
D-R184 340 AN INEXPENSIVE REAL-TIME INTERACTIVE THREE-DIMENSIONAL 3
FLIGHT SIMULATION SVSTEM(U) NAVAL POSTGRADUATE SCHOOL
MONTEREY CA M J ZYDA ET AL 81 AUG 87 NPS52-87-034

UNCLASSIFIED F/G 5/9 NL

EhhEomhohmosI
EhhhEohEohhhEs
EhhmhmhhmhhhhE

m'm

IW. Y~

IL!

i~ildadJ '' lii

~I zfl~~jjjj

o ~1CFILE GOP;

NPS52-87-034

NAVAL POSTGRADUATE SCHOOL
Monterey, California

SSEP 9 0

AN INEXPENSIVE REAL-TIME INTERACTIVE
THREE-DIMENSIONAL FLIGHT SIMULATION SYSTEM

Robert B. McGhee

Michael J. Zyda

Douglas B. Smith

Dale G. Streyle

July 1987

Approved for public release; distribution unlimited. 4 ~

Prepared for: I

USA Combat Developments Experimentation Center 87~o~
Fort Ord, CA 93941 8

NAVAL POSTGRADUATE SCHOOL
Monterey, California

Rear Admiral R. C. Austin D. A. Schrady
Superintendent Provost

The work reported herein was supported by contract from the United States Army
Combat Developments Experimentation Center and a grant from the Naval Ocean Sys-
tems Center.

Reproduction of all or part of this report is authorized.

This report was prepared by:

MICHEL .A OBET B. MCGHEE
Associate Profmor Professor of Computer Science
of Computer Science

Reviewed by: Released by:

Chairman Dean of Information and
Department of Computer Science Policy Science

UNCLASSI FIED -. v -

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
Is. REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS

UNCLASSI FIED
2a. SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION!AVAILABILITY OF REPORT

2b. DECLASSIFICATION I DOWNGRADING SCHEDULE

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S MONITORING ORGANIZATION REPORT NUMBER(S)

NPS52-87-034

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBO. 7a. NAME OF MONITORING ORGANIZATION
Naval Postgraduate School (f Chief of Naval Research

1 52 ChiefofNavalResearch
6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943 Arlington, VA 22217

8.. NAME OF FUNDING /SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION (If applicable)

CDEC NOSC
8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

Ft. Ord, CA San Diego, CA PROGRAM PROJECT TASK WORK UNIT
93941 92152 ELEMENT NO. NO. NO ACCESSION NO.

11. TITLE (Include Security Classification)

AN INEXPENSIVE REAL-TIME INTERACTIVE THREE-DIMENSIONAL FLIGHT SIMULATION SYSTEM

12 PERSONAL AUTHOR(S)
ZYDA, Michael J., MCGHEE, Robert B., SMITH, Douglas B., STREYLE, Dale G.

13a. TYPE OF REPORT 13b. TIME COVERED 14 DATE OF REPORT (Veer, Month, Day) 15 PAGE COUNT
Sumary FROM 8/1/86 TO7/31/87 1987 AUgust 38

16. SUPPLEMENTARY NOTATION

17. COSAT CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP

~ABSTRACT (Continue on reverse if necessary and identify by block number)

A prototype flight simulator for the Fiber-Optically Guided Missile (FOG-M) is presented.
This prototype demonstrates the practicability and feasibility of using low-cost graphics
hardware to produce acceptable simulation of flight over terrain generated from Defense
Mapping Agency (DMA) digital elevation data. The flight simulator displays a dynamic,
three-dimensional, out-the-window view of the terrain in real-time while responding to
operator control inputs. The total system cost (software and hardware) of the simulator
is an order of magnitude less than most flight simulation systems in current use.

20 DISTRIBUTION /AVAILABILITY OF ABSTRAkCT 21. ABSTRACT nECURTY CLASSIFICATION

f13 UNCLASSIFIED/UNLIMITED 10 SAME AS RPT. [:l DTIC USERS UNCASFE

22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEONE griclude Area Code) s2c FF SYMBOL
Michael J. Zyda (408)646-2305 %21

DO FORM 1473. 84 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete 2 .. .min... O 9ma.

UNCLASSIFIED

illimr.I''"

An Inexpensive Real-Time Interactive Three-

Dimensional Flight Simulation System

Dougio B. Smith, Dale G. Streyle, Robert B. MeGhec and Michael J. ZVda *

Naval Postgraduate School,

Code 52, Dept. of Computer Science,

Monterey, California 93943

ABSTRACT

A prototype flight simulator for the Fiber-Optically Guided

Missile (FOG-M) is presented. This prototype demonstrates the

practicability and feasibility of using low-cost graphics hardware to

produce acceptable simulation of flight over terrain generated from

Defense Mapping Agency (DMA) digital elevation data. The Right

simulator displays a dynamic, three-dimensional, out-the-window

view of the terrain in real-time while responding to operator control

inputs. The total system cost (software and hardware) of the simu-

lator is an order of magnitude less than most flight simulation sys-

tems in current use.

CI oD For

CRA&I
Ib

J."rived Ui; c~i. ai

$ This work was supported by the U.S. Army Combat Developments Experlmentation Centa, Fort Ord,
Cafiforaa (ATKC 44-87) and a grant from the Naval Ocean Systems Cente, San Diego (Ref. *
N0001486WR4Bl23AC). This work was generated from Dougla B. Smith's and Dale G. Streyle's olut Masters

Contact author.- -' CO':"
',,-- . d/ r

TABLE OF CONTENTS

1. INTRODUCTION ... 10

A. FOG-M ... 10

1. Background... 10

2. Description.. 11

B. ASPECTS OF FLIGHT SIMULATION 12

1. Realism ... 13

2. Frame Update Speed .. 14

C. ORGANIZATION... 15

Ii. COMPUTER SYSTEM ... 16

A. HARDWARE AND SYSTEM OVERVIEW 16

B. SOFTWARE ... 18

III. DIGITAL ELEVATION TERRAIN DATA 20

A. INTRODUCTION... 20

B. COVERAGE... 20

C. STRUCTURE ... 21

D. LOCATION 22

IV. TWO-DIMENSIONAL TERRAIN MAP PORTRAYAL 25

A. COLORS ... 25

4

B. DRAWING... 28

C. WRITEMASKS.. 29

1. Color Table... 29

2. Bitplanes.. 29

3. Writemask Example... 30

4. Writemasks in FOG-M.. 32

V. THREE-DIMENSIONAL TERRAIN CONSTRUCTION 34

A. REPRESENTATION DECISIONS............................. 34

1. Polygons versus Patches 34

2. Resolution... 38

3. Elevation Scaling... 36

4. Shading and Texturing.. 38

a. Elevation Based Shading................................. 38

b. Lambert's Cosine Law Shading 39

c. Gouraud Shading .. 41

d. Adding Texture.. 43

B. INTERNAL DATA STRUCTURES............................ 44

VI. FLIGHT SIMULATION .. 46

A. OVERVIEW ... 48

B. UPDATING THE MISSILE'S POSITION 46

5

1. Case 1 - Operator Co ... t r ol................. 47

2. Case 2 - Locked Onto a Target.............................. 48

C. DETERMINING THE LINE OF SIGHT......................50o

D. DISPLAYING THE SCENE..................................... 52

1. Viewing Transformations...................................... 52

2. Determining Which Polygons to Draw 58

3. Hidden Surface Removal 60

E. SIMULATOR PERFORMANCE............................... 65

VII. TARGET INTEGRATION... 71

A. GENERAL... 71

B. TARGET CREATION.. 72

1. The System Matrix .. 72

2. Target Transformations 74

C. ANIMATION.. 75

D. DISPLAY .. 76

VIII. CULTURAL FEATURE INTEGRATION......................... 82

A. EXTERNAL DATA FILE FORMAT 82

B. CONSTRUCTION OF THE ROAD POLYGONS 83

C. INTERNAL ROAD-POLYGON STORAGE 87

IX. FOG-M SIMULATOR USER'S GUIDE............................ 89

6

A. OVERVIEW .. 89

B. STARTING THE SIMULATION 89

C. PRELAUNCH CONTROLS ... 91

1. The Prelaunch Display ... 91

2. Selecting the Launch Position ... 95

3. Selecting the Target Position ... 95

4. Launching the Missile ... 96

D. IN-FLIGHT CONTROLS ... 96

1. The In-Flight Display ... 96

2. Controlling the Camera ... 99

3. Controlling the Missile Flight .. 99

4. Designating and Rejecting Targets 101

X. CONCLUSIONS AND RECOMMENDATIONS 103

A. LIM ITATIONS .. 103

B. FUTURE RESEARCH AREAS .. 104

C. SUMMARY AND CONCLUSIONS 104

APPENDIX A - MODULE DESCRIPTIONS 106

APPENDIX B - SOURCE LISTINGS ... 128

LIST OF REFERENCES ... 233

INITIAL DISTRIBUTION LIST .. 235

7

I. INTRODUCTION

Flight simulation has been an important computer graphics application,

embracing a range of systems from a $32.00 program for a personal computer

[Ref. 1] to special purpose machines costing millions of dollars [Ref. 2]. The

capabilities of these systems are spread across a range nearly as wide as their

costs, with great variances in speed (frames displayed per second), realism,

flexibility, and area of flight. We present here a system that is relatively

inexpensive, yet still fast enough to present a real-time three-dimensional view of

digitized terrain. We built this system on a commercially available, high-

performance graphics workstation, the Silicon Graphics, Incorporated IRIS-2400

Turbo. The IRIS system was selected because of its local availability and its

performance capabilities. The flight simulator presented here does not use the

natural color and shape of individual terrain elements (in order to achieve real-

time performance), but it is sufficiently realistic to provide the feeling of flight

and allow identification of the displayed terrain and targets.

A. FOG-M

1. Background

The project presented here was built in response to the United States

Army Combat Developments Experimentation Center's need to simulate the

10

operation of the Fiber-Optically Guided Missile (FOG-M) [Ref. 3], but this missile

is also being considered for use by the United States Marine Corps [Ref. 4].

Simulation is necessary in order to test and evaluate the tactics, doctrine and

training requirements associated with the missile without the expense and danger

of actual firings during simulated combat field trials. The FOG-M is a generic

family of remotely-piloted, video-guided munitions, but for the purpose of this

prototype simulator, the weapons are all logically equivalent, .- ' ;he entire

family is referred to as "the missile." In order to avoid security constraints, the

parameters and operational characteristics used in this work were not taken from

exact FOG-M specifications. The parameters and technical specifications are all

estimates, based on reasonableness and consistency with general, unclassified

descriptions of the FOG-M.

2. Description

The actual FOG-M missile is six inches in diameter, five and one-half feet

high, weighs eighty-three pounds, and costs about $20,000 [Ref. 4]. It has a video

camera mounted in its nose, which transmits a black-and-white picture back to

the operator's console (which consists of a television screen, a computer, and a

joystick) over the fiber-optic link. (The simulator display offers the user the choice

of either color or black-and-white; color is the default for the simulator despite the

operator view of the missile being black-and-white. The color compensates for

some of the loss in realism and identiflability inherent in a polygonal

representation of natural objects). Before launch, in normal operation, the missile

11

is given a general direction to a target and the altitude of the highest point within

its range. The simulator allows values in excess of FOG-M operational

capabilities for speed, range, and altitude above ground level (AGL), but the

default values of two hundred knots, ten kilometers, and one thousand meters are

characteristic of this type of missile. As soon as the missile is in position, it begins

transmitting video images. When launched, the missile rises to approximately

two hundred feet above the highest terrain point, and then levels off in horizontal

flight in the targeted direction. The operator controls the pan and tilt angle of

the camera with the joystick, and can dial in changes to the heading and altitude

of the missile. The operator also has the capability to zoom the camera's field of

view from eight degrees to fifty-five degrees, and to designate ("lock-on" to) a

target for automatic homing by the missile.

B. ASPECTS OF FLIGHT SIMULATION

There are many aspects to flight simulation. Modern commercial simulators

provide sophisticated mock-ups of cockpits and controls and highly detailed out

the window views. By mounting the simulator on a moving platform, a true sense

of the physical feelings of acceleration and roll can be achieved. These systems

also cost millions of dollars.

One of the first decisions that must be made when designing a flight simulator

is, "For what purpose will the simulator be used?" The answer to this question

drives most of the design decisions that have to be made. Since the purpose of

12

this project is to provide a simulation of the FOG-M missile as viewed from its

operator's console, it is felt that the most important items to model are the

simulated video display of the terrain and the actual operator controls. The

terrain should appear realistic enough that its major features are recognizable to a

person familiar with the area. The controls should allow for the same

functionality as the actual console. The simulator must, of course, also provide a

feeling that the missile is in motion over the terrain. The effectiveness of the

feeling of motion provided by a flight simulator can be largely measured by two

criteria: the realism of the displayed scene and the update rate of the display.

1. Realism

Many factors contribute to the perceived realism of a displayed natural

scene. Early attempts to quantitatively measure realism consisted of counting the

number of "edges" or lines that a scene contained. This later gave way to

counting the number of "faces" or polygons in a scene. Since each polygon was

colored in a single shade, it was felt that each polygon represented a single "bit"

of information in the scene. Therefore, the more polygons the scene contained,

the more "realistic" it was felt to be [Ref. 5:pp. 27-28].

The latest advances in computer graphics have also made this measure of

effectiveness obsolete. With the introduction of systems that are able to fill

polygons with textured patterns, a single polygon can now contain thousands of

"bits" of information. As a result, a scene drawn with a few textured polygons

can appear more realistic than one with an order of magnitude more untextured

13

ones. Early textures consisted of superimposing things such as mathematical

noise functions or stripes on the polygons. More recent advances have allowed the

texture to be derived from digital photographs of a similar scene. For example,

polygons representing a part of terrain covering by meadow could be filled with a

digital texture derived from an aerial photograph of a meadow [Ref. 5: p. 28].

Since most currently available graphics workstations do not support the

use of texture filled polygons, the use of texture was deemed to be outside the

scope of the current project. Rather, the project's work concentrated on

determining how realistically a scene could be rendered in real-time incorporating

only the use of lighting and shading models along with terrain hidden-surface

algorithms. These topics are covered in more detail in Chapter V.

2. Frame Update Speed

Another important aspect of a flight simulator's performance is the speed

at which it is capable of displaying successive frames in a scene. The faster the

update rate, the more continuous the motion appears. As a reference, standard

motion picture film is projected at a rate of twenty-four frames per second.

Although the IRIS workstation is capable of displaying up to sixty frames per

second, the amount of computation that must be done between successive frames

in the simulation has limited the update rate to an average of three frames per

second. While this presents a less than smooth motion, it is felt to be adequate

for the purposes of the prototype.

14

C. ORGANIZATION

The above sections of this chapter have provided background on flight

simulation in general, and the missile whose flight is specifically being simulated.

Chapter II provides an overview of the hardware used in running the simulation.

The structure and content of the Defense Mapping Agency (DMA) Digital

Terrain Elevation Data (DTED) are discussed in Chapter III. Chapter IV

discusses the motivation behind and creation of the two-dimensional contour map

displays. Chapter V covers the storage and use of the DMA DTED to produce a

lighted an,,! shaded three-dimensional polygonal terrain display. The mathematics

and process involved in simulating flight over the terrain are detailed in Chapter

VI. Chapter VII discusses the creation, insertion, animation, and designation of

targets. Chapter VIII covers the creation and drawing of cultural features.

Chapter IX contains a user's guide for operation of the FOG-M simulator.

Chapter X concludes with a discussion of limitations, future extensions and

research topics, and summarizes the research conducted. Narrative descriptions of

the modules and listings of the program source code for each of the modules are

included as Appendices A and B respectively.

15

-I

II. COMPUTER SYSTEM

As discussed in Chapter I, flight simulators are nothing new. The significance

of this work lies in the speed with which it was developed, the display rate

achieved, and the realism and fidelity of the display in comparison to the cost of

the system that supports it. This project was technically feasible only because of

the capabilities and high performance of the IRIS (Integrated Raster Imaging

System) Turbo 2400 Graphics Workstation, manufactured by Silicon Graphics,

Incorporated. Others have also used the IRIS as a base on which to build flight

simulators [Ref. 61. This low-cost ($50,000 to $100,00) three-dimensional display

system is summarized in Figure 2.1 and is discussed more fully below.

A. HARDWARE AND SYSTEM OVERVIEW

The IRIS has a conventional Von Neumann type computer architecture but

adds custom-built special purpose VLSI circuits and a pipelined design to provide

the graphics functions that are implemented in software on other comparably-

priced workstations. Conceptually, there three pipelined components in the IRIS

hardware: the applications/graphics processor, the Geometry Pipeline, and the

raster subsystem [Ref. 7:p. 1-11. The applications/graphics processor is a

conventional Motorola MC68020 processor running at 16.7 MHz. This processor

runs the applications program(s) within a UNIX System V operating system.

16

__________ TUDRNNT to Vax and other IRIS

3 2 bit 16.7 MIz Motorola MIC68020 CPU

a Megabytes of CPU Memory

6 32 1024x768 bitplanes of Display Memory

* Hardware matrix multiplier & floating point accelerator

* Hardware Gouraud shading, depth cueing & backf ace polygon removal

TM
C 12 pipelined custom VLSI Geometry Engines

IS1-bit Z-buffer for Hidden Surface Elimination

C 2 72 Megabyte Winchester Disk Drives

C60 He non-interlaced 190 RGB high resolution monitor

8 3 key up-down encoded keyboard

a button mouse

* 2-button and S-dial valuator boxes

0 Unix System V

E thernet to VAX's

* IRIS Graphics Library

Features of the IRIS Turbo 2400 Graphics Workstation

Figure 2.1

17

Applications either issue graphics commands in immediate mode, in which case

they are sent through the Geometry Pipeline immediately as individual graphics

primitives, or comnile graphics commands into graphical objects, in which case

they are sent through the Geometry Pipeline as a single geometric entity when

explicitly called at some later point in time.

The Geometry Pipeline takes commands in terms of the user's world

coordinates, performs specified matrix transformations on them using the matrix

multiplier and floating point accelerator built into the hardware, and then clips

and scales the transformed coordinates into screen coordinates. The raster

subsystem takes the screen coordinates output by the Geometry Pipeline and

updates the bitplanes (display memory) to contain the lines, polygons, or

characters specified by the input coordinates. The raster subsystem also performs

polygon fill, shading, depth-cueing, and hidden surface removal. A conventional

video controller uses the values in the bitplanes and the color table to produce an

image on the monitor.

B. SOFTWARE

The C programming language is native to UNIX and is the language used for

all of the IRIS system software. The IRIS Graphics Library, which provides both

high- and low-level graphics and utility commands, can be called in C,

FORTRAN, Pascal, or LISP. However, due to the built-in bias of UNIX and the

IRIS, plus the local pool of knowledge, the C programming language was the

1s

pro forma choice for programming all parts of the FOG-M simulator. The IRIS

User's Guide [Ref. 7] breaks the Graphics Library commands into the following

twelve categories:

- Global State commands initialize the hardware and control global variables,
and are used mostly in FOG-M's init iris routine.

- Drawing Primitives are used throughout FOG-M. They create points, lines,
polygons, circles, arcs, and text strings.

- Coordinate Transaformation* specify mappings within and between user-
defined world coordinates and screen coordinates. These are used to move
targets and to simulate flight.

- Drawing Attribute commands specify textures and fonts. Although texture
would greatly improve the appearance of the terrain, the IRIS provided
textures are applied in the screen coordinate system, so they do not scale or
tilt to conform to the terrain, and produce a very artificial result.

- Display Mode and Color commands determine how the bitplanes are used
and what colors appear on the screen. These include the commands that set
double-buffering, establish writemasks, and define the color table.

- Input/ Output commands initialize and read the dials and mouse.

- Object Creation and Editing commands allow manipulation of complex
displays as a single entity. They are used in all FOG-M displays.

- Picking and Selecting commands are not used in FOG-M.

- Geometry Pipeline Feedback commands are not used in FOG-M.

- Curve and Surface commands draw complex curves and smooth surfaces.
Experiments with these produced more realistic terrain images, but not even
close to real-time, making flight animation impossible.

- Shading and Depth-cueing commands provide Gouraud shading of polygons

and intensities that vary with distance from the viewer.

- Textport commands define an area of the screen for text. They are not used
in FOG-M.

Also available on the system, and used by FOG-M, are the math library with

sine, cosine, arctangent, hypotenuse, and exponentiation functions, and routines

that access the system clock in order to determine elapsed time.

lg

"11. DIGITA4L ELEVATION TERRAIN DATA

A. INTRODUCTION

Unlike other flight simulation systems, which may rely on manual creation of

the terrain [Ref. 81, the source data for the terrain in the FOG-M simulation is a

Defense Mapping Agency (DMA) digital terrain elevation database (DTED) for

Fort Hunter-Liggett, California. The database is not Level 1 DTED, but rather a

DMA special product produced about 1980 at a higher resolution than normal

Level 1 DTED [Ref. 91. Level 1 DMA data contains elevation points spaced at

three arc-second intervals, or approximately every one hundred meters. The Fort

Hunter-Liggett special data contains points at twelve and one-half meter spacing,

which is eight times the resolution of Level 1 data.

B. COVERAGE

The area covered by the database is thirty-six kilometers wide and thirty-five

kilometers high, with 6400 data points per square kilometer. This area includes

most of Fort Hunter-Liggett plus some surrounding land, and is bounded by

latitudes 360 05' 00" (to the north) and 350 50' 00" (south) and longitudes

1210 04' 30" (east) and 1210 20" 30" (west). In terms of Universal Transverse

Mercator (UTM) coordinates, the area has easting (X) of 1OSFQ41000 to

1OSFQ77000 and northing (Y) of 10SFQ60000 to 1OSFQ95000. The database

20

appears to be based on DMA forty foot interval contour map products, because

peaks tend to have flattened tops. This was confirmed both by a comparison of

surveyed instrumentation sites on or near peaks with their digital terrain values

IRef. 10: pp. 1-21, and by a Bezier surface patch image of the data created locally.

C. STRUCTURE

The data is stored in an unformatted sequential file that is organized as a

stream of integers. Each integer (sixteen bits) represents both the vegetation code

and bald terrain elevation in feet at one sampling point, as illustrated in Figure

3.1 below.

Veg. Code Bald Terrain Elevation
bit: 1 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Figure 3.1 DTED Data Encoding

The thirteen low-order (rightmost) bits contain the elevation, allowing a range

from zero to 8191 feet, although the highest point in the database is 3744 feet.

The three high-order (leftmost) bits specify one of eight vegetation codes, which

are given in Table 3.1 below. Vegetation codes are only available for points

within the boundaries of Fort Hunter-Liggett proper. The file is written one

21

TABLE 3.1 DTED VEGETATION CODES

Code Description
0 Less than one meter
1 One to four meters
2 Four to eight meters
3 Eight to twelve meters
4 Twelve to twenty meters
5 Greater than twenty meters
6 No data available
7 Unused

square kilometer at a time, beginning with the lower left one kilometer grid square

(41,60), proceeding up the column to the upper left grid square (41,94), then

doing the next column from bottom to top (42,60 to 42,94) and so on; the upper

right one kilometer grid square (76,94) is the last one written. Within each one

kilometer grid square, the individual data points are written in the same pattern,

beginning with the lower left, doing each column from bottom to top, and doing

the columns from left to right. This file layout is summarized in Figure 3.2. The

position in the file of the elevation for a point expressed in five digit local UTM X

and Y coordinates is found as shown in Equation 3.1.

position = 35 * (integer(X/1000) - 41) + (integer(Y/1000) - 59) (3.1)

D. LOCATION

The complete DTED file occupies 16,128,000 bytes of storage. Due to a local

shortage of available disk space, thi file must permanently reside on the UNIX

VAX 11/785 system rather than on the IRIS system. The FOG-M simulator

22

film~ ~ ~~... m muu iamunm

94 ...

62..

.so

61 WI" WI"

41 42 76

Figure 3.2 DTED File Layout

23

presently operates on a ten kilometer square extract from this database. A

program on the VAX called make-database-e allows interactive specification

of the area and resolution desired, and produces an extract. This extract is sent

over the Ethernet to the IRIS to serve as the input for a FOG-M run. However, if

the data is sent directly, it is received with each pair of bytes swapped, so another

program, swapdma, is run on the VAX before transmittal. This program swaps

the low- and high-order bytes of each integer so that the swapping during

transmission is cancelled.

24

IV. TWO-DIMENSIONAL TERRAIN MAP PORTRAYAL

The two-dimensional representation of the terrain was begun as the first

graphics portion of the system, in order to gain familiarity with the IRIS graphics

workstation and the Defense Mapping Agency (DMA) digital terrain elevation

data (DTED). Contour maps are the traditional approach to two-dimensional

terrain portrayal, and thus were the basis for the two-dimensional images of the

terrain generated here (Figure 4.1). Although these two-dimensional images are

not true contour maps, they are still referred to as such in this study because of

their close relation and common origin. The algorithms for determining and

drawing the forty foot contour lines found on a normal contour map seemed non-

trivial, so a simpler alternative was chosen. Each elevation datum is represented

by a tile, with the implicit X and Z (easting and northing, respectively)

coordinates of the elevation datum being the center of the tile.

A. COLORS

The color of a tile is determined by its vegetation code, and its intensity (or

ahading) by its elevation. The intent was to use green for tiles with vegetation

and brown for tiles without vegetation. However, the DTED vegetation codes

lump together both "no vegetation" and "vegetation less than one meter high."

Brown tiles thus include both unvegetated areas (e.g. rock slabs, areas above the

25

d
9-
0.

.9.4

0.
Li

54

0

0
U

$4

9-

U
.9.4
CO
9-

Ii

6

$4

.9.4

26

treeline) and grasslands or meadows. This is significant in the Fort Hunter-

Liggett area, because most of the valleys are covered in grass, and all of the high

ground is below the treeline. The result is a map with brown valleys and green

ridgelines. While this was readily accepted as natural by most viewers, pilots

with a background in low-level flight found it awkward, and contrary to their

expectations (from flight charts) of green valleys and brown mountains. While

this might be significant in other flight simulation applications (particularly those

designed for pilots), the initial representation was deemed most appropriate for

the target audience of the FOG-M simulator.

A similar initial, intuitive choice was made for the elevation-keyed shading.

High intensity (light) colors were used for higher elevations, and low intensity

(dark) colors for lower elevations. This was accepted as natural by almost all

viewers. The optimum number of intensities (shadings) to use in the map was

experimentally determined to be sixteen. A small power of two was desirable due

to the nature of the writemasks used to improve display speed. A large number of

colors provides greater elevation definition and prevents large masses of the same

color in areas where elevations change gradually. However, having too many

colors destroys the contour-map effect, since adjacent colors are so close that no

boundary is distinguishable between them. Eight shades each of green and brown

were used initially. The shift to sixteen shades of each produces a better looking

map. Due to the RGB (red, green, blue) nature of color creation on the IRIS, the

greens were still barely differentiable at thirty-two shades, but the browns (a

27

combination of mostly red, some green, and, in some shades, a trace of blue)

began to blend together.

To determine the elevations at which color shades should change (in order to

use the full range of shades), the maximum and minimum elevations of the

terrain section in use must be known. Rather than preprocess the data before each

run, these values are coded as constants in a header file. The equation for which

color index to use is straightforward (see Equation 4.1) but takes significant time

when repeated ten thousand times.

elevation - MIN
index = base index + * Iof shade8 (4.1)

MAX- MIN

Therefore, the fifteen points at which the shade changes are precalculated and

stored in an array so that no calculations are needed at each point, just an array

lookup.

B. DRAWING

The map can then be produced by determining the color and shade for each

tile, and drawing it as a filled square. However, an increase in speed can be gained

by exploiting the structure of the data and the line drawing hardware of the IRIS.

The data is still processed a point at a time within each one kilometer column,

but no drawing is done until an elevation/shading breakpoint is reached. Then a

single line of one tile's width is drawn to color all tiles since the previous elevation

breakpoint.

28

m1,

C. WRITEMASKS

A more significant speed improvement (on the order of fifty per cent more

frames per second) was achieved with writemasks. Writemasks are a relatively

low-level hardware feature that can be used for many purposes. In the FOG-M

simulator, they are used to prevent the contour map from being overwritten.

This allows the map to be drawn only once into the bitplanes, and have it remain

on the screen without being re-drawn during each frame update. In order to

understand how writemasks work, one must understand the layout and use of the

IRIS's color table and bitplanes.

1. Color Table

The color table associates a particular binary number with a color.

When the display system asks what color some number is, the color table replies

with the intensities for the red, green and blue color guns that will produce the

color defined for the input number. This input number is referred to as a

colorindez. Thus the color displayed on the screen depends on the colorindex

associated with a given pixel, and the color associated with that colorindex in the

color table. Table 4.1 gives the color table entries that are the defaults on the

IRIS workstation.

2. Bitplanes

The colorindex that is associated with each pixel is stored in the display

memory, which is composed of bitplanes. Each bitplane has one bit for each pixel

on the display screen, so a bitplane is 1024 bits wide, 768 bits high and one bit

29

TABLE 4.1 IRIS DEFAULT COLORINDEX DEFINITIONS

Colorindex
Color Decimal Binary

Black 0 0000000 00
Red 1 0000000000000001
Green 2 00000000000010
Yellow 3 0000000000000011
Blue 4 0000000000000100
Magenta 5 0000000000000101
Cyan 6 0000000000000110
White 7 0000000000000111

deep. When used in double-buffer mode (as in FOG-M), the IRIS uses sixteen

bitplanes (numbered 0 to 15) for each buffer. The frontbuffer is the one whose

binary contents define the image being displayed. While the frontbuffer is being

displayed, the next image is created by issuing drawing commands which affect

only the baekbuffer. Once a new image is completed in the backbuffer, the

buffers are swapped, so the backbuffer becomes the frontbuffer and is displayed.

The old frontbuffer becomes the backbuffer, and is then available for update.

3. Writemask Example

Consider the pixel at location (0,0) - the lower left corner of the screen.

The colorindex of that pixel is determined by sixteen bits: one from the lower left

corner of each bitplane. The display system reads those sixteen bits as a binary

number (the colorindex), and uses the color table to determine what color to

make that pixel. For example, using the default colors defined in Table 4.1 above,

that pixel will be colored black if all sixteen bitplanes have zeroes in their lower-

30

El

left comers, since the value of the sixteen bit binary number 0000000000000000, is

zero. If the current color is set to magenta (color five, whose binary value has ones

in bits zero and two) and a drawing command is issued, bitplanes zero and two

are set to one, and all other bitplanes are set to zero, for every pixel covered by

the drawing command. These pixels will now be displayed as magenta, because

the colorindex constructed from the sixteen bitplanes will be 00000000000001012

(5,,), and the color table tells the display system that color 51, is magenta.

The previous example showed that a drawing command works by

placing ones in certain bitplanes, and zeroes in all of the rest, with the current

color specifying which bitplanes get which. A writemask tells each bitplane to

either allow or ignore the changes a drawing command says to make. In normal

double-buffered usage, the writemask is 1111111111111111., meaning all sixteen

bitplanes should allow updates. Now suppose there is an image on the screen

which uses just the default eight colors. Bitplanes three through fifteen are all

zeroes, because all of the colors have colorindices with three or less binary digits,

which will be in bitplanes zero, one, and two. If the writemask is changed to

V[n 11111111111110002 after drawing the image, those lower three bitplanes are

n"frozen" and will not be changed by any drawing command. Setting the color to

black and clearing the screen will not change anything. The upper bitplanes will

be set to all zeroes, which they already were. The lower three bitplanes will be

told to reset to zero, but will not do it because they are protected by the

writemask.

31

Now suppoee you want to draw a grey line on top of the image. The line

only needs one color, so it can be drawn in one bitplane. (Two bitplanes will allow

three more colors on top of the map, three bitplanes allow seven, etc.) The first

"free" bitplane is number three. Turning on a bit in this plane (and not turning

on any bits in higher planes) requires a colorindex in the range 10002 to 11112 (810

to 1510). Defining color eight in the color table as grey, making color eight the

current color, and then drawing the line is sufficient to get the image into the

bitplanes, but the display will not show the desired effect. If the image

underneath the line is black (i.e. bitplanes zero through two are all zeroes form

some pixels), the line will appear grey, as intended, for those pixels. However, if

the image underneath the line is red (i.e. the lower bitplanes contain 0012), the

composite colorindex retrieved by the display system is 00000000000010012 or 910)

and since color nine is not defined in the color table, it appears as black. Thus

every colorindex that has bit three (because the line is in bitplane 3) set to one

(i.e. colorindices 10002 to 11112, or 810 to 1510) must be defined as grey in order to

produce the desired image.

4. Writemasks in FOG-M

The map image used in FOG-M is stored in the first six bitplanes

(numbered 0 through 5) of both buffers, which means sixty-four colors are

available: eight are the IRIS defaults, sixteen are shades of brown, sixteen are

shades of green, and twenty-four are unused. The writemask defined as

1AVEMAP (CO0 s or 00000000110000002) allows things to be drawn on top of the

32

map in bitplanes six and seven. Colorindices 64 through 127 are all defined as

blue in the color table, so anything drawn in bitplane six appears on top of the

map in blue. Similarly, bitplane seven is used for red, with colorindices 128

through 255 all correspondingly defined to be red.

The speed improvement due to writemasks in FOG-M comes from not

having to re-draw the map each time the screen is updated. The cost is the use of

many more indices in the color table, which limits the number of colors available

for use on top of the map. For our simulation system, with only two colors

needed on top of the map, there is plenty of room in the color table. Therefore,

the gain in speed comes at no real cost.

