AD-A184 338 LOW-LEVEL VISION ON WARP AND THE APPLY PROGRAMNING
MODEL (U) CARNEGIE-MELLON UNIV PITTSBURGH PR ROBOTICS
INST L G HAMEY ET AL JUL 87 CMU-RI-TR-87-17

UNCLRSSIFIED F33615-81-K-1539 F/G 12/5

o

22 s mee

FEEFEEER

EEEE

FEFE

5
==
B

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

Low-Level Vision on Warp
and the Apply Programming Model

Leonard G. C. Hamey, Jon A. Webb, and I-Chen Wu

CMU-RI-TR-87-17

o

Low-Level Vision on Warp
. and the Apply Programming Model

Leonard G. C. Hamey, Jon A. Webb, and I-Chen Wu

CMU-RI-TR-87-17

The Robotics Institute
Camegie Mellon University L O)
Pittsburgh, Pennsylvania 15213 LT e

N vir’ i1 '.od/‘ -
July 1987 @ bl
V"

This docursent has been oppxoved
{cy public release and sale; its |
di-tAbution is unh_mned. R

Copyright © 1987 Camegie Mellon University

This research was supported in part by the Defense Advanced Research Projects Agency (Dod), monitored by the
Air Force Avionics Laboratory under Contract F33615-81-K-1539, and Naval Electronic Systems Command under
Contract N00039-85-C-0134, in part by the U.S. Army Engineer Topographic Laboratories under Contract
DACA76-85-C-0002, and in part by the Office of Naval Research under Contracts NO0014-80-C-0236, NR048-659,

A version of this paper will appear in Parallel Compwuation and Computers for Artificial Intelligence, edited by Janusz Kowalik, Boston:
Kluwer Academic Publishers, 1987.

87 9 8 076

-~ ~_~~_~~"“" - e

.Unclassified i Z
SECURITY CLASSIFICATION OF “p1§ PaGE ‘When Ders Entere) ﬂ// é(0

REPORT DOCUMENTATION PAGE BEF e S L UCTIONS
- h"ﬂﬂ? NUMBEA P. GOVT ACCESSION NOJ 3. RECIMENT 'S CATALDG NUMBER
U-RI-TR-87-17
4. TITLE (and Subiitie) 3. TYPE OF REPORT & PERIOD COVERED
Low-Level Vision on Warp and the Apply Programming | Interim
mde] S. PERFORMING ORG. REPOART NUMBLER
Li.*mﬁ'oim 8. CONTRACT OR GRANT NUMBER(®)
L dG. C. H Jon A. Webb I-Ch | DARPA AFAL F33615-81-K-1539
eonar . . Hamey, Jon A. Webb, and I-Chen Wu NESC N00039-85-C-0134
DACA76-85-C-0002
I'S. PEAFORMING ORGANIZATION NAME AND ADDRESS ONR NO0O014-80-C-0236
Carnegie Mellon University NRO48- 659
The Robotics Institute N00014-85-K-0152
Pittsburgh, PA 15213 NR SDRJ-007
10. CONTROLLING OFFICE NAME ANO ADDRESS 12. REPORT DATE
July 1987
"73. NUMBER OF PAGLS
16
" TE MONITORING AGENCY NANME & ADORESS(I! diiferent frem Consrelling Otfice) | 13. SECURITY CLASS. (of this repert)
Air Force Avionics Laboratory Unclassified
M Ia. DECL ASSIFICATION/ OOWNGRADING |
SCHEDULE

18. NSTRIBUTION STATEMENT (of this Repert)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (ol the sbetract sntered in Black 20, If ditlerent from Report)

Approved for public release; distribution unlimited

18. SUPPLEMENTARY NOTES

9. KLY WORDS (Continue en reverse sige it y and idonsily by diech mandes)
3?- ABSTRACT (Conttnue an roverse olde I ary and Id u oy bloch u-.on) . ‘
n the course of implementing low-level (image to image) vision algorithms on Warp,

we have understood the mapping of this class of algorithms well enough so that the
programming of these algorithms is now a straightforward and stereotypical task.

The partitioning method used is input partitionina, which provides an efficient,
natural implementation of this class of algorithms. We have developed a special
programming language called Apply, which reduces the problem of writing the algorith
for this class of programs to the task of writing the function to be applied to a
window around a single pixel. Apply provides a method for programming Warp in these

Do, :2:",, 1473 ¢€oiTion ©F) wOV 83 13 OBSOLETE Unclassified
SECUMTY CLASSIZICATION OF Tiis PAGE (9hen Dots Bntesed)

87_9 8 076

/08 §303-00¢° 0001

(20 cont'd)
applications which is easy, consistent, and efficient. Apply is application specific,
but machine independent--it is possible to implement versions of Apply which run
efficiently on a wide variety of computers. We describe implementations of Apply

on Warp, UNIX and the Hughes HBA, and sketch implementation on bit-serial processor
arrays and distributed memory machines.

