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Abstract

Analogy is a powerful technique in commonsense learning and reasoning. People

use analogies in problem solving, in developing mental models of a new domain,

and in gaining and communicating knowledge. To model natural uses of analogy,

we need to understand the whole process of drawing an analogy, beginning with

accessing a potential analog and ending with drawing inferences or extracting

a principle from the analogy.

In this paper, I first review the structure-mapping theory of analogical

mapping and inference and describe a simulation of the theory. I then extend

this framework to the issue of how potential analogs are accessed. I discuss

recent research that suggests that the accessibility of an analogical match is

governed by different factors from its zifereatial soumdmess. Finally, I

consider some competing theoretical approaches and suggest an integrated

architecture for analogical processing.
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I
My goal in this research is to understand how analogy and similarity work in

experiential learning and reasoning. To understand analogical learning, we

need to know how analogy is accessed and how it is used. In my previous

Wresearch I focused on how analogy is used in making inferences. More recently

I have been investigating access to analogies in long term memory. In this

paper I will put these lines together into a cognitive architecture for

analogy.

The theoretical framework for this paper is the structure-mapping theory of

analogy, which gives the rules for analogical mapping and also functions as a

core theory for a broader treatment of analogical learning (Sentner, 1980,

1982, 19831 Sentner & Bentner, 1963). The central intuition is that an analogy

is a mapping of knowledge from one domain (the base) into another (the target)

which conveys that a system of relations that holds among the base objects

also holds among the target objects. In analogys the target objects do not

have to resemble their corresponding base objects. Objects are placed in

correspondence by virtue of their like roles in the common relational

Rstructure. Thus an analogy is a way of noticing relational commonalties

independently of the objects in which those relations are embedded. Central to

analogy is the principle of systesaticityi people prefer to map systems of

predicates, rather than isolated predicates. Analogy conveys a system of

connected knowledge, not a more assortment of independent facts. Preferring

systems of predicates that contain higher-order relations with inferential

import is a structural expression of this tacit preference for coherence and

deductive power in analogy.

aI first describe the basic theory and then discuss the Structure-sapping

Engine, a simulation written by Brian Falkenhainer and Ken Forbus

-3-t o I



(Falkenhainer, Forbus & Gentner, 1986). In interpreting an analogy, people

seek to put the objects of the base in correspondence with the objects in the

target so as to obtain maximum structural match. That is, they seek the

sapping that maximizes consistency and systesaticity. Consistency means that

the mapping is 1-It each object in the base is assigned at most one object in

the target. Systesaticity refers to the sapping of connected systems of

relations, rather than isolated predicates. I will also use the term

systeeaetcity at times to refer to the presence of a system of relations in a

given domain. The systematicity principle states that a base predicate that

belongs to a mappable system of mutually interconnecting relations is more

likely to be imported into the target than is an isolated predicate. A system

of relations refers to an interconnected predicate structure in which higher-

order predicates enforce constraints among lower-order predicates. A mappable

system in the base is one that can be mapped into the target system without

contradiction, and ideally with some partial matching with existing target

predicates. The more matches are found between the predicates of the base

system and existing predicates in the target, the more support there is for

mapping other members of the base system. Thus, in an analogical mapping we

are looking for a system of relations that can apply in both base and target.

In determining the correspondence between objects in the base and objects in

the target, the object descriptions themselves can be arbitrarily different;

corresponding objects don't have to resemble each other at all. Instead, the

object correspondences are chosen to achieve a consistent and maximally

systematic match between predicates in the base and those in the target.

To illustrate the structure-mapping rules, we turn to a specific example: the

analogy between heat-flow and water-flow. Figure 1 shows a water-flow

situation and an analogous heat-flow situation (adapted from Duckley, 1979, pp

4
- ' ' w '4



I Figure I
ExaMle. o4 PtiysicaL Situation% Involving

Water-f lw and Heat-floe.
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15-25). Figure 2 shows the representation a learner eight have of the two

situations.

This network' represents a portion of what a person eight know about the water

and heat situations illustrated in the previous figure. These representations

are the ones given to the Structure-sapping Engine, as described below. Note

that we assume the learner begins with a richer representation of the water

situation than of the heat situation.2

In order to comprehend the analogy 'Heat is like water.' a learner must find

the set of object correspondences that allows systematic matching between the

two domains. In so doing, the learner must.

- disregard object attributes, such as CYLINDRICAL(boaker)

- map base relations into the target domain

- observe systematicityi i.e., find a system of relations that can apply

in both domains, here, the pressure-difference structure in the water

domain

CAUSE (REATER-THANCPREISURE(beaker), PRESSURE(vial)],

[FLON(mater, pipe, beaker, vial) )

which maps into the temperature-difference structure in the heat domain

1. In this and other figures, predicates, including both relations and
functions, are written in upper case and objects are written in lower case.
A more detailed representation of the heat/water analogy is given in Forbus
& Sentner (1933, 190b).

2. This analogy has been important in the history o+ theories of heat. It
probably underlies the caloric theory of heat, and it was used by Carnot
(1824) to illustrate the interrelation between heat and temperature. (See
Sentner & Jeoiorski (in preparation) for a discussion of this history.)



I Figure 2

Representations of Water and Heat

WATER FLOW HEAT FLOW
i

CAUSE

GREATER FLOW (beaker vial. GREATER
water pipe)

I PRESSURE(beaker) PRESSURE(vial) TEMP (coffee) TEMP (ice cube)

I GREATER FLOW(ice Cube, coffee .heat, bar)

DIAMETER (beaker) DIAMETER (vial)

SUOUIO (water) LIOUIO (coffee)

FLAT-TOP (water) FLAT-TOP (coffee)

CLEAR (beaker)
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CAUSE(BREATER-THANCTEMPERATURE(coff e), TEMPERATURE (ice)2,

CFLON(heat, bar, coffee, ice)]).

discard isolated relations, such as

SREATER-THANCDIAMETER(boaker), DIAMETER(vial)

The object correspondences between the two domains that allow for the best

match turn out to be

water --) heat; pipe --) metal bar;

beaker -->coffee; vial --> ice.

