D-R184 348 AN INEXPENSIVE REAL-TIME INTERACTIVE THREE-DIMENSIONAL 1/3
FLIGHT STMULATION_SYSTEMCU> NAVAL POSTGRADUATE SCHOOL
MONTEREY CR M J ZYDA ET AL 83 AUG 87 NPS52-87-0834

UNCLASSIFIED /G 579

S

s m | [ | E
HENENNN

-~

I

NN
f

1 (e E




J.l.l.l.lal.l '."

HEY

|||
=




S BTiC |
y Ve
o F‘LE {;Ur‘i
?o NPS52-87-034
- % NAVAL POSTGRADUATE SCHOOL
| M c Iof .
O onterey, Lalifornia
OTIC
I
«?&Ei-‘%’ ~TE
SEPQ 1987
AN INEXPENSIVE REAL-TIME INTERACTIVE
THREE-DIMENSIONAL FLIGHT SIMULATION SYSTEM
Robert B. McGhee
Michael J. Zyda
Douglas B. Smith S
Dale G. Streyle ‘,:_"'“ -
v -
. ‘27 ’:jv_.'
July 1987 T 0
- - r__';\ 't", .
Approved for public release; distribution unlimited. ﬂﬁ, ".5::
B
Prepared for: <
USA Combat Developments Experimentation C
Fort Ord, CA 93941 T g 9 & 048




NAVAL POSTGRADUATE SCHOOL
Monterey, California

Rear Admiral R. C. Austin . D. A. Schrady
Superintendent Provost

The work reported herein was supported by contract from the United States Army
Combat Developments Experimentation Center and a grant from the Naval Ocean Sys-
tems Center.

Reproduction of all or part of this report is authorized.

This report was prepared by:
7 LA oI
. {
MICHAEL J. ROBERT B. MCGHEE
Associate Professor Professor of Computer Science

of Computer Science

Reviewed by: Released by:

w2l AT

o VINCENT Y.)IU'M KNEALE T.
— Chairman Dean of Information and
XK Department of Computer Science Policy Science

ORALB0 DA




UNCLASSIFIED
[ HIS PA

Nt A )

|

REPORT DOCUMENTATION PAGE

1a. REPORT SECURITY CLASSIFICATION
UNCLASSIFIED

1b RESTRICTIVE MARKINGS

28. SECURITY CLASSIFICATION AUTHORITY

2b. DECLASSIFICATION / DOWNGRADING SCHEDULE

B
3. DISTRIBUTION / AVAILABILITY OF REPORT

4. PERFORMING ORGANIZATION REPORT NUMBER(S)
NPS52-87-034

S. MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION
Naval Postgraduate School

6b. OFFICE SYMBC .
(If applicabie)

52

7a. NAME OF MONITORING ORGANIZATION
Chief of Naval Research

6¢c. ADDRESS (City, State, and ZIP Code)
Monterey, CA 93943

7b. ADORESS (City, State, and ZIP Code)
Arlington, VA 22217

8a. NAME OF FUNDING /SPONSORING
ORGANIZATION

8b. OFFICE SYMBOL
(If applicable)

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

CDEC NOSC

8c. ADDRESS (City, State, and ZIP Code) _ 10. SOURCE OF FUNDING NUMBERS
Ft. Ord, CA San Diego, CA PROGRAM PROJECT TASK WORK UNIT
93941 ELEMENT NO. | NO. NO. ACCESSION NO.

92152

1. TITLE (Include Security Classification)

AN INEXPENSIVE REAL-TIME INTERACTIVE THREE-DIMENSIONAL FLIGHT SIMULATION SYSTEM

12_PERSONAL AUTHOR(S)

ZYDA, Michael J., MCGHEE, Robert B., SMITH, Douglas B., STREYLE, Dale G.

13a. TYPE OF REPORT
Summary

13b. TIME COVERED

rrom 8/1/86 10 7/31/87

14. DATE OF REPORT

{Yegr Month, Day) |15 PASS 8COUNT

AUgus

16. SUPPLEMENTARY NOTATION

17. COSATI CODES

GROUP SUB-GROUP

18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

\pleSTRACT (Continue on reverse if necessary and identify by block number)

A prototype flight simulator for the Fiber-Optically Guided Missile (FOG-M) is presented.
This prototype demonstrates the practicability and feasibility of using low-cost graphics
hardware to produce acceptable simulation of flight over terrain generated from Defense
Mapping Agency (DMA) digital elevation data. The flight simulator displays a dynamic,
three-dimensional, out-the-window view of the terrain in real-time while responding to
operator control inputs. The total system cost (software and hardware) of the simulator
is an order of magnitude less than most flight simulation systems in current use.

=

20 DISTRIBUTION / AVAILABILITY OF ABSTRACT
£3 uncLassiFrleorunumiTeD K SAME As RPT.
22a. NAME OF RESPONSIBLE INDIVIDUAL
Michael J. Zyda

OD FORM 1473, 8a MAR

TR

22?41’5!.855’82g5 3(605110 Area Code)

T ITY CLASSIFICATION
g DTIC USERS I}Eﬁ,

«2¢ ngFiiE SYMBOL

83 APR edition may be used until exhausted.
All other editions are obsolete

SECURITY TION OF THIS PAGE
N U.S. Gevernman' Printing Otfien: 1900—608-34.

UNCLASSIFIED

SRR




An Inexpensive Real-Time Interactive Three-

Dimensional Flight Simulation System

Douglas B. Smith, Dale G. Streyle, Robert B. McGhec and Michael J. Zyda *

Naval Postgraduate School,
Code 52, Dept. of Computer Science,
Monterey, California 93943

ABSTRACT

A prototype flight simulator for the Fiber-Optically Guided
Missile (FOG-M) is presented. This prototype demonstrates the
practicability and feasibility of using low-cost graphics hardware to
produce acceptable simulation of flight over terrain generated from
Defense Mapping Agency (DMA) digital elevation data. The flight
simulator displays a dynamic, three-dimensional, out-the-window
view of the terrain in real-time while responding to operator control
inputs. The total system cost (software and hardware) of the simu-
lator is an order of magnitude less than most flight simulation sys-

tems in current use.

t This work was supported by the U.S. Army Combst Developments Experimentation Center, Fort Ord, -

Califorsia (ATEC 44-87) and a graat from the Naval Ocean Systems Center, San Diego (Ref. ¢
NOOO1466WR4B123AC). This work was generated from Douglas B. Smith's and Dale G. Streyle's joint Masters

* Contact author.

‘ssien Por
CRA&L
) I “\B

soaneed I

Thesls. bt i/

Y

ﬁ

iJicatior

s e e et

o )
T onuiliy Codles
el orndjor




TABLE OF CONTENTS

..................................................................... - 10
A. FOG-M ..ottt crsestscsss e es s ssssnsesesasanee 10 :
1. Background ........ccooieiveiiiiiiiiiiieiniiiiiensernenneniee e erersnanasaenas 10
2. DeSCHPLION c.euuviiiiiiiieiiriirineiriicrceeeeeesrenssierereersansnsrnsesnenes 11 ‘
B. ASPECTS OF FLIGHT SIMULATION ......ccccoviniinninnans 12 \
1. Realism .....ociiiiiiiiiiiniiiic st 13 |
2. Frame Update Speed ..........cccoevrieerrriirriiennernriennnseeecaneseens 14 '
C. ORGANIZATION ..oiiiiriicetireneresessessnnnree s seseeasasnsnnens 15 }:
IL COMPUTER SYSTEM ....iiitiiiiecininincnitecsecsnesssnanses i6 |
A. HARDWARE AND SYSTEM OVERVIEW ................... 16
B. SOFTWARE ... cntverenenccc e cncneene 18
IIl. DIGITAL ELEVATION TERRAIN DATA ......cccccoevvivnvincnnns 20
A. INTRODUCTION ...coiiiiiiitiiineecisecnninccenessaesssssnsnees 20
B. COVERAGE .......cciiiiiiiiiciiiiriinictccenrnerc s aresssssanes 20
C. STRUCTURE ..ottt cssssae e cesanes 21

D.

........................................................................



B. DRAWING ..oovvmmmmnnnenmmanseessssmmsensesssssssssessessamsassesessssssesss 28

) C. WRITEMASKS .....oovemircrninniismmsssessssisssnesssssssssssssssesses 20
. 1. COlOT TABIE couceeenieereeieieeicesesassssssrsessmsssssassssssssssaens 2
2. Bitplanes .........ccoiiiiiiiiiirriniienincniecasessiseassisas s sesas 29

' 3. Writemask Example .........cccovviiuiiieeierernirecneeniosesccsernssans 30
4. Writemasks in FOG-M .......cococciviiiiniriiiiniininniieeccnnns 32

V. THREE-DIMENSIONAL TERRAIN CONSTRUCTION .......... 34

i A. REPRESENTATION DECISIONS .......cccceveivininninsrunessennens 34

1. lPolygons versus Patches ........cccooovieveeivieiiiiiiniemneeniiceenenee 34

2. Resolution .......cccciiriiiniriiiniiniinicnnenn e neenesaee e 36

3. Elevation Scaling .......cccccoverieemiiirrciiinieniennitninesiseseeses 36

4. Shading and Texturing ......ccccccooireremmmrecsionieniiicennennneeee 38

a. Elevation Based Shading .........cccccicoeeinrnnnianiencsinsnnnnns 38

b. Lambert’s Cosine Law Shading ........c.ccovneueeenreereenna. 39

c. Gouraud Shading ........cccceeervemrercrmneneennnnnirncnniennecneeen 41

d. Adding Texture ..........cccccerreeerenecenennenenennensenceereeeeeens 43

B. INTERNAL DATA STRUCTURES .......cccceevvurrrvrnnninnnenanns 44

VI. FLIGHT SIMULATION ......ccccccinmmiiinniiininnincninneenisessnnenssneens 46

A. OVERVIEW .....iiiiiiirinitininnennnissnsstesesssaissassssssssssens 46

B. UPDATING THE MISSILE’S POSITION .......cccceeiiianaees 46




VIL

VIIL

1. Case 1 - Operator Control ...........

2. Case 2 - Locked Onto a Target ...

------------------------------------

C. DETERMINING THE LINE OF SIGHT ....c....ovvevrrvnrenerenne

D. DISPLAYING THE SCENE ...........

1. Viewing Transformations ............

------------------------------------

------------------------------------

2. Determining Which Polygons to Draw ..............ccceeeeunee.

3. Hidden Surface Removal .............
E. SMULATOR PERFORMANCE ....
TARGET INTEGRATION .............c....
A. GENERAL ........cccevvvtrviinieninrricnnens
B. TARGET CREATION ............c.......
1. The System Matrix .....................
2. Target Transformations ..............
C. ANIMATION .....ccoovirreinircnnrecanns

D. DISPLAY .....iiiiiniiiiiinneineninnns

------------------------------------

------------------------------------

------------------------------------

------------------------------------

------------------------------------

------------------------------------

------------------------------------

CULTURAL FEATURE INTEGRATION .........cccceveirninnnee

A. EXTERNAL DATA FILE FORMAT ...,

B. CONSTRUCTION OF THE ROAD POLYGONS ...............

C. INTERNAL ROAD-POLYGON STORAGE ......................

FOG-M SIMULATOR USER’S GUIDE

6

------------------------------------

47

48

52

52

58

65

71

71

72

72

74

75

76

82

82

83

87

89




A. OVERVIEW ....cooomeeerrereesresseese eeereeessssseseesenasesasesans 89

B. STARTING THE SIMULATION ........cccccvvuvrnnrisnnercnncssnnnes 89

- C. PRELAUNCH CONTROLS ....cccooveirmsreninssssenssessssesssssane 91
1. The Prelaunch Display ........cccooreereerirceisircnneceniiscsnnne, 91

2. Selecting the Launch Position ...........ccceeererreeenenneencreenenne. 95

3. Selecting the Target Position ...........ccceevirvinicirisccnisecininnns 95

4. Launching the Missile ...........ccovveeirieririreeneiienrecrnrencseenenns 26

i D. IN-FLIGHT CONTROLS ........cccociiiiirriririreersnneennnnnnnnens 96

1. | The In-Flight Display .........ccocueurrrmeneeveeeevreeeecmeeesancereseena. 96

2. Controlling the Camera .........cc.cceerveeeereeriirereneeereeeresnessnns 99

3. Controlling the Missile Flight ..........ccococrriiiceirenninnncenen. 99

4. Designating and Rejecting Targets ..........cccceeeecvunereenennen 101

X. CONCLUSIONS AND RECOMMENDATIONS ...... cereeseneeeaas 103

A. LIMITATIONS ....cooriiiiniiitenininancssnssnsennscssssssnenssenaes 103

B. FUTURE RESEARCH AREAS ............cccvvevirininrecnnnennen. 104

C. SUMMARY AND CONCLUSIONS ......ccccovermveiinnnercsnaniee 104

APPENDIX A - MODULE DESCRIPTIONS. ...................................... 106

APPENDIX B - SOURCE LISTINGS ......ccocciiivminirnnneinnninniennnneennnee 128

- LIST OF REFERENCES .........cccooviivimiinniinnniinnniniennniseninsesssseenens 233
: INITIAL DISTRIBUTION LIST .......cccccconmininirinninnnnnninnnnnnesnnesssnsennens 235




. L. INTRODUCTION

Flight simulation has been an important computer graphics application,
embracing a range of systems from a $32.00 program for a personal computer
[Ref. 1] to special purpose machines costing millions of dollars [Ref. 2]. The
capabilities of these systems are spread across a range nearly as wide as their
costs, with great variances in speed (frames displayed per second), realism,
flexibility, and area of flight. We present here a system that is relatively
inexpensive, yet still fast enough to present a real-time three-dimensional view of
digitized terrain. We built this system on a commercially available, high-
performance graphics workstation, the Silicon Graphics, Incorporated IRIS-2400
Turbo. The IRIS system was selected because of its local availability and its
performance capabilities. The flight simulator presented here does not use the
natural color and shape of individual terrain elements (in order to achieve real-
time performance), but it is sufficiently realistic to provide the feeling of flight

and allow identification of the displayed terrain and targets.

A. FOG-M
1. Background
The project presented here was built in response to the United States

Army Combat Developments Experimentation Center’s need to simulate the

10




operation of the Fiber-Optically Guided Missile (FOG-M) [Ref. 3|, but this missile
is also being considered for use by the United States Marine Corps [Ref. 4.
Simulation is necessary in order to test and evaluate the tactics, doctrine and
training requirements associated with the missile without the expense and da.nger
of actual firings during simulated combat field trials. The FOG-M is a generic
family of remotely-piloted, video-guided munitions, but for the purpose of this
prototype simulator, the weapons are all logically equivalent, a» " .he entire
family is referred to as ‘‘the missile.”” In order to avoid security constraints, the
parameters and operational characteristics used in this work were not taken from
exact FOG-M specifications. The parameters and technical specifications are all
estimates, based on reasonableness and consistency with general, unclassified
descriptions of the FOG-M.
2. Description

The actual FOG-M missile is six inches in diameter, five and one-half feet
high, weighs eighty-three pounds, and costs about $20,000 [Ref. 4]. It has a video
camera mounted in its nose, which transmits a black-and-white picture back to
the operator’s console (which consists of a television screen, a computer, and a
joystick) over the fiber-optic link. (The simulator display offers the user the choice
of either color or black-and-white; color is the default for the simulator despite the
operator view of the missile being black-and-white. The color compensates for

some of the loss in realism and identifiability inherent in a polygonal

representation of natural objects). Before launch, in normal operation, the missile

11




is given a general direction to a target and the altitude of the highest point within
its range. The simulator allows values in excess of FOG-M operational
capabilities for speed, range, and altitude above ground level (AGL), but' the
default values of two hundred knots, ten kilometers, and one thousand meters are
characteristic of this type of missile. As soon as the missile is in position, it begins
transmitting video images. When launched, the missile rises to approximately
two hundred feet above the highest terrain point, and then levels off in horizontal
flight in the targeted direction. The operator controls the pan and tilt angle of
the camera with the joystick, and can dial in changes to the heading and altitude
of the missile. The operator also has the capability to zoom the camera’s field of
view from eight degrees to fifty-five degrees, and to designate (‘“‘lock-on” to) a

target for automatic homing by the missile.

B. ASPECTS OF FLIGHT SIMULATION

There are many aspects to flight simulation. Modern commercial simulators
provide sophisticated mock-ups of cockpits and controls and highly detailed out
the window views. By mounting the simulator on a moving platform, a true sense
of the physical feelings of acceleration and roll can be achieved. These systems
also cost millions of dollars.

One of the first decisions that must be made when designing a flight simulator
is, “For what purpose will the simulator be used?’’ The answer to this question

drives most of the design decisions that have to be made. Since the purpose of

12




this project is to provide a simulation of the FOG-M missile as viewed from its
operator’s console, it is felt that the most important items to model are the
simulated video display of the terrain and the actual operator controls. The
terrain should appear realistic enough that its major features are recognizabl;e toa
person familiar with the area. The controls should allow for the same
functionality as the actual console. The simulator must, of course, also provide a
feeling that the missile is in motion over the terrain. The effectiveness of the
feeling of motion provided by a flight simulator can be largely measured by two
criteria: the realism of the displayed scene and the update rate of the display.
1. Realism

Many factors contribute to the perceived realism of a displayed natural
scene. Early attempts to quantitatively measure realism consisted of counting the
number of ‘‘edges” or lines that a scene contained. This later gave way to
counting the number of ‘“‘faces’ or polygons in a scene. Since each polygon was
colored in a single shade, it was felt that each polygon represented a single ‘‘bit”
of information in the scene. Therefore, the more polygons the scene contained,
the more ‘“‘realistic” it was felt to be [Ref. 5:pp. 27-28]. |

The latest advances in computer graphics have also made this measure of
effectiveness obsolete. With the introduction of systems that are able to fill
polygons with textured patterns, a single polygon can now contain thousands of
“bits” of information. As a result, a scene drawn with a few textured polygons

can appear more realistic than one with an order of magnitude more untextured

13

ORI OGSO MR 15 800 8 Ve e Ty, q 0 R, ¢ g
e o R FGI0  a  y vifg?b‘gfi",’tﬁr,Gi‘gf('.‘i'g?i',f-?,fl*;f\'.ti’_,:d,::l!.."g:l’u’l?.h;v A ,,s{.‘,o‘,‘,u!,:t',:q,»:o'ﬁ» !



ones. Early textures consisted of superimposing things such as mathematical
noise functions or stripes on the polygons. More recent advances have allowed the
texture to be derived from digital photographs of a similar scene. For example,
polygons representing a part of terrain covering by meadow could be filled wi'th a
digital texture derived from an aerial photograph of a meadow [Ref. 5: p. 28].

Since most currently available graphics workstations do not support the
use of texture filled polygons, the use of texture was deemed to be outside the
scope of the current project. Rather, the project’s work concentrated on
determining how realistically a scene could be rendered in real-time incorporating
only the use of lighting and shading models along with terrain hidden-surface
algorithms. These topics are covered in more detail in Chapter V.

2. Frame Update Speed

Another important aspect of a flight simulator’s performance is the speed
at which it is capable of displaying successive frames in a scene. The faster the
update rate, the more continuous the motion appears. As a reference, standard
motion picture film is projected at a rate of twenty-four frames per second.
Although the IRIS workstation is capable of displaying up to sixty frames per
second, the amount of computation that must be done between successive frames
in the simulation has limited the update rate to an average of three frames per
second. While this presents a less than smooth motion, it is felt to be adequate

for the purposes of the prototype.




C. ORGANIZATION

The above sections of this chapter have provided background on flight
simuiation in general, and the missile whose flight is specifically being simulated.
Chapter II provides an overview of the hardware used in running the simula;tion.
The structure and content of the Defense Mapping Agency (DMA) Digital
Terrain Elevation Data (DTED) are discussed in Chapter IIIl. Chapter IV
discusses the motivation behind and creation of the two-dimensional contour map
displays. Chapter V covers the storage and use of the DMA DTED to produce a
lighted an:! shaded three-dimensional polygonal terrain display. The mathematics
and process involved in simulating flight over the terrain are detailed in Chapter
V1. Chapter VII discusses the creation, insertion, animation, and designation of
targets. Chapter VIII covers the creation and drawing of cultural features.
Chapter IX contains a user’s guide for operation of the FOG-M simulator.
Chapter X concludes with a discussion of limitations, future extensions and
research topics, and summarizes the research conducted. Narrative descriptions of
the modules and listings of the program source code for each of the modules are

included as Appendices A and B respectively.

15




II. COMPUTER SYSTEM

As discussed in Chapter I, flight simulators are nothing new. The significance
of this work lies in the speed with which it was developed, the display rate
achieved, and the realism and fidelity of the display in comparison to the cost of
the system that supports it. This project was technically feasible only because of
the capabilities and high performance of the IRIS (Integrated Raster Imaging
System) Turbo 2400 Graphics Workstation, manufactured by Silicon Graphics,
Incorporated. Others have also used the IRIS as a base on which to build flight
simulators [Ref. 6]. This low-cost (850,000 to $100,00) three-dimensional display

system is summarized in Figure 2.1 and is discussed more fully below.

A. HARDWARE AND SYSTEM OVERVIEW

The IRIS has a conventional Von Neumann type computer architecture but
adds custom-built special purpose VLSI circuits and a pipelined design to provide
the graphics functions that are implemented in software on other comparably-
priced workstations. Conceptually, there three pipelined components in the IRIS
hardware: the applications/graphics processor, the Geometry Pipeline, and the
raster subsystem ([Ref. 7:p. 1-1]. The applications/graphics processor is a
conventional Motorola MC688020 processor running at 16.7 MHz. This processor

runs the applications program(s) within a UNIX System V operating system.

16




ETHERNET to Vax and other TRIS

332 bit 16.7 MHs Motorola MC68020 CPU

6 Megabytes of CPU Memory

83 1024x768 bitplanes of Display Memory
Hardware matrix multiplier & floating point accelerator

Hardware Gouraud shading, depth cueing & backface polygon removal
12 pipelined custom VLSI Geometry Bn‘ino-Tn

16-bit Z-buffer for Hidden Surface Elimination
2 73 Megabyte Winchester Disk Drives

80 Hs non-interlaced 19" RGB high resolution monitor
83 key up-down encoded keyboard

3 button mouse

32-button and 8-dial valuator boxes

Unix System V

Ethernet to VAX'e
IRIS Graphice Library

Features of the TRIS Turbo 2400 Graphics Workstation
Figure 2.1




Applications either issue graphics commands in immediate mode, in which case
they are sent through the Geometry Pipeline immediately as individual graphics
primitives, or comnile graphics commands into graphical objects, in which case
they are sent through the Geometry Pipeline as a single geometric entity when
explicitly called at some later point in time.

The Geometry Pipeline takes commands in terms of the user's world
coordinates, performs specified matrix transformations on them using the matrix
multiplier and floating point accelerator built into the hardware, and then clips
and scales the transformed coordinates into screen coordinates. The raster
subsystem takes the screen coordinates output by the Geometry Pipeline and
updates the bitplanes (display memory) to contain the lines, polygons, or
characters specified by the input coordinates. The raster subsystem also performs
polygon fill, shading, depth-cueing, and hidden surface removal. A conventional
video controller uses the values in the bitplanes and the color table to produce an

image on the monitor.

B. SOFTWARE

The C programming language is native to UNIX and is the language used for
all of the IRIS system software. The IRIS Graphics Library, which provides both
high- and low-level graphics and utility commands, can be called in C,
FORTRAN, Pascal, or LISP. However, due to the built-in bias of UNIX and the

IRIS, plus the local pool of knowledge, the C programming language was the

18




pro forma choice for programming all parts of the FOG-M simulator. The IRIS

User’s Guide [Ref. 7] breaks the Graphics Library commands into the following

twelve categories:

Global State commands initialize the hardware and control global variables,
and are used mostly in FOG-M’s init iris routine.

Drawing Primitives are used throughout FOG-M. They create points, lines,
polygons, circles, arcs, and text strings.

Coordinate Transformations specify mappings within and between user-
defined world coordinates and screen coordinates. These are used to move
targets and to simulate flight.

Drawing Attribute commands specify textures and fonts. Although texture
would greatly improve the appearance of the terrain, the IRIS provided
textures are applied in the screen coordinate system, so they do not scale or
tiit to conform to the terrain, and produce a very artificial result.

Display Mode and Color commands determine how the bitplanes are used
and what colors appear on the screen. These include the commands that set
double-buffering, establish writemasks, and define the color table.

Input | Output commands initialize and read the dials and mouse.

Object Creation and Editing commands allow manipulation of complex
displays as a single entity. They are used in all FOG-M displays.

Picking and Selecting commands are not used in FOG-M.
Geometry Pipeline Feedback commands are not used in FOG-M.

Curve and Surface commands draw complex curves and smooth surfaces.
Experiments with these produced more realistic terrain images, but not even
close to real-time, making flight animation impossible.

Shading and Depth—cueing commands provide Gouraud shading of polygons
and intensities that vary with distance from the viewer.

Teztport commands define an area of the screen for text. They are not used
in FOG-M.

Also available on the system, and used by FOG-M, are the math library with

sine, cosine, arctangent, hypotenuse, and exponentiation functions, and routines

that access the system clock in order to determine elapsed time.

19




III. DIGITAL ELEVATION TERRAIN DATA

A. INTRODUCTION

Unlike other flight simulation systems, which may rely on manual creation of
the terrain [Ref. 8|, the source data for the terrain in the FOG-M simulation is a
Defense Mapping Agency (DMA) digital terrain elevation database (DTED) for
Fort Hunter-Liggett, California. The database is not Level 1 DTED, but rather a
DMA special product produced about 1980 at a higher resolution than normal
Level 1 DTED [Ref. 9]. Level 1 DMA data contains elevation points spaced at
three arc-second intervals, or approximately every one hundred meters. The Fort
Hunter-Liggett special data contains points at twelve and one-half meter spacing,

which is eight times the resolution of Level 1 data.

B. COVERAGE

The area covered by the database is thirty-six kilometers wide and thirty-five
kilometers high, with 6400 data points per square kilometer. This area includes
most of Fort Hunter-Liggett plus some surrounding land, and is bounded by
latitudes 36°05° 00°° (to the north) and 35°50° 00°° (south) and longitudes
121° 04" 30°° (east) and 121° 20 30°° (west). In terms of Universal Transverse
Mercator (UTM) coordinates, the area has easting (X) of 10SFQ41000 to
10SFQ77000 and northing (Y) of 10SFQ60000 to 10SFQ95000. The database

20

A R AT B e



appears to be based on DMA forty foot interval contour map products, because
peaks tend to have flattened tops. This was confirmed both by a comparison of
surveyed instrumentation sites on or near peaks with their digital terrain values

[Ref. 10: pp. 1-2], and by a Bezier surface patch image of the data created locally.

C. STRUCTURE

The data is stored in an unformatted sequential file that is organized as a
stream of integers. Each integer (sixteen bits) represents both the vegetation code
and bald terrain elevation in feet at one sampling point, as illustrated in Figure

3.1 below.

LVeg. Code I Bald Terrain Elevation |
bit: [15 14 1312 11 10 9 8 7 6 5 4 3 2 1 0]

Figure 3.1 DTED Data Encoding

The thirteen low-order (rightmost) bits contain the elevation, allowing a range
from zero to 8191 feet, although the highest point in the database is 3744 feet.
The three high-order (leftmost) bits specify one of eight vegetation codes, which
are given in Table 3.1 below. Vegetation codes are only available for points

within the boundaries of Fort Hunter-Liggett proper. The file is written one

a1




BT
- " e T -

TABLE 3.1 DTED VEGETATION CODES
Description

Less than one meter

One to four meters

Four to eight meters

Eight to twelve meters

Twelve to twenty meters

Greater than twenty meters

No data available
Unused

Q
o

OO0 W~ O

square kilometer at a time, beginning with the lower left one kilometer grid square
(41,60), proceeding up the column to the upper left grid square (41,94), then
doing the next column from bottom to top (42,60 to 42,04) and so on; the upper
right one kilometer grid square (76,94) is the last one written. Within each one
kilometer grid square, the individual data points are written in the same pattern,
beginning with the lower left, doing each column from bottom to top, and doing
the columns from left to right. This file layout is summarized in Figure 3.2. The
position in the file of the elevation for a point expressed in five digit local UTM X

and Y coordinates is found as shown in Equation 3.1.

position = 35 * (integer(X/1000) — 41) + (integer(Y/1000) — 59) (3.1)

D. LOCATION
The complete DTED file occupies 16,128,000 bytes of storage. Due to a local
shortage of available disk space, this file must permanently reside on the UNIX

VAX 11/785 system rather than on the IRIS system. The FOG-M simulator




62

o 681

ey
-
-

Lo 60

e

-
-

=EE

Vi 41 76

ol Figure 3.2 DTED File Layout

o 23

i AL AT i P TN ¢ 13,5 BLULIY R8T 59 VR ¥ X ¢ MO O ; ) oy URULO
# N R W R RO GRSttt s s S oty




presently operates on a ten kilometer square extract from this database. A
program on the VAX called make—database—e allows interactive specification
of the area and resolution desired, and produces an extract. This extract is sent
over the Ethernet to the IRIS to serve as the input for a FOG-M run. Howev;r, if
the data is sent directly, it is received with each pair of bytes swapped, so another
program, swapdma, is run on the VAX before transmittal. This program swaps
the low- and high-order bytes of each integer so that the swapping during

transmission is cancelled.

24




IV. TWO-DIMENSIONAL TERRAIN MAP PORTRAYAL

The two-dimensional representation of the terrain was begun as the first
graphics portion of the system, in order to gain familiarity with the IRIS graphics
workstation and the Defense Mapping Agency (DMA) digital terrain elevation
data (DTED). Contour maps are the traditional approach to two-dimensional
terrain portrayal, and thus were the basis for the two-dimensional images of the
terrain generated here (Figure 4.1). Although these two-dimensional images are
not true contour maps, they are still referred to as such in this study because of
their close relation and common origin. The algorithms for determining and
drawing the forty foot contour lines found on a normal contour map seemed non-
trivial, so a simpler alternative was chosen. Each elevation datum is represented
by a tile, with the implicit X and Z (easting and northing, respectively)

coordinates of the elevation datum being the center of the tile.

A. COLORS

The color of a tile is determined by its vegetation code, and its intensity (or
shading) by its elevation. The intent was to use green for tiles with vegetation
and brown for tiles without vegetation. However, the DTED vegetation codes
lump together both ‘“no vegetation’ and ‘‘vegetation less than one meter high.”

Brown tiles thus include both unvegetated areas (e.g. rock slabs, areas above the

(LN [AX AN TN
| 44 . 4 A N
YR A “!-4 A Y




Leydstq dey anojuo) IojeInwWig [P exnBiry

26

T IS] HS WIEW - B




treeline) and grasslands or meadows. This is significant in the Fort Hunter-
Liggett area, because most of the valleys are covered in grass, and all of the high
ground is below the treeline. The result is a map with brown valleys and green
ridgelines. While this was readily accepted as natural by most viewers, pilots
with a background in low-level flight found it awkward, and contrary to their
expectations (from flight charts) of green valleys and brown mountains. While
this might be significant in other flight simulation applications (particularly those
designed for pilots), the initial representation was deemed most appropriate for
the target audience of the FOG-M simulator.

A similar initial, intuitive choice was made for the elevation-keyed shading.
High intensity (light) colors were used for higher elevations, and low intensity
(dark) colors for lower elevations. This was accepted as natural by almost all
viewers. The optimum number of intensities (shadings) to use in the map was
experimentally determined to be sixteen. A small power of two was desirable due
to the nature of the writemasks used to improve display speed. A large number of
colors provides greater elevation definition and prevents large masses of the same
color in areas where elevations change gradually. However, having too many
colors destroys the contour-map effect, since adjacent colors are so close that no
boundary is distinguishable between them. Eight shades each of green and brown
were used initially. The shift to sixteen shades of each produces a better looking
map. Due to the RGB (red, green, blue) nature of color creation on the IRIS, the

greens were still barely differentiable at thirty-two shades, but the browns (a

27




combination of mostly red, some green, and, in some shades, a trace of blue)
began to blend together.

To determine the elevations at which color shades should change (in order to
use the full range of shades), the maximum and minimum elevations of | the
terrain section in use must be known. Rather than preprocess the data before each
run, these values are coded as constants in a header file. The equation for which
color index to use is straightforward (see Equation 4.1) but takes significant time

when repeated ten thousand times.

elevation— MIN
indez = base indexr + * ¥ of shades (4.1)
- MAX- MIN -

Therefore, the fifteen points at which the shade changes are precalculated and
stored in an array so that no calculations are needed at each point, just an array

lookup.

B. DRAWING

The map can then be produced by determining the color and shade for each
tile, and drawing it as a filled square. However, an increase in speed can be gained
by exploiting the structure of the data and the line drawing hardware of the IRIS.
The data is still processed a point at a time within each one kilometer column,
but no drawing is done until an elevation/shading breakpoint is reached. Then a
single line of one tile’s width is drawn to color all tiles since the previous elevation

breakpoint.

28




C. WRITEMASKS
A more significant speed improvement (on the order of fifty per cent more
frames per second) was achieved with writemasks. Writemasks are a relatively
K low-level hardware feature that can be used for many purposes. In the FOC-M
simulator, they are used to prevent the contour map from being overwritten.
This allows the map to be drawn only once into the bitplanes, and have it remain
on the screen without being re-drawn during each frame update. In order to
understand how writemasks work, one must understand the layout and use of the
IRIS’s color table and bitplanes.
1. Color Table
The color table associates a particular binary number with a color.
When the display system asks what color some number is, the color table replies
with the intensities for the red, green and blue color guns that will produce the
color defined for the input number. This input number is referred to as a
colorindex. Thus the color displayed on the screen depends on the colorindex
associated with a given pixel, and the color associated with that colorindex in the
color table. Table 4.1 gives the color table entries that are the defaults on the
: IRIS workstation.
2. Bitplanes
The colorindex that is associated with each pixel is stored in the display
memory, which is composed of bitplanes. Each bitplane has one bit for each pixel

on the display screen, so a bitplane is 1024 bits wide, 768 bits high and one bit
29

4 "‘,!“4' (' At (g_"’té"’?. (0 l’ (]
| - 9 ““. . EXI -

" QOONIERI) ORI AN R0 AT A LT M NIRRT
A R R s S Lo gk o SEsat RIS, e e



TABLE 4.1 IRIS DEFAULT COLORINDEX DEFINITIONS

Col Colorindex
olor Decimal Binary
Black 0 0000000000000000
Red 1 0000000000000001
Green 2 0000000000000010
Yellow 3 0000000000000011
Blue 4 0000000000000100
Magenta 5 0000000000000101
Cyan 6 0000000000000110
White 7 0000000000000111

deep. When used in double—buffer mode (as in FOG-M), the IRIS uses sixteen
bitplanes (numbered O to 15) for each buffer. The frontbuffer is the one whose
binary contents define the image being displayed. While the frontbuffer is being
displayed, the next image is created by issuing drawing commands which affect
only the backbuffer. Once a new image is completed in the backbuffer, the
buffers are swapped, so the backbuffer becomes the frontbuffer and is displayed.
The old frontbuffer becomes the backbuffer, and is then available for update.

3. Writemask Example

Consider the pixel at location (0,0) — the lower left corner of the screen.
The colorindex of that pixel is determined by sixteen bits: one from the lower left
corner of each bitplane. The display system reads those sixteen bits as a binary
number (the colorindex), and uses the color table to determine what color to
make that pixel. For example, using the default colors defined in Table 4.1 above,

that pixel will be colored black if all sixteen bitplanes have zeroes in their lower-

30




left corners, since the value of the sixteen bit binary number 0000000000000000, is
zero. If the current color is set to magenta (color five, whose binary value has ones
in bits zero and two) and a drawing command is issued, bitplanes zero and two
are set to one, and all other bitplanes are set to zero, for every pixel covered by
the drawing command. These pixels will now be displayed as magenta, because
the colorindex constructed from the sixteen bitplanes will be 0000000000000101,
(5,0), and the color table tells the display system that color 5, is magenta.

The previous example showed that a drawing command works by
placing ones in certain bitplanes, and zeroes in all of the rest, with the current
color specifying which bitplanes get which. A writemask tells each bitplane to
either allow or ignore the changes a drawing command says to make. In normal
double-buffered usage, the writemask is 1111111111111111,, meaning all sixteen
bitplanes should allow updates. Now suppose there is an image on the screen
which uses just the default eight colors. Bitplanes three through fifteen are all
zeroes, because all of the colors have colorindices with three or less binary digits,
which will be in bitplanes zero, one, and two. If the writemask is changed to
1111111111111000, after drawing the image, those lower three bitplanes are
“frozen’ and will not be changed by any drawing command. Setting the color to
black and clearing the screen will not change anything. The upper bitplanes will
be set to all zeroes, which they already were. The lower three bitplanes will be
told to reset to zero, but will not do it because they are protected by the

writemask.
31




-~

R )

PRarY L

Now suppose you want to draw a grey line on top of the image. The line
only needs one color, so it can be drawn in one bitplu'le. (Two bitplanes will allow
three more colors on top of the map, three bitplanes allow seven, etc.) The first
“‘free’’ bitplane is number three. Turning on a bit in this plane (and not turhing
on any bits in higher planes) requires a colorindex in the range 1000, to 1111, (8,,
to 15,,). Defining color eight in the color table as grey, making color eight the
current color, and then drawing the line is sufficient to get the image into the
bitplanes, but the display will not show the desired effect. If the image
underneath the line is black (i.e. bitplanes zero through two are all zeroes form
some pixels), the line will appear grey, as intended, for those pixels. However, if
the image underneath the line is red (i.e. the lower bitplanes contain 001,), the
composite colorindex retrieved by the display system is 0000000000001001, or 9, )
and since color nine is not defined in the color table, it appears as black. Thus
every colorindex that has bit three (because the line is in bitplane 3) set to one
(i-e. colorindices 1000, to 1111,, or 8,, to 15, ) must be defined as grey in order to
produce the desired image.