Table of Contents

1 Introductioa

1.1 Warp Overview
2 Low-level vision on Warp
3 Introductioa to Apply

3.1 The Apply Language

3.2 An Implementation of Sobel Edge Detection

3.3 Border Handling

3.4 Image Reduction and

3.5 Multi-function Apply Modules
4 Apply on Warp
S Apply on Uni-processor Machines
6 Apply on the Hughes HBA
7 Apply on Other Machines

7.1 Apply on bit-serial processor arrays

7.2 Apply on distribated memory general purpose machines
8 Summary
9 Acknowiedgments
10 References

RaRRRBRenwunannm

List of Figures
Figure 1: Input Partitioning Method on Warp
Figure 2: Grammar of the Apply language
Figure 3: The Sobel Convolution Masks
Figure 4: An Apply Implementation of Thresholded Sobel Edge Detection

Figure 5: Image buffering for Apply

maqqu

INgpe STV

ECrep

2

pu N

. e r———

/ Abstract
~a
In the course of implementing low-level (image to image) vision algorithms on Warp, we have understood the
mapping of this class of algorithms well enough so that the programming of these algorithms is now a
straightforward and stereotypical task. The partitioning method used is input partitioning, which provides an
efficient, natural implementation of this class of algorithms. We have developed a special programming language
called Apply, which reduces the problem of writing the algorithm for this class of programs to the task of writing the
function to be applied 10 a window around a single pixel. Apply provides a method for programming Warp in these
applications which is easy, consistent, and efficient. Apply is application specific, but machine independent—it is
possible to implement versions of Apply which run efficiently on a wide variety of computers. We describe
implementations of Apply on Warp, UNIX and the Hughes HBA, and sketch implementation on bit-serial processor
arrays and distributed memory machines. r\

R -

1 Introduction

In computer vision, the first, and often most time-consuming, step in image processing is image to image
operations. In this step, an input image is mapped into an output image through some local operation that applies to
a window around each pixel of the input image. Algorithms that fall into this class include: edge detection,
smoothing, convolutions in general, contrast enhancement, color transformations, and thresholding. Collectively,
we call these operations low-level vision. Low-level vision is often time consuming simply becauss images are
quite large —a typical size is S12x 512 pixels, so the operation must be applied 262,144 times.

Fortunately, this step in image processing is easy to speed up, through the use of parallelism. The operation
applied at every point in the image is often independent from point to point, and also does not vary much in
execution time at different points in the image. This is because at this stage of image processing, nothing has been
done to differentiate one area of the image from another, so that all areas are processed in the same way. Because of
these two characteristics, many parallel computers achieve good efficiency in these algorithms, through the use of
input partitioning (12].

We adefine a language, called Apply, which is designed for implementing these algorithms. Apply runs on the
Warp machine, which has been developed for image and signal processing. We discuss Warp, and describe its use
at this level of vision. The same Apply program can be compiled either 10 run on the Warp machine, or under UNIX,
and it runs with good efficiency in both cases. Therefore, the programmer is not limited to developing his programs
just on Warp, although they run much faster (typically 100 times faster) there; he can do development under the
more genenally available UNIX system.

We consider Apply and its implementation on Warp to be a significant development for image processing on
parallel computers in general. The most critical problem in developing new parallel computer architectures is a lack
of software which efficiently uses parallelism. While building powerful new computer- architectures is becoming
easier because of the availability of custom VLSI and powerful off-the-shelf components, programming these
architectures is difficuit.

Parallel architectures are difficult to program because it is not yet understood how to ‘‘cover’’ parallelism (hide it
from the programmer) and get good performance. Therefore, the programmer either programs the computer in a
specialized language which exploits features of the particular computer, and which can run on no other computer
(except in simulation), or be uses a general purpose language, such as FORTRAN, which runs on many computers
but which has additions that make it possible to program the computer efficiently. In either case, using these special
features is necessary to get good performance from the computer. However, exploiting these features requires
training, limits the programs to run on one or at most a limited class of computers, and limits the lifetime of a
program, since eventually it must be modified to take advantage of new features provided in a new architecture.
Therefore, the programmer faces a dilemna: he must either ignore (if possibie) the special features of his computer,
limiting performance, or be must reduce the understandability, generality, and lifetime of his program.

It is the thesis of Apply that application dependence, in particular programming model dependence, can be
exploited to cover this parallelism while getting good performance from a parallel machine. Moreover, because of
the application dependence of the language, it is possible to provide facilities that make it easier for the programmer
to write his program, even as compared with a general-purpose language. Apply was originally developed as a tool
for writing image processing programs on UNIX systems; it now runs on UNIX systems, Warp, and the Hughes HBA.
Since we include a definition of Apply as it runs on Warp, and because most parallel computers support input
partitioning, it should be possible (o implement it on other supercomputers and parallel computers as well.

Apply also has implications for benchmarking of new image processing computers. Currently, it is hard to

compare these computers, because they all run different, incompatible languages and operating systems, so the same
program cannot be tested on different computers. Once Apply is implemented on a computer, it is possible to fairly
test its performance on an important class of image operations, namely low-level vision.

Apply is not a panacea for these problems; it is an application-specific, machine-independent, language. Since it
is based on input partitioning, it cannot generate programs which use pipelining, and it cannot be used for global
vision algorithms [11] such as connected componeats, Hough transform, FFT, and histogram.

We begin by reviewing the structure of the Warp machine, and then discuss our early work on low-level vision,
where we developed the input partitioning method on Warp. Then we define and discuss Apply. Following this, we
describe how Apply might be implement on other computers.

1.1 Warp Overview

This is a brief overview of Warp; more detail is available elsewhere [2]. Warp has three components —the Warp
processor arnay (Warp array), the interface unit (/U), and the host. The Warp array performs the computation-
intensive routines, for example, low-level vision routines. The IU handles the input/output between the array and
the host, and generates addresses and control signals for the Warp array. The bost executes the parts of the
spplication programs that are not mapped onto the Warp array and supplies the data to and receives the results from

the array.

The Warp amray is a linear array of ten cells, called Warp cells, which are identical and which include local data
and microcode memory, input and output ports, and a S MFLOPS ALU and 5§ MFLOPS multiplier, for a total of 10
MFLOPS per cell. The Warp array therefore has 100 MFLOPS peak power.

