
AD-AIS4 338 LOW- LEVEL VISION ON WJARP AND THE APPLY PROGRAMMING i/I
MODEL(U) CARNEGIE-MELLON UNIV PITTSBURGH PA ROBOTICS
INST ,LGHAMEY ET AL JUL 87 CMU-RI TR B-i7

UNCLSIFIED F 6 - 1 K-153F/Gi125 Nt

11118 11.

1.5 1111I1 16

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARDS- 1963-A

Low-Level Vision on Warp
and the Apply Programming Model

Leonard G. C. Hamey, Jon A. Webb, and I-Chen Wu

CMU-RI-TR-87- 17

Low-Level Vision on Warp
and the Apply Programming Model

Leonard G. C. Hamey, Jon A. Webb, and I-Chen Wu

CMU-RI-TR-87-17

The Robotics Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

July 1987

Tbi ocirn has been approved
fr pulb:ic rxfo e and sal; its
dv:t_ ibtion is unlimited

Copyright 0 1987 Carnegie Mellon University

This research was supported in part by the Defense Advanced Research Projects Agency (Dod), monitored by the
Air Farce Avionics Laboratory under Contract F33615-81-K-1539, and Naval Electronic Systems Command under
Contract N00039-85-C-0134, in part by the U.S. Army Engineer Topographic Laboratories under Contract
DACA76-85-C-0002, and in part by the Office of Naval Research under Contracts N00014-80-C-0236, NR048-659,
and N00014-85-K-0152, NR SDRJ-007.

A venon of this paper will appem w Parakl Compqwato and Cowmpura for Anrtkiaaligemc, edied by Juan Kowalik, Bosom:
Kuw A"dnic %Nshn. 1987.

87 9 8 076

Unclassified
SECURITY CLASSIFICAIO.4 *1F T4IS &V 'When Date ZROOP01 eEI

REPORT DOCUMENTATION PAGE READ INSTRUCTtONS

-1 7BFORE CC%!PLETtYG FORM
ZJIURT N 87-17 GOVI ACCSSION NO 3. RECcIENT'S CATALO3G NUMBER

4. TITLE (-nSwb1u*t) L. TYPE OPP REPoRT & PeRIoo CovERED

Low-Level Vision on Warp and the Apply Programming Inlterim
Model- 5 PRFORMING ORG. REPORT NUMBER

. AUTiOR(s)
B. CONTRACT OR GRANT HNBC(aJ

Lona0Twrd (. C.Hmy o .Wbad1Ce uDARPA AFAL F33615-81-K-1539[LeoardG. C Haey, on . Web, nd IChe WuNESC N00039-85-C-0134
DACA76-85- C-0002

3PERFORMING ORGANIZATION NAME AND ADDRESS W 004--C03
Carnegie Mellon University NR048-659
The Robotics Institute N0001485-K0152
Pittsburgh, PA 15213 NR SDRJO007

IL CONTROLLING4 OFFICE NAME AND ADDRESS 12. REPORT DATE

July 1987
M) NUMBFR OF PAGES

16
V& ONIORING AGENCY NAME9 A ACORESS(I different ber0 Controllin 011160) IS. SECURATY CLASS. (of Itle report)

Air Force Avionics Laboratory Unclassified

130. DE9CLZASSI PrICATION/ OWNGRAIN 0

I& tigSRSBUT10ON STATMENCT (of shis Report)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (ofth 0IA.06 oe&.waet MweEach. 20. if diffeent bern RePWef

Approved for public release; distribution unlimited

I&S. &PPLEMENTARY NOTES

WS Key WORD$ (CiM. an reveree a** At noesoeean d ode"$$&r &F block .wmbh

AGATR~ACNoatw.. an reerse aide Of 00007end.M mEdentS' &V 6804b 0140641
*NAte rsUe of implementing low-level (image to image) vision algorithms on Warp,
we have understood the mapping of this class of algorithms well enough so that the
programming of these algorithms is now a straightforward and stereotypical task.
The partitioning method used is input partitioning, which provides an efficient,
natural implementation of this class of algorithms. We have developed a special
programming language called Apply, which reduces the problem of writing the algorith
for this class of programs to the task of writing the function to be applied to a
window around a single pixel. Apply provides a method for programming Warp in these

DO D 14 73 EITION GP I NOV 41%i@s SO.9EY Unclassified
IV910ele616-6.01 seCURIlTY CLASSIFICATION of TISt PAGE (*be e* # 880eee

87-9_ 8076

(20 cont'd)

applications which is easy, consistent, and efficient. Apply is application specific,
but machine independent--it is possible to implement versions of Apply which run
efficiently on a wide variety of computers. We describe implementations of Apply
on Warp, UNIX and the Hughes HBA, and sketch implementation on bit-serial processor
arrays and distributed memory machines.

Table of Contents
1 Jatroductie. 1

Li Warp Oviwlw 2
2 Low-level vsiom w Warp 2
3 Itroductis to Apply 4

3.1 The Apply Laag 3
3.2 An I Iu . . oSobel Edge Deecdw 7
3.3 lerviv inla 9
3A4Imp. 3aihIm md Magzilcede 8
3. Mul-121 Apply Modles 9

4 Apply on Warp 12
5 Apply an Uni-procenor Machines 12
6 Apply em the Hughes HBA 14
7 Apply ea Other Machines 14

7.1 Apply em blt-mid pruc r arrays 14
7.2 Apply em disbibted mmory guera purpose madnum 1

8 Summary is
9 Acknowledgments 16
10 References 16

List of Figures
Figure 1: Input Partitioning Method on Warp 3
Figure 2: Grammar of the Apply language 7
Figure 3: The Sobel Convolution Masks 7
Figure 4: An Apply Implementation of Thresholded Sobel Edge Detection 8
Fiur 5: Image buffering for Apply 13