33 - V--~

V. THREE-DIMENSIONAL TERRAIN CONSTRUCTION

A. REPRESENTATION DECISIONS

1. Polygons versus Patches

Early experiments in the study involved attempting to display the

terrain using parametric bi-cubic surface patches. A surface patch is simply a

smooth curved surface fitted to a set of data points. A discussion of the theory

and use of surface patches can be found in the IRIS User's Guide [Ref. 7:sec. 11-31

and Hearn and Baker [Ref. ll:pp. 193-205]. It was quickly determined that it

would not be possible to use surface patches to represent the terrain and still

maintain a real-time update of the terrain during flight.

An alternate method of displaying a three-dimensional object is through

the use of a set of planar polygon surfaces that join at common edges to form the

terrain object. This method has the advantage of being much simpler, and

therefore faster, to generate and display. For this reason it was chosen for use in

4the project.

Figure 5.1 shows the method of constructing the terrain surface as a set

of triangles. The term gridsquare is used in the remainder of the chapter to refer

to a set of two triangles with a common hypotenuse that form a square of the

terrain grid.

34

North

V
"GRID-
SQUARE"

SEast

View from above looking down on the terrain.

-Terrain elevation points are connected
to form triangular polygons with common
edges.

Figure 5.1 Polygonal Terrain Construction

35

--- -

2. Resolution

The special DMA data file used in this project contains elevation data

that is spaced at a twelve and one-half meter interval. One of the first questions

which had to be answered concerning the three-dimensional portrayal of this data

was, "In how fine a resolution can the data be displayed, while still allowing for a

sufficient frame update speed?" Early test runs showed that using the full twelve

-id one-half meter resolution would be much too slow, although it provided an

excellent representation of the terrain. An adequate frame update rate

(approximately three to four frames per second) was achieved with a seventy-five

meter resolution or every sixth data point. Since this was an early test, displaying

terrain without any targets or cultural features, a one hundred meter resolution

was decided upon for use in the remainder of the project. This allowed for an

adequate "cushion" of processing time to complete the additional computations

that would be needed in the final product, while still providing an adequate

degree of resolution.

3. Elevation Scaling

After viewing the early representations of the terrain, it appeared that

the hills did not give an appropriate appearance of height. Although this was a
Sp

subjective judgement, it was shared by most people who viewed the display and

compared it to aerial photographs of the area. Because of this, it was decided to

scale the elevations of the displayed points upward. Two approaches, linear

scaling and exponential scaling, were examined.

L A

In the linear scaling approach, each elevation point was simply

multiplied by a scale factor as shown in Equation 5.1.

Elev, . = o * clev W, (5.1)

Using this approach, it appeared that a scaling factor between 1.5 and 2.0 was

necessary to achieve the desired effect.

In the exponential approach, the elevation of each point was raised to a

fixed power as shown in Equation 5.2.

=e Ele l, (5.2)

This approach has the effect of exaggerating the higher elevations to a greater

degree than the lower ones. It was chosen as the approach for use in the project

based on subjective observations of the displays produced by the two methods.

The scaling factor, a, was chosen as 1.05. Using this factor produces the

equivalent of a linear scaling of 1.5 for the maximum elevation and 1.4 for the

minimum elevation contained in our area of interest.

Subsequent to the decision to use an exaggerated elevation scale,

research results were discovered which supported it. In a study conducted by the

U.S. Army Research Institute for the Behavioral and Social Sciences, observers

were asked to pick a computer generated line drawing that best matched actual

terrain. The line drawings had different exaggerations of the vertical (elevation)

scale. The overall ratios chosen by the four observers ranged from 1.25:1 to

37

1.50:1. The drawings presented to the observers had exaggeration ratios ranging

from 1:1 to 1.75:1. [Ref. 121

4. Shading and Texturing

As explained above, each one hundred meter square of the terrain, a

"gridsquare," is represented by two triangles in three-space that share a common

diagonal edge. The process of applying colors to these polygons, ahading, was the

next area of research in the project.

a. Elevation Based Shading

Three different shading algorithms were investigated. The first was

a simple algorithm where the shade of a polygon was a function of its elevation.

Higher elevations are shaded in lighter shades of green while lower elevations

receive darker shades. Equation 5.3 represents the assignment of a shade from the

color map.

elev - Min Elevcolor indez = base index + - # of shades (5.3)
-- MaxElev-Min Elev -

The darkest green is stored in the bae indez color map location and the lightest

green in the baseindez + #_of ahade8 location. Although this approach works

well for two-dimensional contour maps (see Chapter IV), and is currently used in

another "low cost" simulator [Ref. 61, it did not appear to present a realistic view

of the terrain. An advantage of this approach, however, is that the calculation of

the color index is simple enough to be done with no preprocessing.

38

9 .~ Sill

b. Lambert's Cosine Law Shading

The second method of determining the shade for a polygon involved

the use of a point light source and Lambert's cosine law [Ref. UI:p. 278]. Let ,

be a unit normal vector to the polygon, and f be a unit vector in the direction of

the light source. The angle between 14 and Z, *, is the angle of incidence.

Lambert's Law states that the intensity of the light reflected from the polygon is

proportional to cos A (Equation 5.4).

I a cos (5.4)

In order to use this law, the normal vector (N), the light source vector (f), and

the angle between them (t) must be known. R can be determined by taking the

cross product of vI and vi, where vl is a unit vector in the direction from vertex

B to vertex C of the polygon, and vi is a unit vector in the direction from vertex

B to vertex A of the polygon (Equation 5.5 and Figure 5.2).

R = V x VI (5.5)

With 9 and f available, cos 4 can be computed as their dot product (Equation

5.7).

Coso *= , (5.7)

Since the intensity is proportional to cos 4, the appropriate color index to use can

be computed as

color-indez = minindez + (#_shades*cos 0) (5.8)

39

Y Light Source

A

Lx

B

z

Figure 5.2 Lambert's Cosine Law

40

where min index is the color index of the lowest intensity green and

min-index + #-shades is the color index of the highest intensity green.

c. Gouraud Shading

The final shading model investigated involved the use of Gouraud

shading. The purpose of Gouraud shading is to provide a continuous transition of

shades across a polygon so that the shades at the edges of adjoining polygons

match. This in effect eliminates the visible boundary between polygons and

provides a smooth continuous surface. The Gouraud algorithm involves

interpolating to determine the intensity to be used at each pixel along a scan line,

and is illustrated in Figure 5.3 as reproduced from Heam and Baker [Ref. ll:p.

290]. To use the algorithm, intensity values for each vertex of the polygon must

be known. In the project's implementation, the intensity at each vertex was

computed as the average of the intensity values for all the polygons meeting at

that vertex, where the individual polygon's intensity values were calculated using

Lambert's cosine law.

The use of this model posed two problems. First, even though the

IRIS supports Gouraud shading in its graphics library, its use increased the time

between frames to an unacceptable rate (approximately one and one-half to three

seconds between frames). Second, the smoothing of the algorithm worked too

well, resulting in terrain displays that lacked the necessary position cues to detect

motion. This second problem could be alleviated by adding artificial texture to

the terrain but in light of the speed problem it was not pursued further.

41

VO

3

1

Scan Line

456

2

For interpolated shading, the intensity value
at point 4 is determined from intensity values

at points 1 and 2, intensity at point 6 is

determined from values at points 2 and 3, and

intensities at other points (such as 5) along

the scan line are interpolated between the
values at points 4 and 6.

Figure 5.3 The Gouraud Shading Algorithm

42

d. Adding Texture

Lambert's cosine law was chosen as the shading model for use in the

project, providing the most realistic display within the allowed computation time

constraints. However, a problem with its use is that the flat valleys, with little

variance in the surface normals of their polygons, produce large geographic areas

having a near constant shade. This results in a lack of motion cues in these areas

similar to that experienced with the Gouraud shading model. To remedy this

situation, a simple artificial texture, in the form of a checker board, was imposed

on the terrain. The checker board effect was implemented as follows. First, the

shades for the two triangles in each gridsquare were averaged, and this average

shade was used for both of them. This of course causes the visible boundary

between the triangles to disappear leaving a square shaded in a single color.

Second, two slightly offset color ramps were used with adjacent grid squares using

different ramps to compute their shades. One ramp is composed of green

intensities ranging from 255 to 50, while the other uses intensities ranging from

245 to 40. * This causes the shades for two adjacent gridsquares with identical

surface normals to vary, providing the necessary texturing.

*A value of 255 is the highest intensity green obtainable, a value of zero indicates the absence

of the color green.

43

B. INTERNAL DATA STRUCTURES

Two global arrays are maintained which store the information necessary to

display the terrain. The first is a five-dimensional array, savetriangle, that stores

the values of the coordinates for each triangle making up the terrain structure.

The second is a two-dimensional array savecolor that stores the color map indices

for each of the terrain's grid squares. The purpose and range of each of

sat'etriangle's indices is shown in Table 5.1. For example,

sat'etriarnge[3 [5][11[1][2] would contain the value of the Y coordinate (fifth

dimension = 2), of the second vertex (fourth dimension = 1), of the northern

triangle (third dimension = 1), of the grid square with X index five and Z index

three (second dimension = five and first dimension = three).

TABLE 5.1 LAYOUT OF THE SA VETRIANGLE ARRAY

Dimension --Range PurposeStart IEnd

=First- 60 - 98 Grid square index in the Z direction. 0
is the southern most square, 98 is the
northern most.

Second 0 98 Grid square index in the X direction. 0
is the western most, 98 is the eastern
most.

Third 0 1 Triangle identifier within a grid square.
0 is the southern triangle. 1 is the
northern.

Fourth 0 2 Vertex number of the triangle. 0 is the
first vertex, 2 is the last.

Fifth 0 --- 2 Coordinate identifier of the vertex. 0 is
the X coordinate, 1 the Y coordinate

___ - and 2 the Z coordinate.

44

Table 5.2 lists the purpose and ranges of each of aavecolor's indices. For

example, savecolor[30][lOj contains the color map index to be used for the grid

square with a Z index of thirty and an X index of ten.

TABLE 5.2 LAYOUT OF THE SA VECOLOR ARRAY
Index Range

Dimension Itdet End PurposeStart End

First 0 98 Grid square index in the Z direction. 0
is the southern most square, 98 is the
northern most.

Second 0 98 Grid square index in the X direction. 0
is the western most, 98 is the eastern
most.

These two arrays contain all the information necessary to construct an image

of the terrain. The following chapter provides the details of using their data to

create a real-time, updated image of the terrain as it is seen from the FOG-M's

camera.

m

45

.- r m .)

VI. FLIGHT SIMULATION

A. OVERVIEW

The previous chapter discussed the methodology of constructing the three-

dimensional terrain from the provided elevation data. This chapter's purpose is

to explain the details of displaying this terrain in real time as it is seen through

the missile's camera.

The high level pseudocode for the main program's terrain display loop is

shown in Figure 6.1. Chapter VII explains the details of step two. The details of

steps one and six are explained in Appendix B under the procedures readeontrols

(for step one) and edit navboz and edit indboz (for step two). The remainder of

this chapter discusses the details, considerations, and results of implementing

steps three through five.

B. UPDATING THE MISSILE'S POSITION

Determining the missile's new position can be broken into two cases:

(1 the missile is under operator control and its new position is a function of the
old position, the commanded direction of flight, the commanded altitude,
and the commanded speed.

[2J the missile is locked onto a target and its new position is a function of its old
position, the position of the desired target, and the commanded speed.

In both cases, a very large simplifying assumption is made to ignore the

dynamics of the missile's flight. This means that the missile is able to

48

Maik

While missile is flying do

1) Read the values from the operator's controls

2) Determine new positions for all the targets

3) Determine the new position for the missile

4) Determine the position of where the camera is looking

5) Display the terrain as seen by the camera

6) Update the operator's control indicators

End while

Figure 6.1 Main Display Loop Pseudocode

instantaneously change heading, speed, and altitude. This assumption was made

only because of development time constraints. It is felt that the computations

necessary to more realistically model the dynamics of the flight can be done

without a serious degradation of the simulator's performance.

1. Case 1 - Operator Control

Under this case the missile's X, Y, and Z coordinates are compnted as

shown below.

ADist Speed*ATim-ne (6.1)

47

Where

-A Diat is the distance traveled over the ground since the last position was
calculated.

- Speed is the missile's speed in feet per second and

- A Time is the elapsed time since the last position was calculated

Having calculated the distance the missile must move during this frame the

missile's new coordinates (MX,MY,MZ) can be calculated as

_ ne = MXId +[cos(Di ,md) *ADi;t] (6.2)

MZt,w = MZId-airn(Dircmd) *ADistl (6.3)

MY = (Atemd) (6.4)

Where

- Dircmd is the commanded heading in radians

- Altcmd is the commanded altitude in feet

- a is the altitude scaling factor (see Chapter V, Section A.3).

2. Case 2 - Locked Onto a Target

In the case where the missile is locked onto a target, the missile's new

position is computed as follows. ADist is computed as in Equation 6.1. Next the

missile's heading is computed so as to steer it directly toward the target's

position:

Di'rw = arctan2(-I TZ-MZj,[TX- MXJ) (6.5)

48

Where

-Dir is the direction from the missile's position to the target's position

- TX is the X coordinate of the target's position

- TZ is the Z coordinate of the target's position

- MX is the X coordinate of the missile's position
- MZ is the Z coordinate of the missile's position

- aretan2(a,b) is a function which returns the aretan in the range

0 to 21n, based on the sign of a and b.

Once DO,,, is known, the missile's new X and Z coordinates can be calculated as

MX1= MX ,,+[coo(Dir,,) * A iW't] (6.6)

MZ.= MZ,,d- rain (Dir,,) *A Dit] (6.7)

Next the missile's altitude (MY) is adjusted a proportion of the total altitude

difference between it and the target, based on the ratio of ADist to the total

distance (along the horizontal plane) to the target.

Ditf = V(TX-MX)'Z+(Tz-MZ) (6.8)

MY,,,. = MY- -TY)'* Ah "st (6.9)

Where

- Diett is the distance to the target measured along a horizontal plane.

- MY and TY are the Y (altitude) coordinates of the missile and target,
respectively.

49

C. DETERMINING THE LINE OF SIGHT

Once the new position of the missile has been calculated, the next step in

displaying the terrain is to determine another point along the camera's line of

sight: the look-at position. This calculation is also broken into two cases based

on whether the missile is or is not locked onto a target (see Figure 6.2).

The case where the missile is locked on is trivial, the look-at position is

simply set to the coordinates of the locked-on target.

LX= TX (6.10)

LY= TY (6.11)

LZ= TZ (6.12)

Where LX, L Y, and LZ are the X, Y, and Z coordinates of the look-at position.

This centers the target in the displayed three-dimensional scene.

When the missile is not locked onto a target, the camera's look-at position is

a function of the missile's position, the missile's heading, and the pan and tilt

angles of the camera. It is determined as follows

Dirloo = Headrns +Pan (6.13)

LX = MX+[eoo(Dirl,)oo Distlook] (6.14)

LZ = MZ-[sin(Dirloo) *Distoo] (6.15)

L Y = MY+[Distlook *tan(Tilt)] (6.16)

3,*,
"I so

hA

..

DIRY = HedTY+P

LZ =LZ)

((LX, LY, LZ)

Case 21 MissileN Locked ona Target

Fiure 6.Heterin ng th Camra' LookPsio

loo

I9 51L

(LmY Z

Where

- Dirtok is the direction the camera is looking
- Pan is the pan angle of the camera

- Tilt is the tilt angle of the camera

- Diati,* is an arbitrary distance over the ground that the camera looks ahead.
Since the only purpose of LX, L Y, and LZ is to determine a point along the
camera's line of sight, any positive number will be acceptable. A value of five
kilometers is currently used.

D. DISPLAYING THE SCENE

Once a line of sight has been determined, the next steps are to apply the

appropriate viewing transformations, draw the filled polygons that make up the

terrain, and add other items to the scene such as targets and roads.

1. Viewing Transformations

It is possible to project a three-dimensional object onto a two

dimensional viewing surface in two basic ways. In one method, the parallel

projection all the points of the object are projected along parallel lines. This has

the advantage of preserving the relative dimensions and angles within an object

and is used when accurate views of various sides of an object are needed such as

in architectural drawings. In the other method, the perspective projection, all

the points of an object are projected along lines that converge at a single point

called the Center of Projection. In this method, relative dimensions are not

preserved. Lines closer to the projection plane appear larger than those that are

more distant. The perspective projection provides a view of three-dimensional

62

objects that is more realistic, similar to that provided by the human eye or a

camera. Both these projections are illustrated in Figure 6.3. [Ref. ll:pp. 235-241]

Because of its more realistic presentation of the scene, a perspective

projection was used for the project's three-dimensional scenes. The IRIS's

graphics library provides a procedure called perspective which constructs the

necessary transformation matrix* to obtain a perspective projection. The matrix

is defined as [Ref. 7:p. C-2]

Perspective (fovy,aspect ,near,far) =

ct(fovycot(-v)

2
0 0 0

aspect

o cot(LO -) 0 0 (6.17)
2

0far + nearo 0 - 1 -

far- near

2xfarx nearo0 - 0

far- near

Where

- fovy is the field of view angle

- aspect is the aspect ratio, a ratio of the distance a viewer sees in the X
direction to the distance he sees in the Y direction. It is generally set to be
the same as the ratio of the width to the height of the viewport.

- near and far are the distances from the viewer to the near and far clipping
planes.

*A knowledge of using transformation matrices to perform graphical operations is assumed

here. Hern and Baker JRef. 1:chaps. 11-121 provides excellent coverage of the subject.

53

-. ~ ~ .. Ay.

Center

of

Projection

_Parallel Projection Perspective Projection

2 PProj2oon

Perspective Pln

...::.:::::::: :..
..

Projection:::::::::::: r j tio

...-:: ..:::

Closer lines appear larger than more distant

~lines of equal length.

Figure 8.3 Parallel and Perspective Projections
P .

....

The perspective projection forms a view frustum as shown in Figure 6.4.

Any object within the frustum between the near and far clipping planes will be

displayed in the scene. Objects outside this view volume are clipped and

discarded.

Next, the frustum formed by the perspective projection must be

positioned along the camera's line of sight. This is accomplished by another

transformation matrix constructed via a graphics library procedure named lookat.

The lookat procedure takes the following inputs:

-V, V, and V : the X, Y, and Z coordinates of the center of projection.

-PZ, P Yand Pz: the X, Y, and Z coordinates of the look-at position.
- Twist, a right handed rotation of the scene about the line of sight.

:.

The transformation matrix formed by lookat is actually the result of multiplying

four other transformation matrices [Ref. 7:p. C-21

Lookat (Vz, V, V,P,P,PZ, Twist) =

Trans(- V,- V ,- Vz) x Rot (O) x Rot. (0) x Rot,(- Twist)

1 0 0 0

o 1 00
Where Tran(- V,- V-V) = 0 0 1(

V 0V -V 1

55* ..

y

+Z

:°:.°....,...........
. .-...........

P 1 anies B:::::::::::::::

.... ,,,..-.....-.......,....

.,.,.....-...........-,........

dy
.-.-....-....:.:.:............

.'--'''-

The perspective command defines a near and

far clipping plane, a field of view, and

an aspect ratio.

Figure 6.4 The Perspective Command

-V

co.(E)) 0 -8in(O) 0

ooe 0 i 0 0 (6.20)
Ro~O si(0) 0 cos (0) 0

o 0 0 1

1 0 0 0

Rot, () =0 C08(6') ain(I) 0

Rot1 9) =0 -asin (4) cos (0) 0 (.1

0 0 0 1

coe(-Twist) uin(-Twist) 0 0

Rot,(- Tist) = -uin(-Twist) eoe(-Tunat) 0 0 (6.22)
0 0 1 0

0 0 0 1

And si =(z-V +(,-V (6.23)

0= si-V-Y(6.24)

As can be seen, this transformation simply translates the center of projection to

the origin, then rotates the view frustum about X and Y axes to align with the

line of sight. Finally the twist angle is added with a rotation about the Z axis.

57

In the flight simulation. the twist angle is analogous to the "roll" angle of an

aircraft or missile. A value of zero is currently used, but other values could be

used if the roll of the missile during flight was added to the model.

2. Determining Which Polygons to Draw

After the correct viewing transformations have been applied, the

polygons that comprise the scene must be drawn. Although the IRIS will "clip"

polygons which lie outside the perspective projection's view volume, an increase in

frame update speed can be achieved by not attempting to draw those that

obviously lie outside. This is discussed further in the following section on

simulator performance.

The term view-bound is used to describe a north-south oriented

bounding box around those parts of the scene that are sent to the graphics

pipeline. The view-bound is described by the index of the northernmost,

southernmost, easternmost, and westernmost gridsquare to be drawn. It is

calculated by extending (if necessary) the line-of-sight vector until it intersects the

horizontal plane Y = Min elev, where Min elev is the minimum elevation value

of the terrain. The view-bound is calculated as being 20 gridsquares to the

north, south, east, and west of this intersection point. If the missile's X and Z

coordinates are not within the calculated view- bound, the bounds are extended to

i:irclde them. Figure 6.5 illustrates this construction.

58

Missile Position (MX, MY, MZ)

Look-at Position (LX, LY, LZ)

West Line of Sight
View-bound

View-bound A 2 0

South

EsView- Viwb
bou V 20

3 Bounds extended
to include missile position

Horizontal Plane: Y = Min elevation/

East View-bound

1) Line of eight vector is extended dow
to intersect the minimum elevation plane.

2) View bound extends 20 ridsquares north,
south, east and west of the intersection.

3) Bound is extended, if necessary to
! include the missile's position.

Figure 6.5 Construction of the View-bound

59

3. Hidden Surface Removal

A final detail that must be taken care of is the removal of hidden

surfaces from the scene. A. hidden surface is simply a part of the scene that is

obscured by some object in the foreground, such as a valley that it hidden behind

a large hill.

The IRIS supports a method in hardware called Z-Buffering. In this

method, a buffer is maintained for each pixel position on the monitor and

contains the "depth" (transformed Z coordinate) of the part of the scene that

generated that pixel. Before drawing is started, the buffer is initialized to the

maximum depth value (the value of the far clipping plane) for each pixel posit ion.

Before each new pixel is drawn, its depth is compared to the depth stored in the

buffer. If its depth is greater than the stored depth it is not drawn. If it is less

than the stored depth, it is drawn and its depth value replaces the value in the

buffer. This method could not be used in the project for two reasons. First, with

comparisons having to be made on a pixel-by-pixel basis, it slows down the frame

update rate to an unacceptable level. Second, the IRIS does not allow the use of

Z-buffering and double-buffering at the same time. Double-buffering is necessary

to implement the animation of the scenes.

Another common method of hidden surface removal is the painter's

algorithm. It derives its name from the way a painter would draw a scene on

canvas, drawing in all the background and then adding foreground objects by

painting over the background objects they obscure. Implementing this algorithm

60

4~~ ~~~~~ % , .~e.~9 N

in computer graphics means drawing the scene in an ordered fashion, such that

the most distant objects from the viewer are drawn first and those closest to the

viewer are drawn last. Since the gridsquares comprising the terrain form well

defined rows and columns, an efficient implementation of this algorithm is

possible. That implementation is described below.

The implementation can be thought of on a conceptual level as follows.

A line, perpendicular to the line-of-sight, is constructed to serve as a pseudo-

scanline. Gridsquares within the view-bound are drawn as they are intersected by

this scanline. The scanline is first positioned along the line-of-sight vector so that

it intersects the far corner gridsquare of the view-bound. After all the gridsquares

along the scanline have been drawn, it is moved one gridsquare closer to the view

position, along the line-of-sight vector, and the process is repeated. This

continues until all the gridaquares within the view-bound have been drawn.

Figure 6.6 illustrates this process.

From Figure 6.6, notice that each scanline passes through three

gridsquares in a column, shifts over a column, then passes through three

gridsquares in the next column. The number of gridsquares drawn in a column

(or row) before advancing to the next column (or row) can be determined by

computing the tangent of the scanline's direction. If the magnitude of the

tangent is greater than 1.0, scanlines will run and shift along columns of

gridsquares. If it is less than 1.0, scanlines will run and shift along rows of

gridsquares. The term threshold is used in the remainder of the algorithm to

61

~First

TheScanl ine

-T ---- V

Line

34.

Sigh
t

," The Scanl ines

32 .2 12 :3

33 2'2 137

35 124 ! 5 9

37 26 1

27 1

39''

Drawing Order of the Gridsqua,.!, T
the First 5 Scanlines

Figure 6.'3 The Scanline Hidden Surface. . ,2rIr n
N __ ___ ___

62

IS

describe the number of gridsquares drawn before a shift of column (or row) takes

place. It is computed as

Jnearest intege rI tan(Drcan)l i tan(Dir,,,jj) 1.0

threshold - (6.25)
I nearestintegerl (tan(Diracn))-'I , if Itan(Dir.can)l < 1.0

The pseudocode for implementing the algorithm is shown in Figure 6.7.

The case shown is for a line-of-sight direction that is in the first octant (between

1I
0 and - radians). The algorithm for the other seven octants is similar, the

4

difference being the direction the scan line advances, and the direction it shifts

when the threshold is reached. Table 6.1 summarizes these parameters for all

eight octants.

TABLE 6.1 VARYING PARAMETERS FOR THE SCANLINE ALGORITHM
BASED ON THE OCTANT OF THE LOOK DIRECTION

Look Directions Scan Line AdvancesOctant When Threshold is Reached
From To From To

1 0 11/4 North South Shift one column East

2 11/4 1/2 East West Shift one row North

3 11/2 3n/2 West East Shift one row North

4 3n/2 II North South Shift one column West
5 11 511/4 South North Shift one column West

6 511/4 311/2 West East Shift one row South

7 311/2 711/4 East West Shift one row South

8 711/4 211 South North Shift one column East

Notice the step draw gridsquare[zjindez/fzndezj in the algorithm.

Since a gridsquare contains terrain, and can also contain roads and targets, an

63

Calculate the threshold value

count - 0

start x index ~- went view bound
start z -index ~- north vjew bound

While start -z index > south -view bound do
z index ~-start s index
x index .- start x-index

while (x-index <, east view-bound) and (s index south -view -bound) do

{ traverse a scanhine)
draw gridsquarels -index] !x-indexl
s index .- s-index - 1 (move it one gridsquare south)
count 4-- count + I

if count = threshold then
x _index i- x index + 1 (move it one gridaquare east)
count ~-0 (reset count)

endif

end while

(move on to next scanline: start it one gridsquare to the west)
start -_ X - start-x -I

count 4-- 0

if (startx < west -view -bound) then
start -- west view bound
start s- start-s -threshold

endif

endwhile

Figure 6.7 Pseudocode for the First Octant Scanline Algorithmi

ordering of these parts oif the gridsquare must also take place. The two triangles

forming the terrain are drawn first, next any roads are drawn, and finally any

64

targets are drawn. The details of integrating the targets and roads into the scene

are covered in the following two chapters.

The resulting scene is shown in Figure 6.8, a photograph of the IRIS

monitor during the flight simulation. Note how the hidden surface removal allows

the foreground hills to naturally obscure the valleys behind them. Also note the

effect of the lighting model and texturing described in Chapter V.

E. SIMULATOR PERFORMANCE

Data collected while running the simulator shows that the average frame

update rate is approximately four frames per second. The Unix profile utility

was used to determine which procedures accounted for the majority of the

simulator's time usage. Table 6.2 shows the results for the top four routines.

TABLE 6.2 FOG-M ROUTINES USING THE MOST CPU TIME

% CPU Time Routine Name Purpose

16.9 polf Iris graphics library filled polygon routine.

13.7 displayterrain Output 3-D scene with hidden surface removal.

8.7 malloc C language built in routine for dynamic
memory allocation.

4.5 gI-findhash Low level Iris graphics library routine, used for
the hash tables associated with graphical
objects (Not user accessible).

The top two entries in Table 6.2 are directly involved with outputting polygons to

build the terrain image. It is therefore reasonable to believe that the frame

update rate depends heavily on the number of polygons that are passed to the

geometry engines.

65

q. S. - - - ... *~ *

0

0

-.4

66

Figure 6.9 is a scatterplot showing the frame update speed achieved when

various numbers of polygons were attempted to be drawn. The data was

generated by reading the system clock before each frame update and calculating

the number of polygons based on the view-bound that was used during that

frame. The graph clearly shows the effect the view-bound has on the frame

update rate. The next two entries, malloc and glifmndhash, are traceable to the

making and deleting of the graphical objects that store the targets (this process is

explained in Chapter VII). As an experiment, the construction and deletion of

the targets' objects was removed from the simulatioii and the targets were simply

displayed in stationary positions. The profile results from the simulator run in

this configuration is shown in Table 6.3. Figure 6.10 is another scatterplot,

generated in the same manner as Figure 6.9, except that the simulator was run in

the stationary target configuration. Eliminating the dynamic memory

management associated with the target's graphical objects increased the average

frame update rate from 2.99 to 3.90 frames per second. Also, the maximum frame

update rate achieved doubled from 7.5 to 15.0 frames per second. This would

suggest that an area for further research is an improved algorithm for target

updating that does not involve dynamically allocating memory.

The fact that the frame update rate is so heavily dependent on the number of

polygons passed to the geometry engine suggests that a more sophisticated

method of determining the view-bound may pay off in increased performance.

For example, the present method does not take into account the field of view

67

I II

eqN

-oo

000

* OS

be 0

0U

S 1.4 ooo
0

a
o

0
•

00• o00 . 09

O0 •
a

•40 54
O:OO0

C gs. o 0 4")

in5
.ge... m

angle. It should be possible to bound the line-of-sight intersection point with less

than twenty grid squares when the field of view angle is small. However, any new

algorithm developed can not be so sophisticated that it negates the performance

increase by requiring intensive computations.

TABLE 6.3 FOG-M ROUTINES USING THE MOST CPU TIME

(WITH STATIONARY TARGETS)

% CPU Time Routine Name Purpose

23.9 polf Iris graphics library filled polygon routine.

22.3 displayterrain Output 3-D scene with hidden surface removal.

5.5 color Iris graphics library routine which sets the
current drawing color.

4.1 line intersect2 Finds the intersection point of two lines. This
routine is used exclusively during the road
building process and therefore is not used at

all in the display loop.

4.0 poly Iris graphics library unfilled polygon routine.
Used during the display loop to outline the
road segments.

,%

4
w

69

4)

10 d

cqO

0 0
0) $00

0 4)
00 0

* 0 r0
do *

0 1-

4)

0 LO O

* $4)*

CH -4 0* 0

00

0 04

'--0

.44 4

N C. v

:ii" Uo 4.

04

•0 r 4

0
v4

N 0 00 N

iI "

,.4 ,. r-4 V-4 to

70

VII. TARGET INTEGRATION

A. GENERAL

The primary targets of a FOG-M missile are tanks, helicopters, and

reinforced ground installations. The simulator is designed to handle many types

of targets, including various tanks and helicopters, but only a single type of tank

is currently implemented. The prototype simulator provides an Ethernet

networking capability to allow the input of actual target positions in real-time.

This simulates the input that would be received by a production simulator during

computerized mock combat field experiments. In its networking mode, the

simulator receives target position and orientttion data from an interactive

program running on a different IRIS workstation. The target program, still in

testing and not detailed in this study, provides the capability to dynamically

insert and delete targets at any location, and to modify their speed and direction.

In the simulator's stand-alone mode, there are ten tanks defined by default that

criss-cross the ten kilometer square terrain area. These tank targets move at a

constant speed of fifteen knots and reverse direction when they reach one of the

edges of the ten kilometer terrain square. No automated path planning is

presently performed in either mode, so the tanks blithely traverse even the

71

steepest terrain. The default targets minimize this problem by traveling the length

of the valleys for the most part.

B. TARGET CREATION

Target creation is simplified through the use of graphical objects. The actual

image of a tank is defined initially by the tedious specification of the three

coordinates of each vertex of each of the polygons that comprise the tank (Figure

7.1). Using objects, this need only be done once, placed in an object, and then

referred to by a single name within each target object. Thus each target is

described by an object (the tank object) within another object (the target object).

In addition to the tank object, the target object also contains the transformation

commands that move the tank from the origin to its location on the terrain (a

trarlation), and face it in the direction it is moving (a rotation).

1. The System Matrix

The rotation and translation commands work by modifying the sLystem

matriz. The system matrix is a global data structure that is used to transform

coordinates from the three-dimensional world space into the two-dimensional

screen space. Each transformation can be performed as a series of computations

on individual X, Y. and Z coordinates, but the transformations can also be

accomplished with a single matrix multiplication. The IRIS has a matrix

multiplier built into its hardware, so matrix operations are very efficient. At least

three transformations must be applied to every endpoint on the tank: a coordinate

72

S d • •.• D "f ' • • • " "

Figure 7.1 Simulator Scenes

73

scaling, a translation, and a rotation. Rather than do three separate matrix

multiplications, the three transformation matrices can be combined, so that all of

the transformations are accomplished in a single matrix multiplication. The

matrices are combined by applying each of them to the system matrix. Each

point is now completely transformed through a single multiplication with the

system matrix. When a new transformation is needed, the system matrix must be

reset by applying the inverses of the old transformations, or by copying the

original contents back into the system matrix. Two commands are provided with

the IRIS to support the latter method. Pushmatriz takes a copy of the system

matrix's current contents and saves it on the system stack. After the

transformations have been applied, and the drawing that used those

transformations has been completed, the system matrix is reset by calling

4 popmatriz, which retrieves the copy placed on the stack by pushmatrix and

restores the contents of the system matrix to the previously saved values.