The Warp programming environment is based on Common Lisp. A compiler, debugger, and execution
environment are included. The programming language, called W2, is approximately at the level of PASCAL. Data
structures such are arrays and scalars are included. Control structures include IF, WHILE, and FOR. The compiler
hides from the programmer all the parailelism in the Warp machine except for the parallel execution of the Warp
cells themselves. Communication between cells is implemented using SEND and RECEIVE, which transfer words
between adjacent cells using an asynchronous protocol. The debugger allows single stepping and source-level
breakpoints, and ailows the programmer to examine data structures within the Warp array. The execution
environment manages the microcode and programs for the stand-alone processors, and aids the programmer in
managing the memory of the external host.

Warp is integrated into the vision programming environment at Camegie Mellon. Vision programming is based
on the Generalized Image Library [6] which supports uniform access to images in files, frame buffers, memory, and
printers. Presently, most vision programming is done in C/UNIX, using Suns and Vaxes; we are presently moving to
2 Sun/Warp/Common Lisp based environment.

2 Low-level vision on Warp

We map low-level vision algorithms onto Warp by the input partitioning method. On a Warp array of ten cells,
the image is divided into ten regions, by column, as shown in Figure 1. This gives each cell a tall, narrow region to
process; for 512x 512 image processing, the region size is 52 columns by 512 rows. To use technical terms from
weaving, the Warp cells are the *‘warp*’ of the processing; the ‘‘weft” is the rows of the image as it passes through
the Warp array.

The image is divided in this way using a series of macros called GETROW, PUTROW, and COMPUTEROW.

d

/N

12

clclclelclelclelclc
ele|eje|e|e|e|ec|e]e
{rfrfrjalafrfrf1|2
ifrfalatajrfalajalals
0123456789%

52

Figure 1: Input Partitioning Method on Warp
GETROW generates code that takes a row of an image from the extemal host, and distributes one-tenth of it to each

of ten cells. The programmer includes a GETROW macro at the point in his program where he wants to obtain a row
of the image; after the execution of the macro, a buffer in the internal cell memory has the data from the image row.

The GETROW macro works as follows. The extemnal host sends in the image rows as a packed armray of bytes —for
a 512-byte wide image, this array consists of 128 32-bit words. These words are unpacked and coaverted to floating
point numbers in the interface unit. The 512 32-bit floating point numbers resulting from this operation are fed in
sequence to the first cell of the Warp array. This cell takes one-tenth of the numbers, removing them from the
stream, and passes through the rest to the next cell. The first cell then adds a number of zeroes to replace the data it
has removed, so that the number of data received and sent are equal.

This process is repeated in each cell. In this way, each cell obtains one-tenth of the data from a row of the image.
As the program is executed, and the process is repeated for all rows of the image, each cell sees an adjacent set of
columns of the image, as shown in Figure 1.

We bave omitted certain details of GETROW - for example, usually the image row size is not an exact multiple of
ten. In this case, the GETROW macro pads the row equally on both sides by having the interface unit generate an
appropriate number of zeroes on either side of the image row. Also, usually the area of the image each cell must see
to generate its outputs overlaps with the next cell’s area. In this case, the cell copies some of the data it receives to
the next cell. All this code is automatically generated by GETROW.

PUTROW, the corresponding macro for output, takes a buffer of one-tenth of the row length from each cell and
combines them by concatenation. The output row starts as a buffer of 512 zeroes generated by the interface unit.
The first cell discards the first one-tenth of these and adds its own data to the end. The second cell does the same,
adding its data after the first. When the buffer leaves the last cell, all the zeroes have been discarded and the first
cell’s data has reached the beginning of the buffer. The interface unit then converts the floating point numbers in the
buffer to zeroes and outputs it to the extemnal host, which receives an array of 512 bytes packed into 128 32-bit
words. As with GETROW, PUTROW handles image buffers that are not multiples of ten, this time by discarding data
on both sides of the buffer before the buffer is sent to the interface unit by the last cell.

During GETROW, no computation is performed; the same applies to PUTROW. Warp's horizontal microword,
however, allows input, computation, and output at the same time. COMPUTEROW implements this. Ignoring the
complications mentioned above, COMPUTEROW consists of three loops. In the first loop, the data for the cell is read
into a memory buffer from the previous cell, as in GETROW, and at the same time the first one-tenth of the output

buffer is discarded, as in PUTROW. In the second loop, nine-tenths of the input row is passed through to the next
cell, as in GETROW; at the same time, nine-tenths of the output buffer is passed through, as in PUTROW. This loop is
unwound by COMPUTEROW so that for every 9 inputs and outputs passed through, one output of this cell is
computed. In the third loop, the outputs computed in the second loop are passed on to the next cell, as in PUTROW.

There are several advantages to this approach to input partitioning:

e Work on the external host is kept to a minimum. In the Warp machine, the external host tends to be a
bonleneckmmanyalgondnns mthepmtotypemachxm the extemnal host’s actual data rate to the
array is only about 1/4'h of the maximum rate the Warp machine can handle, even if the interface unit
unpacks data as it arrives. Using this input partitioning model, the external host need not unpack and
repack bytes, which it would have to if the data was requested in another order. On the production
Warp machine, the same concern applies; these machines have DMA, which also requires a regular
addressing pattern.

o Each cell sees a connected set of columns of the image, which are one-tenth of the total columns in a
row. Processing adjacent columns is an advantage since many vision algorithms (e.g., median filter [8])
can use the result from a previous set of columns to speed up the computation at the next set of columns
to the right.

e Memory requirements at a cell are minimized, since each cell must store only 1/10™ of a row. This is
important in the prototype Warp machines, since they have only 4K words memory on each cell.

e The image is processed in raster order, which bas for a long time been a popular order for accessing
data in an image. This means that many efficient algorithms, which have been developed for raster-
order image processing, can be used.

