a

V. In addition to photographing cloud tests with 35 mm cameras, a

i technique called Laser Induced Fluorescence can be used to obtain infor-
;? mation on the mixing processes that occur during multiple cloud development
;E (Reference 12). By seeding the high density fluid (cup fluid) with a

Nl fluorescent dye and illuminating a cross section of the developing cloud

” with a "sheet" of laser light, qualitative and quantative information on

- the entrainment processes can be obtained. The "sheet" of light can also
;- reveal information on density and can give a density map of a cross section
~ of the cloud. In addition to illuminating the cloud with a sheet of light,
"_ the laser light beam can be directed through the thickness of the cloud.
';{ A photodiode placed on the opposite side of the test tank will measure an
;i integrated density through the thickness of the cloud.

- Some of the major components required for the LIF technique pre-

- sently exist in house: they include a 3 watt argon ion laser, 35 mm cameras,
- and a Fairchild ccd 3000 video camera which has a 448 x 380 element solid
i' state sensor. The Fairchild camera is ideal for obtaining dye dilution

(density) information of the clouds. However, image processing capability

- necessary to provide quantitative image analysis currently does not exist.
:E A significant effort (writing software, interfacing with the computer) is
fﬁ needed to provide this capability. An alternative to using the video

- camera to collect data is to use a photodiode array (Reference 13, pg 63).
5 The array would be aligned perpendicular to the laser light "sheet". This
%f arrangment of the photodiodes with the laser light sheet produces a photo-
%E current in the diodes that is linearly proporational to the light intensity
b or density. The method for transforming the photocurrent data into density
o data will reauire some development work.

C

:: In order to use the LIF technique an effective fluorescent dye

:: concentration must be determined. If the concentration is too high, part
> of the cloud where the laser light first enters will be very bright, but
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] as the laser light travels through the cloud it becomes attenuated.

e Conversely, if the dye concentration is too weak, there will be little

bl attenuation along the light path but the cloud brightness will be too

B low to allow for proper exposure of film or video. Choosing the best

jii dye concentration requires trading of brightness to uniformity. To

'?iﬁ find this optimum dye concentration a series of calibration test must be
made. Figure 5-5 illustrates the calibration setup. The laser is placed
;x~a- at one end of the tank and directly opposite a photo detector is located.
Perpendicular to both these is a camera. The photo detector determines
the laser irradiance intc and out of the tank. This information is used
to determine the absorption coefficient. The camera photographs the

cogd fluorescence and the photographs are used to determine the “photographa-

-
KRS
“ e

i
e T I T

B2
i+ .

bility". The process is repeated until an optimum dye concentration is
found.

¥
vo#
)
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5.3.3 Video Data Acquisition

T @
.

Video cameras can be used to obtain density data for the develop-
ing cloud. Two Tow-distortion silicon target vidicons {(cameras) are used.
Vertical and horizontal views are used to view a uniformly illuminated
{ area of the test tank. The light that reaches the cameras is a function
' of density of the cloud; and the image is recorded on the video tape. The
-;22' : video tape is processed to produce time-evolved, integrated path density
data.

e{ The processor of this data would be the TRW Capistrano Test Site
(CTS) facility. CTS has the required minicomputer, digital video processor,

LS

N video image analyzer, and other devices to reduce the data. The data
5 would be presented as isointensity (density) contour maps, isometric pro-

',?iJ jections, profile plots for maximum horizontal and vertical dimensions.

AN The major disadvantage of the video technique is that density
Eiif information on a cross section can not be obtained, only information on
S the amount of mass throuch the thickness. Another disadvantage is that

the acquisition and data reduction process is expensive,

5.3.4 Velocity Measurements

velocity data of tne flow field within the developing cloud would
be a useful addition to the density data obtained by the LIF or video

o
f:d
L

technique.
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Velocity data can be obtained using two techniques: hot wire
anemometers and laser induced fluorescent particles. These two methods
are proven and have been used extensively by TRW for other kinds of experi-
ments. A hot wire anemometer is a fine wire which is heated and placed
in a fluid flow. The rate of cooling of the heated wire by convection,
measured indirectly by a ammeter depends on (among other things) the speed
of the flow. A properly calibrated anemometer will give an accurate
measurement of the speed of the flow. Hot wires will give data on the
speed of the flow, but will not give data on flow direction; therefore a
complete description of the velocity flow field with hot wires is not
possible.

Laser induced fluroescing particles can be used to seed the high
density cup fluid. The particles should have neutral buoyancy relative
to the average density in the test tank. This should keep the particles
suspended for the duration of the test. However, some testing will be
required to find the optimum density of the particles used.

The developing cloud containing the particles will have a "sheet"
of laser light cutting through a particular cross section. The laser
light will make visible the fluorescing particles moving in the flow field,
and give an indication of the direction and an approximate speed of the
flow.

When these two methods are used together a complete picture of the
velocity flow field can be obtained. However, the number of hot wires
used during an experiment is limited because they interfere with the flow;
therefore,data for only a few regions of the flow can be obtained.
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6. CONCLUSIONS AND RECOMMENDATIONS

o ‘

) - |

ot CONCLUSIONS 4

] l
A 1) The final height of a buoyant cloud is sensitive to the way

in which the initial buoyancy is released.

e
S
2 tat

P ] I.l »,

o 2} For multiburst events in water (up to 7 simultaneous bursts)
o the differences between multiburst and single burst cloud
\ heights are small.
k- . . .
! :: 3) Cloud dimensions agree quite well with a model based on multi-
oA burst events in both air and water. The multiburst effect in
s air is observed to be substantially larger.
A
B RECOMMENDATIONS
{:3? 1) Experiments should be conducted in a larger tank to allow a
e significant fraction of an attack to be simulated.
o
~L 2) Walk attacks should also be simulated. The cloud release
i mechanism can be designed to sequentially release individual
s clouds or rows of clouds.
o 3) The difference between multiburst cloud rise in air and water
- should be investigated.
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