As noted earlier, the object correspondences -- water/heat, beaker/coffee,

vial/ice, and pipe/bar -- and the function correspondence

PRESSURE/TEMPERATURE3 are determined not by any intrinsic similarity between

the objects, but by their role in the systematic relational structure.

Systematicity also determines which relations get carried across. The reason

that

3. In this analogy, the function PRESSURE in the water domain must be matched
with TEMPERATURE in the heat domain. Like objects and their attributes,
functions on objects in the base can be put in correspondence with
different functions in the target in order to permit mapping a larger
systematic structure. This is a change from my former position, which only
distinguished between object-attributes (one-place predicates), which were
allowed to match nonidentically, and relations (2-or-sore-place
predicates), which had to match identically. I now distinguish functions on
objects (including n-place functions) as a separate class, which can match
nonidentically. The rationale is that such functions are basically aspects
of object descriptions. Like objects and their attributes, they can be put
into correspondence with different functions in the target. In other words,
the essential distinction is between objects and their descriptions on the
one hand and relational structure on the other. My initial formulation in
terms of one-place and n-place predicates was too stringent. I thank Ken
Forbus, Brian Falkenhainer and Janice Skorstad for discussions on this
issue.

Rd
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I
SREATER-THANCPRESSURE(beaker), PRESSURE(vial)]

is preserved is that it is part of a system of higher-order constraining

relations -- in this case, the system governed by the higher-order relation

~ CAUSE -- that partially matches a relational system in the target. In

contrast, the relationS
SREATER-THANCDIAMETER(beaker), DIANETER(vial)

does not belong to a common systematic structure shared by the base and target

domains, and so is discarded in the interpretation.

However, it is important to note that which predicates survive in the

interpretation depends on the match between the two domains. With a different

target domain, the DIAMETER difference will be part of the analogy. For

5 example, suppose that we keep the same base domain -- the water system shown

in Figure 2 -- but change the target domain to two objects differing not only

in their temperature but also in their specific heati say, a metal ball-

bearing and a marble. Assuming equal mass, they will also have different heat

capacities. With this new target, the natural interpretation concerns capacity

differences' in the base, as well as level or pressure differences. Now each

system involves two interrelated variables: (1) the initial variable of LEVEL

/(TEMPERATURE) which tells us in which direction water (heat) will flow to

achieve equilibrium and (2) a second variable of CAPACITY which determines

which vessel will experience the greatest change in LEVEL in achieving

4. For continuity I have used DIAMETER as the predicate, although CROSS-
SECTIONAL AREA would be more accurate. Also, note that there eight have
been a similar heat-capacity difference between the coffee and ice cubs in
the original heat figure; but without specifying the masses, this
difference could not be assumed.

I7



equilibrium. Now the most systematic relational system that can be sapped to

the target is

CAUSE (UREATER-THAN [DIAMETER (beaker), DIAMETER (vial)],

BREATER-THAN [CHANSE-OF-PRESSURE(vial),CHANSE-OF-PRESSURE(beaker)2)

This carries over into the target as

CAUSE (BREATER-THAN CHEAT-CAP.(marble), HEAT-CAP.(ball)],

BREATER-THAN [CHANSE-OF-TEMP. (ball), CHANIE-OF-TEMP. (marble)2).

Because the target shares a larger relational system with the bass, the

natural interpretation of the analogy is now more complex. This illustrates

that, for a given base domain, the mapping for a particular target is

determined by the best match -- i.e., the most systematic and consistent

relational match -- between base and target.9 The only case in which the base

domain by itself determines the interpretation is that in which nothing is

initially known about the target; then matching does not apply and the mapping

is one of pure carryover from base to target. In the more normal case when

information is known about both base and target, the interpretation is based

on both matching between base and target and carryover of predicates from base

to target (Gentner, in press).

5. I stress this point because it apparently can be misunderstood; Holyoak
(1995) writes that the interpretation of an analogy in structure-mapping
depends only -on an analysis of the structure of the base domain. To
forestall such misconceptions I stress that (as with other kinds of
similarity comparisons) the interpretation of an analogy in structure-
mapping involves a satch -- in this case the most systematic consistent
match -- between two domains.

i



B
There are a few further points to notice here. First, the order of operations

is probably variable. I suspect that often the learner begins with relational

9m atching and sapping and uses the relational matches to determine the object

correspondences. (This is the way the simulation performl, as described

below.) However, sometimes the object-correspondences are the first step: for

example, in cases when the learner is explicitly told the object

correspondences. Second, note that the systematicity principle requires a

sappable relational system. If the predicates of the base system generate

contradictions in the target, then another system must be selected. Third, a

member of a base relational system that can successfully be mapped into the

1target provides support for other members of that system.

Finally, it is useful to distinguish two extremes.of analogical processing:

- (1) our maltchinoi all the predicates of the base system are matched

with predicates in the target system. In this case the analogy serves

not to communicate new knowledge but to focus attention on a particular

common system of predicates.

- (2) cure saon: the learner is given the object correspondences and

simply carries across a system of predicates from the base to the

target. This is a case of maximal new knowledge.

These extremes are rarel most analogies involve both matching and mapping.

Typically there is a partial match between base and target systems, which then

sanctions the mapping of further predicates from the base to the target.

The Structure-Mapping Enoine. The Structure-flapping Engine (SME) is a

simulation of the structure-mapping process written by Brian Falkenhalner and

Ken Forbus. I describe it briefly here (For a more complete description, see

Falkenhainer, Forbus, & Sentner, 1986). Given representations of the base and

0-49



target, SHE uses systematicity and structural consistency to determine the

best mapping(s). When SHE is run in its basic analogy mode, only relational

structure counts in the match. But SHE can also be run with different match

rules to simulate mere-appearance matches (only object descriptions count) and

literal similarity matches (both object descriptions and relational structure

counts in the match). Because literal similarity matches shoe a broad range of

SHE's behavior, I will describe the match rules that simulate literal

similarity.