£/
26

PEC,10

tX

I LM '

/~/

/
/

Abstract

In the course of implementing low-level (image to image) vision algorithms on Warp, we have understood the
mapping of this class of algorithms well enough so that the programming of these algorithms is now a
straightforward and steeotypical task. The partitioning method used is input partitioning, which provides an
efficient, natural implementation of this class of algorithms. We have developed a special programming language
cailed Apply, which reduces the problem of writing the algorithm for this class of programs to the task of writing the
function to be applied to a window around a single pixel. Apply provides a method for programming Warp in these
applications which is easy, consistent, and efficient. Apply is application specific, but mactAne independent-it is
possible to implement versions of Apply which run efficiently on a wide variety of computers. We describe
implementations of Apply on Warp, UNIX and the Hughes HBA, and sketch implementation on bit-serial processor
Mays and distributed memory machines.

1 Introduction
In computer vision. the first, and often most time-consumning, step in image processing is image to image

operations. In this step, an input image is mapped into an output image through some local operation that applies to
a window around each pixel of the input image. Algorithms that fall into this class include: edge detection,
smoothing, convolutions in general, contrast enhancement, color transformations, and thuesholding. Collectively,
we call these operations low-level vision. Low-level vision is often time consuming simply becaus- images ae
quite large- a typica sinm is 512x512 pixels, so the operation must be applied 262,1 tmes.

Fortnately, this sup in image processing is easy to speed up, through the use of parallelism. The operation
applied at every point in the image is oft independent from point to point, and also does not vary much in
execution time at different points in the image. This is because at this stage of image processing, nothing has been
done to diffeentia one area of the image from another, so that all armes are processed in the same way. Because of
these two characteristics, many parllel computers achieve good efficiency in these algorithms, through the use of
input parriloning [12].

We aefine a language, called Apply, which is designed for implementing these algorithms. Apply runs on the
Warp machine, which has been developed for image and signal processing. We discuss Warp, and describe its use
at this level of vision. The same Apply program can be compiled either to run on to Warp machine, or under UNIX,
and it runs with good efficiency in both cases. Therefore, the programmer is not limited to developing his programs
just on Warp, although they run much faster (typically 100 times faster) there; he can do development under the
more generally available UmNx system.

We consider Apply and its implemenation on Warp to be a significant development for image processing on
parallel compute in general. The most ctical problem in developing new parallel computer architectures is a lack
of software which efficiently uses parallelism. While building powerf new compter arditecture is becoming
easier because of the availability of custom VLSI and powerful off-the-shelf components, programming these
ahitectsma is difficul.

Parallel architectures are difficult to program because it is not yet understood how to "cover" parallelism (hide it
from the programmer) and get good performance. Therefore, the pgrmer either programs the computer in a
specialized languase which exploits features of the particular computer, and which can run on no other computer
(except in simulation), or he uses a general purpose language, such as FORTRAN, which runs on many computers
but which has additions that make it possible to progrun the computer efficiently. In either case, using these special
features is necessary to get good performance from the computer. However, exploiting these features requires
training, limits the programs to run on one or at most a limited class of computers, and limits the lifetime of a
program, since eventually it must be modified to take advantage of new features provided in a new architecture.
Therefore, the programmer faces a dilemna: he must either ignore (if possible) the special features of his computer,
limiting perfmance, or he must reduce the understandability, generality, and lifetime of his program.

It is the thesis of Apply that application dependence, in particular programming model dependence, can be
exploited to cover this parallelism while getting good performance from a parallel machine. Moreover, because of
the application dependence of the language, it is possible to provide facilities that make it easier for the programmer
to write his program, even a compared with a general-purpose language. Apply was originally developed as a tool
for writing image processing programs on UNIX systems; it now run on UNIX systems, Warp, and the Hughes -BA.
Since we include a definition of Apply as it runs on Warp, and because most parallel computers support input
partitioning, it should be possible to implement it on other supercomputers and parallel computers as welL

Apply also has implications for benchmarking of new image processing computers. Curretly, it is had to

2

compare these computers, because they all run diffntM incompatible languages and operating systems, so the same
program camot be tested on different computers. Once Apply is implemented on a computer. it is possible to fairy
test its performance on an important class of image operatiom, namely low-level vision.

Apply is not a panacea for these problems; it is an application-specific, mc -independeM, language. Since it
is based on input partitioning, it cannot generate programs which use pipelining . and it cannot be used for global
vision algorithm lI] such as connected components, Hough trasform, FFt, and hisogram.

We begin by reviewing the structure of the Warp machine, and then discuss our early work on low-level vision,
where we developed the input partioing method on Warp. Then we define and discuss Apply. Following this, we
describe how Apply might be implement on other computers.

1.1 Warp Overview
This is a brief overview of Warp; more detail is available elsewhere [2]. Warp has three components -the Warp

processor array (Warp array), the interface unit (/M), and the host. The Warp array performs the computation-
intensive routines, for example, low-level vision routines. The IU handles the input/output between the army and
the host, and genertes addresses and control signals for the Warp array. The host executes the parts of the
application programs that are not mapped onto the Warp army and supplies the data to and receives the results from
the array.

The Warp array is a linear array of ten cells, called Warp cells, which are identical and which include local data
and microcode memory, input and output ports, and a 5 MFLOPS kLU and 5 MFLOPS multiplier, for a total of 10
MPL.PS per celL The Warp array therefore has 100 MPLOPS peak power.