© An unexpected side effect of this programming model was that it made it easier to debug the hardware
in the Warp machine. If some portion of a Warp cell is not working, but the communication and
microsequencing portions are, then the output from a given cell will be wrong, but it will keep its proper
position in the image. This means that the error will be extremely evident—typically a black stripe is
generated in the corresponding position in the image. 1t is quite easy to infer from such an image which
cell is broken!

3 Introduction to Apply
The Apply programming model is a special-purpose programming approach which simplifies the programming

task by making explicit the parallelism of low-level vision algorithms. We have developed a special-purpose
programming language cailed the Apply language which embodies this parallel programming approach. When
using the Apply language, the programmer writes a procedure which defines the operation to be applied at a
particrlar pixel location. The procedure conforms to the following programming model:

e It accepts a window or a pixel from each input image.

o It performs arbitrary computation, usually without side-effects.

o It returns a pixel value for each output image.

The Apply compiler converts the simple procedure into an implementation which can be run efficiently on Warp,
or on a uni-processor machine in C under UNIX.

The idea of the Apply programming model grew out of a desire for efficiency combined with ease of
programming for a useful class of low-level vision operations. In our environment, image data is usually stored in
disk files and accessed through a library interface. This introduces considerable overhead in accessing individual
pixels so algorithms are often written to process an entire row at a time. While buffering rows improves the speed
of algorithms, it also increases their complexity. A C language subroutine implementation of Apply was developed
as a way to hide the complexities of data buffering from the programmer while still providing the efficiency
benefits. In fact, the buffering methods which we developed were more efficient than those which would otherwise

Py

be used, with the result that apply implementations of algorithms were faster than previous implementations.

After implementing Apply, the following additional advantages became evident.

o The Apply programming model concentrates programming effort on the actual computation to be
performed instead of the looping in which it is imbedded. This encourages programmers to use more
efficient implementations of their algorithms. For example, a Sobel program gained a factor of four in
speed when it was reimplemented with Apply. This speedup primarily resulted from explicitly coding
the convolutions. The resulting code is more comprehensible than the earlier implementation.

e Apply programs are easier to write, easier to debug, more comprehensible and more likely to work
correctly the first time. A major benefit of Apply is that it greatly reduces programming time and effort
for a very useful class of vision algorithms. The resulting programs are also faster than the programmer
would probably otherwise achieve.

3.1 The Apply Language

The Apply language is designed for programming image to image computations where the pixels of the output
images can be computed from corresponding rectangular windows of the input images. The essential feature of the
language is that each operation is written as a procedure for a single pixel position. The Apply compiler generaies a
prdgram which executes the procedure over an entire image. No ordering coanstraints are provided for in the
language, allowing the compiler complete freedom in dividing the computation among processors.

Each procedure has a parameter list containing parameters of any of the following types: in, out or constant.
Input parameters are either scalar variables or two-dimensional arrays. A scalar input variable represents the pixel
value of an input image at the current processing co-ordinates. A two-dimensional array input variable represents a
window of an input image. Element (0,0) of the array corresponds to the current processing co-ordinates.

Output parameters are scalar variables. Each output variable represents the pixel value of an output image. The
final value of an output variable is stored in the output image at the current processing co-ordinates.

Constant parameters may be scalars, vectors or two-dimensional arrays. They represent precomputed constants
which are made available for use by the procedure. For example, a convolution program would use a constant array
for the convolution mask.

The reserved variables ROW and COL are defined to contain the image co-ordinates of the current processing
location. This is useful for algorithms which are dependent in a limited way on the image co-ordinates.

Figure 2 is a grammar of the Apply language. The syntax of Apply is based on Ada [1]; we chose this syntax
because it is familiar and adequate, and because we do not wish to create yet another new language syntax, nor do
we consider language syntax to be an interesting research issue. However, as should be clear, the application
dependence of Apply means that it is not an Ada subset, nor is it intended to evolve into such a subset.

Apply does not allow assignment of fixed expressions to floating variables or floating expressions to fixed
variables. Expressions mixing fixed and floating values are also disallowed. A fixed expression may be explicitly
converted to float by means of the pseudo-function FLOAT and a floating expression can be converted to fixed by
using the pseudo-function INTEGER.

Jfunction-args

var-list

integer-list

type

range

elementary-type

sign

object

Statements

Sstatement

assignment-stmt

scalar-var

subscript-list

expr

function-argument

variable-declarations

-
=

.
]

PROCEDURE function-name (function-args)
b]
variable-declarations
BEGIN
statements
END function-name;

Junction-argument [, function-argument]*

var-list : IN type
{ BORDER const-expr]
[SAMPLE (imteger-iist)]
var-list : OUT type
var-list : CONST type

variable [, variable]*
integer [, integer 1*

[var-list : type ; 1*

ARRAY (range [, range 1+) OF elementary-type
elementary-type

int-expr .. int-expr
sign object

object

SIGNED
UNSIGNED

Empty

BYTE

INTEGER

FLOAT

Statement [; statement]*

assignment-stmt
if-stmt

for-stmt
while-stmt

scalar-var := expr

variable
variable (subscript-list)

int-expr [, imt-expr]*

expr + expr

expr - expr

expr * expr

expr /| expr

(expr)

pseudo-function (expr)
variable (subscript-list)

if-stmt ::= IF bool-expr THEN
statements
END IF
| I¥ bool-expr THEN
statements
ELSE
statements
Ir

bool-expr ::= bool-expr AND bool-expr
bool-expr OR bool-expr
NOT bool-expr

(bool-expr)

expr < expr

expr <= expr

expr = expr

expr >= expr

expr > expr

expr /= expr

Jor-stmt ::= FOR jnt-var IN range LOOP
statements
END LOOP

while-stmt ::= WHILE bool-expr LOOP
Statements
END LOOP
Figure 2: Grammar of the Apply language
Variable names are alpha-numeric strings of arbitrary length, commencing with an alphabetic character. Case is
not significant, except in the preprocessing stage which is implemented by the m4 macro processor (10].