SHE is given as input structured representations of the water and heat

situations, as shown in Figure 2.' The order of events is as followsi

(1) Local matches. SHE starts by finding potential matches between single

items in the base and target. For each entity and predicate in the base, it

finds the set of entities or predicates in the target that could plausibly

match that item. These potential correspondences (match hypothoses) are

determined by a set of simple rules: for example,

- (1) if two relations have the same name, create a match hypothesisl

- (2) for every match hypothesis between relations, check their

corresponding argumentst if both are entities, or if both are functions,

then create a match hypothesis between them.

For example, given the representations in Figure 2, rule (1) creates match

hypotheses between the GREATER THAN relations that occur in base and target.

Then rule (2) creates match hypotheses between their arguments, since both are

6. Note that the representations contain extraneous matches such as
LIQUID(water) and LIQUID(coffee). These spurious matches are included to
simulate a learner's uncertainty about what matters and to give SHE the
possibility of making errors.

- 10 -



5functions. Note that at this stage the system is entertaining two different --

and inconsistent -- match hypotheses involving GREATER THANi one in which

£ PRESSURE is matched with TEMPERATURE, and one in which DIAMETER is matched

with TEMPERATURE. Thus, at this stage the program will have a large number of

I local matches.

Another set of rules assigns evideace scores to these local matches: e.g.,

- (1) Increase the evidence for a match if the base and target predicate

have the same name.

- (2) Increase the evidence for a given match if there is evidence for a

3 match among the parent relations -- i.e., the immediately governing

higher-order relations.

Rule (1) reflects a preference for relational identity and rule (2) reflects a

i preference for systeeaticity. It is at this stage that the GREATER-THAN--

PRESSURE system in the water domain begins to gain an advantage over the

GREATER-THAN--DIAMETER system. This is because the PRESSURE system has more

3 layers of parent predicates that match with the heat system, which leads to

higher local evidence scores for PRESSURE than for DIAMETER.B
(2) Coastructzmg gJobal natches. The next stage is to collect systems of

matches that use consistent (i.e., 1-1) entity-pairings. SE first propagates

entity-correspondences up each relational chain to create systems of match

hypotheses that use the same entity-pairings. It then combines these into the

largest possible systems of predicates with consistent object-mappings. These

global matches (called Soaps) are the possible interpretations of the analogy.

Associated with each Smap is a (possibly empty) set of candidate infereaces --

I
1--it



I

predicates that are part of the base system but were not initially present in

the corresponding target @yete.

(3) EvaJuativg #Jobl matches. The global matches are then given a structural

evaluation, which depends chiefly on the local match evidence.'

An important aspect of SNE is that the global satches (leaps) sanction

casdidate Jeforescess predicates fro* the base that get sapped into the target

domain. These are base predicates that were not originally present in the

target, but which can be imported into the target by virtue of belonging to a

system that is largely shared by base and target. For example, in the

heat/water scenario shown here, the water representation contains the full

pressure-difference system, while the heat representation lacks the higher-

order CAUSE predicate. That is, it contains only the two first-order

predicates

SREATER-TNAUTENPERATURE(co4fee), TENPERATURE(ice))

and

19FLOU(heat, bar, coffeaq ice)

In this case, the system brings across the higher-order predicate CAUSE from

the base domain. In essence, it postulates that there may be more structure in

the target than it initially knew about.

SH's interpretation is based on selecting the most systematic consistent

mappable structure. Thus computing systeeticity precedes and determines the

final selection of object correspondences. Indeed, even in literal similarity

7. ME also has the capability to consider the number of candidate inferences
supported and the graph-theoretic structure in assigning the evaluation,
but the ramifications of these options have not yet been explored.

- 12 -



S
sode, as illustrated here, achieving a maximally consistent relational match

can outweigh placing similar objects in correspondence.0S
SIE's matching process is entirely structural. The internal processes of the

analogy engine are not directly influenced by the system's problem-solving

goals (although, as discussed below, the reasoner's plIns and goals can have

aadirect influence since they influence the inputs to the analogy engine). But

by promoting deep relational systems, the systomaticity principle operates to

promote predicates that participate in causal systems and in other constraint

relations. Yet this purely structural mechanism guarantees that the set of

candidate mappings will be as interesting -- in the sense that a mutually

interconnected system of predicates is interesting -- as the knowledge base

allows.

K i ± nds2 Similarity. I have claimed that in interpreting analogical matches,

only relational predicates count. There is evidence that in judging the

aptness of a metaphoric comparison, people do indeed favor such relational

mappings (Sentner, 1910, 19261 Ientner & Block, 19131 entner & Landers,

3193). Dut to give a complete psychological account of learning by analogy and

similarity, ee must also consider other kinds of similarity matches. As was

discussed above, not only analogy but also other kinds of similarity can be

characterized by the distribution of relational and attributional predicates

that are mapped. In aaalely, only relational predicates are napped. In literal

si ilarity, both relational predicates and object-attributes are mapped. In

ere-appeerasce matches, it is chiefly object descriptions that are mapped.

8. This view of literal similarity is a departure from the 'feature-list' view
that has been dominant in cognitive psychology (e.g., Tversky, 1977). In
ongoing research, Doug Nedin, Robert Goldstone and I have found evidence
for effects on relational structure on similarity judgements, even with
simple geometric figures.

~1 -
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I

Table I shows examples of these different kinds of similarity comparison. The

central assumption here is that it is not merely the relative sueber of shared

versus nonshared predicates that matters -- although that is certainly

important, as Tversky (1977) has shown -- but also the kinds of predicates

that match. For a longer discussion of similarity types see Bentner, 1986).
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5

U To illustrate those distinctions, consider this series of related examples.