The Warp programming environment is based on Common Lisp. A compiler, debugger, and execution
environment are included. The programming language, called W2, is approximately at the level of PASCAL. Data
suctums such ate arrays and scalars are included. Control structures include IF, WHULE and FR. The compiler
hides from the programmer all the parallelism in the Warp machine except for the parallel execution of the Warp
cells themselves. Communication between cells is implemented using SEND and RECEE, which transfer words
between adjacent cells using an asynchronous protocol. The debugger allows single stepping and source-level
breakpoints, and allows the programmer to examine data structures within the Warp array. The execution
environment manages the microcode and programs for the stand-alone processors, and aids the programmer in
managing the memory of the external host.

Warp is integrated into the vision programming environment at Carnegie Mellon. Vision programming is based
on the Generalized Image Library [6] which supports uniform access to images in files, frame buffers, memory, and
printers. Presently, most vision programming is done in C/UNMX, using Suns and Vaxes; we are presently moving to
a Sun/Warp/Common Lisp based environment.

2 Low-level vision on Warp
We map low-level vision algorithms onto Warp by the input partitioning method. On a Warp array of ten cells,

the image is divided into ten region, by column, as shown in Figure 1. This gives each cell a tall, narrow region to
process; for 512x512 image processing, the region size is 52 columns by 512 rows. To use technical terms from
weaving, the Warp cells are the "warp" of the processing. the "weft" is the rows of the image as it passes through
the Warp array.

The image is divided in this way using a series of macros called GETROW, PUTROW, and COMPUTEROW.

3

ClC C C C C C C C C
ele• ee el

1i11 1 11 liii

0 1 2 3 4 5 6 7 8 91

52

FIgure 1: Input Partitioning Method on Warp

GETROW generates code that takes a row of an image from the external host, and distributes one-tenth of it to each
of ten cells. The programmer includes a GETROW macro at the point in his program where he wants to obtain a row
of the image; after the execution of the macro, a buffer in the internal cell memory has the data from the image row.

The GETROW MaO Works as follows. The external host sends in theimage rows as a packed array of bytes-for
a 512-byte wide image, this array consists of 128 32-bit words. These words are unpacked and converted to floating
point numbers in the interface unit. The 512 32-bit floating point nmmbers resulting from this operation are fed in
sequence to the fiat cell of the Warp array. This cell takes one-tenth of the numbers, removing them from the

stream, and passes through the rest to the next cell The first cell then adds a number of zeroes to replace the data it

has removed, so that the nmnber of data received and sent ame equal.

This process is repeated in each cell In this way, each cell obtains one-tenth of the data from a row of the image.
As the program is executed, and the process is repeated for all rows of the image, each cell sees an adjacent set of

columns of the image, as shown in Figure 1.

We have omitted certain details of GETROW- for example, usually the image row size is not an exact multiple of
ten. In this case, the GETROW macro pads the row equally on both sides by having the interface unit generate an
appr t number of mes on either side of the image row. Also, usually the area of the image each cell must see
to generate its outputs overlaps with the next cell's area In this cam, the ceil copies some of the data it receives to

the next cell. All this code is automaticaUy generated by GETROW.

PUTROW, the corresponding macro for output, takes a buffer of one-tenth of the row length from each cell and
combines them by concatenation. The output row starts as a buffer of 512 zeroes generated by the interface unit.
The first cell discards the first one-tenth of these and adds its own data to the end. The second cell does the same,
adding its data after the first. When the buffer leaves the last cell, all the zeroes have been discarded and the first
cell's data has reached the beginning of the buffer. The interface unit then converts the floating point numbers in the
buffer to zeroes and outputs it to the external host, which receives an array of 512 bytes packed into 128 32-bit
words. As with GETROW, PuTRow handles image buffers that me not multiples of ten, this time by discarding data

on both sides of the buffer before the buffer is sent to the interface unit by the last cell.

During GETROW, no computation is performed, the same applies to PUTROW. Warp's horizontal microword,

however, allows input, computation, and output at the same time. COMPUTEROW implements this. Ignoring the
complications mentioned above, COMPUTEROW consists of three loops. In the first loop, the data for the cell is mad
into a memory buffer from the previous col, as in GETROW, and at the same time the first one-tenth of the output

4

buffer is discarded, as in PUTROW. In the second loop, nine-tenths of the input row is passed through to the next
cell, as in GETROW; at the same time, nine-tenths of the output buffer is passed through, as in PUTROW. This loop is
unwound by COMPUTEROW so that for every 9 inputs and outputs passed through, one output of this cell is
computed. In the third loop, the outputs computed in the second loop are passed on to the next cell, as in PUTROW.

There ar several advantages to this approach to input partitioning:
" Work on the external host is kept to a minimum. In the Warp machine, the external host tends to be a

bottleneck in many algorithms; in the prototype machines, the external host's actual data rate to the
aray is only about 1/4 of the maximum rate the Warp machine can handle, even if the interface unit
unpacks data as it arrives. Using this input partitioning model, the external host need not unpack and
repack bytes, which it would have to if the data was requested in another order. On the production
Warp machine, the same concern applies; these machines have DMA, which also requires a regular
addressing pattern.

" Each cell sees a connected set of columns of the image, which am one-tenth of the total columns in a
row. Processing adjacent columns is an advantage since many vision algorithms (e.g., median filter [8])
can use the result from a previous set of columns to speed up the computation at the next set of columns
to the right.

" Memory requirements at a cell am minimized, since each cell must store only 1/10 th of a row. This is
important in the prototype Warp machines, since they have only 4K words memory on each cell.

* The image is processed in raster order, which has for a long time been a popular order for accessing
dna in an image. This means that many efficient algorithms, which have been developed for raster-
order image processing, can be used.