4. Writemasks in FOG-M

The map image used in FOG-M is stored in the first six bitplanes
(numbered O through 5) of both buffers, which means sixty-four colors are
available: eight are the IRIS defaults, sixteen are shades of brown, sixteen are
shades of green, and twenty-four are unused. The writemask defined as

SAVEMAP (CO,, or 0000000011000000,) allows things to be drawn on top of the
33

‘48 - . - - N o - . - “ ay e w .-
St Yy SOSGACHOACEOAMMANINOMN 30 ) OOOUK) & - N ) " a AR
ety -‘,'z'-?‘\’ A R »et"?*.5a‘.!sv,‘!‘g?"yl\.w'\'se"a?"t“"&‘":‘.\.W"QJ"!":". b i .h'.‘.'s‘.h , e ‘ A A




map in bitplanes six and seven. Colorindices 64 through 127 are all defined as
blue in the color table, so anything drawn in bitplane six appears on top of the
map in blue. Similarly, bitplane seven is used for red, with colorindices 128
through 255 all correspondingly defined to be red.

The speed improvement due to writemasks in FOG-M comes from not
e hg.ving to re-draw the map each time the screen is updated. The cost is the use of
. many more indices in the color table, which limits the number of colors available
:.:;‘:‘ for use on top of the map. For our simulation system, with only two colors
"f"'t' needed on top of the map, there is plenty of room in the color table. Therefore,

the gain in speed comes at no real cost.

” 33

EORREAMN MW W) WVt Wy A »-» ) O Ry 1
T et VIR T Lt g c.‘ s.l. Lt




V. THREE-DIMENSIONAL TERRAIN CONSTRUCTION

A. REPRESENTATION DECISIONS

1. Polygons versus Patches

Early experiments in the study involved attempting to display the
terrain using parametric bi-cubic surface patches. A surface patch is simply a
smooth curved surface fitted to a set of data points. A discussion of the theory
and use of surface patches can be found in the IRIS User’s Guide [Ref. 7:sec. 11-3]
and Hearn and Baker [Ref. 11:pp. 193-205). It was quickly determined that it
would not be possible to use surface patches to represent the terrain and still
maintain a real-time update of the terrain during flight.

An aiternate method of displaying a three-dimensional object is through
the use of a set of planar polygon surfaces that join at common edges to form the
terrain object. This method has the advantage of being much simpler, and
therefore faster, to generate and display. For this reason it was chosen for use in
the project.

Figure 5.1 shows the method of constructing the terrain surface as a set
of triangles. The term gridsquare is used in the remainder of the chapter to refer
to a set of two triangles with a common hypotenuse that form a square of the

terrain grid.

34




N\
N
N\
N
N\

AN

N
NN

!;

View from above looking down on the terrain.

-Terrain elevation points are connected
to form triangular polygons with common
edges.

Figure 5.1 Polygonal Terrain Construction




2. Resolution

The special DMA data file used in this project contains elevation data
that is spaced at a twelve and one-half meter interval. One of the first questions
which had to be answered concerning the three-dimensional portrayal of this data
was, ‘‘In how fine a resolution can the data be displayed, while still allowing for a
sufficient frame update speed?” Early test runs showed that using the full twelve
# 1d one-half meter resolution would be much too slow, although it provided an
excellent representation of the terrain. An adequate frame update rate
(approximately three to four frames per second) was achieved with a seventy-five
meter resolution or every sixth data point. Since this was an early test, displaying
terrain without any targets or cultural features, a one hundred meter resolution
was decided upon for use in the remainder of the project. This allowed for an
adequate ‘‘cushion’ of processing time to complete the additional computations
that would be needed in the final product, while still providing an adequate
degree of resolution.

3. Elevation Scaling

After viewing the early representations of the terrain, it appeared that
the hills did not give an appropriate appearance of height. Although this was a
subjective judgement, it was shared by most people who viewed the display and
compared it to aerial photographs of the area. Because of this, it was decided to

scale the elevations of the displayed points upward. Two approaches, linear

scaling and exponential scaling, were examined.

36

LR LR PO

Y 1 3 DOSOMOOOU ( OO Y0 YORTNES ,
B RO R AR SOOI K TR DO




In the linear scaling approach, each elevation point was simply

LT
« - m e e e a w

multiplied by a scale factor as shown in Equation 5.1.

" Elev,,, =0 * elev,, (5.1)

ey

Using this approach, it appeared that a scaling factor between 1.5 and 2.0 was
o necessary to achieve the desired effect.
In the exponential approach, the elevation of each point was raised to a

fixed power as shown in Equation 5.2.

Elev,,, = Elev}, (5.2)

e, ne
This approach h;s the effect of exaggerating the higher elevations to a greater
¢ degree than the lower ones. It was chosen as the approach for use in the project
N based on subjective observations of the displays produced by the two methods.
The scaling factor, 0, was chosen as 1.05. Using this factor produces the
i equivalent of a linear scaling of 1.5 for the maximum elevation and 1.4 for the
minimum elevation contained in our area of interest.
! Subsequent to the decision to use an exaggerated elevation scale,
" research results were discovered which supported it. In a study conducted by the
U.S. Army Research Institute for the Behavioral and Social Sciences, observers
o were asked to pick a computer generated line drawing that best matched actual
terrain. The line drawings had different exaggerations of the vertical (elevation)

::‘ scale. The overall ratios chosen by the four observers ranged from 1.25:1 to

‘('. 37

R I W04 AR ARSI 0 ML Yy ey b A . L o, [ X
MR R A A u‘m""i’n b.:-‘hrt,n 8 ‘Pl‘i"l AN ,hv. AR



1.50:1. The drawings presented to the observers had exaggeration ratios ranging
from 1:1 to 1.75:1. [Ref. 12)

4. Shading and Texturing

As explained above, each one hundred meter square of the Mn, a i
‘‘gridsquare,” is represented by two triangles in three-space that share a common
diagonal edge. The process of applying colors to these polygons, shading, was the
next area of research in the project.

a. Elevation Based Shading

Thr_ee different shading algorithms were investigated. The first was
a simple algorithm where the shade of a polygon was a function of its elevation.
Higher elevations are shaded in lighter shades of green while lower elevations
receive darker shades. Equation 5.3 represents the assignment of a shade from the

color map.

. elev— Min Elev
color indez = base indez + - *# of shades (5.3)
- - Maz Elev— Min_Elev T

The darkest green is stored in the base indez color map location and the lightest
green in the baseindezr + # of shades location. Although this approach works
well for two-dimensional contour maps (see Chapter IV), and is currently used in
another *‘low cost” simulator [Ref. 6], it did not appear to present a realistic view
of the terrain. An advantage of this approach, however, is that the calculation of

the color index is simple enough to be done with no preprocessing.

ey g
G 38




b. Lambert’s Cosine Law Shading
The second method of determining the shade for a polygon involved

the use of a point light source and Lambert’s cosine law [Ref. 11:p. 278]. Let N

be a unit normal vector to the polygon, and L be a unit vector in the directic'm of
the light source. The angle between Nand L , ®, is the angle of incidence.
Lambert’s Law states that the intensity of the light reflected from the polygon is

proportional to cos ¢ (Equation 5.4).
Iacosd® (5.4)

In order to use this law, the normal vector (N), the light source vector (f:), and
the angle between them (®) must be known. N can be determined by taking the
cross product of vl and v2, where vl is a unit vector in the direction from vertex
B to vertex C of the polygon, and v2 is a unit vector in the direction from vertex

B to vertex A of the polygon (Equation 5.5 and Figure 5.2).
N=vixvd (5.5)

With N and L available, cos  can be computed as their dot product (Equation

5.7).
cosd=N-L (5.7)

Since the intensity is proportional to cos ®, the appropriate color index to use can

be computed as

color_indez = min_indez + (# shades*cos ®) (5.8)




Light Source

-
2w = -

Figure 5.2 Lambert’s Cosine Law

- e - -

40

'

g
D00

GROOBOSARHY g;i‘q,

AT e



where min _indez is the color index of the lqwest intensity green and
min_indez + #_shades is the color index of the highest intensity green.
¢. Gouraud Shading

The final shading model investigated involved the use of Gou.raud
shading. The purpose of Gouraud shading is to provide a continuous transition of
shades across a polygon so that the shades at the edges of adjoining polygons
match. This in effect eliminates the visible boundary between polygons and
provides a smooth continuous surface. The Gouraud algorithm involves
interpolating to determine the intensity to be used at each pixel along a scan line,
and is illustrated in Figure 5.3 as reproduced from Hearn and Baker [Ref. 11:p.
290]. To use the algorithm, intensity values for each vertex of the polygon must
be known. In the project’s implementation, the intensity at each vertex was
computed as the average of the intensity values for all the polygons meeting at
that vertex, where the individual polygon’s intensity values were calculated using
Lambert’s cosine law.

The use of this model posed two problems. First, even though the
IRIS supports Gouraud shading in its graphics library, its use increased the time
between frames to an unacceptable rate (approximately one and one-half to three
seconds between frames). Second, the smoothing of the algorithm worked too
well, resulting in terrain displays that lacked the necessary position cues to detect
motion. This second problem could be alleviated by adding artificial texture to

the terrain but in light of the speed problem it was not pursued further.

41

u«.mxfmmd



. 3

K}

A

!
'

h 1

#

)

Ll

? Scan Line

,: 4 6
0

L]
1)
g

)
:
b

W

| 2

4

1
4 For interpolated shading, the intensity value

at point 4 is determined from intensity values

} at points 1 and 2, intensity at point 8 is
o determined from values at points 2 and 3, and
i? intensities at other points (such as 5) along
2 the scan line are interpolated between the
» values at points 4 and 8.
i
:3'

)
% Figure 5.3 The Gouraud Shading Algorithm i
2

")
«“‘
N 42

)

"

.- RRIOUOL D ()
e l“‘“"i"“&‘ﬁ“.‘.‘g‘. ‘3

ff'

"0""“\ O X "10}’5‘».10 X ?g" 0‘“. " Iz.tﬁ e



d. Adding Texture

Lambert’s cosine law was chosen as the shading model for use in the
project, providing the most realistic display within the allowed computation time
constraints. However, a problem with its use is that the flat valleys, with l;xttle
variance in the surface normals of their polygons, produce large geographic areas
having a near constant shade. This results in a lack of motion cues in these areas
similar to that experienced with the Gouraud shading model. To remedy this
situation, a simple artificial texture, in the form of a checker board, was imposed
on the terrain. The checker board effect was implemented as follows. First, the
shades for the two triangles in each gridsquare were averaged, and this average
shade was used for both of them. This of course causes the visible boundary
between the triangles to disappear leaving a square shaded in a single color.
Second, two slightly offset color ramps were used with adjacent grid squares using
different ramps to compute their shades. One ramp is composed of green
intensities ranging from 255 to 50, while the other uses intensities ranging from
245 to 40.* This causes the shades for two adjacent gridsquares with identical

surface normals to vary, providing the necessary texturing.

*A value of 255 is the highest intensity green obtainable, a value of zero indicates the absence
of the color green.

43




B. INTERNAL DATA STRUCTURES

Two global arrays are maintained which store the information necessary to
display the terrain. The first is a five-dimensional array, savetriangle, that stores
the values of the coordinates for each triangle making up the terrain struc.ture.
The second is a two-dimensional array savecolor that stores the color map indices
for each of the terrain’s grid squares. The purpose and range of each of
savetriangle’s  indices is shown in  Table 5.1. For  example,
savetriangle([3}[5](1][1][2] would contain the value of the Y coordinate (fifth
dimension = 2), of the second vertex (fourth dimension = 1), of the northern
triangle (third dimension = 1), of the grid square with X index five and Z index

three (second dimension = five and first dimension = three).

TABLE 5.1 LAYOUT OF THE SAVETRIANGLE ARRAY

[ . ] Index Range ' ]

Dimension Start 1 End Purpose

"Fist ] 0 | 98 Grid square index in the Z direction. 0
is the southern most square, 98 is the

| northern most.

Second | O 98 Grid square index in the X direction. O |
is the western most, 98 is the eastern
most.

[ Third 0 1 Triangle identifier within a gr-id“;qira‘r;ejj
0 is the southern triangle. 1 is the
northern.

Fourth 0 2 Vertex number of the triangle. 0 is the
first vertex, 2 is the last.

Fifth 0 2 | Coordinate identifier of the vertex. 0 is
the X coordinate, 1 the Y coordinate

| and 2 the Z coordinate.




Table 5.2 lists the purpose and ranges of each of savecolor’s indices. For
example, savecolor[30][10] contains the color map index to be used for the grid

square with a Z index of thirty and an X index of ten.

TABLE 5.2 LAYOUT OF THE SAVECOLOR ARRAY

D ] Index Range p
imension Start | End urpoese

First 0 98 Grid square index in the Z direction. 0
is the southern most square, 98 is the
northern most.

Second 0 98 Grid square index in the X direction. 0
is the western most, 98 is the eastern
most.

These two arrays contain all the information necessary to construct an image
of the terrain. The following chapter provides the details of using their data to

create a real-time, updated image of the terrain as it is seen from the FOG-M’s

camera.

45 ;




V1. FLIGHT SIMULATION

A. OVERVIEW

The previous chapter discussed the methodology of constructing the three-
dimensional terrain from the provided elevation data. This chapter’s purpose is
to explain the details of displaying this terrain in real time as it is seen through
the missile’s camera.

The high level pseudocode for the main program’s terrain display loop is
shown in Figure 6.1. Chapter VII explains the details of step two. The details of
steps one and six are explained in Appendix B under the procedures readcontrols
(for step one) and edit navboz and edit indboz (for step two). The remainder of
this chapter discusses the details, considerations, and results of implementing

steps three through five.

B. UPDATING THE MISSILE’S POSITION

Determining the missile’s new position can be broken into two cases:

(1] the missile is under operator control and its new position is a function of the
old position, the commanded direction of flight, the commanded altitude,
and the commanded speed.

[2] the missile is locked onto a target and its new position is a function of its old
position, the position of the desired target, and the commanded speed.

In both cases, a very large simplifying assumption is made to ignore the

dynamics of the missile’s flight. This means that the missile is able to

46

hAADR LR TATNG aie '&{{ﬁﬂJ



N While missile is flying do
. 1) Read the values from the operator’s controls
2) Determine new positions for all the targets
WY 3) Determine the new position for the missile
e 4) Determine the position of where the camera is looking
L 5) Display the terrain as seen by the camera
s 6) Update the operator’s control indicators
End while

Figure 6.1 Main Display Loop Pseudocode

e instantaneously change heading, speed, and altitude. This assumption was made
only because of development time constraints. It is felt that the computations
necessary to more realistically model the dynamics of the flight can be done
Y, without a serious degradation of the simulator’s performance.

1. Case 1 - Operator Control

e Under this case the missile’s X,Y, and Z coordinates are compnted as

1o shown below.

ADist = Speed*ATime (6.1)

o 47

RO O

R SN SN SO DA OO 0 0 DO W0
R R ot A L S L S e e N

4R



] ' T
ey
o‘n::
Where
. - ADist is the distance traveled over the ground since the last position was
B calculated.
~:£ - Speed is the missile’s speed in feet per second and
C - ATime is the elapsed time since the last position was calculated
:t: Having calculated the distance the missile must move during this frame the
o
R missile’s new coordinates (MX,MY ,MZ) can be calculated as
v MX = MX,,+|cos(Dir ) *ADist] (6.2)
0:,‘
g . . .
:{. MZ,,, = MZ, ~|sin(Dir_ ) *ADist] (6.3)
e;.i,
i My, = (Al )" (6.4)
: » Where
"‘\1 .Y
2 o . .
K - Dir, _, is the commanded heading in radians
o - Al s the commanded altitude in feet
4
::;E, - o is the altitude scaling factor (see Chapter V, Section A.3).
i)
W
::::: 2. Case 2 - Locked Onto a Target
", In the case where the missile is locked onto a target, the missile’s new
M
o,
,':'::: position is computed as follows. A Dist is computed as in Equation 6.1. Next the
'!'l‘
fi:\.'
= missile’s heading is computed so as to steer it directly toward the target’s
e
::t: position:
e
i
iy Dir,, = arctan2(—|TZ-MZ),| TX - MX]) (6.5)
3'(
.y".
W
L
w
;
\

hARM S ARME SN R NN OO ¥ AN N I RN IR AR AT BN A A , 1 3 ¥
o e R G T W B g T WMﬁb.sﬂ;»',-'ié-!,.c%-‘s‘;.u!q. SN TA L AN Y ety



Where

- Di"" is the direction from the missile’s position to the target’s position

TX is the X coordinate of the target’s position
- TZ is the Z coordinate of the target’s position
- MX is the X coordinate of the missile’s position
MZ is the Z coordinate of the missile’s position

a
arctan2(a,b) is a function which returns the arctan(—' in the range

b
0 to 2I1, based on the sign of a and b.

Once Dir, o is kxnown, the missile’s new X and Z coordinates can be calculated as

MX, = MX  +|cos(Dir, . )*ADist] (6.8)

tt)
MZ,, = MZ,,—(sin(Dir

igt) “ A Dist] (6.7)

Next the missile’s aititude (MY) is adjusted a proportion of the total altitude
difference between it and the target, based on the ratio of ADist to the total

distance (along the horizontal plane) to the target.

MY, _=MY ry)s 22
new 1 6.9
ol Dl'ctm (69)

Where

- Dust, ot is the distance to the target measured along a horizontal plane.

- MY and TY are the Y (altitude) coordinates of the missile and target,
respectively.

49




C. DETERMINING THE LINE OF SIGHT

Once the new position of the missile has been calculated, the next step in 1
displaying the terrain is to determine another point along the camera’s line of |
sight: the look-at position. This calculation is also broken into two cases Based

on whether the missile is or is not locked onto a target (see Figure 6.2).

The case where the missile is locked on is trivial, the look-at position is

simply set to the coordinates of the locked-on target.

LX=TX (6.10)
LY=TY (6.11)
LZ=-TZ (6.12)

Where LX, LY, and LZ are the X, Y, and Z coordinates of the look-at position.
This centers the target in the displayed three-dimensional scene.

When the missile is not locked onto a target, the camera’s look-at position is
a function of the missile’s position, the missile’s heading, and the pan and tilt

angles of the camera. It is determined as follows

Dir, , = Head , +Pan (6.13)
LX = MX +|cos(Dir, ) * Dist,, ] (6.14)
LZ = MZ-(sin(Dvr,,,)* Dist,, ,| (6.15)

LY = MY +|Dist,, , *tan(Tilt)] (6.16)

50

ERRIRENC oV I M NS WSO YO PP W WA AL H * LA W g R ¥, { iy
N B N I 3 I S N e O O R O Gt R ARSI "ﬁm :



X = TX
LY = TY
LZ = TZ

oi0le

ke b s
I8 &
LI TITL

Case 1 - Missile Locked on a Target

DIR = Heading + Pan
look

\

(LX, LY, LZ)

Dist

gee
Heading :.“:h
I
Overhead View Side View

Case 2 - Missile Not Locked on Target

Figure 6.2 Determining the Camera’s Look-at Position

51

A T A 03000003



Where

‘“ - Dir,,,, is the direction the camera is looking

Pan is the pan angle of the camera

g

-
-
]

Tilt is the tilt angle of the camera

- Dist,, is an arbitrary distance over the ground that the camera looks ahead.
Ky Since the only purpose of LX, LY, and LZ is to determine a point along the
st camera’s line of sight, any positive number will be acceptable. A value of five
kilometers is currently used.

o D. DISPLAYING THE SCENE

i!;"

)

::::: Once a line of sight has been determined, the next steps are to apply the

appropriate viewing transformations, draw the filled polygons that make up the {

::',i'o terrain, and add other items to the scene such as targets and roads.

W

R - :

oy 1. Viewing Transformations

N It is possible to project a three-dimensional object onto a two
"?,n::‘. dimensional viewing surface in two basic ways. In one method, the parallel
.;g 1(

projection all the points of the object are projected along parallel lines. This has

:::: the advantage of preserving the relative dimensions and angles within an object
)

'%J':E and is used when accurate views of various sides of an object are needed such as
«::4: in architectural drawings. In the other method, the perspective projection, all
E;E:l the points of an object are projected along lines that converge at a single point
(Y3

& called the Center of Projection. In this method, relative dimensions are not
' ‘ preserved. Lines closer to the projection plane appear larger than those that are
'.‘ more distant. The perspective projection provides a view of three-dimensional
&

f.:?:. 53

A0 ) e T T N
+ ) lc‘«‘i‘!‘l.!‘:‘&t.gin“,‘i ?“ )»“




objects that is more realistic, similar to that provided by the human eye or a
camera. Both these projections are illustrated in Figure 6.3. [Ref. 11:pp. 235-241)

Because of its more realistic presentation of the scene, a perspective
projection was used for the project’s three-dimensional scenes. The IRIS’s
graphics library provides a procedure called perspective which constructs the
necessary transformation matrix * to obtain a perspective projection. The matrix

is defined as [Ref. 7:p. C-2]

Perspective(fovy,aspect,near,far) =

fovy
cot ( )
2
0 0 0
aspect
fouvy
0 cot( ) ] 0 (6.17)
Jar + near
0 0 C—
far—near
2x far xnear
0 0 — ——
far—near

Where

- Jouy is the field of view angle

- aspect is the aspect ratio. a ratio of the distance a viewer sees in the X
direction to the distance he sees in the Y direction. It is generally set to be
the same as the ratio of the width to the height of the viewport.

- near and far are the distances from the viewer to the near and far clipping
planes.

*A knowledge of using transformation matrices to perform graphical operations is assumed
here. Hearn and Baker [Ref. 11:chaps. 11-12] provides excellent coverage of the subject.

53




Center
of
Projection

Parallel Projection Perspective Projection

. Projection

Pl
Perspective one

Projection

—

Projection

Closer i1ines appear larger than more distant
lines of equal length.

Figure 6.3 Parallel and Perspective Projections

b4

]
)

PN
S

-
¢

-
4,87 X%
£, ‘-‘el )

-

) ~ ¥

1% ¥ 8 AN 5 . \ NIFR (B "

RO !":g;“ 471 N0y ey My : LAk s . I o ¥ ) ‘.l
NP A kN LR AR L L AN x 30 LA L ¥ , Y T AN ART - . % LUK A L% S 1% LW R 'a 'o'l‘-‘.'v (A n "-\"



The perspective projection forms a view frustum as shown in Figure 6.4.
Any object within the frustum between the near and far clipping planes will be
displayed in the scene. Objects outside this view volume are clipped and
discarded.

Next, the frustum formed by the perspective projection must be
positioned along the camera’s line of sight. This is accomplished by another
transformation matrix constructed via a graphics library procedure named lookat.

The lookat procedure takes the following inputs:

-V, Vy, and V: the X, Y, and Z coordinates of the center of projection.
- P, Py, and P, the X, ¥, and Z coordinates of the look-at position.

- Tuwist, a right handed rotation of the scene about the line of sight.
The transformation matrix formed by lookat is actually the result of multiplying

four other transformation matrices [Ref. 7:p. C-2]

Lookat(V, V’_, VZ,P’,Py,Pz, Twist) =

6.18
Trans(-V,,— V.- v, xRoty(O)xRotz(tb)xRotz(— Twist) (6.18)
1 0 0 O
0 1 0 0
Wh -V,-V-V)= 6.19
ere Trans(-V,, Y ,) 0 0 1 o (6.19)

-V, -V, -V, 1

55

e
. - w at - .
N ] \

(oY Ao h s GAMEUIER WX o n 0 ) A Ve W PO Y A" . Y X o RN ¥
XY KA TR XY X iy . 0 ¢ " O\ 2 h s N " ok
NG EAREY T4 SOMTANRIRI AL R BN L OO0 BN N}, -..,ld X €3 MH M'CS;‘-




& <

(0,0, -near) ——
-

"

-—“‘

Clipping

Planes

The perspective command defines a near and
far clipping plane, a field of view, and

an aspect ratio.

Figure 6.4 The Perspective Command

56




cos(6) 0 -sn(©) 0
0 1 0 0

Roty(8) = in(@) 0 cos(®) 0
0 0 0 1
1 0 0 0
0 cos(®) &in(®) O
Rot_(®) =

0 —sin(®) cos(®) O
0 0 0 1

cos(— Twist) sin(—Tuwist) 0 0

—sin(— Twist) cos(— Turist) 0 O

Rot (- Twist) = 0 0

0 0

P-V

And O = sin

Vv_Pv

V(P-V)+(P,- Vz)”

. -1
® = sin

67

\ﬂPz— V‘)z+(P'— V")'+(Pz— V,)il

(6.20)

(6.21)

(6.22)

(6.23)

(6.24)

As can be seen, this transformation simply translates the center of projection to
the origin, then rotates the view frustum about X and Y axes to align with the

line of sight. Finally the twist angle is added with a rotation about the Z axis.




In the flight simulation. the twist angle is analogous to the ‘“roll’’ angle of an

aircraft or missile. A value of zero is currently used, but other values could be
used if the roll of the missile during flight was added to the model.

2. Determining Which Polygons to Draw

After the correct viewing transformations have been applied, the
polygons that comprise the scene must be drawn. Although the IRIS will “clip”
polygons which lie outside the perspective projection’s view volume, an increase in
frame update speed can be achieved by not attempting to draw those that
obviously lie outside. This is discussed further in the following section on
simulator performance.

The term wview—bound is used to describe a north-south oriented
bounding box around those parts of the scene that are sent to the graphics
pipeline. The view-bound is described by the index of the northernmost,
southernmost, easternmost, and westernmost gridsquare to be drawn. It is
calculated by extending (if necessary) the line-of-sight vector until it intersects the
horizontal plane Y = Min elev, where Min elev is the minimum elevation value
of the terrain. The view—-bound is calculated as being 20 gridsquares to the
north, south, east, and west of this intersection point. If the missile’s X and Z
coordinates are not within the calculated view - bound, the bounds are extended to

inichide them. Figure 6.5 illustrates this construction.

58




Missile Position (MX, MY, MZ)

Look-at Position (LX, LY, LZ)

West
View-bound

Line of Sight

North
View-bound

unds extended
to include missile position

Horizontal Plane: Y = Min_elevation

East View-bound

1) Line of sight vector is extended down
to intersect the minimum elevation plane.

2) View bound extends 20 gridsquares north,
south, east and west of the intersection.

3) Bound is extended, if necessary to
include the missile’s position.

Figure 6.5 Construction of the View-bound

RO MOUAN €0 W 9,5,059,%, ' R
4 Lv.’{“.‘\‘.'[,!":‘.‘ 0‘)‘8‘ Wby e, i!’q 0' W "5[‘ "l'!fi""_':‘&,"::l.g:‘,' ';_ .



3. Hidden Surface Removal

A final detail that must be taken care of is the removal of hidden

surfaces from the scene. A hidden surface is simply a part of the scene that is
obscured by some object in the foreground, such as a valley that it hidden behind
a large hill.

The IRIS supports a method in hardware called Z-Buffering. In this
method, a buffer is maintained for each pixel position on the monitor and
contains the ‘‘depth” (transformed Z coordinate) of the part of the scene that
generated that pixel. Before drawing is started, the buffer is initialized to the
maximum depth value (the value of the far clipping plane) for each pixel position.
Before each new pixel is drawn, its depth is compared to the depth stored in the
buffer. If its depth is greater than the stored depth it is not drawn. If it is less
than the stored depth, it is drawn and its depth value replaces the value in the
buffer. This method could not be used in the project for two reasons. First, with
comparisons having to be made on a pixel-by-pixel basis, it slows down the frame
update rate to an unacceptable level. Second, the IRIS does not allow the use of
Z-buffering and double-buffering at the same time. Double-buffering is necessary
to implement the animation of the scenes.

Another common method of hidden surface removal is the painter’s
algorsithm. It derives its name from the way a painter would draw a scene on
canvas, drawing in all the background and then adding foreground objects by

painting over the background objects they obscure. Implementing this algorithm

60




'y ;' *
"
o

. 2.7 X\ o P E [ ¥ - . .
: Y A . S 0 i, ; -
IR IRt A 3N t'.iof. .,l':_:\',).;f,‘t‘.‘ by it" ity 'Jc‘- WU '“’: g0 i ’ A

in computer graphics means drawing the scene in an ordered fashion, such that
the most distant objects from the viewer are drawn first and those closest to the
viewer are drawn last. Since the gridsquares comprising the terrain form well
defined rows and columns, an efficient implementation of this algorithxix is
possible. That implementation is described below.

The implementation can be thought of on a conceptual level as follows.
A line, perpendicular to the line-of-sight, is constructed to serve as a pseudo-
scanline. Gridsquares within the view-bound are drawn as they are intersected by
this scanline. The scanline is first positioned along the line-of-sight vector so that
it intersects the far corner gridsquare of the view-bound. After all the gridsquares
along the scanline hgve been drawn, it is moved one gridsquare closer to the view
position, along the line-of-sight vector, and the process is repeated. This
continues until all the gridsquares within the view-bound have been drawn.
Figure 6.8 illustrates this process.

From Figure 6.6, notice that each scanline passes through three
gridsquares in a column, shifts over a column, then passes through three
gridsquares in the next column. The number of gridsquares drawn in a column
(or row) before advancing to the next column (or row) can be determined by
computing the tangent of the scanline’s direction. If the magnitude of the
tangent is greater than 1.0, scanlines will run and shift along columns of
gridsquares. If it is less than 1.0, scanlines will run and shift along rows of

gridsquares. The term threshoid is used in the remainder of the algorithm to

61

U0 YO MY
"‘, “‘,:rh‘n"‘.'?:'

)
e Y

;‘: 'i""g‘.'g .il‘\. ¢




First
Scanline

DR
R

Sight

The Scanlines

3321114 67 3
33f22413| 7
34]2314] 8
35124 15| ¢
35425116,
37126} 17
3827 13

3

Drawing Order of the Gridsquaires ¥: n

y the First 5 Scanlines

.
-~

Y

Ay

Figure 6.9 The Scanline Hidden Surface &lgor:thm

62

Eg
S
g
.‘\k.'
e
38

S

-
\ ) y N T T e b L Te e it e e e L e e e
AR WX .y A " N gy e N e R ~'-‘.-".fi
; TRV R b "L o o M . haty! Yy m".g?‘k‘.f)-_“.t:' e e p e



describe the number of gridsquares drawn before a shift of column (or row) takes

place. It is computed as

tan(Dir >1.0 .

i |ta.n(Dt'r

nearest integer

uan) lt‘ﬂ)

threshold = (6.25)
(tan(Dir,,,,))"'| ifltan(Dt'r <1.0

oun)

nearest integer scan

The pseudocode for implementing the algorithm is shown in Figure 6.7.

The case shown is for a line-of-sight direction that is in the first octant (between

I
0 and — radians). The algorithm for the other seven octants is similar, the
4

difference being the direction the scan line advances, and the direction it shifts
when the threshold is reached. Table 6.1 summarizes these parameters for all

eight octants.

TABLE 6.1 VARYING PARAMETERS FOR THE SCANLINE ALGORITHM
BASED ON THE OCTANT OF THE LOOK DIRECTION

Octant |20k Directions [ Scan Line Advances 1y 7 cihold is Reached
From To From To L
1 || o /4 North South Shift one column East
2 /4 n/2 East West Shift one row North
3 /2 31/2 " West East Shift one row North
4 /2 In North South Shift one column West
5 I 5I1/4 | South North Shift one column West
6 5I1/4 31/2 West East Shift one row South
7 3Mm/2 | 7M/4 East West Shift one row South
8 711/4 2N South North Shift one column East

Notice the step draw gridsquare(z indez/[z indez] in the algorithm.
Since a gridsquare contains terrain, and can also contain roads and targets, an

63

OCOtY

ZO000
AN



Calculate the threshold value .
count « 0

start x_index — west_view bound
start r mdex « north _view bound

While start_s_index > south _view _bound do
s_index + start s _index
x_index + um_x_index

while (x_index < east view bound) and (s_index > south_view bound) do

{ traverse a scanline }

draw gridsquare(s_index||{x_index|

s _index « s _index - 1 {move it one gridsquare south}
count + count + 1

if count = threshold then
x_index « x_index + 1 {move it one gridsquare east}
count + O { reset count}

endif

end while
{move on to next scanline: start it one gridsquare to the west}
start x < start x- 1
count + 0
if (start x < west_view bound) then
start x ¢ west view “bound

start 3 < start s - threshold
endif

endwhile

Figure 6.7 Pscudocode for the First Octant Scanline Algorithm

ordering of these parts of the gridsquare must also take place. The two triangles

forming the terrain are drawn first, next any roads are drawn, and finally any




targets are drawn. The details of integrating the targets and roads into the scene

PR -
P A N
Ve T

are covered in the following two chapters.

The resulting scene is shown in Figure 6.8, a photograph of the IRIS

k]

Jr

i monitor during the flight simulation. Note how the hidden surface removal allows

,*. the foreground hills to naturally obscure the valleys behind them. Also note the

o effect of the lighting model and texturing described in Chapter V.

R

i E. SIMULATOR PERFORMANCE
"|(
;:: Data collected while running the simulator shows that the average frame
N
gt

_"‘ update rate is approximately four frames per second. The Unix profile utility

iy
"‘ was used to determine which procedures accounted for the majority of the
W

f‘i: simulator’s time usage. Table 6.2 shows the results for the top four routines.

X
o TABLE 6.2 FOG-M ROUTINES USING THE MOST CPU TIME |
;:5‘ ‘ % CPU Time | Routine Name :
.:\: polf Iris graphics library filled polygon routine.

) 13.7 display terrain | Output 3-D scene with hidden surface removal.

of 8.7 malloc C language built in routine for dynamic |
i memory allocation.

:' 4.5 gl_findhash Low level Iris graphics library routine, used for

‘:: : the hash tables associated with graphical v

l objects (Not user accessible).

Q’ti The top two entries in Table 6.2 are directly involved with outputting polygons to

nfq

e build the terrain image. It is therefore reasonable to believe that the frame |
r,, update rate depends heavily on the number of polygons that are passed to the 4
D¢

E' geometry engines. i
t

R 65

(A R ) L 5ER 0N LTINOGS . .-.; Ry \ - S ot e Sal ey 4t et T n -t e
TR et RO T e Al ey g BT, CAT AR Y 3 M‘. %f;{mm y



A - W -

uotqyenmig Y31 9Y3 JO Swely vy 8°'9g 2anBry

e e m -y

66

IS




-

Figure 6.9 is a scatterplot showing the frame update speed achieved when

various numbers of polygons were attempted to be drawn. The data was
generated by reading the system clock before each frame update and calculating
the number of polygons based on the view—bound that was used during 'that
frame. The graph clearly shows the effect the view-bound has on the frame
update rate. The next two entries, malloc and g! findhash, are traceable to the
making and deleting of the graphical objects that store the targets (this process is
explained in Chapter VII). As an experiment, the construction and deletion of
the targets’ objects was removed from the simulation and the targets were simply
displayed in stationary positions. The profile results from the simulator run in
this configuration is shown in Table 6.3. Figure 6.10 is another scatterplot,
generated in the same manner as Figure 6.9, except that the simulator was run in
the stationary target configuration. Eliminating the dynamic memory
management associated with the target’s graphical objects increased the average
frame update rate from 2.99 to 3.90 frames per second. Also, the maximum frame
update rate achieved doubled from 7.5 to 15.0 frames per second. This would
suggest that an area for further research is an improved algorithm for target
updating that does not involve dynamically allocating memory.

The fact that the frame update rate is so heavily dependent on the number of
polygons passed to the geometry engine suggests that a more sophisticated
method of determining the view-bound may pay off in increased performance.

For example, the present method does not take into account the field of view

" 67

1)

i

K>

L]

"

f'l!_". v( MR DR S B N . N T LOR PN e e r K A ) LAYy ) > N
AONON “",'.*."“" RAME X0, VP ‘ FAC ( W 1_,&) PP ,_“»““ -F‘ o ‘-. CA X X > ...&'.’ v N. S




-

- R

0004

0009

66°2
2g€° 1082

suoBA1od jo aequn) 8A o3vY 93epdn Leydsiq @9 @anBiy

ANIONE AULANOID FHL Ol QISSYd SNODATOd #

0009 000¥ 000t 0002 0001

O GEDARIDS 00

:puodes Jod sowex] oBeIoay
:possed suodL1od jo § eBeioay -

aNoods
ydd

SANVHA

- - - . MR E . - Oy

E )

CCIET T L
R g PRl BN+ {'lv&“.'d




angle. It should be possible to bound the line-of-sight intersection point with less
than twenty grid squares when the field of view angle is small. However, any new
algorithm developed can not be so sophisticated that it negates the performance

increase by requiring intensive computations.

TABLE 6.3 FOG-M ROUTINES USING THE MOST CPU TIME
(WITH STATIONARY TARGETS)

CPU Time | Routine Name Purpose
23.9 polf Iris graphics library filled polygon routine.
22.3 display terrain | Output 3-D scene with hidden surface removal.
5.5 color Iris graphics library routine which sets the

current drawing color.

4.1 line_intersect2 | Finds the intersection point of two lines. This
routine is used exclusively during the road
building process and therefore is not used at
all in the display loop.

4.0 poly Iris graphics library unfilled polygon routine.
Used during the display loop to outline the
road segments.

o
v

W

W
‘i

L]

690

(—.
}.