BYTE, INTEGER, and FLOAT refer to (at least) 8-bit integers, 16-bit integers, and 32-bit floating point numbers.
BYTE values are converted implicitly to INTEGER within computations. The actual size of the type may be larger,
at the discretion of the implementor.

3.2 An Implementation of Sobel Edge Detection

As a simple example of the use of Apply, let us consider the implementation of Sobel edge detection. Sobel edge
detection is performed by convolving the input image with two 3x3 masks. The horizontal mask measures the
gradient of horizontal edges, and the vertical mask measures the gradient of vertical edges. Diagonal edges produce
some response from each mask, allowing the edge orientation and strength to be measured for all edges. Both masks
are shown in Figure 3.

I 1 2 1 | I 1 0 -1 |
I 0 0 0 | I 2 0 -2 |
| -1 -2 =1 | | 1 0 -1 |
Horizomal Vertical

Figure 3: The Sobel Convolution Masks.

An Apply implementation of Sobel edge detection is shown in Figure 4. The lines have been numbered for the
purposes of explanation, using the comment convention. Line numbers are not a part of the language.

procedure sobel (inimg : in array (~1..1, -1..1) of byte --1

border 0,
thresh : const float,
nag : out float)
is -— 2
horiz, vert : integer; -3
begin -~ 4
horiz := inimg(~1,-1) + 2 * inimg(-1,0) + inimg(~1,1) = -- §
inimg(l,-1) - 2 * inimg(1,0) - inimg(1l,1);
vert := inimg(-1,-1) + 2 * inimg(0,~1l) + inimg(l,-1) - =~- 6
inimg(-1,1) - 2 * inimg(0,1) - inimg(l,1);
mag := sqrt (FLOAT (horiz) *FLOAT (horiz) -7
+ FLOAT (vert) *FLOAT (vert)) ;
if mag < thresh then -~ 8
nag = 0.0; -9
end if; -- 10
end sobel; -- 11

Figure 4: An Apply Implementation of Thresholded Sobel Edge Detection

Line 1 defines the input, output and constant parameters to the function. The input parameter inimg is a window
of the input image. The constant parameter thresh is a threshold. Edges which are weaker than this threshold are
suppressed in the output magnitude image, mag. Line 3 defines horiz and vert which are internal variables used to
hold the results of the horizontal and vertical Sobel edge operator.

Line 1 also defines the input image window. It is a 3x3 window centred about the current pixel processing
position, which is filled with the value 0 when the window lies outside the image. This same line declares the
constant and output parameters to be floating-point scalar variables.

The computation of the Sobel convolutions is implemented by the straight-forward expressions on lines 5 through
7. These expressions are readily seen to be a direct implementation of the convolutions in Figure 3.

33 Border Handling

Border handling is always a difficult and messy process in programming kemel operations such as Sobel edge
detection. In practice, this is usually left up to the programmer, with varying results — sometimes borders are
handled in one way, sometimes another. Apply provides a uniform way of resolving the difficulty. It supports
border handling by extending the input images with a constant value. The conmstant value is specified as an
assignment. Line 1 of Figure 4 indicates that the input image inimg is to be extended by filling with the constant
value 0.

If the programmer does not specify how an input variable is to be extended as the window crosses the edge of the
input image, Apply handles this case by not calculating the corresponding output pixel.

We plan to extend the Apply language with two other methods of border handling: extending the input image by
replicating border pixels, and allowing the programmer to write a special-purpose routine for handling border pixels.

3.4 Image Reduction and Magnification

Apply allows the programmer to process images of different sizes, for example to reduce a 512512 image to a
256x256 image, or to magnify images. This is implemented via the SAMPLE parameter, which can be applied to
input images, and by using output image variables which are arrays instead of scalars. The SAMPLE parameter
specifies that the apply operation is to be applied not at every pixel, but regularly across the image, skipping pixels

as specified in the integer list after SAMPLE. The window around each pixel still refers to the underlying input
image. For example, the following program performs image reduction, using overlapping 4 x4 windows, to reduce
a nx nimage t0 an a/2 % n/2 image:
procedure reduce (inimg : in arrzay (0..3, 0..3) of byte sample (2, 2),
outimg : out byte)
is

sum : integer;
1,35 : integer;
begin

sum := 0;
for i in 0..3 loop
for j in 0..3 loop
sum := sum + in(i, j);
end loop;
end loop;
outimg := sum / 16;
end reduce;

Magnification can be done by using an output image variable which is an array. The result is that, instead of a
single pixel being output for each input pixel, several pixels are output, making the output image larger than the
input. The following program uses this to perform a simple image magnification, using linear interpolation:

procedure magnify(inisg : in azray(-1..1, -1..1l) of byte border 0,
outimg: out arrzay(0..1, 0..1) of byte)
is
begin
outimage(0,0) := (inimg(-1l,~1) + inimg(-1,0)
+ inimg(0,-1)+ inimg(0,0)) / 4;
ocutimage(0,1) := (inimg(-1,0) + inimg(-1,1)
+ inimg(0,0) + inimg(0,1)) / 4;
outimage(1,0) := (inimg(0,-1) + inimg(0,0)
+ inimg(l,-1)+ inimg(1,0)) / 4;
outimage(l,1) := (inimg(0,0) <+ inimg(0,1)
+ inimg(1,0) + inimg(1,1)) / 4&;
end magnify;

The semantics of SAMPLE (s1,s2) are as follows: the input window is placed so that pixel (0,0) falls on
image pixel (0,0),(0.52),...,(0.nxs2),...,(mxsl,nxs2). Thus, SAMPLE (1,1) is equivalent to omitting the
SAMP LE option entirely. If only one SAMPLE parameter exists, it applies to the last image dimension.