" An unexpected side effect of this programming model was that it made it easier to debug the hardware
in the Warp machine. If some portion of a Warp cell is not working, but the communication and
mg portions are, then the output from a given cell will be wrong, but it will keep its proper
position in the image. This means that the error will be extremely evident-typically a black stripe is
generated in the corresponding position in the image. It is quite easy to infer from such an image which
cen is broken!

3 Introduction to Apply
The Apply programming model is a special-purpose programming approach which simplifies the programming

task by making explicit the parallelism of low-level vision algorithms. We have developed a special-purpose
programming language called the Apply language which embodies this parallel programming approach. When

using the Apply language, the programmer writes a procedure which defines the operation to be applied at a
particrlar pixel location. The procedure conforms to the following programming model:

" It accepts a window or a pixel from each input image.

" It performs arbitrary computation, usually without side-effects.

* It returns a pixel value foz each output image.

The Apply compiler converts the simple procedure into an implementation which can be run efficiently on Warp,
or on a uni-processor machine in C under UNIX.

The idea of the Apply programming model grew out of a desire for efficiency combined with ease of
programming for a useful class of low-level vision operations. In our environment, image data is usually stored in
disk files and accessed through a library interface. This introduces considerable overhead in accessing individual
pixels so algorithms are often written to process an entire row at a time. While buffering rows improves the speed
of algorithms, it also increases their complexity. A C language subroutine implementation of Apply was developed
as a way to hide the complexities of data buffering from the programmer while still providing the efficiency
benefits. In fact, the buffering methods which we developed were more efficient than those which would otherwise

5

be used, with the result that apply implementations of algorithms were faster than previous implementations.

After implementing Apply, the following additional advantages became evident.
* The Apply programming model concentrates programming effort on the actual computation to be

performed instead of the looping in which it is imbedded. This encourages programmers to use more
efficient implementations of their algorithms. For example, a Sobel program gained a factor of four in
speed when it was reimplemented with Apply. This speedup primarily resulted from explicitly coding
the convolutions. The resulting code is more comprehensible than the eadier implementation.

* Apply programs are easier to write, easier to debug, more comprehensible and more likely to work
correctly the first time. A major benefit of Apply is that it greatly reduces programming time and effort
for a very useful class of vision algorithms. The resulting programs are also faster than the programmer
would probably otherwise achieve.

3.1 The Apply Language
The Apply language is designed for programming image to image computations where the pixels of the output

images can be computed from corresponding rectangular windows of the input images. The essential feature of the
language is that each operation is written as a procedure for a single pixel position. The Apply compiler generates a
program which executes the procedure over an entire image. No ordering constraints are provided for in the
language, allowing the compiler complete freedom in dividing the computation among processors.

Each procedure has a parameter list containing parameters of any of the following types: in, out or constant.
Input parameters are either scalar variables or two-dimensional arrays. A scalar input variable represents the pixel
value of an input image at the current processing co-ordinates. A two-dimensional array input variable represents a
window of an input image. Element (0,0) of the array corresponds to the current processing co-ordinates.

Output parameters are scalar variables. Each output variable represents the pixel value of an output image. The
final value of an output variable is stored in the output image at the current processing co-ordinates.

Constant parameters may be scalars, vectors or two-dimensional arrays. They represent precomputed constants
which are made available for use by the procedure. For example, a convolution program would use a constant array

for the convolution mask.

The reserved variables ROW and COL are defined to contain the image co-ordinates of the current processing
location. This is useful for algorithms which are dependent in a limited way on the image co-ordinates.

Figure 2 is a grammar of the Apply language. The syntax of Apply is based on Ada [1]; we chose this syntax
because it is familiar and adequate, and because we do not wish to create yet another new language syntax, nor do
we consider language syntax to be an interesting research issue. However, as should be clear, the application
dependence of Apply means that it is not an Ada subset, nor is it intended to evolve into such a subset.

Apply does not allow assignment of fixed expressions to floating variables or floating expressions to fixed
variables. Expressions mixing fixed and floating values are also disallowed. A fixed expression may be explicitly
converted to float by means of the pseudo-function FLOAT and a floating expression can be converted to fixed by
using the pseudo-function INTEGER.

6

procedure - PROCEDUM function-name (function-args)
iS

"riable-declarations
BEGIN

statements
EN function-name;

function-args - function-argument [, function-argument]*

function-argument = var-list : IN type
B BORDER conat -Wzpr I

[SAMPLE (integer-ist)
I var-list : OUT type
I var-list : CONST type

var-list : variable [, variable J *

integer-list : integer [, integer] *

variable-declarations [var-list type ;] *

type - ARRAY (range [, range]+) OF elementary-type
I elementary-type

range = int-expr .. int-expr

elementary-type sign object
I object

sign SIGNED
I UNSIGNED
I Empty

object = BY
I INTEGER~
I rTI

statements = statement (; statement]

statement = assignment-snt
I if-stint
I for-stnt
I while-stimt

assignment-strut = scalar-var = expr

scalar-var : variable
I variable (subscript-list)

subscript-list - int-expr [, int-expr]*

expr = expr + expr
expr -expr
ervpr *expr
expr expr
(expr)

pseudo-function (expr)
variable (subscript-list)

7

if-strut F- bool-expr TR
statements

END IF
IF bool-expr THE

statements
E LS

statements
imd IF

boot-xpr - bool-expr Am bool-expr
bool-Wpr OR bool-expr
NOT bool-eWpr
(bool-epr)

expr < epr
expr <- expr
expr W ewr
I rpr >- expr
I xpr > epr
I pr /- epr

for-stumt : FOR int-var IN range LOOP
statements

END LOOP

while-sumt WXHZE booi-expr LOop
statements

31W WOOP

Figure 2: Grammar of the Apply language

Variable names ae alpha-nmeric strings of arbity length, commencing with an alphabetic character. Case is
not significant, except in the preprocessing stage which is implemented by the m4 macro processor (10].