2. Target Transformations

The tank is initially defined with its center interior at the origin

(coordinates (0,0,0)). While it is not important which point on or in the tank is

placed at the origin, it is crucial that the tank be defined somewhere around the

origin in order for the rotation command to have the desired effect. The original

direction of the tank is significant only to the extent that it must be known in

order to calculate the appropriate rotation to achieve a specified heading. The

tank in FOG-M faces to the right (zero radians mathematically, or a compass

74

|. \.-

heading of ninety degrees) initially. During target creation, dunimy (zero valued)

rotation and translation commands are placed in the target object, to be updated

for display by a later editing of the object. Since all rotation and translation

commands affect the system matrix (as previously described) and are cumulative,

each target object must apply its transformations, be drawn, and then remove

those tranoformations so that latter drawing commands are not distorted. Within

each target object, the contents of the system matrix are saved with a pushmatrix

call, the appropriate rotation and translation commands are applied to the system

matrix (in reverse order, due to the nature of matrix multiplication), the target is

drawn by calling the tank object, and then popmatrix is called to reset the system

matrix.

C. ANIMATION

Animation of the targets is accomplished using the objects and

transformations described above. The targets must be moved slightly before

being redrawn in the next frame. This requires new (X, Y,Z) coordinates, from the

network or from local calculations. Then a global data structure is updated to

indicate when in the display algorithm the target should be drawn, and the

A "translation command in the target object is edited to provide the new coordinates.

As each frame is displayed, targets appear in slightly shifted positions, and give

the appearance of animated motion.

75

The calculation of new coordinates requires the maintenance of position,

speed, and direction data for each target. The total distance traveled between

screen updates is the product of the elapsed time (obtained from the IRIS's real-

time clock) and the target's speed, scaled so the units match. In the networking

version of the simulator this is done remotely; in the stand-alone version

everything must be maintained locally. The target's direction of travel is stored

in radians, and is measured using the standard mathematical convention as

opposed to a compass heading (Figure 7.2). This allows calculation of the the

appropriate east/west (AX) and north/south (AZ) movement as follows:

AX = cos(direction) *time *speed * scale factor (7.1)

AZ= - sin(direction) * time * speed * scale factor (7.2)

/ The new target (X,Z) position is the sum of the old position and the offsets

(AX,AZ) from Equations 7.1 and 7.2. Since all of the current targets are tanks,

their I' coordinates (altitude) should be taken from the height of the terrain

underneath the tank. This is obtained from the DTED interpolation routine

gnd level, which is called with the new (X,Z) coordinates as input parameters.

D DISPLAY

Chapter Five explained the exploitation of the structure of the data and the

use of the painter's algorithm to solve the polygon ordering problem without

r , orting to slower or more complicated schemes like Z-buffering or Binary Space

Partitioning 'Ref. 131. Targets cannot merely be drawn after the terrain because

76

" 1r/2

IT . 0 (2Wr)

31T/2

Mathematical Convention
(Radians)

0

(360)

270 90

180

Compass Convention

(Degrees)

Figure 7.2 Direction Conventions

77

.%..--:~'~v V

of the same ordering problem. Otherwise, targets appear in front of everything,

and it is impossible to simulate a target moving out of sight into the distance or

behind some terrain feature. The implementation of the target display algorithm

is greatly facilitated by the use of objects. Objects allow the grouping of drawing

commands into a subroutine-like package, which can be edited (effectively

allowing parameterization) and then displayed with a single command A two-

dimensional array of object "names" (the object name array) is initialized so

each element of the array represents the target object to be drawn in the one

hundred meter square of terrain with the same indices. Since the C programuning

language recognizes the value integer zero as FALSE, and anything else a.s TRUE,

this array does double duty as an array of booleans indicating the presence or

absence of a target object in a particular one hundred meter grid square. (No

target objects are given the "name" zero, which would indicate FALSE.) A list of

targets is used to reset this array to all zeroes before each screen update (i.e. only

those elements that contained targets need to be zeroed) so maintenance overhead

of the array is minimized. The new target positions are received over the

network, or are calculated, based on each target's position, speed, and direction,

plus the elapsed real-time since the last update. The appropriate object-name-

array indices are calculated from the new target position and the object-lanle-

array is updated. If this is the first (or only) target in the designated one hundred

rrieter grid square, the update is accomplished by making i new object. luxi

setting the object-name-array element equal to the new object's integer "name

78

If the array shows that some other target is already in that particular piece of

terrain (i.e. the object-name-array element is non-zero), the current target is just

added to the object specified by the "name" in the array. Once this has been

done for each target, this array is available for the dieplay-terrain module.

Display terrain checks the array as it draws each square of the terrain to see if

any targets should be drawn. If so, it calls the indicated target object just after it

has drawn the one hundred meter grid square on which the target(s) rests. Note

that this causes the target(s) to be drawn at the correct time for the painter's

algorithm. The correct place to draw the target still must be specified by the

transformation commands within the target object.

In some cases it is necessary to draw a target more than once. Targets that

straddle a one hundred meter grid square boundary must be drawn on top of both

(or possibly all four) grid squares in order to avoid being partially obscured by

whichever grid square is drawn last. (The target must be drawn immediately after

the grid square on which it rests to ensure that the target will be obscured when

it should be, by terrain drawn in the foreground.) Since the calculation of

boundary intersection involves several trigonometric functions and an allowance

for the distance between the center of the tank and its boundaries (which varies

with the direction of the tank), a simplifying algorithm is used. If the tank is close

enough to a boundary that the most distant part of the tank might cros the

boundary (see tanks A and B in Figure 7.3), the target object is also drawn after

the adjoining grid square(s).

W0

. ,r j ''/ ,' ,'''. . '- . , ' , . ' '-.- ' ''. - " . * , - " " , "

"_Tt

Grid Square with
• (X,Z) offset

~(-1, -1)

O CORNINUB '"
I t

"SIDV' lp IMIDDL3I of grid square

containing tank

Tank

1,0) leference (+1,0)

Points

Tank I

v + x

Allw

116

Grid Square with

(X,Z) offeet

(0, +1)

(Not drawn to scale)

Figure 7.3 Boundary Conditions

80

~. .- *~** ~ %

The one hundred meter grid square is essentially divided into three areas:

the middle, its sides, and its corners. In the middle, the tank cannot overlap any

other grid square. On the sides, the tank may, overlap one adjoining grid square,

and in the corners, the tank may overlap three adjoining grid squares. The

reference point on the tank (the position the X, Y, and Z coordinates refer to) is

located at the very center of the tank. The tank is thirty feet long, so the most

distant parts of the tank are within a fifteen foot radius of the tank's reference

point. The lines that mark the side and corner areas are thus fifteen feet inside the

borders of the grid square. Once the tank's reference point is within these areas,

it is potentially obscured by the later drawing of the adjacent grid square(s) It
'I.

1might not be obscured if it is paralleling a side, for example, but the overhead of

drawing it twice (or even four times) when it does not need to be is smaller than

the overhead of the calculations to determine if the position and direction of the

tank have it actually crossing one or more edges.

The repeated drawing is accomplished by adding a "new" target to the array

of target objects. The "new" target object is drawn at the exact same locationi in

the three-dimensional terrain, but it is drawn after a different one hundred uicer

grid square, so it will have different target object array indices, and be ii, a

separate target object, even though the two (or four) targets drawn will overwrite

each other and produce a single image

-J1Si

° " • ° ' ° .e . . .

VIII. (LTURAL FEATURE INTEGRATION

The addition of cu tura] features add much to the realism of the displayfd

*,I They also provide valuable landmarks from which a perin observing tre

. ,lk, can geographical.% orient himself This chapter covers the additir, of ().C

" r. i iiral feature roads, to the FOG-M simulation Road, "ere , h,.'r ,.

ir'.t :',atur, to ad, because of the special probiemxi. &ssc iateii %%Ih t:, ,r

: :.'T..e-i~t at io. the easi of extracting their locatiorng fro z: CONOur :11ap- ati, 'd !

ii w~fAc iied to ill part-; of the scene due to their wiiie raiinit W-ftl 1,0T.

! i. %r,',, r ill "we diac L~aed 1) the format of the .xternat uia ' ti !a' ,,,,a 1,

. - tw ;ationl. I the process of mapping the roai ,' the oxi," .€

,: -, i the ito ration ,f the r(ead into th# "+ral , , ,

i F sH, ki DAT FILE I (RMAT

it. p ' 4 xg, j i%# I kI the sir i latioi ^aws 's A r,, ''' :,t' • '

,i ; nN fro- a DMA TolmKPraphie' ' UT Tel I (< ,T ' ' ta, ,,f

Pt , , Kh ,t, ,ata it. a iatf i th Io I M .' 'k 4
.A P'm

" '. t' e h • tv a 'rI, h I, r; u aI "' a' I P * ,

.-

. *

+ . + ,' '' I ; :, , ,+- - . .- - ,.--- :- , , . . .,,s ... -

Figure 8.1 shows a segment of the file containing data for two roads along

with a diagram showing their locations within the terrain. Each road entry is

• composed of three parts The first part is the width of the road in feet. Next is

an integer N, where N is the number of data points used to digitize the road.

Third is a set N coordinate pairs, where each pair represents the location of a

digitized point along the road's centerline. The first coordinate of the pair is the
AI,.

east-west location of the point. It is measured in feet from the western terrain

'a houndary. The second coordinate of the pair is the north-south location of the
-a,.

.S point, measured in feet from the southern terrain boundary. All the data is stored

as A-CIl text, which facilitates editing of the data using any text editor. The

DFAD data file also contains road width information (in meters) and stores roads

as a senes of digitized points. The major difference is that DFAD's points are

-"orvd as latitudes and longitudes, which need to be converted before they can be

" sed in the simulation. 'Ref. 9j

B CONSTRVCTION OF THE ROAD POLYGONS

Knowing the width and centerline locations for the road, the next step is to

ri,,struct the polygons which represent it. Although, this seems like a simple
..

.'u,,Itf. :t is complicated by the fact that the road must follow the rise and fall

J I L,. Trra. , AI), ii, order for hidden surface elimination to occur, the road

::i. tv dried at th4 gridsquare boundaries so that each piece can be drawn

-,.:,g itti its corresp(,nding gridsquare. The result is that the road must be

_.:

-.. 83

"""4-

35.0 Width of Road 1 (feet)

F.. # of Data Points92-5.0 1100.0

1100.0 2400.0
2150.0 2950.0 8 Data Points
2510.0 4100.0 (Measured in Feet from1670.0 4850.0 Western and Southern1300.0 5250.0 Terrain Boundaries)

1490.0 7150.0
50.0 a Width of Road 2
3 . 4 # of Data Points9300,0 4150.0
6495.0 4150.0 3 Data Points
5 8 0 0 .0 2 1 0 0 .0 Fo t

SFile 'Format]

7000

FEET Corresponding
Roads

5000 7 5

6 2

4

3000 3

tRoad

2

1000
1R

Road 1

1000 3000 5000 7000 9000

FEET
-Western Terrain Boundary

Southern Terrain Boundary

Figure 8.1 External Data File Format

84

broken into many planir polygons. where each polygon is a portion of the road

that overlays one of the terrain triangles within a gridsquare. Figure 8.2

illustrates this division and defines some of the terms used in the description that

follows. The high level pseudocode for processing the road data and constructing

the planar polygons is shown in Figure 8.3. As the pseudocode shows, each road

is processed a segment at a time. For each segment

The end points of the segment's left and right side are calculated. A look-
ahead to the next road segment is done, allowing the ends of adjacent
segments to be calculated so that they meet cleanly.

A bounding box, which contains all the gridsquares intersected by the
segment, is constructed.

Next, for each gridsquare in the bounding box, the road segment is divided into

the road-polygons at the gridtriangle boundaries. Note that all the vertices of the

road-polygons fall into one of five types:
The intersection of a segment's left side with the side of a gridtriangle.

- The intersection of a segment's right side with the side of a gridtriangle.

- A gridsquare's cornerpoint that is contained within the road segment.
An endpoint of the left side of the road.

- An endpoint of the right side of the road.

The road polygon is constructed by finding all the above vertices which exist, and

ordering them counterclockwise. The counterclockwise ordering is necessary for

backface polygon removal to take place. The intersections only define the X and

Z coordinates or the vertices. The Y (elevation) coordinate is found by

interpolating between the terrain's elevation at the three corners of the

corresponding gridtriangle.

85

..... ROV

GIDIT

RROAD

GR.b
.... ---- ----- -------- ----

Y'-

While more data in the road data file do
read width of road
read numberof_points
read segment's start coordinate pair (seg _start)
read segment's end coordinate pair (seg end)

for i = 3 to number of points + I do

if i < number of points then
read the next segment's end coordinate pair (nextseg end)

else
next seg end x .- seg end x
next seg end s *- seg-end-s

endif

calculate the start and end points for the segment's left and right side
(left-start, leftend, rightstart, right-end)

calculate a bounding box around the road segment

for each gridsquare within the bounding box do

Construct the polygon which overlays the gridsquare's northern triangle
Add the polygon to the road object associated with this gridsquare

Construct the polygon which overlays the gridsquare's southern triangle
Add the polygon to the road object associated with this gridsquare

right_start +- rightend

endwhile

Figure 8.3 Pseudocode for Constructing Road Polygons

C. INTERNAL ROAD-POLYGON STORAGE

A global, two-dimensional array of graphiealobjecto, named road, is used to

store the road polygons. Each entry in the array corresponds to the pieces of road

that lie within a gridsquare. An object is created when the first road-polygon is

constructed for a gridsquare, with subsequent road-polygons being inserted into

the already existing object. Since the roads are static in nature, the use of objects

87

41 1

does not present the dynamic memory allocation problems associated with their

use in storing targets (see the Simulator Performance Section of Chapter VI). As

each gridsquare of the terrain is drawn, a check is made to see if a road object

exists for that square. If one does exist, the associated road-polygons are drawn

iunediately after the terrain. This insures that hidden surface elimination occurs

for the roads as well as the terrain. A photograph of terrain which includes some

s;ections of roads can be seen in Chapter VII, Figure 7.1).

-

V?.

88

IX. FOG-M SIMULATOR USER'S GUIDE

A. OVERVIEW

This section of the report is a user's guide to running the FOG-M simulator.

The simulator was built to be largely self documenting. Instructions are clearly

displayed on the screen, including diagrams which serve as a reminder of the

functions of the various controls. A knowledge of the logon procedure for the

IRIS workstation and the basic commands of the UNIX operating system is

assumed.

B. STARTING THE SIMULATION

To start the simulation, logon to the IRIS workstation and use the UNIX cd

command to change to the directory containing the simulation. Currently the

simulation is in the directory /work/terrain. Therefore issue the command:

cd /work/terrain

Next, start execution of the simulation by typing the command fogm. A

welcome screen will appear on the display as shown in Figure 9.1. Pressing all

three of the mouse buttons simultaneously will stop the program and return

to the UNIX command level. This option of pressing all three buttons to exit is

available at any time during the execution of the program. Pressing the middle

mouse button advances the display to the next screen of instructions. When the

8P

.1~ tsI

90

user has advanced through the welcome screen and the two instruction screens

(Figures 9.2 and 9.3) he is presented with a display showing a two-dimeniional

contour map. This is the prelaunch phase of the simulation.

C. PRELAUNCH CONTROLS

The purpose of the prelaunch phase is to allow the user to designate a missile

launch position and a suspected target location position. In effect, the user

describes an initial flight path for the missile.

1. The Prelaunch Display

The prelaunch display is divided into three sections as shown in Figure

9.4. The upper right corner of the display contains an instruction box which

summarizes the functions of the mouse buttons for this phase. The lower right

corner contains a prelaunch statistics box. The meanings of the various items

within the statistics box are explained below. The majority of the display is

occupied by a two-dimensional contour map. Each of the square grids on the

contour map represents a one square kilometer area. The colors on the map can

be interpreted as follows. Green areas indicate terrain that is covered with

vegetation that is greater than one meter high. Brown areas indicate terrain

where the vegetation is less than one meter high. Within each of the color

categories, the elevation of the terrain is indicated by the intensity of the color,

wtth the brighter colors representing the higher elevations.

'li -- -7 S

.I z

,* -3-

• - -

",,

*c

.. ' -- I

0..

raa

I flail59

'I.

.1

1'

'p

,.. **% ,

2 Selecting the Launch Position

The launch position must be selected first To select the launch poiitnzi.

use the mouse to move the red arrow cursor to the dei-ed location on the contour

map As the cursor is moved, the UTM coordinates of the current cursor locatiora

are shown in the Launch Position field of the statistics box. These coordinat"

can be used when a more accurate selection of the launch position is required thaxn

is obtainable from the contour map alone When the cursor is in the desired

position, press the left mouse button to lock in that position A blue circle wil

appear on the contour map showing the position selected and the workstation wil

"beep," confirming the selection. The launch position can be changed iay tine

before the launching of the missile by simply moving to the new desired location

and pressing the left mouse button.

3 Selecting the Target Position

The target position can only be selected after a launch position has been

set. After the launch position has been selected, mov'ng the cursor over the

contour map produces the following effects:

- The UTM coordinates of the current cursor position are shown in the Target
Location field of the statistics box.

- A "rubber band" line is drawn on the contour map from the launch position
to the current cursor location. This line represents the flight path the missile

would take if the current cursor position was selected as the target location.

- The direction and length of the flight path represented by the above line are
displayed in the statistics box in the Heading and Distance fields respectively.

Once the cursor is at the desired target location, press the right mouse button

95

I~~ II I, LIL

L' ~ IP, W rpifi o 'wiIli f I~ h "Stri. a' 1~.-f &I !W t~

t . i t i4 lq I t

at :..)t take j~a.&(* '1111il M'l h.ho ptl;II Itari. locathi

1 If 41*1cl, &U(II i 1tr, l "it 1111 ' ,, ec 1 t! ar &c eptable. the

S.~ti , ;'rmiti the Middle "usic IittiP

rI ,io, the ia tial launch of this exec, ut i of th program, a seveira.l

• o -.-. 'L '"iri :mwlnite elt) willl folio% duriiig wt',i(!i ralculaion ,s are done to

A !i p()lilg ,fire*-d imensiorial scenes Agalii. this delay- only occurs

.. .tr. launi-h ,*f any execution. Subsequent launches proceed with no

S)r:-iK tli- deiay. a countdown will appear in the bottom of the statistics

% 7.ri x-curf; whev the countdown reaches zero.

9 IN FLIGHT CONTROLS

I The In-Flight Display

After the missile is launched, the display changes to the in-flight display

- *tl(wn in Figure 9.5. The left side of the display contains:

A three-dimensional view of the terrain as seen from the missile's camera.

A slider bar scale along the bottom edge indicating the camera pan angle.

4,"6

.p.K

VI

IN -v %

-RA14 348 AN INEXPENSIVE REAL-TIME INTERACTIVE THREE-DIMENSIONAL
2/3

FLIGHT SIMULATION SYVSTEM(U) NAVAL POSTGRADUATE SCHOOL
MONTEREY CA M J ZYDA ET AL 83 AUG 87 NPS52-87-834

UNCLA IF IED F/G 5/9 NL7umommommommoll
EhhhhhhhshhhhE
EhhhhEEohhhhhEEIIIIIIIIIIIIE
ElllhEEEEllllE
ElllEEllEllhEE
EEEEEIhEEElhlE

-3 -3 iiij,

~ IN zflfi~~j4

- A slider bar scale along the left hand edge indicating the camera tilt angle.

- A box in the lower left corner containing either the word DESIGNATE or
REJECT. The word DESIGNATE in this box indicates that the missile is
not locked on to a target and is waiting for a command to designate one.
The word REJECT indicates that the missile is locked on to a target and is
waiting for a command to reject that target.

- Cross hairs used to sight the camera onto a target.

The upper right corner of the display contains a scaled copy of the contour map

seen in the prelaunch phase. The red arrow superimposed on the contour map

shows the missile's current position (the tail of the arrow) and its direction of

flight. The red rectangle on the map indicates that area of the terrain that is

currently being shown in the three-dimensional display.

The middle right section of the display contains four indicators which

show the following:

- The speed of the missile in knots.

- The direction the missile is traveling in degrees.

- The height of the missile above ground level (AGL) in feet.

- The height of the missile above mean sea level (MSL) in feet.

- A slider bar indicating the zoom setting of the camera in degrees.

The lower right section of the display contains a summary of the functions

performed by the mouse and dials. These are explained further below. The in-

flight phase continues until the missile impacts a designated target or all three

mouse buttons are pressed simultaneously (to stop the execution of the

simulation).

98

2. Controlling the Camera

The ranges and initial values of the camera's functions are shown in

Table 9.1. All of the cameras functions are controlled with the mouse.

- To pan the camera, move the mouse left or right an needed.

- To tilt the camera, move the mouse up or down as needed.

- To zoom in to a tighter field of view, press the left mouse button.

- To zoom out to a wider field of view, press the right mouse button.

3. Controlling the Missile Flight

The missile can be controlled by changing its direction, speed, and

altitude. The ranges and initial values of each of the flight parameters is shown

in Table 9.2. The missile flight parameters are controlled by using the dials on

the IRIS's button/dial box (see Figure 9.6). Dial zero (lower left) controls the

missile's direction, dial one (lower right) controls the missile's altitude, and dial

two (above dial zero) controls the missile's speed. Refer to the display's control

TABLE 9.1 CAMERA CONTROL RANGES AND INITIAL VALUES

Control Maximum Min* Initial Value

Pan 25 degrees right 25 degrees left 0 degrees
Tilt 25 degrees down 15 degrees up 15 degrees down
Zoom 55 degrees 8 degrees 55 degrees

TABLE 9.2 MISSILE CONTROL RANGES AND INITIAL VALUES

Control Range Initial Value
Maximum Minimum

Altitude 10,000 MSL 200 AGL 200 AGL
Speed 400 kts 0 kts 200 kts
Direction 359.9 degrees 0 degrees From prelaunch

99

8 7

0 0
4 5

2 3

00

Figure 9.6 IRIS Dial Box Fuctions

100

summary box for a reminder of each dial's purpose and location during flight.

The controls are used as follows:

- Direction of flight - Turning dial zero clockwise turns the missile to the
right. Turning it counterclockwise turns it to the left. The missile will move
freely through the 360 degree mark so that, for example, turning the missile
right two degrees from a heading of 359 degrees will produce a heading of
001.

- Altitude - Turning dial one clockwise increases the missile's altitude up to
the maximum of 10,000 feet MSL. Turning the dial counterclockwise
decreases the missile's altitude. The simulator will not allow an altitude to
be selected that is less than 200 feet above ground level.

- Speed - Turning dial two clockwise increases the missile's speed, while
counterclockwise decreases the speed.

4. Designating and Rejecting Targets

The middle mouse button is used to designate (lock on to) and reject

(release the lock on) targets. When the missile is not locked on to a target the

word DESIGNATE will appear in the lower left comer of the display. To

designate a target, center the target within the crow hairs and press the middle

mouse button. In order for the missile to lock on, some portion of the target

mwt be in the center of the cros hairs. If the designation is successful, the

workstation will "beep" and word REJECT will appear in place of the word

DESIGNATE on the display. Once a target is designated the missile will

automatically adjust its heading and altitude to home in on the selected target.

An explosion is displayed after impact with the target occurs. The user is then

returned to the prelaunch phase of the simulation to begin another launch.

101

A locked on target can be rejected and missile flight control returned to

the user by pressing the middle mouse button any time before impact with the

target occurs. The workstation will respond with a "beep" and the

reject/designate box will again show the word DESIGNATE. The missile is now

ready to accept the designation of a new target.

102

X. CONCLUSIONS AND RECOMMENDATIONS

A. LIMITATIONS

There are several limitations to the flight simulator presented in this study.

First, a trade-off had to be made between resolution and frame update (display)

speed. Even though data was available at a resolution of twelve and one-half

meters, the simulator uses one hundred meter resolution in order to achieve an

acceptable frame update rate.

Second, the simulator's flight is confined to a ten kilometer square area. Any

ten kilometer square area of the DTED file can be used during a run of the

simulation, but the simulator must be exited before switching to a new area. This

limitation is not too restrictive for the current range of the FOG-M, but may be

inadequate if the range of the missile is increased u planned.

Third, road data is available in a format usable by the simulator for only one

10 kilometer square area. Since access routines were not developed for the DFAD

data file, roads must be digitized by hand.

Fourth, the simulator does not model any of the missile's flight dynamics. As

stated earlier, this limitation was imposed only because of development time

constraints. It is felt that the dynamics can be acceptably modeled without

adversely affecting the performance.

103

--- -- - h ' .. ! .. .!' d ft

B. FUTURE RESEARCH AREAS

A follow-on to this project, which will provide more realistic targets and

allow viewing of the scene as seen from inside any of them, is currently underway

at the Naval Postgraduate School. The project's plans are to use the Ethernet to

allow several workstations to take part in the simulation simultaneously. Each

workstation will control one weapon (a target or the missile) and its monitor will

display the scene as viewed from that weapon.

Work is also underway at the Naval Postgraduate School in the use of

digitized photographic images on the IRIS. This work could possibly be

incorporated into the FOG-M project through the use of digitized target images,

digitized cultural features, or digitized textures for the terrains.

Another possible research area is the addition of various environmental effects

into the simulation. These include clouds, smoke, and rain, which affect the

camera's view by reducing visibility, and also dust, which aids the missile

operator in acquiring moving targets.

Much work could be done in the area of the missile's flight dynamics. The

goal would be to provide an acceptably accurate model without too much of a

sacrifice in speed.

C. SUMMARY AND CONCLUSIONS

The project has proven the practicality and feasibility of building a low-cost

flight simulator with commercial, off-the-shelf hardware. With a relatively small

104

i7

investment of time and funds, a simulator with significant capabilities was

developed. As the speed and power of graphics hardware increases, even more

realistic displays at faster update rates will be possible.

10S

APPENDIX A - MODULE DESCRIPTIONS

BUILDROAD.C

Input: None.

Output: None.

Side Effects: Modifies the global array road, an array of graphical objects, where
each object contains the polygons representing the road in a
particular gridsquare.

Description: Build road reads the file road width and centerline information
from the file Road.data and constructs polygons which represent
the road. The polygons are stored in the array of graphical objects
road. A more detailed discussion of building the roads is contained
in Chapter VIII.

BUILDTERRAIN.C

Input: None.

Output: None.

Side Effects: Buildterrain modifies the global arrays eavetriangle and grideolor.

Description: Buildterrain reads terrain height information from the global array
gridpizel and constructs the terrain as a set of planar triangles.
The details of constructing the triangles and the format of the
eavetriangle and grideolor arrays can be found in Chapter VI.

COLORRAMP.C

Input: The inputs to colorramp are two booleans, greyscale and init. If
greysoale is TRUE, the terrain, sky, and target colortable entries
are defined in shades of grey to produce a black-and-white image.
If greyscale is FALSE, the terrain colors are green, the sky is blue,
and targets are brown. Init is set to TRUE when this routine is
initially called, so that every entry in the colortable is defined,
including those for terrain, sky, targets, and writemasked lines on
top of the contour maps. Should the display be switched between
color and black-and-white, only the terrain, sky, and target entries
need to be redefined, which is what happens when init is FALSE.

Output: None.

Side Effects: Colorramp changes the system's colortable, and thus determines
the colors that appear on the display for the images drawn by

106

other routines.

Description: Colorramp is called by the ma'n program fogm as part of the
initialization that takes place before the flying loop is entered. At

that point, gveyscale is set to its default value (usually FALSE,
indicating color images) and init is TRUE. The readeontrole
routine also calls colorramp to toggle the display image between
color and black-and-white, based on the position of one of the
dials. This call is made with the desired value for greycale and
with init FALSE. Colorramp uses the IRIS routine mapeolor to
directly update the colortable for the contour map colors, and calls
the user written routine ganmaramp to define appropriately
shaded ranges of the greens and browns (or greys) used for the
terrain and targets.

COMPASS.C

Input: Compa. takes as input a float, direction, which is an angle in
radians.

Output: Compase returns a float which is the compass direction in degrees
corresponding to the input direction.

Side Effects: None.

Description: The function Compose converts an radian angle measured using
the standard mathematical convention, and converts it to a degree
angle measured using the standard navigational convention.

DISPTERRAIN.C

Input: Display_terrain takes eleven inputs: the X, Y, and Z, coordinates
of the missile position VX, VY, and VZ; the X, Y, and Z
coordinates of the camera's look-at position PX, PY, PZ; the field
of view angle (camera zoom value), FOVY; and the X and Z
ranges of gridaquares to be displayed, FIRST X, FIRSTZ,
LAST X and LASTZ.

Output: None.

Side Effects: None.

Description: Dip terrain outputs a frame of the terrain scene to the monitor
using a hidden surface algorithm. The scene contains terrain,

roads, and targets. Details of the hidden surface algorithm can be
found in Chapter VI.

107

I.

DIST TOLOS.C

Input: Dist to loa takes seven inputs: the X, Y, and Z coordinates of the
start of a line segment; the X, Y, and Z coordinates of the end
point of a line segment; and three dimensional array, pt, which
contains the coordinates of a point.

Output: Diet to los returns a float which is the perpendicular distance
from the input point, pt, to the input line.

Side Effects: None.

Description: Function which computes the perpendicular distance from a point
to a line in three-space.

DOBOUNDARY.C

Input: Doboundary takes the following inputs:
- An integer Boundtype which is interpreted as:

0 - a diagonal boundary
1 - a horizontal boundary

* 2 - a vertical boundary
- An integer which triangle that is interpreted as:

0 - the lower triangle of the gridsquare.
1 - the upper triangle of the gridsquare.

- The indices, zgrid and zgrid, of the gridsquare for which the road
is being constructed.
- The coordinates of the start point of the boundary stored in a
three dimensional army, bound start.
- The coordinates of the end point of the boundary stored in a
three dimensional array, bound end.
- The coordinates of the start point of the left side of the road
stored in a three dimensional array, left start.
- The coordinates of the end point of left side of the road stored in
a three dimensional array, left end.
- The coordinates of the start point of the right side of the road
stored in a three dimensional array, rightstart.
- The coordinates of the end point of right side of the road stored
in a three dimensional array, right end.
- A boolean, start corner flag, which is TRUE if the gridequare
corner at the boundary's start is ALREADY in the road polygon
array, FALSE otherwise.
- A boolean, end_ corner flag, which is TRUE if the gridsquare
corner at the boundary's end is ALREADY in the road polygon
array, FALSE otherwise.
- The partially complete road polygon array, roadpoly.

108

- An integer, vertex_cUn, that is the number of vertices currently in
the road _poly army.

Output: Doboundary outputs the following:
- start-corner flag (see Inputs for a description)
- end-cornerJlag (see Inputs for a description)
- road_poly, the road polygon array with the vertices along this
boundary added.
- vertexent (see Inputs for a description)

Side Effects: None.

Description: Doboundary's purpose is to find all the intersections of the road's
left and right sides with the input boundary of a gridtriangle. As
an intersection is found the point is put into a temporary array.
After all the intersections are found for the boundary the points in
the temporary array are sorted then added to the existing
roadpoly array. The order of the sorting is such that the resul~ing
road poly array will be ordered counterclockwise. See Chapter
VIII for a detailed description of building the roads.

EDIT INDBOX.C
Input: The inputs to edit indbox are the name of the indicator object, the

tags within that object for each of the indicators, and current
values for the following missile parameters: X, Y, and Z position
coordinates, pan, tilt, and zoom angles, and designate/reject
status.

Output: None.

Side Effects: Since edit indboz changes the indicator object, it has the side
effect of changing the display when the indicator object is next
called and displayed.

Description: The indicator object is edited between each display frame so that
the heads-up display and the indicator box indicators show the
current values for the missile's speed, heading, altitude, camera
pan angle, camera tilt angle, camera field of view (zoom), and
designate/reject status. The input speed, heading, and MSL
altitude (Y position coordinate) are converted to strings for
display. AGL altitude is calculated as the difference between MSL
altitude and the elevation of the ground directly below the missile
as obtained from gndlevel with the X and Z position coordinates
as input. The boolean designate determines whether
"DESIGNATE" or "REJECT" is printed in the lower left corner
of the terrain display. Finally, the positions of the tilt, pan, and

109

zoom indicators are calculated from the missile parameters. The
equations in the code have been simplified to avoid excess
computation; the derivations are given below.

The x screen coordinate of the zoom (field of view, or fov) indicator
is fixed. The y screen coordinate varies from 200 (at 80 fov) to 70
(at 550 fov). The input missile parameter zoom is in tenths of
degrees, and thus ranges from 80 to 550. The y coordinate is
determined from Equation A.1.

[(zoom * 200 - 701

10 1 55 -8j
(A.1)

= zoom * -0.2766 + 222.128

Likewise, the screen x coordinate of the tilt indicator is fixed, while
the y coordinate varies from 680 (at +250 tilt) to 50 (at -250 tilt).
The input missile parameter tilt is in radians, and is converted to
degrees by multiplying it with the RTOD (Radians TO Degrees)
constant from the header file fogm.h. The y coordinate of the tilt
indicator is calculated as shown in Equation A.2.