PRI YO Yo S RN W T e
) -('J ]{[]'{.3.".’?- t-,-r_: MACHINA NS xm ,



s3e81e] Lieuoiqels Yartn suoBL[od jO JequmN sA 83BY eqepdn 4Leyderg OT1'9 °InBry

ANIONT AULANOED HHL Ol JASSYd SNODATOd #

0004 0009 000S 000V 000€ 0002 0001 :
] | \ | 1 M| | ! | | | l | 1
Tt ece wmuas, Y
J.o"o" m. _ 13 LD % .
~r& * p”. b4 IN
——ceeees il
® oo e@neo ﬂo
(XX XX 1] ]w
(AR X1 1) onomm J
ceeme SINVYd
06°g :puooes ied semesy oBesasy —21
gz 8€LZ :possed suoBLiod jo # 8Beiaay
— V1

70



N e e m- .
LIS e i ¥ s
el “'.' .'Qp:\‘;-,‘.“ DL SR L

VII. TARGET INTEGRATION

A. GENERAL

The primary targets of a FOG-M missile are tanks, helicopters, and
reinforced ground installations. The simulator is designed to handle many types
of targets, including various tanks and helicopters, but only a single type of tank
is currently implemented. The prototype simulator provides an Ethernet
networking capability to allow the input of actual target positions in real-time.
This simulates the input that would be received by a production simulator during
computerized mock combat field experiments. In its networking mode, the
simulator receives target position and orienti‘ion data from an interactive
program running on a different IRIS workstation. The target program, still in
testing and not detailed in this study, provides the capability to dynamically
insert and delete targets at any location, and to modify their speed and direction.
In the simulator’s stand-alone mode, there are ten tanks defined by default that
criss-cross the ten kilometer square terrain area. These tank targets move at a
constant speed of fifteen knots and reverse direction when they reach one of the
edges of the ten kilometer terrain square. No automated path planning is

presently performed in either mode, so the tanks blithely traverse even the

71

; A WG AR AN : -
N vl AR DO R IR NS O OPR MOINET AN MO NS <




steepest terrain. The default targets minimize this problem by traveling the length

of the valleys for the most part.

B. TARGET CREATION

Target creation is simplified through the use of graphical objects. The actual
image of a tank is defined initially by the tedious specification of the three
coordinates of each vertex of each of the polygons that comprise the tank (Figure
7.1). Using objects, this need only be done once, placed in an object, and then
referred to by a single name within each target object. Thus each target is
described by an object (the tank object) within another object (the target object).
In addition to the tank object, the target object also contains the transformation
commands that move the tank frcm the origin to its location on the terrain (a
translation), and face it in the direction it is moving (a rotation).

1. The System Matrix

The rotation and translation commands work by modifying the system

matriz. The system matrix is a global data structure that is used to transform

coordinates from the three-dimensional world space into the two-dimensional
screen space. Each transformation can be performed as a series of computations
on individual X,Y. and Z coordinates, but the transformations can also be
accomplished with a single matrix multiplication. The IRIS has a matrix

multiplier built into its hardware, so matrix operations are very efficient. At least

.

.

N

»

L]

73

-.l

.
\ -

=
p

three transformations must be applied to every endpoint on the tank: a coordinate

72

.
)




Lo DR

b

»

) Figure 7.1 Simulator Scenes
€

L)

73

¥

)

)

» o

O
XN KO

O T .\_ X
o a2 MO K )

YT YT R L .-o - N A r PT --,-..,.,
?| .. V.‘\ .h.b,nfy.l!q.\!y."g‘ o,.!q B ), !'t"k‘:'l.- Uy ,I?..\!.AOSQ‘Q!”CS'\lf"teg.l’..i.g' !"l‘ _ AR A !‘0"‘!"‘.‘!% Ly




&
it

'*‘.

.% scaling, a translation, and a rotation. Rather than do three separate matrix

f‘:} multiplications, the three transformation matrices can be combined, so that all of
:?:,: the transformations are accomplished in a single matrix multiplication. The
(2 .

EEEE:., : matrices are combined by applying each of them to the system matrix. Each
_ point is now completely transformed through a single multiplication with the
:::\; system matrix. When a new transformation is needed, the system matrix must be
X

& reset by applying the inverses of the old transformations, or by copying the
'v* original contents back into the system matrix. Two commands are provided with
c ‘z the IRIS to support the latter method. Pushmatriz takes a copy of the system
;', matrix’s current contents and saves it on the system stack. After the
E‘ transformations have been applied, and the drawing that used those
\"".' transformations has been completed, the system matrix is reset by calling
J_: popmatriz, which retrieves the copy placed on the stack by pushmatrix and
a

.. ; restores the contents of the system matrix to the previously saved values.

:,.i' 2. Target Transformations

-3 The tank is initially defined with its center interior at the origin
L (coordinates (0,0,0)). While it is not important which point on or in the tank is

placed at the origin, it is crucial that the tank be defined somewhere around the

v

_' origin in order for the rotation command to have the desired effect. The original
50

, direction of the tank is significant only to the extent that it must be known in

A‘: order to calculate the appropriate rotation to achieve a specified heading. The
::::: tank in FOG-M faces to the right (zero radians mathematically, or a compass

“ e 74

)

g

RN m P

o8
AR OLY Tn, - . Co
DR A R e A "‘u R A 2 OO MM\{ ”{x&.fm‘kﬁ.h “m“m



S T T TR T TR YT W VTR A em—"" T WV v

heading of ninety degrees) initially. During target creation, durnmy (zero valued)
rotation and translation commands are placed in the target object, to be updated
for display by a later editing of the object. Since all rotation and translation
commands affect the system matrix (as previously described) and are cumulﬁtive,
each target object must apply its transformations, be drawn, and then remove
those tran-formations so that latter drawing commands are not distorted. Within
each target object, the contents of the system matrix are saved with a pushmatrix
call, the appropriate rotation and translation commands are applied to the system
matrix (in reverse order, due to the nature of matrix multiplication), the target is
drawn by calling the tank object, and then popmatrix is called to reset the system

matrix.

C. ANIMATION

Animation of the targets is accomplished using the objects and
transformations described above. The targets must be moved slightly before
being redrawn in the next frame. This requires new (X,Y,Z) coordinates, from the
network or from local calculations. Then a global data structure is updated to
indicate when in the display algorithm the target should be drawn, and the

translation command in the target object is edited to provide the new coordinates.

As each frame is displayed, targets appear in slightly shifted positions, and give

the appearance of animated motion.

75

handu ADL Ado b aan oo o Lo o dda i o |



:'1 The calculation of new coordinates requires the maintenance of position,
speed, and direction data for each target. The total distance traveled between
screen updates is the product of the elapsed time (obtained from the IRIS’s real-
time clock) and the target’s speed, scaled so the units match. In the networking
version of the simulator this is done remotely; in the stand-alone version
Y everything must be maintained locally. The target’s direction of travel is stored

in radians, and is measured using the standard mathematical convention as

A

)

N opposed to a compass heading (Figure 7.2). This allows calculation of the the
A

" appropriate east/west (AX) and north/south (AZ) movement as follows:

"\:ﬁ A X =cos(direction) *time * speed *seale factor (7.1)
.

e AZ = - sin(direction) *time * speed * scale factor (7.2)
, The new target (X,Z) position is the sum of the old position and the offsets
%

a (AX,AZ) from Equations 7.1 and 7.2. Since all of the current targets are tanks,
p

) their Y coordinates (altitude) should be taken from the height of the terrain
"r
o underneath the tank. This is obtained from the DTED interpolation routine
8
:‘_' gnd level, which is called with the new (X,Z) coordinates as input parameters.

o

. D DISPLAY

'
o , :
u‘{ Chapter Five explained the exploitation of the structure of the data and the
< use of the painter’s algorithm to solve the polygon ordering problem without
"_;:: resorting to slower or more complicated schemes like Z-buffering or Binary Space
o

Partitioning {Ref. 13|. Targets cannot merely be drawn after the terrain because

.}3’

‘:j 76

)
L
‘.j

”
B -~ -,»\*_ 4 e -.,.-*l. CIP IR .
l‘o?l D.l.l. '.’! . ; l_ ~ A ‘( < "' ."."’\ 1w

ALt

A ST VR
" vo..q.!'q' 0 .»n# . ,’l‘.

Oy S A Wt M 0 SN L el it s o &




PRS-

1 B 7

Et TT //////f———h__\\\\\\\\ .
:: \\\\\\\\_1___,//////

4

' 3M/2

Mathematical Convention

&
‘i (Radians)
B
0
(360)
g
»
!
)
K “\\‘\
o 270 90
K
R)
)
R
t
e
i 180
lv‘ -
' Compass Convention
(Degrees)
é . . .
X Figure 7.2 Direction Conventions
)
#
! ey S B
" 77
A
'y
;A
i
M
[}
B}
e - . . Nt Nt AT e a Y. . LI N TP I I T R e TR I I IR P L - LI -
REOU RIS v e e e L R S et o e




hodhad Ao e —

— - SRR TR T TR T T T o
TR TN Y T W T - e —ﬁ‘

of the same ordering problem. Otherwise, targets appear in front of everything,
and it is impossible to simulate a target moving out of sight into the distance or
behind some terrain feature. The implementation of the target display algorithm
is greatly facilitated by the use of objects. Objects allow the grouping of drawing
commands into a subroutine-like package, which can be edited (effectively
allowing parameterization) and then displayed with a single command A two-
dimensional array of object ‘‘names” (the object name array) is initialized so
each element of the array represents the target object to be drawn in the one
hundred meter square of terrain with the same indices. Since the C programming
language recognizes the value integer zero as FALSE, and anything else as TRUE,
this array does double duty as an array of booleans indicating the presence or
absence of a target object in a particular one hundred meter grid square. (No
target objects are given the ‘‘name’ zero, which would indicate FALSE.) A hst of
targets is used to reset this array to all zeroes before each screen update (i.e. only
those elements that contained targets need to be zeroed) so maintenance overhead
of the array is minimized. The new target positions are received over the
network, or are calculated, based on each target’s position, speed. and direction,
plus the elapsed real-time since the last update. The appropriate object-name-
array indices are calculated from the new target position and the object-name-
array s updated. If this is the first (or only) target in the designated one hundred
meter grid square, the update is accomplished by making a new object. and

setting the object-name-array element equal to the new object’'s integer ‘'name

78




If the array shows that some other target is already in that particular piece of
terrain (i.e. the object-name-array element is non-zero), the current target is just
added to the object specified by the ‘“‘name’ in the array. Once this has been
done for each target, this array is available for the display terrain module.
Display terrain checks the array as it draws each square of the terrain to see if
any targets should be drawn. If so, it calls the indicated target object just after it
has drawn the one hundred meter grid square on which the target(s) rests. Note
that this causes the target(s) to be drawn at the correct time for the painter's
algorithm. The correct place to draw the target still must be specified by the
transformation commands within the target object.

In some cases it is necessary to draw a target more than once. Targets that
straddle a one hundred meter grid square boundary must be drawn on top of both
(or possibly all four) grid squares in order to avoid being partially obscured by
whichever grid square is drawn last. (The target must be drawn immediately after
the grid square on which it rests to ensure that the target will be obscured when
it should be, by terrain drawn in the foreground.) Since the calculation of
boundary intersection involves several trigonometric functions and an allowance
for the distance between the center of the tank and its boundaries (which varies
with the direction of the tank), a simplifying algorithm is used. If the tank is close
enough to a boundary that the most distant part of the tank might cross the
boundary (see tanks A and B in Figure 7.3), the target object is also drawn after

the adjoining grid square(s).
79




Grid Square with
(X,Z) offset
(-1,-1) (0,-1) (+1,-1)

//!r. lﬂ't
*CORNEBR"*
Tank B
*sipg* —p- *MIDDLER" of grid squere
containing tank
Tank
(1,0) Reference (+1,0)
Pointe
Aad I Y-
Teank A
+
-l’

16 (+1,+1)

Grid Square with
(X,Z) offeet
(0, +1)

(Not drawn to ecsle)

Figure 7.3 Boundary Conditicons




The one hundred meter grid square is essentially divided into three areas:
the middle, its sides, and its corners. In the middle, the tank cannot overlap any
other grid square. On the sides, the tank may overlap one adjoining grid square,
and in the corners. the tank may overlap three adjoining grid squares. The
reference point on the tank (the position the X,Y, and Z coordinates refer to) is
located at the very center of the tank. The tank is thirty feet long, so the most
distant parts of the tank are within a fifteen foot radius of the tank's reference
point. The lines that mark the side and corner areas are thus fifteen feet inside the
borders of the grid square. Once the tank's reference point is within these areas,
it 1s potentially obscured by the later drawing of the adjacent grid square(s). It
might not be obscured if it is paralleling a side, for example. but the overhead of
drawing it twice {or even four times) when it does not need to be is smaller than
the overhead of the calculations to determine if the position and direction of the
tank have it actually crossing one or more edges.

The repeated drawing is accomplished by adding a ‘‘new’ target to the array
of target objects. The ‘‘new’’ target object is drawn at the exact same location in
the three-dimensional terrain, but it is drawn after a different one hundred me‘er

.‘-,:. grid square, so it will have different target object array indices. and be 1. a

,»::j separate target object, even though the two {or four) targets drawn will overwrite

each other and produce a single image.

[4
AR




—— weTwwww W v A

VIII. ( ULTURAL FEATURE INTEGRATION

The addition of cu.tural features add much to the reaiism of the displayed
scene  They also provide valuable landmarks from which 8 person observing ti.e
scene can geographically orient himself This chapter covers the addition of o e
“voe of cuitural 'eature roads, to the FOG-M simulation  Roads were chosen s
“ne first teature to ade because of the special problems associatea with taesr
aentation. the eas: of extracting their locations from: contour maps and e
stin npact added to all parts of the scene due to their wide ranging iocations
ihrew wreas will e disc ssed: (1) the format of the external data hwe tha  anta us

¢« romd s Gorations, |0 the process of mapping the roads 1o the exast g

“ru - an !l 5 the inte retion of the roads into the terrni dospiay dome

v P FRNAD DAT A FILE FORMAT

“e ctmra harng s £n the simulation was otra ned v nkrncAD L ey Tree IR

- geeatins froo s DMA Topographic ©erres DN T ot tone ey of
coaten AT ghth dqata e avadlable o the [INEA C Dhy e FuRt i Aty age
b A R he s FTWRPE e AREATY 0 BOCESS T WRS 0 MU RLIR b Toe et
s e s e am e chat e DR ALY Rt R e vAs 0 e Wt e A s

A [ [N (L

82
. e
.t ,.-.;'A"-- * 'n, -, -' °.. ,\‘.

Mdbh add odt oha o0 o oo ]

‘o

o,
g‘,s‘-‘x

¢ ;«.’J



T NN W W W W s W W T . Wy T mmwmvvmmm

Figure 8.1 shows a segment of the file containing data for two roads along
with a diagram showiny their locations within the terrain. Each road entry is
composed of three parts. The first part is the width of the road in feet. Next is
an integer N, where N is the number of data points used to digitize the 1;oad.
Third is a set N coordinate pairs, where each pair represents the location of a
digitizsed point along the road’s centerline. The first coordinate of the pair is the
east-west location of the point. It i8 measured in feet from the western terrain
boundary. The second coordinate of the pair is the north-south location of the
point, measured in feet from the southern terrain boundary. All the data is stored
as ASCII text, which facilitates editing of the data using any text editor. The
DFAD data file also contains road width information (in meters) and stores roads
as a senies of digitized points. The major difference is that DFAD’s points are
stored as latitudes and longitudes, which need to be converted before they can be

used in the simulation. 'Ref. 9]

B CONSTRUCTION OF THE ROAD POLYGONS

Knowing the width and centerline locations for the road, the next step is to
construct the polygons which represent it. Although, this seems like a simple
procedure ot s complicated by the fact that the road must follow the rise and fall
o the terrainn Also, 11 order for hidden surface elimination to occur, the road
iioast be divaded at the gridsquare houndaries so that each piece can be drawn

nong with its corresponding gridsquare. The result is that the road must be

83




S Al e e e e

b 35 . Outt- Width of Road 1 (feet)
! 8 < # of Data Points
- 825.0 1100.0
‘o 1100.0 2400.0

A 2150.0 2950.0 .

: 2510.0 4100.0 8 Data Points

, 2955.0 4700.0 aff}—— (Measured in Feet from
K 1870.0 4850.0 Western and Southern
B 1300.0 5250.0 Terrain Bounda.ries)

. 1490.0 7150. 0 c—ed

¥ 50.0 .- Width of Road 2

& 3 -t # of Data Points

R 9300.0 4150.0 ———

“.“: 8495.0 4150.0 gf— 3 Data Points

5800.0 2100.0

'y

;' | File Format|

o P B |
)

) e

" 7000

. FEET Corresponding
o T Roads
,b

™ 5000 -4

Lhss 2 1
K +

%

]

, 3000 1

W

1 A, - 3

Y]

Road 2

\ 1000 ¢4~

s Road 1

_q 4 ] I ] 1 . | 1 __t F
4 A 1 4 | 1 | J T LB 1
1000 3000 5000 7000 9000
FEET
—— Western Terrain Boundary
Southern Terrain Boundary
LY
" Figure 8.1 External Data File Format

84

e e I AR NN A AN N
ot e v RO R = (o o SRR R A N NN N A XY N GOCROAN B X XK R R OO




4}‘:@

‘a:f’

)

.

RO
. Y

broken into many planar polygons. where each polygon is a portion of the road
that overlays one of the terrain triangles within a gridsquare. Figure 8.2
illustrates this division ind defines some of the terms used in the description that
follows. The high level pseudocode for processing the road data and constructing
the planar polygons is shown in Figure 8.3. As the pseudocode shows, each road

is processed a segment at a time. For each segment

- The end points of the segment’s left and right side are calculated. A look-
ahead to the next road segment is done, allowing the ends of adjacent
segments to be calculated so that they meet cleanly.

- A bounding box, which contains all the gridsquares intersected by the
segment, is constructed.

Next, for each gridsquare in the bounding box, the road segment is divided into
the road-poiygons at the gridtriangle boundaries. Note that all the vertices of the

road-polygons fall into one of five types:

- The intersection of a segment’s left side with the side of a gridtriangle.

- The intersection of a segment’s right side with the side of a gridtriangle.
- A gridsquare’s cornerpoint that is contained within the road segment.

- An endpoint of the left side of the road.

- An endpoint of the right side of the road.

The road polygon is constructed by finding all the above vertices which exist, and
ordering them counterclockwise. The counterclockwise ordering is necessary for
backface polygon removal to take place. The intersections only define the X and
Z coordinates or the vertices. The Y (elevation) coordinate is found by
interpolating between the terrain’s elevation at the three corners of the

corresponding gridtriangle.

85

............

Ko Y ; o QNI AR o X ‘ N
BRGNS SN ; St bt AT e disdade E-

A




86

-
.

- |
Figure 8.2 Constructing the Road Polygons

.

FOR_ROAD SEGMENT




While more data in the road data file do
read width of road
read number of __points
read segment’s start coordinate pair (seg_start)
read segment’s end coordinate pair (seg_end)

for i = 3 to number_of points + 1 do
if i < number of points then

read the next segment’s end coordinate pair (next seg_end)
else

next seg end x « seg end x

next seg end 3« seg “end 5

endif

calculate the start and end points for the segment’s left and right side
(left_start, left end, right_start, right_end)

calculate a bounding box around the road segment
for each gridsquare within the bounding box do

Construct the pelygon which overlays the gridsquare’s northern triangle
Add the polygon to the road object associated with this gridsquare

Construct the polygon which overlays the gridsquare’s southern triangle
Add the polygon to the road object associated with this gridsquare
right_start < right_end

endwhile

Figure 8.3 Pseudocode for Constructing Road Polygons

C. INTERNAL ROAD-POLYGON STORAGE

A global, two-dimensional array of graphicalobjects, named road, is used to
store the road polygons. Each entry in the array corresponds to the pieces of road
that lie within a gridsquare. An object is created when the first road-polygon is
constructed for a gridsquare, with subsequent road-polygons being inserted into

the already existing object. Since the roads are static in nature, the use of objects

87




‘. e

does not present the dynamic memory allocation problems associated with their

use in storing targets (see the Simulator Performance Section of Chapter VI). As
each gridsquare of the terrain is drawn, a check is made to see if a road object
exists for that square. If one does exist, the associated road-polygons are drawn
immediately after the terrain. This insures that hidden surface elimination occurs
for the roads as well as the terrain. A photograph of terrain which includes some

sections of roads can be seen in Chapter VII, Figure 7.1).

88




IX. FOG-M SIMULATOR USER’S GUIDE

A. OVERVIEW

This section of the report is a user’s guide to running the FOG-M simulator.
The simulator was built to be largely self documenting. Instructions are clearly
displayed on the screen, including diagrams which serve as a reminder of the
functions of the various controls. A knowledge of the logon procedure for the
IRIS workstation and the basic commands of the UNIX operating system is

assumed.

B. STARTING THE SIMULATION

To start the simulation, logon to the IRIS workstation and use the UNIX ed
command to change to the directory containing the simulation. Currently the
simulation is in the directory /work/terrain. Therefore issue the command:

cd /work/terrain

Next, start execution of the simulation by typing the command fogm. A
welcome screen will appear on the display as shown in Figure 9.1. Pressing all
three of the mouse buttons simultaneously will stop the program and return
to the UNIX command level. This option of pressing all three buttons to exit is
available at any time during the execution of the program. Pressing the middle

mouse button advances the display to the next screen of instructions. When the

890




A o g

UsaJID>g SmoOTey Yl 1°6 eunity

"11X3 0L SNOLLNE ISNOM £ T SSiid o0

TCUINNIIMOD O MOLLNG 3SNOM 30014 SS3d

NOILIY WIS

(~204)

FISSIN G30IM ATWIILd0~4381 4

M o

0T

i R By i s N A

Er? o ol o X




user has advanced through the welcome screen and the two instruction screens
(Figures 9.2 and 9.3) he is presented with a display showing a two-dimensional

contour map. This is the prelaunch phase of the simulation.

C. PRELAUNCH CONTROLS

The purpose of the prelaunch phase is to allow the user to designate a missile
launch position and a suspected target location position. In effect, the user
describes an initial flight path for the missile.

1. The Prelaunch Display

The prelaunch display is divided into three sections as shown in Figure
9.4. The upper right corner of the display contains an instruction box which
summarizes the functions of the mouse buttons for this phase. The lower right
corner contains a prelaunch statistics box. The meanings of the various items
within the statistics box are explained below. The majority of the display is
occupied by a two-dimensional contour map. Each of the square grids on the
contour map represents a one square kilometer area. The colors on the map can
be interpreted as follows. Green areas indicate terrain that is covered with
vegetation that is greater than one meter high. Brown areas indicate terrain
where the vegetation is less than one meter high. Within each of the color
categories, the elevation of the terrain is indicated by the intensity of the color,

with the brighter colors representing the higher elevations.

o1

¥ Q
LAY RAR MU L AN

LIRS




S S o - o~

L ot L - -

[ M. el ’ N 2 Vi)
fh .4 L e Pull AR W e

SO JISOT SAIYUNICHD0D GlaD (Wi) A0IYIS B ISH NG WSan W
A GUUNDISIC MOTTIM A3 WOTIL 81 ¢ S1 Ui 1S3 14115 B

ALIMIDTA O wIN@D 41 W)

L DTV G HINDYY LS KRG e L T LA L N

) 3 ML I OSN0)
G, A0LI0A3I0 M1 WO0N4 NI Sb NiWe il K1 L mi0n AXNis 3
O MONN Y 171050 O WIS 0 X0 U RN R - W

%




“11X) 01 SIS ISNOM E T S D
‘e HONW - Td QUNT NN 02 MDLUNS JSTTOM TW0IN SS T

(HIEON 70 SIWM0 §) SIEANX sl

IV TIISSIN GUINAD) AV WSIO TIIN T30 TRANMDD SOIISIIvIS
HIIWY U NIV G 411207 LWISNID ¥ 1v 414 TR 3VISSIN
M WY 01U QWO U SAVESIO 1) N 3 01IVIDY
L¥RML NI XI0) 01 MDLLNG SN0M 1HO18 SSTW  (SUWIGEND 01
WIN INRAND M31A 0F Thesd W0RINOD SITISIIVIS HONW) 01 #3im)
MDILYI0) QIS0 4D H0SND WM "WNDIIVIO0Y 1 ¥l 140 Q1

‘MD11ISd HCBEW ) N
X307 04 NOLLNG ISNON L1431 SSTd  (SIUNIGEDDD 014 WIN INRAID
B M3IIA 01 TERG W0HINDD SIIiSTIvIS HIW) 01 21430 M01ivID)
aAWISI0 N0 MSHD WM "MDI1ISOd HOW) WILINI W14 01 €

‘MD1AVI0Y | ML
G0 NDILISOd HIIW) WILINI ‘H1SAS WD KW 3 01 SMul
Vivd WIlilad Oni CINOMs Of QININDIE 28 111 1A M <

AWWSI0O B

0S5 TN SJIISIIVLS MW INRRID G SMDI L JRLSNT KW - 34
IMNINIVINGD STBRG TOMIMOD U 310SMDD E0ivaMdD 3U WD Q3Av WS10
3B 7N (9SDS81 WIN) Yl 1S31 Wi D &AM EN0INDD WADISHMI0-2
Y ‘SNIO3E NDIIVEMIS W04 M 0 Fid KW U N 1

MOLivINITED HINW Y- Bad

e m T T




[ YAREY TRVEENS I

HE L VIR STRIS ]
La2BE D A, | ]
N r AN
MELBRS BF

LAMNCH POSIYLON

SYrrQe 10 10 N

LB L ALY gl A
o RENCAIOTIN. V.

1 PRSS LUV R

(IS C
W
AN TN

Figure ©.4 The Prelaunch hsplay




2 Selecting the Launch Position
The launch poeition must be selected first. To select the launch position.
use the mouse to move the red arrow cursor to the desi-ed location on the contour
map As the cursor 1s moved, the UTM coordinates of the current cursor location
are shown in the Launch Position field of the statistics box. These coordinates
can be used when a more accurate selection of the launch position 18 required than
18 obtainable from the contour map sione. When the cursor 18 in the desired
position, press the left mouse button to lock 1n that position A blue circle w1l
appear on the contour map showing the position selected and the workstation wiil
“beep.”” confirming the selection. The launch position can be changed any time
before the launching of the missile by simply moving to the new desired location
and pressing the left mouse button.
3 Selecting the Target Position
The target position can only be selected after a launch position has been
set. After the launch position has been selected, moving the cursor over the

contour map produces the following effects:

- The UTM coordinates of the current cursor position are shown in the Target
Location field of the statistics box.

- A “rubber band” line is drawn on the contour map from the launch position
to the current cursor location. This line represents the flight path the missile
would take if the current cursor position was selected as the target location.

o - - The direction and length of the flight path represented by the above line are
::':, displayed in the statistics box in the Heading and Distance fields respectively.
0

:; o Once the cursor is at the desired target location, press the right mouse button
g

‘,1: 1¢1.3




. T st s mesbcir e w mppear r Tt oo Ay sHeWw o T
o e cmwt o ALY the vorkmation wo e ot e e e T
e nnesiie 10w ready for aaunct The carger oot an te changed
[ S Y 1 Voiningy toving the  rer 1t P es red ew ocatiorn,
“~ e might mouse button
. nototng “he Llamle
coofeng rar ot take poace antil hatt o om oannot and target location
- e s eed U e jaunch and targer cocations sejected are acceptable. the
¢~ aanched T by oremsing the middle mouse button
¥ 1e s the 1 o-tial launch of this execution of the program, a several
e oo coart manute  lelay will follow during which calculations are done to
25 ae apconang threedimensonal scenes  Agam. this delay only occurs
s, ¢ trst launch of any execution Subsequent launches proceed with no

< w2 )uriug thhs deiay. a countdown will appear in the bottom of the statistics

Laurch necurs when the countdown reaches zero.

Y IN FLIGHT CONTROLS
I The In-Flight Display
After the missile 18 launched, the display changes to the in-flight display

shown in Figure 9.5. The left side of the display contains:

- A three-dimensional view of the terrain as seen from the missile’s camera.

A slider bar scale along the bottom edge indicating the camera pan angle.




Lerds1g WYBI[4 U] Yl y 6 =¥ 4

+ * ole o} - Y™ - . -
SN
© W E
/
$1mn
_ A
1 A Y
0 * \\ !
m Ve
-
SWMIa E=10 T \
SI1031NOD e NE
-
A Y
1 = ».
) ;
2 N
) ) >,
HODZ i .
1
V) SI9E
2RI .
V)Rl 262 V1@ .
Y VY NIGYH  033dS
Ste
ale

A




1

AD-A184 340

UNCLARSSIFIED

AN INEXPENSIVE REAL-TIME INTERACTIVE THREE-DIMENSIONAL
FLIGHT STMULATION SYSTEM{U) NAVAL POSTGRADURTE SCHOOL
MONTEREY CR M J 2YDR ET AL 83 AUG 87 NPSSZ;??-O}‘

273

NL

w




. A~ TR “
- — N Y .
T '.‘! SHll oo ’@! '
' g“ .“w - “ul -

'JJJJJ *M

JJJ.I.I.IJ

BB}

\l\l

L 3




- A slider bar scale along the left hand edge indicgting the camera tilt angle.

- A box in the lower left corner containing either the word DESIGNATE or
REJECT. The word DESIGNATE in this box indicates that the missile is
not locked on to a target and is waiting for a command to designate one.
The word REJECT indicates that the missile is locked on to a target a.nd is
waiting for a command to reject that target.

- Croes hairs used to sight the camera onto a target.
The upper right corner of the display contains a scaled copy of the contour map
seen in the prelaunch phase. The red arrow superimposed on the contour map
shows the missile’s current position (the tail of the arrow) and its direction of
flight. The red rectangle on the map indicates that area of the terrain that is

currently being shown in the three-dimensional display.
The middle right section of the display contains four indicators which

show the following: -

- The speed of the missile in knots.

The direction the missile is traveling in degrees.

The height of the missile above ground level (AGL) in feet.
The height of the missile above mean sea level (MSL) in feet.

A slider bar indicating the zoom setting of the camera in degrees.

The lower right section of the display contains a summary of the functions
performed by the mouse and dials. These are explained further below. The in-
flight phase continues until the missile impacts a designated target or all three
mouse buttons are pressed simultaneously (to stop the execution of the

simulation).

08




2. Controlling the Camera

The ranges and initial values of the camera’s functions are shown in

Table 9.1. All of the camera’s functions are controlled with the mouse.

- To pan the camera, move the mouse left or right as needed.

- To tilt the camera, move the mouse up or down as needed.

- To zoom in to a tighter field of view, press the left mouse button.

- To zoom out to a wider field of view, press the right mouse button.

3. Controlling the Missile Flight

The missile can be controlled by changing its direction, speed, and
altitude. The ranges and initial values of each of the flight parameters is shown
in Table 9.2. The missile flight parameters are controlled by using the dials on
the IRIS’s button/dial box (see Figure 9.6). Dial zero (lower left) controls the
missile’s direction, dial one (lower right) controls the missile’s altitude, and dial

two (above dial zero) controls the missile’s speed. Refer to the display’s control

TABLE 9.1 CAMERA CONTROL RANGES AND INITIAL VALUES

Control - Range — Initial Value
Maximum Minimum

Pan 25 degrees right | 25 degrees left | O degrees

Tilt 25 degrees down | 15 degreesup | 15 degrees down

Zoom 55 degrees 8 degrees 55 degrees

TABLE 9.2 MISSILE CONTROL RANGES AND INITIAL VALUES
Range

Maximum Minimum

Altitude 10,000 MSL 200 AGL

Speed 400 kts 0 kts
Direction | 359.0 degrees | O degrees | From prelaunch

Control Initial Value




Figure 9.6 IRIS Dial Box Fuctions




summary box for a reminder of each dial’'s purpose and location during flight.

The controls are used as follows:

- Direction of flight - Turning dial sero clockwise turns the missile to the
right. Turning it counterclockwise turns it to the left. The missile will move
freely through the 360 degree mark so that, for example, turning the missile
right two degrees from a heading of 359 degrees will produce a heading of
001.

- Altitude - Turning dial one clockwise increases the missile’s altitude up to
the maximum of 10,000 feet MSL. Turning the dial counterclockwise
decreases the missile’s altitude. The simulator will not allow an altitude to
be selected that is less than 200 feet above ground level.

- Speed - Turning dial two clockwise increases the missile’s speed, while
counterclockwise decreases the speed.

4. Designating and Rejecting Targets

The middle mouse button is used to designate (lock on to) and reject
(release the lock on) targets. When the missile is not locked on to a target the
word DESIGNATE will appear in the lower left corner of the display. To
designate a target, center the target within the cross hairs and press the middle
mouse button. In order for the missile to lock on, some portion of the target
must be in the center of the croes hairs. If the designation is successful, the
workstation will “beep” and word REJECT will appear in place of the word
— DESIGNATE on the display. Once a target is designated the missile will
automatically adjust its heading and altitude to home in on the selected target.
An explosion is displayed after impact with the target occurs. The user is then

returned to the prelaunch phase of the simulation to begin another launch.

101




A locked on target can be rejected and missile flight control returned to
the user by pressing the middle mouse button any time before impact with the
target occurs. The workstation will respond with a “beep” and the
reject/designate box will again show the word DESIGNATE. The missile is I.IOW

ready to accept the designation of a new target.

102




X. CONCLUSIONS AND RECOMMENDATIONS

A. LIMITATIONS

There are several limitations to the flight simulator presented in this study.
First, a trade-off had to be made between resolution and frame update (display)
speed. Even though data was available at a resolution of twelve and one-half
meters, the simulator uses one hundred meter resolution in order to achieve an
acceptable frame update rate.

Second, the simulator’s flight is confined to a ten kilometer square area. Any
ten kilometer square area of the DTED file can be used during a run of the
simulation, but the simulator must be exited before switching to a new area. This
limitation is not too restrictive for the current range of the FOG-M, but may be
inadequate if the range of the missile is increased as planned.

Third, road data is available in a format usable by the simulator for only one
10 kilometer square area. Since access routines were not developed for the DFAD
data file, roads must be digitized by hand.

Fourth, the simulator does not model any of the missile’s flight dynamics. As
stated earlier, this limitation was imposed only because of development time
constraints. It is felt that the dynamics can be acceptably modeled without

adversely affecting the performance.

108




B. FUTURE RESEARCH AREAS

A follow-on to this project, which will provide more realistic targets and
allow viewing of the scene as seen from inside any of them, is currently underway
at the Naval Postgraduate School. The project’s plans are to use the Ethem;t to
allow several workstations to take part in the simulation simultaneously. Each
workstation will control one weapon (a target or the missile) and its monitor will
display the scene as viewed from that weapon.

Work is also underway at the Naval Postgraduate School in the use of
digitised photographic images on the IRIS. This work could possibly be
incorporated into the FOG-M project through the use of digitized target images,
digitised cultural features, or digitizsed textures for the terrains.

Another possible research area is the addition of various environmental effects
into the simulation. These include clouds, smoke, and rain, which affect the
camera’s view by reducing visibility, and also dust, which aids the missile
operator in acquiring moving targets.

Much work could be done in the area of the missile’s flight dynamics. The
goal would be to provide an acceptably accurate model without too much of a

sacrifice in speed.

C. SUMMARY AND CONCLUSIONS
The project has proven the practicality and feasibility of building a low-cost

flight simulator with commercial, off-the-shelf hardware. With a relatively small

104




investment of time and funds, a simulator with significant capabilities was
developed. As the speed and power of graphics hardware increases, even more

realistic displays at faster update rates will be possible.

108




-—
——

APPENDIX A - MODULE DESCRIPTIONS

BUILD ROAD.C
Input: None.
Output: None.

Side Effects: Modifies the global array road, an array of graphical objects, where
each object contains the polygons representing the road in a
particular gridsquare.

Description:  Build road reads the file road width and centerline information
from the file Road.data and constructs polygons which represent
the road. The polygons are stored in the array of graphical objects
road. A more detailed discussion of building the roads is contained
in Chapter VIII.

BUILDTERRAIN.C
Input: None.
Output: None.

Side Effects: Buildterrain modifies the global arrays savetriangle and grideolor.

Description: Buildterrain reads terrain height information from the global array
gridpizel and constructs the terrain as a set of planar triangles.
The details of constructing the triangles and the format of the
savetriangle and gridcolor arrays can be found in Chapter V1.

COLORRAMP.C

Input: The inputs to colorramp are two booleans, greyscale and snit. If
greyscale is TRUE, the terrain, sky, and target colortable entries
are defined in shades of grey to produce a black-and-white image.
If greyscale is FALSE, the terrain colors are green, the sky is blue,
and targets are brown. Init is set to TRUE when this routine is
initially called, so that every entry in the colortable is defined,
including those for terrain, sky, targets, and writemasked lines on
top of the contour maps. Should the display be switched between
color and black-and-white, only the terrain, sky, and target entries
need to be redefined, which is what happens when init is FALSE.

Output: None.

Side Effects: Colorramp changes the system’s colortable, and thus determines
the colors that appear on the display for the images drawn by

106

oA e AT IR AR A (AN < NS Y MARLA N L TP B T ' o AT e M
LTI TE RN SRR PRI W) WL ARCREA RGN el QU LN,




Description:

other routines.

Colorramp is called by the m:c’n program fogm as part of the
initialization that takes place before the flying loop is entered. At
that point, greyscale is set to its default value (usually FALSE,
indicating color images) and init is TRUE. The readcontrols
routine also calls colorramp to toggle the display image between
color and black-and-white, based on the position of one of the
dials. This call is made with the desired value for greyscale and
with init FALSE. Colorramp uses the IRIS routine mapcolor to
directly update the colortable for the contour map colors, and calls
the user written routine gammaramp to define appropriately
shaded ranges of the greens and browns (or greys) used for the
terrain and targets.