5 (1) AaleJ#y. As discussed above, the analogy "Heat is like water.' conveys a

relational system3

CAUSE(IREATER- NANPRESSURE(beaker), PRESSURE(vial)]2

I[FLON(water, pipe, beaker, vial)l)
is sapped into

CAUSE(SREATER-TMN[TENPERATURE(coffoe), TIENPERATURE(ice)],

[FLOU(heat, bar, coffee, ice)M).

1 (2) Literal si ilarity. The comparison 'Kool-Aid is like water.* conveys that

most of the water description can be applied to Kool-Aid. In literal

similarity, both object descriptions, including attributes like

FLAT-TOP(mater) and CYLINDRICAL(beaker)

5 and relational predicates, such as the systematic structure discussed above,

are sapped over.U
(3) Relatiesal abstractioe. The abstract statement "Heat is a through-

5 variable," which sight be available to a student who knows some system

dynamics, conveys that heat can be thought of as a flow variable that moves

'across a potential difference. This potential difference requires an across-

f variablee in this case, temperature. This abstraction, when applied to the

heat domain, convoys much the same relational structure as is conveyed by the

heat/water analogy (1). The difference is that in the abstract bale domain of

through-variables and across-variables, there are no concrete properties of

I objects to be left behind in the mapping.

I
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(4) Nere-appearaace match. A mere-appearance statement, such as *The table top

looked like water,' is one with overlap in lower-order predicates -- object-

descriptions and soe first-order spatial relations -- but not in higher-order

relations. Here, the color and texture of the water is mapped onto the table.

Although mere-appearance matches are limited in their explanatory utility,

they are important in a psychological account of learning, for two reasons

(1) they often occur among novice learners; and (2) in general, mere-

appearance matches say be highly accessible in long-term memory.

These contrasts are not dichotomies but continua, . For example, for both

analogy and literal similarity, the base and target share relational

structure. If that is all they share, then the comparison is an analogy. To

the extent that the domains also share common object descriptions, the

comparison becomes literal similarity. Another continuum exists between

analogy and relational abstraction. In both cases, the base and target share

relational structure and do not share object descriptions. Here the continuum

is in the nature of the base representation. If the base representation

includes concrete objects whose individual attributes must be left behind in

the mapping, the comparison is an analogy. As the object nodes of the base

domain become more abstract and variable-like, making the comparison becomes

more like invoking an abstraction.

Accessing versus Soundness

With these distinctions, we are ready to ask what governs spontaneous access

to analogy and similarity. Are the similarities that promote Access the same

as those that enter into mapping and judging the worth of analogies' To

clarify the discussion, let us decompose analogical reasoning into access and

161L



I
Sapping-plus-inference. [For a @ore detailed treatment of the subprocesses in

analogy, see Clement (1981, 1983) and Bentner (1987, in press).] Access is the

5 process of matching a base situation in memory with a given target situation a

person is faced with. In other words, it is the process whereby a current

target situation reminds a person of a base situation in his memory. Mapping

occurs after a base situation has been accessed from memory. In sapping, the

predicates of the base are matched with corresponding predicates of the target

according to the rules given above, including consistency and systematicity.

In cases where a highly systematic relational structure can indeed be mapped

into the target domain, structure-mapping predicts that people will consider

the analogy sound. Such an analogy can support inferences because the base

and target share systematic relational structure, any additional predicates

from the base system can be carried into the target system as candidate

inferences. Thus structure-mapping predicts that shared systematicity should

be a major determinant of how sound people believe an analogy to be.

Bentner & Landers (1935) investigated the accessibility and subjective

soundness of different kinds of similarity matches. The experiment had a two-

fold purpose# (1) it tested the prediction that systematicity determines the

subjective soundness of a matchl and (2) it compared the accessibility of

analogy with that of other kinds of similarity matches. This study was

designed to create a situation resembling naturalistic long-term memory

access. The subjects were 30 students from the MIT Psychology Department. We

first gave the subjects a large number (32) of stories to read and remember.

One week later, we brought them back, showed them a now set of stories and

asked them to tell us if they were reminded of any of the original stories.

Finally, they rated the story pairs for their inferential soundness, as

explained below. The stories were carefully designed to embody different kinds

-17-
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of similarity matches. Ther@ were three kinds of similarity matches between

base and target: mere appearance matches, true analogies and false analogies,

as followes

- sere appearance (RA)i first-order relations and object-attributes match

- true analogy (TA)i first-order relations and higher-order relations

match

- false analogy (FA)s only the first-order relations match.

Note that in all three cases, the base and target shared first-order

relations. The three similarity conditions differed in which, if any, other

commonalities also existed. Table 2 shows an example set of four scenarios: a

base scenario plus one example of each of the three kinds of matches.

In the first session, all subjects read the same 18 base stories and 14 filler

stories. They were told to read carefully and remember the stories. Zn the

second session, six to eight days later, subjects received a workbook of 18

new target stories: 6 MA targets, 6 TA targets, and 6 FA targets. That is,

each target was similar -- in one of the three ways described above -- to one

of the 18 base stories the subject had read. The target stories were read in

random order. Subjects were divided into 3 groups to counterbalance which type

of match occurred in which stories. For each target story read, subjects were

instructed to write down any base story they were reminded of, as completely

as possible.

The soundness task was given to subjects after they had completed the matching

task. In this task, subjects were given workbook showing 18 pairs of stories

and asked to rate each pair for the *soundness" of the match between the two

stories (explained as *when two situations match well enough lo make a strong

I .,, .-
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TABLE 2

3 Sample Story Set for the Access and Soundness Experiment

(Gentner & Landers, 1985)

BASE story

Karla, an old hawk, lived at the top of a tall oak tree. One
afternoon, she saw a hunter on the ground with a bow with some crude arrows
that had no feathers. The hunter took aim and shot at the hawk but missed.
Karla knew the hunter wanted her feathers so she glided down to the hunter
and offered to give him a few. The hunter was so greatful that he pledged
never to shoot at the hawk again. He went off and shot deer instead.