Output image arrays work by expanding the output image in either the horizontal or vertical direction, or both,
and placing the resulting output windows so that they tile the output image without overlapping. If only one
dimension is specified, it applies to the last image dimension, as with SAMPLE.

3.5 Multi-function Apply Modules

It is a topic of curreat research to allow Apply to efficiently implement multiple functions. The current version of
Apply requires a separate pass, producing intermediate output images, for each Apply function. If multiple Apply
functions can be compiled together in a single pass, it will be possible to perform some operations much more
efficiently. For example, many median filter algorithms use resuits from an adjacent calculation of the median filter
to compute a new median filter, when processing the image in raster order. This cannot be done with a single Apply
function, since it requires the algorithms to make no restrictions on the order pixels are processed. However, we can
define an efficient median filter using multiple Apply functions, and allow the compiler to figure out how to

10

efficiently execute this program on a particular machine, by taking advantage of adjacent results (S]. The following
33 median filser has been carefully optimized for speed.

The algorithm works in two steps. The first step produces, for each pixel, a sort of the pixel and the pixels above
and below that pixel. The result from this siep is an image three times higher than the original, with the same width.
The second step sorts, based on the middle element in the column, the three elements produced by the first step,
producing the following relationships among the nine pixels at and surrounding a pixel:

a d g
v \4 v

b < e < &

v \4 v

c [i

From this diagram, it is easy to see that none of pixels g, A, b, or ¢ can be the median, because they are all greater or
less than at least five other pixels in the neighborhood. The only candidates for median are g, d, ¢, f, and i. Now we
observe that f<{e,h.d,g), so that if f<a, f cannot be the median since it will be less than five pixels in the
peighborhood. Similarly, if a <f, a cannot be the median. We therefore compare a and £, and keep the larger. By a
similar argument, we compare i and d and keep the smaller. This leaves three pixels: e, and the two pixels we chose
from {a,f}, and (d,i}. All of these are median candidates. We therefore sort them and choose the middle element;
this is the median.

This algorithm computes a 3 x3 median filter with only eleven comparisons, comparable to many techniques for
optimizing median filter in raster-order processing algorithms.

11

-- Sort the three elements at, above, and below each pixel
procedure medianl (image in array(-1..1) of byte,
si out array(-1..1, 1) of byte)
is
byte a, b, c;

if image(-1l) > image(0)
then if image (0) > image(l)
then 8i(1,0) := image(-1);
81 (0,0) := image(0):;
8i(-1,0) := image(l); end if;
else if image(-1l) > image(l)
then 8i(1,0) := image(-1l);
8i(0,0) := image(l):
si(-1,0) := image(0):
else 3i(l,0) := image(l):;
8i(0,0) := image(-1l):;
8i(-1,0) := image(0);
end if;
end if;
else if image(0) > image(l)
then if image(-1l) > image(l)
then 3$i(1,0) := image(0);
81(0,0) := image(-1);
8i(-1,0) := image(l);
else 8i(1,0) := image(0):
$i(0,0) := image(l):
si(-1,0) := image(-1);
end if;
else 8i(1,0) := image(l):;
81(0,0) := image(0);
8i(-1,C) := image(-1);
end if;
end if;
end medianl;

|

12

procedure median2(si in arrzay(-1..1, -1..1) of byte sample (3, 1),
median out byte)
== Combine the sorted columnsg from the first step to give the median.

is
int 1, m, h;
byte A, B;
begin
if si(-1, O0) > 8i (0, 0)
then if i (0, 0) > si(1, O)
then h = =1; m := 0; 1 := 1; end if;
else if 8i(-1,0) > s8i(1,0)
then h = =1; m = 1;: 1 := 0;
else h = 1; m = -1; 1 := 0; end if; end if;
else if i (0, 0) > si(1, 0)
then if si(-1,0) > 8i(1,0)
then h = 0; m := -1; 1 := };
else h = 0; m := 1; 1 := =-1; end if;
else h := 1; m := 0; 1 := -1; end if; end if;

if si(l, -1) > si(m, 1)

then A := gi(l, -1);

else A := gi(m, 1); end if;
if si(m, -1) < si(h, 1)

then B := gi(m, ~-1);

else B := gi(h, 1); end if;

iAf A > si(m, 0)
then if gi(m, O0) > B
then median := gi(m, 0); end if;
else if A > B
then median := B;
else median := A; end if; end if;
else if gi(m, 0) > B
then if A > B
then median := A;
else median := B; end if;
else median :m= gi(m, 0); end if; end if;

end median2;

4 Apply on Warp

The implementation of Apply on Warp employs straight-forward raster processing of the images, with the
processing divided among the cells as described in Section 2. The Sobel implementation in Figure 4 processes a
512x512 image on a 10 cell Warp in 330 ms, including the 1/O time for the Warp machine.

5 Apply on Uni-processor Machines

The same Apply compiler that generates Warp code also can generate C code (0 be run under UNIX. We have
found that an Apply implementation is usually at least as efficient as any alternative implementation on the same
machine. This efficiency results from the expert knowledge which is built into the Apply implementation but which
is too verbose for the programmer to work with explicitly. In addition, Apply focuses the programmer’s attention on
the details of his computation, which often results in improved design of the basic computation.

