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I. INTRODUCTION

This report describes the progress made in the State Delta Verification System (SDVS) research and development

effort for fiscal year 1986.

f1e long-trm god of die fid of progmn verificion is to be able to prove the crrtess of any progmi

respect to its (corret) specification. Exisng pram verification systems can be classified according 
inteded domain of application, degree of user interaction, and choice of specification language. -

SDVS 5 is the current version of a progrm verifiaton project that essentially sWaotd inutvand has progressed sica hen in cpability of proof, ease of user interface, and complexity of app n

tackled. SDVS is a highly interactive proof checker for proofs of microcode corrcmess. SDVS 5 rns on the

Symbolics Lisp Machine version 6. It consists of three modules the kernel and user interfce (6000 lines of lisp

code), the simplifier (14,000 lines of lisp code), and the translator from the ISPS machine description language to

state deltas (4000 lines of lisp code). The kernel directs the symbolic execution and checks the validity of the

dynamic proof commands. The simplifier encodes the system's knowledge of static domains and allows the ue to

create and prove lemmas for future use. The translato converts descriptions wriuen in an expanded ISPS to the

internal sate delta language. C-

We have successfully analyzed (proved correct or found bugs in) all but 4 of the 128 macroinstrucions not

involving I-0, maintenance, or diagnostics of the BBN C30 computer, covering approximately 1000 lines of

microcode. Details of this work may be found in three papers by J. Cook?.3.4

SDVS may be operated in interactive or batch mode. In batch mode, the typical method for checking a proof of

cof implementation between a host and target level is io input descriptions of the host and target, the

mapping between the two (relating the registers in the target to registers in the host), and the proof (written in the

SDVS proof language). SDVS then checks the proof and returns a trace of the proof with diagnostic error messages

in the cose of incorrect or incomplete proof.

The use of the system is detailed in the users' manual.5

The SDVS project depends on the synergy among the three efforts of research, system development. and

applicatio. The research efort is needed to justify the operation of the implemented SDVS system, ie., that it

leads to valid conclusions, and to chart new directions for implementation. The applications, in addition to the

intrinsic value of knowing that a given program is corrct, are needed to est the design of SDVS against real world

objects and to motivate research directions.

SUMMARY OF THIS YEAR'S PROGRESS:

RESEARCH: The theory of state deltas was proved to be decidable by interreting state deltas in the hedr of

linear order with unary predicates, which is known to be decidable. However, because of the complexity of the

decision procedure, this is unlikely to have practical application.

The concept of read protection was fornalized in model-theoretic semantics, and a set of axioms was given. This

| | liII i1



set is not complete, but the theory is decidable. This theory may have application in the specification and
verification of security consmints.

DEVELOPMENT: SDVS 5 now exists in very usable form on te Symbolics lisp machine. It allows for
interactive or batch poofs of implemIenmation comecuess starting with extended ISPS dmrptions of host aid
tarite The exmon so ISPS allows st deltas id asumptions to be iwrpersed in the descriptio. There is a
sophisticated user interface which utilizes the special features of the Symbolics machine.

We hope that by the end of next year we will have a "production quality" system.
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II. RESEARCH

A. SEMANTICS OF READ

7Ub. resemch summarized in this section is described in detail in a paper by Marcus and Redmond. 6

We have given a formal definition of the concept of a register being read during the execution of a process. This

deinition may be given in the language of pur model theory. A candidate definition for secure implementation of
target spec by host code is proposed.

We give some axioms for read prection, but do not know how to make this set into a complete axiomatizanion.

The theory of read is proved decidable (in the naturally restricted cases).

An introduction to the main idea of the formalization follows: In dealing with computer security, a major

consideration is protecting certain registers from being read from or written into by unauthorized processors or

usP . It is fairly trivial to defme the semantics of write. if the value of the register changes, it was written into.

Cibis is ignoring the rare occasion when writing a value which is the same as the current value may be of interest.)

However, detecting when a register's value has been read is a much more delicate matter. For a register x to be

read, we do not require that the reader actually "look at" or access the x, nor that the reader lam the value of the

contents of x in my way. We view "reading" as a special case of the general problem of information flow.

Intuitively, we will consider a register x to have been read by (or during) process P. if some non-public or protected

information abou its contents becomes known during an execution of P, i.e., if the behavior of P is dependent on the

value of x in some specifiable or observable way. This means that the concept of "non-public" must be made explicit

in every specific cae of read.

A superficial approach to the semantics of read yields the following examples. If the right-hand side of an

asignment statement consists of the program variable x by itself, then x is read. If the expression x - x (subtraction)

is on the right-hand side, it is not completely clear whether we want to consider x to have been read or not. If x

appes in s condition for a branch, where the outcome of branch depends on the value of x, we probably do want to

consider that x has been read, even if we don't need to know its explicit value.