True Analogy TARGET

Once there was a small country called Zerdia that learned to make the
world's smartest computer.

One day Zerdia was attacked by its warlike neighbor, Gagrach. But the
missiles were badly aimed and the attack failed. The Zerdian government
realized that Gagrach wanted Zeridian computers so it offered to sell some
of its computers to the country. The government of Gagrach was very
pleased. It promised never to attack Zerdia again.

Mere Appearance TARGET

Once there was an eagle named Zerdia who donated a few of her
tailfeathers to a sportsman so he would promise never to attack eagles.

One day Zerdia was nesting high on a rocky cliff when she saw the
sportsman coming with a crossbow. Zerdia flew down to meet the man, but he
attacked and felled her with a single bolt. As she fluttered to the ground5Zerdia realized that the bolt had her own tailfeathers on it.
False Analogy TARGET

Once there was a small country called Zerdia that learned to make the
world's smartest computer. Zerdia sold one of its supercomputers to its
neighbor, Gagrach, so Gagrach would promise never to attack Zerdia.

But one day Zerdia was overwhelmed by a surprise attack from Gagrach.
As it capitulated the crippled government of Zerdia realized that the
attacker's missiles had been guided by Zerdian supercomputers.

I
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argument from one to the other*). The first story in each pair was one of the

base stories from the first session, and the second story was the matching

target story the subject had received (whether or not he or she had noticed

the match). Thus, each subject rated 1/3 HA, 1/3 TA, and 1/3 FA matches.

Subjects used a 1-5 scale, where 5 a highly sound and I e sourious.

To score the reminding task, two Judges read each of the workbooks and scored

the accuracy of the recalled base stories. The judges did not know which

experimental condition subjects were in, nor what kind of match they had been

given. They used a scale ranging from 5 (excellent recall) to I (poor recall),

with 0 being used when subjects made no reminding response at all or recalled

a different story. 9 In addition to this overall score, we also computed a

flat score. For this score, we counted all recalls with an overall score of 2

or better. This simply measured whether any genuine recall had occurred,

without worrying about whether the recall was of high quality.

Results of the Sowadsess Task. Figure 3a shows the results of the soundness-

rating task. As predicted by structure-mapping theory, subjects Judged the

true analogies, the only pairs that shared higher-order structure, to be far

more sound than the other two kinds of pairs. The MA and FA pairs, which did

not share systematic structure, were judged to be unsound.1 O The difference

between false analogies and true analogies is particularly interesting for

structure-sapping theory, for these two match types differed only in the

presence of higher-order relational structure. The fact that true analogies

9. There was good agreement among the judgest they were within one point of
each other 97% of the time.

10. These patterns were confirmed by an analysis of variance and by planned-
comparison t-tests. The differences between TA and MA and between TA and
FA are significant (p(.001 in each case), and the difference between MA
and FA is not significant (pa.802).
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5 Results Of The Access Experiment
(Gentnw And Landers, 1985)
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were rated as significantly more sound than false analogies is evidence that

it is not just shared relations but shared higher-order relations that

determine analogical soundness. These results help confirm the importance of

systematicity in human analogical reasoning.

Results of the Revinding Task. The results of the reminding task are quite

different. As Figure 3b shows, mere appearance matches are by far the best

remembered. This is true for both scoring methods -- overall recall score and

flat-match score.
1 1

These results suggest that different kinds of similarity matches are weighted

differently in determining the accessibility and the inferential soundness of

an analogy. In the reminding task, mere appearance matches were by far the

C best accessed. True analogies accessed only half as often and false analogies

about one third as often. Evidently, access to memory is heavily influenced by

surface similarity between the base and target. In contrast, in Judging

soundness it is systematic structural overlap that counts. Thus, although

mere-appearance matches were highly successful at leading subjects to access

the base, such matches were nonetheless judged by the same subjects to be

spurious comparisons. The matches that people find easiest to make are not the

ones they find most valuable in inference.

We have recently replicated these results, adding a literal similarity

condition, and the results show the same pattern (6mntner & Rattermann, in

preparation). It appears that the subprocesses involved in analogical access

11. Both overall analyses of variance and planned-comparison t-tests indicate

that all of the differences --- MA-TA, MA-FA, and TA-FA --- are
significant for both overall and flat matching scores (p<.001 in all six
tests).

S- 20-
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i
and judging analogical soundness may be influenced to different degrees by

different kinds of similarity."L

- Accessibility is promoted by overall similarity, but perhaps especially

by surface similarity.

- Inferential power is governed by similarity of higher-order structures.

These access results accord with other research on access (Sick & Holyoak,

1980, 1983; Reed, 19671 Reed, Ernst & Banerji, 19741 Ross, 1904, 19861 Ros &

Sofka, 1996). In this research it has reliably been demonstrated that subjects

in a problem-solving task often fail to access prior material that is

analogous to their current problem. For example, in Sick and Holyoak's (1990,

1983) studies, subjects were told to solve a problem shortly after hearing a

story that was in fact analogous to the problem. A substantial number of

subjects failed to access the potential analogy -- and therefore could not

solve the problem -- yet, when told that the prior material was relevant, they

could solve the problem immediately. This means that their stored information

about the prior story formed a good analogy to their current problem; but the

analogical commonalities were not sufficient to cause them to spontaneously

access this material. Further, the work of Ross (1994, 1986; Ross & Sofka,

1996), Reed (1997) and Novick (1985) indicates that surface commonalties are

important in promoting access to prior material. Thus, surface similarity

appears to be a major factor in accessing material in long-tere memory.

