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I INTRODUCTION

This paper concerns the application of lattice filtering, 3] "

techniques to discrete frequency domain data. Time domain models for two

different antennas are found, the monopole and cavity-back spiral. Lattice

models and a layered medium model 45] are obtained.

The following is a brief list of important notation used in the work, j
basically that of Parker [1].

N Number time domain sampled points

Yi Discrete time domain signal

emn Forward prediction error

emn Backward prediction error

T s  Time domain sampling period

Y1 Discrete Fourier transform of Yi

R i  Autocorrelation coefficient of lag i Ts

ki  Reflection (partial correlation) coefficient

O 0 Fundamental angular frequency

m Order of difference equation for yi s

bim Ith coefficient in difference equation for yi s

WR Right going planar wave

WL Left going planar wave

u I Wave propagation speed in boundary I 1 4

Tit Characteristic impedance in boundary I 0
0

z Single sampling period delay

~A'-6,J:'b'N'.y Codes
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PRODUCTION OF AUTOCORRELATION COEFFICIE,'4TS

We assume all Y1 (Lw0 ) 1-O,...,m are known. The method by which these

complex quantities are obtained is immaterial. However, for this work they

were obtained through experiments using the EMP Engineering Research Omni-

directional Radiator (EMPEROR), the heart of which is an HP8510 Network

Analyzer.

The calculation of Ri i-O,...,m is straight forward.

Ri  + 1 2 cos Wi Ts  i-O,...,m. (1)

W 0 is related to the sampling period in equation (1) by

W " [2m + 22pTS)

where [2m + 112P is the nearest power 2 operator on 2m+1. The number (N) of

time samples is taken to be 12m+112 P . Ri is useful in determining an estimate

of Yi i-O,...,N-1.

PRODUCTION OF LATTICE STRUCTURES

For a linear causal stationary real autoregressive (AR) process of order

m, the forward prediction error is given by

m
emn a Yn -1 bm Yn- n = 0,..., N-i. (3)

Lai
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The backward prediction error (sometimes called postdiction error) is the

following expression:

- m

emn = Yn-m - bmi Yn-m+1 n a 0,..., N-i. (4)
i-I

The bmiS in equations (3) and (4) are the difference equation coefficient for

an AR process of order m. It is assumed that emn and emn have the same

statistical properties, that eon - eon - Yn, and that m S 250.

Using the Levinson-Durbin algorithm and equations (3) and (4) we can

write the following important relations:

em+ln " emn -km+l em,n-1 (5)

em+in - -km+I emn + em n-I (6)

where the quantity km+1 (reflection coefficient) is given by either the

expectation

E(emn im,n-i)

ratio or equivalently

km+1 " b m+1,m+I  (8)

Another way of calculating the k-values is to use the Shur algorithm [6],

since by now the Ris are known. This algorithm involves the following steps:
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1. Define a generator matrix

T [R0  R 1 .. R m1I (9)

0 L R1 ... RmJ

2. Shift the first column of the generator matrix and define

T [0 R 0  R 1I 1 (10)
1 L0  RI"'" Rm

3. Calculate k1

k1 m 0 
(i)

m)

4. Define a matrix 8(k1 )

1 -ke [ 1 (12)

5. Produce new generator matrix

T T
G - e(kj) G (13)
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6. Go to step 2 and repeat until all ks are found.

We have used the above algorithm to calculate k-values.

Equations (5) and (6) can be represented by the basic lattice diagram

(Fig. 1). We shall call this

Oa -m 1

Figure 1. Basic Lattice Structure (k21 0 1)

structure the transmission lattice as will become obviously justified from the

following lattice, which we shall call the scattering lattice (Fig. 2). From

the scattering lattice it is clear that the backward error and forward error

can be viewed as right going

MU A am * l.n

Figure 2. Scattering Lattice Structure ( km+)
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and left going signals, respectively; and the transmission lattice relates

quantities at one port with those at the other port.

If we drop the second subscript on the error and represent single

sampling period delays by z-1, the transmission lattice looks like this

(Fig. 3).

rki +

Figure 3. Transmission Lattice Z-I Delay

By cascading transmission lattice we can produce a "whitening" filter as shown

in Fig. 4. That is,

2-1 +

yoe

e, " -J e1+

Figure 4. Whitening Filter
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from Fig. 4 we have a relationship between the outputs em+1 and em+ 1 and the

single input yi of the following form:

em+1 eo

T (14)
em+I T[

where the matrix T is the overall transmission matrix:

1 -k 1l Z-10 1 ri**km* Z_1  01 -k1 Z10
T I ) i [-i

Lkm+ 1j L0  1i Lkm 1] (15) 1 1

Now, one can examine the T22 entry of T for the characteristic equation or use

Levinson-Durbin to calculate the AR parameters. Before leaving the

transmission matrix we consider the case when error signals are delayed

according to a factor z-0, where B is a constant. It follows from

equations (5) and (6) that the lattice structure will be as shown in Fig. 5.
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Figure 5. Transmission Lattice Delay Z-0 in Each Branch

Cascading scattering lattices without the z-0 factor, we generate the

following filter (Fig. 6), which was used to predict yn n-O,1,...,N-1. By

driving the filter at the em+1 terminal with a shifted pulse, we

Z-1 1 -- + +
-" kk k .