COMPASS.C

Input:
Output:

Side Effects:
Description:

Compass takes as input a float, direction, which is an angle in
radians. :

Compass returns a float which is the compass direction in degrees
corresponding to the input direction.

None.

The function Compass converts an radian angle measured using
the standard mathematical convention, and converts it to a degree
angle measured using the standard navigational convention.

DISP_TERRAIN.C

Input:

Output:
Side Effects:
Description:

Display terrain takes eleven inputs: the X, Y, and Z, coordinates
of the missile position VX, VY, and VZ; the X, Y, and 2
coordinates of the camera’s look-at position PX, PY, PZ; the field
of view angle (camera zoom value), FOVY; and the X and Z
ranges of gridsquares to be displayed, FIRST X, FIRST Z,
LAST X and LAST 2.

None.

None.

Disp terrain outputs a frame of the terrain scene to the monitor
using a hidden surface algorithm. The scene contains terrain,
roads, and targets. Details of the hidden surface algorithm can be
found in Chapter VI.

107




DIST TO LOS.C

Input:

Output:

Side Effects:
Description:

Dist_to_los takes seven inputs: the X, Y, and Z coordinates of the
start of a line segment; the X, Y, and Z coordinates of the end
point of a line segment; and three dimensional array, pt, which
contains the coordinates of a point.

Dist to los returns a float which is the perpendicular distance
from the input point, pt, to the input line.

None.

Function which computes the perpendicular distance from a point
to a line in three-space.

DO_BOUNDARY.C

Input:

Do _boundary takes the following inputs:
- An integer Bound type which is interpreted as:

0 - a diagonal boundary

1 - a horizontal boundary

2 - a vertical boundary
- An integer which triangle that is interpreted as:

0 - the lower triangle of the gridsquare.

1 - the upper triangle of the gridsquare.
- The indices, zgrid and zgrid, of the gridsquare for which the road
is being constructed.
- The coordinates of the start point of the boundary stored in a
three dimensional array, bound start.
- The coordinates of the end point of the boundary stored in a
three dimensional array, bound end.
- The coordinates of the start point of the left side of the road
stored in a three dimensional array, left start.
- The coordinates of the end point of left side of the road stored in
a three dimensional array, left end.
- The coordinates of the start point of the right side of the road
stored in a three dimensional array, right start.
- The coordinates of the end point of right side of the road stored
in a three dimensional array, right end.
- A boolean, start _corner flag, which is TRUE if the gridsquare
corner at the boundary’s start is ALREADY in the road polygon
array, FALSE otherwise.
- A boolean, end corner flag, which is TRUE if the gridsquare
corner at the boundary’s end is ALREADY in the road polygon
array, FALSE otherwise.
- The partially complete road polygon array, road poly.

108




Output:

Side Effects:
Description:

- An integer, vertez ent, that is the number of vertices currently in
the road_poly array.

Do_boundary outputs the following:

- start_corner flag (see Inputs for a description)

- cnd_comcr_?lag (see Inputs for a description)

- road poly, the road polygon array with the vertices along this
boundary added.

- vertez_cnt (see Inputs for a description)

None.

Do boundary’s purpose is to find all the intersections of the road’s
left and right sides with the input boundary of a gridtriangle. As
an intersection is found the point is put into a temporary array.
After all the intersections are found for the boundary the points in
the temporary array are sorted then added to the existing
road_poly array. The order of the sorting is such that the resuliing
road poly array will be ordered counterclockwise. See Chapter
VI for a detailed description of building the roads.

EDIT INDBOX.C

Input:

Output:
Side Effects:

Description:

The inputs to edit_indboz are the name of the indicator object, the
tags within that object for each of the indicators, and current
values for the following missile parameters: X,Y, and Z position
coordinates, pan, tilt, and zoom angles, and designate/reject
status.

None.

Since edit_indboz changes the indicator object, it has the side
effect of changing the display when the indicator object is next
called and displayed.

The indicator object is edited between each display frame so that
the heads-up display and the indicator box indicators show the
current values for the missile’s speed, heading, altitude, camera
pan angle, camera tilt angle, camera field of view (zoom), and
designate/reject status. The input speed, heading, and MSL
altitude (Y position coordinate) are converted to strings for
display. AGL altitude is calculated as the difference between MSL
altitude and the elevation of the ground directly below the missile
as obtained from gnd level with the X and Z position coordinates
as input. The Dboolean designate determines whether
“DESIGNATE” or “REJECT?” is printed in the lower left corner
of the terrain display. Finally, the positions of the tilt, pan, and

109




zoom indicators are calculated from the missile parameters. The
equations in the code have been simplified to avoid excess
. computation; the derivations are given below.

e o e

0 The x screen coordinate of the zoom (field of view, or fov) indicator
X is fixed. The y screen coordinate varies from 200 (at 8° fov) to 70
(at 55° fov). The input missile parameter z00m is in tenths of
degrees, and thus ranges from 80 to 550. The y coordinate is

= determined from Equation A.1.

.:* zoom 200 - 70

2 y = 200 — —g| ¥ ———

R 10 55 — 8

(A.1)

. = zoom * —0.2766 + 222.128

N

N

Likewise, the screen x coordinate of the tilt indicator is fixed, while
the y coordinate varies from 680 (at +25° tilt) to 50 (at —25° tilt).
& The input missile parameter tilt is in radians, and is converted to
. degrees by multiplying it with the RTOD (Radians TO Degrees)
F; constant from the header file fogm.h. The y coordinate of the tilt
:: indicator is calculated as shown in Equation A.2.

_ 680 — 50
) y =50 + [(talt *DTOR) + 25] —_—
by 25 ~ -25
¥
i = tilt * 721.92682 + 365
‘f
“ The pan slider bar is horizontal, so the y coordinate is fixed, and
b the x coordinate ranges from 120 (at —25° pan) to 750 (at +25°
K pan). Like tilt, the pan value is in radians and must be converted
to degrees. The pan indicator x coordinate is given by Equation
i A.3.
1
i 750 — 120
o z = 750 — [(pan*DTOR)+25 f—
,o 25 — -25
. (A.3)
0 = pan * -721.92682 + 435 .

110

R n .
“ X (, y‘i}s't"vei‘!?ﬂnﬂkﬂ ’r, ’;f‘?',f"!l‘l_'gfg



EXPLOSION.C

Input: None.

Output: None.

Side Effects: None.

Description: The ezplosion routine simulates the effect of a missile destroying a

FOGM.C
Input:

Output:
Side Effects:

Description:

target by rapidly flashing a succession of red, black, and yellow
screens. One buffer is kept black to pronounce the flash effect, and
the other buffer is alternately cleared to red, yellow, red, yellow,
and red. A short pause with a cleared, black screen is provided
before the routine exits.

Fogm is the name given to the main program in the simulator. It
has no parameters, but gets data from its header files and through
the readdata routine. Interactive input is also received vial the
readcontrols routine.

None.
None.

The fogm program consists of global variable declarations, local
variable declarations, system initializations, an active loop, and
some exit housekeeping. The initialization portion includes reading
in the DMA elevation data, making network connection (if in use),
setting the IRIS display configuration, defining the color table
entries, building all of the graphical objects used in the displays,
and computing the lighting and position of the polygons used to
produce the terrain image. Within the active loop is some
additional initializations and the flying loop. In the active loop
initializations, the dial and mouse controls are reset to their initial
defaults, and the display buffers are loaded with the images that
remain unchanged during flight simulation (the contour map and
the legend/instruction box). Control is then passed to the flying
loop, which produces the flight simulation images until either a
target is hit or the simulation exit command is received. If a target
was hit, an explosion is displayed and the pre-launch phase of
designating launch and target positions is re-entered. If all three
mouse buttons have been pressed, the display is cleared and
various system parameters are reset to provide a graceful exit from
the simulator.

111

OO )
¢ ﬁl“:'h.“‘!!




The flying loop contains the subroutine calls that produce the
simulation of flight. First, the mouse and dials are checked for
control input. Then the targets’, missile’s, and lookat reference
point’s positions are all updated based on the elapsed time since
the previous frame and the appropriate speeds. View bounds is
called to determine which one kilometer grid squares are in view,
and then the indicators are all updated to show the new control
values, missile statistics, and view area. The main display routine
then draws the appropriate sections of the terrain, plus cultural
features and targets where appropriate. Finally, the updated
indicator objects are drawn, and the display buffers are swapped to
display the newly created image.

GAMMARAMP.C

Input:

Output:
Side Effects:

Description:

The inputs to gammaramp are a correction factor, a color table
starting index, the number of color table entries (shades) to be
defined, red, green, and blue intensities for the brightest color to be
defined, and finally, red, green, and blue intensities for the darkest
color to be defined.

None.

Gammaramp has the side effect of defining entries in the system
color table.

Displayed colors do not correspond linearly to the numeric red,
green, and blue intensity values that are used to produce them. If a
range of colors (0 .. #colors-1) is defined in the straightforward way
with a uniform increment, the intensity of the n™ color (1)) is
given by Equation A.4, and the bright colors will appear more
widely spaced than the dark colors.
Mazl — Minl
I =n*————+ Minl (A.4)
#colors

Gammaramp avoids this by using a power function to increase
spacing between the dark colors’ intensity values and to decrease
the intensity increment as the colors get brighter. The strength of
the correction is determined by a value 4, which is constant for a
given range, but must be experimentally determined for each range
that differs in color or number of colors. FOG-M uses a v value of
1.5. The intensity of the n® color in a gammaramp created table is
given by Equation A.5.

112




1

I = ‘ _n__] ! * (Mazl — Minl) + Minl (A.5)
#colors — 1

GET_TGT POS.C

Input:

Output:

Side Effects:

Description:

The input to get tgt pos is a socket number for Ethernet
communication (if in use), a boolean indicating designate/reject
status, the index of the currently designated target, and the
“name” of the tank object.

Output is the new X,Y,Z position coordinates of the currently
designated target.

Get_tgt pos updates several global data structures. It sets the
number of target images, updates the target position arrays, and
updates the array of target object names.

The primary purpose of get_tgt pos is to move the targets in the
simulation. If the networking capability is in use, the target
positions for the next frame are received over the network. When
networking is not in use, targets are moved at a set speed of fifteen
knots, and reverse course when they reach the boundaries of the
ten kilometer square terrain area. As explained in Chapter VII, an
array of graphical objects is defined to match one object per one
hundred meter square of terrain, and this array is also used as
booleans to indicate the presence or absence of targets in the one
hundred meter grid square. Get_tgt pos begins by removing each
target from this array. New target positions are calculated or
received over the network. If one of the targets has been ‘““locked-
onto,” its new position is returned to be used as the current aim
point for the missile. This is easily determined if networking is off
because the designated target’s index remains the same and the
new position can be directly accessed. The index correspondence is
not guaranteed when networking, so the index of the new target
whose coordinates are closest to the old targeted point is used.

Targets that straddle a one hundred meter grid square boundary
must be drawn on top of both (or possibly all four) grid squares in
order to avoid being partially obscured by whichever square is
drawn last. (The target must be drawn immediately after the grid
square on which it rests to ensure that the target will be obscured
when it should be by terrain drawn in the foreground.) Since the
calculation of boundary intersection requires several trigonometric
functions plus an allowance for the distance between the center of

113




the tank and its boundaries (which varies with the direction of the
tank), a simplifying algorithm is used. If the tank is close enough
to a boundary that the most distant part of the tank might cross
the boundary, the target is also drawn after the adjoining grid
square(s) (see Figure 7.3). This is done by adding & ‘“‘new” target
t2> the array of target objects. The “new’ target object is drawn at
the exact same location in the three-dimensional terrain, but it is
drawn after a different one hundred meter grid square, so it will
have different target object array indices, and be in a separate
target object.
After all of the targets (originals and boundary copies) have
updated positions and target object array indices, objects are
added to the target object array as described in Chapter VII. This
array is then used by the terrain display routine to actually draw
‘ the targets.

GND_LEVEL.C

‘ Input: Gnd level takes as inputs the X and Z coordinates of the point for
) which the elevation is desired.

Output: Gnd_level returns a float which is the elevation at point X and 2.
Side Effects: None.
‘.;i Description: Gnd_level computes, through interpolation, the scaled elevation of

" any point within the terrain boundaries. A calculation is done to
determine which gridtriangle contains the point. Then, using the
known elevations at the vertices of the triangle, the elevation of the
point is found.

- A e

IN_THIS POLY.C

Input: In _this_poly takes the following inputs:
- An array of points, polygon, which define a polygon. (Note: only
the X and Z coordinates of the points are used, the ¥ value is

ignored).
- An integer, num vertez, that is the number of vertices in
polygon.
v - A point, pnt, that is to be tested. (Note: only the X and Z
:z: coordinates of the point is used, the ¥ value is ignored). 1
::‘ Output: In this poly returns a boolean which is TRUE if pnt is inside the
i polygon defined by polygon, FALSE otherwise.

114

$%y 1t

a8 RGO IO N RN " X s Ay v
RN AIOOCTO RS IR T <t i '-".l’ Q‘f‘n"lt* 3.9 ‘\"»‘.":"1‘!‘:’!‘“&;'.‘“”.”"." !!‘:':‘ ’-‘I?‘t'.:“l“ SONN K é 4




Side Effects:
Description:

None.

In_this poly is a function which tests whether a point is inside a
given polygon, where both the point and the polygon are in the XZ
plane. The algorithm used constructs a bounding box around the
polygon. If the point lies outside the bounding it obviously can
not be inside the polygon. If the point lies inside the bounding box
a further test is made. A line is constructed from a point outside
the bounding box to the point to be tested. Each of the edges of
the polygons are then tested to see if they intersect the constructed
line and a count is kept of the number that do intersect. The
point lies inside the polygon if and only if the constructed line
intersects an odd number of the polygon’s edges.

INIT CTRLS.C

Input: Init_ctris takes as inputs the initial altitude of the missile, in feet;
the initial heading of the missile in degrees; and a boolean,
greyscale, which is TRUE if greyscaled terrain is to be displayed
and FALSE if color terrain is to be displayed.

Output: Init_ctrls has as outputs the initial pan angle of the camera in
radians; the initial ¢/t angle of the camera in radians, and the
initial zoom setting of the camera in tenths of a degree.

Side Effects: The MOUSEX, MOUSEY, DIALO, DIAL1, DIAL2, and DIAL3
valuators are set as a result of calling this routine.

Description: Init_ctrls’s purpose is to initialize the mouse and dial valuators
used for the operator controls. The initial altitude, heading, and
greyscale valuator settings are passed in as inputs. The pan, tilt,
and field of view settings are read from an "include" file and their
values passed back as outputs.

INIT IRIS.C

Input: None.

Output: None.

Side Effects: Calling this routine sets the Iris attributes and configures the Iris.

Description: Init iris accomplishes the following: it puts the Iris into

doublebuffer mode, sets the chunksize (the minimum memory
increment used in objects), sets the monitor type to either NTSC
or HZ60, and enables backface polygon removal.

115




INIT_TGTS.C
Input:
Output:
Side Effects:

None.
None.

Init_tgts always initializes the global target object array to all
seros. If target data is not being received over the network,
init_tgts also defines ten targets by setting initial values in the
global target counter, target position array, and target direction
array. An auxiliary function init_tgt is used to perform the actual
update of the global arrays.

INTERP_ELEV.C

Input:

Output:

Side Effects:
Description:

Interp elev takes three inputs, each an array of X, Y, and 2
coordinates, representing a point. One array is the start point of a
line, the second array is the end point of a line, and the third array
is a point along the line.

Interp elev returns a float that is the elevation value of the point
along the line.

None.

Interp elev returns a float which is the linear interpolation of the

Y (elevation) coordinate of the point along the line, based on the
elevations at the start and end points of the line.

LIGHT ORIENT.C

Input:

Output:

Side Effects:
Description:

Light orient takes as inputs the following:

- An array of coordinates for the polygon.

- An integer, num coords, the number of coordinates in the
polygon.

- The X, Y, and Z coordinates of a point that is "behind" the
polygon (an interior point).

- The X, Y, and Z coordinates of a light source.

- The minimum and maximum color map indices to be used for
this polygon.

Light orient returns the color map index of the color to use in
lighting this polygon. It also reorders the polygon array (if
necessary) so that the points are ordered counterclockwise.

None.

Light orient computes a lighting for a polygon based on Lambert’s
cosine law, which states that the intensity of the light reflected

116




from an object is proportional to the cos(®), where @ is the angle
of incidence of the light ray. (see Figure §.2). Light orient also
orders the vertices of the polygon in a counterclockwise fashion so
that backface polygon removal can take place (see the module
description for npoly orient).

LINE INTER3.C

Input:

Output:

Side Effects:
Description:

Line_inter2 takes the following inputs:

- An array containing the X and Z coordinates of the start point of
line_one is ignored.)

- An array containing the X and Z coordinates of the end of
line one. (Note: a three element array is used, but the second, ¥
coordinate, element is ignored.)

- An array containing the X, Y, and Z coordinates of the start of
line two. (Note: a three element array is used, but the second, ¥
coordinate, element is ignored.)

- An array containing the X, Y, and Z coordinates of the end of
line two. (Note: a three element array is used, but the second, Y
coordinate, element is ignored.)

Line_inter2 returns as outputs:
- An array containing the X and Z coordinates of the intersection
of line_one and line_two. If the lines do not intersect these values
are undefined not considered in the calculation).
- An integer which can be interpreted as follows:
0 - the lines do not intersect.
1 - the lines intersect, but the intersection uses an
extension of at least one of the lines past its start or
end points.
2 - the lines intersect, and the intersection occurs
between the input start and end points of both lines.

None.

Line_inter2 computes the point of intersection between two lines
in the XZ plane. The type of intersection, as explained above in
"Output" is also determined. Throughout the routine, three
element arrays are used for compatibility with other routines. The
second, Y, coordinate is not considered in any of the calculations.

MAKEINDBOX.C

Input:

None.

117




LA B & 4

F IR U B P

Output:

Side Effects:
Description:

Makeindboz returns a graphical object ‘““name,” tags for editing the
speed, direction, altitude, and designate/reject readouts, and tags
for editing the zoom, pan, and tilt indicators.

None.

Makesndbor generates a graphical object that contains both the
indicator box in the middle of the displays on the right side of the
screen and the ‘‘heads-up’ display that is superimposed on the
terrain image (Figure 6.8). The object consists almost entirely of
straightforward line and character string drawing commands, but
there are two interesting points. First, within a single object, there
are two different coordinate systems: one for the indicators
superimposed on the terrain, and another for the separate indicator
box. This is accomplished with an ortho2 call for each coordinate
system, and by bracketing each ortho2 with pushmatriz and
popmatriz commands. Note that the heads-up display is truly
superimposed; it is specified in two-dimensional screen coordinates
as opposed to the three-dimensional terrain coordinates.

The second interesting aspect is the movement of the slider bar
indicators. Drawing the indicators as polygons would require a
sequence of pushmatriz, translate, and popmatriz calls for each
indicator, with movement achieved by editing the translate call. To
avoid all of this matrix movement and multiplication, the
“triangle’’ of the indicator 18 actually an overlapped line that
“fills’’ the triangle by spiraling inwards. The line is drawn relative
to the indicated point, with each segment of the line specified as
offsets from that initial point, rather than as absolute coordinates
(Figure A.1). Movement of an indicator triangle defined in this
way is achieved by editing the parameters of a move2 call in the
object, which sets the current graphics drawing position to the
indicated point on the slider bar scale. Makeindboz is called once
by fogm before the flying loop is entered. and then the object is
edited (to update the indicator values) and called (to display it)
every frame.

MAKEINSTRBOX.C

Input:
Output:
Side Effects:

None.
Makeinstrboz retums the name of an object to fogm.

None.

118




(0,0)

Indicator Fill using Line Segments

Figure A.1




Makeinstrboz creates the object that produces the display in the
lower right of the screen (Figure 6.8) during flight simulation. This
display contains the legend for the FOG-M controls and the flight
parameters they affect. Makeinstrboz is called once by fogm to
create the object, and then the object is called twice per flight to
put the image into each buffer. Note that writemasks are not
necessary as they are with makemap and makenavboz, because
nothing else writes to the instruction box portion of the screen
during flight. The image thus remains undisturbed in the bitplanes
despite the changes in other screen areas.

MAKEMAP.C

Input: The input to makemap is the giobally defined array of elevation
and vegetation values, gridpizel.

Output: The output from makemap is a graphical object ‘‘name,” which is
returned to fogm.

Side Effects: None.

Description: Makemap generates the object containing the contour map and

grid that appear full screen during the pre-launch phase, and
appear in the upper right corner of the screen during flight
simulation (Figure 4.1}. The map is produced using the
methodology described in Chapter IV. Fogm calls the object
returned by drawcontour twice, in order to place the map image in
both buffers. The image is then protected from overwrite by a
writemask. Fogm also passes the object name to prelaunch, which
uses it in much the same way as fogm.

MAKESCREENS.C

Input:
Output:

Side Effects:
Description:

None.

Makescreens returns an array of objects: instruction panel,
statistics box, flight path between launch and target endpoints,
and the three welcome screens, plus tags to update the statistics
and flight path.

None.

Makescreens builds all of the objects (mostly screens of text) that
are used by prelaunch.




o »
t oy

MAKETANK.C
Input: None.

Output: Maketank returns the name of an object containing a single tank,
drawn around the origin.

Side Effects: None.

Description: Maketank builds a object that consists solely of the drawing
commands to produce a single tank. The tank is thirty-two feet
long, ten feet high, and ten feet wide. Its center bottom is at the
origin (coordinates 0,0,0), with its left side on the plane Z = -3, its
back on the plane X = -15, its bottom on the plane ¥ = 0, and it
faces to the right along the positive x axis. For each of the twenty
polygon faces thet make the tank, the X,Y, and Z coordinates of
each polygon vertex are stored in an array, passed to lightorient,
and then drawn with polf, the filled polygon drawing command.
Lightorient ensures the vertices are ordered counter-clockwise in
the array (with respect to an interior point) for backface polygon
removal, and then calculates the appropriate color for the polygon
using the same lighting model that is used for the terrain (see
Chapter V).

NEAREST TGT.C

Input: Nearest tgt takes as inputs the X, Y, and Z coordinates of the
missile position, and the X, Y, and Z coordinates of the camera’s
look-at position. (Tue end points of the line of sight vector).

Output: Nearest_tgt returns as output an integer, tgt idz, which is the
target index of the target that is closest to the line of sight vector.

Side Effects: None.

Description: For each of the existing targets, nearest tgt computes the distance
between the target and the line of sight vector. It returns the
index of the target that was found to be closest. In the case of two
targets which are the same distance apart, the highest index value
will be returned.

NPOLY ORIENT.C
Input: Npoly orient takes as input:
- An integer, num_coords, that is the number of vertices in the

polygon.
- An array containing the coordinates of the polygon.
- The X, Y, and Z coordinates of a point that is "behind" the

121

e

» [ - ¥ » y ” g L g2 - -
Lot gl L ; : y 7 |
AR IR A S Y PR IO L Y SR AT i i) L (R T ORI OFD O BAHAANNIE

cad ety



Output:

Side Effects:
Description:

polygon (an "interior" point).

Npoly_orient returns as output an integer which is interpreted as:
1 - the vertices of the polygon are ordered clockwise.
2 - the vertices of the polygon are ordered
counterclockwise.

None.

Npoly orient determines if the polygon is ordered clockwise or
counterclockwise by computing two points: one along the normal
vector and the other, the same distance from the polygon, but
along the vector in the direction opposite the normal. Next the
distance between these points and the "interior" point is
computed. If the "interior" point is closer to the point along the
normal vector, the polygon is ordered clockwise, otherwise the
polygon is ordered counterclockwise.

PRELAUNCH.C

Input:

Output:

Side Effects:

Description:

The input to prelaunch is two arrays. The first contains objects,
and the second contains tags for editing those objects.

Prelaunch returns the X,Y, and Z coordinates of the missile’s
designated launch position, and the initial direction of flight for the
missile. This direction is returned in both radians and compass
degrees (Figure 7.1).

None.

Prelaunch first provides three screens of introductory information.
Each screen is an object defined by makescreens. After those, the
user is presented with a full screen contour map of the ten
kilometer by ten kilometer area available for overflight. Mouse-
selected points define the missile’s initial position and direc:ion of
flight, and are displayed on top of the map. The map is writemask
protected, so it is only drawn twice (once for each buffer) even
though the flight path is repeatedly drawn and erased on top of the
map. The flight path i8 made to act like a rubber band between
the launch and cursor positions by repeatedly editing of the
positions in the object containing the flight path line drawing
commands. Once the flight path is confirmed, the launch position
and heading are returned to the fogm program.

122




RANDNUM.C

Input:
Output:
Side Effects:

Description:

Randnum uses the global random number seed.
Randnum returns a floating point random number.

The global seed value used by randnum is updated during every
invocation.

Randnum is a linear congruential pseudo-random number
generator. The algorithm is a modified version of the one given by
Sedgewick [Ref. 13]. It uses a a special piecewise multiplication
routine mult to preserve the low-order digits of the newly
generated seed even in case of overflow. The value returned is the
new seed, scaled to fall between zero and one, inclusive. The
random numbers are used in fogm to vary the point on the tank
that the missile aims for. This simulates the variance in impact
point that results from the optical homing of the real missile.

RANDSEED.C

Input:
Output:
Side Effects:

Description:

Randseed takes a long integer as input.
None.
Randseed updates the global random number seed value.

The pseudo-random number generator implemented in randnum
always returns the same string of numbers when it starts with a
given seed value. Randseed provides the means to change that
initial seed value so that different program runs will have different
strings of “random’’ numbers.

READCONTROLS.C

Input:

Output:

Side Effects:

The inputs to readcontrols are the global X,Y, and Z random
offset values for the aim point on the target, the current
designate/reject status, and the black-and-white versus color
boolean greyscale.

All of the user-commanded control values are output from
readcontrols: missile speed, heading and altitude, camera pan, tilt,
and zoom angles, plus designate/reject status, greyscale status.
Readcontrols also returns values for the booleans that control the
active and flying loops.

When a target is first designated, readcontrols calls randnum and
updates the global target aim offsets randz, randy, and rand:.

123




Description:

Input:
Output:
Side Effects:

Description:

Input:

Output:

Side Effects:

Description:

Readcontrols checks the status of all of the valuators that provide
input to the FOG-M simulator, and performs scaling, units
conversion, and immediate processing, as appropriate. It
determines whether to accept or reject a ‘“‘designate” command,
based on the color index of the pixel at the center of the screen. (If
a tank is in the crosshairs, the color index will be from the tank’s
color ramp, and a designate command will be accepted. Otherwise,
a designate command will be ignored.)

READDATA.C

None.
None.
Readdata fills the global array gridpizel.

Readdata opens and reads the values from the terrain elevation
data file and stores the values in the gridpizel array. Note that the
elevation data file is arranged in a format as discussed in Chapter
III. The gridpizel array is arranged in straight rows and columns
analogous to the geographic positions of the data.

ROAD BOUNDS.C

Road_bounds takes as input the following:

- Three arrays (ptl, pt2 and pt3) containing the X and Z
coordinates of three points along the centerline of the road. The
line segment from ptl to pt2 defines the first segment of the road.
The segment from pt2 to pt3 defines the next segment of the road.
- A float, width, which is the width of the road in feet.

Road bounds returns the following as outputs: - Four arrays
(left_pt1, right ptl, left pt2, and right pt2) which contain the X
and Z coordinates of the first segment’s left and right sides. The
left side runs from left ptl to left pt2 and the right side runs from
right ptl to right__ptZ._ N

- Four integers, first zgrid, first 2grid, last zgrid and last zgrid,
which are the indices of the bounding box surrounding the first
road segment (see Figure 8.2).

None.

Given three points along the center line of the road, and the road’s
width, road bounds computes the start and end coordinates for the
first segment’s left and right sides. The end coordinates are
computed as the intersection of the first segment’s left (or right)

124




20, W DL O O OO0
AN BRI ANNN R KT AT G T

side with the second segment’s left (or right) side. This insures
that adjoining segments will meet cleanly. The second function of
road bounds is to compute a bounding box around the first road

- segment. This box is defined as the row indices of the northern
and southern most gridsquares that the road segment intersects,
and the column indices of the eastern and western most gridsquares
that the road segment intersects (See Chapter VIII for a more
detailed discussion).

SORT ARRAY.C

Input: Sort_array takes as inputs:
- An array of points, pnts.
- An integer that is the number of entries in the pnts array.
- A boolean, which is TRUE if the array should be sorted in
descending order, FALSE if the array should be sorted in ascending
order.
- The index number of the coordinate that is the sort key: 0 for the
X coordinate, 1 for the Y coordinate, and 2 for the Z coordinate.

Output: Sort_array returns the array pnts with the points sorted according
to the input parameters.

‘Side Effects: None.

Description: Sort array performs a simple "bubble-sort" of the input points
according to the input parameters.

UP_LOOK POS.C

Input: Up look pos takes the following as inputs:
- The heading of the missile in radians.
- The pan angle of the camera in radians.
- The tilt angle of the camera in radians.
- The X, Y, and Z coordinates of the missile’s position.
- The X, ¥, and Z coordinates of the locked-on target (if any).
- A boolean which is TRUE if the missile is locked-on a target,
FALSE otherwise.

Output: Up look pos returns as outputs the X, Y, and Z cocrdinates of the
camera’s look-at position.

Side Effects: None.

Description:  Up_look position computes a point along the camera’s line of
sight. If the missile is locked on a target, the look-at position is the
locked-on target’s position. Otherwise it is any point along the

125

Car ot WA AT A A
R L

D% WO MR NS Fr RS TN iy
":v".o"f:’il.",l“a','. . '., 0- \. ", IS .i.h:',i.s_ .t. Gl X

i LA e N

A




e camera’s line of sight. See Chapter VI and Figure 6.2 for a more
detailed discussion.

UP MSL POSIT.C

Input: Up msl posit takes as inputs:
- The heading of the missile in radians.
- The speed of the missile in knots.

:;::e - The X, Y, and Z coordinates of the missile’s position.

-.;jitz - The X, Y, and Z coordinates of the locked-on target (if any).

{f'ff.f - A boolean which is TRUE if the missile is locked-on a target,
FALSE otherwise.

;;2;: Output: Up_masl posit returns as outputs:

1::’,3:: - The new heading of the missile in radians, if it was changed to

L:ﬁ:;f track a locked-on target.

B - The new heading of the missile in degrees measured in the

compass convention.

e - A boolean which is TRUE if the missile is still flying (has not hit

i*:.:: a target), and FALSE if the missile has hit the target.

;"‘:s Side Effects: None.

} Description: Up msl posit calculates a new missile position for the next frame.
The new position is either based on the commanded direction,

?a:'z'o speed, and altitude (when the missile is NOT locked onto a target),
:::0: or the commanded speed and the direction to the target (if the
0 missile is locked onto a target). For a detailed discussion of the
"} routine, see Chapter VI.

3

'.b""f

o

il VIEW BOUNDS.C

ol - . .

:::5:: Input: View bounds takes as inputs the X, Y, and Z coordinates of the
s missile’s position; the X, Y, and Z coordinates of the camera’s
g look-at position; and the field of view (zoom) value.

"‘-‘ y

:::': i Output: View bounds returns as outputs the row indices of the northern
::: \ and southern most gridsquares to be drawn, and the column
e indices of the western and eastern most gridsquares to be drawn.

¢

Side Effects: None.
K . . .
_’fg"' Description: The purpose of view bounds is to construct a bounding box around
AN the gridsquares which are to be drawn. The box is constructed by
et extending the line of sight vector down until it intersects the
S minimum elevation plane. The view bounds extends 20
. gridsquares north, south, east, and west of this intersection point.

h

37 126
-"& )

N _;.‘

n { i X ] : . N - - h
: ) e g I X, > s () LS W
B LAY AN TR R R Tl T XM A



* If the missile’s position is not within the bounds, the bounds are
extended to include the missile’s position. For a more detailed
discussion, see Chapter VI and Figure 6.5

% 127

n
% ﬁa:

. 3 o %4 R F L,
,}0‘.‘0,"!0' ) “';r.a?“:.f!?.',._‘.gi'.:,":‘ “w"’,‘sl,, o ;\\,(J,(l s, !‘t‘i?“

\ “,i":‘f.l‘*flc‘. )



APPENDIX B - SOURCE LISTINGS

BUILD ROAD

#include "stdio.h"
#include "fogm.h"
#include "files.h"
#include "gl.h"

i #include "math.h"
C #defineX 0
#defineY 1
#defineZ 2
e #define DIAGONAL 0O
R #define HORIZONTAL 1
o #define VERTICAL 2
#define LOWER 0
”: ‘ #define UPPER 1
. "‘.,
ety build_road()
‘:“:o: -
B extern Object road|99](99];
extern short gridpixel{100}{100};
K FILE *fp, *fopen();
el float road_width; /* road width if feet */
o int num_pts; /* number of data points
:’,‘:=:": for the road seqment */
ce ] int segnum = 0,
char temp{100j;
R int ent, 1, J;
o int vertex cnt, num_duplicates;
,‘: fioat gnd level()
' : fioat elev;
Y float pt1(3], pt2(3), pt3(3];
float nw_corner|3], ne_corner|3}, sw_corner($|, se_corner(3];
RN float right_pt1[3, right pt2(3};
R float left_pt1(3], left pe2(3];
A float north _bound, south bound, east bound, west bound;
”si‘ float delta x, delta s;
e float ng.du-,
int ne_flag, nw_flag, se_flag, sw_flag;
O int xgrid, sgrid;
‘:!:g:: int first_xgrid, last_xgrid, first_sgrid, last sgrid;
i"‘:::‘. float poly1{10|(8);
O
N frontbuffer(TRUE);
- fp = fopen(ROAD FILE,"r");
-
o
¥ 128
‘e
y
¢,

0 )

A DN i DO O O OUIOU O - .. 1 DO O !
IO OA OGRS 0 A S D A RO X " e St Mt ' PaCUCNCRIUCLR AR R A X a



while (fscanf(fp, "%e", &road width) '= EOF) {
facanf(fp, "%d", &num pu)
facanf(fp, "%e %e", &pt1(X|, &pt1(Z]);
fscanf(fp, "%e %e", &pt2|X|, &pt2(Z]);

delta_x = pt2[X] - pt1|X};
delta_s = pt2|Z] - pt1(Z];
seg ¢ dir = atan2(delta s, delta_x);
left_pt1{X] = pt1(X] + (cos(seg_dir + HALFPI)*road_width/3.0);
right pt1{X| = pt1|X] + (cos(seg_dir - HALFPI)*road_width/2.0);
left ptl[ZI = pt1|Z] + (sin(seg_dir + HALFPI)*road_width/2.0);
right_pt1|Z] = pt1{Z] + (sin(seg_dir - HALFPI) * road_width/2.0);
for (cnt = $; cnt <= num_pts + 1; ++ent) {

if (ent <= num_pts} {

facanf(fp, "%e %e", &pt3(X], &pt3|Z]);

else {
pt3(X] = pt2(X];
p3(Z] = pt2(Z};
}
/* print new road segment number on title screen */
segnum += 1,
pushmatrix();
ortho2(0.0, 1023.0, 0.0, 767.0);
viewport(0,1028,0,767);
sprintf(temp, "Building road segment: %d%", segnum);
color(BLUE);
rectf(780.0, 20.0, 1010.0, 30.0);
color(CYAN);
cmov2i(780, 20);
charstr(temp);
popmatrix();
/* determine the boundaries of this road segment */
road_bounds(ptl, pt2, pt3, road_width, left_ptl, right_ptl,
left_pt2, right pt2, &first_xgrid,
&first sgrid, &last_xgrid, &last_sgrid);
for (xgrid = first _xgrid; xgrid <= last_xgrid; ++xgrid){
for (zgrid = first _sgrid; sgrid <= last_zgrid; ++sgrid){
ne flag = FALSE;
nw_flag = FALSE;
sw_flag = FALSE;
se_flag = FALSE;
vertex cnt = -1;
east_bound = (float)(xgrid + 1) * FT_100M;
west_bound = (float)(xgrid) * FT_100M;
north_bound = (float)(sgrid + 1) * FT_100M;
south_bound = (float)(sgrid) * FT _100M;

sw_corner|X| = west_bound;
sw_corner|Z| = south_bound;

elev = gridpixel(sgrid|[xgrid| & elev_mask;
sw_corner|Y| = pow(elev, ALTSCALE);

129




se_corner(X| = east bound;

se_corner{Z| = south_bound;

elev = gridpixel|sgrid|[xgrid+1]| & elev_mask;
se_corner|Y} = pow(elev, ALTSCALE);

nw_corner(X| = west_bound;

nw_corner|Z| = north_bound;

elev = gridpixel!sgrid+1|[xgrid] & elev _mask;
nw_corner(Y| = pow(elev, ALTSCALE);

ne_corner|X| = east_bound;

ne_corner|Z] = north_bound;

elev = gridpixel[sgrid+1)[xgrid+1) & elev_mask;
ne_corner(Y| = pow(elev, ALTSCALE);

/* determine points of intersection between the left and
right sides of the road and the eastern grid boundary
and add these points to the polygon vertex array */

do_boundary(VERTICAL, UPPER, xgrid, sgrid, se_corner, ne_corner,
left_ptl, left pt2, right_ptl, right pt2, &se flag,
&ne_ﬂq, polyl, &vertex cnt);

/* determine points of intersection between the left and
right sides of the road and the northern grid boundary
and insert these points into the polygon vertex array */
do_boundary(HORIZONTAL, UPPER, xgrid, sgrid, ne_corner,
nw_corner, left_ptl, left pt2, right ptl,
right _Pt2, &ne flag, &nw_flag, polyl, &Lvertex cnt);