12. Strictly speaking, we cannot compare the importance of surface and
structural similarity in a given process, Just as we cannot compare the
importance of form and color. What we can say is that the relative
contribution of surface to structural similarity is greater in access than
in inference. I thank Brian Ross for discussion of this point.
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These results are problematic for the view that memory is normally indexed by

top-level structures such as plans and goals. (Carbonell, 19831 Hammond,

1984). For if access were based on shared plans and goals, the true analogy

targets should have been the best cuss for the base stories. But this was not

the case. Evidently, access to memory is heavily influenced by surface

similarity between the base and target, and not merely by similarity in causal

structure or in plans and goals. Contrary to the plausible intuition of

importance-governed indexing, analozcal access has a different sensitivity

profile from analogical inference.

It could be argued that the Bentner & Landers and Sick & Holyoak results are

not representative of normal access patterns. As Hammond (personal

communication, January, 1996) points out, it say be that a story-reading task

is not representative of real-life encoding tasks, in which plans and goals

determine how things are indexed (e.g., Burstein, 19931 Carbonell, 19831

Schank, 1982). By this argument, the emphasis on surface information in access

in these studies results from the fact that the subjects were not in a goal-

driven stite at the time of original story encoding. This is a point worth

further investigation. There is research suggesting that the amount of

relational access depends in part on the nature of the original encoding

(Schumacher, 1987). Thus it seems plausible that if the original situation had

been more goal-driven, the effects of surface commonalities might have been

lower. However, this does not appear to be the whole answer, for there is

heavy reliance on surface information in access even in problem-solving

contexts, in which the learner should be goal-driven throughout. Subjects who

are solving problems both at the time of the original base problem and at the

time of the original target problem still show a sizable surface bias in

2

- 22 -

j. -- -



access (Novick, 1985; Reed, 19871 Reed, Dempster & Ettinger, 19351 Reed,

Ernst, & Banerji, 19741 Ross, 1904, 1985, in press).U
Clearly, these results cannot be taken to mean that analogical access --

including plan-based access -- never occurs. Such remindings occur at

occasionally in cosmonsense reasoning (e.g., Leak* & Owns, 19861 Kass, 19661

Schank, 1962) as well as in expert problem-solving (Clement, 1961, 1983, 1986)

and, historically, in scientific discovery (Bentner, 19821 Ientner &

Jeziorski, in preparation). Indeed, in the Gentner & Landers study true

analogies led to remindings about 40X of the time. A correct model of analogy

will have to account both for the fact that analogical reminding is relatively

unlikely and for the fact that it does sometimes occur. Further research

should clarify the conditions under which analogical access occurs.

w From a machine-learning standpoint, it may seem that humans are very badly

designed. The human bias for overall-similarity matches rather then analogical

] remindings must deprive us of countless potential insights. But there may be

good reason for this bias. Human data bases are typically very large, orders

of magnitude larger than those of any current A.I. systems. An access bias for

literal similarity serves to reduce the number of spontaneous matches that

have to be checked. If we noticed all the analogical remindings that are

inherent in our data bases, the costs of checking potential matches might be

prohibitive.

But although this explanation might justify our conservative preference for

overall similarity, it does not explain why our access mechanisms also produce

mere-appearance matches. At first glance, this seems really dumb. My

speculation is that, for beings with good perceptual systems, access on the

basis of object descriptions may be a reasonable heuristic for obtaining

-23-



literal similarity matches. Surface information is cheap -- that is we seem to

process it very easily -- and, at least in concrete physical domains, it is

fairly reliable. Iy and large, what looks like a tiger is a tiger. Thus the

cost/reliability tradeoff for humans in use of surface information may be

rather reasonable. hether we should design machines with the same access

biases is not clear. If relative costs are different in-machine learning

systems then a different tradeoff might be preferable. The harder it is to

give a machine learning system rich perceptual representations and the easier

it is to design efficient methods for checking large numbers of potential

similarity matches, the less the payoff for using a human-like access system.

Aside from efficiency of access, it is possible that a bias for literal

similarity has subtle but deep advantages in learning very complex systems --

such as language, or the laws of the physical world -- where the appropriate

relational structures cannot be predicted in advance. Forbus & Sentner (1933,

1916) have suggested that in such domains initial learning is best described

as massive storage of exemplars. Then through similarity matches -- initially

literal similarity matches and later analogies -- common relational structure

gradually becomes more salient. (It's assumed here that making a similarity

match heightens the salience of the matching features in subsequent memory

(e.g., lick & Holyoak, 1983).) Although such a system is initially slow, its

advantage is that its eventual abstractions are based on regularities in

domain structure rather than on the learner's initial preconceptions.

o24



Related Research@

Pragmatic versus structural Accounts

Some aspects of structure-mapping have received convergent support in

4 artificial intmllifence and psychology. There is widespread agreement on the

basic elements of one-to-one mappings of objects with carryover of predicates

S(lurstein, 19131 Carbonell, 19131 Darden, 19101 Oreiner, 19861 Hobbs, 19791

Hofstadtlr, 19341 Indurkhya, 19651 Kedar-Cabelli, 1915) Reed, 19171 Reed,

Dempster & Ettinger, 1935; Rumelhart & Norman, 19311 Van Lehn & Brown, 19301

and Winston, 1960, 1962). However, accounts vary in the nature of the

selection principle that determines just which predicates come over in

analogy. In structure-mapping, the selection rules are structural: namely, a

preference for systematic relational matches. Pragmatic and contextual factors

influence the matching process only indirectly, by influencing the input to

the matcher and by providing pragmatic criteria against which results of the

match are judged. (So Figure 4 below.) Although many researchers use

systematicity as part of their selection criteria, it is often augmented by

specific Content knowledge or pragmatic information. For example, an Important

early system was Winston's (1930, 1932) system, which used a selection

criterion based on common object properties and classes but also on specific
_

relational contents it looked for causal relations in its importance-guided

matching algorithm. Other recent accounts have taken a more strongly pragmatic

view, emphasizing the central role of plans and goals in the analogical

mapping process. For example, Carbonell (191, 1933) proposed that people

'.1 comprehend analogies according to an imvarilsce hierarchy -- an ordered

Usequence of ten interpretation types, starting with shared goal-expectatoll

and continuing through plasojag strategjes, then causal structures and on down

to ebject Identities as the last resort. This account focuses on plans and
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goals as the east important higher-order relations for analogical mapping. It

suggests that a reasoner will always begin by seeking a common goal, then try

for a common plan, then a common causal structure, and so on. This is a very

different kind of process froe the one suggested here, in that the

interpretation types are tried in a fixed preset order, rather than (as here)

derived by matching structures. As a process model, the invariance hierarchy

seems rather implausible. This is especially true for science analogies. In

the heat flow/water flow analogy, for example, it seems unlikely that people

first try to find a goal-expectation common to heat and water, then try for a

common planning strategy, and only then turn to common causal structure.