13

The Apply implementation for uni-processor machines relies upon a subroutine library which was previously
deveioped for this purpose. The routines are designed (o efficiently pass a processing kemnel over an image. They
employ data buffering which allows the kemnel to be shifted and scrolled over the buffer with a low constant cost,

independent of the size of the kernel. The Sobel implementation in Figure 4 processes a 512 x 512 image on a Vax
11/78S in 30 seconds.

The buffering technique which we developed for Apply on uni-processor machines operates as follows. Initially, a
buffer is allocated and indexed by an Illiffe vector of pointers as shown in figure 5. For an Nx N input image which
will be processed with an AfxAf kemel, N x M +(N+M—1)/M~]1 pointers are required. The cost of computing these
pointers is negligible compared to the N2 cost of the actual computation being performed at all pixel locations.

Base Pointer L"J"'L“ l I

0 | ST
——
SCTT T T

Row buffers

Illiffe vector

Figure 5: Image buffering for Apply

After establishing the pointers, which remain unchanged during the remainder of the algorithm, the first M rows
of the image are copied into the buffer in preparation for processing.

Figure 5 displays the specific pointer arrangement for processing a 3x 3 kernel. When the pointer into the Illiffe
vector is as shown in the figure, C language subscripting can be used to directly access the elements of the kemnel
sourrounding the first pixel location. Two pointer dereference operstions, possibly with small offsets, are needed for
each access.

After the first pixel location has been processed, the base pointer is incremented by M. The 3x3 kemel
surrounding the second pixel location can then be directly accessed as before. It is thus possibie to shift the kemel
across the entire buffer of data with a cost of only one addition per pixel. The cost of relocating the kemnel is
independent of the size of the kemnel, so large kernels can be processed very efficiently by Apply.

When processing of an entire row is completed, the base pointer is set back to its original position and then
incremented by one. This has the effect of rolling the individual rows of the buffer upwards. The row which was
previously in the centre of the 3 x 3 kemel is now at the top and the row which was previously at the bottom is now
in the centre. The row which was previously at the top is now the bottom row but, because it is being indexed by a
new pointer, its origin has been shifted right one word. This shifting is not a problem because it affects the row into
which new data must be read. The only constraints imposed are that there must be additional buffer space available
and that the rows must be organized in memory 3o that there are no overlaps when the buffer is rolled in this
manner. Figure 5§ shows an arrangement which satisfies these constraints: (N+M-1)/M additional words of buffer
space are provided, and the initial top row, which is shifted first, is placed last in memory.

14

Notice that once again, the cost of relocating the kemel is a single addition and does not depend on the size of the
kernel being processed.

6 Apply on the Hughes HBA

Apply has been impiemented on the Hughes HBA computer [15] by Richard Wallace of Camegie Mellon and
Hughes. In this compuser, several MC68000 processors are connected on a high-speed video bus, with an interface
between each processor and the bus that allows it 10 select a subwindow of the image to be stored into its memory.
The input image is sent over the bus and windows ase stored in each processor automatically using DMA. A similar
interface exists for outputing the image from each processor. This allows flexible real-time image processing.

The Hughes HBA Apply implementation is straightforward and similar to the Warp implementation. The image
is divided in ‘‘swaths’’, which are adjacent sets of rows, and each processor takes one swath. (In the Warp
implementation, the swaths are adjacent sets of columns, instead of rows). Swaths overlap to allow each processor
to compute oa a window around each pixel. The processors independently compute the result for each swath, which
is fed back onto the video bus for display.

The HBA implementation of Apply inciudes a facility for image reduction, which was not included in earlier
versions of Apply. The HBA implementation subsamples the input images, so that the input image window refers to
the subsampled image, not the original image as in our definition. We prefer the approach here because it has more
general semantics. For example, using image reduction as we have defined it, it is possible to define image
reduction us:1g overlapping windows as in Section 3.4.

7 Apply on Other Machines

Here we briefly outline how Apply could be implemented on other parallel machine types, specifically bit-serial
processor mrays, and distributed memory general purpose processor machines. These two types of parallel
machines are very common; many parallel architectures include them as a subset, or can simulate them efficiently.

7.1 Apply on bit-serial processor arrays

Bit-serial processor arrays {3] include a great many parallel machines. They are arrays of large oumbers of very
simpie processors which are able to perform a single bit operation in every machine cycle. We assume only that it is
possibile to load images into the aray such that each processor can be assigned to a single pixel of the input image,
and that different processors can exchange information locally, that is, processors for adjacent pixels can exchange
information efficiently. Specific machines may also have other features that may make Apply more efficient than

In this implementation of Apply, each processor computes the result of one pixel window. Because there may be
more pixels than processors, we allow a single processor to implement the action of several different processors over
a period of time, that is, we adopt the Connection Machine's idea of virtual processors (7).

The Apply program works as follows:
o Initialize: For nx n image processing, use a virtual processor network of n x n virtual processors.

o Input: For each varisble of type IN, send a pixel to the corresponding virtual processor.
o Constant: Broadcast all varisbles of type CONST to all virtual processors.

o Window: For each IN variable, with a window size of mxm, shift it in a spiral, first one step to the
right, then one step up, then two steps two the left, then two steps down, and so on, storing the pixel

15

value in each virtual processor the pixel encounters, until a mxm square around each virtual processor
is filled. This will take m? steps.
o Compute: Each virtyal processor now has all the inputs it needs to calculate the output pixels. Perform
this computation in paraliel on all processors.
Because memory on these machines is often limited, it may be best to combine the ‘‘window’’ and ‘‘compute’’
steps above, to avoid the memory cost of prestoring all window elements on each virtual processor.