These examples all rely on the presence of some syntax for their formulation. The situation is clearly different in

the case of security verification. We shall consider a prototypical relation between an adversary, A, and a process.

P. The adversay tries to learn something new about x by examining the behavior of the process and by using the

public Imowledge, K, available about x. A, in general, does not have complete knowledge about the syntax of P, A

may observe P in operation or may wait until P has terminated (if ever), and then analyze the results to deduce the
new information about x. In this case, disclosure of new knowledge about x means that some behavior of x which is

a priori possible in the context of of K, is discovered to be impossible in light of P.

The link between the syntactic and the general formulation can be seen, for example, in the simple assignment

stuement above: a possible value of x (actually, all but one possible value of x) is eliminated by examining the value

of the left-hand side. Likewise in the branch example, the negation of the realized branch predicate is discovered to
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be impossible at that point in time in that computation (the realized branch predicate is discovered to be true).

Our approach elevates this "public knowledge" to a position of prominence in the defmition. K plays a dual role

in the sense that it can be used by the adversary to deduce information about x based on observation of P, but K also

is the criterion for deciding if that information about x is new. For example, if the public knowledge about x is weak

(e.g., K - TRUE), and x is not an explicit variable of P, then x is not read by P because there is no way to connect x

with the behavior of P. Also, if K is too strong (e.g., K - FALSE), then x is not read by P, because P could not

possibly increase our knowledge about x. Actually, x can alternate between being read and not being read with

respect to K as K increases in strength. On the other bnd, for any non-trivial process P and register x, ther is some

public knowledge such that with respect to it, P reads x: simply take K to be x = v for some variable, v, of P.

We assume a strict distinction on the one hand between the variables of a process, Var(P), which P knows

everything about at all points of all computations and by definition reads, analogous to real locations in a machine

for P, ando the other hand, external variables which P may or may not read, depending on K.

We take the view that the specification of a process is a way of restricting the possible computations that the user

can perform, rather than vermitting them. We are interested in protecting against the inadvertent read, not finding

which registers are always read.

There are four separable concerns which need formalization: the new information learned about x by P is

"information", it is "new", it is "about" x, and it is learned "by" P. As mentioned above, the "newness" will be

measured in relation to K; "information" is taken to be a set of possible computations. The "about x" and "by P" are

handled by looking at the restriction of a model of K to x, and combining this with a computation of P.

To formalize the above discussion in precise mathematics, we utilize the concepts of model theory. We start out

with a model (computation) of K, and we restrict it to x (ignore the other variables). This represents a possible

behavior of (or information about) x consistent with K. Now take a model (computation) of P and see if we can

supeuimpose the above restricted model onto this model of P in a way which is consistent with K, i.e, such that the

combination is a model of K. If we cannot, then we have learned that this behavior of x is ruled out by this particular

computation of P, and x is read. It could be that the forbidden behavior (the information) is specifiable by a

sentence in a given language. This means that there is a sentence, F, such that the above holds for all models of K A

--,F. (In other cases, it may be that a particular model or set of models is ruled out, but this model or set of models is

not specifable in the language.) If M does not read x with respect to K, then the adversary cannot deduce anything

about x that does not already follow from K.

We examine the possibility of expressing the necessary semantics within various temporal logics and come to the

conclusion that this is impossible in some cases.

There are several possible variations of the formalization which seem reasonable. An important task is to examine

examples and results about their interdependencies in order to determine which ones correctly represent our

intuition.

We give a set of axioms for read, but do not yet know how to get a complete axiomatization. The theory of read

4



(with some natural restrictions) is proved decidable by reducing to Rabin's S2S theorem.

B. STATE DELTAS

The theory of state deltas was proved decidable by using the decidability of the theory of linear order with unary

predicates. This is a "theoreticalr result, with little chance of practical applicability in SDVS.
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I. DEVELOPMENT

SDVS 5 is the new version of the State Delta Verification System on the Symbolics lisp machine. It is a very
usable tool for microcode verification, either in interactive mode or batch mode. The interactive mode utilizes some
of the fancy Symbolics features and has on-line help, editing, and system prompts. There are (rudimentary)
capabilities for proof manipulation and system querying, in addition to the imperative proof commands. The
translator converts ISPS extended by mark points, assertions, assumptions, and state deltas into pure state deltas.
The translation can be done for two "granularities": considering every ISPS statement to be significant, or only
considering the effects between mark points. There are facilities for declaring and loading large arrays of data (eg.,
the ROM contents). Axiom lists may be loaded and examined by name or content (axioms dealing with a given list
of symbols). Lemmas may be created, loaded, proved, stored, and used.