S 5 + tlt*DTOR)+25 6 -50

(A.2)

= tilt * 721.92682 + 365

The pan slider bar is horizontal, so the y coordinate is fixed, and
the x coordinate ranges from 120 (at -250 pan) to 750 (at +250
pan). Like tilt, the pan value is in radians and must be converted
to degrees. The pan indicator x coordinate is given by Equation
A.3.

x = 750 -1 (pan *DTOR) +*25 750- 120

(25 - -251
(A.3)

= pan * -721.92682 + 435

110

EXPLOSION.C

Input: None.

Output: None.

Side Effects: None.

Description: The exploaion routine simulates the effect of a missile destroying a
target by rapidly flashing a succession of red, black, and yellow
screens. One buffer is kept black to pronounce the flash effect, and
the other buffer is alternately cleared to red, yellow, red, yellow,
and red. A short pause with a cleared, black screen is provided
before the routine exits.

FOGM.C

Input: Fogm is the name given to the main program in the simulator. It
has no parameters, but gets data from its header files and through
the readdata routine. Interactive input is also received vial the
readeontrols routine.

Output: None.

Side Effects: None.

Description: The fogm program consists of global variable declarations, local
variable declarations, system initializations, an active loop, and
some exit housekeeping. The initialization portion includes reading
in the DMA elevation data, making network connection (if in use),
setting the IRIS display configuration, defining the color table
entries, building all of the graphical objects used in the displays,
and computing the lighting and position of the polygons used to
produce the terrain image. Within the active loop is some
additional initializations and the flying loop. In the active loop
initializations, the dial and mouse controls are reset to their initial
defaults, and the display buffers are loaded with the images that
remain unchanged during flight simulation (the contour map and
the legend/instruction box). Control is then passed to the flying
loop, which produces the flight simulation images until either a
target is hit or the simulation exit command is received. If a target
was hit, an explosion is displayed and the pre-launch phase of

i designating launch and target positions is re-entered. If all three
mouse buttons have been pressed, the display is cleared and
various system parameters are reset to provide a graceful exit from

the simulator.

111

The flying loop contains the subroutine calls that produce the
simulation of flight. First, the mouse and dials are checked for
control input. Then the targets', missile's, and lookat reference
point's positions are all updated based on the elapsed time since
the previous frame and the appropriate speeds. View bounds is
called to determine which one kilometer grid squares are in view,
and then the indicators are all updated to show the new control
values, missile statistics, and view area. The main display routine
then draws the appropriate sections of the terrain, plus cultural
features and targets where appropriate. Finally, the updated
indicator objects are drawn, and the display buffers are swapped to
display the newly created image.

GAMMARAMP.C

Input: The inputs to gammaramp are a correction factor, a color table
starting index, the number of color table entries (shades) to be
defined, red, green, and blue intensities for the brightest color to be
defined, and finally, red, green, and blue intensities for the darkest
color to be defined.

Output: None.

Side Effects: Gammaramp has the side effect of defining entries in the system
color table.

Description: Displayed colors do not correspond linearly to the numeric red,
green, and blue intensity values that are used to produce them. If a
range of colors (0 .. #colors-l) is defined in the straightforward way
with a uniform increment, the intensity of the n color (I.) is
given by Equation A.4, and the bright colors will appear more
widely spaced than the dark colors.

Mozl - Mini
I = n - + Mini (A.4)

colors

Gammaramp avoids this by using a power function to increase
spacing between the dark colors' intensity values and to decrease
the intensity increment as the colors get brighter. The strength of
the correction is determined by a value -y, which is constant for a
given range, but must be experimentally determined for each range
that differs in color or number of colors. FOG-M uses a -y value of
I.S. The intensity of the nA color in a gammaramp created table is
given by Equation A.5.

112

......

11"
I 4 n (Mz - MiI) +Min (A.s)

#colors -I

GETTGTPOS.C

Input: The input to gettgt poe is a socket number for Ethernet
communication (if in use), a boolean indicating designate/reject
status, the index of the currently designated target, and the

6"name" of the tank object.

Output: Output is the new X, Y,Z position coordinates of the currently
designated target.

Side Effects: Get tgt poe updates several global data structures. It sets the
number of target images, updates the target position arrays, and
updates the array of target object names.

Description: The primary purpose of get tgt poe is to move the targets in the
simulation. If the networking capability is in use, the target
positions for the next frame are received over the network. When
networking is not in use, targets are moved at a set speed of fifteen
knots, and reverse course when they reach the boundaries of the
ten kilometer square terrain area. As explained in Chapter VII, an
array of graphical objects is defined to match one object per one
hundred meter square of terrain, and this array is also used as
booleans to indicate the presence or absence of targets in the one
hundred meter grid square. Get tgt poe begins by removing each
target from this array. New target positions are calculated or
received over the network. If one of the targets has been "locked-
onto," its new position is returned to be used as the current aim
point for the missile. This is easily determined if networking is off
because the designated target's index remains the same and the
new position can be directly accessed. The index correspondence is
not guaranteed when networking, so the index of the new target
whose coordinates are closest to the old targeted point is used.

Targets that straddle a one hundred meter grid square boundary
must be drawn on top of both (or possibly all four) grid squares in
order to avoid being partially obscured by whichever square is
drawn last. (The target must be drawn immediately after the grid
square on which it rests to ensure that the target will be obscured
when it should be by terrain drawn in the foreground.) Since the
calculation of boundary intersection requires several trigonometric
functions plus an allowance for the distance between the center of

113

the tank and its boundaries (which varies with the direction of the
tank), a simplifying algorithm in used. If the tank is close enough
to a boundary that the most distant part of the tank might cross
the boundary, the target is also drawn after the adjoining grid
square(s) (see Figure 7.3). This is done by adding a "new" target
t, the array of target objects. The "new" target object is drawn at
the exact same location in the three-dimensional terrain, but it is
drawn after a different one hundred meter grid square, so it will
have different target object array indices, and be in a separate
target object.

After all of the targets (originals and boundary copies) have
updated positions and target object array indices, objects are
added to the target object array as described in Chapter VII. This
array is then used by the terrain display routine to actually draw
the targets.

GND LEVEL.C

Input: Gnd level takes as inputs the X and Z coordinates of the point for
which the elevation is desired.

Output: Gnd level returns a float which is the elevation at point X and Z.

Side Effects: None.

Description: Gnd level computes, through interpolation, the scaled elevation of
any point within the terrain boundaries. A calculation is done to
determine which gridtriangle contains the point. Then, using the
known elevations at the vertices of the triangle, the elevation of the
point is found.

INTHISPOLY.C
Input: In this-poly takes the following inputs:

- An array of points, polygon, which define a polygon. (Note: only
the X and Z coordinates of the points are used, the Y value is
ignored).
- An integer, num vertez, that is the number of vertices in
polygon.
- A point, pnt, that is to be tested. (Note: only the X and Z
coordinates of the point is used, the Y value is ignored).

Output: Inthispoly returns a boolean which is TRUE if pnt is inside the
polygon defined by polygon, FALSE otherwise.

114

I II |J

Side Effects: None.
Description: In thi-poly is a function which tests whether a point is inside a

given polygon, where both the point and the polygon are in the XZ
plane. The algorithm used constructs a bounding box around the
polygon. If the point lies outside the bounding it obviously can
not be inside the polygon. If the point lies inside the bounding box
a further test is made. A line is constructed from a point outside
the bounding box to the point to be tested. Each of the edges of
the polygons are then tested to see if they intersect the constructed
line and a count is kept of the number that do intersect. The
point lies inside the polygon if and only if the constructed line
intersects an odd number of the polygon's edges.

INITCTRLS.C

Input: Init etrl. takes as inputs the initial altitude of the missile, in feet;
the initial heading of the missile in degrees; and a boolean,
greyecale, which is TRUE if greyscaled terrain is to be displayed
and FALSE if color terrain is to be displayed.

Output: Init ctrle has as outputs the initial pan angle of the camera in
radians; the initial tilt angle of the camera in radians, and the
initial zoom setting of the camera in tenths of a degree.

Side Effects: The MOUSEX, MOUSEY, DIALO, DIALI, DIAL2, and DIAL3
valuators are set as a result of calling this routine.

Description: Init ctria's purpose is to initialize the mouse and dial valuators
used for the operator controls. The initial altitude, heading, and
greyscale valuator settings are passed in as inputs. The pan, tilt,
and field of view settings are read from an "include" file and their
values passed back as outputs.

INIT IRIS.C
Input: None.

Output: None.

Side Effects: Calling this routine sets the Iris attributes and configures the Iris.

Description: Init irie accomplishes the following: it puts the Iris into
doublebuffer mode, sets the chunksize (the minimum memory
increment used in objects), sets the monitor type to either NTSC
or HZ60, and enables backface polygon removal.

115

INITTGTS.C

Input: None.

Output: None.
Side Effects: Init tgts always initializes the global target object array to all

zeros. If target data is not being received over the network,
init_tgts also defines ten targets by setting initial values in the
global target counter, target position array, and target direction
array. An auxiliary function init_tgt is used to perform the actual
update of the global arrays.

INTERPELEV.C

Input: Interpcelev takes three inputs, each an array of X, Y, and Z
coordinates, representing a point. One array is the start point of a
line, the second array is the end point of a line, and the third array
is a point along the line.

Output: Interp elev returns a float that is the elevation value of the point
along the line.

Side Effects: None.
Description: Interpelev returns a float which is the linear interpolation of the

Y (elevation) coordinate of the point along the line, based on the
elevations at the start and end points of the line.

LIGHT ORIENT.C

Input: Light orient takes as inputs the following:
- An array of coordinates for the polygon.
- An integer, num coords, the number of coordinates in the
polygon.
- The X, Y, and Z coordinates of a point that is "behind" the
polygon (an interior point).
- The X, Y, and Z coordinates of a light source.
- The minimum and maximum color map indices to be used for
this polygon.

Output: Light orient returns the color map index of the color to use in
lighting this polygon. It also reorders the polygon array (if
necessary) so that the points are ordered counterclockwise.

Side Effects: None.

Description: Light orient computes a lighting for a polygon based on Lambert's
cosine law, which states that the intensity of the light reflected

116

from an object is proportional to the coe(f), where 0 is the angle
of incidence of the light ray. (see Figure 5.2). Ligh orient also
order. the vertices of the polygon in a counterclockwise fashion so
that backface polygon removal can take place (see the module
description for npoljorient).

LINEINTER2.C

Input: Line inter2 takes the following inputs:
- An army containing the X and Z coordinates of the start point of
line one is ignored.)
- An army containing the X and Z coordinates of the end of
line one. (Note: a three element array is used, but the second, Y
coordinate, element is ignored.)
- An array containing the X, Y, and Z coordinates of the start of
line two. (Note: a three element array is used, but the second, Y
coordinate, element is ignored.)
- An array containing the X, Y, and Z coordinates of the end of
line two. (Note: a three element array is used, but the second, Y
coojdinate, element is ignored.)

Output: Line inter2 returns as outputs:
- An array containing the X and Z coordinates of the intersection
of line one and line two. If the lines do not intersect these values
are undefined not considered in the calculation).
- An integer which can be interpreted as follows:

0 - the lines do not intersect.
1 - the lines intersect, but the intersection uses an
extension of at least one of the lines past its start or
end points.
2 - the lines intersect, and the intersection occurs
between the input start and end points of both lines.

Side Effects: None.

Description: Line inter2 computes the point of intersection between two lines
in the XZ plane. The type of intersection, as explained above in
"Output" is also determined. Throughout the routine, three
element arrays are used for compatibility with other routines. The
second, Y, coordinate is not considered in any of the calculations.

MAKEINDBOX.C

Input: None.

117

- lIT

Output: Mekeindboz returns a graphical object "name," tags for editing the
speed, direction, altitude, and designate/reject readouts, and tags
for editing the zoom, pan, and tilt indicators.

Side Effects: None.

Description: Makeirdboz generates a graphical object that contains both the
indicator box in the middle of the displays on the right side of the
screen and the "heads-up" display that is superimposed on the
terrain image (Figure 6.8). The object consists almost entirely of
straightforward line and character string drawing commands, but
there are two interesting points. First, within a single object, there
are two different coordinate systems: one for the indicators
superimposed on the terrain, and another for the separate indicator
box. This is accomplished with an ortho2 call for each coordinate
system, and by bracketing each ortho2 with pushmatriz and
popmatriz commands. Note that the heads-up display is truly
superimposed; it is specified in two-dimensional screen coordinates
as opposed to the three-dimensional terrain coordinates.

The second interesting aspect is the movement of the slider bar
indicators. Drawing the indicators as polygons would require a
se-luence of pushmatriz, translate, and popmatriz calls for each
indicator, with movement achieved by editing the translate call. To
avoid all of this matrix movement and multiplication, the
"triangle" of the indicator is actually an overlapped line that
"fills" the triangle by spiraling inwards. The line is drawn relative
to the indicated point, with each segment of the line specified as
offsets from that initial point, rather than as absolute coordinates
(Figure A.1). Movement of an indicator triangle defined in this
way is achieved by editing the parameters of a move2 call in the
object, which sets the current graphics drawing position to the
indicated point on the slider bar scale Makeindboz is called once
by fogm before the flying loop is entered, and then the object is
edited (to update the indicator values) and called (to display it)
every frame.

MAKEINSTRBOX.C

Input: None.

Output: Makeintrboz returns the name of an object to fogm.

Side Effects: None.

118

LI

(00,0)

((.10,-5

(0,0)

Indicator Fill using Line Segments

Figure A.1

119Q

Description: Makeinetrboz creates the object that produces the display in the
lower right of the screen (Figure 6.8) during flight simulation. This
display contains the legend for the FOG-M controls and the flight
parameters they affect. Makeinstrboz is called once by fogm to
create the object, and then the object is called twice per flight to
put the image into each buffer. Note that writemasks are not
necessary as they are with makermap and makenavbox, because
nothing else writes to the instruction box portion of the screen
during flight. The image thus remains undisturbed in the bitplanes
despite the changes in other screen areas.

MAKEMAP.C

Input: The input to makernap is the globally defined array of elevation
and vegetation values, gridpizel.

Output: The output from makermap is a graphical object "name," which is
returned to fogm.

Side Effects: None.

Description: Makemap generates the object containing the contour map and
grid that appear full screen during the pre-launch phase, and
appear in the upper right corner of the screen during flight
simulation (Figure 4.1). The map is produced using the
methodology described in Chapter IV. Fogm calls the object
returned by draweontour twice, in order to place the map image in
both buffers. The image is then protected from overwrite by a
writemask. Fogm also passes the object name to prelaunch, which
uses it in much the same way as fogm.

MAKESCREENS.C

Input: None.

Output: Makescreens returns an array of objects: instruction panel,
statistics box, flight path between launch and target endpoints,
and the three welcome screens, plus tags to update the statistics
and flight path.

Side Effects: None.

Description: Makesereens builds all of the objects (mostly screens of text) that
are used by prelaunch.

120

MAKETANK.C

Input: None.

Output: Maketank returns the name of an object containing a single tank,
drawn around the origin.

Side Effects: None.

Description: Maketank builds a object that consists solely of the drawing
commands to produce a single tank. The tank is thirty-two feet
long, ten feet high, and ten feet wide. Its center bottom is at the
origin (coordinates 0,0,0), with its left side on the plane Z = -5, its
back on the plane X - -15, its bottom on the plane Y = 0, and it
faces to the right along the positive x axis. For each of the twenty
polygon faces that make the tank, the X, Y, and Z coordinates of
each polygon vertex are stored in an array, passed to ightorient,
and then drawn with poif, the filled polygon drawing command.
Lightorient ensures the vertices are ordered counter-clockwise in
the array (with respect to an interior point) for backface polygon
removal, and then calculates the appropriate color for the polygon
using the same lighting model that is used for the terrain (see
Chapter V).

NEARESTTGT.C

Input: Nearest_tgt takes as inputs the X, Y, and Z coordinates of the
missile position, and the X, Y, and Z coordinates of the camera's
look-at position. (Tue end points of the line of sight vector).

Output: Nearest tug returns as output an integer, tgidz, which is the
target index of the target that is closest to the line of sight vector.

Side Effects: None.

Description: For each of the existing targets, nearest_tt computes the distance
between the target and the line of sight vector. It returns the
index of the target that was found to be closest. In the case of two
targets which are the same distance apart, the highest index value
will be returned.

NPOLYORIENT.C

Input: Npolyorient takes as input:
- An integer, num oords, that is the number of vertices in the
polygon.
- An array containing tne coordinates of the polygon.
- The X, Y, and Z coordinates of a point that is "behind" the

131

11141 & I - I

polygon (an "interior" point).

Output: Npolyorient returns as output an integer which is interpreted as:
1 - the vertices of the polygon are ordered clockwise.
2 - the vertices of the polygon are ordered
counterclockwise.

Side Effects: None.

Description: Npolyorient determines if the polygon is ordered clockwise or
counterclockwise by computing two points: one along the normal
vector and the other, the same distance from the polygon, but
along the vector in the direction opposite the normal. Next the
distance between these points and the "interior" point is
computed. If the "interior" point is closer to the point along the
normal vector, the polygon is ordered clockwise, otherwise the
polygon is ordered counterclockwise.

PRELAUNCH.C

Input: The input to prelaunch is two arrays. The first contains objects,
and the second contains tags for editing those objects.

Output: Prelaunch returns the X, Y, and Z coordinates of the missile's
designated launch position, and the initial direction of flight for the
missile. This direction is returned in both radians and compass
degrees (Figure 7.1).

Side Effects: None.

Description: Prelaunch first provides three screens of introductory information.
Each screen is an object defined by makescreens. After those, the
user is presented with a full screen contour map of the ten
kilometer by ten kilometer area available for overflight. Mouse-
selected points define the missile's initial position and diretion of
flight, and are displayed on top of the map. The map is writemask
protected, so it is only drawn twice (once for each buffer) even
though the flight path is repeatedly drawn and erased on top of the
map. The flight path is made to act like a rubber band between
the launch and cursor positions by repeatedly editing of the
positions in the object containing the flight path line drawing
commands. Once the flight path is confirmed, the launch position
and heading are returned to the fogm program.

122

i~

RANDNUM.C

Input: Randnum uses the global random number seed.

Output: Randnum returns a floating point random number.

Side Effects: The global seed value used by randnum is updated during every
invocation.

Description: Randnum is a linear congruential pseudo-random number
generator. The algorithm is a modified version of the one given by
Sedgewick [Ref. 131. It uses a a special piecewise multiplication
routine murt to preserve the low-order digits of the newly
generated seed even in case of overflow. The value returned is the
new seed, scaled to fall between zero and one, inclusive. The
random numbers are used in fogm to vary the point on the tank
that the missile aims for. This simulates the variance in impact
point that results from the optical homing of the real missile.

RANDSEED.C

Input: Randseed takes a long integer as input.

Output: None.

Side Effects: Randaeed updates the global random number seed value.

Description: The pseudo-random number generator implemented in randnum
always returns the same string of numbers when it starts with a
given seed value. Randseed provides the means to change that
initial seed value so that different program runs will have different
strings of "random" numbers.

READCONTROLS.C
Input: The inputs to readcontrols are the global X, Y, and Z random

offset values for the aim point on the target, the current
designate/reject status, and the black-and-white versus color
boolean greyscale.

Output: All of the user-commanded control values are output from
readcontrols: missile speed, heading and altitude, camera pan, tilt,
and zoom angles, plus designate/reject status, greyscale status.
ReadcontrolB also returns values for the booleans that control the
acti,)e and flying loops.

Side Effects: When a target is first designated, readeontrols calls randnum and
updates the global target aim offsets randz, randy, and randz.

123

.4C

Description: Readeontrols checks the status of all of the valuators that provide
input to the FOG-M simulator, and performs scaling, units
conversion, and immediate processing, as appropriate. It
determines whether to accept or reject a "designate" command,
based on the color index of the pixel at the center of the screen. (If
a tank is in the crosshairs, the color index will be from the tank's
color ramp, and a designate command will be accepted. Otherwise,
a designate command will be ignored.)

READDATA.C

Input: None.

Output: None.

Side Effects: Readdata fills the global array gridpizel.

Description: Readdata opens and reads the values from the terrain elevation
data file and stores the values in the gridpizel array. Note that the
elevation data file is arranged in a format as discussed in Chapter
III. The gridpizel array is arranged in straight rows and columns
analogous to the geographic positions of the data.

ROAD BOUNDS.C

Input: Road bounds takes as input the following:
- Three arrays (ptl, pt2 and pt3) containing the X and Z
coordinates of three points along the centerline of the road. The
line segment from pt 1 to pt2 defines the first segment of the road.
The segment from pt2 to pt3 defines the next segment of the road.
- A float, width, which is the width of the road in feet.

Output: Road bounds returns the following as outputs: - Four arrays
(left ptl, right_pt 1, leftpt2, and rightpt2) which contain the X

and Z coordinates of the first segment's left and right sides. The
left side runs from leftptl to left_ pt2 and the right side runs from
rightpt 1 to right pt 2.
- Four integers, first zgrid, first_zgrid, lastzgrid and lastzgrid,
which are the indices of the bounding box surrounding the first
road segment (see Figure 8.2).

Side Effects: None.

Description: Given three points along the center line of the road, and the road's
width, road bounds computes the start and end coordinates for the
first segment's left and right sides. The end coordinates are
computed as the intersection of the first segment's left (or right)

124

side with the second segment's left (or right) side. This insures
that adjoining segments will meet cleanly. The second function of
road bounda is to compute a bounding box around the first road
segment. This box is defined as the row indices of the northern
and southern most gridsquares that the road segment intersects,
and the column indices of the eastern and western most gridsquares
that the road segment intersects (See Chapter VIII for a more
detailed discussion).

SORTARRAY.C

Input: Sort-array takes as inputs:
- An array of points, pnts.
- An integer that is the number of entries in the pnta array.
- A boolean, which is TRUE if the array should be sorted in
descending order, FALSE if the array should be sorted in ascending
order.
- The index number of the coordinate that is the sort key: 0 for the
X coordinate, 1 for the Y coordinate, and 2 for the Z coordinate.

Output: Sortarray returns the array pnt8 with the points sorted according
to the input parameters.

Side Effects: None.

Description: Sortarray performs a simple "bubble-sort" of the input points
according to the input parameters.

UPLOOKPOS.C

Input: Up lookpo8 takes the following as inputs:
- The heading of the missile in radians.
- The pan angle of the camera in radians.
- The tilt angle of the camera in radians.
- The X, Y, and Z coordinates of the missile's position.
- The X, Y, and Z coordinates of the locked-on target (if any).
- A boolean which is TRUE if the missile is locked-on a target,
FALSE otherwise.

Output: Uplookpo8 returns as outputs the X, Y, and Z coordinates of the
camera's look-at position.

Side Effects: None.

Description: Uplook position computes a point along the camera's line of
sight. If the missile is locked on a target, the look-at position is the
locked-on target's position. Otherwise it is any point along the

125

camera's line of sight. See Chapter VI and Figure 6.2 for a more
detailed discussion.

UP MSL POSIT.C

Input: Upin.!_posit takes as inputs:
- The heading of the missile in radians.
- The speed of the missile in knots.
- The X, Y, and Z coordinates of the missile's position.
- The X, Y, and Z coordinates of the locked-on target (if any).
- A boolean which is TRUE if the missile is locked-on a target,
FALSE otherwise.

Output: Up-meal_posit returns as outputs:
- The new heading of the missile in radians, if it was changed to
track a locked-on target.
- The new heading of the missile in degrees measured in the
compass convention.

A boolean which is TRUE if the missile is still flying (has not hit
a target), and FALSE if the missile has hit the target.

Side Effects: None.

Description: Up_mel_posit calculates a new missile position for the next frame.
The new position is either based on the commanded direction,
speed, and altitude (when the missile is NOT locked onto a target),
or the commanded speed and the direction to the target (if the
missile is locked onto a target). For a detailed discussion of the
routine, see Chapter VI.

VIEWBOUNDS.C

Input: Viewbounds takes as inputs the X, Y, and Z coordinates of the
missile's position; the X, Y, and Z coordinates of the camera's
look-at position; and the field of view (zoom) value.

Output: View bounds returns as outputs the row indices of the northern
and southern most gridsquares to be drawn, and the column
indices of the western and eastern most gridsquares to be drawn.

Side Effects: None.

Description: The purpose of view bounds is to construct a bounding box around
the gridsquares which are to be drawn. The box is constructed by
extending the line of sight vector down until it intersects the
minimum elevation plane. The view bounds extends 20
gridsquares north, south, east, and west of this intersection point.

126

If the missile's position is not within the bounds, the bounds are
extended to include the missile's position. For a more detailed
discussion, see Chapter VI and Figure 6.5

127

APPENDIX B - SOURCE LISTINGS

BUILDROAD

#include "stdio.h"
#include "fogm.h"
#iuclude "files.h"
#include "gl.h"
#include "jnath.h"

#define X 0
#define Y 1
#define Z 2

#define DIAGONAL 0
#define HORIZONTAL 1
#define VERTICAL 2

#define LOWER 0
#define UPPER 1

build -road()

extern Objet roadlg99I991;
extern short grid pixel[10111001;
FILE *fp, *fopeno;
Bloat road width; /* road width if feet/
int hum-pta; /* number of data points

for the road seqment /
int segnum =0;
char tenipilO0l;
int cnt, i, j;
int vertex cnt, num _duplicates;
float gnd _level();
float elev;
float ptl3, pL213J, ptSISI;
float nw _cornerfsi, ne-corneri~i, aw _corneri~i, se-cornert3l;
float right _ ptlLSI, right _pt2131;
float left ptl[31, left _pt2I3l;
float north _ bound, south -bound, east-bound, west-bound;
float delta x, delta-z;
float seg_dir;
int ne -flag, nw -flag, se-flag, aw-flag;
int xgrid, sgrid;
mnt first xgrid, last-xgrid, first_sgrid, last_sgrid;
float polylIIOII3];

frontbuffer(TRUE);
fp = fopen (ROAD_-FILE, "rt);

128

while (fscanfqfp, "1%e", &road -width) != EOF){
fscanf(fp, "%d", knum -pin);
fscaanf(fp, "%e %e", &ptljX!, &ptlZfl);
tscanf(fp, "%e %ell, &pt2IXI, &pt2IZj);

delta -x = pt21I j- PtlIN;
delta__a pt2IZI - ptlIZI;
meg -dir atan2(delta-s, delta-x);
left ptlIjX = ptlixi + (co@(seg dir + HALFPI)*road width/2.0);
right-ptl',XJ = ptlixi + (cos(ineg_dir - HALFPI)*road-width/2.O);
left_ptlfZj = ptl(Zj + (sin(seg -dir + HALFPI)"road -width/2.0);
right_piliZi = ptIIZI + (sin(seg -dir - HALFPI) * road-width/2.0);
for (cnt = 3; cnt <= num-pta + 1; ++cnt)(

if (cnt <= numjpta) I
fscanf(fp, "'%e %e,~ &ptSIXl, &pts(Zj);

elsem
ptSIXI pt2lXI;
pt.3iZI = pt2IZl;

/ * print new road segment number on title screen
inegnum += 1;
pushmatrixo;
ortho2(0.0, 1023.0, 0.0, 767.0);
viewport(0, 1023,0,767);
sprintf(temp, "Building road segment: %d%", segnum);
color(BLUE);
rectf(780.0, 20.0, 1010.0, 30.0);)
color(CYAN);
cmov2i(780, 20);
charstr(temp);
popmatrixo;
/* determine the boundaries of this road segment .
road -bounds(ptl, pt2, pt3, road-width, left_ptl, right-ptl,
left -pt2, right-pt2, &first-xgrid,
&first - grid, &last-xgrid, &Iast-sgrid);
for (xgrid = first -xgrid; xgrid <= last-xgrid; ++xgrid)(

for (zgrid = first zgrid; zgrid <= last _agrid; ++sgrid){
ne-flag = FALSE;
nw-flag =FALSE;

aw flag =FALSE;

se flag =FALSE;

vertex cnt =-1;

east bound =(float)(xgrid + 1) * FT_OOM;
west bound =(float)(xgrid) " FTlOOM;
north- bound = (float)(sgrid + 1) * FT lOOM;
south-bound = (float)(sgrid) * FT lOO-M;

sw-cornerlXl = west-bound;
sw -cornerZI = south _bound;
elev = grid pixel IsgridJlxgrid I k elev _mask;
sw-cornerlYl = pow(elev, ALTSCALE);

scoerIXI = east-bound;
s- crerfZj = south bound;

elev = gridpixeIjsgrid-Jjxgrid+1j & elev -mask;
se corner(YI = pow(elev,ALTSCALE);

nw-corIari = e*t-bound;
my cornerIZ) north_boun;
elev = gridpixel~sgrid+1Jjxgjridj & elev maak;
nw coner[Y] pow(elev,ALTSCALE);

me-corueriXi= east-bound;
ne cornerIZJ north-bound;
elev = gridpixeljsgrid+1jjxgrid+1j & .1ev -mask;
me corner[YI = pow(elev, ALTSCALE);

/* determine points of intersection between the left ad
right sides of the road and the eastern grid boundary
and add these points to the polygon vertex array */

do boundary(VERTICAL, UPPER, xgrid, sgrid, se corner, me-corner,
left ptl1, left -pt2, right -ptl1, right -pt2, &se -flag,
&ne-flag, polyl, &vertex-cnt);

/* determine points of intersection between the left and
right sides of the road and the northern grid boundary
and insert these points into the polygon vertex array 0

do-boundary (HORIZONTAL, UPPER, xgrid, sgrid, ne-corner,
nw corner, left-ptl, leftp2 right _ptl,
right-pt2, &ne-fLg, &nw _flag, polyl, &vertex-cnt),

/* determine points of intersection between the left and
tight sides of the road and the diagonal and
insert these pointainto the polygon vertex array ~

do boundary (DIAGONAL, UPPER, xgrid, sgrid, nw corner, se corner,
left _ptl1, left _pt2, right -pt 1, right pt2, & nw _flag,
&se-flag, polyl, &vertex-cnt);
/0 remove duplicate entries from the polygon array /
mum-duplicates = 0;
for (i = 1; i <= vertex cnt; ++i){

if ((poly1lilf0o = poly1Ji-ljjO1) &&
(polyllill2J polylli12))) I

for U = il j < vertex cnt - nui _duplicates; + +j) I

polyluijjIO = polyI'j+1j10j;

poly1UII2I = polyl5111lj21;

num _duplicates += 1;

vertex cnt - num _duplicates;

130

if (vertex-cat > 0) 4/* add polygon to grid__object .
if (roadlsgridlxgridl != 0) (

editobj(roadjIsgrid I Ixgrid 1);

else4
road jugridllxgrid= genobjO);
makeobj(roadjsgridjjxgrid))

color(ROADGREY);
polf(vertex cat +1, &poly1OI1Oj);
linewidtI)
poly(vertex -cat + 1, &poyljO)JOJ);
closeobjo;

vertex cat--1
ne-flag =FALSE;

3w flag =FALSE;

sw flag =FALSE;

se-flag FALSE;

/* determine points of intersection between the left and
right sides of the road and the southern grid boundary
and insert these points into the polgon vertex array *

do boundary (HORIZONTAL, LOWER, xgrid, agrid, sw corner,
se corner, left _pti, left _pt2, rightptl,
right-pC2, &sw-flag, kue-flag, polyl, &vertex-cat);

/* determine points of intersection between the left and
right sides of the road and the diagonal and
add these points to the polygon vertex array /

do -boundary (DIAGONAL, LOWER, xgrid, &grid, me-corner, nw-corner,
let_ptl, leftypt2, right_p11, right pt2, &eflag,
&nw-flag, polyl, &vertex-cnt);

/* determine points of intersection between the left and
right sides of the road and the western grid bound
and add these points to the polygon vertex array *

do boundary (VERTICAL, LOWER, xgrid, &grid, aw corner, aw corner,
left ptl, left_pt2, right-ptl, right pt2, &nw flag,
&sw-flag, polyl, &vertex-cnt);

/remove duplicate entries from the polygon array/

num duplicates = 0;
for 0(i 1; i < = vertex cat; +s+i)4

if ((poyiji) JO polylji-1JO)) kk
(polylli])2) = polylji-11121)) I

for (j= i; j < vertex cat - nuin duplicates; ++j) 4
polyjJJOJ = polylbj+11JO);
polyl'j)(l = polyluj*11(11;

131

polyllIll1 = polylj+ 1112!;

num-duplicatai += 11

vertex cut - nm duplicates;
if (vertex cut > 0) 4 /* add polygon to grid-object .

if (&WodlagidjXgId != 0) 1
*diobj(rodJsgridJ~xgridJ),

else4
road Isgridl Jxgrid I = genobjo;
makeobj(roadmgrid~xgridI);

color(ROADGREY);
polf(vertex cut +1, &poly11OJIOI);
tinewidth(f);
poly(vertex _cnt + 1, &poly11OIIOI);
closeobjo;

right_ptliXi right -pt2IXI;
right_ptlIZI =right_pt2jZ),
left ptlIXI = left_pt2IXI;
left-ptliZi = left-pt2IZ;
ptIfXJ = p&2(XI;
p&IiZI= pt2IZJ;
pt2IXl ptSIX!;
p&21ZI pt3IZI;,

fclOseVP);
frontbufler(FALSE);

132

BUILDTURRAIN

buildterrain.c - this function builds objects representing 1km grid squares
in S-D, with ea.ch grid square generating 4 objects, identical except for
order of drawing

#include "gikb" /* get the graphics defs
* include "devicekb" f* get the graphics device defs
#include "fogm.h" /. default constants S

#incluade "math.h" /* math function declarations/

buildterrain()

/array of data points to build the terrain/
extern short gridpiel[lOO1jIOOJ;

extern Bloat savetriagle19911991 121131 lII;

extern long gnidcolorgl919];

extern Object target(9911991;

extern float ground _plaue4lSI;

extern long gnd -plane -color;

float gad _plane_ht;

Coord trissigleIS1jS1, triangle23)1SJ; /* polygon coordinates '

short xgrid, sgrid; /indexes into the grid object array .

short endrow, endcol; /* miscellaneous indexes etc '
int row, col;

float ax,ay,as; /* interior point for use in the lightpoly function '

Bloat lx,ly,ls; /* position of fight source in lightpoly function .