/* determine points of intersection between the left and
right sides of the road and the diagonal and
insert these pointsinto the polygon vertex array */

do_boundary(DIAGONAL, UPPER, xgrid, sgrid, nw_corner, se_corner,
left ptl, left pt2, right ptl, right pt2, &nw flag,
&se flag, polyl, &vertex cnt);
/* remove duplicate entries from the polygon array */
rum_duplicates = 0;
for (i = 1;i <= vertex_cnt; ++i) {
if ((poly1[i]{0] == poly1[i-1]{0]) &&
(poly1[ilj2] == poly1[i-1]j2])) {
for () = i; j < vertex_cnt - num_duplicates; ++j) {
poly1}j)(0] = poly1|j+1}[0];
poly1[j]{1] = poly1[j+1][1];
) poly1(j]{2] = poly1[j+1](2];
num_duplicates + = 1;
}
}

vertex cnt -= num_duplicates;

130




if (vertex _cat > 0) { /* add polygon to grid_object */
if (road|agrid|(xgrid| != 0) {
editobj(road|sgrid|(xgrid|);

}
else {

road|sgrid|(xgrid| = genobj();
makeobj(road|sgrid||xgrid});

}

color(ROADGREY);
polf(vertex_cnt +1, &poly1(0}[0]);
linewidth(3);

poly(vertex cnt + 1, &poly1/0}0]);
closeobj();

}

vertex _emt = -1,
ne_flag = FALSE;
nw_flag = FALSE;
sw_flag = FALSE;
se_flag = FALSE;

/* determine points of intersection between the left and
right sides of the road and the southern grid boundary
and insert these points into the polgon vertex array */
do_boundary(HORIZONTAL, LOWER, xgrid, sgrid, sw_corner,
se_corner, left ptl, left pt2, right ptl,
right_pt2, &sw_flag, &se flag, polyl, &vertex cat);

/* determine points of intersection between the left and
right sides of the road and the diagonal and
add these points to the polygon vertex array */

do_boundary(DIAGONAL, LOWER, xgrid, sgrid, se_corner, nw_corner,
left_ptl, left pt2, right ptl, right pt2, &se flag,
&nw_flag, polyl, &vertex_cnt);

/* determine points of intersection between the left and
right sides of the road and the western grid bound
and add these points to the polygon vertex array */

do_boundary(VERTICAL, LOWER, xgrid, sgrid, nw_corner, sw_corner,
left_ptl, left pt2, right _ptl, right _pt2, &nw_flag,
&sw flag, polyl, &vertex cnt);

/® remove duplicate entries from the polygon array */

num_duplicates = 0;
for (i = 1; 1 <= vertex_cnt; ++i) {
if ((poly1[iJj0] == polyl]i-1)|0}) &&
(poly1li){2} == poly1[i-1}[2])) {
for (j = i; j < vertex_cnt - num_duplicates; ++j) {
poly1[;||0] = poly1[j+1][0];
poly1j|(1] = polyt(j+1}[1];

131




poly1i]{2] = poly1lj+1){2];

num_duplicates += 1,

}

}
vertex cut -= num_duplicates;
if (vertex_cnt > 0) { /* add polygon to grid object */
if (road|sgrid||xgrid] 1= 0) {
editobj(road|sgrid]|xgrid|);

else {
road |sgrid|{xgrid| = genobj();
makeobj(road |sgrid|{xgrid]);
}
color(ROADGREY);
polf{vertex cnt +1, &poly1(0]|0]);
linewidth(3);
poly(vertex cnt + 1, &poly1/0]|0j);
closeobj();

}

}

right pt1{X| = right_pt2(X|;
right pt1|Z] = right_pt2|Z};
left_pt1|X| = left pt2{X]|;
left pt1{Z] = left pt2(Z);
pti{X] = pt3(X];

pt1(Z] = pt2(Z];
pt2[X] = pt3|X};
pt2(Z] = pt3(Z};
}
}
fclose(fp);
frontbuffer(FALSE);

133




BUILDTERRAIN

/* buildterrain.c - this function builds objects representing 1km grid squares
in 3-D, with each grid square generating 4 objects, identical except for

order of drawing */
> #include "gl.h" /* get the graphics defs */
#include "device.h" /* get the graphics device defs */
#include "fogm.h"  /* defauit constants */

#include "math.h"  /* math function declarations */
buildterrain()

{

/* array of data points to build the terrain */
extern short gridpixel{100}[100];

extern float savetriangle{99](99](2](8](3|;
extern long gridcolor|99)(99);

extern Object target(99](99];

extern float ground plane(4j[3};

extern long gnd_plane color;

float gnd _plane ht;

Coord trianglel|3)(38], triangle23)(S];  /* polygon coordinates */

short xgrid, sgrid; /® indexes into the grid object array */
short endrow, endcol; /* miscellaneous indexes etc */
int row, col;

float ax,ay,as; /° interior point for use in the lightpoly fanction */
float Ix,ly,ls; /* position of light source in lightpoly function */

/* min and max colormap indexes for lighting the poly */
loag colormin, colormax;

/* color index to use returned by the lightpoly functioa ¢/
long colortouse, colorl, color2,

char temp(50]; /* character string for countdown */
float x,y;

float gammacorr;
long rampamax, rampamin, rampbmax, rampbmin;

138




int startrow, startcol, coordidx, vertex;

Ix = 500 * FT _100M; /* direction of light source */ o
ly = 100000 * FT_100M;
Is = ly;

frontbuffer(TRUE);  /* write to front buffer ¢/

/* compute color for ground plane polygon */

. gnd _plane ht = pow((float)MIN, ALTSCALE);

: ground_plane|0](0] = -NUMXGRIDS * FEETPERGRID;
ground plane|0]|1] = gnd_plane ht;
ground plane(0][2] = NUMZGRIDS * FEETPERGRID;

ground plane(1][0}] = 2.0 * NUMXGRIDS * FEETPERGRID;
ground plane{1|{1] = gnd_plane ht;
ground plane{1)(2| = NUMZGRIDS * FEETPERGRID;

ground plane(2{{0] = 2.0 * NUMXGRIDS * FEETPERGRID;
ground plane|2}{1] = gnd plme ht;
ground plane|2|(2] = -2.0 * NUMZGRIDS * FEETPERGRID;

ground plane(8}{0} = -NUMXGRIDS * FEETPERGRID;
. ground plane(3|{1] = gnd plane ht;
ground plane(3}|2| = -2.0 * NUMZGRIDS * FEETPERGRID;

lightorient(ground plane,4,0.0,0.0,0.0,1x,ly,15,256,461, &gnd plane_color);

o /* compute coordinates and colors for triangles and store in global
,r variable savetriangle for later display */

for (col = 0; col < 99; ++col) {

/® print new countdown number on title screen */
X pushmatrix();
- ortho2(0.0, 1023.0, 0.0, 767.0);

: viewport(0,1028.0,767); j
it sprintf(temp, "Countdown to launch: %d%", 98 - col); “
‘ color(BLUE); i

rectf(780.0, 15.0, 1010.0, 30.0);

> color(CYAN);
cmov2i(788, 20);
charstr(temp);

o popmatrix();

"‘"

v,

for (row = 0; row < 99; +-+row) {

ol

/* choose which color ramp to use so that a checker board
effect is acheived */

y if ((row+col)%2)({

colormin = 258,

colormax = 461;

3

N .
- -

134

D

P

¥

‘i

{ e J% ¥ ¥ | h 3 ) . Oy -
b oty I W MRS, it ‘l'. o “s‘. K MCLAGIG At et



I}

‘;d
o ‘.:' )
. else {
colormin = 462;
- colormax = 667;
r; io }
L) .
,": /* build the polygon */
ot triangle1[0)[2| = (foat)row * (-41.01) * 8.0;
triangle1[0][0] = (float)col * 41.01 * 8.0;
cos triangle1(0](1] = pow((Boat)(gridpixel{row]|(col]|&elev_mask)
1,;_:’ , ALTSCALE);
i'i? &
UL
oy triangle1(1)[2] = (float)row * (-41.01) * 8.0;
k\"c( triangle1[1}[0] = (float)(col+1) * 41.01 * 8.0;
' trianglel[1](1] = pow((float)(gridpixel[row]{col+1]&elev_mask)
\ ,ALTSCALE);
A
g triangle1[2]|2] = (Boat)(row+1) * (-41.01) * 8.0;
RS triangle1{2}{0] = (float)col * 41.01 * 8.0;
",t; trianglel(2][1] = pow((float)(gridpixel{row+1](col]&elev_mask)
A ,ALTSCALE);
_iji;; /* copy common vertex values for opposing triangle of grid */
,‘(.;. for (vertex = I; vertex < 8; ++vertex) {
) triangle2|vertex|(0] = trianglel|vertex][0];
,".:¢ triangle2(vertex|(1] = trianglel|vertex|[1];
' triangle2|vertex||2] = trianglel|vertex][2];
}
“\.C
),
:Q: /* change corner coordinate to form opposing triangle of grid */
;g;: triangle2(0]|2] = (fBoat)(row+1) * (-41.01) * 8.0;
s triangle2(0][0} = (float)(col+1) * 41.01 * 8.0;
B triangle2(0][1] = pow((Boat)(gridpixel|row +1][col+1]&elev_mask)
‘ , ALTSCALE) ;
Cahy
KN
::!:l /* compute an interior point for trianglel */
:!:;.v, ax = triangle1(0](0] + 15.0;
‘;-;,o ay = -10.0;
N az = trianglel1|0][2] -15.0;
;,:, /* light and orient trianglel */
=;" lightorient(trianglel,3,ax,ay,as,Ix,ly Is,colormin, colormax, &colorl);
ny
.9',3: /* compute interior point for triangle2 */
b ax = triangle2(0}][0] - 15.0;
- ay = -10.0;
.‘:.' as = triangle2|0](2] +15.0;
." '
» ,
ot /* compute the light for and orient triangle2 */
4::: lightorient(triangle2,3,ax,ay,as Ix,ly,ls,colormin,colormax, &color2);
".> .
. /* compute average color for the square */
Wiy
uX 135
.;.’
da
i
f
b’,,:

;o

p v OWOLOVSRISH OUOGUEVO Ond€) O OO R yCLY RN PR 0
LRSI Hrat At st ‘.‘L‘r'l‘.‘"‘!‘i?u‘l’l","‘\.1:"(."" ROTCANIRES - AR Ty



colortouse = (colorl + color?) / 2;

/* save this triangles color and orientation */
for (vertex = O; vertex < 3; ++vertex)
for (coordidx = 0; coordidx < 8; ++coordidx) {
savetriangle|row](col|[0]|vertex]|coordidx] =
trianglel|vertex||coordidx|;
savetriangle[row|(col}|1][vertex][coordidx] =
triangle2|vertex||coordidx|;

gridcolor{row]|col| = colortouse;

frontbuffer(FALSE);




COLORRAMP

/* constructs the color ramps to be used for displaying the terrain.
If greyscale is true, constructs greyscale ramps, else it
conatructs green ramps. */ -

#include "fogm.h" /* fogm constants */

colorramp(greyscale,init)
int greyscale, init;

{

int 3

/* build two gamma corrected color ramps with slightly offset colors */

if (greyscale) { ‘
gammaramp(1.5,256,205,255,255,255,50,50,50); /* even terrain ramp */
gammaramp(1.5,462,205,245,245,245,40,40,40); /* odd terrain ramp */
gammaramp(1.5,668,180,235,285,235,30,30,30); /* tank ramp */
mapcolor(SKYBLUE, 230,230,230); /* sky color */
mapcolor{ROADGREY,35,35,35);

}

else {
gammaramp(1.5,256,205,0,255,0,0,50,0); /* even terrain ramp */
gammaramp(1.5,462,205,0,245,0,0,40,0); /* odd terrain ramp */
gammaramp(1.5,668,180,255,185,55,75,55,0); /* tank ramp */
mapcolor(SKYBLUE,200,200,255); /* sky color */
mapcolor(ROADGREY,35,35,35);

}

if (imit) {

mapcolor(16,0,70,0); /* set up colors for contour map */
mapcolor(17,0,80,0);
mapcolor(18,0,90,0);
mapcolor(19,0,100,0);
mapcolor(20,0,110,0);
mapcolor(21,0,120,0);
mapcolor(22,0,130,0);
mapcolor(23,0,140,0);
mapcolor(24,0,150,0);
mapcolor(25,0,165,0);
mapcolor(26,0,180,0);
mapcolor(27,0,190,0);
mapcolor(28,0,210,0);
mapcolor(29,0,225,0);
mapeolor(30,0,240,0);
mapcolor(31,0,255,0);
mapcolor(32,75,55,0);
mapcolor(38,95,60,0);
mapcolor(34,115,70,0);
mapcolor(35,125,76,0);

137

“a LRI

i"{iri;‘::".x‘:.f .\‘:‘}.. ..\.\s‘\.:. 2 :txfn:‘f-.{:h&w




W Lo s, Ao ) T Ty I W TV o T o v N T TS T ww

mapcolor(36,185,88,0);
mapcolor(37,145,90,0);
mapcolor(38,155,97,0); ]
mapcolor(39,165,105,0);

mapcolor(40,175,110,0);

mapcolor(41,185,113,0); -
mapcolor(42,190,118,0);

mapcolor(43,200,127,0);

mapcolor(44,210,185,30);

mapcolor(45,225,145,35);

mapcolor(46,240,155,45);

mapcolor(47,255,165,55);

for (i=64; i<128; i++) mapcolor(i,0,0,255);

for (i=128; i<256; i++) mapcolor(i,255,0,0);

mapcolor(851,0,150,0); /* set up colors for instruction box */
mapcolor(852,255,165,55); .

mapcolor(853,95,60,0);

mapcolor{854,0,0,0); /* color for indicator box background*/

138




P

COMPASS

T T e e
F

/* compute the compaas heading in degrees of the input direction. */
‘ﬂ:n #include "fogm.h" /* fogm constants */

Lh float compass(direction)
e double direction;

{

¢ float compassdir;

e compassdir = RTOD * direction;
o if (compassdir <= 90.0)

compassdir = 90.0 - compassdir;
else .
K compassdir = 450.0 - compassdir;

o return{compassdir);

& 139

L)

D)

fe .
RS : LI VA
; ff'-fin‘_.’h‘.‘“‘?"h,}'l&" BRI

L) "t‘g.’»‘J ()

' b



DISPLAY TERRAIN

/* Compute which polygons need to be drawn to display the terrain and
output them in an order such that the polygons farthest from the viewer
are drawn first and those closest are drawn last.

Note: Eventhough this seems like a long routine, it is broken into 8
independent cases based on the direction the camera is looking.
If you understand cne case the others are merely mirror images of the
algorighm for other octants. */

#include "fogm.h"
#include "math.h*
#include "gl.h"

displny_terrain(vx, vy, vz, pPX, Py, Pt, fovy,
firstxgrid, firstsgrid, lastxgrid, lastsgrid)

Coord vx, vy, vs, px, py, Ps;

int fovy;
short firstxgrid, firstsgrid, lastxgrid, lastsgrid;
{

extern float ground_plane|4](3];

extern long gnd_plane color;

extern Object road|99)|99];

extern Object target[99}{99);

extern float savetriangle(99]{99](2](3]{8];
extern long gridcolor|99){99];

double lookdir;

int threshold, count, startx, starts;
short xgrid, sgrid;

float tanval;

float y;

if (TV) viewport(0,474,0,474);
else viewport(0,767,0,767);
pushmatrix();

color(SKYBLUE);
clear();

ortho2(0.0,1023.0,0.0,767.0);  /* outline the screen */
color(BLACK);

recti(0,0,1023,767);

popmatrix();

pushmatrix();
perspective(fovy,1.0,0.0,19500.0};
lookat(vx,vy,vs,px,py,ps,0.0);

140

o " . AR LR G! . -
S DR O LV EOCRRR



/* determine the direction of the line of sight */
lookdir = (double)atan2((Boat)(vs - ps), (foat)(-(vx - px)}));
if (lookdir < 0.0} lookdir += TWOPL;

/* lay down the ground plane */
color(gnd_plane_color);
polf(4, ground_plane);

/* put the grid objects through the geometry engine in an order
based on the lookdir. */

if (lookdir > SEVEN QTR _PI)

{
/* 8th OCTANT */
threshold = (int){tan(lookdir+HALFPI) + 0.5);

count = 0;

startx = lastxgrid;

starts = firstsgrid;

while (starts <= lastsgrid) {
sgrid = starts;
xgrid = startx;

while ((xgrid <= lastxgrid) && (sgrid <= lastsgrid)) {
color(gridcolor{sgrid||xgrid]);
polf(3,&savetriangle|sgrid||xgrid](0](0](0]);
polf(8,&savetriangle[sgrid|[xgrid][1]|0][0]);
if (road|[sgrid|[xgrid] != 0) callobj(road|sgrid](xgrid]);

if (target|xgrid|[sgrid] '= 0) callobj(target|xgrid|(sgrid]);
/* check if tank should be drawn now */

sgrid += 1;
count += 1;

if (count >= threshold) {
xgrid += 1;
count = 0;

}

startx -= 1;
count = 0;

if (startx < firstxgrid) {

_ startx = firstxgrid;
) starts += threshold;

i }
else if ((lookdir > THREE_HALVES PI) && (lookdir <= SEVEN QTR _PI))

141

RO ARNE ERORA AP 0L X A0 U T AT PRI . » N . N ) :
A A N AR ORI RR L AL LA WSO JOOUG Y4 XA NN ) %) O O Q
M - L R I N .?.'s'g't'.-"s LY £ () b.M A St A “‘-‘.‘.‘!ﬁ" % 1 L A =“‘!‘c'0‘!‘0"‘«"?a"‘a‘:'J’n' ‘?'i‘f" ',!' ¢ ’;‘.‘ ’?‘fl




/* Tth OCTANT ¢/
tanval = tan(lookdir+HALFPI);
if (tanval == 0.0)

threshold = 1000; 9
else
threshold = (int){(1.0/tanval) + 0.5);

count = 0;

startx = lastxgrid;

starts = firstagrid;

while (startx >= firstxgrid) {
sgrid = starts;
xgrid = startx;

while ((xgrid >= firstxgrid) && (sgrid >= firstagrid)) {

color(gridcolor|sgrid||xgrid|);
polf(8,&savetriangle|sgrid](xgrid](0](0](0]);
polf(8,&savetriangle|sgrid]|xgrid][1](0][0]);

if (road|sgrid]|xgrid] != 0) callobj(road|sgrid}|xgrid]);

if (target|xgrid|[sgrid] != 0) callobj(target|xgrid][sgrid]);

xgrid -= 1;
count += 1;
if (count >= threshold) { P
sgrid -= |;
count = 0;
}
}
starts +=1;
count = 0;

if (starts > lastsgrid) {
starts = lastsgrid;
startx -= threshold;

\ }
else if ((lookdir > FIVE QTR _PI) && (lookdir <= THREE_HALVES_PI))

/* 6th OCTANT */
-tanval = -tan(lookdir+ HALFPI);
if (tanval == 0.0)

threshold = 1000;

el
* threshold = (int)((1.0/tanval) + 0.5);

count = 0;
startx = firstxgrid;
starts = firstsgrid;




:' while (startx <= lastxgrid) {
. sgrid = starts;
xgrid = startx;
. while ((xgrid <= lastxgrid) && (sgrid >= firstsgrid)) {
L .
',:‘ color(gridcolor|sgrid|(xgrid});
. polf(3, Lsavetriangle|sgrid|xgrid] 0}[0][0]);
. polf(8,&savetriangle|sgrid](xgrid]|1](0](0]);
K if (road{sgrid](xgrid] != 0) callobj(road(sgrid]|xgrid]);
R if (target|xgrid){sgrid] != 0) callobj(target|xgrid]|sgrid]);
N xgrid += 1;
K count += 1;
if (count >= threshold} {
sgrid -= 1;
: count = 0;
h }
)
_t st.a.ris +=1;
R count = 0;
oS
',: if (starts > lastsgrid) {
:"a starts = lastsgrid;
£ startx += threshold;
} }
Y
:e. }
¢ else if ((lookdir > PI) && (lookdir <= FIVE_QTR_PI))
i
BN
3 /* 5th OCTANT */
threshold = (int)(-tan(lookdir+ HALFPI) + 0.5);
G
n:‘ count = 0;
:s: startx = firstxgrid;
o starts = firstagrid;
“ while (starts <= lastsgrid) {
- sgrid = starts;
X xgrid = startx;
:E!
% while ((xgrid >= firstxgrid) && (sgrid <= lastagrid)) {
"t color(gridcolor|sgrid}|xgrid]);
" polf(3,&savetriangle[zgrid][xgrid]{0][0]{0});
polf(3,&savetriangle[sgrid||xgrid|[1][0](0]);
N if (road|sgrid]|xgrid] != 0) callobj(road|sgrid)|xgrid]);
7 if (varget|xgrid|[sgrid] != 0) callobj(target|xgrid]|sgrid|);
K's sgrid += 1;
\ - count +=1;
5 143
e
N

A L O OOt A L AL T AT AT AR - ; (1]
D e A e DA AN o D D L O O O DO O OR ORI o MO M




if (count >= threshold) {

xgrid -= 1;
count = 0;
}
}
startx += 1;
count = 0;

if (startx > lastxgrid) {
startx = lastxgrid;
starts += threshold;

}

}
else if ((lookdir > THREE QTR _PI) && (lookdir <= PI))
{

/* 4¢th OCTANT */

threshold = (int)(tan(lookdir+ HALFPI) + 0.5);

count = Q;

startx = firstxgrid;

startz = lastagrid;

while (starts >= firstsgrid) {
sgrid = starts;
xgrid = startx;

while ((xgrid >= firstxgrid) && (sgrid >= firstsgrid)) {

color(gridcolor|sgrid||xgrid]);
polf(3,&savetriangle(sgrid|{xgrid]{0}[0}{0]);
polf(8,&savetriangle|sgrid]{xgrid][1}{0](0]);

if (road|zgrid]|xgrid] != 0) callobj(road(sgrid|(xgrid});

if (target|xgrid)|zgrid] != 0) callobj(target|xgrid)|sgrid]);

sgrid -= 1;
count += 1;

if (count >= threshold) {

xgid -= 1;
count = O;
}
}
startx +=1;
count = O;

if (startx > lastxgrid) {
startx = lastxgrid;
starts -= threshold;

144




MO e
SR

}
else if ((lookdir > HALFPI) && (lookdir <= THREE QTR _PI))

/® 8rd OCTANT */
tanval = tan(lookdir+HALFPI);
if (tanval == 0.0) .
threshold = 1000;
else
threshold = (int){(1.0/tanval} + 0.5);

count = 0;

startx = firstxgrid;

starts = lastsgrid;

while (startx <= lastxgrid) {
sgrid = starts;
xgrid = startx;

while ((xgrid <= lastxgrid) && (sgrid <= lastagrid)) {

color(gridcolor|sgrid)|xgrid]);
polf(8,&savetriangle[sgrid||{xgrid]{0](0](0]);
polf(8,&savetriangle[sgrid]|xgrid](1](0](0]);

if (road|sgrid|[xgrid] != 0) callobj(road|zgrid|(xgrid});

if (target|xgrid][sgrid] != 0) callobj(target|xgrid](sgrid]);
xgrid +=1;

count += 1;

if (count >= threshold) {

sgrid +=1;
count = 0;
}
}
starty -= 1;
count = 0;

if (starts < firstsgrid) {
starts = firstagrid;
startx += threshold;

}

}
else if ((lookdir > QTR _PI) && (lookdir <= HALFPI))

{

/* 2nd OCTANT */
tanval = -(tan{lookdir+ HALFPI));
if (tanval == 0.0)
threshold = 1000;
else
threshold = (int)((1.0/tanval) + 0.5);

145

IS
R R I RITEAAIRI NI ,s,',c’i,:h'l WRnheRat! e

i A
",gl

e
v qu..lo

Q"“‘ 9"‘

‘331‘&'& :




count = 0;
startx = lastxgrid;
starts = lastsgrid;
while (startx >= firstxgrid) {
sgrid = starts;
xgrid = startx;

while ((sgrid <= lastsgrid) && (xgrid >= frstxgrid)) {

color(gridcolor{sgrid](xgrid]);
polf(3,&savetriangle|sgrid]|xgrid|(0]|0](0]);
polf(3,&savetriangle|sgrid|[xgrid](1](0}[0]);

if (road|sgrid][xgrid] != 0) callobj(road|sgrid]|xgrid]);

if (t_;rlet[;vidlluﬁdl 1= 0) callobj(target|xgrid]|sgrid});
xgrid -= 1; .

count += 1,

if (count >= threshold) {

sgrid += 1;
count = 0;
}
}
starts -= 1;
count = 0;

if (starts < firstsgrid) {
starts = firstzgrid;
startx -= threshold;

}

}
else if ((lookdir >= 0.0) && (lookdir <= QTR _PI))

{

/* 1st OCTANT */
threshold = (int)(-tan(lookdir+HALFPI) + 0.5);

count = 0;

startx = lastxgrid;

starts = lastsgrid;

while (starts >= firstsgrid) {
sgrid = starts;
xgrid = startx;

while ((xgrid <= lastxgrid) && (sgrid >= firstsgrid)) {
color{gridcolor|sgrid||xgrid]);
polf(3,&savetriangle(sgrid||xgrid][0](0](0});
polf(3,&savetriangle|sgrid]|xgrid}[1)[0](0]);
if (road|sgrid][xgrid] != 0) callobj(road|sgrid||xgrid]);

146

e Y (e



if (carget|xgrid||sgrid| != 0) callobj(target|xgrid|(sgrid]);
sgrid -= |;

count += 1;

if (count >= threshold) {

xgrid += 1;
count = 0;
}
}
startx -= 1;
count = 0;

if (startx < firstxgrid) {
startx = firstxgrid;
starts -= threshold;

}

popmatrix();




DIST_TO LOS

#include "gl.h"

#include "math.h*

Boat dist_to_los(vx,vy,vs,px,py,ps,point)

/* compute the distance from the point "point" to the line of sight */

Coord vx,vy,vs,px,py,ps;
float point|3;

{

float a,b,c; /* direction numbers of line of sight */
float d,e.f;
float dist;

a = (float)(px - vx);
b = (float)(py - vy);
c = (Roat)(ps - vs);

d = point[0] - (float)vx;
e = point[1] - (float)vy;
f = point|2] - (float)vs;

dist = sqrt((up_i(e*c - *b,2) + up_i{f*a - d*c,2) + up_i(d*b - €*a,2))/
(up_i(s,2) + up_i(b,2) + up i(c,2)));

return(dist};

148 !




DO_BOUNDARY

#include "gl.h"

#include "math.h"
#include "stdio.h"
#include "fogm.h"

#define X 0
#define Y 1
#define Z 2

#define DIAGONAL 0
#define HORIZONTAL 1
#define VERTICAL 2

#define LOWER 0
#define UPPER 1

#define NONE 0

#define INTERSECT 1
#define PROPER 2

do_boundary(bound type, which_triangle, xgrid, sgrid,
bound start, bound_end, left _start,

left end right stut right _ end start_corner flag,

end _corner ﬂll. polyl, vertex_cnt)

int bound type, which_triangle, xgrid, sgrid;

float bound _start(3], bound _end(3], left_start[8], ‘eft_end|S],
right_start(3}, right_end(3};

int *start_corner_flag, *end _corner_flag;
float poly1[10](3};

int *vertex cnt;

int test index, cnt, index;

float bound right|3], bound left|3), bound start_edge|$],
bound end edge(3|;

float vertex_array(10][3];
foat road_poly|10)3};
float grid_poly[10]{3];

int intersect cnt;

149




int intersect _type, decending_sort;

ficat upper_bound, lower_bound;

float gnd _level();
int in_this_poly();
intersect cnt = -1;

/* compute the verticies of the road segment currently
being worked on */
for (index = 0; index < 8; ++index) {
road_poly(0findex| = left_start|index|;
road poly|1](index| = left _end|index];
road_poly|[2]{index] = right_end[index|;
road_poly(3|[index] = right_start|index|;

}

/* compute the verticies of the grid triangle associated with
this boundary */
grid_poly(0}(X]| = (float)(xgrid*FT_100M);
grid_poly|0]{Z] = (Boat){(sgrid+1)*FT_100M);
grid_poly(1][X] = (float){(xgrid+1)*FT_100M);
grid_poly(1|(Z] = (8oat)(sgrid*FT_100M);
if (which_triangle == UPPER) {
grid_poly(2||X] = (foat)((xgrid+1)*FT_100M);
grid_poly(2||Z] = (float)((sgrid+1)*FT_100M);

else {
grid_poly|2]{X] = (Boat)(xgrid*FT_100M);
grid poly[2|[Z] = (Roat)(sgrid*FT lOOM)

}
if (t ~und_type == HORIZONTAL) {
test index = X;

}
else if (bound _type == VERTICAL) {
test_index = Z;

}

else if (bound type == DIAGONAL) {
test_index = 2;

}

if (bound starttest index| < bound _end|test_index]|) {
lower bound = bound start|test index];
upper_bound = bound _end|test index|;

}
else {
lower bound = bound end|test_index|;
upper_bound = bound start|test _index|;
}

150

W e Y P WY




/* determine points of intersection between left and right sides
of the road and the boundary ¢/

line_intersect2(bound start, bound _end, right_start, right_end,

bound right, Lintersect _type);
if (intersect_type == PROPER) {

/* intersection lies on road line segment, add intersection
to array */

intersect_cnt += 1,

vertex_array|intersect _cnt|[X| = bound _right[X];

vertex_array[intersect_cnt||Z] = bound _right|2];

vertex array|intersect cnt][Y] = gnd_level(bound _right|X],

-bound_right{Z});

}

else if ((intersect type == INTERSECT) &&
(in_this_poly(grid_poly, 3, right_start)) &&
(bound right|test_index] > lower bound) &&
{(bound _right|test_index| < upper_bound)) {

/* intersection point is beyond the bound of the road’s right
line segment, but the right start point is inside the polygon so
add the road’s right start point to the vertex array */

intersect cnt += 1,

vertex_array|intersect cnt||X] = right_start|X];

vertex array|intersect cnt|[Z] = right_start|Z};
vertex_array|intersect _cnt][Y] = gnd level(right_start|X],
-right_start|Z|);

else if ((intersect ty = INTERSECT) &&
(in_this_poly(grid_poly, 3, right_end)) &&
(bound _right|test mdex] > lower bound) &&
(bound right|test index} < upper_bound)) {

/* intersection point is beyond the bound of the road’s right
line segment, but the right end point is inside the polygon so
add the road’s right end point to the vertex array */

intersect cnt += 1;
vertex_array|intersect cnt|(X| = right_end|X|;
vertex array|intersect cnt}|Z] = right_end(Z];
vertex array|intersect cnt.HY] = gnd_level(right_end(X],
-right_end|Z));
}
line_intersect2(bound start, bound end, left start, left_end,
bound left, &intersect _type);
if (intersect _lype == PROPER) {

o) /* intersection lies on road line segment, add intersection
7"'-"2 to array */
N,

intersect._cnt +=1;
vertex array|intersect cnt||X| = bound left|X];

151

.....

e *
.&'\.‘h o ..tnn.

Py s % SNy

JA - s.mu\(::l A.Ah\ LLA}. .hiﬂht‘hi‘:{ﬁ :‘\ .\{X .h\ " '(\ .\‘”‘-"\\.

SR Ny
‘f\'f\'(s

AT I TIATRTe, |



th
i
‘::‘: vertex array|intersect cnt}{Z] = bound left(Z];
N vertex_array|intersect cnt|[Y] = gnd level(bound left[X),
-bound left|Z]);
v
s else if ((intersect type == INTERSECT) &&
Q,.- (in_this_poly(grid_poly, 3, left_start)) &&

N (bound _left{test_index] > lower bound) &&
(bound _left(test index| < upper bound)} {

/* intersection point is beyond the bound of the road’s left

:J: line segment, but the left start point is inside the polygon so
-‘..:' add the r~ad’s left start point to the vertex array */
A .
D intersect ¢ L +=1,
vertex arraylintersect_ent|[X| = left_start|X];
W vertex uray[mtersect _ent){Z] = left_start|Z};

vertex array|intersect cnt|{Y| = gnd level(left start[X],
-left_start(Z]);

}
else if ((intersect type == INTERSECT) &&
(in_this poly(grid poly, 3, left_end)) &&

.u-,.
X, 0
B -

‘,_ . (bound Teft[test _index] > lower_bound) &&
I (bound left[test _index| < upper_bound)) {
i
vl /* intersection point is beyond the bound of the road’s ieft
'- line segment, but the left end point is inside the polygon so
add the road’s left end point to the vertex array */
V L .
ey intersect cnt += 1,
oty vertex arraylintersect cnt||X] = left _end(X];
e vertex array|intersect cnt|(Z| = left end|Z);
'-,‘ vertex array|intersect cnt]|Y] = gnd_level(left _end|X],
p -left enc”Z])
. }
‘-\
¥ J': /* if either of the bound’s end points fall within the bounds of the
9 :: road, add them to the array*/
. '5 if ({!*start corner flag) && (in_this poly(road poly, 4, bound start)}) {
=~ /* put in start bound point */
o *start corner flag = TRUE;
80 intersect ent b= 1;
:5:3 vertex arraylintersect cnt{[X| = bound start[X];
e vertex array'intersect cnt||Z] = bound start|Z;
N vertex array'intersect cnt|[Y| = bound start|Y|;
}
.;.:.; if (("*end corner flag) && (in_this_poly(road poly, 4, bound_end))) {
1] /* put in end bound point */
:‘. ) ‘endvcornerpﬂag = TRUE;
N intersect cnt += 1;
:.‘::.‘ vertex arrayjintersect cnt|[X] = bound_end|X|;
! vertex array|intersect cnt|[Z] = bound end|Z|;
b vertex array|intersect cnt||Y] = bound end[Y];
' ';3 153
RS
l‘:..‘

A AN L L I L CE S - -
DR A SN ., OAS " e T ﬂ-!-"-\ f\
O T L N NN AR T TN RS

LRI Y
PR

N

.

w



/* determine the point of intersection between the start and end
bound of the road and the grid boundary */
line_intersect2(bound _start, bound_end, left_start, right_start,
bound start_edge, &intersect type),
if (intersect_type == PROPER) {
/* intersection lies on road line segment, add intersection
to array */
intersect cnt +=1;
vertex_array|intersect_cnt|{X] = bound _start_edge|X];
vertex_array|intersect_cnt|[Z] = bound _start_edge|Z];
vertex_array[intersect_cnt|(Y| = gnd_level(bound _start_edge|(X],
-bound_start_edge[Z]);
}
line_intersect2(bound_start, bound_end, left_end, right_end,
bound _end_edge, &intersect type),
if (mtersect type == PROPER) {
/* intersection lies on road line segment, add intersection
to array */
intersect cnt +=1;
vertex may[mtersect _cnt)(X] = bound_end edge|X];
vertex array|intersect cnt.][Z] bound_end edge|Z};
vertex array|intersect cnt.][Y] = gnd Ievel(bound end edge(X],
-bound _end_edge|Z|);
}
/* put the points from the vertex array into the polyl array in
the proper order */
decending sort = (bound start|test_index| != lower_bound);
sort_array(vertex_array, intersect _cnt, decending_sort, test_index);

for (cnt = O; ent <= intersect_cnt; ++ent) {
*vertex cnt += 1;
polyl[*vertex cnt|[X] = vertex_array|ent](X];
polyl[{*vertex cnt|[Y]| = vertex_arrayfent]{Y];
polyl{*vertex cnt|[Z] = -vertex_array|cnt||Z];

163




"
;.
¢
p EDIT_INDBOX
' .
/* update the control settings of the indicator box */ .
#include "fogm.h"
N #include "gl.h"
X -
edit_indbox(indbox, speedtag, headingtag, elevtag, altmsitag,
soomtag, tilttag, pantag, desigtag, speed, compassdir,
o VX, vy, V3, pan, tilt, soom, designate)
Y
'
it Object indbox;
Id
'
' Tag speedtag, headingtag, elevtag, altmsltag, soomtag, tilttag, pantag,
desigtag;
cg float speed, compassdir;
f
K}
;:: Coord vx, vy, vz;
B
& _
i double pan, tilt;
s
. int designate;
A int soom;
Y {
char chspeed|5), chheading|5], chelev|5], chaltmsl(5];
\ float gnd level();
& - c s
o float zoomtic, pantic, tilttic;
K)
- sprintf(chspeed,"%4.0f" speed); /* convert speed to string */
\ sprintf(chheading,"%3.0f" ,compassdir);  /* convert heading to str */
sprintf(chelev,"%4.0f",vy - gnd_level(vx,vs)); /* convert elev AGL to str */
. sprintf(chaltmsl,"%4.0f",vy); /* convert alt MSL to str */
)
5
:" ) /* compute new location for soom, pan, and tilt indicators ¢/
e zoomtic = zoom * -0.2768 + 222.128;
O tilttic = tilt * 721.92682 + 365.0;
. pantic = pan * -721.92682 + 435.0;
j;" editobj{indbox}; /* update the indicator display */
) objreplace(speedtag);
:i charstr{chspeed);
N objreplace(headingtag);
L~ charstr(chheading);
o objreplace(elevtag);
X charstr(chelev); -
. objreplace(altmsitag); ;
charstr(chaltmsl); ;
oy objreplace(zoomtag}; .
v move2(28.0,s00mtic);
o objreplace(tilttag);
!
o 154
)
)
B
v,
-
WY
.:n
v - - - - » > D AR L O T S . At Vet Al e et et N, LS ST ~ AN TN Y a ¥ X (]
!,.‘?':03‘!'.“‘0!:-'\. %% l't%\:'s .C‘;:l:.:i." '( ‘ . ‘{\'(" ) 3 -.‘h} ¥ N o1 " \‘.'v ‘. "IJ‘- ». '\,'v . "‘. 3 't."' 9,505 04




f‘{f’;" move2(42.0,tilttic);
hAR objreplace(pantag);
" move2(pantic,27.0);
objreplace(desigtag);
ol ‘ emov2i(designate ? 10 : 19,10);
ety charstr(designate ? "DESIGNATE" : "REJECT");
s closeobj();