+

Figure 6. Cascaded Scattering Lattices

obtain a response which estimates the original discrete time signal, yi. If

we include the z-0 factors in each basic lattice, we get the diagram shown in

Fig. 6 but with z-0 delays with the e and e0 signals treated appropriately.

The z-0 factor is important in considerations of EM waves in layered media.
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WAVES IN A LAYERED MEDIUM

We assume from an EM field theory point of view that the source free

medium of interest is linear and stationary, but that it is divided into

sections which are anisotropic and homogeneous bounded by short sections of

materials which are isotropic and nonhomogeneous. We assume that right going

and left going planar waves exist in the different media which make up the

overall medium and variations in y and z directions are negligible. Figure 7

depicts this situation [5].

1 2 m+I

W3 o WRI W.m WN. . I

°..,g

Ww WL WU WU4 WL* .

- x dx dX d"X

Figure 7. Layered Medium.

The sections numbered 1 to m+1 and shaded are the isotropic -- but not

necessarily homogeneous -- boundaries. Between the boundaries are sections of

anisotropic homogeneous materials. To the right of boundary m+1 and left of 1

are infinite isotropic homogeneous regions.

Considering the boundaries first, from transmission line theory, we can

write after a few manipulations the relationship between right and left going

waves as the following [4]:
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WR t -a (x) WR
_R (x) 1  W (16)

LLJ L! ult LLJ

For the Ith section a,(x) in operator equation (16) is given by

at CX ) - 1 ( C17)

where n, is a function of position. We can solve equation (17) for n,, i.e.,

-(x)  A exp [2 fx a(X) dA) (18)

where A is a constant. Now, it can be shown using forward discretization with
1 Axfstep sizes Ax and At and for small 1 Ax factors that the scattering lattice

structure for equation (16) is the following:

1 - k + Wnl

10. 
V"w,.

WL,

WLI..I

Figure 8. Transmission line lattice for boundary I (I - 1,...,m+1)
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k in the above Fig. 8 is 6x, where -a is the average value of a in the

boundary 1. For a very small magnitude value k is approximately the

reflection coefficient of EM wave theory. From Fig. 8 we recognize that

WR m+1 is analogous to em+1 and that W, m+I is like em+1. The only problem
m+

is the representation of the delay in the basic scattering lattice of Fig. 2.

This problem can be rectified by considering waves in regions between

boundaries. We simply use the propagation times to establish the delays.

Since the medium is homogenous between boundaries, corresponding reflection

coefficients are zeros and the scattering lattices are sections of straight

lines. Then it follows that the z-$ factor (8 * 0) of Fig. 5 represents the

time it takes a left going wave to be emitted by one boundary and propagate to

the next boundary. Since from the basic lattice structure analogous right

going "waves" must take longer than left going ones (the z- factor), the

material between boundaries must be anisotropic with propagation speed in one

direction different form that in the opposite direction. So, not only do we

have the lattice models of Figs. 4 and 6, we also have a layered medium model

which will have the structure of Fig. 9.

kmj k..,

Figure 9. Basic Layered Medium Lattice for Errors

-11-



RESULTS

The above modeling theory was applied to data obtained for experimental

use of EMPEROR where a 22.5 cm monopole was used as a test object. The

response of the monopole for 250 k-values and for 15 non-zero k-values

modeling was obtained. The reduced order (15 non-zero k-values) cases result

from setting statistically insignificant k-values equal to zeros, and

correspond to elimination of certain exponentially damped sinusoidal

components. Discrete Fourier transforms (DFT) and time estimate signals are

shown in Figs. 10-18. The only problem in producing these results was

selecting the proper shift for the input pulse. This was done by trying

different shifts until the DFT of the estimate time signal matched that of the

measured frequency domain data.

In Figs. 19-21 is shown how well the scheme performs for a more

complicated antenna test object, the cavity-backed spiral antenna. These

values were reproduced for 250 k-values, only. As in the monopole case the

lattice model does yield agreeable results for frequency domain. For time

domain, the results for CB spiral are not as good as those for the monopole.

CONCLUSIONS

It has been shown that autocorrelation coefficients and reflection

coefficients are key quantities in structuring lattice models. It has been

* shown that frequency domain data can be used to 6uild time domain lattice

models. It has been demonstrated that the method works for monopole and

cavity-backed spiral antenna data.
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