/* min and max colormap indexes for lighting the poly/

long colormin, colormax;

/* color index to use returned by the lightpoly function .
long colortouse, colorl, color2,

char tempIS01; /* character string for countdown .

float X'Y;
float gammacort;
long rampamax, rampamin, rampbmax, ram pbm in;

133

iant startrow, startcol, coordidx, vertex;

lx =500 FT 1OOM; /* direction of light source
ly = 10000 * FT_IOOM;
Is = ly;

frontbuffer(TRUE); /* write to front buffer /

/* compute color for ground_plane polygon */
gnd_plsae_ht = pow((loAt)MIN, ALTSCALE);
ground plane0 0] 0 - -NUMXGRIDS * FEETPERGRID;
ground planelolIlI = gnd plane ht;
ground plue[O 121 = NUMZGRIDS * FEETPERGRID;

ground planel 1101 = 2.0 * NUMXGRIDS * FEETPERGRID;
ground planeIjI[1] = gnd plane ht;
ground plane[l121 = NUMZGRIDS * FEETPERGRID;

ground plane(2101 = 2.0 * NUMXGRIDS * FEETPERGRID;
ground planeJ2jjlf = gnd planeht;
ground _planeJ21[21 = -2.0 * NUMZGRIDS * FEETPERGRID;

ground plane[$ 101 = -NUMXGRIDS * FEETPERGRID;
ground _planelS11 1 = gnd plane ht;
ground planeJ3f[2] = -2.0 * NUMZGRIDS * FEETPERGRID;

lightorient (groundplane,4,0.0,0.0,0.0,Ix,ly,ls,256,46 1, &gndplanecolor);

/* compute coordinates and colors for triangles and store in global
variable savetriangle for later display

for (col = 0; col < 99; ++col) {
/* print new countdown number on title screen
pushmatrixof;
ortho2(0.0, 1023.0, 0.0, T67.0);
viewport(0, 1023,0.767);
sprintf(temp, "Countdown to launch: %d%", 98 - col);
color(BLUE);
rectf(780.0, 15.0, 1010.0, 30.0);
color(CYAN);
cmov2i(788, 20);
charstr(temp);
popmatrixO;

for (row = 0; row < 99; + +row) {

/* choose which color ramp to use so that a checker board
effect is acheived /

if ((row+col)%2)(
colormin = 256;
colorm.x = 461;

134

else(
colormin 462;
colormax =667;

/* build the polygon/
trianglel01l2J = (float)row *(-41.01) *8.0;
trianglelJI = (float)col *41.01 * 8.0;
trianglel [0111] pow ((Boat) (gridpixel(row[(col I&elev -mask)

,ALTSCALE);

trianglelll][21 (float)row * (.41.01) *8.0;
triangle111lj]O] (float)(col+l) *41.01 * 8.0;
trianglel 111111 = pow ((Bloat) (gridpixelfrowlIlcol+ I1Jkelev -mask)

,ALTSCALE);

triangle]21121 = (float)(row+i) * (-41.01) * 8.0;
trianglel21101 = (float)col * 41.01 * 8.0;
trianglel 12]11 = pow ((float) (gridpixel [row + 1Icollkelev -mask)

,ALTSCALE);

copy common vertex values for opposing triangle of grid 0

for (vertex = 1; vertex < 3; ++vertex) {
triangle2lvertexj 101 = triangle I vertex] 101;
triangle2 [vertex] I1I] = trianglel Ivertex] 11;
triangle2lvertexj]2] = triangle I vertex] 121;

/change corner coordinate to form opposing triangle of grid 0

triangle210121 = (float)(row+i) *(-41.01) * 8.0;
triangle2101I01 = (float)(col+i) *41.01 * 8.0;
triange2101 1] = pow ((float) (gridpixellrow+I 1I Icol+ I I&elev mask)

ALTSCALE);

/compute an interior point for triangle 1
ax = trianglel]01[0j + 15.0;
ay = -10.0;

am= triangle 110112] -15.0;

/light and orient trianglel *
lightorient(trianglel ,S,ax,ay,uz,x,ly,ls,colormin, colormax, &colorl);

/ * compute interior point for triangle2 /
ax = triangle20110] - 15.0;
ay = -10.0;
as = triangle21o]]2] + 15.0;

/ 0 compute the light for and orient triangle2/
lightorient(triangle2,S,ax,ay,as,lx,ly,ls,colormin,colormax, &color2);

/ * compute average color for the square *

135

colortoase = (colorl. + color2) /2;

/save this triangles color and orientation/
for (vertex = 0; vertex < 3; ++vertex)

for (coordidx = 0; coordidx < 3; -t+coordidx)(
savetnranglelrowl [coil 101 [vertex]llcoordidxl-

trianglelivertexi lcoordidxl;
savetrianglelrowl [coil II lvertex] Icoordidxj

triangle2 [vertex] jcoordidx];

gridcolorirowljcoll colortouse;

frontbuffer(FALSE);

I'

MUM=

COLORRAMP

/* constructs the color ramps to be used for displaying the terrain.
If greyscale is true, constructs greyscale ramps, else it
constructs green ramps. /

#include "fogm-h" /* fogm constants/

colorramp(greyscale,init)

int greyscale, init;

/* build two gamma corrected color ramps with slightly offset colors/
if (greyscale) (

gammarampf 1.5,256,205,255,255,255,50,50,50); /* even terrain ramp/
gammaramp(1.5,462,205,245,245,245,40,40,40); /* odd terrain ramp/
gainmaramp(1 .5,668,180,235,235,235,S0,30,S0); /* tank ramp/
mapcolor(SKYI3LUE,230,230,230); /* sky color/
mapcolor(ROADGREY,35,35,35);

else{
gamma&ram p(1. 5,256,205,0,255,0,0,50,0)1 /* even terrain ramp .
gamniarampf 1.5,482,205,0,245,0,0,40,0); /* odd terrain ramp ~
gamma~ramp(1.5,668,180,255,165,55,75,55,0); /* tank ramp .
mapcolor(SI(YBLUE,200,200,255); /* sky color/
mapcolor(ROADGREY,35,35,35);

if (init){
mapcolor(16,0,70,0); /~set up colors for contour map/
mapcolor(1 7,0,80,0);
mapcolor(18,0,90,0);
mapcolor(19,0,100,0);
mapcolor(20,0, 110,0);
mapcolor(21 ,0, 120,0);
rnapcolor(22,0, 130,0);
mapcolor(23,0, 140,0);
mapcolor(24,0, 150,0);
mapcolor(25,0,165,0);
mapcolor(26,0,180,0);
mapcolor(27,0, 190,0);
mapcolor(28,0,2 10,0);
niapcolor(29,0,225,0);
mapcolor(SO,0,240,0);
mapcolor(31 ,0,255,0);
mapcolor(32,75,55,0);
mapcolor(33,95,60,0);
rnapcolor(34, 115,70,0);
mapcolor(35, 125,78,0);

137

mapcolor(S6, 135,83,0);
niapcolor(37, 145,90,0);
mnapcolor(38, 155,97,0);
mapcolor(39,165,105,O);
rnapcolor(40,175,1 10,10);
mapcolor(41, 185,113,0);
mapcolor(42,190,1 18,0);
mapcolor(43,200,127 ,0);
rnapcolor(44,210,135,30);
mapcolor(45,225, 145,35);
mapcolor(46,240, 155,45);
rnapcolor(47,255, 165,55);
for (i=64; i<128; i++) mapcolor(i,0,0,255);
for (i=128; i<256; i++) mapcolor(i,255,0,0);
rnapcolor(851,0,150,0); /* set up colors for instruction box ~
mapcolor(852,255,165,55);
mapcolor(853,95,80,0);
mapcolor(854,0,0,0); /color for indicator box background*/

136

COMPASS

/* compute the compass heading in degrees of the input direction./

#include "fogm.h" /* fogm constants .

float compass(direction)
double direction;

float compasadir;

compassdir = RTOD * direction;
if (compasdir <= 90.0)

compasadir =90.0 - compasadir;
else

compassdir =450.0 - compasadir;

return (compaasdir);

13

4U=
Ir

DISPLAYTERRAIN

/*Compute which polygons need to be drawn to display the terrain and
output them in an order such that the polygons farthest from the viewer
are drawn first and those closest are drawn hat.

Note: Eventhough this seems like a long routine, it is broken into 8
independent cases based on the direction the camera is looking.
If you understand c(ne case the others are merely mirror images of the
algorighm for other octants. 4

include "fogm.h"
#include "math.h"
include "gl.h"

display -terrain(vx, vy, vi,, px, py, pa, fovy,
firstxgrid, firstsgrid, lastxgrid, lastsgrid)

Coord vx, vy, yis, px, py, pm;
int fovy;
short firstxgrid, firstsgrid, lastxgrid, lastingrid;

extern float ground planeJ4J j31;
extern long gnd_plane color;
extern Object road1991f991;
extern Object targetIg91199);

N "tern Bloat savetriangle9g]19911211SJI3j;
extern long gridcolorl99I I991

double lookdir;
mnt threshold, count, startx, starts;
short xgrid, &ngrid;
float tanval;
float y;

if (TV) viewport(0,474,0,474);
else view port (0,767,0,767);
pushnlatrixO;

color(SKYBLUE);
clearo;

ortho2(0.0,1023.0,0.0,767.0); /* outline the screen /
color(BLACK);
recti(0,0, 1023,767);
popmatrixo;

push matrix o;
permpective(fovy, 1.0,0.0, 1g500.0);
lookat(vx'vyqvs'px'py'p2,0.0);

140

- N- %

/* determine the direction of the line of eight
lookdir =(double)&tan2((float)(vs - pa), (Boat)(-(vx.- px)));
if (lookdir < 0.0) lookdir += TWOPI;

/* lay down the ground plane/
color(gnd -plane-color);
polf(4 , ground 3 lane);

/* put the grid objects through the geometry engine in an order
based on the lookdir. */

if (lookdir > SEVEN_QTRP1)

/* 8th OCTANT ~
threshold =(int) (tan (lookdiriHALFPI) + 0.5);

count =0;

startx =lastxgrid;

starts =firstsgrid;

while (starts <= lastsgrid){
sgrid = starts;
xgrid = startx;

while ((xgrid <= lastxgrid) kk (agrid <= lastsgrid)){

color(gridcolorlzgridl Ixgridj);
po61f(3,&savetriangleisgrid Ixgrid] 101101101);
polf(S,&savetriangle[sgridl~xgridI I111101101);

if (road Isgridl Ixgrid] != 0) callobj (road Isgrid Ixgridl);
if (target lxgridj I gridj != 0) callob~J(target~xgridJ(sgridJ);
/* check if tank should be drawn now

sgrid + = 1;
count += 1;

if (count >= threshold)(
xgrid += 1;
count = 0;

startx =1

count = 0;

if (startx < firatxgrid){
startx =firstxgrid;
starts += threshold;

else if ((lookdir > THREEHALVESP1) && (lookdir <= SEVENQTR-PI))

141

/* 7th OCTANT .
tanva! taa(lookdir+HALFPI);
if (tanvul == 0.0)

threshold =1000;

emthreshold = (int)((1.0/tanval) + 0.5);

count = 0;
startx = l&Asxgrd;
starts = firtstgrid;
while (startx >= firstxgrid)

sgrid = starts;
xgrid = startx;

while ((xgrid >= firstxgrid) && (sgrid >= firstsgrid)){

color(gridcolorsgrid] Ixurid I);
polf(S,&savetrianglelsgrid] Ixgrid] 101101101);
polf(3,ksavetriangleisgrid) Ixgrid) I I1[0]f 0]);
if (road IsgridllIxgrid] !- 0) callobi (road Isgrid] Ixgridl);
if (target lxgrid I Isgridl != 0) callobj (targetlIxgrid] Isgridi);

xgrid -= 1;
count += 1;

if (count >= threshold){
sgrid -~1;

count 0;

starts += 1;
count = 0;

if (starts > lastagrid)4
starts = lastagrid;
startx -. threshold;

else if ((lookdir > FIVEQTRP1) && (lookdir <= THREEHALVESP1))

/* th OCTANT .
tanval = -tan (lookdir+HALFPI);
if (tanval == 0.0)

threshold = 1000;
else

threshold = (int)((1.0/tanvai) + 0.5);

count = 0;
startx = firstxgrid;
starts = firstsgrid;

142

while (startx <= lastxgrid){
sgrid = starts;
xgrid = startx;

while ((xgrid <= lastxgrid) && (sgrid >= Irstsgrid)){

color(gridco lorisguidixgridl);
polf(S,&savetrianglesgridlxgrid j01l0)10J);
polf(S,&savetriangleisgixgridlj1101101);

if (road Isgrid[[Ixgridl 1= 0) caflobj(roadisgridj ixgridl);
if (tsargetjxgrid]Jsgrid) I= 0) callobj(targetjxgridjgridj);
xgrid += 1;
count += 1;

if (count >= threshold).
sgrid -=1;

count =0;

starts += 1;
count = 0;

if (starts > lastsgrid){
starts = lastsgrid;
startx += threshold;

else if ((lookdir > P1) && (lookdir <= FIVEQTR-PI))

/* Sth OCTANT '
threshold = (int)(-tan(lookdir+HALFPI) + 0.5);

count = 0;
atartx = firstxgrid;
starts = firstagrid;
while (starts <= lastsgrid){

sgrid = starts;
xgrid = utartx;

while ((xgrid >= firstxgrid) && (sgrid <= lastsgrid))(
color(gridcolorlsgridlfxgrid[);
polf(S,&savetrianglelsgridj ixpidl 101101101);
poLf(3,&savetrisangleisgrid[ixgidll111101[0J);

if (roadjsgridjjxgridj != 0) callobj (road Isgrid I Ixgridl);
if (targetfxgrid j sgrid] != 0) callobj (target Ixgridj Ise&rid 1);

M ugrid += 1;
count += 1;

143

if (count >= threshold){
xgrid= 1;
count =0;

startx += 1;
count = 0;

if (startx > lastxgrid){
startx = lastxgrid;
starts += threshold;

else if ((lookdir > THREEQTR-PI) &&(lookdir <= P1))

4th OCTANT '
threshold = (int) (tan (lookdir+ HALFPI) + 0.5);

count = 0
startx = firstxgrid;
starts = lastsgrid;
while (starts >= firstsgrid){

zgrid = starts;
xgrid = startx;

while ((xgrid >= firstxgrid) && (sgrid >= firstsgrid)){

color(gridcolorisgridj Ixgridi);
polf(3,&savetrianglelzgrid(xgridf](0((0j);
polf(S,&savetrianglelsgridllxgridillOJOI 0);
if (road Isgrid] lxgrid] != 0) callobj (road IsgridlIlxgrid 1);
if (Wagetlxgrid)Izgrid) != 0) callobj (target Ixgrid] Igridfl;

sgrid - 1;
count += 1;

if (count >= threshold){
xgtd-= 1;
count =0;

startx + = 1;
count =0;

if (startx > lastxgrid)f
startx =lastxgrid;

starts -=threshold;

144

11111p . jij-'

elme if ((lookdir > HALFPI) && (lookdir <= THREEQTRP1))

3rd OCTANT 0

tanval = taa(lookdir+HALFPI);
if (tanval == 0.0)

threshold =1000;
else

threshold =(int)((1.0/tanvsal) + 0.5);

count =0;

startx = Brstxgrid;
starts =lastsgrid;

while (utartx <= lustxgrid){
sgrid = starts;
xgrid = startx;

while ((xgrid <= lastxgrid) kk (sgrid <= lestsgrid))(

color(gridcolorisgridjlxgrid]);
polf(S,&savetriangleiugridlixgridj 101 [0J[01);
polf(3,&savetrianglelsgridllxgridl 111101101);

if (road Isgrid I xgrid] != 0) csallobj(road jzgrid[Ixgridfl;
if (target Ixgridl isgridi != 0) csallobj(targetlxgridl igridi);
xgrid += 1;
count += 1;

if (count >= threshold){
sgrid += 1;
count = 0;

starts -=1;

count =0;

if (starts < firstsgrid){
starts = fihstsgrid;
utartx += threshold;

else if ((lookdir > QTR_P1) && (lookdir <= HALFPI))

/* 2nd OCTANT/
tanval = +(an (lookdir+ HALFPI));
if (tanval == 0.0)

threshold = 1000;
else

threshold = (int)((1.0/tanval) + 0.6);

145

count =0;,

startx =latxgrid;

starts =lastsgrid;

while (startx >= firstxgrid)(
sgrid = starts;
xgrid = startx;

while ((spid <= lastsgrid) Sek (xgrid >= Brtxprid)){

color(gridcolorjugridj Ixgridi);
polf(S,&savetrianglelsgridllxgridl[llol 101);
polf(S,&savetriaaglelsmndllxgnidlllll1l101);

if (road (sgrid I(xgrid I != 0) callobj(r**d(ugridjjxgridl);
if (target lxgrid] jsgridl 1=0) callobj(targetlxgridllsgridl);
xgrid -~ 1;
count += 1;

if (count >= threshold)(
&grid + = 1;
count =0;

starts =1

count =0;

if (starts < firstagrid)(
starts = firstsgrid;
startx - threshold;

else if ((lookdir >= 0.0) Sek (lookdir <= QTRP1))

/* 1st OCTANT .
threshold = (int)(-tan (lookdir+HA LFPI) + 0.5);

count =0;

startx =lastxgrid;

starts =lastsgrie;

while (starts >= firstsgrid){
sgrid = starts;
xgrid = startx;

while ((xgrid <= lastxgrid) kk (spid >= firstsgrid)){

color(gridcolorlagridl Ixgridi);
polf(S,&savetrianglelsgridl lxgrid 110110101);
polf(3,&savetrianglelsgridllxgridll11110110);

if (road Isgrid] Ixcridl != 0) callobj (road I grid] Ixgridl1);

146

if (targetlxgMidisgridI != 0) caIlobi(tsagetigridIsridI);
stid 1
count += 1;

if (count >= threshold)4
x"ri + = 1;
count =0;

starti I
count = 0;

if (startx < firstxgrid)4
startx firstxgrid;
starts threshold;

popmatrixo;

147

DISTTOLOS

include "gikh"
#include "math.h"
Gloat disc -to -los(vx,vy,vspx, py, pspoint)
/* compute the distance from the point "point" to the line of eight/

Coord vx,vy,va,px,py,ps;
RfLa point(SI;

Gloat a,b,c; /* direction numbers of line of might/
RfLa d,e,f;
flost dint;

a = (float)(px - vx);
b = (float)(py - vy);
c -= (float)(ps . vs);

d = point[Ol.- (Boat)vx;
e = pointill - (float)vy;
f = point[21 - (float)vs;

dint = sqrt((up-i(ec - fb,2) + up i(fa - dc,2) + up-i(db - e&2)
(up_i(a,2) + up_i(b,2) + up_i(c,2)));

return(dist);

id

DOBOUNDARY

#include "gl.h"
#include "math-h"
#indude "stdio.h"
#include "fogm.h"

#define X 0
#define Y I
#define Z 2

#define DIAGONAL 0
#define HORIZONTAL 1
#define VERTICAL 2

#define LOWER 0
#define UPPER 1

#define NONE 0
#define INTERSECT I
#define PROPER 2

do _boundary (bound -type, which triangle, xgrid, sgrid,
bound start, bound~end, left start,
left en'd, right start, right end, start-corner-flag,
endecorner-flag, poiyi, ver-tex-cut)

int bound-type, which-triangle, xgrid, sgrid;

Bloat bound-starti~i, bound-endlil, left-starti~j, !eft-endi3i,
right _utartlsi, right-end!3l;

int *start -corner-flag, *end-Corner-flag;

float poly11101131;

mnt *vertex-cnt;

int test-_index, ent, index;

float bound -righ&131, bound leftJ3j, bound -start -edgej~l,
* bound -end _edgejj;

float vertex -array[lo1lSI;
float road_polyjlo1jSJ,
float grid-polyjIOISI;

int intersect cnt;

149

int intersect-type, decending_sort;

floa& upper_bound, lower-bound;

Bloat gnd-leveI();

int in-thin-polyo;

intersect-cnt = -1;

/* compute the verticies of the road segment currently
being worked on *

for (index =0; index < 3; ++index)(
road -poly 1011 index] = left -startl[index];
road -polyliljindexi = left endlindexj;
road -polyI2jjindexj = right -end lindexl;
road -poly [31 index I = right -start[index 1;

/* compute the verticies of the grid triangle associated with
this boundary */

grid-poly[OlIXI (float) (xgrid*FTlOOM);
grid-polylOliZi= (float) ((sgrid+ 1) FT_OOM);
grid _polylijiXI =(float) ((xgrid+ 1) *FT_OOM);
grid-polyllj[Ii (Bloat) (sgrid'FTlOOM);
if (which triangle == UPPER) 4

grid- poly[211XI = (Bloat) ((xgrid+I1)*FT_OOM);
grid poly12j ZI = (float) ((sgrid+)*FTlOOM);

else{
grid -polyj2)jXJ (Bloat) (xgrid*FT_OOM);
grid poly12IfZI =(Bloat) (sgrid*FT_OOM);

if (Q - und_type == HORIZONTAL)(
test-index =X;

I
else if (1xuund type == VERTICAL)4

test-index = Z;

else if (bound -type == DIAGONAL)4
test-_index =Z;

if (bound -startitest index] < bound -end Itest midexl)(
lower_bound =bound -start Itest -idex];
upper-bound =bound -end (test -index 1;

else4
lower -bound =bound -end Itest -index 1;4
upper-bound =bound -startl[test-index];

160

/ determine points of intersection between left and right sides
of the road and the boundary */

line-intersect2(bound-start, boundend, rightstart, rightend,
bound right, &intersect type);
if (intersect-type == PROPER) (

/* intersection lies on road line segment, add intersection
to array */

intersect cnt += 1;
vertex arraylintersect cnt])Xi = bound rightXl;
vertex arrayjintersect cnt) ZI = bound.rightIZI;
vertex arraylintersect cntj jY = gnd-level(boundright[X],

-boundrightiZ);

else if ((intersect type == INTERSECT.) &&
(in this poly(grid _poly, 3, right-start)) &&
(bound-rightitest index) > lower bound) &&
(bound rightjtest _index) < upperbound)) {

/* intersection point is beyond the bound of the road's right

line segment, but the right start point is inside the polygon so
add the road's right start point to the vertex array /

intersect cnt += 1;
vertex arraylintersect cnt)IX) = right startIX);
vertex _array[intersect cnt I[ZJ = rightstartIZI;
vertex arraylintersect cnt QYJ = 8nd levelfright start X),
-right _startZj);

else if ((intersecttype == INTERSECT) &&
((in this poly(grid _poly, 3, rightend)) &&
(boundright[test indexI > lower-bound) &&
(bound right test-index) < upperbound)) {

- . /* intersection point is beyond the bound of the road's right

line segment, but the right end point is inside the polygon so
add the road's right end point to the vertex array */

intersect cnt += 1;
* vertex arraylintersect cnt I[XJ = right endiX);

vertex arrayIintersect _cntlIZ = rightend[Z];

vertex _array[intersect cntI Y] = gnd _level(right-endX,
-right_endiZi);

lineintersect2(bound _start, bound end, left-start, left-end,
bound left, &intersect type);
if (intersect type == PROPER) {

/. intersection lies on road line segment, add intersection
to array

intersect cnt += 1;
vertex array intersect _cntl [XI = boundjleft)XI;

151

vertex -arraylintersect -cntIjZl bound _left[Z];

vertex -arraylintersect -cn tlI[Y) = gnd -level (boundIeftjX),
-bound-leftIZ]);

else if ((intersect type == INTERSECT) &&
(in _this _poly (grid _poly, 3, left-start)) &&
(bound-left Itest -index] > lower-bound) &&
(bound -left (test _index]I < upper-bound)) f

/* intersection point is beyond the bound of the road's left
line segment, but the left start point is inside the polygon so
add the -a'd's left start point to the vertex array '

intersect c .1 += 1;
vertex -array [intersect -cnt]]X] left -startjXj;
vertex a&rrayl intersect -cnt) IZI left-sta~rtjZ);
vertex -array intersect -cntj]Y I gnd -level (left-start [XI,
-left start[Zj);

else if ((intersect type == INTERSECT) kk
(in -this _poly (grid _poly, 3, left-end)) &&
(bound _left (test _index I > lower bound) kk
(bound -left Itest -index] < upper-bound)){

/' neseto paint is beyond the bound of the road's left
line segment, but the left end point is inside the polygon so
add the road's left end point to the vertex array

intersect cnt - 1;

vertex array! intersect cntj]X] left endiXi;
vertex array jintersect -cntl IZI =left endiZj;
vertex_ array intersect -cnt]]YJ =gnd level(left endIXj,
-left _end[ZJ);-

/* if either of the bound's end points fall within the bounds of the
road, add them to the array*/

if start -corner flag) && (in -this _poly (road _poly, 4, bound-start))){
/' put in start bound point/
'st art corner flag TRUE;
intersect -cnt + =1
vertex array~intersect cntI[XI bound _start[XJ;
vertex array!intersect -cntlfZj bound _ start]Z);
vertex -array 'intersect cntlJYl bound _startlYl;

if (('*end -corner -Rag) && (in _this _poly (road _poly, 4, bound _end)))(
j,* put in end bound point */-
tend -corner flag = TRUE;
intersect -cnt 4- 1;

vertex -array~intersect-cnt]]X) = bound _endjXj;
vertex arrayjintersect -cntj]Z] = bound _endiZI;
vertex array Iintersect _cnt]]JY] bound _endlYj;

152

p)

/* determine the point of intersection between the start and end
bound of the road and the grid boundary */

lineintersett2(bound_-start, bound-end, leftstart, rightstart,
boundstartedge, &intersect type);
if (intersect type == PROPER) {

N /* intersection lies on road line segment, add intersection
to array */

intersect cnt += 1;
vertex array[intersect cntl[XI = bound start edge(X;
vertexarray[intersect_ntl[Z = boundstart_-edgelZi;
vertex arraylintersect cnti[Y = gnd level(bound_start edge[Xj,
-bound_startedge[Z);

)
line intersect2(boundstart, boundend, leftend, rightend,
bound_end_edge, &intersect type);
if (intersecttype == PROPER) {

1* intersection lies on road line segment, add intersection
to array /

intersect cnt += 1;
vertex_array[intersect _cntIX] = bound end _edgejX];
vertex arrayIintersect_cFnt] IZI = bound end edge[Z1;
vertexarray (intersect (cntj Y] = gnd Ievel(bound end edge[X],
-bound end edgeZ1);

~}
/* put the points from the vertexarray into the polyl array in

the proper order */
decendingsort = (bound startltest index] != lowerbound);
sort array(vertexarray, intersectcnt, decendingsort, testindex);

for (cnt = 0; ent <= intersect cnt; ++cnt) 4
*vertex cnt += 1;

polyl*vertex cnt]Xi = vertex array cntjIXj;
polyl(*vertex _cntl[Y = vertex arraylcnt]IYj;
polyl[*vertex-cnt][Z] = -vertexarraylcntjZ];

}

153

ie

% %

EDITINDEOX

/* update the control settings of the indicator box/
finclude "fogm.h"
#include "gl.h"

edit -indbox(indbox, speedtag, heading&g, elevtag, altrnaltag,
soomntag, tiltts~g, pantag, desigtag, speed, compassdir,
vx, vy, vs, pan, tilt, soom, designate)

Object indbox;

Tag speedtag, headingtag, elevtag, aitmsltag, soomntag, tilttag, pantag,

desigtag;

float speed, compasdir;

Coord vx, vy, vz;

double pan, tilt,

mnt designate;

int soom;

char chspeed[5], chheading[51, chelev[51, chaltrnsl[5l;
float gnd -level();
float zoomntic, pantic, tilttic;

sprintf(chspeed,"%4.0f",speed); /.convert speed to string 0

sprintf(chheading,"%S.Of",compassdir); /0 convert heading to str/
sprintf(chelev,'"%4.0f",vy - gnd -level(vx,vs)); /* convert elev AGL to str/
sprintf(chaltmsl,"'%4.Of",vy); / * convert alt MSL to str/

/* compute new location for zoom, pan, and tilt indicators S
zoomtic = zoom * -0.2768 + 222. 128;
tilttic = tilt * 721.92682 + 365.0;
pantic = pan ' -721.92682 + 435.0;t

editobj(indbox); /* update the indicator display/
objreplace (speed tag);
charstr(chspeed);
objreplace(headingtag);
charstr(chheading);
objreplace(elevtag);
charstr(chelev);
objreplace(altmeltag);
charstr(chaltmsl);
objreplace (zoom tag);
move2(28.0,soorntic);
objreplace(tilttag);

154

move2(42.0,tilttic);
objreplace(pantag);
move2(pantic,27.0);
objreplace(desigtag);
cmov2i(designate ? 10 :19,10);
chaustr(designate ? "DESIGN AkTE" : "REJECT");
closeobjo;

155

EDIT NAYBOX

#include "fogm-h"
#include "math-h"
#include "'gI.h"

edit navbox(navbox, azrowtag, vx, vsn, direction,firstxgrid, firstsgrid,
lastxgrid, lastigrid)
Object navbox;
Tag arrowtag;
Coord vx, vs;
double direction;
short firstxgrid, firstsgrid, latxgrid, lastsgrid;

Coord azrowx, arrowy, larrowx, larrowy, rarrowx, rarrowy;

/ * compute coordinates of arrow line segments for nay control box/
arrowx = vx + cos(direction) * 2.0 * FEETPERGRID;
arrowy = vs - sin(direction) * 2.0 * FEETPERGRID;
larrowx = arrowx + cos(direction - 2.3561945) *FEETPERGRID;
larrowy = arrowy - sin(direction - 2.3561945) * FEETPERGRID;
rarrowx = arrowx + cos(direction + 2.3561954) *FEETPERGRID;
rarrowy = arrowy - sin(direction + 2.3561945) *FEETPERGRID;

/* update the contour map display with new info .
editobj(navbox);
objreplace(amrwtag);
move2(vx,vs);
draw2(srrowx, arrowy);
draw2(lanrowx, larrowy);
move2(arrowx, urrowy);
draw2(rarrowx, rarrowy);
rect (firstxgrid*FT_-IOOM,-firstsgridFT lOOM,
(lastxgrid+l1)*FT-lOOM, (.Iastsgrid-l)*FT-lOOM);
closeobjo,

156

EXPLOSION

#include "gi.h"

explouion()

jut ij;

pushviewportO;
viewport(O,102S,O,767);
color(BLACK);

awapbuffers();
color(RED);
clearo;
awapbuffersuO;
swapbuffers();
color(YELLOW);
clearo;
swapbufferso;
swapbuffersO);
color(RED);
clearo;
swapbufferas);
swapbufferso;
color(YELLOW);
clearo;
swaphufferso;
swapbuffers();
color(RED);
ciero;
awapbufferso;
awapbufferso;
for (i = 0; i < 100000; i++)

for U = 0; j < 10; j++);
PopviewportO;

157

Od Z,! - Z

POGM (MAIN)

/* fogm.c -- an IRIS-2400 program by Doug Smith & Dale Streyle
It reads in a 10km x 10km section of a terrain map, computes a lighting
and shading model for the terrain, and allows overflight */

#include "gl.h" /* get the graphics defs
#include "device.h" /* get the graphics device defs /
#include "fogm.h" /* constants 5/
#include "math.h" /* math function declarations /
#include "get.h" /* monitor type include file ,'

#include "stdio.h"
#include "sys/signal.h" /* used for screen dump utility /
#include <sys/types.h> /* contains the time sturcture tins
#include <sys/times.h> /* for time calls

short gridpixel[100]1100; /* DMA elevation and vegatation data */
float savetriangle[991199 12!13]Is;
long gridcolorI99i[99l;
Object road991991;
Object target[9911991;

float ground plane4]iS];
long gnd plane color;
float tgt_posIMAXTGTS]13J;
short tgtgrid idxIMAXTGTSI 12];
short tgt-dir(MAX TGTSI, tgt_total = 0;
float randx, randy, rands; /* random offsets from tank reference point

int framecnt;

float minelev, maxelev;

Coord tankx, tanky, tanks;

float framesse I000![12;

main()
{

int greyscale = FALSE; /* FALSE = color, TRUE = greys

int designate; /* boolean indicating desig/reject status

int flying = TRUE; /* boolean controlling flying loop

int active = TRUE; /* boolean controlling main program loop

int nbyte, sockek. connect client); /* networking variables & subroutine

, 156

struct tins timestruct; /* structure for real-tine clock calls 4

imt tgt-idx; /* index of designated target

double direction; /4 direction of travel in radians 4

Bloat speed; /speed of travel in knots

float compassdir; /* desired direction of travel in compass deg

jut fovy =550; /* field of view in perspective command

double pan =0.0,

tilt = -15.0 DTOR; /* pan and tilt angles

/contour map, indicator, instruction *

Object contour, navbox, indbox, instrbox;
Object tank, prel1objJ7l;