,_,l
Q0 155

’ h *\ln N

AN ot RS A I AN AN N X . T A e L ¥
UG Yok M0 | a".v ' “4"l‘jl‘.“’;‘t',‘.',lﬁ, “,'ﬁ.“',.". .',‘ﬂ,ilih,".l‘a"!b'|_\.U"_ X) l..h:.'l!. i“,l,| INY O WO N LN W) _‘ ‘l.I, "



EDIT NAVBOX

#include "fogm.h" p
#include "math.h"
#include "gl.h"

edit_navbox(navbox, arrowtag, vx, vs, direction,firstxgrid, firstsgrid,
lastxgrid, lastsgrid)

Object navbox;

Tag arrowtag;

Coord vx, vs;

doable direction;

short firstxgrid, firstsgrid, lastxgrid, lastsgrid;

{

Coord arrowx, arrowy, larrowx, larrowy, rarrowx, rarrowy;

/* compute coordinates of arrow line segments for nav control box */
arrowx = vx + cos(direction) * 2.0 * FEETPERGRID;

arrowy = vg - sin(direction) * 2.0 * FEETPERGRID;

larrowx = arrowx + cos(direction - 2.3561945) * FEETPERGRID;
larrowy = arrowy - sin(direction - 2.8561945) * FEETPERGRID;
rarrowx = arrowx + cos(direction + 2.3561954) * FEETPERGRID;
rarrowy = arrowy - sin(direction + 2.3561945) * FEETPERGRID;

/* update the contour map display with new info */
editobj(navbox);

objreplace(arrowtag);

move2(vx,vs);

draw2(arrowx, arrowy);

draw?2(larrowx, larrowy);

move2(arrowx, arrowy);

draw2(rarrowx, rarrowy);

rect(firstxgrid*FT 100M,-firstsgrid*FT 100M,
(lastxgrid+1)*FT _100M, (-lastsgrid-1)*FT_100M);
closeobj();




o e

'.:} EXPLOSION
#include "gl.h"
N
:E explosion()
)
int ij;
;‘1" pushviewport();
Py viewport(0,1028,0,767);
color(BLACK);
K clear();
swapbuffers();
color(RED);
‘: clear();
! swapbuffers();
K swapbuffers();
R color(YELLOW);
" clear();
; swapbuffers();
4 swapbuffers();
color(RED);
b clear();
5 swapbuffers();
" swapbuffers(};
y color(YELLOW);
K clear();
:: swapbuffers();
,: swapbuffers();
\] color(RED);
N clear();
. swapbuffers();
'y swapbuffers();
1; for (i = 0; i < 100000; i++)
;a for (j = 0; ) < 10; j++);
“ popviewport();
' }
.«.:.
.'
R
5
)
:
; 157
_’
[}
M
v
o
§

Ko AR, vy F T L N G T ) . . ~ .
RSO T N DAY l“‘-\, "’\. 4 ",l"f. JUS #g (L% A0 ~?t’a vty 0\.\‘ b .8 a.l.o b'y.“'""fu" :l.q."u l't‘,\'c'\‘ .-’ " ‘:‘" !“ Ly .{_ im:”




FOGM (MAIN)

/* fogm.c -- an IRIS-2400 program by Doug Smith & Dale Streyle 4
It reads in a 10km x 10km section of a terrain map, computes a lighting
and shading model for the terrain, and allows overflight */
4
#include "gLh" /* get the graphics defs ¢/
#include "device.h" /* get the graphics device defs */
#include "fogm.h" /* constants
#include "math.h" /* math function declarations  */
#include "get.h" /* monitor type inciude file ./

#include "stdio.h"

#include "sys/signal.h" /* used for screen dump utility */
#include <sys/types.h>  /* contains the time sturcture tms */
#include <sys/times.h>  /* for time calls - */

short gridpixel{100]{100]; /* DMA elevation and vegatation data  */
float savetriangle[99)(99][2|[3](3];

long gridcolor({99](99};

Object road|99]|99|;

Object. target|99](99};

float ground _plane|4);3];

long gnd _plane color;

float tgt_pos]MAX _TGTS|(S|;

short tgt grid idx[MAX TGTS][2];

short tgt_dirMAX TGTS], tgt_total =
float randx, randy, rands; /* random oﬂ‘sets from tank reference point */

int framecnt;
float min_elev, max_elev;
Coord tankx, tanky, tanks;

float frames _sec|1000!(2};

main{)

-
Tro {
‘é int greyscale = FALSE; /* FALSE = color, TRUE = greys */

int designate; /* boolean indicating desig/reject status */
o int Alying = TRUE; /* boolean controlling flying loop */
W int active = TRUE; /* boolean controlling main program loop */

int nbyte, socket. cornect_client(); /* networking variables & subroutine */

‘ot 158

Ny

" \1‘ .

ot 1AL 3t X0

: SAARIE N o n N 0% 30
1"‘(’ X w‘ é )“ WL T RN N \"-ﬁ'..‘»'.‘t'?“‘a s‘~'~' ‘1"‘»' ul.‘n' ‘-"'ﬂ L -"' t“" *'N'.t" !" a'i




Y ————— e e——

"
.\
.:g
:f struct tms timestruct; /* structure for real-time clock calls ¢/
v int tgt_idx; /* index of designated target ¢/
Y double direction; /* direction of travel in radians */
"
K )
:: float speed; /* speed of travel in knots */
-:"'t
” float compassdir; /* desired direction of travel in compass deg  */
;: int fovy = 550; /* field of view in perspective command */
¢
o
"-:g double pan = 0.0,
1:: tilt = -15.0 * DTOR; /* pan and tilt angles */
/* contour map, indicator, instruction .*/
X Object contour, navbox, indbox, instrbox;
§:‘ Object tank, pre 1 obj{7};
I
( Tag headingtag, elevtag, speedtag, soomtag, arrowtag, tilttag, pantag;
“. Tag desigtag, altmsltag, pre | tag|6];
N Colorindex unmask;
\d
'.. Coord vx, vy, vs; /* viewer x y and s coordinates */
:.._.‘ Coord px, py, ps; /* reference x y = coordinates for lookat */
2 Coord tgtx, tgty, tgts; /* targeted position on tank */
s
f:' float randseed(); * random number generator initialisation */
¥
R int frames = -1;
long seconds, lastseconds, totalseconds = 0;
o int numpolys;
:: float elapsed;
s int idx;
"; FILE *fopen(), *fp;
ﬁ’
/* first and last x and s indexes of the grid objects to draw */
short firstxgrid, firstzgrid, lastxgrid, lastsgrid;
o
':f readdata(); /* read the data file into the gridpixel array */
i;',
:!: /* get socket number for networking */
. /*if (NETWORKING) socket = connect_client("npscs-iris1",3); */
5 init_iris(); /* initialise the iris */
N unmask = (I<<getplanes()) - 1;
' writemask(unmask);
x
G
' randseed(times(&timestruct)); /* seed the random # generator */
% 159
o
i
‘1l
.
4

Ay . ) '— ". ) Py 00 Uy O OO0 O ) r “» 2. 0 RO VLRI R ey TR T RT A T K
LN ﬂsfﬂ'&‘!‘ﬂ"i‘n,‘l‘: .A*v_l’u.l'ael ,l',,l'.,l!l. ‘:’O‘gti‘gtl'dl‘p,\!}'l‘c 9?:‘1'.?% Q:"(:0!:,0,.:‘!.:I';?l!;’l!g,l!.:‘ﬁ:‘!"0!".! !" ‘ * W !; N Cd 5&&2\:&,{;‘

-



init_tgts(); /* define targets */

Screen Dump(SCREENDUMP); /* enable screen dumping ¢/
billboard(); /* produce intro screen */
colorramp(greyscale, TRUE); /* build all color ramps */

makescreens(pre | obj, pre | tag); /* build objects for prelaunch */
makemap(&contour); /* build map object */
pre_l obj|CONTOUR| = contour;

prelaunch(&vx, &vy, &vs, &direction, &compassdir,
&active, pre | obj, pre | tag);

if (active) { .
maketank(&tank); /* build object for a tank */

build road(); /* build the objects that comprise the roads */

/* process terrain data to build polygons and compute lighting */
buildterrain();

/* build object for the navigation display contour map */
drawnavbox(&navbox, &arrowtag);

/* build an object for the indicator box */
makeindbox(&indbox,&headingtag,&elevtag,&altmsitag,&speedtag,
&zoomtag,&tilttag,&pantag,&desigtag);

inakeinstrbox(&instrbox); /* build object for control instruction box */
} /* end of if (active) block */
while (active) {

framecnt = O;

/* initialize the operator controls (mouse and dials) */
init_controls(&pan, &tilt, &fovy, vy, greyscale, compassdir);

pushviewport();
viewport(0,1023,0,767);
color(SKYBLUE);

clear();

popviewport();
callobj(instrbox);
callobj(indbox);
editobj(contour);
objreplace(STARTTAG);
viewport (768,1028,512,767);

160




closeobj();
callobj(contour);
swapbuffers();
callobj(instrbox);
callobj(contour);
editobj{contour});
objreplace(STARTTAG);
viewport(0,768,0,768);
closeobj();

flying = TRUE; /* missile is flying */
designate = TRUE; /* a target can be designated */

while(lying) { /* until tgt is hit or 3-button exit */

/* get values from user contols (mouse and dials) ¢/
read_controls(&designate, &greyscale, &flying, &active,
&speed, &direction, &compassdir, &vy,

&pan, &tile, &fovy);

/* calculate which target was closest to the line of
sight */

if ('designate) {
nearest tgt(vx,vy,vs,px,py,ps,&igt_idx);

} ,

/° update targets' positions */
get_tgt posit(socket, designate, tgt _idx, &tgtx, &tgty, &tgts, tank);

/* update missile position */
update_missile_posit(&direction, &compassdir, speed,
designate, tgtx, tgty, tgts,

&vx, &vy, &vs, &flying);

/* update camera lookat position */
update_look posit(direction, pan, tilt, vx, vy, vs,
tgtx, tgty, tgts, designate, &px, Lpy, &ps);

/* determine which polygons need to be drawn */
view bounds(vx, vy, vs, px, py, ps, tilt, fovy,
&firstxgrid, &firstsgrid, Llastxgrid, &lastsgrid);

/* edit control display objects to reflect new values */
edit_navbox(navbox, arrowtag, vx, vs, direction, firstxgrid,
firstsgrid, lastxgrid, lastsgrid);

edit_indbox(indbox, speedtag, headingtag, elevtag, altmsitag,
soomtag, tilttag, pantag, desigtag, speed,

compassdir, vx, vy, vs, pan, tilt, fovy, designate);

/* display the 3-D view of the terrain as seen by

161




-

the camera  */
display terrain(vx, vy, vs, px, py, ps, fovy,
firstxgrid, firstzgrid, lastxgrid, lastsgrid);

/* display the control boxes */
writemask(SAVEMAP);
callobj(navbox);
writemask(unmask);
callobj(indbox);

swapbuffers();

seconds = times(&timestruct);
numpolys = (lastxgrid - firstxgrid)* (lastsgrid-firstagrid)*2;
elapsed = (float)(seconds - lastseconds)/60.0;
if ((frames >= 0) && (frames < 1000) ){
frames sec(frames|(0] = (Boat)numpolys;
frames_sec|frames|[1] = 1.0/elapsed;

totalseconds += (seconds-lastseconds);

if (totalseconds > 7200) {
compactify(); /* do garbage collection every 2 mins */
totalseconds = 0.0;

}

lastseconds = seconds;
frames +=1;

} /* end of flying loop */

if (active) { /* explode & restart */
explosion();
prelaunch(&vx, &vy, &vs, &direction, &compassdir,
&active, pre | obj, pre | tag);

}

} /* end of active loop */

/* write out performance stats */
fp = fopen("speed.data", "w");
if (frames > 999) frames = 999;
for (idx = 0; idx <= frames; ++idx) {
fprintf(fp,"%.2f %.2f0, fraines_sec|idx}[0], frames_sec|idx|[1});
}

162




X /? gracefully exit */
N if (NETWORKING) close(socket);
o setmonitor(HZ60);

‘ color(BLACK);

N clear);

N . swapbuffers();
o clear(;

8 : gexit();
textinit();
exit();

iy } /* end of main */

)‘\ 163

~

o ‘
] DU AT " 0 " P P » >
GRS AN NI UEARDL ¥ L ?0,ﬁf‘?'.i?:f"c-l"'.l‘e,l&",M'x-l



YW hadabadban i i Aol bl et 4ot hes B0 g0 a

- -
-

,,"lf'

t
1,9

FILES.H

/* These are the files which contain data for the terrain elevations .
and roads */

#define TERRAIN FILE "/work/terrain/tenkmsq.dat"

#define ROAD FILE "/work/terrain/Road.data" . p

FOGM.H

#define  elev_mask Ox1f¥ /* mask to obtain elev value from datum */
#define veg mask  0x0007 /* mask to obtain vegatation value from

shifted datum */
#define RD 0 /* code for reading a file in "open" */
#define MAX 2800  /* max elev (ft) in contour map */
#define MIN 967 /* min elev (ft) in contour map */
#define SKYBLUE 4095 /* color index for sky color */
#define ROADGREY 850 /* color index for the road */

#define DELTAFOVY 50 /* field of view (zoom) increment of 5 deg */

#define P] 3.1415927
#define TWOPI 6.2831853
#define HALFPI 1.5707963

#define THREE HALVES Pl 4.7123889
#define QTR Pl 0.7853982
#define THREE QTR Pl 23561945

#define FIVE QTR _PI  3.9269908

#define SEVEN QTR Pl 5.4977871

: #define RTOD 57.29578 /* radians to degrees conversion factor */
#define DTOR 0.0174533 /* degrees to radians conversion factor */ 4
#define FPS TO KTS 35.525148 /* convert feet per 80th seconds to knots */
164
q

TR —



—— T WP VW W e N W N WY W T W W U W WY e

#define PANSENS 30.0  /* scale factors (sensitivity) for
navigaion controls (mouse and dials) */

#define SPEEDSENS 20
#define TILTSENS 50.0
#define DIRSENS  20.0

#define MAXLOOKDIST $2808.0 /* maximum distance that the camera can
look ahead in feet */

#define FEETPERGRID 3280.8 /* number of feet in 1000 meters */
#define ALTSCALE 1.05 /* altitude expansion factor, altitudes are
raised to this power to give an

exagerrated effect */

#define NUMXGRIDS 10 /* number of 1K grid squares in the East-
West direction */

#define NUMZGRIDS 10 /* number of 1k grid squares in the North-

South direction */
#define FT 10K 32808 /* number FT in 10Km */
#define FT _100M 328.08 /* number FT in 100m */
#define GRID FACTOR 13.03781 /* conversion factor */
#define TV 0 /* 0 for SGI monitor, 1 for TV */

#define SCREENDUMP 1 /* 1 to enable screen dumping, 0 otherwise */

#define NETWORKING 0 /* 1 for target networking, O otherwise */
#define INIT_PAN 0 /* initial, min and max pan angles in deg. */
#define MIN PAN -25

#define MAX PAN 25

#define INIT TILT -15 /* initial, min and max tilt angles in deg.*/
#define MIN TILT -25
#define MAX TILT 15

#define MAX ALT 17000  /* maximum altitude for missle */
#define MIN ALT 0 /* minimum altitude for missle */
#define INIT SPEED 200 /* init, min and max spd (kts) for missle */

#define MIN SPEED 0
#define MAX SPEED 400

#define INIT FOVY 550 /* initial field of view in tenth degrees */

0

165

Lo W o
AJh A

SAAX

[

=




#define CONTOUR ] /* Indicies for array obj */

#define SCREENI 1
#define SCREEN2 2
#define SCREENS 3
#define INSTR 4
#define STATS 5
#define FLTPATH (3]
#define LAUNCH 0 /* Indicies for array tag */
#define TARGET 1
#define DIR 2
#define  HEAD 3
#define TGT 4

#define  MISSILE 5

#define MAX_TGT COLOR 847
#define MIN TGT COLOR 668

#define MAX‘TGTS 100

#define SAVEMAP 0x00CO

1686




e
A
et
A
ral GAMMARAMP
o
.)
/* This routine puts a gamma-corrected color ramp into the color map. */
XD #include <math.h>
i
o . gammaramp(gammaconst,firstcolor,ncolors,
" brightred,brightgreen,brightblue,
darkred,darkgreen,darkblue)
:: Y‘
Aty
z::;g float gammaconst; /* Strength of Gamma correction (try 1.0) */
A8
-:::E long firstcolor; /* index number of the first color to set */
long ncolors; /* the number of colors to set */
PN
:‘:h long brightred,brightgreen,brightblue; /* the bright end of the ramp */
Wi
Wi
qifl long darkred,darkgreen,darkblue; /* the dark end of the ramp */
vt‘.‘é"
e {
bty . .
,\i‘ long i; /* temp loop index */
¥
,‘: float scl; /* scale factor for gamma correction */
¢
e
' long gcred,gegreen,geblue; /* gamma corrected colors */
,; ‘*« for(i=0; i < ncolors; i++) /* for all colors...*/
20 {
3 L /* compute the scale factor */
N scl = pow({float)i/(float){ncolors-1) , 1.0/gammaconst);
sTrgd
.:t‘:; /* compute the gamma corrected colors */
;" gered = scl * (brightred - darkred) + darkred;
%"",9 gegreen = scl * (brightgreen - darkgreen) + darkgreen;
:«,:: gcblue = scl * (brightblue - darkblue) + darkblue;
o mapcolor(firstcolor+i, gered, gegreen, gcblue); /* set the color */
.:'}:'l.
‘aaly }
;'-!ii
it }
'
)
34
:x'".'c
ELS
.
i
i3 S
il
‘.‘;;‘:
A B, O Y B KA P A L Il Ced ‘) <
e I ml‘?’v":t‘"“‘:"“g;“ d 3,!“.‘3.""' toarsy P 1% ,‘.'a“?.!‘!'l:‘?ﬂ5".'.'-'0‘!%.-'6.;4 e"-“""o )0‘:'0‘- 3'0 Jc’ 2 G‘Ao.:‘lgh' £aX) "i“q‘l‘- :*




GET TGT POS

/* get targets’ positions from irisl if networking. Otherwise moves 10 targets
in straight lines, reversing when they hit an edge */

#include "fogm.h"

#include "gl.h"

#include "math.h"

#include <sys/types.h> /* contains the time sturcture tms */
#include <sys/times.h> /* for time calls */

get _tgt posit(socket,designate,tgt _idx,tgex,tgty,tgts,cank)

int socket, designate, tgt idx;
float *tgtx, *tgty, *tgts;
Object tank;

{
extern float tgt pos{MAX_TGTS|[3];

extern float randx, randy, randz;

extern Object target(99[99);

extern short tgt_grid idx|MAX_TGTS||2);
extern short tgt_total, tgt_dirMAX TGTS};
short i, tgt_num;

int nbyte, add1();

float gnd level(), dir, dx, ds, distance;
long dist, d2;

static long seconds;

static long lastsec = -999;  /* -999 is flag to indicate no value */

struct tms timestruct;

seconds = times(&timestruct);

if (lastsec == -999) /* compute distance targets move ahead */
distance = 0.0;

else
distance = (float)((15.0/FPS_TO_KTS)*(seconds - lastsec));

lastsec = seconds; /* save for next pass */

for (i = 0;i < tgt total; i++) /* delete targets from old positions */
d(tuget{tgt grid_idx|i]{0]][cgt_grid_idxi][1]}) {
delobj(targettgt grid idx(i l[o]][ege _grid_idx(i](1]]);
i target|tgt grid_idx[i][0][tgt_grid “idxli)(1]] = 0;
K¥X }

o if (NETWORKING) {
o nbyte = read(socket, &tgt total, sizeof(tgt _total));
3 for (i = 0; i < tgt_total; i++) {
nbyte = read(socket, &tgt grid _idx|i][0], sizeof(short});
5 nbyte = read(socket, &tgt_grid_idx[i][1], siseof(short));

e 168

T e AT TR
R A SR SV, |




nbyte = read(socket, &tgt _pos|i|[(0], siseof(float));
nbyte = read(socket, &tgt_poe|i][1], siseof(float));
nbyte = read(socket, &tgt pos|i]|2], siseof(float));
nbyte = read(socket, &tgt_dir|i], siseof(short));

}
}
else {
tgt_total = 10;
for (i = 0; 1 < tgt_total; i++) {
dir = (Boat){tge_dirli] / 10) * DTOR;
tgt_pos|i}(0] += cos(dir) * distance;
tgt_pos(i}(2] -= sin(dir) * distance;
tgt_grid_idx[i)[0] = (short)(tgt_posli|[0]/FT _100M);
tgt_grid _idx[i][1] = (short)(-tgt_posli][2|/FT _100M);
if ((tgt_posli][0] > FT_10K) || (tgt_posi][0] < 0)) {
if (tgt_dir(i] > 1800) tgt_dir|i| -= 1800;
else tgt dir(i| += 1800;
tgt_pos|i|[1] = 0.0;
else if ((tgt_posi)[2] < -FT_10K) || (tgt_pos(i][2] > 0)) {
if (tgt dir[i] > 1800) tge_dir(i] -= 1800,
else tgt dirli] += 1800;
tgt_posfi)[1] = 0.0;
} else tgt_pos|i|[1] = gnd level(tgt_pos|i][0], tgt_pos|i|[2]);
}

if (!designate) {
if (NETWORKING) { /* find which target is designated */
dist = up _i((float)(tgt pos(0](0] - *tgtx),2) +
up i((float)(tgt pos(0]{2] - *tgts),2);
tgt_idx = 0;
for (i = 1; i < tgt_total; i++) {
d2 = up_i((float)(tgt_pos|i][0] - *tgtx),2) +
up_i({float)(tgt_pos(i][2] - *tgts),2);
if (42 < Qist) {
dist = d2;
tgt_idx = (int)i;

}
}
*tgtx = tgt_positgt_idx{|0] + randx;
*tgty = tgt_pos(tgt_idx|(1] + randy;
*tgts = tgt_postgt_idx|[2] + rands;
}
tgt_num = tgt_total;
for (i = 0; i < tgt_num; i++) {
dx = tgt_pos|i][0] - (Roat)tgt grid idx|i][0] * FT _100M;
ds = (foat)(-tgt_grid idx(i|[1]) * FT_100M - tgt_posii](2];
if (dx < 15.0)
if (ds < 15.0) {
add1(i,-1,0);




o oL bl bl

AL

iy

add1(i,-1,-1);
2dd1(i,0,-1);

else if (ds > 318.0) {
add1(i,0,1);
addi(i,-1,1);
add1(i,-1,0);

}

else add1(i,-1,0);

else if (dx > 313.0)

if (ds < 15.0) {
2dd1(i,0,-1);
add1(i,1,-1);

add1(i,1,0);

}

else if (ds > 313.0) {
add1(i,1,0);
add1(i,1,1);
addi(i,0,1);

}

else add1(i,1,0);

else if (ds < 15.0)  add1{i,0,-1);
else if (ds > $18.0) add1(i,0,1);
}
for (i = 0;i < tgt_total; i++) /* add targets to new positions */
if (targetitgt grid idx|i][0]][tge_grid idx|i][1]]} {
editobj{target{tgt grid idx]|i][0]|[tgt_grid_idx]i]{1}]};
pushmatrix();
translate(tgt pos|i}[0],tgt_pos|i]{1],tgt_pos|i][2]);
rotate(tgt dir{i}, ’Y’);
callobj(tank);

popmatrix();
closeobj();

else {
target|tgt_grid idx[i}{0]][tgt grid idx|i][1]] = genobj();
makeobj(target|tgt grid idx|i]{0]][tgt_grid_idx[i][1]]);
pushmatrix();
translate(tgt_posli|C|,tgt_posi][1],tgt_posli](2]);
rotate(tgt_dirli], 'Y’);
callobj(tank);
popmatrix(});
closeobj();

add1(tgt num,x,z)
short tgt num,x,s;
{
extern float tgt_pos]MAX TGTS||3];

170

A el A e AT, R

WA'E, e .‘% PLA ‘s'.!i‘d:'}. TN o




extern short tgt_grid idx|MAX TGTS|[2];
extern short tgt_total, tgt_dirlMAX _TGTS|;
short i;

tgt_pos|tgt_total][0] = tgt_pos{tgt_num][0}; /® copy pos. for "new" tgt */
tgt_pos|tgt_total|[1] = tgt_posjtgt_numl[1];
tgt_pos|tgt_total|[2] = tgt_positgt num](2};
tgt_dir[tgt_total] = tgt_dir|tgt_num]; /* copy dir for "new" tgt */
tgt_grid_idx(tgt_total][0] = tgt grid idx[tgt_num]|[0] + x; /* set pos in */
tgt_grid idx(tgt_total]{1] = tgt_grid idx[tgt num][1] + s; /* new grid sq */
for (i=0;i<2;i++) { /* reset if new grid sq outside 10km aquare */

if (tgt_grid_idx|tgt_total](i] < O) tgt_grid_idx|tgt total]|i] = 0;

if (tgt_grid_idx|tgt_total][i] > 98) tgt_grid idx[tgt_total][i] = 98;
}

tgt_total ++;

171




GND _LEVEL

#include "math.h"
#include "fogm.h"
#define X 0

#define Y 1
#define Z 2
float gnd level(vx, vi)

float vx, vs;

{

extern short gridpixel|100)(100];

float interp_elev();

float grid _level(});

float point|3), nw_corner|(3}, ne cornerl.’.l sw_corner(3|, se_corner($;
float intersect(3];

float elev;

int xgrid, 1grid, intersect_type;

/* determine which triangle the point falls in */
xgrid = (int){vx/FT 100M);

sgrid = (int)(-vs/FT _100M);

if (xgrid < 0) xgrid = O;

if (xgrid > 98) xgrid = 98;

if (sgrid < 0) sgrid = O;

if (sgrid > 98) zgrid = 98;

point[X| = vx;

point|Z] = -vs;

nw_corner(X| = (float)(xgrid*FT_100M);

nw _corner|Z] = (foat)((sgrid + 1)*FT _100M);
elev = gridpixel(sgrid+1|(xgrid] & elev mask;
nw_corner|Y| = pow(elev, ALTSCALE);
sw_corner|X| = (8oat){xgrid*FT_100M);
sw_corner(Z| = (Boat)(sgrid*FT lOOM) '
elev = gridpixel[sgrid||xgrid) & elev_mask;
sw_corner|Y| = pow(elev, ALTSCALE);
ne_corner(X| = (Roat)((xgrid+1)*FT _100M);

ne _corner|Z] = {float)((sgrid+1)*FT lOOM)
elev = gridpixel(sgrid+1|(xgrid+1] & elev_mask;
ne corner|Y| = pow(elev, ALTSCALE);
se_corner(X| = (float)((xgrid+1)*FT _100M);
se_corner|Z] = (float)(sgrid*FT 100M);

elev = gridpixel{sgrid||xgrid + ll & elev_mask;
se_corner(Y| = pow{elev, ALTSCALE};

if (-vs < (nw_corner|Z] - (vx - nw _corner(X]}}) {
/* point is in the lower triangle */

/* find the point of intersection of a line through vx,vs
and the sw_corner with the diagonal */

172

N et }Lm.‘i



line_intersect2(sw corner, point, nw_corner, se_corner, intersect,
Lintersect_type);

/* find the elevation of the intersection on the diagonal */
intersect|Y| = interp_elev(nw_corner, se_corner, intersect);

/* find the elevation of the point vx, vy */
return(interp_elev(sw_corner, intersect, point));

else {
/* point is in the upper triangle */

/* find the point of intersection of the diagonal with a line

through th ne_corner and the point */
line_intersect2(ne_corner, point, nw_corner, se_corner, intersect,
Lintersect type);

/* find the elevation of the intersection on the diagonal */
intersect|Y| = interp_elev(nw _corner, se_corner, intersect);

/* find the elevation of the point vx, vs */
return(interp_elev(ne corner, intersect, point));

! ."0.5':'!‘1



IN_THIS POLY

#include "glLh"

#define X 0
#define Y 1
#define Z 2

#define PROPER 2

int in_this_poly(polygon, num_vertex, point)
float polygon{10][S];

int num_vertex;

float point(3];

{
int index;
int pt_in, intersect type,
int num_crossings;
float max_x, max s, min_x, min s;
float intersect(3};
float old intersect(3];
float start _test line(3);

max_x = polygon|0]/X];
min_x = polygon|0][X];
max_s = polygon|0}|Z];
min s = polygon|(0}{Z};

for (index = 1; index < num_vertex; ++index) {
if (polygon|index]|X] < min_x) min_x = polygon|index](X};
if (polygon(index||X] > max _x) max_x = polygon|index||X];
if (polygon|index]{Z] < min_z) min_s = polygon|index|(Z};
if (polygon|index|!Z| > max s) max_s = polygon|index|{Z];

}

if ((point/X] < max_x) && (point[X| > min x) && (point[Z) < max_s) &&
(point|Z] > min 1)) {

/* point may be polygon, Lest further by constructing a vertical line
from the point to a point outside the polygons bounds. Count the number
of times this line crosses a side of the polygon. If it crosses an
odd number of times the point is in the polygon, otherwise it is
outside the polygon */

start test lire|X] = point(X|;
start_test line[Z] = max s + 1000.0;

num _crossings = 0;
old intersect|X] = -999.0;

174

.-,'Mn’-r"': -'5 &,‘&‘:‘ﬁ E":;:;;;\ )




A\
i
RF)
N old _intersect(Z| = -999.0;
0 for (index = 0; index < num_vertex -1; ++index) {
K line_intersect3(start test _line, point, &polygon|index||0},
&polygon[mdex+l][0] intersect, &intersect type);
i /* if a proper intersection exists and it is not the same point
’:: as the previous intersection (i.e it didn't intersect a vertex),
,:l then add one to the number of crossings */
:': if ((intersect type == PROPER) && ((mursectIXI '= old_intersect{X})
| || (intersect|Z] != old _intersect|Z]))) num _crossings += 1;
. old_intersect(X| = intersect|X];
\ old_intersect|Z] = intersect|Z};
Y] }
s line_intersect2(start test_line, point, &polygon|num vertex-1}{0)],
3 &polygon|0][0], intersect, &intersect type);
# if (intersect type = PROPER) num_crossings += 1;
.; /* if the number of crossings is even, the point was outside *
o pt_in = ((num _crossings % 2) != 0);
f;' return{pt_in);
k) )
* else {
- return(FALSE);
i }
p )
e
¥
K
153
33
"
"
Y
n,
5
‘
)
.
‘5
voll}
»
‘I
)
)
o 175
4
v
o

¥
1)

] o - - \ e an e ar
’ "t WG : Y

)
{

DO WL B Vet " 1 . . R SRR CC I N e e
S AN L “\‘ ‘ﬂ‘"»’ ‘xk‘."'u’*«".n'h». At RGN ARG R IR Y 0.~‘ 1 o {(h -\ T AT



TV Ty L add abe oan o

INIT_CTRLS

/* initialise the operator controls */

#include "fogm.h" /* fogin constants */

#include "device.h" /* graphics device definitions */
#include "gl.h" /* graphics routine definitions */
#include "math.h" /* math function definitions */

init_controls(pan, tilt, fovy, alt, greyscale, compassdir)

double *pan; /* initial pan angle in radians */

double *tilt; /* initial tilt angle in radians */

int *fovy; /* initial field of view in tenths of degrees *,
Coord alt; /* initial altitude of missile */

int greyscale; /* initial value of greyscale boolean */
float compassdir; /* initial compass direction */

{

*pan = INIT PAN * DTOR;
*tilt = INIT TILT * DTOR;
*fovy = INIT FOVY,

/* set initial, min, and max values for mouse & dials */
setvaluator(MOUSEX, (short)(INIT PAN*PANSENS),(short)(MIN PAN*PANSENS),
(short)(MAX PAN*PANSENS));

setvaluator(MOUSEY (short)(INIT TILT*T'LTSENS),(short)(MIN TILT*TILTSENS),
(short)(MAX TILT*TILTSENS));

setvaluator(DIALO,(short)(compassdir* DIRSENS), (short)(-360*DIRSENS),
(short)(720*DIRSENS));

setvaluator(DIAL4,(short)alt, MIN ALT MAX ALT);
setvaluator(DIAL2, (short)(INIT SPEED*SPEEDSENS),
(short)(MIN SPEED*SPEEDSENS),

(short){MAX SPEED*SPEEDSENS));

setvaluator(DIALS greyscale,0,1);

178

AR ES o o




INIT IRIS

/* Initialise the graphics environment for the iris workstation */

#include "gl.h" /* graphics definitions */
#include "get.h" /* monitor type definitions */
#include "fogm.h" /* fogm constants */
init_iris()
{
long chunk; /* number of bytes be which objects
increment */
ginit{); /* initialize the IRIS system */
doublebuffer(); /* put the IRIS into double buffer mode */
chunk = 128; .
chunksize(chunk);
geonfig(); /* (means use the above command settings) */
if (TV) {
setmonitor(NTSC); /* choose tv or SGI monitor */
fontdef(1,"TV font");
foni(1);
else setmonitor(HZ60);
cursoff(); /* turn off the cursor */
backface(TRUE); /* turn on backface polygon removal */
color(BLACK);
clear();
swapbuffers();

177




WK - —— LA a0 T

INIT_TGTS

#include "fogm.h"
#include "gl.h"

init_tgts()

{
extern short tgt_total;
extern Object target(99] 99];
short x, y;
int init_tgt();

for (x = 0; x < 99; x++) for {y = 0; y < 99; y++) target|x]ly] = 0;

if 'NETWORKING) {
tgt_total = 10;
init_tgt(0,9.8,3.5,1295);
init_tgt(1,9.5,3.5,1295);
init 1gt(2,9.4,3.1,1205);
init tgt(3,9.8,0.5,1800);
init_1gt(4,9.5,0.0,1355);
init tgt{5,8.0,0.0,1445);
init_tgt(6,4.0,0.0,1450);
it tgt(7,0.0,0.5,450);
init tgt(8,9.5,9.8,2700);
init_tgt(9,9.8,8.5,1800);

init tgi{tgt num,xoffset soffset,direction)

short tgt num, direction;
float xoffset, 10ffset;

{
extern short tgt_dirlMAX TGTS];
extern float tgt posiMAX TGTS][3];
tgt_pos'tgt num|(0| = xoffset * FEETPERGRID,
tgt_pos tgt_numj|2] = -soffset * FEETPERGRID:
tgt _dir{tgt_num| = direction;,

}

178




INTERP ELEV

#include "math.h"

#define X 0
#define Y 1
#define Z 2

float interp _elev(line_start, line_end, point)

float line_start[3], line_end[$], point|S];
long float line_deltax, line_deltas, point_deltax, point_deltas;
float line_length, dist_to_point;

float interpolation;

line_deltax = (long float)(line_end(X] - line_start{X]);
line_deltas = (long float)(line_end|Z] - line_start|Z]);

point_deltax = (long float)(line_start|X| - point(X]);
point_deltaz = (long float)(line_start(Z} - point|Z]);

line_length = (float)hypot(line deltax, line deltas);
dist_to_point = (float)hypot(point_deltax, point_deltas);

interpolation = line_start(Y| + ((line_end{Y] - line start|Y]) *
(dist_to_point/line length));

return(interpolation);

179

e T P I N A I TRt PR S Ve
T e DU RN " 'J'\"I'n’_'," WY IR
e it




LIGHTORIENT

/* this s file lightorient.c */
/‘
It is a routine that computes lighting for a polygon based
upon the angle between the Normal vector of the polygon
and the direction to the light source.
lightorient(xys,ncoords,n.x,ay,u,lx,ly,lz,colormin,colormu,colortouse)
xyz||{3] = Roating coords of the polygon.
ncoords = number of coordinates.
ax,ay,ag = interior point of the whole object. Used to determine
outward facing normal of the polygon. This is the same
point of reference that would be used for backface
polygon removal.
Ix,ly,lz = vector pointing in direction of the light source.
colormin, colormax = indices used for the colors assigned to this
polygon. The user is responsible for setting
up the color ramp.
colortouse = returned color used to light the polygon.
Note: the routine also puts the polygons out ordered counterclockwise

with respect to the interior point for ease of backface polygon
removal.