BYTE, INTEGER, and FLOAT refer to (at least) 8-bit integers, 16-bit integers, and 32-bit floating point numbers.
BYTE values are converted implicitly to INTEGER within computations. The actual siz of the type may be larger,
at the discretion of the implementor.

3.2 An Implementation of Sobel Edge Detection
As a simple example of the use of Apply, let us consider the implementation of Sobel edge detection. Sobel edge

detection is performed by convolving the input image with two 3 x 3 masks. The horizontal mask measures the
gradient of horizontal edges, and the vertical mask measures the gradient of vertical edges. Diagonal edges produce
some response from each mask, allowing the edge orientation and strength to be measured for all edges. Both masks
ae shown in Figure 3.

I 1 2 1 I I 1 0 -1 I
I 0 0 0 I I 2 0-2 I

-1 -2 -1 I I 10-1 I

Horizontal Vertical

Figure 3: The Sobel Convolution Masks.

An Apply implementation of Sobel edge detection is shown in Figure 4. The lines have been numbered for the
purposes of explanation, using the comment convention. Line raimbers are not a part of the language.

ptoh she sobal (n : in O, .1, s..wy - 1) of b e -- 1
bordew 0,

thzesh : corst float,
mag : out float)

is -- 2
borit, vert : integer; -- 3

bgin -- 4
boriz :- 4ng(-1,-1) + 2 * ini g(-1,0) + inim (-1,1) - -- 5

41%4 (1,-l) - 2 * inig(l,0) - ini .'(,l);
vert :- inimq(-l,-1) + 2 * in4g(0,-1) + in.g(,-l) - -- 6

ijn=ig(-1,l) - 2 * inlmg(0,I) - 4niag(1,1);
mag :. sqrt (F T (horiz) *F (boriz) -- 7

+ rLOAT (vert) *r AT (vrt));
if mag < thresh then -- 8

nag :- 0.0; -- 9
end if; -- 10

end sobel; -- 11

FIgure 4: An Apply Implementation of Thresholded Sobel Edge Detection

Line 1 defines the input, output and constant parameters to the function. The input parameter inifg is a window
of the input image. The constant parameter thresh is a threshold. Edges which are weaker than this threshold are

suppresed in the output magnitude image, rnig. Line 3 defines horiz and vert which are internal variables used to
hold the results of the horizontal and vertical Sobel edge operator.

Line 1 also defines the input image window. It is a 3 x 3 window centred about the current pixel processing
position, which is filled with the value 0 when the window lies outside the image. This same line declares the

constant and output parameters to be floating-point scalar variables.

The computation of the Sobel convolutions is implemented by the straight-forward expressions on lines 5 through
7. These expressions ae readily seen to be a direct implementation of the convolutions in Figure 3.

3.3 Border Handling
Border handling is always a difficult and messy process in programming kernel operations such as Sobel edge

detection. In practice, this is usually left up to the programmer, with varying results-sometimes borders are
handled in one way, sometimes another. Apply provides a uniform way of resolving the difficulty. It supports

border handling by extending the input images with a constant value. The constant value is specified as an
assignment. Line 1 of Figure 4 indicates that the input image ining is to be extended by filling with the constam

value 0.

If the programmer does not specify how an input variable is to be extended as the window crosses the edge of the
input image, Apply handles this case by not calculating the corresponding output pixeL

We plan to extend the Apply language with two other methods of border handling: extending the input image by
replicating border pixels, and allowing the programmer to write a special-purpose routine for handling border pixels.

3.4 Image Reduction and Magnification
Apply allows the programmer to process images of different sizes, for example to reduce a 512 x 512 image to a

256x256 image, or to magnify images. This is implemented via the SAMPLE parameter, which can be applied to
input images, and by using output image variables which am arrays instead of scalars. The SAMPLE parameter

specifies that the apply operation is to be applied not at every pixel, but regularly across the image, skipping pixels

I "rEN

9

s specifed in the ineger list after SAMPLE. The window arond each pixe l 1 rfs to the underlying input
imag. For example, the following program performs imp reduction, using overlapping 4x 4 windows, to reduce
a nx a image to an Aa2x a12 image:

procedure re toe(aig : in array (0..3, 0..3) of byte s=. pl. (2, 2),
outing : out byte)

Is
sa : integer;
i, j : integer;

begin
au := 0;
for i In 0..3 loop

for j in 0..3 loop
sum := sum + in(i,j);

end loop;
end loop;
outing :- sa / 16;

end reduce;

Magnification can be done by using an output image variable which is an array. The result is that, instead of a
single pixel being output for each input pixel, several pixels ae output, ma n the output image larger than the
input. The following program uses this to perform a simple image magnification, using iear interpolation:

procedu=e =mg=ify(iniag : array (-1. .1, -1..1) of byte border 0,
outing: out aeray(O..1, 0..2) of byte)

is
begin

outimage(0,) :- (in.n4 (-1,-1) + 4nv%4 (-.,0)
+ 4nJa(0,-1)+ JJ ag(0,0)) / 4;

otimuge (0, () :- (iuia (-1,0) + in-4g(-1,1)
+ in4 (0,0) + ug(0,1)) / 4;

outiuage(1,0) : (4-4 (0,-1) + inia (0,0)
+ Jnia (1,-1)+ in4n (1,0)) / 4;

outinue(1, 1) : (in (0,0) + inia (0,)
+ ini g(1,O) + 4-4ag(1,1)) / 4;

end magnify;

The semantics of SAMPLE (s1, s2) we as follows: the input window is placed so da pixel (0,0) falls on
image pixel (0,),(O2),... (Ox s2).... (mxslnxs2). Thus, SAMPLE (1, 1) is equivalent to omitting the
SAMPLE option entirely. If only one SAMPLE parameter exists, it applies to the last image dimension.