Tag headingtag, elevtag, speedtag, soozntag, anrowtag, tilttag, pantag;
Tag desigtag, altmsltag, preltaglei;

Colorindex unmask;

Coord vx, vy, vs; /4viewer x y and z coordinates 4

Coord px, py, p.; /4 reference x y z coordinates for lookat 4

Coord tgtx, tgty, tgtz; /4 targeted position on tank '/

float randseedo; /random number generator initialization/

mnt frames = -1;
long seconds, lastseconds, totalseconds = 0;
int numpolys;
float elapsed;
mnt idx;
FILE *fopeuf), *fp;

/4 first and last x and z indexes of the grid objects to draw/
short firstxgrid, firstsgrid, lastxgrid, lastsgrid;

readdataO; /* read the data file into the gridpixel array 4

/' get socket number for networking */
/*if (NETWORKING) socket = connect -client("npsca-irisl",S); 4

mnit iris(; /* initialize the iris/
unmask = (1<<getplaneso) - 1;
writeunask (unmask);

randseed(times(&etimestruct)); /* seed the random # generator 4

159

','I in

init-tgts(); /* define targets/

Screen -Dump(SCREENDUMP); /* enable screen dumping

billboard(); /* produce intro screen *

colorramp(greyscale,TRUE); /* build all color ramp.s

makescreens(prel- -obj, preI-tag); /* build objects for prelaunch 0

makemap(&contour); /* build map object/
pre I objI[CONTOUR] = contour;

prelaunch(&vx, &vy, &vz, &direction, &compaasdir,
&active, pre I obj, pre I tag);

if (active) {
maketank (&tank); /* build object for a tank 0

build-roado; /* build the objects that comprise the roads

/* process terrain data to build polygons and compute lighting
buildterraino;

/* build object for the navigation display contour map 0

drawnavbox(&navbox, &earrowtag);

/* build an object for the indicator box/
m akeind box (&indbox,&headingtag,&elevtag,& altmsitag,&speedtag,
&zoomtag,&tilttag,&pantag,&desigtag);

uaakeifstrbox(&iflstrbox); /* build object for control instruction box

) 0end of if (active) block 0

while (active) 4

framecnt = 0;

/* initialise the operator Controls (mouse and dials) 0

mnit -controls(& pan, &ztilt, &efovy, vy, greyscale, compassdir);

pushviewportO;
viewport(0, 1023,0,767);
color(SKYBLUE);

N clearo;
popviewportO;
callobj (instrbox);
callobj(indbox);
ed itobj (contour);
objreplace(STARTTAG);
viewport(768, 1023,512,767);

160

V N~' IL

closeobjo,
caflobj(contour);
swapbulfersO);
callobj(instrbox);
callobj(contour);
editobj(contour);
objreplace(STARTTAG);
viewport(O,768,O,708);
closeobJO;

flying = TRUE; /* missile is lying .
designate = TRUE; /* a target can be designated .

while(flying) 4 /* until tgt is hit or 3-button exit

/* get values from user contois (mouse and dials) .
read controls(&deuignate, &greyscale, &lying, &active,
&spe ed, &direction, &compassdir, &vy,
&pan, &tilt, &fovy);

/. calculate which target was closest to the line of
sight */

if (!designate)4
nearest -tgt(vx,vy ,vs,px,py,ps,&tgt-idx);

/update targets' positions/
get-tgt-poit(socket, designate, tgt-idx, &tgtx, &tgty, &tgts, tank);

/* update missile position */
update -missile-posit(&direction, &compasediz, speed,
designate, tgtx, tgty, tgts,
&vx, &vy, &vs, &flying);

/* update camera lookat position/
update look posit(direction, Pan, tilt, vx, vy, Vat
tgtx, tgty, tgts, designate, &px, &py, &ps);

/* determine which polygons need to be drawn/
view bounds(vx, vy, vs, px, py PS, tt fovy,
&irstxgrid, &Sirstsgrid, &elastxgrid, &elastsgrid);

/* edit control display objects to reflect new values
edit -navbox(navbox, arrowtag, vx, vs, direction, fIrstigrid,
Birstsgrid, lastxgrid, lastsgrid);
edit -indbox(indbox, speedtag, headingtag, elevtag, altmaltag,
Soomtag, tilttag, pantag, desigtag, speed,
compassdir, vx, vy, yvs, pan, tilt, fovy, designate);

/* display the 3-D view of the terrain as seen by

161

the camera
display -terrain (VX, vy, vi, px, py, pi fovy,
firstxgrid, firstzgrid, lastxgrid, lastsgrid);

/* display the control boxes/
writemask(SAVEMAP);
callobj(navbox),
writemask(unmnask);
callobj (indbox);

swapbuffers();

seconds = times(×truct);
numpolys = (lasgI - fir txgrid)*(astsgrid-firmtsgrid)*2;
elapsed = (float)(seconds - lastseconds)/60.0;
if ((frames >= 0) &&z (frames < 1000))(

framnes seclframel 101 = (float)numpolys;
frames sectframealll = 1.0/elapsed;

totalseconds += (seconds- lastseconds);
if (totalseconds > 7200) {

compactifyo; /* do garbage collection every 2 mins .
totalseconds = 0.0;

lastseconds = seconds;
frames += 1;

)/* end of flying loop/

if (active) 4 /* explode & restart ~
explosiono;
prelaunch(&vx, &vy, &evs, &direction, &icompasedir,
&active, pre I obj, pre I tag);

}/end of active loop/

/write out performance stats/
fp = fopen ("speed -data", 1"wil);
if (frames > 999) frames =999;
for (idx = 0; idx <= frames; ++idx)4

fprintf(fp,"%.2f %.2flJ, framnes-seclidxl 101, frames aeclidxl I i);

102

N4 JIII; 'III

/* gracefully exit .
if (NETWORKING) close(socket);
setmonitor(HZ6O);
color(BLACK);
clearo;
swapbufferso;
ciero;
gexitO;
textinitO;
exitO;

)/end of main/

163

?ILES.H

/* These are the files which contain data for the terrain elevations
and roads */

#define TERRAIN FILE "/work/terrain/tenkmsq.dat"
#define ROAD-FILE "/work/terrain/Road.data"

POGM.H

#define elev _mask OxilTf /" mask to obtain elev value from datum /

#define vegmnak OxO007 /* mask to obtain vegatation value from
shifted datum */

#define RD 0 /* code for reading a file in "open" */

#define MAX 2800 /* max elev (ft) in contour map

#define MIN 967 /* min elev (ft) in contour map

#define SKYBLUE 4095 /* color index for sky color

#define ROADGREY 850 /* color index for the road

#define DELTAFOVY 50 /* field of view (zoom) increment of 5 deg /

#define PI 3.1415927

#define TWOPI 6.2831855

#define HALFPI 1.5707963

#define THREEHALVESPI 4.7123889

#define QTR PI 0.7853982

#define THREEQTRP 2.3561945

#define FIVE_QTR_PI 3.9269908

#define SEVEN _QTRPI 5.4977871

#define RTOD 57.29578 /* radians to degrees conversion factor

#define DTOR 0.0174533 /* degrees to radians conversion factor

#define FPS _TO_KTS 35.525148 /" convert feet per 60th seconds to knots

164

II-

#define PANSENS 30.0 /* scale factors (sensitivity) for

navigaion controls (mouse and dials) /

#define SPEEDSENS 20

#define TILTSENS 50.0

#define DIRSENS 20.0

#define MAXLOOKDIST 32808.0 /* maximum distance that the camera can
look ahead in feet */

#define FEETPERGRID 3280.8 /* number of feet in 1000 meters

#define ALTSCALE 1.05 /* altitude expansion factor, altitudes are
raised to this power to give an
exagerrated effect

#define NUMXGRIDS 10 /* number of 1K grid squares in the East-
West direction

#define NUMZGRIDS 10 /* number of 1k grid squares in the North-

South direction */

#define FT_10K 32808 /* number FT in 10Km

#define FT_100M 328.08 /* number FT in loom */

#define GRIDFACTOR 13.03781 /* conversion factor */

#define TV 0 /* 0 for SGI monitor, 1 for TV

#define SCREENDUMP I /* I to enable screen dumping, 0 otherwise /

#define NETWORKING 0 /* 1 for target networking, 0 otherwise */

#define INIT PAN 0 /* initial, min and max pan angles in deg. */
#define MIN PAN -25
#define MAX_PAN 25

#define INIT TILT -15 /* initial, min and max tilt angles in deg.*/
#define MIN TILT -25

#define MAX_ TILT 15

#define MAX ALT 17000 /* maximum altitude for miule */
#define MIN ALT 0 /* minimum altitude for missle */

#define INIT SPEED 200 / init, min and max spd (kts) for missle */
#define MIN SPEED 0
#define MAX_SPEED 400

#define INIT FOVY 550 /* initial field of view in tenth degrees /

165

"--.-

#define CONTOUR 0 / Idicies for arr ay obji.
#define SCREENI 1
#define SCREEN2 2
#define SCREENS 3
#define INSTR 4
#define STATS 5
#define FLTPATH 6

#define LAUNCH 0 /* Indicies for array tag
#define TARGET 1
#define DIR 2
#define HEAD 3
#define TGT 4
#define MISSILE 5

#define MAX TGT COLOR 847
#define MINTGTC OLOR 668

#define MAXTGTS 100

#define SAVEMAP oxoOCO

166

GAMMARAMP

/ * This routine puts a gamma-corrected color ramp into the color map.

#include <math.h>

gaminaramp(gammaconst,firstcolor,ncolors,
brightred,brightgreen,brightbue,
darkred,darkgreen,darkblue)

Bloat gammaconat; /* Strength of Gamma correction (try 1.0)/

long firstcolor; /* index number of the first color to set/

long ncolors; /* the number of colors to set */

long brightred,brightgreen,brightblue; /* the bright end of the ramp/

long darkred,darkgreen,darkblue; /* the dark end of the ramp '

long i; /* temp loop index ~

float scl; /* scale factor for gamma correction/

long gcred,gcgreen,gcblue; /. gamma corrected colors/

for(i=O; i < ncolors; i++) /* for all colors.../

/compute the scale factor/
sci = pow((float)i/ (float) (ncolors- 1) , 1.O/gaznmaconst);

/. compute the gamma corrected colors */
gcred = sci (brightred -darkred) + darkred;
gcgreen = sci (brightgreen - darkgreen) + darkgreen;
gcblue = scl (brightblue - darkblue) +i darkblue;

mapcolor(firstcolor+i, gcred, gcgreen, gcblue); /* set the color/

167

~ 7- ., ~ -r

GET_TGT .POS

/* get targets' positions from irisi if networking. Otherwise moves 10 targets
in straight lines, reversing when they hit an edge

#include "fogm.h"
#include "gl.h"
#include "math.h"
#include <sys/types.h> /* contains the time sturcture tins /
#include <sys/times.h> /* for time calls */

get tgt posit (socket,designate,tgt _idx,tgtx,tgty,tgts,tank)

int socket, designate, tgtidx;
float *tgtx, *tgty, *tgts;
Object tank;

extern float tgt_posIMAXTGTS][3];
extern float randx, randy, rands;
extern Object targetI99 1991;
extern short tgtgrid _idxIMAX TGTS]I2;
extern short tgt _tota, tgt dirIMAX-TGTSI;
short i, tgtnum;
int nbyte, addl();
float gnd level(), dir, dx, ds, distance;
long dist, d2;
static long seconds;
static long lastsec = -999; /* -999 is flag to indicate no value 1
struct tins timestruct;

seconds = times(×truct);

if (lastsec == -999) /* compute distance targets move ahead */
distance = 0.0;

else
distance = (float)((15.0/FPS_TO_KTS)*(seconds - lastsec));

lastsec = seconds; /* save for next pass */

for (i = 0; i < tgttotal; i++) / delete targets from old positions ./
if (targetltgt _grid _idxIil 101tgt grididxliI lJ) {

delobj(target[tgt _grid _idxfil[Oll[tgt grid idxlillll);
targetjtgtgrididxIll[OIllltgt grididxliiIl] = 0;

if (NETWORKING)
nbyte = read(socket, &tgt _total, siseof(tgt total));
for (i = 0;i < tgt total; i++) {

nbyte = read(socket, &tgt_grididxil0, siteof(short));
nbyte = read(socket, &tgt grid idxliJl 1 , siseof(short));

18

.4,,

nbyte = read(socket, &tgt_poelill, miseofticat));
nbyte = read(socket, &tgtyjofiljl, siseof(float));
nbyte = read(socket, &tgt poslifl2l, siseof(float));
nbyte = read(socket, &tgt dirlil, .iseof(short));

else4
Lgt-total =10;
for (i =0; i < tgt _total; i++){

dir =(floa)tgtdirlil / 10) *DTOR;
tgt-posi][01 += cos(dir) * distance;
tgt poslilI2] - sin(dir) *distance;
tgt grid idxlil0] = (short) (Lgt -posl il 10/FT_100M),
tgt grid idxliJlIl = (short) (-tgt -poslil 121/FT _100M);
if ((tgt posji~j0j > FT_10K) 11 (ttpooji~loj < 0)) 1

if (tgt -dirlil > 1800) tift dirlil - 18W0;
else tgt _dirlil += 1800;
tgtpoSjilflI = 0.0;

else if ((tgt posliJI2I < -FT_10K) 11 (tgt poslilIl'. > 0)){
if (tgt dirlil > 1800) tgt dirlil -1800;
else ttdirlil += 1800;
tgt_posji)j~fl 0.0;

else tgt__poshi] = gnd level(tgt poshil (01, tgt _poshiII2j);

if (!designate){
if (NETWORKING) { /find which target is designated '

dist = up-i ((float) (tgt -poslO~l 10 - *tgtx),2) +
up i((float) (tgt -pos([0Jf21 - tLgts) ,2);

tgt_idx = 0;
for (i = 1; i < tgt_total; i++)4

d2 = up i((fioat)(tgt poslijil - *tgtx),2) +
up _i((float)(tgt _poshilI2l - *tgts),2);

if (d2 < dist) (
dist. = d2;
tgt _idx = (int)i;

*tgtx = tgt posjtgt idx]I01 + randx;
*tgty = tgt positgt idxjhll + randy;
otgts = tgt positgt idxII2l + rands-,

Lit num = tgt total;
for (i = 0; i < tgt-num; i++-i)

dx = tgt -poslill - (fioat)tgt -grid _idx hill101 FT lOOM;
do = (float)(-tgt grid idxlillll) *FT lOOM - tgL _posli)12l,
if (dx < 15.0)

if (ds < 15.0)4
add I (i,- 1,0);

1og

addl(i,O,-1);

else if (ds > 313.0){
add I(i,O,I1);

addl(i,.1,0);

else addl(i,-1,0);
else if (dx > 313.0)

if (da < 15.0){
addl(i,0,.1);
..ddl(i, 1,-i);
addI i1,)

else if (ds 313.0)
addl(i,1,0);
add I (i, 1, 1);
addi(i,0,1);

else addl(i,1,0);
else if (ds < 15.0) addl(i,0,-1);
else if (din > 313.0) addl(i,0,1);

for (i =0; i < tgt _total;l i++-t) /* add targets to new positions/
if (targetjtgt grid idxli][0jlftgt grid idxlillll) {

editobj(targe-tltgt -grid -idxilj 111 tgt grid idxlill 111);
pushmatrixo;
translate(tgt posliI Oj ,tgt._poslijll ,tgt posi] 121),
rotate(tgt dirlil, 'Y');
callobj(tank);
popmatrixo;
closeobjfl;

else{
ta.rgetltgt -grid _idxlil loll [gt grid _idxlilllQ = genobjO);
makeobj(targetltgt grid idx[i1]0jJ tgt grid idxhill ijj);
pushmatrixfl;
translate(tgt-posilC~,tgtpoli1Ilj,tgt _pcshi]I2I);
rotate(tgt _dir(ij, 'Y');
callobj(tan~k);
popmatrixO);
closeobj o;

I

add I (tgt -n um,x,z)

short tgt _num,x,s;

extern float tgt-pos] MAX -TGTSJ]131;

170

extern short tgt-grid-idxIMAX-TGTSI2I;
extern short tgt-total, tgt dir[MAXTGTSj;
short i;

tgt-postgttotllol = tgtposjtgtnumlOj; /* copy pos. for "new" tgt/
tgtposltgttotalll1J = tgt-posltgt-numjfll;
tgtpositgttotal]121 = tgt-Posjtgtnumjj2j;
tgt-dirltgttotal] = tgt dirltgt num]; /* copy dir for "new" tgt/
tgt 3rid idxltgttotl] [01 tgt-grididxtgtnum]1O1 + x; /* set poe in
tgt grid -idxltgt total] Ill = tgt -grid idxltgt numlll + s; /* new grid sq
for (i = 0; i < 2; i-t+) (/* reset if new grid sq outside 10km square .

if (tgt -grid -idxltgt -total)IiI < 0) tgt _grid _idxltgt totail = 0;
if (tgt -grid -idx Itgt -totail]lil > 98) tgt -grid -idxltgt -total]lil = 98;

I
tgt tote.] ++;

171

* --. 9-- - - - - - N, &I* - '*

GND-LEVEL

#include "math.h"
include "fogm-h"
#define X 0
#define Y I
#define Z 2
float gnd _level(vx, vz)

gloat vx, vs;

extern short gridpixelOIOO00;
Bloat interp -elevO;
Bloat grid-levelO);
float pointIS), nw -corner[SI, ne-cornerlsl, sw cornerl~l, se-coruer[31;
Bloat intersectl31;
float elev;
int xgrid, sgrid, intersect-type;

/* determine which triangle the point falls in/
xgrid =(int)(vx/FT_IOOM);
sgrid =(int)(-vs/FT_OOM);
if (xgrid < 0) xgrid = 0;
if (xgrid > 98) xgrid = 98;
if (zgrid < 0) &grid =0;
if (&grid > 98) zgrid =98;
pointiXi =vx;

pomntIz! -vi;
nw-cornerXI (Bloat) (xgrid*FT lOOM);
nw -cornerZl (float)((strid + I) 5FT_OOM);
edev = gridpixel~sgrid-*ljxgridj k eiev mask;
nwcornerlYl pow(elev, ALTSCALE);
sw _corneriXI (float) (xgrid*FT _100M);
sw -corner(ZI (Bloat) (sgrid*FTlOOM);
elev = gridpixelfsgridjfxgridj & elev mask,
sw _cornerlYl = pow(elev, ALTSCALE),
ne-corner(XI= (Bloat) ((xgrid + 1) *FT _100M);
ne cornerIZI= (float) ((sgrid+ 1)*FT -l10M);
elcv =gridpixeljsgrid+1Ixgrid+lj k elev _ mask;
ne cornerlYl pow(elev, ALTSCALE),
se _cornerlXi (float) ((xgrid + 1) *FTlOOM);
secornerIZI (Bloat) (&grid FT lOO0M);
elev =grid pixel isgrid'i xgrid + 11 & elev _mask;
se -corner(VI = pow(elev, ALTSCALE);

if (-vs < (nw _ cornerIZi.- (vx - nw -corneriXi)))(
/* point is in the lower triangle .

/* find the point of intersection of a line through vx,vs
and the iw corner with the diagonal

line intersect2(sw corner, point, nwcorner, se_corner, intersect,
&intersect type);

/* find the elevation of the intersection on the diagonal /
intersectYj = interpelev(nwcorner, ue-corner, intersect);

/* find the elevation of the point vx, vy /
return (interpelev(sw-corner, intersect, point));

)
else{

/* point is in the upper triangle */

/* find the point of intersection of the diagonal with a line
through th ne corner and the point */

line intersect2(ne -corner, point, nwcorner, se-corner, intersect,
&intersect__type);

/* find the elevation of the intersection on the diagonal /
intersectlY = interpelev(nw _corner, se_corner, intersect);

/* find the elevation of the point vx, vs */
return (interpelev (necorner, intersect, point));

I

mI

'p

.m4

.1

I173

1.

INTHIS POLY

#include "gl.h"

#deflne X 0
#define Y 1
#deflne Z 2

#define PROPER 2

int in this poly(polygon, numvertex, point)
float polygonlO{SI;

int num vertex;~float point[31;

int index;
int pt in, intersecttype;
int num crossings;
float max _x, maxs, minx, mins;
float intersectlSj;
float old intersectlsl;
float start _test line[3);

max x = polygonlO)IX);
min -x = polygonlolIXl;
max s polygonlOflIZ;
min s = polygonlOlIZl;

for (index = 1; index < num _vertex; ++index) {
if (polygonIindex)IX) < min_x) minX = polygonIindex]IXj;
if (polygon[indexiJXJ > maxx) max x = polygon[indexJXJ;
if (polygonindexjZ] < mins) mins = polygonIindex]lZj;
if (polygonlindexiIZI > maxs) max& = polygonlindex]jZI;

I

if ((pointjXj < max x) && (pointfXj > minx) && (pointIZI < maxa) &&
(pointIZi > min)) {

/* point may be polygon, test further by constructing a vertical line
from the point to a point outside the polygons bounds. Count the number
of times this line crosses a side of the polygon. If it crows an
odd number of times the point is in the polygon, otherwise it is

outside the polygon */

start test _lir.eiXi = pointIX];
starttest lineJZ] - max_s + 1000.0;

num crossings = 0;
oldintersectIXI = -999.0;

17/4

1

old_interectIZI = -999.0;
for (index = 0; index < num vertex -1; ++index) 4

line-intersect2(start test-line, point, &polygonlindexilOl,
&polygonjindex+11l0, intersect, &intersect .type);
/* if a proper intersection exists and it is not the same point

as the previous intersection (i.e it didn't intersect a vertex),
then add one to the number of crossings */

if ((intersect -type = PROPER) k& ((intersectIXI != old-interectIXI)
11 (intersectIZ != old intersect[ZI))) numcrossings += 1;

old intersectXI = intersectIXI;
old intersectIZi = intersectIZI;

}
line intersect2(start testline, point, &polygon num-vertex-l 101,
&poIYgon[0jj0o, intersect, &intersecttype);
if (intersecttype == PROPER) num crossings +-- 1;

/' if the number of crossings is even, the point was outside ",
ptin = ((num crossings % 2) !- 0);
return(ptin);

}
else{

return(FALSE);

}

/}

4'

.5 . .. ,, , ,, .,, " .' . ,,

KNITCTRLS

/* initialize the operator controls *

#include "fogm.h" /' fogin constants '
#include "device.h" /* graphics device definitions/
#include "gl.h" /* graphics routine definitions '
#include "math.h" / * math function definitions '

init-Controls(pan, tilt, fovy, aIt, greyscale, compasadir)

double 'pan; /* initial pan angle in radians '
double *tilt; /' initial tilt angle in radians 'I
mnt *fovy; /* initial field of view in tenths of degrees '

Coord alt; /" initial altitude of missile */
int greyscale-, /* initial value of greyscale boolean '
float compasadir; /. initial compass direction '

pan I NIT PAN * DTOR;
tilt INITTILT' DTOR;
'fovy INIT FOVY;

/' set initial, min, and max values for mouse &dials '
setval uator(MO USEX, (short)(INIT PAN*'PANSENS), (short) (MIN -PAN' PANSENS),
(short) (MAX -PAN'*PA NSENS));

setv alu ator(MOUSEY, (short) ([NIT TI LT*"'TS ENS), (short) (MIN_-TILT*'TILTSENS),
(short) (MAX _TILT'TILTSENS));

setvaluator(Di ALO, (short) (compasadir' DIRSENS), (short) (-360*DIRSENS),
(short) (720'DIRSENS)),

-'setv alu aor(DI AL4, (short)a&It, MIN -ALT, MAX -ALT);

setvaluator(DIAL2, (short)(INITSPEED*'SPEEDS ENS),
(short)(MIN SPEED' SPEEDSENS),
(short) (MAX -SPEED'SPEEDSENS));

setvaluator(DIAL3,greyscale,O,1);

im

INITIRIS

/ Initialise the graphics environment for the iris workstation ./

#include "gl.h" /* graphics definitions */
#include "get.h" /* monitor type definitions /
#include "fogm.h" /* fogm constants */

initiris 0
(

long chunk; / number of bytes be which objects
increment /

ginitO; /* initialise the IRIS system
doublebuffero; /* put the IRIS into double buffer mode /
chunk = 128;
chunksise(chunk);
gconfigo; /* (means use the above command settings) /
if (TV) {

setmonitor(NTSC); /* choose tv or SGI monitor
fontdlef~l,"TV.fent");

font(l);

4 .
,4; .else setmonitor(HZO);

cursoffo; /* turn off the cursor

backface(TRUE); /* turn on backface polygon removal ./

color(BLACK);

clearo;
swapbuffersO);

M 177

* - "'" ---. * "3 * * * " % "' . N'"' % " ' '1. °.% ; - -,*"- % "." " " .%

• , -- - m m m m m .. n m m mai a m • I - - i i " : ", . .. '

INITTGTS

#include "fogrn.h"
#include "gI.h"

init _tgts()

extern short tgt total;
extern Object targetl1991' 991;
short x, y;
int init tgto-;

for (x = 0; x < 99; x++) for (y =0; y < 99; y++) taget jxflyl =0;

if (!NETWORKING){
tgt _total = 10;
imt tgt(0,9.8,3.5,1295);
in t tgt(1,9. 5,3 .5, 1295);
in t tgt(2 ,9.4 ,3. 1, 1295);
init-tgt(3,9.8,O.5, 1800);
inittgt(4,9.5,O.0, 1355);
init-tgt(5,8.0,O.0, 1445);
imttgt(6,4.0,00, 1450);
.nittgt(7,0.0,0.5,450);

init-tgt(8,9.5,9.8,2700);
inittgt(9,9.8,8.5, 1800);

ini -tgtk(tgt _n umn,xoffset,soffset,direction)

short tgt num, direction,
float xoffset, zoffset;

extern short tgt _dirIMAX _TGTSJ;
* extern float tgt posJMAX _TGTSIISI;,

tgt _pos gt _numljo xoffset 'FEETPERGRID,

Lgt _pos tgt-numfl2] -zoffset *FEETPERGRID;

tgt _dirtgt _numi direction,

176

"'r

'F~ ~ Volk~'\' ~ * S*'

INTERPELEV

#include "math.h"

#define X 0
#define Y I
#define Z 2

float interpelev(linestart, line-end, point)

float line starti3i, line-endisi, pointlSi;
~{

long float line deltax, line-deltas, point-deltax, point-deltas;
float line length, dist to point;
float interpolation;

line deltax = (long float)(line end(Xj - line startjXi);
line-_deltas = (long float)(line endlZ] - line startZl);

pointdeltax = (long float)(line startiXI - pointIXI);
point deltas = (long float)(linestartlZ) - pointiZI);

line length = (float)hypot(line deltax, line deltas);
distto point (float)hypot(pointdeltax, pointdeltas);

interpolation = line start(YI + ((line eadlYj - tinestsrtYI)
(dist to point/line_length)),

return (interpolation);

r.J

U-

UT

-.-....xx,-/.,.... .-,..' ':' 'L--.''"..-," -* ,-_ :-"-% -

LIGHTORIENT

/* this is file lightorient.c /
/8

It is a routine that computes lighting for a polygon based
upon the angle between the Normal vector of the polygon

and the direction to the light source.

lightorient(xys,ncoords,axayas,Ix,ly,l,colormin,colormax,colortouse)

xyzflJ53 - floating coords of the polygon.

ncoords = number of coordinates.

ax,ay,az = interior point of the whole object. Used to determine
outward facing normal of the polygon. This is the same

point of reference that would be used for backface
polygon removal.

x,ly,lz = vector pointing in direction of the light source.

colormin, colormax = indices used for the colors assigned to this
polygon. The user is responsible for setting
up the color ramp.

colortouse = returned color used to light the polygon.

Note: the routine also puts the polygons out ordered counterclockwise
with respect to the interior point for ease of backface polygon

removal.

./

#include <math.h>

#include <gl.h>

#define MAXCOORDS 80

#define PIDIV2 1.570796327

float txyzlMAXCOORDSJj3J; /* temp coord hold */

lightorient(xyz,ncoords,ax,ay,as,lx,ly,ls,colormin,colormax,colortouse)

float xysHSI;
long ncoords;

*8
Ig0

Bloat axayss; /* interior point of the whole object. ~

float lx,ly,ls; /* direction to the light source

long colormin,colorniax; /~color min/max indices

long *colortouse; /* color used to light the polygon (return value) 5

long ij; /* loop temps ~

long npolyoit; /* direction test function/

float vI[31,v2131; /* vectors used to compute
the polygon's normal/

4%float normali~l; /* the polygon's normal/

float norrnalmag; /normal's magnitude 5

float lightmag; /* magnitude of the light vector/

double dotprod; /* dot product of N and L/

float radians;, / angle between N and L 5

/ *check the number of coords in the input array ~
if(ncoords > MAXCOORDS)

printf("LIGHTORIENT: too many coords passed to me! =%dO,ncoords);

exit(1);

/~orient the polygon so that its counterclockwise with respect
to the interior point */

if(n poly -orient (ncoords,xyzlaxlay as) =1

/* the polygon is clockwise, reverse it. ~
for(i=O; i < ncoords; i=i-i-)

forUj=O;j < S;j=j+1)

for U0;ji 3 +;

xylii '4'\ cs~\: >]U.Ai&

/ the coordinates are ordered counterclockwise in array xyn

/* compute the normal vector for the polygon using the first
three vertices.../

/* compute the first vector to use in the computation 0/

v11o = xys[2IOI - xysjI)(OJ;
vili = xysl2)11) - xyzj)j*l;
v,121 = xyz[21121 - xysLll2I;

/" compute the second vector to use in computing the normal "/
v2(O = xys(O(OI - xys(l101;
v2(11 = xyI0lll - xy(l(ll,
v2121 = xys101121 - xyszlU21;

/" the normal is vl x v2 */

normallol = v11I1 0v212] - v112l1v21];
normalll = v,12iJv2 01 - v,(0jv2[2j;
normalj2) = v1101*v2111 - v1l1J'v2101;

/* compute the magnitude of the normal */
normalmag = sqrt((norm0allo*normalll) + (normall lInormal[I])+

(normaJl2*normail2j));

/* check the magnitude of the normal */

if(normalmag == 0.0)

{
normalmag = 0.00001; / a small number "/

/* compute the light mag 0/

lightmag = sqrt((lx*Ix)+(ly*ly)+(ls*Is));

if(lightmag == 0.0)
{

lightmag = 0.00001; /* a small number */}

/* compute N . L (normal dot product with the light source direction)
dotprod = (normal{Ol * 1x) + (normal lJ ' ly) + (normal[21 * Is);

dotprod = do.prod/(lightmag*normalmag);

/* dotprod = cos(theta) of the angle between N and L.

Convert to angle in radians */
radians = acos(dotprod);

/* compute the color we should use 0/

if(-PIDIV2 <= radians && radians <= PIDIV2)
{

1S2

.