72 Apply on distributed memory general purpose machines

Machines in this class consist of a moderate number of general purpose processors, each with its own memory.
Many general-purpose parallel architectures implement this model, such as the Intel iPSC [9] or the Cosmic
Cube [14). Other parallel architectures, such as the shared-memory BBN Butterfly [4; 13], can efficiently
implement Apply in this way; treating them as distributed memory machines avoids problems with contention for
memory.

This implementation of Apply works as follows:

o Input: If there are n processors in use, divide the image into n regions, and store one region in each of
the n processors’ memories. The actual shape of the regions can vary with the particular machine in
use. Note that compact regions have smaller borders than long, thin regions, so that the next step will
be more efficient if the regions are compact.

o Window: For each IN variable, processors exchange rows and columns of their image with processors
bolding an adjacent region from the image so that each processor has enough of the image to compute
the corresponding output regioa.

o Compute: Each processor now has enough data to compute the output region. It does so, iterating over
all pixels in its output region.

8 Summary

We have described our programming techniques for low-level vision on Warp. These techniques began with
simple row-by-row image processing macros, which are still in use for certain kinds of algorithms, and led to the
development of Apply, which is a specialized programming language for low-level vision on Warp.

We have defined the Apply language as it is currently implemented, and described its use in low-level vision
programming. Apply is in daily use at Carnegie Mellon for Warp and vision programming in geoeral; it has proved
to be a useful tool for programming under UNIX, as well as an introductory tool for Warp programming.

The Apply language crystallizes our ideas on low-level vision programming on Warp. It allows the programmer
to treat certain messy conditions, such as border conditions, uniformly. It also allows the programmer to get
consistently good efficiency in low-level vision programming, by incorporating expert knowledge about how to
implement such operators.

One of the most exciting characteristics of Apply is that it may be possible to implement it on diverse parallel
machines. We have outlined such implementations on bit-serial processor arrays and distributed memory machines.
Implementation of Apply on other machines will make porting of low-level vision programs easier, should extend
the lifetime of programs for such supercomputers, and will make benchmarking easier.

We have shown that the Apply programming model provides a powerful simplified programming method which
is applicable to a variety of parallel machines. Whereas programming such machines directly is often difficult, the
Apply language provides a level of abstraction in which programs are easier to write, more comprehensible and

16

more likely to work comectly the first time. Algorithm debugging is supported by a version of the Apply compiler
which generates C code for uni-processor machines.

9 Acknowledgments

We would like to acknowledge the contributions made by Steve Shafer who helped develop the Apply
programming model. The Warp project is a large, and growing, project at Carnegie Melion University and General
Electric Corporation. The authors are greatly indebted to this group, which has designed, built, and maintained the
Warp machine, as well as implemented the W2 programming language, which is the basis for the Warp
implementation of Apply. Apply itself grew out of work in the standard vision programming environment at
Camegie Mellon, which is based on C/UNIX. Apply benefitted from the use and criticism of members of the Image
Understanding Systems and Autonomous Land Vehicles group at Carnegie Mellon.

10 References

1. Reference Manual for the Ada Programming Language. MIL-STD 1815 edition, United States Department of
Defense, AJaTEC, SIGPLAN Technical Committe on Ada, New York, N.Y. AdaTEC, 1982. Draft revised MIL-
STD 1815. Draft proposed ANSI Standard document.

2. Annaratone, M., Amould, E., Gross, T., Kung, H.T., Lam, M., Menzilcioglu, O., Sarocky, K. and Webb, J.A.
Warp Architecture and Implementation. Conference Proceedings of the 13th Annual International Symposium on
Computer Architecture, June, 1986, pp. 346-356.

3. Batcher, K. E. "Bit-serial parallel processing systems". I[EEE Trans. Computer C-31, 5 (May 1982), 377-384.

4. BBN Laboratories. The Uniform System Approach to Programming the Butterfly Parallel Processor. 1 edition,
Cambridge, MA, 1985.

§. Fisher, A.J. and P. T. Highnam. Communications, scheduling, and optimization in SIMD image processing.
Computer Architecures for Pattern Analysis and Machine Intelligence, IEEE, 1987. (Submitted).

6. Hamey, L., H. Printz, D. Reece, and S. Shafer. A Programmer’s Guide to the Generalized Image Library.
7. Hillis, W. D.. The Connection Machine. The MIT Press, Cambridge, Massachusetts, 1985.

8. T.S. Huang, G.J. Yang, and G. Y. Tang. A fast two-dimensional median filtering algorithm. Intemational
Conference on Pattern Recognition and Image Processing, [EEE, 1978, pp. 128-130.

9. iPSC System Overview. Intel Corporation, 1985.

10. Kemighan, B. W. and D. M. Ritchie. The M4 Macro Processor. In Unix Programmer's Manual,
Bell Laboratories, Murray Hill, NJ 07974, 1979.

11. Kung, H.T. and Webb, J.A. Global Operations on the CMU Warp Machine. Proceedings of 1985 AJAA
Computers in Aerospace V Conference, American Institute of Aeronautics and Astronautics, October, 1985, pp.
209-218.

12, Kung, H. T. and Webb, J. A. "Mapping Image Processing Operations onto a Linear Systolic Machine".
Distributed Computing 1, 4 (1986), 246-257.

13. Olson, T. J. An Image Processing Package for the BBN Butterfly Parallel Processor. Butterfly Project Report
9, University of Rochester, Department of Computer Science, August, 1985.

14. Seitz, C. "The Cosmic Cube”. Communications of the ACM 28, 1 (January 1985), 22-33.

15. Wallace, R. S. and M. D. Howard. HBA Vision Architecture: Built and Benchmarked. Computer Architecures
for Pattern Analysis and Machine Intelligence, IEEE, 1987. (Submitted).