However, Carbonell's hierarchy is a useful start on a taxonomy of the kinds of

relational structures that analogies can highlight.

,* The purest exposition of the pragmatic view is that of Holyoak (1985). He

proposes an entirely pragmatic account in which structural principles play no

role. In Holyoak's account, there are no independent structural distinctions

among predicate typesl the ely distinction between surface and structural

commonalties is that of relevance to the current plan. As HolyOak (19 5, p.

Ill statesa

It is possible, based on the taxonomy of mapping relations
discussed earlier, to draw a distinction between surface and
structural similarities and dissimilarities. An identity between
two problem situations that plays no causal role in determining
the possible solutions to one or the other analog constitutes a
surface similarity. Similarly, a structure-preserving difference,
as defined earlier, constitutes a surface dissimilarity. In
contrast, identities that influence goal attainment constitute
structural similarities, and structure-violating differences
constitute structural dissimilarities. Note that the distinction
between surface and structural similarities, as used here, hinges
on the relevance of the property in question to attainment of a
successful solution. The distinction thus crucially depends on the
goal of the problem solver.

- 26 o
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B
Notice that this account is solely pragmatic. Relevance does not aulstt

considerations of predicate structure, but replaces thee. Wolyoak argues that

5 systematicity is an eptphenomenoni what passes for structural matching ts

actually the reasoner's attention to the causal assertions that support

current goals. Structural similarities are defined as "identities that

influence goal attainent.' and surface similarity as 'an identity between two

problem situations that plays no causal role in determining the possible

solutions to one or the other analog.' Thus the distinction between surface

and structural similarities 'hinges on the relevance of the property in

question to attainment of a successful solution. The distinction thus

crucially depends on the goal of the problem solver.'

This view has an immediate appeali it focuses attention on analogy as an

aspect of goal-directed reasoning. Like the work of Burstein (1983), Carbonell

j (1911) and Kedar-Cabelli (1965), it emphasites the importance of contentual

relevance in analogical processing. These are aspects of analogy that must be

taken into consideration and indeed I will suggest a way to model these

factors below (See Figure 4.). However, Holyoak's account goes much further

than the others mentioneds it promises to replace structural considerations

like systematicity with an ecologically natural notion of the reasoner's goal.

But looked at closely, the pragmatic proposal reveals serious problems.

The first disadvantage of the purely pragmatic account is that, because it is

a one-factor system, it cannot capture the distinction between soundness and

relevance. An analogy can be rejected in a problem-solving situation for two
- . .,.

different ressons: it can be judged unsound -- i.e., lacking in sufficient

structural overlap to support importing inferences from base to target -- or

it can be judged irrelevant -- i.e., as supporting inferences in the target

but not the inferences needed at the moment. To capture both these

C -27 -
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possibilities, a two-factor theory is necessary: pragmatic criteria, which

govern relevance, must be separated from structural criteria, which govern

soundness. The purely relevance-based account encounters other serious

problems as wells since 'structural identities' (a bit of a misnomer here) are

defined as foal-relevant Identities, the interpretation mechanism requires

that the reasoner have a goal in order to derive an interpretation of an

analogy. Outside of a goal-content, there is no basis for choosing which

matches to keep. Yet we know that people can comprehend an analogy in

isolation.

Finally, it's not clear whether a purely pragmatic account is computationally

feasible. Holyoak and Thagard (1986) outline a computer simulation of

analogical processing called Pl. However, there does not appear ts be any

published account to date containing enough detail to ascertain whether it

operates according to the pragmatic account, whether it runs on more than the

single example described, and how sufficient or efficient it is. I will return

to these points below, after suggesting what I believe is a better way to

model the interaction between structure and context.

Plains aod peals is a structural accoust. Plans, goals and expectations are

important throughout cognition (Miller, Gallanter & Pribram, 19601 Schank,

191 Uchank 6 Abelson, 1977). A complete model of analogical problem solving

must take account of the plans and goals of the reasoner (eg.Burstein,

* 1981 Holyosk, 19351 Kedar-Cabelli, 1915.)13 However, the fact that plans and

goals are important in analogical reasoning does not mean they should be built

into the analogy engine. Analogy occurs in other contents besides problem-

13. 1 thank Mark lurstein for many lively and insightful discussions on this
point. His arguments have led me to give plans and goals a more explicit
role in my account.
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B
solving. And in the other direction, plans and goals affect many different

kinds o4-human reasoning. In other words, what differentiates analogy frog

U other processes Is not the use of plans and goals1 it is the nature of the

computation performed. What is needed is an account that captures what is

specific and essential to analogy, one that is applicable to problem-solving

uses of analogy without being restricted to them.