/* if the angle in negative, set to positive/
if(radians < 0.0)

radians =-radians;

colortouse = ((colormax-colormin)/PIDJV2)(PIDIV2-radians)+colormin;

else

*colortouse = colormin;

/* set the color ~
color(*colortouse);

/* draw the poly */
/* polf(ncoords,txyz); *

183

LINEINTERSECT2

#include "gl~b"

#define X 0
#define Z 2
#define NONE 0
#define INTERSECT I
#define PROPER 2

line -intersect2 (startl1, endi, start2, end2, intersect,
intersect-_type)

float startil[3, endl[3, start2j3i, end2f3j, intoersecti~j;
int *intersect _type;

!'/ given two lines of the form a= mx + b and z= nx +c,
solving for x when the a's are equal gives x = (c-b)/(m-n).
Then solve for z using x in either of the above equations. ~

float rn,n,b,c;

float mini _x, min2_x, maxi _x, inax2 x, mini a, min2_a, maxi _a, mnax2 a;

*intersect-type = PROPER;

/* slope and z intercept of linel '
if (endIjX] != startIjXj) {

m (endljZj - startliZl)/(endlIXi - atartlIXI);
b =((startl(Zi - endlIZi)/(endIIXI - startl[X])) *startlIX] + startlZ);
if (end2 jXj != start2lXl) { /* both lines are non-vertical/

/* slope and a intercept of line2 */
n = (end2jZj - start2!ZI)/(end2IXI - start2jXj);
c = ((start2lZl - end2IZi)/(end2iXI - start2lXl)) s tart,21XI +

start2lZl;

if (m ! n) {
intersectiXi = (c-b)/(m-n);
intersectIZ] = m'intersectlXl + b;

else (/* both lines have equal slopes/
*intersect-type =NONE;

else {/* linel is non-vertical, line2 is vertical/
intersect(Xj end2IXl;
intersectIZI m'interet[Xl + b;

else{

184

IM

if (end2jXj != start2jXl) (/. linel is vertical, line2 is non-vertical/
/ 0slope and s intercept of line */
n = (end2jZj - start2(ZI)/(end2IXI - stsart2IXI);
c = ((start2lZj - end2jZ1)/(end2Xj - start2jXfl) start2(Xj +

start2lZl;
intersectiXi = endlIX];
intersectizi = OintersectIXl + c;

else { /* both lines awe vertical/
*intersect-type =NONE;

if (*intersect type != NONE)(
/see if the intersection is proper, or if only the extensions of the

line segments intersect/
if (stsrtljXI < endljXfl (

min I x =startljXj;

mLXIxl x=endliXi;

else{
mini x =endlIX];

mail -x =startlIX];

if (start1[ZI < endlfZj){
minI -s =startlIZI;

m&il z =endl[ZJ;

else4
min I s endlIZI;
Mail s startliZi;

if (start2[XI < end2fXj)(
min2 -x =start2Xj;

max2_x =end2IXj;

v else4
min2 -x =end2[XI;

MaX2 x =start2Il];

if (start2jZj < end2lZI)4
min2 -s start2lZl;

-~I max2-z =end2IZI;

else
min2 -s =end21zI;

max2 s start2lZl;

if ((interwetiXi <= maxi x) && (intersectiXi <= max2 x) &&
(intersect[Xi >= mini x) kh (intersectiXI >= min2 -x) &.&

(intersectIZi <= maxl -) && (intewreI~Z <= max2_z) &&
(intersect(ZI >= mini__a) && (intersectlZj >= min2 a)) f

*intersect-type =PROPER;

*inteset-type =INTERSECT;

MAKENAVBOX

/* drawnavbox.c - this function is called by the FOG-M missile simulator to
build an object on top of the contour map in the upper right-hand corner
of the screen. Navbox contains the direction arrow and view box in red./

#include "gl.h"
#include "fogm.h"
finclude "device-h"

drawnavbox(navbox, arrowtl
Object 'navbox;
Tag *arrowtag;

navbox = genobjo; / create the navigation contol and display object/
makeobj(*navbox);
if (TV) viewport(475,6S5,323,474);
else viewport(768,102S,512,787); /' upper right hand corner of screen
pushmatrixo; /* draw arrow in feet coordinates */
ortho2(. 10.0,10.0 + NUMXGRIDS* FEETPERG RID, -10.0,
-10.0 - NUMZG RIDS FEETPERGRID);
color(BLACK);
clearo;
color(128);
arrowtag = gentagO;

maketag(*arrowtag);
move2(0.0,0.0);
draw2(0.0,0.0);
draw2(0.0,0.0);

* move2(0.0,0.0);
* draw2(0.0, 0.0);

rect(0.0,0.0,0.0,0.0); /*view box ~
popmatrix0'
closeobjo;

187

MAKEINDBOX

/* zakeindbox.c is a function that creates an object that displays the control
idicators, for the FOG-M missile simulation

#include "gl.h"
#include "fogm-h"

makeind box (in dbox, headingtag,elevtag,altmultag,speedtag,soomtag,tilttag,paata,desigtag)
Object *indbox;
Tag *headingtag, *elevtag, 4speedtag, 4 boomtag, *tilttag, *paatag, *desistsg;
Tag *altmsltag;

*indbox = genobjO);
makeobj(*indbox);
if (TV) viewport(475,635,162,S22);
else view port (768,1023,256,511); /. middle box on side of screen
pushmatrixo;
ortho2(0.0,255.0,0.0,255.0); /* use screen sized coordinates '

color(854); /* clear the window '
clearo;
linewidth(2);

color(BLACK);
recti(0,0,255,255); / outline box

color(YELLOW); /* print labels for readouts
emov2i(10,240);

) charstr("SPEED");
cmov2i(55,225);
charstr("ktts");
cmov2i(90,240);
charstr(" HEADING");
circ(140.0,232.0,S.0); /4"degree" symbol 4

cmov2i(180,240);
charstr("Alt AGL"); /* AGL =above grouand level/
cmov2i(225,225);
charstr("ft");
cmov2i(180,200);
charstr("Alt MSL"); /* MSL =mean sea level 4

cmov2i(225,185);
charstr(1 1ft");

cmov2i(50, 130);
cha&rstr(" ZOOM");
move2i(45,200); /* draw slider bar frame /
draw2i(25,200);
draw2i(25,70);
draw2i(45,70);

cmov~i(5,1166

charstr("8"1); /* label slider bar values/
emov2i(6,170);
charstr(" 15"1);
emov2i(6, 144);
chazstr("25"1);
cinov2i(6,118);
chanstr("SS"1);
cmov2i(6,92);
charstr("45");
emov2i(6,66);
charstr("155");

color(WHITE); /* readouts in white... .
crnov2i(10,225); /. initialize to dummy values /
*speedtag = gentago;
maketag(*speedtag);
charstr(" 200"); /speed 0

cmov2i(108,225);
*headingtag = gentagQ;

maketag(*headingtag);
cbarstr(" 0"f); /0 heading 0

cmov2i(180,225);
*elevtag = gentagO;
makietag(*elevtag);
charstr("1000"); /0 altitude above ground level *

cmov2i(180,185);
*altmsitag = gentagO;

maketag(altmsltag);
P charstr(" 1000"); /* altitude from mean sea level/

color(RED);

zoomtag= gentagO; / indicator for soom slider bar 0

V maketag(*soomtag);
move2(28.0,135.0);
rdr2(10.0,5.0);
rdr2(0.0,- 10.0);
rdr2(-10.0,5.0);

poprnatrixfl;

if (TV) viewport(0,474,0,474); /* reset for heads-up display 0

else viewport(0,767,0,787);

pushmatrixo;

ortho2(0.0,767.O,0.0,767.0); /0 use screen sized coordinates/

color(WHITE);

159

451N,

if (TV) linewidth(2);
else linewidth(1);

rectfi(365,370,370,375); /* draw center of crosahairs
rL-ctfi(398,370,401,375);
rectfi(S85,391,370,396);
rectfi(396,391,401,396);
move2i(0,383);
draw 2 i(360,383); /* draw crosshairs
move2i(406,383);
draw2i(767,383);
move2i(383,0);
draw 2i(383,365);
move2i(383,401);
draw 2i (383,767);

linewidth(2);

move2i(30,50); /* draw TILT slider bar frame
draw2i(40,50);
draw2i(40,680);
draw2i(30,680);

cmov2i(0,676);
cha~rstr("+25"1); /* label slider bar values
crnov2i(0,813);
charstr("+20");
move2i(30,6 1T);
draw2i(40,617);
cmov2i(0, 550);
cha.rstr("+ 15");
move2i(30,554);
draw2i(40,554);
cmov2i (0,487);
charstr("+ 10");-
move2i (30,491);
draw2i(40,491);
cmov2, (0,424);
charstr(" +5");
move2i(30,428);
draw2i(40,428);
crnov2i(0,361);,
charstr(" 0");
move2i(30,385),
draw2i(40,365),
cmov2i(0,298);
charstr(" -5"');
move2i(30,302);
draw2i(40,302);
cmov2i(0,235);
charstr("- 10");
move2i(30,239);
draw2i(40,239);

cmov2i(O,172);
charstr(I- 15");
move2i(SO,176);
draw2i(40, 176);
cmov2i(0, 109);
charstr("-20");
move2i (S0, 113);
draw2i(40, 13);
cmov2i(0,48);
charstr(11-25");

atilttag = gentagO; /* indicator for TILT slider bar/

maketag(*tilttag);
move2 (42.0,385.0);
rdr2(10.0,..5.0);
rdr2(0.0,10.0);
rdr2(-8.0,-4.0);
rdr2(6.0,-3.O);
rdr2(0.0, 4.0);
rdr2(-2.0,- 1.0);
rdr2(l.0,l.0);

move2i(120,15); /* draw PAN slider bar frame
drwi(2,2)

draw2i(720,25);
draw2i(750,15);

cmov2i(107,S);
charstr("I-25"); /* label slider bar values'
cmov2i(170,3);
charstr("-20");
move2i(183,15);

draw2i(183,25);
cmov2i (233,3);
charstr("I-15");
move2i(246,15);
draw2i(246,25);
cmov2i(296,3);
cbarstr("I-10");

mnove2i(309, 15);
draw2i(309,25);
cmov2i(363,3);
charstr("I-5"1);
move2i(372,15);
draw2i(372,25);
cmov2i(431 ,S);
charstr("01) ;
move2i(435,15);
draw2i(435,25);
cmov2i(494,3);
charstr("+5");
move2i(498, 15);
draw2i(498,25);

3~ 191

cmov2i(552,3);
charstr(" *+ 10"1);
move2i(561, 15);
draw2i(561 ,25);

% cmov2i(615,S);
.4 charstr(" + 15"1);

move2i(624, 15);
draw2i(624,25);
cmov2i(678,S);
cha~rstr(".-20");
move2i(687, 15);
draw2i(687,25);
cmov2i(741,3);
cha~rstr(" -1-25")i;

Pantag = gentago; / indicator for PAN slider bar/
maketag(*pantag);
move2 (435.0,27 .0);
rdr2(5.0,10.0);
rdr2(-10.0, 0.0);
rdr2(4.0,.8.0);
rdr2(3.0, 6.0);
rdr2(-4.0, 0.0);
rdr2(1.0,-2.0);-
rdr2(1.0, 1.0);

move2i(0,30); /* design ate/reject box ~
draw2i(100,30);
draw 2i(100,0);
'desigtag = genta~gO;
maketag(*desigtag);-
cmov2i(10,10);
cha~rstr("lDESIGNATE");

popmatrixo;
closeobjo;

192

C ~ ..

MAKRJNSTREBOX

/* makeinstrbox.c - this function builds an object that contains an instruction
summary for the FOG-M missile simulation

#include "gl.h"
#include "fogm.h"

makeinstrbox (instrbox)

Object *instrbox;

*instrbox = genobjo;
makeobj(0 instrbox);
if (TV) viewport(475,635,0,161);
else viewport(768,1023,O,255); /0 box is in lower right hand corner
pushmatrixo;
ortbo2(0.0,255.0,0.0,255.0); /* use screen-sized coordinates .

color(851); use a medium green
clearo;
linewidth(2);

color(852); /*use light brown
rectfi(1O,20,11O,195); /* draw the mouse control box/
rectfi(135,80,245, 195); /* draw the dial1 control box 0

color(BLACK); /~outline controls
recti(l0,20,1 10,195);
recti(135,80,245, 195);
recti(0,0,255,255);

color(BLACK);
cmov2i(8O,230);
charstr('t C 0 N T R 0 L S");
cmov2i(37,200);
c h rstr(" MOUSE");
cmov2i(172,200);
charstr(t DIALS"l);

cmov2i(25,60);
charstr("TILT");
move2i(70,62); /* draw arrow
draw2i(75,55);
draw2i(75,75);
draw2i(70,68);
move2i(75,75);
draw2i(80,68);
move2i(75,55);
draw2i(80,62);

193

DAO-Ri4 348 AN INEXPENSIVE REAL-TIME INTERACTIVE THREE-DIMENSIONRL 3/3
FLIGHT SIMULATION SVSTEM(U) NAVAL POSTGRADUATE SCHOOL
MONTEREY CA N J ZYDA ET AL 8 AUG 87 NPS52-87-834

UNCLASSIFIED F/G 5/9 NL

Eso monohloghiEEEEEllllhllhhlllhhhEll
EhhhhhhhllllllhhhhEll
IB

IIa am

-3 3h -3-3 -JIE -3V1 -a
-Sam

tj- -,;.:] E -

cmov2i(25,30);
charstr("PAN");
mo've2i(67,40); /* draw arrow
draw2i(60,35);
draw2i(80,35);
draw2i(73,46);
move2i(80,35);
draw2i(73,SO);
move2i(60,S5);
draw2i(67,30);

color(853); /* dark brown
rectfi(20,85,40,185); /* draw mouse, buttons
rectfi(50,85,70,185);
rectfi (80,85 ,100, 185);
color(BLACK); /outline bittous
recti(20,85,40,185);
recti(50,85,70,185);
recti(80,85, 100,185);

color(85S);
circfi(160,165,20); /* draw dials 5

circfi(160,1 10,20);
cirefi(220, 165,20);
circfi(220,110,20);.
color(BLACK); /* outline dials
cirei(160,165,20);
cirti(160,110,20);
cirei(220, 185,20);
circi(220,1 10,20);
color(WHITE);
cmov2i(147,160);
charstr("ISPD"); /* label dials/
cmov2i(147,106);
charstr(I"DIR");
cmov2i(207, 106);
chantr("ALT");
cmov2i(207,160);
charstr("CLRt");

cmov2i(25,170);
chantr("Z"); /label mouse buttons/
cmov2i(25, 158);
charstr("O");
cmov2i(25,146);
charstr("O0");
cmov2i(25,1S4);
charstr("tM");
cmov2i(25,1 10);
charstr("I");
cmov2i(25,98);
chatr("IN");

cmovi(65,170);

cmov2i(65, 158);
chwstr("E");
cmovi(55,140);
chaaetr("S");
cmov2i(55,134);
chazstr("I");
cmov2i(55, 122);
chantr("G");
cmov2i(85,170);
chustr("Z");
cmov2i(85,158);
chantr("O");
cmov2i(85, 148);
chmatr("O");
cmov2i(85,134);
charstr("M");
cmov2i(85,1IO);
charstr("O");
cmov2i(85,98);-
charstr("U");
cmov2i(85,88);
charstr("T");

popmatrixO;
closeobjo;

195

MAKEMAP

/* makemsp.c -this function is called by the FOG-M missile simulator to
build an object containing a contour map. The map is used for the full
screen display in prelaunch, and- in the upper right corner of the light
display in fogm. */

#include "gl.h"
#include "fogm.h"
#include "device.h"

makemap(contour)
Object *contour;
{

short i, j, elev, length, lastcolor, breaktlg15];
int colour;
extern short gridpixel[lO0]lO0; /* terrain elevations & vegetation */

/* compute elevations where color changes should occur */
for (i = 1; i < 16; i++) breakptli-11 = (((MAX - MIN) / 16) * i) + MIN;

contour = genobj0; / create the navigation contol and display object */
makeobj (*contour);
viewport(0,767,0,767);
pushmatrixO;
ortho2(O.0,l00.0,0.0,lO0.0); /* use array index space /

color(BLACK);
clearo;

lastcolor = BLACK;
linewidth(8);

for (i=O; i < 100; ++i) { /* draw column i /
move2i(i,O); /* start at bottom of column Cf
length = 0; /* # adjacent points of the same color 0f
for = 0; j < 100; ++j) (/for each row in columni */

elev = gridpixellj][il & elevmask; /* mask ofveg code /
if (elev < breakpt O) colour i 16; /* assign green colors ./
else if (elev < breakptjlj) colour = 17;
else if (elev < breakptl2]) colour = 18;
else if (elev < breakpt[S]) colour = 19;
else if (elev < breakpt[41) colour = 20;
else if (elev < breakpt[5]) colour = 21;
else if (elev < breakptio]) colour = 22;
else if (elev < breakptl7l) colour = 23;
else if (elev < breakpt[81) colour = 24;
else if (elev < breakpt(9) colour = 25;
else if (elev < breakp<01) colour = 26;
else if (elev < breakptlllJ) colour = 27;
else if (elev < breakpt[12]) colour = 28;

!Ig

I 1+ +'+ +' ''+++ i''" +'" ' ++ +" * S O 'MMI + ''+ ALM" + + " ... an':

elme if (.1ev < breakptI1Sj) colour = 29;
else if (.1ev < breakptll4l) colour = 30;
else colour = 31;

* /0 if veg-code = 0 (i.e. veg < I meter) shift to brown color.n
if (4((gridpixelljil >> 13) & veg mask)) colour += 16;

if (colour == lastcolor) length++; /* don't draw yet/
else { /* draw now that color has changed/

color(lastcolor);
rdr2i(0,length);
lasteolor = colour; /* reset for new draw/
length = 1;

)/end for j/

color(colour); /* draw last (top) line/
rdr2i(0,length);

)/* end for i

if (!TV) (
color(BLACK); /* draw grid on top of map/
linewidth(1);

for (i = 10; i < 100; i+=10) (/* draw interior lines/
move2i(i,O); /* horisontals/
draw2i(i,l00);
move2i(0,i); /verticals /
draw2i(100,i);

linewidth(2); /draw exterior border .
rect(0.0,0.0,100.0,100.0);

popmatrixO;
closeobjo;

19?

AMAXECREINS

/* uakescreens.c -builds graphical objects for prelaunch's instructionual
screens and readout boxes. 5

#include "gl.h"
#include "device.h"
#include "fogm.h"

makescreena(obj,tag)

Object obji7i;
Tag tag 16f;

objJINSTRJ = genobjo; /* object for pre-launch instruction
makeobj(objLINSTRD);
if (TV) viewport(475,6S5,2S9,474);
else viewport(767,1023,385,767);
pushmatrixo;
ortho2(O.O,255.O,O.O,384.O);
color(CYAN);
clearo;
color(BLUE);
rectli(10, 10,245,374);
color(WHITE);
cmov2i(30,S40);
chaautr("PRE.LAUNCH INSTRUCTIONS");
cmov2i(25,S00);
charstr("1. PRESS LEFT MOUSE");
cmov2i(52,265);
charstr("1BUTTON TO LOCK IN");
cmov2i(52,270);
charstr("LAUNCH POSITION");
cmov2i(25,220);
charstr("2. PRESS RIGHT MOUSE");
cmov2i(52,205);
chantr("BUTTON TO LOCK IN");
cmov2i(52,190);
charstr("TARGET LOCATION");
cmov2i(25, 140);
chanutr("S. PRESS MIDDLE MOUSE");
cmov2i(52,125);
chanstr("BUTTON TO LAUNCH");
cmov2i(25, 76);
char.Ir("4. PRESS ALL THREE");
cmov2i(52, 60);
chantr("BUfl'ONS TO EXIT");
popmatnixO;
closeobjo;

108

/* define object for displaying user input for missile launch
position ad target location. Also displays computed heading
ad distance to target .

obJJSTATSJ = genobjo;
makeobJ(obJJSTATS]);
if (TV) viewport(4T5,635,0,2S8);
else viewport(76T,1023,O,384);
pushmatrixo;
ortho2(0.0,255.0,0.0,384.0);
color(CYAN);
clearo;
color(BLUE);
rectfl(10,10,245,374);
color(WHITE);
cmov2i(30,340);
chazatr("PRE-LAUNCH STATISTICS");
cmov2i(25,260);
chmrstr("LAUNCH POSITION: IOSFQ");
cmov2i(70,235);
charstr("X COORD:")
cmov2i(7O,220);
charstr("Y COORD:)
cmov2i(170,235);
taEILAUNCHI = gentago;
maketag(tagLAIJNCH I);
charstr(" ");
cmov2i(170,220);
charstr(", ");
cmov2i(25,180);
chazstr("TARGET LOCATION: IOSFQ");
cmov2i(70,155);
chazstr("X COORD: ")
cmov2i(70,140);
charstr("Y COORD:)
cmov2i(170,155);
tag jTARGET] = gentago;
maketag(tagITARGETJ);
charstr(" ");
cmov2i(170,140);
charstr(" ");
cmov2i(25, 100);
chaastr("IHEADING:")
cmov2i(25,60);
charuu("DISTANCE:)
cmov2i(106,100);
tagIHEADI = gentago;
maketag(tagIHEADI);
charutr("I ");
cmov2i(115,60);
charstr(" ");
popmatrixO;

199

closeobjO);

/* define object for lines & circles showing fightpath on contour map/

obiIFLTPATHI = genobjo;
makeobj(obJIFLTPATHJ);
pushmatrixo;
if (TV) viewport(0,474,0,474);
else viewport(0,767,0,767);
ortho2(0.0,100.0,0.0,100.0);
color(BLACK);
clearo;
color(64);
linewidth(S);
tag[MISSILEI = gentagO);
maketag(tag(MISSILEI);
circf(0.0,0.0,0.0);
move2(0.0, 0.0, 0.0);
draw2(0.0, 0.0, 0.0);
color(128);
tagITGTi = gentagO;
maketag(tagITGTI);
circf(0.0,0.0,0.0);
popmatrixo;
closeobjO);

/* define object for displaying first screen of operator instructions/

objSCREEN11 = genobjo;
makeobj(objISCREEN11);
color(BLUE); /* set background color *
clearo;
color(RED);
linewidtb(10);
recti(0,0, 1023,767);
linewidth(1);
color(WHITE);
cmov2i(420,500);
charstr(" WELCOME");
cmov2i(4 20,450);
charstr("TO THE");
cmov2i(S20,400);
charstr("FIBER-OPTICALLY GUIDED MISSILE");
cmov2i(420,350);
churstr("I(FOG-M)");
cmov2i(410,300);
charstr("SIMULATION");
emov2i(310,100);
charstr("PRESS MIDDLE MOUSE BUTTON TO CONTINUE...");
cmov2i(315,8S);
charstr("OR PRESS ALL S MOUSE BUTTONS TO EXIT.");
closeobjo;

/* define object for displaying second screen of operator instructions/

objISCREEN21 = genobjo;
makeobi(obj(SCREEN2]);
color(BLUE); /* set background color/
clearo;
linewidth(1O);
color(RED);
recti(0,0, 1023,767);
linewidth(l);
color(WHITE);
cmov2i(210,600);
charstr("1THE FOG-M PROGRAM PROVIDES A SIMULATED MISSILE LAUNCH AND");
cmov2i(2 10,575);
churstr("OUT-THE-WINDOW VIEW OF THE TERRAIN AS SEEN FROM THE OPERATOR'S");
cmov2i(210,550);
churstr("CONSOLE ON THE GROUND.");
cmov2i(210,500);
charstr("THE GENERAL AREA FOR THIS FLIGHT SIMULATION IS FT HUNTER LIGGETT");
cmov2i(210,475);
charstr("CALIFORNIA AND VICINITY.");
cmov2i(210,425);
charstr("THE SPECIFIC TEST AREA IS A 10 KILOMETER REGION DESIGNATED BY");
cmov2i(210,400);
charstr("UNIVERSAL TRANSVERSE MERCATOR (UTM) GRID COORDINATES 1OSFQ5S."1);
emov2i(300,100);*
charstr("PRESS MIDDLE MOUSE BUTTON TO CONTINUE,");
cmov2i(305,85);
charstr("OR PRESS ALL 3 MOUSE BUTTONS TO EXIT.");
closeojO

/* define object for displaying third screen of operator instruction.s*

objISCREEN31 = genobjo;
makeobJ(obJISCREEN3J);
color(BLUE); /* set background color .
clearo;
linewidth(10);
color(RED);
recti(0,0,1023,767);
linewidth(l);
color(WHITE);
cmov2i(385,650);
charstr("1PRE-LAUNCH ORIENTATION");
cmov2i(200,600);
charstr("l1. WHEN THE PRE-LAUNCH PHASE OF THE FOG-M SIMULATION BEGINS, A");
cmov2i(200,585);
charstr("12-DIMENSIONAL CONTOUR MAP OF THE TEST AREA (UTM 1OSFQ58) WELL BE");
cmov2i(200,570);
charstr("DISPLAYED ON THE OPERATOR CONSOLE. TWO CONTROL PANELS CONTAINING");
cmov2i(200,555);
charstr("PRE-LAUNCH INSTRUCTIONS AND CURRENT LAUNCH STATISTICS WILL ALSO");

201

cmov2i(200,540);
charstr("BE DISPLAYED.");
cinov2i(200,490);
chsntr("2. THE OPERATOR WILL BE REQUIRED TO PROVIDE TWO CRITICAL DATA");
cmov2i(200,475);
chasntr("ITEMS TO THE LAUNCH CONTROL SYSTEM; INITIAL LAUNCH POSITION AND");
cmov2i(200,460);
charstr("TARGET LOCATION.");
cmov2i(200,410);
charstr("3. TO DEFINE INITIAL LAUNCH POSITION, MOVE CURSOR OVER DESIRED");
cmov2i(200,395);
chasrtr("LOCATION (REFER TO LAUNCH STATISTICS CONTROL PANEL TO VIEW THE");
cmov2i(200,380);
chantr("CURRENT UTM GRID COORDINATES). PRESS LEFT MOUSE BUTTON TO LOCK");
cmov2i(200,365);
chastr("IN LAUNCH POSITION.");
cmov2i(200,315);
charstr("4. TO DEFINE TARGET LOCATION, MOVE CURSOR OVER DESIRED LOCATION");
cmov2i(200,300);
charstr("(REFER TO LAUNCH STATISTICS CONTROL PANEL TO VIEW CURRENT UTM");
cmov2i(200,285);
charstr("GRID COORDINATES). PRESS RIGHT MOUSE BUTTON TO LOCK IN TARGET");
cmov2i(200,270);
charstr("LOCATION. THE BLUE LINE DISPLAYS THE PROJECTED FLIGHT PATH. THE");
cmov2i(200,255);
charstr("MISSILE WILL FLY AT A CONSTANT VELOCITY AND HEADING. THE LAUNCH");
cmov2i(200,240);
chastr("STATISTICS CONTROL PANEL WILL DISPLAY COMPUTED MISSILE HEADING");
emov2i(200,225);
charstr("IN DEGREES (0 DEGREES DUE NORTH).");
cmov2i(240,100);
charstr("PRESS MIDDLE MOUSE BUTTON TO MOVE INTO PRE-LAUNCH PHASE,");.
cmov2i(326,85);
chantr("OR PRESS ALL 3 MOUSE BUTTONS TO EXIT.");
closeobjO;

)

U

20

S

MA4KZTANKL

* include 'gl.h"
#include "fogmhw

maketank(item)
Object *item;

long points = 4, bigpointu 8 ;
goat pswraYIS]13I;
float Ix,ly,ls;
long cmin =MINTGTCOLOR, cma = MAXTGTCOLOR, cl;

Ix = 400.0 *41.01; /* direction of lightsource .
ly = 6000.0;
Is = 200.0 * (-41.01);

'item=genobjo;
makeobj(*item);

/* draw right side of tank CCW/
parnAyIOIIOJ = -10.0;
parray[O1tlI = 6.0;
parray[0j21 = -5.0;
parray[11I01 = -15.0;
parraylll[1I = 4.0;
paaray[11121 = -5.0;
parray21oI = -15.0;
parray12I111 = 2.0;
parrayI2II2I = -5.0;
parraylIlol0 = -10.0;
parray[311lI = 0.0;
parray1SJ 121 = -5.0;
parray4IOI = 10.0;
parray14111J = 0.0;
parray14Il2I = -5.0;
parray[SIIOI = 15.0;
pazray[SI1lI = 2.0;
parray[5J 121 = -5.0;
pszrayI61jOJ = 15.0;
parrayI6l1ll = 4.0;
p&MrYIOII21 = -5.0;
parraLYl7IOI = 10.0;
parraYl71111 = 6.0;
parrayI7II2l = -5.0;
lightorient(psrray,bigpoiat,0.0,0.0,0.0,x,Iy,Is,cmia,cmax,&cl);
color(cl);

203

polf(bigpointe,puray);

/*front of tank CW/
parayO](0l = 15.;
parry10lllJ = 5.0;
parrayO1j21 -5.0;
parray(11l10 15.0;
parraylljl) =3.0;

parray[IJ(21 = 5.0;
parnayf21101 15.0;
panray[2)[1] 3.0;
puraY12112] 5.0;
parrayljS[0j= 15.0;
parray13111] 5.0;
parraySII21 5.0;

color(cl);
polf(points,pasngy);

/* draw left side of tank CW/
parrh,1(01 = -10.0;
pazraYIOlll) = 8.0;
parrayIO1121 = 5.0;
parrayfl][01 = 15.0;
parrayIl1il] = 4.0;
parraylII2I = 5.0;
parray12JOJ = 15.0;
Pa&rrYl2][1] = 2.0;
parraY121121 = 5.0;
parray[S]10) = 10.0;
parray31111 = 0.0;
parraylsi121 = 5.0;
Parr&YI41101 = -10.0;
parrayI4111] = 0.0;
ParraY[41j2] 5.0;
PazraYIs]101 = -15.0;
parrayI5J1J = 2.0;
Panay5J 121 = 5.0;
PArraylI6IOI = -15.0;
parrayIOI1lI = 4.0;
parrayJ12J = 5.0;
ParraYI7110] = -10.0;
PWT&rYI71[11 = 0.0;
pana&Y1711 = 5.0;
lightorient4parray, bigpoiatsO.O,0.0,0.0,l,yhlscmincm,&l);
color(cl);
polf(bigpoints,parray);

/* back of tank CCW/
parray[1lI1 -15.0;
pasnaylO(1J = 4.0;
pa.nayO1l21 = 5.0;

204

punay(1l1ol = -15.0;
pairay(ll1ll = 2.0;
parray[11f21 = 5.0;
paarayj21101 = -15.0;
paffayl21111 2.0;
parray[21121 = -5.0;
parnay[3J 101 =-15.0;
paffaY131111 = 4.0;
parray(3[2J = -5.0;
lightorient(parrny,points,O.0,00,0.0,x,Iy,ls,cmin,cmax,&cl);
color(cl);
polf(points,panray);

/* top middle of tank body CCW/
panfay[010I = -10.0;
parray1lOI1lI 6.0;
parray[oII2l = -5.0;
PaTraY[1j101 =-10.0;
panray(1l11lI 6.0;
parray[1J[21 5-0;
parny2][0O=I 10.0;
parray21J = 6.0;
panfay[2[[21 = 5.0;
paffaY13101 =10.0;
panayjS11jiJ 6.0;
panrayj31121 = -5.0;
lightorient(parrny,points,o.0,0.0,0.o,lx,ly,lz,cmin,cmax~cl);
color(cl);
polf(points,parray);

/* top front of tank body CCW/
panrayo)lJ = 10.0;
panaYjOI(1] = 6.0;
parny[Oj 121 = -5.0;
pazraYjl1j0j = 10.0;
parray1lJ1lj = 6.0;
paray111[21 =5.0;
pazrayI2J 101 = 15.0;
parray12J11 = 4.0;
parraY121121 5.0;
pwayjj [0] = 15.0;
panrayS11J 4.0;
parray[31[21 -5.0;
lightorient(parray,points,0.0,0.0,0.0,lx,ly,hs,cmin,cmax,kcl);
color(cl);
polf(pointe,pway);

/*top back of tank body CCW/
PazrayO0[0 = -10.0;
parray[0j11i] 6.0;
parraylol121 = -5.0;
pairayjlI(0J = -15.0;

206

panraylllf i = 4.,
Panay1lII21 -5.0;
parray[2lloJ -15.0;
Paurayl21(li = 4.0;
parraY12112] = 5.0;
pa~rayISI[o] = -10.0;
parray[Sj1J = 0.0;
parrayJ3jf21 = 5.0;
lightorient(parrny,points,O.0,0.0,.0,lxlyl,cmi,cman~kcl);
color(cI);
polf(points'parray);

/* bottom middle of tank CW/
parraylo](0j -10.0;
Parraylolll] = 0.0;
parraytojf21 = -5-0;
parray(1J(Of = 10.0;
parraylI11l = 0.0;
parrayll][2] = -5.0;
pe&rryl2lO] = 10.0;
parsy 121111 = 0.0;
parraY121121 = 5.0;
parray[311OI = -10.0;
parraY[31j1 0.0;
parray1S)j2) = 5.0;
lifhtorient(parray,points,o.o,.,.,hx,ly,h2,cmmicmaxnkcl);
color(cl);
polf(points'pazray);

/* bottom front of tank CW/
parray[O]101 = 10.0;
parraylo11l] = 0.0;
parrAYlo112l = -5.0;
Parray(1j(0) = 15.0;
parrayII]llI = 2.0;
parraylll 121 = -5.0;
parray[21101 = 15.0;-
parrayj2111lj 2.0;
parray[21121 = 5.0;
p&Mry 13110] = 10.0;
parrayl311lJ = 0.0;
parrayl3ll2I 5.0;
lightorient(parray,point,o.o,o.o,o.0,lx,ly,la,cmincman~kcl);
color(c 1);
polf(points,pwaay);

/* bottom back of tank CW '
parraylijOl = .10.0;
parraylO11ll = 0.0;
parrayj0J12] = -5.0;
Parrayfljfoj = -10.0;
parrayll](1I = 0.0;

206

parray1lII2J = 5.0;
parrAYI21IOI = -15.0;
parray[21[lj = 2.0;
parrayf 21121 = 5.0;
paray j31101 = -15.0;
parrayIsflij = 2.0;
parraysl[21 = -5.0;,
lightorient(PwTay,points,0.,.0,0.,lx,ly,cmcmx,&c);
color(cl);
polf(points,parray);

/* right aide of gun barrel/
parray(DIfof = 1.667;
panray[Ol(1I = 8.0;
parray[0112] = -0.5;
parrAYjiffo) = 2.3333;
Parnayll] = 7.0;
parraYjlff21 = -0.5;
ParraY12IOI = 17.0;
parraY121111 = 7.0;
parr ayljf2 = -0.5;
paffay[3jfof = 17.0;
pa~rray 131111 = 8.0;
parraY131121 = -0.5;
lightorient (parray,points,5.0,2.5,0.0,lx,ly,la,cmin,cmax~kc1);
color(cl);
polf(points,parray);

I . top of gun barrel/
parrayjoffof = 1.M67;
parray1OI1lI = 8.0;
parrayf01121 = 0.5;
parray(ljfoj = 1.W667;
parrayjij[i] = 8.0;
parray[IJf2j = -0.5;
ParraYj2(Oj = 17.0;
parray121111 = 8.0;
parr&YI21J2) -0.5;
parrayfI3flo = 17.0;
ParraY[3jf i = 8.0;
parraY131121 = 0. 5;
Iightorient(parray,points,5.o,2.5,o.o,lx,lykbcmncm..,cl);
color(cl);
polf(points'parnay);

/* left side of gun barrel/
parrayI0l1oI = 17.0;
parrayf1ff if = 8.0;
ParrayI[Oj21 = 0.5;
parrayjlf [Of = 17.0;
parray[1IIlfI = 7.0;
Parry1lfl2f = 0.5;

207

parray12110) = 2.3333;
parraY2111 =7.0;
parray[21121 =0.5;
parray(31101 = 1.6M7;
ParraY1311lll 8.0;
paY131121I 0.5;

color(cl);
polf(points,parray);