Output image arrays work by expanding the output image in either the horizontal or vertical direction, or both,
and placing the resulting output windows so that they tile the output inage without overlapping. If only one
dimension is specified, it applies to the last image dimension, as with SAMPLE.

3.5 Multi-function Apply Modules
It is a topic of current eseach to allow Apply to efficiently implement multiple functions. The current verion of

Apply requires a separate pass, producing intermediate output images, for each Apply function. If multiple Apply
functions can be compiled together in a single pass, it will be possible to perform some operations much more
efficiently. For example, many median filter algorithms use results from an adjacent calculation of the median filter
to compute a new median filter, when processing the image in raster order. This cannot be done with a single Apply
function, since it requires the algorithms to make no restrictions on the order pixels are processed. However, we can
define an efficient median filter using multiple Apply functions, and allow the compiler to figure out bow to

10

efficimily execute this proram on a pawcuhe machne, by taing advantage of adjacent results (5]. The following
3 x 3 median filber has bean carefully optimized for qsed.

The allg- id. wom in two seeps The first step produces for each pie, a aort of the pie and the pixels above
&Wa below the pixeL The rutt fom this sep as amimage dum times higher than the original, with the same width.
7he second s"e swis, baed on the middle eleama in the column, the three elemnts produced by the first seep,
prodacig the following veiatioushiqps among the amu pixels at and surrouding a pxel:

a d 9

V V V

b <ce <Ah

c f
From this diagem, it is esy to see that none of pixels S, h, b, or o can be the median, because they ame all greater or
less than at least five othor pixels in the neighborhood. Thbe only candidates for median we a, d, e, f, and i. Now we
obsere thee f< (,kdgJ, so that if f<a, fcannot be the media since it will be leas than five pixels in the

neigborhod.Similarly, if a <f. a cannot be the median. We therefore compare a andf, and keep the large. By a
similar argumemt we compare i and d and keep the smaller. This leave thm Pixels: e, and the two pixels we chose
from I(af,! and (4 1). All of these ane median candidates. We therefore sort them and choose the middle element;
this is the median.

This dartlun computes a 3 x 3 median filter with only eleven comparisoam compatible to many technaiques for
oimsn ma filte in raster-oaWe processing algorithms.

-- Sort the three eI se nts at, above, and below each pixel
procedure aediani (image in array (-I. . 1) of byte,

si. out aa(-.1,1) of byte)
is

byte a, b, c;
begin

if iaage(-1) > image(O)
then if image (0) > image (1)

then si(l,O) :iaage(-I);
si(,O) :-imagecO);
si(-1,O) :-image(l); end if;

else if iuage(-l) > iaage(l)
then si(1,O) :i zage(-l);

si(O,O) :m iage(3.);
Wi-1,0) :image(O);

else si(l,O) :image(3.);
Si(O,O) image(-l);
Wi-1,0) :- ±age(O);

end if;
end if;

else if image(O) > image(l)
then if image(-1) > image (1)

then si(1,O) :=image(O);
WiO,O) :image(-1);
Wi-.,O) :iaage(l);

else Wi(,O) : -iag(O);
si(O,O) :image(1);
Si(3,) ag(-1);

end if;
else si(1,O) :image(1);

810O,O) :=imageCO);

end if;

end wWni;

12

procedure mdian2(si in azray(-l. .2, -2.. .2) of byte samle (3, 1.),
-- ~~ ~ median out byte) S ogv h ein
Cominethesorted colms from the first etp t :v h ein

is
mnt 1, a, h;
byte A, 3;

begin
Itf2 (i-1, 0) > si (0, 0)

then If $ s(O, 0) > si (i, 0)
then h :- -1; a :- 0; 1 :- 1; end if;
else if 81i(-1.,0) > * i(1.,0)

then h -1-2; a 12; 1 :-0;
else h 1~2; a :-1; 1 U0; end if; end if;

alse if $1 (0, 0) > si (1, 0)
then if 81i(-1.,0) > ali(., 0)

then h :-0; a :-1.; 1 1-2;
else h :0; a 1-2; 1 :--1; end if;

else h :- 2.; a :a 0; 1 :- -1.; end If; end if;

if si(l, -1) > 8i(a, 1)
then A :si(l, -1.);
else A :-si(a, 1); end if;

if si~a, -1) < si(h, 1)
then B si~a, -1);
else 3 : si (h, 1.); end if;

if A > SI(a, 0)
then it 8i(m, 0) > a

then median :- si(a., 0); end if;
else if AL > 3

then median B ;
else median UA; end if; end if;

else if si(a, 0) > a
then if A > 3

then median UA;

else median :3; end if;
else median := Wina, 0); end if; end if;

end modian2;

4 Apply on Warp
T7he implementation of Apply on Warp employs straight-forward raster processing of the images, with the

processing divided among the cells as described in Section 2. The Sobel implementation in Figure 4 processes a
512x512 image on a 10 cell Warp in 330 ins, including the 1/0 time for the Warp machine.

5 Apply on Uni-processor Machines
The same Apply compiler that generates Warp code also can generate C code to be run under u~i. We have

found that an Apply implementation is usually at least as efficient as any alternative implementation on the same
machine. This efficiency results from the expert knowledge which is built into the Apply implementation but which
is too verbose for the programmer to work with explicitly. In addition, Apply focuses the programumer's attention on
the details of his computation. which often results in improved design of the basic computation.