I propose the architecture shown in Figure 4. This architecture provides for a

purely structural analogy processor whose iaput representations and output

evaluation are influenced by plans and goals. In a problem-solving situation,

the reasoner's goals influence the way the target problem is represented in

working memory. This in turn influences what gets accessed. Once the potential

base analog is accessed from long-term memory, the analogy engine runs its

course. The engine produces an interpretation including candidate inferences

3 and also a structural evaluation. 14 the structural evaluation is too low --

i.e., if the depth and size of the system of consistently matching predicates

is too low -- then the analogy will be rejected on structural grounds. If the

analogy passes the structural criterion, then its candidate inferences must be

evaluated with respect to the goals of the reasoner. In terms of the computer

Nm model, this suggests adding a context-sensitive, expectation-driven module to

evaluate the output of SE. Thus, plans and goals influence the process both

before and after the analogy engine; but the engine itself is can be run

without overt goals. This architecture appears compatible with the combination

models proposed by lursten (1903) and Kedar-Cabellt (1985), which combine

structural rules with a pragmatic component so as to choose an interpretation

that is both consistent and contextually relevant.

Zn the model proposed here, both structural properties and contextual-

pragmatic considerations enter into analogical problem solving, but they are

o29 -
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Figure 4

A Proposed Cognitive Architecture for Analogical Processing
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I
not equated. 6oals are not required to define an analogical match. The analogy

engine is a well-defined, semi-autonomous system whose results interact with

other processes, analogous to the way some natural-language models have

postulated semi-autonomous interacting subsystems for syntax, semantics and

pragmatics (e.g., Reddy, Ersan, Fennell & Neely, 1973). This allows us to

capture the fact that analogy must satisfy both a structural and a pragmatic

criterion. In addition, any candidate inferences that result from an analogy

must be tested for validity in the target domain. At a minimum this means

checking whether contradictory information already exists; it may also include

conducting experiments to verify the predictions (Sentner, 1982; Breiner,

1996). Thus there are three separate evaluation criteria for analogy:

soundness, validity and (when appropriate) relevance.

Separating the pragmatic context from the actual analogy processor has other

advantages. Unlike purely pragmatic theories, it captures the fact that people

can comprehend an analogy in isolation, with no context at all, and that in so

doing they appear to use many of the same processes as they do in a problem-

solving context. For example, consider this analogy:

Wit is the salt of conversation, not the food. (Hazlitt)

I suspect that most readers can derive its meaning without prior pragmatic

context. Furthermore, if someone tried to use this analogy with the goal of

demonstrating that being funny is the most important thing in conversation,

you would probably feel that the analogy failed to support the speaker's goal.

That is, you would be able to derive an independent structurally-based

interpretation of the metaphor, which you could then compare with the

speaker's goals to see how effectively it supported them. Of course, as with

other kinds of processing, analogical mapping should be faster and easier in

the context of pragmatic expectations consistent with a correct structural

-30-
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interpretation, and harder with inconsistent prior pragmatic expectations. But

that is very different from saying that plans and goals are required for

analogical processing.

I have occasionally heard people defend the goal-centered approach against

examples like the above by arguing that in such analogies 'the speaker's plans

and goals are derived from the match.' Of course, but this is exactly my

point, without needing any advance knowledge of the speaker's goals, we can

apply our analogy engine to derive a common relational structure which we then

infer (in the absence of contradictory information) to be the speaker's goal.

Thus structural matches are used to determine goals; this is the opposite of

the claim that goal-relevance must drive the matching.

Another advantage of separating pragmatic relevance from structural matching

is that it allows a better account of spontaneous generation of analogy.

People often generate analogies that have no obvious relevance to plans and

goals. For example, Bowerman (personal communication, June, 1985) reports the

following analogical reminding. She heard an ambulance approaching and saw the

cars pulling over to the side of the road, one after another. She suddenly

thought of a sensitive plant -- a mimosa -- which has the characteristic that

when touched its leaves shrink in towards the stem in linear succession along

the length of the stem. Examples like this are familiar to all of us. They

show that, though analogy may be used to serve our plans and goals, its nature

does not require a goal-oriented context. The purely pragmatic account of

analogy could not handle such examples, since it requires prior plans and

goals in order to operate. Holyoak (1995) is aware of this limitation and

states that his pragmatic account is meant to apply to analogy in problem-

solving. But having to postulate separate processors for analogy in isolation

and analogy in problem-solving entails a substantial loss of .generality.
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One reason for the interest in content-specific or pragmatically driven

interpretation processes has been a concern that purely structural information

is insufficient to guide analogical mapping. The evidence from the Structure-

mapping Engine so far suggests otherwise, since it generates intuitively

plausible answers and does so rapidly (Falkenhainer, Forbus & Gentner, 1986).

SHE is able to reject initially plausible predicate matches like "LIQUID

(water) ---) LIQUID (coffee)' purely on the basis of consistency and

systematicity. So far SME has performed successfully on over 30 different

analogies. Issues of the sufficiency and efficiency this of approach still

remain, of course. We are exploring a variety of examples to see where and how

the system breaks down. But at present, the structural approach looks quite

powerful.

Concl umi ons

Overall, the advantages of the structure-mapping approach are

(1) Its rules can be stated precisely.

(2) Since the rules are statable in terms of the structure of the

knowledge representation, we do not have to know in advance which predicates

are going to be shared in order to generate or process an analogy.

(3) Separating structural rules from pragmatics allows us to capture the

dual requirements of soundness and relevance and it allows us to capture the

cr commonalities among analogy interpretation across different pragmatic

contexts.

(4) The distinctions between object descriptions, relations and higher-

order relations lead to a similarity space, with distinct subclasses of

similarity based not only on how many predicates overlap between base and

target, but on what kind of predicates overlap.
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The results reviewed here have implications for theories of learning by

analogy and similarity. First, they indicate that the analogy process is

* decomposable into different mechanisms, with very different characteristics.

Second, they show that an adequate treatment of similarity oust distinguish

different subclasses of similarity with different psychological privileges.

Third, they provide further evidence for the psychological reality of

structure-mapping processes in analogy; it appears that people can carry out

rather sophisticated structural matches in the course of comprehending

analogy. Finally, these results have implications for the nature of similarity

v itself. Careful analysis of different kinds of predicate matches may be

central to modeling the role of analogy and similarity in learning.

4SN I.Ii
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