/* end of gun barrel/
parray[101101 17.0;
parraYI0lllI = 8.0;
parray[0112] = -0.5;
parrayll(01 =17.0;
parraylI111 7.0;
parray111I2l = -0.5;
Ps&rrY1211O] = 17.0;
parray121111 = 7.0;
parray 121121 = 0.5;
parr&Yl31101 = 17.0;
parraYl3l11lI 8.0;
parray 131121 = 0.5;
Iightorient(parray,points,5.,2.5,0.0,,y,e,,.i,cmax&cl)
color(c 1);
polf(points,panray);

/*bottom of gun barrel *
parraYlol 101 = 2.3333;
ParraYIOIIll = 7.0;
Pa&&Y1II12l 0.5;
p..rrayJlIIOI = 2.3333;
parraylijll = 7.0;
parraY11ll21 = -0.5;
pviTAYl21101 = 17.0;
parrayI121111 = 7.0;
parray121[2] = -0.5;
parraY131I01 = 17.0;
parray(3111l = 7.0;,
parr~aY131121 = 0.5;
lightorient(parray,points,5.0,2.5,0.0,,ly,kcmincemax&cl);
color(cl);
poll'(pointa,parray);

/* right side of turretf
psarraylolI01 = -3.0;
parraY1ojjlj = 9.0;
parrayOII21 = -1.0;
parrayllllol = -5.0;
parrayll11l = 6.0;
parraylllI2l = -3.0;
parrayl2l 101 = 3-0;

2M6

paray121111 = 6.0;
pana&yj2jj2) = -3.0;
P&"&Y[31(01 = 1.0;
puraYISI1lJ = 9.0;
pwariyf31121 = -1.0;
lightorient(parray,point,1.O,2.5,0.0,lxy,s,unin~cmaz,&Cl);
color(cl);
polf(poiata,pwray);

/* front aide of turret/
pwnayOlOI = 1.6667;
paflayOill = 9.0;
panayOI[21 = -1.0;
parrayljjOJ = 3.0;
panraylJili = 6.0;
parway[lII21 = -3.0;
parray2IOI = 3.0;
parray[2(1J = 6.0;
panrayf2jj2] = 3.0;
pwraySIIOI = 1.6667;
parrayISI1lI = 9.0;
parray[S1121 = 1.0;
fightorient(parray,point,-1.0,2.5,0.0,lxly,s,cmin,cmax,kcl);
color(cl);
polf(points'parray);

/* left side of turret *
parrayoJOJ = 1.6667;
parray[0J ji) = 9.0;
parnaY101121 = 1.0;

parraylll0l = 3.0;
parrayll][2l = 6.0;
pwnay[111] = 35.0;
parray2IOI = -5.0;
parraY(21121 = 6.0;

parray[S] 101 = -3.0;
parraYls3111] = 9.0;
P&MY131121 = 1.0;
fightor'ient(parray,points,.1.0,2.5,0.0,lx,ly,ls,cmin,cmax,&cl);
color(cl);
polf(pointa'parnay);

/* back side of turret/
parray0I10I = -3.0;
parraylOlll = 9.0;
parraYIOII2l = 1.0;
pazrayl1J(OJ = -5.0;
patrayill III = 6.0;
parrayll](21 = 3.0;
parrayf21101 = -5.0;
parraY121111 = 6.0;

PwnaYl2Jf 23 = -3.0;
Pans&Y(IIoI = -3.0,
paffayf sill = 9.0;
parfayISII2I = -1.0;

color(c1);
poff(poizats,pawmy);

/* top of tunret/
PanaYf0JI0j = -3.0;
panay011i = 9.0;
parr&y101121 = 1.0;
parrayll10J = -3.0;,
panraylii1 = 9.0;
panay11121 = -1.0;
paffay[2j0j = 1.0;
parray[21(i3 = 9.0;
parrayj2Jj2J = -1.0;
PWnay[3f10 = 1.0;
parraylS1lli = 9.0;
p..nay131121 = .1.0;
lightorient(panray,poizts,. . 2.5,.0,hx,IyI,cmin~ca~cl);
color(cl);
poff(points,panray);

closeobjo;

210

NEAREST TGT

#*aclude "gl~h"
#include "fogm.h"
nearet tgt(vxvy~vs,px,py,ps,tgt.idz)
Coord ;x, vy, vs, px, py, ps;
int *tgtidx;

Boat dist, dast to-1logO;
float mi _dist;
Bloat num -tift.;
extern float tgtjiosIMAX TGTS]131;
int index;

num -tgtn 10;
mindist =dist tol(vx,vy,vn,px,pypu,&tgt_poef 0] jO);
*tgt-idx =0;

for (index =1 index < num -tgts; ++index){
dist =dint-toIos(vx,vy,Vs,px,py,pn,&tgtyogindexI01);

if (dint < min dist) {
min dint = dint;
*tgt idx = index;

211

NPOLY ORIENT

/npoly orint.c .

include <gibh>
#include <math.h>

int npoly Iorient(ncoords,xys,xinside,yisie,uiside)
unsigned Mit ucoords;
Coord xyufjf 31;
Coord xinside, yinside, sinside;

register unsigned inhort int ij; /* loop temp/

Coord centerisi; /* center coordinate of the polygon .

Coord &13], bf~j; /* vector hold locations for the vectors that run
from the center coordinate to the points of the
polygon*/

Coord xzi(S], xin(3I; /0 points on line containing normal that awe
on opposite sides of the plane containing
the polygon.

Boat datton; /* itnet on rmp nie

Bloat diatton; /* distance to poit n from pt inside. .

Coord normaljj1; /* the normal vector computed from a x b/

/ *compute the center coordinate of the polygon .
centerlol = 0.0;
centerNl = 0.0;
centerl21 = 0.0;

for(i=O; i < ncoords; i++)

forU =0; j <3; j+ +)

centerDl += xyaji0lj;

/* divide out by the number of coordinates
forj=0; j < 3; j++)

cen teUj = center~jj/(flo&t)ncoords;

212

/check the bant 2 coordinates of the polygon for their direction .

/* compute vector a. It runs from the center coordinate to coordinate 0 .
forUj=0; j < 3; j++)

Sl = xyu!OliI - centertil;

/compute vector b. It runs from the center coordinate to coordinate 1I,
forUj=O; j <3; j++)

hiji = xyslJWU - centerU);

/* compute a x b to get the normal vector/
normallol = alIl~b2I - a121*b[1I;
normalilJ = a121*b[O1 - a101*b121;
normall2l = &IOI*bjIl - allbOI;

/ *compute point a, offset pt from center in direction of normal/
forUj=O; j <3; j++)

xnjj] = centeriji + normaliji;

/compute point -ni, offset pt from center in opposite direction
from normal.

foroj=O; j <3; j++)

xmn~jI = centeriji - normaliji;

/* compute the distance the inside pt is from point n
diatton = sqrt((xnlOi - xinside) * (xnIoI - xinside) +t

(xn!11 - yinside) ' (xnjll - yinside) +

(xn j2J - sinside) * (xnI2I - inside));

/* compute the distance the inside pt is from point -n
diattomn = sqr((xmn[OJ - xinside) * (xmnl0J - xinside) +

(xmnlj - yinside) * (xmnlil - yinside) +
(xmnl2I - inside) * (xmnI2I - sinside));

213

/* if the dist(n) < dist(-n), then a points back towards the
inside point and is on the same side of the plane as inside.
a x b is then clockwise.

if(distton < diattomn)

return(l); /* clockwise/

else

return(O); /* counterclockwise/

214

PIRLAUNCH

/* The function prelaunch is the user interface portion of the FOG-M
tight simulation '. It allows the operator to interactively enter
critical data items necessary to simulate the missile ini flight.
The function return the initial launch position in the x-x plane
and also the direction of fight. '

#include "gl.h"
include "device.h"
#include "fogm.h"
include "math.h"

prelaunch(vx, vy, vs, direction, compasedir,'active, obj, tag)

Coord *vx, 'vy, 'vs;
double *direction;
float *compasadir;
int *active;
Object objI7I;
Tag tag[8J;

float gad level();
float compass();
int screencnt, launchlock, targetiock;
int xval, yval, xlaunch, ylaunch, xtarget, ytarget, utm-x, utmy;
char xtempJ35J, ytemp351, disti361, headingissi;
float distance;
double xdistance, ydistance;
Colorindex unmask;

Xtemplol =,';
ytemp[0I ='00

distlol = '

heading 101 =-

unmask= (I<«getplaneao() -1;
writemask(unmak);
if (TV) viewport(0,635,0,474);
else viewport(0,1023,0,767);
pushmatrixo;
ortho2(0.0,1023.0,0.0,767.0);

direction = 0.0; / initialise the direction '

cursolfo; P' turn the cursor off/

callobj(objISCREENlJ); /' display screen 1 '
swapbulferso;

215

screencnt ; /* initialize counter for scres displays .

while(TRUE){
frontbuffw(TRUE);
if (getbatton(MOUSE2) && 4~getbutton(MOUSE1)) k& !(getbutton(MOUSES)))

nugbeftO
while (getbutton(MOUSE2));
screencat += 1;
if (acreeucnt == 2) callobj(objISCREEN2]);
else if (screencnt == 3) callobj(obj[SCREEN31);
else break;

if (getbutton(MOUSEI) && (getbutton(MOUSE2)) kk (gotbatton(MOUS93)))
*active = FALSE;

goto exit;

frontbufferf FALSE);

editobj(obJiFLTPATHj); /* erase previous missile path .
objreplace(tag[MISSILEJ);
circf(0.0, 0.0, 0.0);
move2(0.0, 0.0);
draw2(0.0, 0.0);
objreplace(tag[TGTI);
circf(0.0, 0.0, 0.0);
closeobjO);

editobj(objISTATSJ); /*erase previous launch statistics/
objreplace(tagjHEADJ);
charstr("");
cmov2i(115,60);
charstr("");
objreplace(tag(TARGETI);
charstr("");
cmov2i(O,0);
chantr("");
closeobjo;

setcursor(0,RED,unmask); /* set up cursor and mouse
attachcursor(MOUSEX,MOUSEY);
setvaluator(MOUSEX,384,0,707);
setvaluator(MOUSEY,S84,0,707);
cursono;

launchlock =FALSE;

turgetlock =FALSE;

cadlobj(objlCONTOURI); /* load static displays into both buffers/
callobj(objIINSTRI);
callobj(objISTATSI); /' included so swapped buffe doesn't have "hole *
swapbuffers();

216

caflobj(objICONTOURI);
callobj(obj[INSTRJ);

while(TRUE) (
if (getbutton(MOUSE1) && (getbutton(MOUSE2)) kk (gotbatton(MOUSES))){

*active = FALSE;
goto exit;

xval = getvaluator(MOUSEX); /* read the x and y mouse positions/
yval = getvalustor(MOUSEY);

utm-x = (50000 + (int)(xval *GRIDFACTOR)); /* compute grid coordinates/
utm y = (80000 + (int)(yval *GRID FACTOR));

sprintfqxtemp,"%4d",utm -x); -/* store coordinates in temporary buffer 0

sprintf(ytemp,"%4d",utmjr);

/. if LEFT MOUSE selected lock in launch position and update control panel 0

if (getbutton(MOUSE3) k& (!getbutton(MOUSE2)) k& ('getbutton(MOUSEi))){
ringbellO);
xlaunch = ival;
ylaunch = yval;
launchlock = TRUE;
*vx = ((float)((xvai FT 10K)/767));
*vs = -((float)((yval *FT-1OK)/767));
evy = gndIevel(*vx, *vs) + 200.0;

editobj(objISTATSI);
objreplace(tag[LAUNCHI);
charstr(xtemp);
cmuowi(170,220);
chiarstijytemp);
closeobjo;

e /nd ofMOUSE hit/

/* As long as LEFT MOUSE not selected, keep on displaying current UTM
grid coordinates in control panel area. 0

if (!launchlock)4
editobj(objiSTATSI);
objreplace(tag[LAUNCHI);
chartw(xemp);
cmov2i(170,220);
chantr(ytemp);
closeobjO);

/* if RIGHT MOUSE selected lock in target and update control panel. *

if (getbutton(MOUSEI) && (!getbutton(MOUSE3)) && (!getbutton(MOUSE2))){
ringbellO);

217

xtarget = XVal;
ytarget = yvsi;
targetlock = TRUE;
editobj(obiISTATSI);
objreplace(tagITARGETj);
chastr(xtemp);
cmov2i(17O,140);
charstr~ytemp);
closeobjO);

/* As long as RIGHT MOUSE not selected keep on displaying current UTM
grid coordinates in control panel area.

if (Itargetlock) {
if (launchlock)(

xdistance = ((double) (xval - xlaunch));
ydistance = ((double)(yval - ylaunch));
distance = sqrt((Aoat)(xdistance * xdistance + ydistance *ydistance));
distance = distance * GRID FACTOR;
sprintfodist,"%5.Of METERS", distance);
*direction = atan2(ydistance, xdistance);
if ('direction < 0.0) *direction += TWOPI;
*compassdir = compass(*direction);

sprintf(heading,"%d DEGREES", (int)*compmndir);

editobjobjiSTATSI);
objreplace(tagf TARGET]);
charstr(xtemp);
cmov2i(170,140);
charstr(ytemp);
objreplace(tagjHEADJ);
charitr(heading);
cmov2i(115,80);
charstr(dist);
closeobj);

/* if launch position and target location have been selected by the

operator compute the direction of the missile and distance to target. '
if (launchiock k& targetlock) (

xdistance = ((double) (xtarget - xlaunch));
ydistance = ((double)(ytarget - ylaunch));
distance = sqrt((float)((xdistance * xdistance) +

(ydistance * ydistance)));
distance = distance * GRID FACTOR;
sprintf(dist,"%5.Of METERS", distance);
*direction = atan2(ydistance, xdistance);
if (*direction < 0.0) *direction += TWOPI;
*compassdir = compass('diection);

215

writemask(SAVEMAP);
ca&lobj(objIFLTPATH]);
writemak(unmask);
callobj(objISTATSI);
awaphuffersO);

exit:
cursoffo;
popmatrixO;

220

RANqDNUM

/* randnum.c - returns a random Bloat between sero and one

static long seed =1234567;

randseed(newseed)
long newseed;
I

seed = newaeed;

float randnum()

long multO;

seed = (mult(seed,31415821) + 1) %100000000,
return(seed / 100000000.0);

long mult(p,q)
long p,q;

long p0, pi, qO, q1;

P1 = p / 10000;
p0-=p 6010000;
q1 = q / 10000;
qO = q % 10000;

) return((((pOql + pl*qO) % 10000) *10000 + pO*qO) %100000000);

221

READCONTROLS

/* reads the values from the operator's controls (mouse and dials) .

include "gl11" /* graphics lib defa '
#include "fogm.h" /* fogm constants '
#include "device.h" /' device definitions '

read-controls(deuignate, greyscale, tlying, active, speed, direction,
compasadir, alt, pan, tilt, fovy)

int *designate, *greyscale, 'flying, *active, *fovy;
float *speed, *compaasdir;
double *direction, *pan, *tilt;
Coord *<

extern float randx, randy, rands;
float randnumo;
Colorindex colorui iJ;

/* quit if all three mouse buttons ane pushed .
if(getbutton(MOUSE1) && getbutton(MOUSE2) && getbutton(MOUSE3))(

*flying = FALSE;
*active = FALSE;

elme
if (getbutton(MOUSES) kk !(getbutton(MOUSE2))) (/* Zoom In '

'fovy = ('fovy < (SO + DELTAFOVY)) ? SO: 'fovy.- DELTAFOVY;

if (getbutton(MOUSE1) && '(getbutton(MOUSE2)))({ IZoom Out /
*fovy = (*fovy > (550 - DELTAFOVY)) ? 550: *fovy + DELTAFOVY;

if (getbutton(MOUSE2)) (/0 designate/reject target '
if (*designate) (/* see if target in sights/

/*pushmatrixo;
puahviewprt();
pushattributesO;
viewport(O, 1023, 0, 767);
ortho2(O.0, 1023.0, 0.0, 767.0);
cmov2s((Scoord)(766/2), (Scoord)(768/ 2));
readpixels(l,colors);
if ((colorsJOj >= MINTOTCOLOR) k& (colorsJil <= MAXTOT COLOR)){/

*designate = FALSE;
ringbellO);
randx = 30.0 *randnum() - 15.0;
randy = 10.0 'randnumo - 5.0;,
rands = 10.0 *randnuni(;
while (getbutton(MOUSE2));

222

popatibutesO;
popviewport();
popmatrixO; */

else {/* reject. currently designated target/
ringbello;
designate = TRUE;

P re-adjust tilt and pan values appropriately 1

if (*greyscale 1= getvaluator(DIAL3)) (1/ DIALS indicates color change .
*greyscale = !*greyscale;

ietvaluator(DIAL3,*greyscale,0, 1);
colorramp(*greyscale,FALSE);

speed = (Bloat) (getvaluator(DIAL2) / SPEEDSENS); / get desired speed/

*&It = (Coord)(getvaluator(DIAL4));

*Pan =DTOR '(double) (-getvaluator(MOUSEX)) / PANSENS;
*tilt =DTOR *(double) (getvaluator(MOUSEY)) / TILTSENS;

Scompaaadir = (fioat)getvaluator(DIALO) / DIRSENS;
/* keep 'direction between 0 and 300, update valuator if changed .
if (*compaaadir >= 300.0) f

*compaaadir - 300.0;
setvaluator(DIALO,(int) (*compasadir*DlRSENS), (iut) (.30DIRSENS),
(int) (72O*DIRSENS));

if (*compaaadir < 0.0){
Scompaaadir += 300.0;

setvaluator(DIALO,(int)(compaadir 5 DlRSENS), (int)(-300DIRSENS),
(iut) (720*DIRsENS));

/convert dzrection from compass degrees to trigonometric radians .
direction = (compaasdir <= 90.O) ? DTOR *(90.0 - *compmdir):

DTOR *(450.0 - *compassdir);

223

ROADBOUNDS

4 inclade "math.h"
include "fogm.h"

#define X 0
#define Y 1
#define Z 2

4 define NONE 0

road bounds(ptl, pt2, ptS, road-width, leftyptl, rightPtl, leftpt2,
right-pt2, first xgrid, ist-sgrid, last xpid, lest-sgrid)

Boat ptlISI, pt2j31, ptS(SJ, road width;
Bloat 1eft....tlISI, rightyt[S1, leftyt23l, right..t2SI;
imt *flrst-xgrid, l1ast-xgrid, flrtst grid, *last-sgrid;

float delta~x delta s, seg dir, minx, max x, min _, max a;
float let~endl31, right endl(3], left-start2lsl, right start2131,
left end2ISI, riuht.end2ISI;
imt intersection-type;

/* determine the corner points of the segment/
delta -x = pt2IXj * ptlIXI;
delta_a = pt2jZI - p&ljZJ;
seg dir = atan2(delta s, delta x);
left endIjXi = pt2IXI + (cos(seg dir + HALFPI)'road width/2.0);
right endi[XI= pt2IXI + (cos(segdir - HALFPI)*ro@Adwidth/2.0);
left endlIZi = pt2IZI + (sin(seg_dir + HALFPI)*road width/2.0);
right endlIZI = pt2[ZJ + (sin(seg dir - HALFPI)*road-width/2.O);

if ((pt2jXJ != pt3IXI) 11 (pt2IZJ != ptS[ZJ))(
we are not working with the final segment of this road, find

the intersection of this segment with the next one
delta_x: = ptSIXl - pt2IXj;
delta&a = ptSIZI.- pt2jZJ;
seg -dir = atan2(delta - , delta x);
left start2[XJ = pt2IXj + (cos(seg dir + HALFPI)*road width/2.0);
righ~t - tart2IXI = pt2IXI + (cos(segdir - HALFPI) roaAdwidth/2.0);
left start2ZJ = pt2IZI + (sin(seg dir + HALFPI)*road width/2.0);
righ~t-staat2ZI = pt2(ZI + (sin(seg dir - HALFPI)*road-widh/2.O);
left end2jX] = ptSIXj + (cos(segdir + HALFPI)%rad width/2.0);
right end2IXI = ptSIXJ + (cos(seg dir - HALFPI)*road-width/2.0);
left~end2IZI = ptjZI + (sin(meg dir + HALFPI)*road -width/2.0);
right-end2[ZI = p93SI + (sin(meg ir - HALFP)*rosawidth/2.0);

/* find the intersection point of the left hand sides of the
first and second road segments ./

line intersect2(left~pt1, left endi, left-start2, left-end2,
left jt2, &int&"setion type);,

226

if (intersctiontype - NONE)4
lsftytjXJ = ft endliXi;
kftpt(ZJ left endliZi;

/And the intersection- point of the right had sides of the
At and second road segments $/

line interiect2(rightptI, right endl, right start2, right end2,
rightpt2, &iatersection type);
if (intersection-type == NONE)(

righ&_pt2Xj = right endlIXi;
rigktyt2[Zl = right endliZI;

elsem
/* this is the final segment of thts road .
leftyt2XI = left -endlIX);
leftyt2jZJ = left-endliZI;
rightjyt21XI = right-endliXi;
rightpt2lZ] = right-endliZi;

/ * determine the min and max x end a values/
mn x =leftjytl[Xi;

max -x =left_ptlIXI;

min~ = left-ptlIZj;
Max-j a = ICRp&fZj;
if (right ptlIXI < miu-x) mm -x = right ptlIXJ;
if (rightyplIXl > max-x) max x = right ptl!XI;
if (right~ytlIZJ < mm.-) mm_£ = right ptl[ZI;
if (right ptlIZJ > max-a) max-a = right ptlIZI;
if (left pt2IXI < mm _x) mm -x =left~pt2[Xl;

if (left pt2lXJ > max-x) max x =left pt2[XI;
if (left pt2IZI < minis) mm 3 = left pt2jZ];
if (left pt2IZI > max a) max a =left p&21Z];
if (righ~t ptlljXj < minx) mm x = right pt2[X);
if (right pt2IXJ > max -x) max -x = rightjt2[XJ;
if (right pt2jZI < minia) mm _u = rightjt2lZl;
if (right pt21ZJ > max.s) max-s = right pt2fZj;
*firt-xgrid = (int) (min x/FT lOOM);
*Arst -sgrid = (int)(min r/FT lOOM);
Olast__xgrid =(int)(max x/FT lOOM);
lawtstgrid = (int)(max r/FT lOOM);

if (ant xgrid < 0) *Int_?4grid =0;

if (Anirt igrid < 0) *flrst igrid =0;

if (last-xgid > 98)l *I&xgrid 98;
if (*last agrid > 98) luat-agrid =98;

226

SORTARRLAY

sort -anay(errny, mum entries, docending, test-index)
Bloat array1OIISl;
iut sum-entries, decendimg, gt-tindex;

mnt ij;
float tempisi;

for (i = 0; i < mum_-entries; ++i){
for (j= i + 1; j <= mum ene; ++j)

if (((doceading) k& (array~jItsst index] > ermylilltest, index])) 11
((!deeuding) && (azrayjItesC index) < arraylilltmit ndexD)) {

templol = arraylillol;,
tempill = amy~ijll);
templ) = arrayliII2l;
arraylijiol = amrayuj) o);
array(il(1) = anayulil';
affay1) j2) = arayU]I2I;
waryujjjO) = temp(0);
arayUIll] = tempill;
arrayJ)121 = templ2j;

2

UP LOOKPOS

/* compute the camera's lookat position /

#include "fogm.hw /* fogm constants /
#include "math.h" /* math routine definitions /
#include "g.h" /* graphics deinitions */

updatelook posit(direction, pan, tilt, vx, vy, vs
tgtx, tgty, tgts, designate, px, py, ps)

double direction, pan, tilt;
Coord vx, vy, vs, tgtx, tgty, tgts, *px, *py, *ps;
int designate;
{

extern int framecnt;
double lookdir;

if (designate) { /* missile is not locked on to a target ./

/* compute direction camera is looking /
lookdir = direction + pan;

/* compute a coordinate along camera's line of sight /
*px = vx + cos(lookdir) * MAXLOOKDIST;
*ps = vs - sin(lookdir) * MAXLOOKDIST;

if (framecnt < 15) {
*py = 4.0 * vy * (14 - framecnt) / 14.0;
framecnt++;

}
else(

*py = vy + MAXLOOKDIST * tan(tilt);
)

}
else 4

e px = tgtx;

py = tgty;
*ps = tgts;

226

UP MSL POSIT

/* Compute new missile position/

include "gl.h" /. graphics definitions/
include "device.h" /$ graphics device definitions .
include "folm-k" /* fogm constants */
#include "math.h" /. math function declarations .
include <sy/typesh> /* contains the time sturcture tms/
#include <sym/timesh> /* for time calls /

update -missie posit(direction, compauadir, speed, designate,
tgtx, tgty, tgts, vx, vy, v", flying)

double *direction;
float *compasdur;
Bloat speed;
int designate;
Coord tgtx, tgty, tgts;
mnt *flying;
Coord *vx *vy, *1,3;

static long seconds;
static long lastsec =-999; P -999 is flag to indicate no value/
struct tins timestruct;
Bloat deltadist, gndlevel, gnd-level(), compausO, ht-above tank;
long float deltax, deltas, dist-to-ak;

seconds = times(×truct);

/* compute distance missile must move ahead to maintain speed ,

if (lastsec == -999)
deltadist = 0.0;

else
deltadist = (speed/ FPSTOKTS) (seconds - lastsec);

lastsec = seconds; /* save for next pass .1
if (designate) (/' missile under operator contol, not locked on tgt .

*vx += deltadist *coe('directiou);
1 0vs -= deltadist * sin('direction);

/$ keep missile at least 50 ft above ground level/
gndlevel = gnd-level(*vx, *vs);
if (%vy < (gndlevel + 50.0)) *vy = gndlevel + 50.0;

else{

deltax = vx - tgtx;
deltas = *vs - 9ges;
dist to tank = hypot(deltax, deltas);

229

if (deltadist > (float)dist -to- task) (/* hit on taget/
deltadist = (float~dist-to tank - 5.0;
*11ying = FALSE;
lastsec = -999; /* no value flag for next launch/

*direction = (double)atan2((Ioat)deltas, (float)-deltax);
if (Idirection < 0.0) *direction += TWOPI;
*compsssdir = compawaa direction);

setvaluator(DIALO,(int)(*compaamdir'DISENS), (int)(-SOODISENS),
(int)(72O*DIRSENS));

Ovx += (deltadist * cos(*direction));
*vx - (deltadiut * sin(*directioba));

ht -above tank = (float)vy.- gad level(tgtx,tgts);
O -(Coord)((ht above-tank 4 deltadist) /I (Iloat)dimt-to-tank);

280

VIEWBOUNDS

include "fogm.h"
* f#include "gl.h"

#include "math.h"

* view bounds(vx, vy, vs, px, py, PS, tilt, fovy,
firstigrid, fistsgrid, lastxgrid, lastsgrid)
Coord vx,vy,vu;
double tilt;
mnt fovy;
short *firstxgrid, *flhstsgrid, lstxugrid, lsatsgrid;

float ix, is; /* the intersection points/
float loohdir;
float deltax, deltay, deltas, delta-Salt, fx, fy, fs;
float half-fovy;
float lower-edgeangle;

/* compute the direction the camera is looking/
loohdir =atan2((float)(vs - pm), (Bloat) (.(vx-px)));
if (lookdir < 0.0) lookdir += TWOPI;

if (vy > py) 4
/* tilt agle Is negative ~
deltax = px - vx;
deltay = py - vy;
deltas = p. - vsn;

delta-alt = pow ((float)MIN, ALTSCALE) - vy;

else(
/* tilt agle is positive, use the lower fustrum edge instead

of the fine of sight to compute the view bounds */
/compute a coordinate along the lower fustrum edge/

half fovy = ((float)fovy/20.O*DTOR);
lower -edge-eangle = tilt - halfffovy;
fx = vx + cos(lookdir)*MAXLOOKDIST;

f= vs - sin(loohdir)*MAXLOOKDIST;
fy = vy + tan (lower-edge_angle) MAXLOOKDIST;
deltax = fx - vx;
deltay = fy - vy;
deltas = fa - vs;
delta-alt = pow(float)MIN, ALTSCALE) - vy;

ix = vx + ((deltas/deli ay)'delta alt);
is = vs + ((deltas/deltay)*delta-alt);

/* compute which grid objects should be sent through the geometr
pipeline *

231

if (deltay > 0.0)(
/* the fustrum is looking totally skyward, don't bother doing

any terrain .
*firstxgrid = 0;
*firstsgrid = 0;
lIastxpid =0;

'lastsgid = 0

else{
/* display 20 grid squares on all sides of the intersection point/
lfrstxgrid =(int)(ix/FT lOOM) - 20;
lIastxgrid = (int)(ix/FT-lOOM) + 20;
*firstsgrid = (int)(-is/FT lOOM) - 20;
*lastsgrid =(int)(.is/FT lOOM) + 20;

/* inure that objects drawn include the current missile position/
if ((int)(vx/FTlOOM) < *Grstxgrid)

'Brstxgrid = (int)(vx/FT 100M);
if ((irnt(vxfFT_OOM) > lIastxigrid)

*lastxgrid = (int)(vx/Fr l OOM);
if ((int)(-vs/ FT lOOM) < *firstsgrid)

*firstsgrid = (int)(.vs/FT lOOM);
if ((int)(-vs/FTIOOM) > lIastsgrid)

'lastsgrid = (int)(-vs/FT lOOM);
if (*fihstsgrid < 0) *flrstsgrid =0;

if (*firstxgrid < 0) Olrmtxgrid =0;

if (lIastsgid > 98) lImstsgrid =98;

if (*Iastxgnid > 98) lIastxgrid = 98;

232

LIST OF REFERENCES

1. PC Connection advertisement, PC Magazine, v. 6, no. 11, p. 241, June 9,
1987.

2. Orlansky, J. and String, J., "Reaping the Benefits of Flight Simulation," in
Computer Image Generation, edited by B. Schachter, John Wiley & Sons,
Inc., New York, New York, 1983.

3. US Army Combat Developments Experimentation Center (USACDEC)
Technical Report, Computer Graphics Fiber Optics Guided Missile Flight
Simulator (FOG-M Simulatorf Required Instrumentation Capability (RIC),
Fort Ord, California, 1986.

4. Mar, Roland K., "FOG-M: Another Army Orphan for the Marines?" U. S.
Naval Institute Proceedings, v. 113/6/1012, pp. 95-97, June 1987.

5. Kotas, Jim, "Computer Image Generation: Realistic Simulation," National
Defense, v. 70, no. 412, pp. 26-31, November 1985.

6. Berthiaume, Richard, Karnavas, Gary, and Bernsteen, Stan, "Graphical
Representations of DMA Digital Terrain Data on Low Cost Commercial
Graphics Workstation," Proceedings of the IEEE 1986 National Aeroepace
and Electronics Conference, v. 3, pp. 992-996, 1986.

7. Silicon Graphics, Inc., IRIS User's Guide, Mountain View, California, 1986.

8. Fox, Teresa A., Clark, Philip D., "Development of Computer-generated
Imagery for a Low-cost Real-time Terrain Imaging System," Proceedings of
the IEEE 1986 National Aerospace and Electronics Conference, v. 3, pp.
986-991, 1986.

9. Defense Mapping Agency, Product Specifications for Digital Landmass
System (DLMS) Data Base, 2d ed., April 1983.

10. US Army Combat Developments Experimentation Center (USACDEC)
Technical Report, Fort Hunter Liggett Digital Terrain Database on the VAX
Computer, Fort Ord, California, 1985.

233

11. Hearn, Doaid, and Baker, M. Pauline, Compute r Graphics, Prentice-Hall,
Inc., Englewood Cliffs, New Jersey, 1966.

12. McGrew, J. F., "Exaggerated Vertical Scale in CGI Terrain Perupertives,"
Proceedings of the Human Factors Society M7h Annual Meeting, v. 1, pp.
33-35, 1983.

13 Fuchs, Henry, Abram, Gregory D., and Grant, Eric D., "Near Real-Time
Shaded Display of Rigid Objects," Computer Graphics, v. 17, no. 3, pp. 65-
72, July 1983.

14. Sedgewick, Robert, Algorithms, Addison-Wesley Publishing Co., Reading,
Massachusetts, 1983.

OPIION

Distribution List

Defense Technical Information Center
Cameron Station
Alexandria, VA 22314 2 copies

Library, Code 0142
Naval Postgraduate School
Monterey, CA 93943 2 copies

Center for Naval Analyses
2000 N. Beauregard Street
Alexandria, VA 22311 1 copy

Director of Research Administration
Code 012
Naval Postgraduate School
Monterey, CA 93943 1 copy

Roger Casey
Naval Ocean Systems Center
Code 854
San Diego, CA 92152 1 copy

Mr. Russell Davis
HQ, USACDEC
Attention: ATEC-IM
Fort Ord, CA 93941 1 copy

Prof. Michael Zyda
Code 52Zk
Naval Postgraduate School
Monterey, CA 93943 189 copies

Dennis McCall
Naval Ocean Systems Center
Code 443
San Diego, CA 92152 1 copy

Dr. Al Zied
Naval Ocean Systems Center
Code 443
San Diego, CA 92152 1 copy

Dr. Egbert D. Maynard
OUSDR&E VHSIC Program Office
Room 31)39,400 A/N
The Pentagon
Washington, DC 20301-3060 1 copy

L_/