*/

#include <math h>
#include <gl.h>

#define MAXCOORDS 80
#define PIDIV2 1.570796327

fioat txysMAXCOORDS||$]; /* temp coord hold */

light.orient(xyz,ncoords.a.x,ny.u,lx.ly,ll,colormin,colorma.x,colort.ouse)

float xys/|[3};
long ncoords;

180

-

TRV




l,\'l
X
L
¥
10
"
ft‘ , float ax,ay,as; /* interior point of the whole object. */
At
o
i float Ix,ly,Is; /* direction to the light source */
1y
Q‘ long colormin,colormax; /* color min/max indices */
o '
: - long *colortouse; /* color used to light the polygon (return value) */
'e:‘fr
{

G
.’E‘ long ij; /* loop temps */
#RY
sty
.: long npoly orient(); /* direction test function */
thath -
of,

float v1[3},v2|3); /* vectors used to compute
Npt ’ > *
. the polygon’s normal */
RS float normal(8}; /* the polygon’s normal */
s
:::..: float normalmag; /* normal’s magnitude */ |
B
float lightmag; /* magnitude of the light vector */
1
R double dotprod; /* dot product of N and L */
R
v L4
"*:,.' float radians; /* angle between N and L */
Ty
e /* check the number of coords in the input array */
‘:' _ if(ncoords > MAXCOORDS)
B,
) 7 printf("LIGHTORIENT: too many coords passed to me! = %d0,ncoords);
e exit(1);
;~‘o y }
N .
o /* orient the polygon so that its counterclockwise with respect
":::' to the interior point */

K . .
e if(npoly orient(ncoords,xys,ax,ay,as) == 1)

/* the polygon is clockwise, reverse it. */
for(i=0; i < ncoords; i=i+1)

for(j=0; j < 3; j=j+1)
txyeli]{j| = xys|ncoords-i-1][j];

}

for(i=0; i < ncoords; ++i)
for (j=0;j < 8; ++j)
xys(i|[j} = txys{i] jl;

181

NGOV TN |



}

/* the coordinates are ordered counterclockwise in array xys */

/* compute the normal vector for the polygon using the first
three vertices...*/

/* compute the first vector Lo use in the computation */
v1]0] = xys{2][0] - xys[1)(0];
v1[1] = xysf2]] - xysf1)j1);
vi{2] = xys{2]l2] - xysi1]j2]

/* compute the second vector to use in computing the normal */
v2|0] = xys|0]|0] - xys|1}[0];
v2(1] = xys{0]{1] - xys|t]{2};
v2(2] = xys[0](2] - xys|1][2};

/* the normal is vl x v2 */

normal(0] = v1[1]*v2{2] - v1[2]*v2|1];
normal(l] = v1(2]*v2(0] - v1{0]*v2(2];
normal{2] = v1{0]*v2[1] - v1[1]*v2|0};

/* compute the magnitude of the normal */
normalmag = sqrt((normal{0}*normal{0])+ (normal{1]*normal|1])+
(normal|2]*normal|2]));

/* check the magnitude of the normal */
if(normalmag == 0.0)

{
}

normalmag = 0.00001; /* a small number */
/* compute the light mag */
lightmag = sqrt((ix*Ix}+ (ly*ly)+(Is*ls));

if(lightmag == 0.0)

{
}

/* compute N . L {normal dot product with the light source direction) */
dotprod = (normal(0] * Ix) + (normal(1] * ly) + (normal(2] * Iz};

lightmag = 0.00001; /* a small number */

dotprod = do.prod/(lightmag®normalmag);

/* dotprod = cos(theta) of the angle between N and L.
Convert to angle in radians */
radians = acos(dotprod);

/* compute the color we should use */
if(-PIDIV2 <= radians && radians <= PIDIV2)

{

182




T —

/* if the angle is negative, set to positive */
if(radians < 0.0)

radians = -radians;

}

*colortouse = ((colormax-colormin)/PIDIV2)*(PIDIV2-radians)+colormin;

}
else

*colortouse = colormin;

}

/* set the color */
color(*colortouse);

/* draw the poly */
/* polf(ncoords,txys); */




LINE_INTERSECT32

#include "gl.h"

#define X 0

#define Z 2

#define NONE 0
#define INTERSECT 1
#define PROPER 2

line intersect2(startl, endl, start2, end2, intersect,
intersect type)

float start1{3], end1(3], start2{3], end2(8], intersect|8};
int *intersect type;

{

/* given two lines of the form s = mx + b and 3 = nx + ¢,
solving for x when the s’s are equal gives x = (¢-b)/(m-n).
Then solve for ¢ using x in either of the above equations. */

float m,n,b,¢;
float minl_x, min2_x, max]_x, max2_x, minl_z, min2_sz, max] s, max2 s;

*intersect type = PROPER;

/* slope and z intercept of linel */
if (end1{X] !'= start1{X]) {
= (end1(2] - start1{Z})/(end1[X] - start1{X]);
= ((start1|Z] - end1|2])/(end1(X] - start1{X])) * start1{X] + start1|Z};
if (end2|X] !'= start2[X]) { /* both lines are non-vertical */
/* slope and z intercept of line2 */
n = (end2{Z] - start2{2])/(end2(X] - start2(X]);
¢ = ((start2(Z) - end2(Z])/(end2|X] - start2|X])) * start2(X| +
start2(Z];

if (m!=n) {
intersect(X| = {¢-b)/(m-n};
intersect|Z] = m*intersect|X] + b;

else { /* both lines have equal slopes */
*intersect _type = NONE;

}

else { /* linel is non-vertical, line2 is vertical */
intersect|X] = end2|X];
intersect|Z] = m*intersect|X| + b;

else {

184

RO U A i} . (Rl
TN




o

o

Bt
k!

.s}*t if (end2{X] != start2(X]) { /* linel is vertical, line2 is non-vertical®/
'.'5‘, /* slope and s intercept of line2 */

n = (end2(Z] - start2(Z])/(end2(X| - start2|X]);
o ¢ = ((start2(Z] - end2{Z])/(end2(X] - start2(X])) * start2(X| +
K start2(Z);

! intersect|X| = end1{X];
.‘:: intersect|Z] = n®intersect(X] + ¢;
. )

' else { /* both lines are vertical */

oy *intersect type = NONE;

i‘. } -

o

0
& }

ahy if (*intersect_type '= NONE) {

:»_’f /* see if the intersection is proper, or if only the extensions of the

line segments intersect */

T if (start1{X] < end1(X]) {

gl minl x = start1{X);

:' max]l x = end1|X];

o -

o }

gs else {

- minl_x = end1(X};

" maxl x = start1{X];

-r:z.' }
S if (start1{Z] < end1{Z]) {
by minl g = start1{Z);
hie maxl s = endl{Z];

o }
XY else {
1 ﬁ: minl 3z = end1|Z};
‘:-' maxl s = startl|Z};
Y if (stm2IXl < endz[X]) {

)' min2 x = start2[X];

s max2 x = end2{X];
i‘ .
) :,,f else {
s min2 x = end2[X);
} max2 x = start2|X};

WO }

o if (start2{Z] < end2(Z}) {
o min2 s = start2|Z};
25 max2 s = end2(Z};
£

o }

e else {
FelX min2 s = end2|Z|;

o max2 s = start2(Z};
o ) i
b
"c;:’s

(B0
h":':’o
I
2;;;:.
a'.‘\‘ 185
l'.:\'

t.':
i

.:"1'

AR TMA T LT oA Bl P M "t B e T R T TN T PP T o , T O T L N T » d
LA e e T X N O T R L e D R O EHEGER IS G DU T RN A X ﬁm*:m&f&f&ﬁ{k



bdoa o o - T -y T W wrerr—y

% if ((intersect|X| <= max1_x) && (intersect|X] <= max2_x) &&
A (intersect|X] >= minl_x) && (intersect{X| >= min2 x) &&
(intersect|Z] <= max1_s) && (intersect|Z] <= max2 3) &&
(intersect(Z] >= minl_s) && (intersect(Z] >= min2 _s)) { !

'
N ] ‘intersect_type = PROPER,
v

}
else {

*intersect type = INTERSECT;
}

U LA UL N A O IO ) N A W
e VR R e W T s M SRR AN AR



MAKENAVBOX

/* drawnavbox.c - this function is called by the FOG-M missile simulator to
build an object on top of the contour map in the upper right-hand corner
of the screen. Navbox contains the direction arrow and view box in red. */

#include "gl.h"
#include "fogm.h"
#include "device.h"

drawnavbox(navbox, arrowtag)
Object *navbox;
Tag “‘arrowtag;
{
*navbox = genobj(); /* create the navigation contol and display object */
makeobj(*navbox);
if (TV) viewport(475,685,328,474);
else viewport(768,1028,512,767); /* upper right hand corner of screen */
pushmatrix(}; /* draw arrow in feet coordinates */
ortho2(-10.0,10.0 + NUMXGRIDS*FEETPERGRID, -10.0,
-10.0 - NUMZGRIDS*FEETPERGRID);
color(BLACK);
clear();
color(128);
*arrowtag = gentag();
maketag(*arrowtag);
move2(0.0,0.0});
draw2(0.0,0.0});
draw2(0.0,0.0);
move2(0.0,0.0);
draw2(0.0, 0.0);
rect(0.0,0.0,0.0,0.0); /* view box */
popmatrix(};
closeobj();

187




MAKEINDBOX

/* makeindbox.c is a function that creates an object that displays the control
idicators for the FOG-M missile simulation */

#include "gl.h"
#include "fogm.h"

makeindbox(indbox,headingtag,elevtag,altmsitag,speedtag,soomtag,tilttag,pantag,desigtag)
Object *indbox;
Tag *headingtag, *elevtag, *speedtag, *soomtag, *tilttag, *pantag, *desigtag;
Tag *altmsltag;
{
*indbox = genobj();
makeobj(*indbox);
if (TV) viewport(475,635,162,322);
else viewport(768,1028,256,511); /* middle box on side of screen */
pushmatrix();
ortho2(0.0,255.0,0.0,255.0);  /* use screen sised coordinates */

color{854); /* clear the window */

clear();
linewidth(2);

color(BLACK);
recti(0,0,255,255); /* outline box */

color(YELLOW); /* print labels for readouts ¢/
cmov?2i(10,240);

charstr{"SPEED");

cmov2i(55,225);

charstr("kts");

cmov2i(90,240);

charstr("HEADING"),

circ(140.0,282.0,3.0); /* "degree" symbol */
cmov2i(180,240);

charstr("Alt AGL"); /* AGL = above ground level */
cmov2i{225,225);

charstr("ft");

cmov2i(180,200);

charstr("Alt MSL"); /* MSL = mean sea level */
cmov2i(225,185);

charstr{"ft");

cmov2i(50,130);

charstr("2Z00M");

move2i{45,200); /* draw slider bar frame */
draw2i(25,200);

draw?2i(25,70);

draw2i(45,70);

cmov2i(15,196);




charstr("8"); /* label slider bar values */
emov2i(6,170);
charstr("15");
emov2i(6,144);
charstr("25");
emov2i(6,118);
charstr("35");
cmov2i(6,92);
charstr("45");
emov2i(6,66);
charstr("55");

color( WHITE); /* readouts in white... */
cmov2i(10,225); /* initialise to dummy values */
*speedtag = gentag();

maketag(*speedtag); .

charstr(" 200"); /* speed */

cmov2i(108,225);

*headingtag = gentag();
maketag(*headingtag);

charstr(" 0"); /* heading */

cmov2i(180,225);

*elevtag = gentag();

maketag(*elevtag);

charstr("1000"); /* altitude above ground level */

cmov2i{180,185);

*altmsltag = gentag();

maketag(*altmsltag);

charstr("1000"); /* altitude from mean sea level */

color(RED);

*10omtag= gentag(}; /* indicator for soom slider bar */
maketag(*soomtag);

move2(28.0,135.0);

rdr2(10.0,5.0);

rdr2(0.0,-10.0);

rdr2(-10.0,5.0);

popmatrix();

if (TV) viewport(0,474,0,474); /* reset for heads-up display */
else viewport(0,767,0,767);

pushmatrix();
ortho2(0.0,767.0,0.0,767.0);  /* use screen sised coordinates */

color{WHITE};

189




rrayverTTY

if (TV) linewidth(2);
else linewidth(1);

rectfi(365,370,370,375), /* draw center of crosshairs */
rect£i(396,370,401,375);

rectfi(365,391,370,396);

rectfi(396,391,401,396);

move?2i(0,383);

draw2i(360,388); /* draw crosshairs */
move2i(406,383);

draw2i(767,383);

move2i(383,0);

draw2i(383,365);

move2i(383,401);

draw2i(383,767);

Linewidth(2);

move2i(30,50); /* draw TILT slider bar frame */
draw2i(40,50);
draw2i(40,680);
draw2i(30,680);
cmov2i(0,676);
charstr("+25");  /* label slider bar values */
emov2i{0,618);
charstr(" +20");
move2i(30,817};
draw2i(40,617);
cmov2i{0,550);
charstr("+15"),
move2i(30,554);
draw2i(40,554);
emov2i{0,487);
charstr("+10");
move2i(30,491);
draw2i(40,491);
cmov2i(0,424);
charstr(" +5");
move2i(30,428);
draw2i(40,428);
e¢mov2i(0,361);
charstr(" 0");
move2i(30,385);
draw2i(40,365);
e¢mov2i(0,298);
charsir(" -5");
move2i(30,302);
draw2i(40,302);
emov2i(0,235);
charstr("-10");
move?2i(30,239);
draw2i(40,239);




c¢mov2i(0,172);
charstr("-15");
move2i(30,178);
draw2i(40,176);
emov2i(0,109);
charstr(".20");
move2i(30,113);
draw?2i(40,113);
cmov2i(0,46);
charstr("-25");

*tilttag = gentag();
maketag(*tilttag);
move2(42.0,365.0);
rdr2(10.0,-5.0);
rdr2( 0.0,10.0);
rdr2(-8.0,-4.0);
rdr2( 6.0,-3.0);
rdr2( 0.0, 4.0);
rdr2(-2.0,-1.0);
rdr2( 1.0,-1.0);

move2i(120,15);
draw2i(120,25);
draw?i(750,25);
draw?i(750,15);
cmov2i(107,3);

/* indicator for TILT slider bar */

/* draw PAN slider bar frame */

charstr("-25"); /* label slider bar values  */

cmov2i(170,3);
charstr("-20");
move2i(183,15);
draw2i(183,25);
cmov2i(233,3);
charstr("-15");
move2i(246,15);
draw2i(246,25);
cmov2i(296,3);
charstr("-10");
move2i(309,15);
draw2i(309,25);
cmov2i(363,3);
charstr("-5");
move2i(372,15);
draw2i(372,25);
cmov2i(431,3);
charstr("0");
move2i{435,15);
draw2i(435,25);
emov2i(494,3);
charstr("+5");
moveZ2i(498,15);
draw2i(498,25);




cmov2i(552,8);

charstr("+10");
move2i(561,15);
draw2i(561,25),
cmov2i(615,3);

charstr("+15");
move2i(624,15);
draw2i{624,25);
cmov2i(678,3);

charstr("+20");
move2i(687,15);
draw?2i(687,25);
cmov2i{741.3);

charstr("+25");

*pantag = gentag();
maketag(*pantag);
move2(435.0,27.0):
rdr2( 5.0,10.0);
rdr2(-10.0, 0.0);
rdr2( 4.0,-8.0);
rdr2( 3.0, 6.0);
rdr2( -4.0, 0.0);
rdr2( 1.0,-2.0);
rdr2( 10, 1.0);

move2i(0,30);
draw2i(100,30);
draw2i(100,0);
*desigtag = gentag();
maketag(*desigtag);
cmov2i(10,10);

/* indicator for PAN slider bar */

/* designate/reject box */

charstr("DESIGNATE");

popmatrix();
closeobj(};

1932




MAKEINSTRBOX

/* makeinstrbox.c - this function builds an object that contains an instruction
summary for the FOG-M missile simulation */

#include "gl.h"
#include "fogm.h"

makeinstrbox (instrbox)
Object *instrbox;

{
*instrbox = genobj();
makeobj(*instrbox);
if (TV) viewport(475,685,0,161);
else viewport(768,1028,0,255);  /* box is in lower right hand corner */
pushmatrix();
ortho2(0.0,255.0,0.0,255.0); /* use screen-sized coordinates  */

color(851); /* use 8 medium green 4/
clear();

linewidth(2};

color(852); /* use light brown */

rectfi(10,20,110,195); /* draw the mouse control box */
rectfi(135,80,245,195);  /* draw the dial control box */
color(BLACK); /* outline controls */
recti(10,20,110,195);

recti(135,80,245,195);

recti(0,0,255,255);

color(BLACK);
c¢mov2i{60,230);
charstr("CONTROL S");
cmov2i(37,200);
charstr("MOUSE");
cmov2i(172,200);
charstr("DIALS");

cmov2i(25,60);

charstr("TILT");

move2i(70,62); /* draw arrow */
draw?2i(75,55); .
draw?2i(75,75);

draw2i(70,68);

move2i(75,75);

draw2i(80,68);

move2i(75,55);

draw?2i(80,62);

193




AD-A184 348 AN INEXPENSIVE REAL-TINE INTERACTIVE THREE-DINENSIONAL 13/
FLIGHT SIMULATION SVSTEN(US NAVAL POSTGRADUTE SCHOOL
MGNTEREY CA M J 2VDR ET AL 03 AUG 67 NPS52-87-8

UNCLASSIFIED




05\

a .,r:

P
e

‘l
] ‘
-“

u’_
i\z'
‘; 0 n

w‘o‘

ﬁl“

L

‘ " D‘V‘t ‘0 o0 .
cQ.,'u' Wy ‘i’ .'

u.m h" »

l

q"
’0

i “ '.' '.i




cmov2i(25,30);

charstr("PAN");

move2i(67,40); /* draw arrow */
draw3i(60,35);

draw2i(80,35);

draw2i(78,40);

move2i(80,35);

draw?i(78,30);

move2i{60,35);

draw2i(67,30);

color(858); /* dark brown
rectfi({20,85,40,185); /* draw mouse buttons
rectfi(50,85,70,185);

rectfi{80,85,100,185);

color(BLACK); /* outline bittons
recti(20,85,40,185);

recti(50,85,70,185);

recti(80,85,100,185);

color(858);

cirefi(160,165,20); /* draw dials
circfi(160,110,20);

cirefi(220,165,20);

cirefi(220,110,20);

color(BLACK); /* outline dials
cirei{160,165,20);

cirei(160,110,20);

cirei(220,165,20);

circi(220,110,20);

color(WHITE);

cmov2i(147,160);

charstr("SPD"); /* label dials */
cmov2i(147,106);

charstr("DIR");

cmov2i(207,108);

charstr("ALT");

cmov2i(207,160);

charstr("CLR");

cmov2i(25,170);
charstr("Z");  /* label mouse buttons */
cmov2i(25,158);
charstr("O");
cmov2i(25,146);
charstr("O");
cmov2i(25,134);
charstr("M");
cmov2i(25,110);
charstr("I");
cmov2i(25,98);
charstr("N");

*/

*/

*/

*/




.

cmov3i(55,170);
~harstr("D");
cmov32i(55,158);
charstr("E");

. cmov3i(55,146);
charstr("S");
cmov2i(55,134);

. charstr("I");
cmov2i(55,122);
charstr("G");
cmov2i(85,170);
charstr("Z");
cmov2i(85,158);
charstr("O");
cmov2i(85,146);
charstr("O");
cmov2i(85,134);
charstr("M");
cmov2i(85,110);
charstr("O");
cmov2i(85,98);
charstr("U");
cmov2i(85,86);
charstr("T");

popmatrix();
closeobj();




MAKEMAP

/* makemap.c - this function is called by the FOG-M missile simulator to
build an object containing a contour map. The map is used for the full
screen display in prelaunch, and in the upper right corner of the flight

display in fogm.

#include "gl.h"
#include "fogm.h"
#include "device.h"

makemap(contour)
Object *contour;

{

*/

short i, j, elev, length, lastcolor, breakpt|15);

int colour;

extern short gridpixel[100][100]; /* terrain elevations & vegetation */

/* compute elevations where color changes should occur */
for (i = 1; i < 16; i++) breakpt|i-1] = (((MAX - MIN) / 16 ) * i) + MIN;

*contour = genobj(); /* create the navigation contol and display object */

makeobj(*contour);
viewport(0,767,0,767);
pushmatrix();

ortho2(0.0,100.0,0.0,100.0); /* use array index space */

color(BLACK);
clear();

lastcolor = BLACK;
linewidth(8);

for (i=0; i < 100; ++i) { /* draw column i */
move2i(i,0); /* start at bottom of column ¢/
length = 0; /* # adjacent points of the same color */

for (j = 0; j < 100; ++j) { /* for each row in columni */
elev = gridpixel[j)[i] & elev_mask; /* mask off veg code */
if (elev < breakpt|0]) colour = 16; /* assign greea colors ¢/

else if (elev < breakpt
else if (elev < breakpt
else if (elev < breakpt
else if (elev < breakpt
else if (elev < breakpt
else if (elev < breakpt
else if (elev < breakpt
else if (elev < breakpt
else if (elev < breakpt

1
2
S
4
5
6
7
8

9

) colour = 17;
) eolour = 18;
) colour = 19;
) colour = 20;
) colour = 31;
) colour = 22;
) colour = 28;
) colour = 24;
) colour = 35;

else if (elev < breakpt[10]) colour = 26;
else if (elev < breakpt[11]) colowr = 27;
else if (elev < breakpt|13]) colour = 38;

196




else if (elev < breakpt|18]) colour = 29;
else if (elev < breakpt|14]) colour = $0;
else colour = 81;

/* if veg-code = 0 (i.e. veg < 1 meter) shift to brown colors */
if (!((gridpixel{j][i] >> 18) & veg_mask)) colour += 16;

if (colour == lastcolor) length++; /* don’t draw yet */

else { /* draw now that color has changed */
color(lastcolor);
rdr2i(0,length);
lastcolor = colour; /* reset for new draw */
length = 1;

}
}/*endforj®/

color(colour); /* dr;w last (top) line */

rdr2i(0,length);
} /* endfori®/
if (1TV) { :
color(BLACK); /* draw grid on top of map */
linewidth(1};
for (i = 10; i < 100; i+=10) { /* draw interior lines */
move2i(i,0); /* horisontals */
draw2i(i,100);
move2i(0,i); /* verticals */
draw2i(100,i);
}
}
linewidth(2); /* draw exterior border */
rect(0.0,0.0,100.0,100.0);
popmatrix();

closeobj();




MAKESCREENS

/* makescreens.c - builds graphical objects for prelaunch’s instructional
screens and readout boxes. */

#include "gL.h"
#include "device.h"
#include “fogm.h"

makescreens(obj,tag)

Object obj|7];
Tag tag(6];

{

obj[INSTR] = genobj(); /* object for pre-launch instructions */
makeobj(obj|INSTR]);
if (TV) viewport(475,635,239,474);
else viewport(767,1028,385,767);
pushmatrix();
ortho2(0.0,255.0,0.0,384.0);
color(CYAN);
clear();
color(BLUE);
rectfi(10,10,245,374);
color( WHITE);
cmov2i(30,340);
charstr("PRE-LAUNCH INSTRUCTIONS");
cmov2i(25,300);
charstr("1. PRESS LEFT MOUSE");
cmov2i(52,285);
charstr("BUTTON TO LOCK IN");
cmov2i(52,270);
charstr("LAUNCH POSITION");
cmov2i(25,220);
charstr("2. PRESS RIGHT MOUSE");
cmov2i(52,205);
charstr{"BUTTON TO LOCK IN");
cmov2i(52,190);
charstr("TARGET LOCATION");
cmov2i(25,140);
charstr("S. PRESS MIDDLE MOUSE");
emov2i(52,125);
charstr ("BUTTON TO LAUNCH");
emov2i(25, 75);

! charstr("4. PRESS ALL THREE");

. emov2i(52, 60);

' charstr("BUTTONS TO EXIT");

popmatrix();
closeobj();

198




/* define object for displaying user input for missile launch
position and target location. Also displays computed heading
and distance to target */

obj[STATS] = genobj();
makeobj(obj|STATS]));

if (TV) viewport(475,635,0,238);
else viewport(767,1028,0,384);
pushmatrix();
ortho2(0.0,255.0,0.0,384.0);
color(CYAN);

clear();

color(BLUE);
rectfi(10,10,245,874);
color(WHITE);

cmov2i(30,340); -
charstr("PRE-LAUNCH STATISTICS");
cmov2i(25,260);
charstr("LAUNCH POSITION: 10SFQ");
cmov2i(70,285);

charstr("X COORD: ");
cmov2i(70,220);

charstr("Y COORD: ");
cmov2i(170,285);
tag|LAUNCH] = gentag();
maketag(tag|LAUNCH));
charstr(" ");

cmov2i(170,220);

charstr(" ");

cmov2i(25,180);
charstr("TARGET LOCATION: 10SFQ");
emov2i(70,155);

charstr("X COORD: ");
cmov2i(70,140);

charstr("Y COORD: ");
emov2i(170,155);
tag|TARGET) = gentag();
maketag(tagTARGET));
charstr(" ");

cmov2i(170,140);

charstr(" ");

emov2i(25,100);
charstr("HEADING: ");
cmov2i(25,60);
charstr("DISTANCE: ");
cmov2i(106,100);

tag|HEAD] = gentag();
maketag(tag{HEAD));

charstr(" ");

emov2i(115,60);

charste(" ");

popmatrix();

199




closeobj();
/* define object for lines & circles showing flightpath on contour map */ )

obj[FLTPATH] = genobj();
makeobj(obj{FLTPATH]); - .
pushmatrix(); .
if (TV) viewport(0,474,0,474);
else viewport(0,767,0,767);
ortho2(0.0,100.0,0.0,100.0);
color(BLACKY);

clear();

color(64);

linewidth(8);

tag{MISSILE| = gentag();
maketag(tag{MISSILE]);
circf(0.0,0.0,0.0);

move2(0.0, 0.0, 0.0);
draw2(0.0, 0.0, 0.0);
color(128);

tag|TGT] = gentag();
maketag(tag|/TGT]);
circf(0.0,0.0,0.0);
popmatrix();

closeobj();

/* define object for displaying first screen of operator instructions */

obj|SCREEN1| = genobj();

makeobj(obj|SCREEN1});

color{BLUE}; /* set background color */

clear();

color(RED);

linewidth(10);

recti(0,0,1023,767);

linewidth(1);

color(WHITE);

cmov2i(420,500);

charstr("WELCOME");

cmov2i(420,450);

charstr("TO THE");

cmov2i(320,400);

charstr("FIBER-OPTICALLY GUIDED MISSILE");

cmov2i(420,350);

charstr("(FOG-M)"); .

cmov2i(410,300); To.
charstr("SIMULATION");

cmov2i(310,100);

charstr("PRESS MIDDLE MOUSE BUTTON TO CONTINUE...");
cmov2i(815,85);

charstr("OR PRESS ALL $ MOUSE BUTTONS TO EXIT.");
closeobj();




/* define object for displaying second screen of operator instructions */

obj|SCREENZ2| = genobj();

makeobj{obj{SCREEN2]);

color(BLUE); /*® set background color */

clear(); ' :

linewidth(10);

color(RED);

recti(0,0,1028,767);

linewidth(1);

color{ WHITE);

cmov2i(210,600);

charstr("THE FOG-M PROGRAM PROVIDES A SIMULATED MISSILE LAUNCH AND");
cmov2i{210,575);

charstr("OUT-THE-WINDOW VIEW OF THE TERRAIN AS SEEN FROM THE OPERATOR’S");
cmov2i(210,550); .

charstr("CONSOLE ON THE GROUND.");

emov2i(210,500);

charstr("THE GENERAL AREA FOR THIS FLIGHT SIMULATION IS FT HUNTER LIGGETT");
cmov2i(210,475);

charstr("CALIFORNIA AND VICINITY.");

cmov2i(210,425);

charstr("THE SPECIFIC TEST AREA IS A 10 KILOMETER REGION DESIGNATED BY");
emov2i(210,400);

charstr("UNIVERSAL TRANSVERSE MERCATOR (UTM) GRID COORDINATES 10SFQ58.");
cmov2i(300,100);

charstr("PRESS MIDDLE MOUSE BUTTON TO CONTINUE,");

cmov3i(305,85);

charstr("OR PRESS ALL $ MOUSE BUTTONS TO EXIT.");

closeobj();

/* define object for displaying third screen of operator instructions */

obj|SCREENS] = genobj();

makeobj{obj|SCREENS));

color(BLUE); /* set background color */

clear();

linewidth(10);

color(RED);

recti(0,0,1023,767);

linewidth(1);

color( WHITE);

cmov2i(385,650);

charstr("PRE-LAUNCH ORIENTATION");

¢mov2i(200,600);

charstr("1. WHEN THE PRE-LAUNCH PHASE OF THE FOG-M SIMULATION BEGINS, A");
¢mov2i(200,585);

charstr("2-DIMENSIONAL CONTOUR MAP OF THE TEST AREA (UTM 10SFQ58) WILL BE");
cmov2i(200,570);

charstr("DISPLAYED ON THE OPERATOR CONSOLE. TWO CONTROL PANELS CONTAINING");
emov2i(200,555);

charstr("PRE-LAUNCH INSTRUCTIONS AND CURRENT LAUNCH STATISTICS WILL ALSO");

201




emov2i(200,540);

charstr("BE DISPLAYED.");

cmov2i(200,490);

charstr("2. THE OPERATOR WILL BE REQUIRED TO PROVIDE TWO CRITICAL DATA");
cmov2i(200,475);

charstr("ITEMS TO THE LAUNCH CONTROL SYSTEM; INITIAL LAUNCH POS!TION AND");
c¢mov2i{200,460);

charstr("TARGET LOCATION.");

cmov2i(200,410);

charstr("3. TO DEFINE INITIAL LAUNCH POSITION, MOVE CURSOR OVER DESIRED");
cmov2i(200,395);

charstr("LOCATION (REFER TO LAUNCH STATISTICS CONTROL PANEL TO VIEW THE");
cmov2i(200,380);

charstr("CURRENT UTM GRID COORDINATES). PRESS LEFT MOUSE BUTTON TO LOCK");
emov2i(200,365);

charstr("IN LAUNCH POSITION."); *

cmov2i(200,315);

charstr("4. TO DEFINE TARGET LOCATION, MOVE CURSOR OVER DESIRED LOCATION");
cmov2i(200,300);

charstr("(REFER TO LAUNCH STATISTICS CONTROL PANEL TO VIEW CURRENT UTM");
cmov2i(200,285);

charstr("GRID COORDINATES). PRESS RIGHT MOUSE BUTTON TO LOCK IN TARGET");
cmov2i(200,270);

charstr("LOCATION. THE BLUE LINE DISPLAYS THE PROJECTED FLIGHT PATH. THE");
¢mov2i(200,255);

charstr("MISSILE WILL FLY AT A CONSTANT VELOCITY AND HEADING. THE LAUNCH");
cmov2i(200,240);

charstr("STATISTICS CONTROL PANEL WILL DISPLAY COMPUTED MISSILE HEADING");
cmov2i(200,225);

charstr("IN DEGREES (0 DEGREES DUE NORTH).");

¢mov2i(240,100);

charstr("PRESS MIDDLE MOUSE BUTTON TO MOVE INTO PRE-LAUNCH PHASE,");
cmov2i(326,85);

charstr("OR PRESS ALL 3 MOUSE BUTTONS TO EXIT.");

closeobj();




MAKETANK

#include "gl.h"
#include “fogm.h"

- maketank(item)
Object *item;

{

long points = 4, bigpoints = 8;

float parray|[8](3];

float Ix,ly,ls;

long cmin = MIN_TGT_COLOR, cmax = MAX_TGT_COLOR, c};

Ix = 400.0 * 41.01; /* direction of lightsource */
ly = 6000.0;
Is = 200.0 * (-41.01);

*item =genobj();
makeobj(*item);

/* draw right side of tank CCW */
parray|0]|0] = -10.0;
parray(0][1] = 6.0;
parray|0}(2] = -5.0;
parray|1}[0] = -15.0;
parray(1][1] = 4.0;
parray(1][2] = -5.0;
parray(2][0] = -15.0;
parray|2|[1] = 2.0;
parray|2][2] = -5.0;
parray(3][0] = -10.0;
parray|8]{1] = 0.0;
parray(8](2] = -5.0;
parray|4][0] = 10.0;
parray[4|[1] = 0.0;
parray|4)[2] = -5.0;
parray|5][0] = 15.0;
parray(5|[1] = 2.0;
parray|(5]|2] = -5.0;
parray[6]{0] = 15.0;
parray|[6][1] = 4.0;
parray|6]|2] = -5.0;

N parray|7][0] = 10.0;
parray|7)[1} = 6.0;
N parray|7]|2] = -5.0;
' lightorient(parray,bigpoints,0.0,0.0,0.0,1x,ly Is,cmin,cmax,&cl);
color(cl);




polf(bigpoints,parray);

[* front of tank CW */
parray(0](0] = 15.0;
parray(0][1] = 5.0;
parray|0]{2] = -5.0;
parray(1]{0] = 15.0;
parray(1][1] = 8.0;
parray(1}[2] = -5.0;
parray(2]|0] = 15.0;
parray|2][1] = 8.0;
parray|2][2] = 5.0;
parray|3)(0] = 15.0;
parray[3](1] = 5.0;
parray(3](2] = 5.0;
lightorient(pl.ruy,pointa,0.0,0.0,0.0,lx;ly,ll,cmin,cmnx,&c1);
color{c1);
polf(points,parray);

/* draw left side of tank CW */
parrey,D][0] =.10.0;
parray|0][1] = 6.0;
parray(0][2] = 5.0;
parray(1][0] = 15.0;
parray|1][1] = 4.0;
parray(1]{2] = 5.0;
parray[2)j0] = 15.0;
parray(2)[1] = 2.0;
parray(2](2] = 5.0;
parray|[3][0] = 10.0;
parray(s](i] = 0.0;
parray(8][2] = 5.0;
parray|4){0] = -10.0;
parray(4][1} = 0.0;
parray(4][2] = 5.0;
parray|5][0] = -15.0;
parray|5][1] = 2.0;
parray(5)(2] = 5.0;
parray|6][0] = -15.0;
parray(6]i1] = 4.0;
parray|6][2] = 5.0;
parray|7](0] = -10.0;
parray(7][1] = 6.0;
parray(7)[2] = 5.0;
lightorienc(pmay,bigpoinu,0.0,0.0,o.O,lx,ly,h,cmin,cmu,&cl);
color(cl);
polf(bigpoints,parray);

/* back of tank CCW */
parray|0][0] = -15.0;
parray(0(1] = 4.0;
parray[0][2] = 5.0;




parray(1}(0] = -15.0; ‘
parray(1]|1] = 2.0; :
parray(1}[2| = 5.0;
. parray(2]|0] = -15.0;
parray|[2][1] = 2.0;
S parray(3|(2] = -5.0;
SR parray(3][0] = -15.0;
e - parray($|[1] = 4.0;
parray(3](2] = -5.0;
. lightorient (parray,points,0.0,0.0,0.0,Ix,ly,1s,cmin,cmax,&c1);
e color(cl);
N polf(points,parray);
';?i*e /* top middle of tank body CCW */
parray|0][0] = -10.0;
" parray(0][1] = 6.0;
o parray|0][2] = -5.0;
o parray(1/[0] = -10.0;
e parray(1|[1| = 6.0;
St parray(1]|2] = 5.0;
i parray|2][0] = -10.0;
, parray|2][1] = 6.0;
o parray|2}[2] = 5.0;
e parray|3][0] = 10.0;
e parray(3j[1] = 6.0;
e parray|3}(2] = -5.0;
‘) lightorient (parray,points,0.0,0.0,0.0,1x,ly,ls,cmin,cmax,&c1);
color(cl);
'1; polf(points,parray);
Ko
‘:f:':‘- /* top front of tank body CCW */
::! : parray|0}/0] = 10.0;
R parray(0|{1] = 6.0;
' parray[0](2] = -5.0;
. parray|1][0] = 10.0;
o parray(1|[1] = 6.0;
" parray{1][2] = 5.0;
D parray|2](0] = 15.0;
" parray|2][1] = 4.0;
- parray(2](2] = 5.0;
e | parray|3][0] = 15.0;
“ ' parray(3|(1] = 4.0;
parray(3](2] = -5.0;
‘r lightorient (parray,points,0.0,0.0,0.0,1x,ly,1s,cmin,cmax,&c1);
B color(c1);
. polf(points,parray);
4 !‘4‘ J
P /* top back of tank body CCW */ |
A\ ,:;: parray|0]|0] = -10.0;
¢ parray(0][1] = 6.0;
o parray[0][2] = -5.0;
. parray|1}{0] = -15.0;
!":.‘
X 205
ety
”..!' s
v Uy
t
v

R Ty s bR AT T e R



parray[1j[1] = 4.0;
purray(1][2] = -5.0;
parray|2][0] = -15.0;
parray(2|(1] = 4.0;
parray(2](2] = 5.0,
parray|3][0] = -10.0;
parray(3){1] = 6.0;
parray(32] = 5.0;
lightorient(pmay,point.s,o.0,0.0,0.0,Ix,ly,l:,cmin,cmax,&cl);
color{c1);
polf(points,parray);

/* bottom middle of tank CW*/
parray{0][0] = -10.0;

parray(0][1] = 0.0;

parray|0}[2] = -5.0; .
parray(1{(0] = 10.0;

parray[1][1] = 0.;

parray|1](2] = -5.0;

parray|2][0] = 10.0;

parray|(2|[1] = 0.0,

parray(2][2] = 5.0;

parray(3](0] = -10.0,

parray(3(1] = 0.0;

parray(3](2] = 5.0;
light.orient(pa.rny,point.a,o.0,0.0,0.0,lx,ly,l:,cmin,cma.x,&cl);
color(c1);

polf(points,parray);

/* bottom front of tank CW */
parray|0](0] = 10.0;
parray(0|[1] = 0.0;

parray|0]({2] = -5.0;

parray(1j(0] = 15.0;
parray|1]1] = 2.0

parray(t}|2] = -5.0;

parray|2)(0] = 15.0;
parray(2][1] = 2.0;

parray|2|{2] = 5.0;
parray|3}(0] = 10.0;
parray|[3}[1] = 0.0;

parray|(3}{2] = 5.0;
lightorient(pn.rny,poinu,0.0,0.0,0.0,lx,ly.ll,cmin,cmu,&c1);
color(c1);

polf(points,parray);