13

The Apply imlmnaimfor urn-processor machines reies. uon a subroutine flbrary which was previously
devulaped for thi purpase. The routines ar designed t0 efficsently pass a processing kernel over so image. They
employ~ dais bufuind which allows the krnel to be shifted and saoled over the buffer with a low cauutont cost,
indeudet of the size of the kernel. Mhe Sobel iieeain igure 4 priocesses a 512 x 512 image on a Vax
11/785 in 30 seconds.

The buffering technique which we developed for Apply on m-processor machieas operates in follows. Ittitaly. a
buffr is allocssed and iodemad by an Ulli&f vector of poineen s shown in figure S. For se N xN input image which
wifl be processed with an MxM kernel NxM+(N+M-1)M-1 pointers aerre ed Thnm e cast of computing these
painr is negligible compared to the N2 cost of the actual computation being performed at all piWe locations.

Base Pointer

Spare

Row buffers

Illiffe vector

Flwe 5: Image buffering for Apply

After establishing the pointers, which reman unchanged during the remasider of the algoritlin. the first M rw
of the image me copied into the buffer in prieparation for processing.

Figure 5 displays the specific pointer arragemnent for processing a 3 x 3 kernel. When the pointer into the iliffo
vector is as shown in the figure, C language mabscipting can be used to directly acc=m the element of the kernel

ournding the firmt pixel location. Two pointer dereference operittions, possbly with small offsiets, are needed for
each ce

After the first pixe location ha been processd, the base pointer is incremented by M. The 3 x 3 kernel
surroundug the second paxe location can then be directly accessed as before. It as thus possible to shift the kernel
across the entire buffer of data with a cost of only one addition per pixel. The cost of relocating the kternel is

indpenentof the size of the kernel, so large kernels can be processed very efficiently by Apply.

When processing of an entire row is completed, the base pointer is set back to its original position aid then
inczrmented by one. This has the effect of rollinig the individual rows of the buffer upwards. The row which was
previously in the cePn-re of the 3 x 3 kernel is now at the top and the row which was previously at the bottom is now
in the centre. The row which was previously at the top is now the bottomi row but, because it is being indexed by a
new pointer, its origin has been shifted right one word. This shifting is not a problem because it affects the row into
which new data must be read. The only constrins unposed am that there must be additional buffer space available
and that the rows must be organized in memory so that there mre no overlaps when the buffer is roiled in thi
manner. Figure 5 shows an argeetwhich satisfies these consrant: (N+M-l)/M additional words of buffer
space me provided, and the initial top row, which is shifted first, is placed last in mnemory.

14

Notice tht once agam. the cost of weloating; the kernel is a single addition and does not depend on the size of the
kernel being -rcse

6 Apply on the Hughes HBA
Apply has be= implemented an the Hughes HI3A computer [15] by Richard Wallace of Carnegie Miellon and

Hughes. In this computer, several MC6800 processors ane concted on a hilb-speed video bus, with an interface
between each processor and the bus that allows it to select a sdiwiadow of the image to be stornd into its memory.
The inpu ima a en over the bus and windows we stond in each processor smomatically using DMA, A simila
murface exists for oulputig th image from each processor. Thus allows flxberal-tine image processing.

The Hughes HBA Apply' .naplmentauion is straigldiowd and similar to the Warp implementation. The image
is divided in "swathe". which we adjacentsets of rows, and each processor takes one swath. (In the Warp
implementation, the swaths wte adjacent sea of columns. instad of rows). Swaths overlap to allow each processor
to compute on a window around each pixe. The processors independently compuse the result for each swath, which
is fed back onto the video bus for display.

The HBA implementation of Apply includes a faicility for image reduction, which was rnot included in earlier
versions of Apply. The HBA implmenation sulasanples the input images, so that the iput image window refers to
the subsanpled image, not the original image as in our definiton. We prefer the approach here because it has more
general semantics. For example, using imag e iduction as we have defined it, it is possible to define image
reduction usi -ig overlapping windows as in Section 3.4.

7 Apply on Other Machines
Here we briefly outline how Apply could he implemnt~ed on other parallel machine tyes, specifically bit-serial

processo rrways, and diarbuied memory genal purpose processor machines. These two types of paralle
machines wte very common; many parallel architectures include them as a subset, or can simulate them efficiently.

7.1 Apply an bit-seral processo arrays
Bit-serial processor arrays (3] include a grea many parallel machines. They mu arays of large numbers of very

simple processors which ate able to perform a single bit operation in every machine cycle. We assume only that it is
possible to toed images into the way such that each processor can be assigned to a single pie of ihe input image,
and that differ-n processors can exchange infimation locally, that is, processors for adjacent pixels can exchange
information efficiently. Specific machines may also have other features that may make Apply more efficient than
the *mpleentation outlined heme.

In this implementation of Apply, each processor computes the result of one pixel window. Becamse these may be
momn pinek than processors, we allow a single processor to implement the action of several different processors over
a period of time, that is, we adopt the Connection Machine's idea of virtal processors (7].

The Apply program workcs as follows:
" Initialize: For x x n image processing, use a virtual processor network of nt x nt virtual processors.

" Input For each variable of type IN, send a pie to the corresponding virtual processor.

" Corurant: Broadcaust all variables of type CONST to al virtual processors.

" Window: For each IN variable, with a window size of m xnm shift it in a spiral. first one step to the
rigiM then one step up. then two steps two the left. then two steps down, and so on. storig the pixel

15

value in each virtual processor the pixel encouners, until a mxm square around each virtual processor
is filled. Iis will take m2 steps.

SCompute: Each virtual processor now has all the inputs it needs to calculate the output pixels. Perform
this computation in parallel on all processors.

Because memory on these machinmes is often limited, it may be best to combine the "window" and "compute"
steps above, to avoid the memory cost of prestoring all window elements on each virtual processor.

7.2 Apply on distributed memory general purpose machines
Machines in this class consist of a moderate number of general purpose processors, each with its own memory.