The development of SDVS has been pushed and tested by a rather large real example, the microcoded C30 IMP
machine.

The following sections describe some of the new features of SDVS 5. For more details and examples see the
manual.5

A. USER INTERFACE

The user interface and its development are described in detail in a report by Landauer, Cohen, and Redmond.7

Here we list several highlights of the new version.
1) The "SDVS-listeer", which is the user environment, is invoked by select-s on the Symbolics.

Dribbling (recording the session on a file) is accomplished by the dribble-om and dribble-off
commands.

2) The user may input proof commands and expressions in the output infix (prettyprint) language.
3) Prompting for unspecified arguments: all commands prompt the user with the next argument name

needed.
4) On-line help: there is an extensive help facility which uses the built-in Symbolics help utility.

5) Numbering of proof steps: proof steps are now numbered in a tree structure labeling scheme.
6) SDVS gives the user a filename string to edit. For example, if you wanted to execute command "isps"

you'd see this:
<sdvs.l> ISPS pathname: mr.p:>eve>fo.isp

where you've typed in just the command isps. The initial default is foo.isp in the user's home
directory. You could then edit the pathname, and whatever value is eventually accepted becomes the
new default. The following defaults am available (and can be set by the user)

*default-isp-pathname* : "(home-dir)>foo.isp"
used in isps, mpisps, tr, mptr

*defult- iom-phname* : "sdvsuoxioms.moms"
usd in readaxioma, writeaxioms

Odefault-lemma-psthname : "sdvs:lemmas;iemmas.lemmas"
used in readlemmas, writelemmas

*default-isps-filenume* : foolsp
used for stale delta numes (e.g., ispufo~sp)).

7) redo expr, where expr is either a proof command name or a proof step number will redo that
commad.
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8) date inserts the date comment-style into the proof, and on rerunning the proof, the old date is ignored
and a new one used.

9) setflag is to be used to set on-off type flags (e.g., autoclose). The default value is the flip of the
current value.

10) setlevel is to be used to set abbreviationlevel and **unique-name-level**. These last two indicators
can now have either numerical values or nil. If the value is numerical, it will be used silently as the
default, as in isps or ppsd. If it is NIL, you will be prompted for the value to use (the defaults being 0
and I respectively).

11) whynoWtgoe takes a simp option.

12) Messages that appear upon completion of a proof have been improved, in particular with respect to
defer.

B. PROOF CAPABILITY

A detailed description of new developments in the bitstring solver appear in a paper of T. Redmond.$

We mention some other areas.

I) Two new self-explanatory query commands are sdtobeproven and lastappliedsd.

2) It is now true that if one binds an atom-name to a list of formulas and then puts the expression
formulas(atom-name) in the pre- or postcondition of a state delta, each of the formulas in the list get
inserted into the pre- or postcondition of the state delta. Formulas interprets the formulas listed under
the atom-name as follows: if the formula is an atom, then it is checked to see if that atom is attached
to a state delta. If so, the state delta is inserted; otherwise the atom is inserted as a predicate.
Otherwise the formula is inserted.

3) Th level-to-level mapping has been generalized to allow a weak universal quantifier, that is, the
capability to say that for each index in a given range, an array with that index maps to corresponding
elements in another array. TU syntax is "(map hmem[i:j] (tmem[k:1]) (forall n i j f(tmem[n+k-i])))",
where f is some function, such as a specified substring. This has the effect of mapping hmem[n] onto
f(tmem[n+k-i]) for all n from i toj. At invocation time, a check is made that l-k = j-i.

4) bidepropagations and restorepropagatlons installed; these commands allow you to ignore
conditional facts if they are not needed.

5) Seecti: The selecti command (the "i" stands for integer) allows the user to identify the next proof step
(or sequence of proof steps) quickly, typically which state delta to apply, thereby shortcircuiting a
perhaps lengthy check of usable state deltas. The state delta chosen to be applied is then, of course,
processed in the usual fashion, checking for applicability, etc. The formal syntax is

(selecti <integer-term>
(<range,>. proofcommandsl)
(-=nge2> . po0fc0MMandS2)

(Zrange,> . proofcommandsk)
( -. pe>dcommands i)

)
where the ranges are ISPS range expressions, i.e., a number, a sequence of numbers, or an integer
interval. This method is faster than pure symbolic execution, but we have no exact figures for
comparison yet.