/* bottom back of tank CW */
parray|0][0] = -10.0;
parray|0]{1] = 0.0,

parray|0](2] = -5.0;
parray(1|{0] = -10.0;
parray(1)(1] = 0.0;




parray|l]

2)=5
parray(2][0] = -150
parray(2{(1] = 2.
parray(2)(2) = 5
parray(3](0] = -15 03

parray|3][1] = 2.0;

parray(3}(2] = -5.0;

hghtonent.(pmay,pomt.s 0.0,0.0,0.0,1x,ly,1s,cmin,cmax, &c1);
color(c1);

polf(points,parray);

/* right side of gun barrel */
parray[0][0] = 1.6667;
parray(0(1] = 8.0;
parray[0](2] = -0.5;
parray(1}[0} = 2. 3383;

parray(1){1] =

parray(1](2] = -° 5;

parray|2][0] = 17 0
may[2][l] =

parray|2|[2] = A-O 5

parray[$}(0} = 17.0;

parray(3|[1] = 8.0;

parray(8]{2] = -0.5;

hghtonent(pmay,pomtu,s 0,2.5,0.0,1x,ly,Is,cmin,cmax,&c1);
color(c1);

polf(points,parray);

/* top of gun barrel */
parray|0](0] = 1.6667;
parray[0][1] = 8.0;
parray(0)(2] =
parray(1][0] = 1.6667;
parray|1)[1] = 8.0;
parray(1](2] = -0.5;
parray(2{[0] = 17.0;
parray(2][1] = 8.0;
parray(2][2] = -0.5;
parray[3][0] = 17.0;
parray[S][1] = 8.0;
parray(3[2] = 0.5;
lightorient (parray,points,5.0,2.5,0.0,1x,ly JIs,cmin,cmax,&cl);
color(c1);

polf(points,parray);

/* left side of gun barrel */
parray(0{[0] = 17.0;
parray[0][1] = 8.0;
parray(0}(2] = 0.5;
parray[1][0] = 17.0;
parray(1][1] =

parray|1)[2] = 0.5;




parray|2][0] = 2.3388;

parray(2](1] = 7.0;

parray(2][2] = 0.5;

parray(3][0] = 1.6667;

parray(S}{1] = 8.0;

parray{$|[2] = 0.5;
lightorient(pn.rny,poim.l,s.o.2.5.0.0,lx,ly,ll,cmin,cnu,&cl);
color(cl);

polf(points,parray);

/* end of gun barrel */
parray|[0][0] = 17.0;
parray[0][1] = 8.0;
parray|0}{2] = -0.5;
parray(1{(0] = 17.0;
parray(1)[1] = 7.0;
parray|(1}{2] = -0.5;
parray|2]|0] = 17.0;
parray(2|[l] = 1.0,
parray(2}(2] = 0.5;
parray|($/[0] = 17.0;
parray(3|[1] = 8.0;
parray{3|(2] = 0.5;
light.orient.(pu'uy,poinu,5.0,2.5,0.0,h.ly,h,cmin,cmu,&d);
color(cl);
polf(points,parray);

/*bottom of gun barrel */
parray|0]{0] = 2.3333;
parray(0](1} = 7.0;
parray(0[2] = 0.5;
parray|1}[0] = 2.3388;
parray(1][l] = 17.0;
parray|1)(2] = -0.5;
parray|2|{0] = 17.0;
parray(2][1] = 17.0;
parray|2|(2] = -0.5;
parray|(3}[0] = 17.0;
parray($|{1] = 7.0;
parray[3](2] = 0.5;
lightorient.(pn.ruy,poinu,S.O,2.5,0.0,lx.ly,ll,cmin,cmn,&cl);
color(c1);
polf(points,parray);

/* right side of turret */
parray|0}{0] = -3.0;

parray[0][1] = 9.0;

parray|0]{2] = -1.0;

parray(1][0] = -5.0;

parray(1j[1] = 6.0;

parray|1)[2] = -3.0; .
parray(2j[0] = 8.0; !




parray|2][1] = 6.0;
parray|2}[2) = -3.0;
parray(3j{0] = 1.0

purray[3|(1] = 9.0;

parray(8](2] = -1.0;
lightorient(parray,points,-1.0,2.5,0.0,Ix,ly,1s,cmin,cmax,&c1);
color(cl);

polf(points,parray);

/* front aide of turret */

parray|0][0} = 1.6667;

parray(0](1] = 9.0;

parray(0](2] = -1.0;

parray[1]{0] = 3.0;

parray[1][1] = 6.0;

parray(1](2] = -8.0; .
parray(3](0] = 3.0;

parray(2](1] = 6.0;

parray(2][2] = 3.0;

parray[3}(0] = 1.6667;

parray(3](1] = 9.0;

parray(3]{2) = 1.0;

lightorient (parray,points,-1.0,2.5,0.0,1x,ly,1s,cmin,cmax, &c1);
color(cl);

polf(points,parray);

/* left side of turret */
parray|[0][0] = 1.6667;
parray[0][1] = 9.0;
parray[0}[2] = 1.0;
parray(1](0] = 3.0;
parray(1)[1] = 6.0;
parray|1}[2] = 3.0;
parray(2][0] = -5.0;
parray(2](1] = 6.0;
parray(2](2] = 8.0;
parray(8][0] = -3.0;
parray($|[1] = 9.0;
parray(3)(2] = 1.0;
lighu;rient(pn.rny,point.s,-l.0,2.5,0.0,lx,ly,ls,cmin,cmtx,&el);
color(c1);
polf(points,parray);

/* back side of turret */
parray(0]{0] = -3.0;
parray(0][1] = 9.0;
parray[0][2] = 1.0;
parray(1](0] = -5.0;
parray(1][1] = 6.0;
parray(1](2] = 3.0;
parray|2](0] = -5.0;
parray(2|(1] = 6.0;




parray|2)[2] = -3.0;

parray(8){0] = -3.0;

parray(3][1] = 9.0;

parray(8}[3] = -1.0;

lightoriext! ;nrny,pohm,-l.0,2.S,0.0,Ix,ly,h,cmin,cmnx,&cl);
color(el); - .

polf(points,parray);

/* top of turret */
parray|[0][0] = -8.0;
parray(0][1] = 9.0;
parray(0}[2] = 1.0;
parray|1)[0] = -8.0;
parray[1][1] = 9.0;
parray1]j2] = -1.0;
parray(2](0] = 1.0;
parray(2|[1] = 9.0;
parray|2|[2) = -1.0;
parray(3]{0] = 1.0;
parray(3)[1] = 9.0;
parray(3][2] = .1.0;
lighwrient(pmsy,poinu,-l.0,2.S,0.0,h,ly,h,cmin,cmu,&el);
color(cl);
polf(points,parray);

closeobj();




NEAREST TGT

g#include "glL.h"

#include “fogm.h"
llew‘__'-lt(Vx,VY.VI.P!,PY,Pl,‘l‘_-_id!)
Coord vx, vy, vs, px, py, ps;

- int *tgt_idx;

{
float dist, dist_to_los();
float min_dist;
float num_tgts;
extern float tgt_pos|MAX TGTS|{3};
int index;
num_tgts = 10;
min_dist = dist_to _los(vx,vy,vz,px,py,ps,&tgt_pos{0](0]);
*tgt_idx = 0;

for (index = 1; index < num_tgts; ++index) {
dist = dist_to_los(vx,vy,vs,px,py,ps,&tgt_pos|index}{0]);
if (dist < min_dist) {

min_dist = dist;

*tgt_idx = index;

311




NPOLY_ORIENT

/* npoly orient.c */

#include <glh>
#include <math.h>

int npoly_orient(ncoords,xys,xinside,yinside, sinside)
unsigned int ncoords;

Coord xys|[3];

Coord xinside, yinside, sinside;

{
register unsigned short int i,j; /* loop temps */
Coord center(3]; /* center coordinate of the polygon */

Coord a[$8], b(8]; /* vector hold locations for the vectors that run
from the center coordinate to the points of the
polygon */

Coord xn(8)], xmn(3]; /* points on line containing normal that are

on opposite sides of the plane containing

the polygon.
*/

float distton; /* distance to point n from pt inside. */
float disttomn; /* distance to point -n from pt inside. */
Coord normal(8|;  /* the normal vector computed fromax b */
/* compute the center coordinste of the polygon */
center|0] = 0.0;
center{1] = 0.0;
center|2| = 0.0;
for(i=0; i < ncoords; i++)
{

for(j=0; j < 8; j++)

centerlj] += xyslilj;

}

/* divide out by the number of coordinates */
for(j=0; j < 8; j++)

center[j] = centerlj]/(float)ncoords;

213




/® check the first 2 coordinates of the polygon for their direction ¢/

/* compute vector a. It runs from the center coordinate to coordinate 0 */
for(j=0; j < 8; j++)

ali] = xys[0][j] - centerj];
/* compute vector b. It runs from the center coordinate to coordinate 1 */
for(j=0; j <8; j++)
o blj] = xya{a]] - centerll;
“ }
/* compute a x b to get the normal vector */
normal|0] = a[1]*b|2] - a[2]*b[1]; .
. normal{1} = a[2}*b0] - a[0]*b|2];
‘ normal|2] = a[0]*b|1] - a[1]*b[0)};

. /* compute point n, offset pt from center in direction of normal */
i for(j=0; j < 8; j++)

xn[j] = center{j| + normal|jj;

L~ -
e
-

/* compute point -n, offset pt from center in opposite direction

from normal.
-

for(j=0; j < 8; j++)

B
‘ : xmn[j] = centerlj] - normallj};
/* compute the distance the inside pt is from point n */
4 distton = sqrt((xn|0] - xinside) * (xn[0] - xinside) +
a (xn[1] - yinside) * (xn[1] - yinside) +

(xn|2] - sinside) * (xn[2] - sinside));

- - e
-

" “

s

B Py
> I

/* compute the distance the inside pt is from point -n */
disttomn = sqrt((xmn|0] - xinside) * (xmn|0] - xinside) +
(xmn|1] - yinside) * (xmn(1] - yinside) +
(xmn|2] - sinside) * (xmn(2] - sinside));

213




/* if the dist(n) < dist(-n), then n points back towards the
inside point and is on the same side of the plane as inside.
a x b is then clockwise.

if(distton < disttomn)
return(1l); /* clockwise */

else

return(0); /* counterclockwise */

114




PRELAUNCH

/* The function prelaunch is the user interface portion of the FOG-M
flight simulation. It allows the operator to interactively enter
critical data items necessary to simulate the missile in flight.

The function returns the initial Jaunch position in the x-s plane
and also the direction of flight. */

#include "gl.h"
#include "device.h"
#include "fogm.h"
#include "math.h"

prelaunch(vx, vy, vs, direction, compassdir,”active, obj, tag)

Coord *vx, *vy, *vs;
double *direction;
float *compassdir;
int *active;

Object obj|7];

Tag taglé];

{

float gnd_level();

float compass();

int screencnt, launchlock, targetlock;

int xval, yval, xlaunch, ylaunch, xtarget, ytarget, utm_x, utm_y;
char xtemp|35], ytemp|35], dist[35], heading|35);

float distance;

double xdistance, ydistance;

Colorindex unmask;

xtempl0] =’ ’;
ytemp(0] =" ;
dist[0] ="

heading|0] =’ *;

1.
’

unmask=(1<<getplanes()) -1;
writemask{unmask);

if (TV) viewport(0,635,0,474);
else viewport(0,1023,0,767);
pushmatrix();
ortho2(0.0,1028.0,0.0,767.0);

*direction = 0.0; /* initialise the direction */
cursoff(); /* turn the cursor off */

callobj(obj{SCREEN1]); /* display screen 1 */
swapbuffers();

215




screencnt = 1; /* initialise counter for screen displays */

while(TRUE) {

frontbuffer(TRUE);

if (getbutton(MOUSE2) && I(getbutton(MOUSEL1)) && !(getbutton(MOUSES))) {
ringbell(); :
while (getbutton(MOUSE2));
screenent += 1;
if (screencnt == 3) callobj{obj]SCREEN2));
else if (screencnt == 8) callobj(obj|SCREENS]);
else break;

}

if (getbutton(MOUSE1) && (getbutton(MOUSE2)) && (getbutton(MOUSES))) {
*active = FALSE;
goto exit;

} .
}
frontbuffer(FALSE);

editobj(obj[FLTPATH|); /* erase previous missile path */
objreplace(tag|/MISSILE]);

ciref(0.0, 0.0, 0.0);

move2(0.0, 0.0);

draw2(0.0, 0.0);

objreplace(tag|TGT));

ciref(0.0, 0.0, 0.0);

closeobj();

editobj(obj[STATS)); /*® erase previous launch statistics */
objreplace(tag| HEAD));

charstr(""});

emov2i(115,60);

charstr(™);

objreplace(tag TARGET));

charstr("™");

emov2i(0,0);

charstr("");

closeobj();

setcursor(0,RED,unmask); /* set wp cursor and mouse */
attachcursor(MOUSEX,MOUSEY};
setvaluator(MOUSEX,$84,0,767);

setvaluator(MOUSEY,384,0,767);

curson();

launchlock = FALSE;
targetlock = FALSE;

callobj(obj| CONTOUR]); /* load static displays into both buffers */
callobj(obj|INSTR]);

callobj(obj|STATS]); /* included so swapped buffer doesa’t have "hole" */
swapbuffers();

316




callobj(obj| CONTOUR|);
callobj(obj|INSTR|);

while(TRUE) {
if (getbutton(MOUSE1) && (getbutton(MOUSE2)) && (getbutton(MOUSES))) {
*active = FALSE;
PO goto exit;

. )

xval = getvaluator(MOUSEX); /*® read the x and y mouse positions */
yval = getvaluator{MOUSEY);

;‘;::‘ utm_x = (50000 + (int)(xval * GRID_FACTORY)); /* compute grid coordinates */
I utm_y = (80000 + (int)(yval * GRID_FACTOR));

sprintf(xtemp,"%4d",utm_x); */* store coordinates in temporary buffer */
sprintf(ytemp,"%4d",utm _y);

/* if LEFT MOUSE selected lock in launch position and update control panel */

if (getbutton(MOUSES) && ('getbutton(MOUSE2)) && (!getbutton(MOUSEL))) { ;
ringbell(); “
i xlaunch = xval; !
ylaunch = yval;
) launchlock = TRUE; ‘
* *vx = ((Boat)((xval * FT_10K)/767)); 1
2 *vs = -((8Boat)((yval * FT_10K}/767)); (
*vy = gnd_level(®vx, *vs) + 200.0; J
editobj(obj[STATS)); |
objreplace(tag|LAUNCH]);
! charstr(xtemp); |
, cmov2i(170,220); “
1 charstr{ytemp); |
' closecbj(); i

o-ﬂ‘d-—*'
. -~
LT

K }  /* end of MOUSES hit */

. /* As long as LEFT MOUSE not selected, keep on displaying current UTM ;
s grid coordinates in control panel area. */ “
|
|

if ("launchlock) {

N | editobj(obj[STATS));

' objreplace(tag|LAUNCH]);

' charstr(xtemp);
cmov2i(170,220);

. charstr(ytemp);

? closeobj();

<. }

/* if RIGHT MOUSE selected lock in target and update control panel. */

if (getbutton(MOUSE1) && (‘getbutton(MOUSES)) && (!getbutton(MOUSE2))) {
ringbell();

217




xtarget = xval;

ytarget = yval;

targetiock = TRUE;
editobj(obj|STATS));
objreplace(tag| TARGET)]);
charstr(xtemp); -
emov2i(170,140);
charstr(ytemp);

closeobj();

}
/* As long as RIGHT MOUSE not selected keep on displaying current UTM
grid coordinates in control panel area. */
B if (targetlock) {
if (launchlock) {
xdistance = ((double)(xval - xlaunch));
: ydistance = ((double){yval - ylaunch));
. distance = sqrt((float)(xdistance * xdistance + ydistance * ydistance));
“ distance = distance * GRID_FACTOR;
‘ sprintf(dist,"%5.0f METERS", distance);
*direction = atan2(ydistance, xdistance);
- if (*direction < 0.0) *direction += TWOPI;
*compassdir = compass(*direction);

¥ 2
r',w sprintf(heading,"%d DEGREES", (int)*compassdir);

N editobj(obj|STATS]);

objreplace(tag TARGET));

, charstr(xtemp);

Vo emov2i(170,140);

K & charstr(ytemp);

T objreplace(tag| HEAD]);
charstr(heading);
cmov2i(115,60);
charstr(dist);

I }

}

/* if launch position and target location have been selected by the
oy operator compute the direction of the missile and distance to target. */

v if (launchlock && targetlock) {
« ,“ xdistance = ((double)(xtarget - xlaunch));
You ydistance = ((double)(ytarget - ylaunch));

. distance = sqrt((float)((xdistance * xdistance) +
. (ydistance * ydistance)));
L distance = distance * GRID_FACTOR;
sprintf(dist,"%5.0f METERS", distance);
iy *direction = atan2(ydistance, xdistance);
o if (*direction < 0.0) *direction += TWOPI,;
*compassdir = compass(®direction);

By 218

! “. ‘_.4“'. ‘«?-":"d.‘!.l‘l‘_!‘




5 e

writemask(SAVEMAP);

callobj(obj|[FLTPATH]); )
writemask(unmask);

callobj{obj[STATS)); N
swapbuffers();

-~
PP

}

exit:

s

cursoff(); .
popmatrix();

- e
e

. e w e w w
L LY

.
-
"a

¢ -
L)

DN I 7 .
.':a".f.“f‘»g"h"h ‘,""‘ ,h?_,*.“,dt? '

- e

.-
-l -

220




RANDNUM

/* randnum.c - returns a random float between sero and one */
static long seed = 1234567;

randseed (newseed)
long newseed;

{
}

seed = newseed;

float randnum()
long mult();

seed = (mult(seed,31415821) + 1) % 100000000;
return(seed / 100000000.0);

long mult(p,q)
long p,q;

long pO, p1, q0, q1;

pl = p / 10000;
p0 = p .5 10000;
ql1 = q / 10000;
q0 = q % 10000;

return((((p0*ql + p1*q0) % 10000) * 10000 + p0*q0) % 100000000);

221




READCONTROLS

/* reads the values from the operator’s controls (mouse and disls) */

“ #include "gl.h" /* graphics lib defs */
B #include "fogm.h" /* fogm constants */
#include "device.h" /* device definitions */

read_controls(designate, greyscale, flying, active, speed, direction,
compasadir, alt, pan, tilt, fovy)

- f int *designate, *greyscale, *flying, *active, *fovy;
float *speed, *compassdir;
double *direction, *pan, *tilt;

":;‘ Coord *alt; N

":t:

ol {

D) extern float randx, randy, rands;

c float randnum();

Ca Colorindex colors|1];
Y
r:t‘ /* quit if all three mouse buttons are pushed */
".\}.’;E if(getbutton(MOUSE1) && getbutton(MOUSE2) && getbutton(MOUSES)) {
S *flying = FALSE;
B *active = FALSE;

el else {

e if (getbutton(MOUSES) && !(getbutton(MOUSE2))) { /* Zoom In */
?,t‘f«“:g *fovy = (*fovy < (80 + DELTAFOVY)) ? 80 : *fovy - DELTAFOVY;
) if (getbutton(MOUSE1) && !(getbutton(MOUSE?))) { /* Zoom Out */
K *fovy = (*fovy > (550 - DELTAFOVY)) ? 550 : *fovy + DELTAFOVY;
if:::

A

v if (getbutton(MOUSE2)) { /* designate/reject target */

. if (*designate) { /* see if target in sights */

- /*pushmatrix();

A pushviewport();

,é‘ pushattributes();
i viewport(0, 1028, 0, 767);

Ly ortho2(0.0, 1028.0, 0.0, 767.0);

‘ cmov2s((Scoord)(768/2), (Scoord)(768/2));
- readpixels(1,colors);
;k:i:; if ((colors{0] >= MIN_TGT_COLOR) && (colors|0] <= MAX_TGT_COLOR)) {*/
Y *designate = FALSE;
:a:I: ringbell();
Dy randx = 30.0 * randnum() - 15.0;

et randy = 10.0 * randnum() - 5.0;

- rands = 10.0 * randnum();

L while (getbutton(MOUSE3));

K 222

A%y

i
.
*,

[

DRI 5“’ ng.i;e‘ﬁ.»vlﬁta :’i’m} »i?l."‘u,i' W ,"A',ﬁ!» _l‘g}:‘w o



& popattributes();
popviewport();
popmatrix(); */

else { /* reject currently designated target */
ringbell();
*designate = TRUE;
/* re-adjust tilt and pan values appropriately */ ;

}

if (*greyscale = getvaluator(DIALS)) { /* DIALS indicates color change */
sgreyscale = !*greyscale;
setvaluator(DIALS,*greyscale,0,1);
colorramp(*greyscale, FALSE);

}

*speed = (float)(getvaluator(DIAL2) / SPEEDSENS); /* get desired speed */
*alt = (Coord)(getvaluator(DIAL4));

*pan = DTOR * (double)(-getvaluator(MOUSEX)) / PANSENS;
*tilt = DTOR * (double)(getvaluator(MOUSEY)) / TILTSENS;

*compassdir = (float)getvaluator(DIALO) / DIRSENS;

/* keep *direction between 0 and 360, update valuator if changed */

if (*compassdir >= 360.0) {
*compassdir -= 360.0;
setvaluator(DIALO, (int)(*compassdir* DIRSENS), (int)(-360*DIRSENS),
(int)(720*DIRSENS));

if (*compassdir < 0.0) {
*compassdir += 360.0;
setvaluator(DIALO,(int)(*compassdir* DIRSENS), (int)(-360*DIRSENS),
(int) (720*DIRSENS));

/*convert *direction from compass degrees to trigonometric radians  */
*direction = (*compassdir <= 90.0) ? DTOR * (90.0 - *compasedir) :
DTOR * (450.0 - *compassdir);

St Rte

L0 GRS e S



ROAD_BOUNDS

#include "math.h"
#include "fogm.h"

#define X O
$define Y 1
$defineZ 2

#define NONE 0

road_bounds(pti, pt2, pt3, road_width, left_pt1, right_ptl, left_pt2,
right_pt2, first_xgrid, first_sgrid, last_xgrid, last_sgrid)

float pt1(3], pt2(8], pt3(8), road_width; -

float left_pt1(8], right_pt1(3], left _pt2(8], right_pt3(s};

int “first_xgrid, *last_xgrid, *first_sgrid, *last_sgrid;

{
float delta_x, delta_s, seg_dir, min_x, max_x, min_s, max_s;
float left_end1(3], right_end1(S], left_start2[3], right_start2[3),
left_end3[8], right_end2[3);
int mtmect.lon_type,

/* determine the corner points of the segment */

delta_x = pt2(X] - pt1|X];

delta_s = pt3[Z] - pt1|Z);

seg_« dir = atan2(delta_s, delta_x);

left_end1[X] = pt2[X] + (cos(seg_dir + HALFPI)*road_width/2.0);
right_end1|X] = pt2[X] + (cos(seg_dir - HALFPI)*road_width/2.0);
left endl[Z] pt2|Z] + (nn(leg_dlr + HALFPI)*road_width/3.0);

right_end1|Z] = pt2(Z] + (sin(seg_dir - HALFPI)*road_width/2.0);

if (pr2{X) 1= pes[X) || (pe2(2] 1= pesiz])) {

/* we are not working with the final segment of this road, find
the intersection of this segment with the next one */

delta x = pt3|X] - pt2[X];
delta_s = ptS(Z] - pt3|Z};
seg_dir = atan2(delts s, delta_x);
left_start2|X] = pt2[X] + (cos(seg_dir + HALFPI)*road_width/2.0);
right_start2{X) = pt3[X] + (cos(seg_dir - HALFPI)*road width/2.0);
lefv_start2(Z] = pt2|Z] + (sin(seg_dir + HALFPI)*rosd_width/2.0);
right_start3(Z| = pt3(Z] + (sin(seg_dir - HALFPI)*road_width/2.0);
left_end3[X] = pt8|X| + (cos(seg_dir + HALFPI)*road_width/2.0);
right_end2{X] = pt3[X] + (cos(seg_dir - HALFPI)*road_width/2.0);
lefe_end2|Z] = pt3|Z] + (sin(seg_dir + HALFPI)*road_width/3.0);
right_end3(Z| = pt3|Z) + (sin(seg_dir - HALFPI)*road_width/2.0);

/* find the intersection point of the left hand sides of the
first and second road segments */
® line_intersect2(left ptl, left_endl, left_start2, left _end2,
left _pt2, &intersection_type);




if (intersection_type == NONE) {
le_pt3(X] = left_end1(X];
leR_pt2(Z] = left_end1(Z);

/® find the intersection point of the right hand sides of the
first and second road segments */
line_intersect2(right_pt1, right_endl, right_start2, right_end3,
right_pt3, &intersection_type);
if (intersection_type == NONE) {
right_pt2[X| = right_end1(X};
right_pt2(Z| = right_end1(Z);

}
else {
/* this is the final segment of this road */
left_pt3[X] = left_end1[X};
left_pt3|Z] = left _end1|Z];
right_pt3(X| = right_end1|X];
right_pt3|Z] = right_end1(2];
}

/* determine the min and max x and s values */
min_x = left_pt1{X];

max _x = left_pt1[X];

min_s = left_pt1(Z};

max_s = left_pt1{Z};

if (right_pt1[X] < min_x) min_x = right_pt1{X};
if (right_pt1|X] > max_x) max x = right pt1{X};
if (right_pt1|Z] < min_s) min_s = right_pt1|Z};
if (right_pt1|Z] > max_s) max_s = right_pt1{Z|;
if (left_pt2[X] < min_x) min_x = left_pt2[X];

if (left_pt2|X] > max_x) max_x = left_pt2[X);
if (left_pt2|Z] < min_s) min s = left_pt2(Z);

if (left_pt2(Z] > max_s) max_s = left_pt2|Z);

if (right_pt2|X] < min_x) min_x = right_pt3|X};
if (right _pt2[X] > max_x) max_x = right pt2(X|;
if (right_pt2{Z| < min_s) min_s = right_pt3[Z);
if (right_pt2|Z] > max_s) max_s = right_pt2|Z);
*first_xgrid = (int)(min x/FT _100M);
*first_sgrid = (int)(min_s/FT_100M);
*last_xgrid = (int)(max_ x/FT _100M);
*last_sgrid = (int)(max_s/FT INM),

if (*frst _xgrid < 0) *first_xgrid = 0;

if (*Grst_sgrid < 0) *first und 0;

if (‘lut_x.nd > 98) ‘lm_xgnd 98;

if (*last_sgrid > 98) *last_sgrid = 98;




SORT ARRAY

sort_array(array, num_entries, decending, test_index)
float array|10](8};
int num_entries, decending, test_mdex;
{ . ..
int 1);
float temp|($];

for (i = 0; i < num_entries; ++i) {
for (j =i + 1;j <= num_entries; ++j) {

if (((decending) && (arraylj)[test_index| > array|i][test_index])) ||
(('decending) && (myb”tut _index| < uny[l][tut _index]))) {
temp(0] = array(i][0];"
temp(1] = arraylij[1];
temp|2] = arrayli[2];
arrayli][0] = arraylj][0];
arraylil{1] = array(j]{1];
- arrayli][2] = arraylj](2];
array|j}{0] = temp|0);
array[j]|1] = temp|1];
arraylj}{2] = temp|2];




UP LOOK _POS

/® compute the camera’s lookat position  */ -

#include "fogm.h" /* fogm constants */
#include "math.h" /* math routine definitions */ . .-
#include "gl.h" /* graphics definitions */

update_look posit(direction, pan, tilt, vx, vy, vs,
tgtx, tgty, tgts, designate, px, py, ps)

double direction, pan, tilt;
Coord vx, vy, vs, tgtx, tgty, tgts, °px, *py, *ps;

int designate;

{ .
extern int framecnt;
double lookdir;

if (designate) { /* missile is not locked on to a target */

/* compute direction camera is looking */
lookdir = direction + pan;

/* compute a coordinate along camera’s line of sight */
*px = vx + cos(lookdir) * MAXLOOKDIST;
*ps = vs - sin(lookdir) * MAXLOOKDIST;

if (framecnt < 15) {
*py = 4.0 * vy * (14 - framecnt) / 14.0;

framecnt++;
}
else
*py = vy + MAXLOOKDIST * tan(tilt);
}
}
else {
*px = tgtx;
*py = tgty;
*ps = tgts;
) }




UP_MSL_POSIT

/* Compute new missile position */

#include "gl.h"  /* graphics definitions */

#include "device.h" /*® graphics device definitions */
ginclude "fogm.h" /* fogm constants */

#include "math.h" /* math function declarations */

#include <sys/types.h> /* contains the time sturcture tms */
#include <sys/times.h> /* for time calls */

update_missile_posit(direction, compasedir, speed, designate,
tgtx, tgty, tets, vx, vy, vs, flying)

double *direction; .
flcat *compassdir;

float speed;

int designate;

Coord tgtx, tgty, tgts;

int *flying; :

Coord *vx, *vy, *vs;

{

static long seconds;

static long lastsec = -999; /* -999 is flag to indicate no value */
struct tms timestruct;

float deltadist, gndlevel, gnd _level(), compass(), ht_above_tank;
long float deltax, deltas, dist_to_tank;

seconds = times(&timestruct);

/* compute distance missile must move ahead to maintain speed */
if (lastsec == -999)

deltadist = 0.0;
else

deltadist = (speed/FPS_TO_KTS)*(seconds - lastsec);

lastsec = seconds; /* save for next pass */

if (designate) { /* missile under operator contol, not locked on tgt ¢/
*vx += deltadist * cos(*direction);
*vs -= deltadist * sin(*direction);

/* keep missile at least 50 ft above ground level */
gndlevel = gnd _level(*vx, *vs);
if (*vy < (gndlevel + 50.0)) *vy = gndlevel + 50.0;

}
else {
deltax = *vx - tgtx;

deltas = *vs - tgts;
dist_to_tank = hypot(deltax, deltas);




£LLe

P
- -
- -

" ost

—.

. .9

if (deltadist > (foat)dist to_tank) { /* hit on target */
deltadist = (foat)dist _to_tank - 5.0;
*flying = FALSE;
lastsec = -999; /* no value flag for next launch */

}

*direction = (double)atan2((float)deltas, (float)-deltax);
if (*direction < 0.0) *direction += TWOPI;
*compassdir = compass{*direction);

setvaluator(DIALO,(int)(*compasedir* DIRSENS), (int)(-360*DIRSENS),
(int) (720* DIRSENS));

*vx += (deltadist * cos(*direction));
*vs -= (deltadist * sin(*direction));
ht _above _tank = (float)*vy - gnd_level(tgtx, '.gt.l)
*vy -= (Coord)((ht_above tank ¥ deltadist) / (Boat)dist_to_tank);

‘ ' . ' AL I N A B o -
A 4G 3 t
o Y M a‘_;k‘ vt |‘,‘0‘* LA ] e




VIEW _BOUNDS

#include "fogm.h"
#include "gl.h"
#include "math.h"

view_bounds(vx, vy, vs, px, py, ps, tilt, fovy,
firstxgrid, firstsgrid, lastxgrid, lastsgrid)
Coord vx,vy,vs;

double tilt;

int fovy;

short *firstxgrid, *firstsgrid, *lastxgrid, *lastsgrid;

{

float ix, is;  /* the intersection points */
float lookdir; .

float deltax, deltay, deltas, delta_alt, fx, fy, fs;
float half fovy;

float lower_edge_angle;

/* compute the direction the camera is looking */
lookdir = atan2((float)(vs - ps), (foat)(-(vx-px)});
if (lookdir < 0.0) lookdir += TWOPI;

if (vy > py) {

/* tilt angle is negative */

deltax = px - vx;

deltay = py - vy;

deltas = ps - vs;

delta_alt = pow((float)MIN, ALTSCALE) - vy;

}
else {

}

/*® tilt angle is positive, use the lower fustrum edge instead
of the line of sight to compute the view bounds */

/® compute a coordinate along the lower fustrum edge */

half fovy = ((float)fovy/20.0°DTOR);

lower_edge_angle = tilt - half fovy;

fx = vx + cos(lookdir)* MAXLOOKDIST;

fs = vs - sin(lookdir)* MAXLOOKDIST;

fy = vy + tan(lower_edge_angle)*MAXLOOKDIST;

deltax = fx - vx;

deltay = fy - vy;

deltas = fa - vs;

delta_alt = pow((float)MIN, ALTSCALE) - vy;

ix = vx + ((deltax/deltay)*delta alt);
is = vs + ((deltas/deltay)*delta_alt);

/*® compute which grid objects should be sent through the geometry

pipeline */

331




if (deltay > 0.0) {
/* the fustrum is lookiag totally skyward, don’t bother doing
any terrain */
*firstxgrid = O;
*firstsgrid = 0;
*lastxgrid = 0;
*lastsgrid = 0;

else {
/* display 20 grid squares on all sides of the intersection point */
*firstxgrid = (int)(ix/FT_100M) - 20;
*lastxgrid = (int)(ix/FT_100M) + 20;
*firstsgrid = (int)(-is/FT_100M) - 20;
*lastsgrid = (int)(-is/FT_100M) + 20;

/* insure that objects drawn include the current missile position */ 4

if ((int)(vx/FT_100M) < *Srstxgrid)
*firstxgrid = (int)(vx/FT_100M);

if ((int)(vx/FT_100M) > *lastxgrid)
*lastxgrid = (int)(vx/FT_100M);

if ((int)(-vs/FT_100M) < *firstagrid)
*firstsgrid = (int)(-vs/FT_100M);

if ((int)(-vs/FT_100M) > *lastsgrid)
*lastsgrid = (int)(-vs/FT_100M);

if (*firstsgrid < 0) *firstagrid = 0;

if (*firstxgrid < 0) *firstxgrid = 0;

if (*lastzgrid > 98) *lastsgrid = 98;

if (*lastxgrid > 98) *lastxgrid = 98;




10.

LIST OF REFERENCES

PC Connection advertisement, PC Magazine, v. 6, no. 11, p. 241, June 9,
1987. ‘ :

Orlansky, J. and String, J., "Reaping the Benefits of Flight Simulation," in
Computer Image Generation, edited by B. Schachter, John Wiley & Sons,
Inc., New York, New York, 1983.

US Army Combat Developments Experimentation Center (USACDEC)
Technical Report, Computer Graphics Fiber Optics Guided Missile Flight
Simulator (FOG-M Simulator] Required Instrumentation Capability (RIC),
Fort Ord, California, 1986.

Mar, Roland K., "FOG-M: Another Army Orphan for the Marines?" U. S.
Naval Institute Proceedings, v. 113/6/1012, pp. 95-97, June 1987.

Kotas, Jim, "Computer Image Generation: Realistic Simulation," National
Defense, v. 70, no. 412, pp. 26-31, November 1985.

Berthiaume, Richard, Kamavas, Gary, and Bernsteen, Stan, "Graphical
Representations of DMA Digital Terrain Data on Low Cost Commercial
Graphics Workstation," Proceedings of the IEEE 1986 National Aerospace
and Electronics Conference, v. 3, pp. 992-996, 1986.

Silicon Graphics, Inc., IRIS User’s Guide, Mountain View, California, 1986.

Fox, Teresa A., Clark, Philip D., "Development of Computer-generated
Imagery for a Low-cost Real-time Terrain Imaging System," Proceedings of
the IEEE 1986 Natsional Acrospace and Electronics Conference, v. 3, pp.
986-991, 1986.

Defense Mapping Agency, Product Specifications for Digital Landmass
System (DLMS) Data Base, 2d ed., April 1983.

US Army Combat Developments Experimentation Center (USACDEC)
Technical Report, Fort Hunter Liggett Digital Terrain Database on the VAX
Computer, Fort Ord, California, 1985.




11.

12.

13

14.

Hearn, Donald, and Baker, M. Pauline, Computer Graphics, Prentice-Hall,
Inc., Englewood Cliffs, New Jersey, 1986. )

McGrew, J. F., "Exaggerated Vertical Scale in CGI Terrain Perspectives,”
Proceedings of the Human Factors Society 27th Annual Meeting, v. 1, pp.
33-35, 1983. ’

Fuchs, Henry, Abram, Gregory D., and Grant, Eric D., "Near Real-Time
Shaded Display of Rigid Objects," Computer Graphics, v. 17, no. 3, pp. 65-
72, July 1983.

Sedgewick, Robert, Algorithms, Addison-Wesley Publishing Co., Reading,
Massachusetts, 1983.




P
B e N

Distribution List

Defense Technical Information Center
Cameron Station
Alexandria, VA 22314

Library, Code 0142
Naval Postgraduate School
Monterey, CA 93943

Center for Naval Analyses
2000 N. Beauregard Street
Alexandria, VA 22311

Director of Research Administration
Code 012
Naval Postgraduate School
Monterey, CA 93943 -

3

Roger Casey

Naval Ocean Systems Center
Code 854

San Diego, CA 92152

Mr. Russell Davis
HQ, USACDEC
Attention: ATEC-IM
Fort Ord, CA 93941

Prof. Michael Zyda

Code 52Zk

Naval Postgraduate School
Monterey, CA 93943

Dennis McCall

Naval Ocean Systems Center
Code 443

San Diego, CA 92152

Dr. Al Zied

Naval Ocean Systems Center
Code 443

San Diego, CA 92152

Dr. Egbert D. Maynard
OUSDRA&LE VHSIC Program Office
Room 3D-139, 400 A/N

The Pentagon

Washington, DC 20301-3060

2 copies
2 copies

1 copy

1 copy

1 copy

1 copy

189 copies

1 copy

1 copy

1 copy

s ”,.l,]{,,""!uvgl 4 ‘|v»17' L ERIT ““!‘ 0




’4‘ _\“%& \f&‘\ )