Many general-purpose pralle architectures implement this model, such as the Intel iPSC [9 or the Cosmic
Cube (14]. Other parallel architectures, such as the shared-memory BBN Butterfly [4; 13], can efficiently
implement Apply in this way; treating them as distributed memory machines avoids problems with contention for

memory.

This implemenaion of Apply works as follows:
" Input If there are n processors in use, divide the image into n regions, and store one region in each of

the n processors' memories. The actual shape of the regions can vary with the particular machine in
use. Note that compact regions have smaller borders than long, thin regions, so that the next step will
be more efficient if the regions are compact

" Window: For each IN variable, processors exchange rows and columns of their image with processors
holding an adjacent region from the image so that each processor has enough of the image to compute
the corresponding output region.

" Compute: Each processor now has enough data to compute the output region. It does so, iterating over
all pixels in its output region.

8 Summary
We have described our programming techniques for low-level vision on Warp. These techniques began with

simple row-by-row image processing macros, which are still in use for certain kinds of algorithms, and led to the
development of Apply, which is a specialized programming language for low-level vision on Warp.

We have defined the Apply language as it is currently implemented, and described its use in low-level vision
programming. Apply is in daily use at Carnegie Mellon for Warp and vision programming in general; it has proved
to be a useful tool for programming under UNIX, a well as an introductory tool for Warp programming.

The Apply language crystallizes our ideas on low-level vision programming on Warp. It allows the programmer
to treat certain messy conditions, such as border conditions, uniformly. It also allows the programmer to get
consistently good efficiency in low-level vision programming, by incorporating expert knowledge about how to
implement such operators.

One of the most exciting characterstics of Apply is that it may be possible to implement it on diverse parallel
machines. We have outlined such implemetation on bit-serial processor arrays and distributed memory machines.
Impem -tatonof Apply on other machines will make porting of low-level vision programs easier, should extend
the lifetime of programs for such supercomputers, and will make benchmarking easier.

We have shown that the Apply programming model provides a powerful simplified programming method which
is applicable to a variety of parallel machines. Whereas programming such machines directly is often difficult, the
Apply language provides a level of abstraction in which programs are easier to write, more comprehensible and

16

more likely to work correctly the first time. Algorithm debugging is supported by a version of the Apply compiler
which generates C code for uni-processor machines.

9 Acknowledgments
We would like to acknowledge the contributions made by Steve Shafer who helped develop the Apply

programming model. The Warp project is a large, and growing, project at Carnegie Mellon University and General
Electric Corporation. The authors are greatly indebted to this group, which has designed, built, and maintained the
Warp machine, as well as implemented the W2 programming language, which is the basis for the Warp
implementation of Apply. Apply itself grew out of work in the standard vision programming environment at
Carnegie Mellon, which is based on C/UNMx. Apply benefitted from the use and criticism of members of the Image

Understanding Systems and Autonomous Land Vehicles group at Carnegie Mellon.

10 References

1. Reference Manual for the Ada Programming Language. MIL-STD 1815 edition, United States Department of
Defense, AdaTEC, SIGPLAN Technical Committe on Ada, New York, N.Y. AdaTEC, 1982. Draft revised MIL-
STD 1815. Draft proposed ANSI Standard document.

2. Annaatone, M., Arnould, E., Gross, T., Kung, H.T., Lam, M., Menzilcioglu, 0., Sarocky, K. and Webb, J.A.
Warp Architecture and Implementation. Conference Proceedings of the 13th Annual International Symposium on
Computer Architecture, June, 1986, pp. 346-356.

3. Batcher, K. E. "Bit-serial parallel processing systems". IEEE Trans. Computer C-31, 5 (May 1982), 377-384.

4. BBN Laboratories. The Uniform System Approach to Programming the Butterfly Parallel Processor. 1 edition,
Cambridge, MA, 1985.

5. Fisher, A. 1. and P. T. Highnam. Communications, scheduling, and optimization in SIMD image processing.
Computer Architecures for Pattern Analysis and Machine Intelligence, IEEE, 1987. (Submitted).

6. Hamey, L., H. Printz, D. Reece, and S. Shafer. A Programmer's Guide to the Generalized Image Library.

7. Hillis, W. D.. The Connection Machine. The MIT Press, Cambridge, Massachusetts, 1985.

L T. S. Huang, G. J. Yang, and G. Y. Tang. A fast two-dimensional median filtering algorithm. International
Conference on Pattern Recognition and Image Processing, IEEE, 1978, pp. 128-130.

9. iPSC System Overview. Intel Corporation, 1985.

10. Kernighan, B. W. and D. M. Ritchie. The M4 Macro Processor. In Unix Programmer's Manual,
Bell Laboratories, Murray Hill, NJ 07974,1979.

11. Kung, IT. and Webb, J.A. Global Operations on the CMU Warp Machine. Proceedings of 1985 AIAA
Computers in Aerospace V Conference, American Institute of Aeronautics and Astronautics, October, 1985, pp.
209-218.

12 Kung, H. T. and Webb, J. A. "Mapping Image Processing Operations onto a Linear Systolic Machine".
Distributed Computing 1, 4 (1986), 246-257.

13. Olson, T. J. An Image Processing Package for the BBN Butterfly Parallel Processor. Butterfly Project Report

9, University of Rochester, Department of Computer Science, August, 1985.

14. Seitz, C. 'The Cosmic Cube". Communications of the ACM 28, 1 (January 1985), 22-33.

15. Wallace, R. S. and K_ D. Howard. HBA Vision Architecture: Built and Benchmarked. Computer Architecures
for Pattern Analysis and Machine Intelligence, IEEE, 1987. (Submitted).

'4

-mm> I