6) Compose: The compose a command, now only partially implemented, will allow the user to form one
cumulative state delta out of the pat n state deltas which were applied. This command is used now
only in the case of straight line symbolic execution. Careful usage of the selecti and compose
commands can greatly speed up a proof.
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7) Defer The proof command defer allows the user to assume one or more of the current goals to be
true, and then move on to the next part of the proof. This is a partial implementation of a command
which would allow the user to move arbitrarily from one part of a proof to another, and is useful in
building up a proof interactively. The user has the option of deferring all the current goals, or only a
set of named goals. The names of the current goals are listed by the whynotgoal query. At the end of
a proof with deferred goals, a comment is attached stating how many goals have been deferred.

8) Popping: The successfully completed proof steps are recorded and labeled in the proof stack. The state
of the system at the end of each proof step is saved, so that the user may return, via the pop command.
to the state at any label. The states under that label are thereby eliminated from the proof stack and
lost. However, when popping is finally implemented correctly, the user will be able to rerun those
proof steps beneath the destination of the pop. Then pop and defer will be a useful pair of commands.

9) A new set of axioms was written to facilitate proofs dealing with substrings of "exclusive or" and other
bitstring logical operations.

10) The simplifier recognizes and utilizes (in certain cases) bitstrings with constant substrins.

C. INTERACTION WITH ISPS

Much valuable experience about the specification power and naturalness of ISPS has been gained by the C/30
work. These lessons are explained in the technical report.9

1) ISPS has been extended to allow the insertion of "assertions", "assumptions", and general state deltas
in the code. (These additional expressions were formerly called "annotations".) Assertions are just
static state deltas, while assumptions translate to preconditions of state deltas which essentially contain
the whole rest of the ISPS code as the postcondition.

2) MPISPS (TR between mark points) can be used in the precondition of a state delta. The typical use for
this facility is to express the target machine of an implementation problem in a granularity coarser than
every ISPS state change.

9
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LABORATORY OPERATIONS

The Aerospace Corporation functions as an -architect-engineer" for

national security projects, specializing in advanced military space systems.

Providing research support, the corporation's Laboratory Operations conducts

experimental end theoretical investigations that focus on the application of

scientific and technical advances to such systems. Vital to the success of

these investigations is the technical staff's wide-ranging expertise and its

ability to stay current with new developments. This expertise is enhanced by

a research program aimed at dealing with the many problems associated with

rapidly evolving space systems. Contributing their capabilities to the

research effort are these individual laboratories:

Aerophysics Laboratory: Launch vehicle and reentry fluid mechanics, heat
transfer and flight dynamics; chemical and electric propulsion, propellant
chemistry, chemical dynamics, environmental chemistry, trace detection;
spacecraft structural mechanics, contamination, thermal and structural
control; high temperature thermomechanics, gas kinetics and radiation; cw and
pulsed chemical and excimer laser development including chemical kinetics,
spectroscopy. optical resonators, bean control, atmospheric propagation, laser
effects and countermeasures.

Chemistry and Physics Laboratory: Atmospheric chemical reactions,

atmospheric optics, light scattering, state-specific chemical reactions and
radiative signatures of missile plumes, sensor out-of-field-of-view rejection,
applied laser spectroscopy, laser chemistry, laser optoelectronics, solar cell
physics, battery electrochemistry, space vacuum and radiation effects on

materials, lubrication and surface phenomena, thersionic emission, photo-
sensitive materials and detectors, atomic frequency standards, and

environmental chemistry.

Computer Science Laboratory: Program verification, program translation,

performance-sensitive system design, distributed architectures for spaceborne
computers, fault-tolerant computer systems, artificial intelligence, micro-
electronics applications, communication protocols, and computer security.

Electronics Research Laboratory: )icroelectronics, solid-state device
physics, compound semiconductors, radiation hardening; electro-optics, quantum
electronics, solid-state lasers, optical propagation and communications;

microwave semiconductor devices, microwave/millimeter wave measurements,
diagnostics and radiometry, microwave/millimeter wave therionic devices;

atomic time and frequency standards; antennas, rf systems, electromagnetic

propagation phenomena, space communication systems.

Materials Sciences Laboratory: Development of new materials: metals,

alloys, ceramics, polymers and their composites, and new forms of carbon; non-
destructive evaluation, component failure analysis and reliability; fracture

mechanics and stress corrosion; analysis and evaluation of materials at
cryogenic and elevated temperatures as well as in space and enemy-induced
environments.

Space Sciences Laboratory: NagnetospherLc, auroral and cosmic ray
physics, wave-particle interactions, sagnetospheric plasma waves; atmospheric

and ionospheric physics, density and composition of the upper atmosphere,
remote sensing using atmospheric radiation; solar physics, infrared astronomy,
infrared signature analysis; effects of solar activity, magnetic storms and

nuclear explosions on the earth's atmosphere, ionosphere and magnetosphere;
effects of electromagnetic and particulate radiations on space systems; space
instrumentation.
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