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Abstract

The relationship between two different descriptions of eigenmodes in

a torus is investigated. In one the eigenmodes are similar to Fourier

modes in a cylinder and are highly localised near a particular rational

surface. In the other they are the s-eeled'ballooning modes which

extend over many rational surfaces. U! a model which represents both

drift waves and resistive interchanges we investigate the transition from

one of these structures to the other. / In this simplified model the

transition depends on a single parameter which embodies the competition

between toroidal coupling of Fourier modes (which enhances ballooning) and

variation in frequency of Fourier modes from one rational surface to

another (which diminishes ballooning). As the coupling is increased each

Fourier mode acquires a sideband on an adjacent rational surface and these

sidebands then expand across the radius to form the extended mode

described by the conventional ballooning mode approximation. This

analysis shows that the .allooning approximation is appropriate for drift

waves in a tokamak but not for resistive interchanges in a pinch. In the

latter the conventional ballooning effect is negligible but they may

nevertheless show a ballooning feature. This is localised near the same

rational surface as the primary Fourier mode and so does not lead to a

radially extended structure.
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1. INTRODUCTION

Two essentially distinct descriptions have been used for short wave

length perturbations, such as drift waves and resistive instabilities, in

an axisymmetric toroidal plasma. The first regards toroidal curvature as

a small effect and expresses the plasma perturbation in terms of coupled

cylindrical Fourier modes with toroidal and poloidal mode number n and

m. In the absence of toroidal effects each Fourier mode is centered on

its appropriate rational surface where m = nq(r) and its properties are

determined by the magnetic shear, density gradient etc. at the rational

surface; derivatives of the shear and density gradient are neglected. In

this approximation modes with different m are almost degenerate. In the

case of drift waves an "outgoing wave" boundary condition applied to each

Fourier mode leads to the so-called 'shear damping' effect.

On the other hand, in the second description it is precisely the

degeneracy of the Fourier modes which is exploited. This leads to the

ballooning representation
2 

in which disturbances centered on neighboring

rational surfaces are strongly coupled to produce a radially extended

structure - similar to the quasi-mode of Roberts and Taylor
3 

- which

"balloons" on one side of the torus. The coupling reduces the shearI 4damping of drift waves - and it may disappear altogether if the coupling

is sufficiently strong.

In this paper we discuss the relationship between these two opposing

views of mode structure in toroidal systems. In Section 2 we introduce a

simple model for drift waves in which Fourier modes are coupled but not

degenerate. In Section 3 we show that a similar model can describe
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resistive interchange instabilities. In Sections 4 and 5 we use these

models to explore the transition from a Fourier mode description to a

ballooning mode description as the toroidal curvature is increased.

This investigation shows that as the transition occurs, each

Fourier mode first acquires a ballooning component centered on

neighboring rational surfaces and this structure then expands across the

radius to form the conventional ballooning mode. However, for resistive

interchanges the overlap between Fourier modes on adjacent rational

surfaces is exponentially small and this extended ballooning structure

does not arise. Instead an alternative ballooning effect, discussed in

Section 6, can occur. In this the ballooning contribution is centered on

the same rational surface as the primary Fourier mode. Consequently

although the mode "balloons" it does not have the quasi-mode character.

In Section 7 we discuss the relationship of these results to the

conventional ballooning mode approximation.

2. DRIFT WAVES

A simple model for drift waves in a large aspect ratio tokamak has

been described in Refs. 5, 6 and 7. The perturbed potential is written in

the form:

4= 0(0,p) exp i(n- mo6) - i (1)

where p is the radial distance from the rational surface m0 = nq(r)

and B is the poloidal angle. Then 0(0,p) satisfies
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(L0 + L1 + L2) 0 (2)

where

62 _ b- - t- i.W6) Eis 2
2

L0  ff a _- b - .... - • -) (I + iksp) (3)
0 p (WT + ) w ka. 

W.. isinO b
L I  -2E n - cose + _n ) , (4)

n k 6P

L - 2 *(52 -

In Eqs. (3)-(5), k = nq/r , s = (r/q)(dq/dr) , a
2 

= c
2
m.T./e

2
B

2

I 1 1

b = k
2
a
2  

=qec = rn/Rr where r is the density scale length

and 1 = T e/T . The diamagnetic frequency w. = (kcTe/eBrn) is expanded

about a local maximum with L;
2 = (1/-.)(d

2
w./dr

2
) and the parameter i6

represents the destabilising effect of electron Landau resonance and

trapped electrons. This model can be obtained from the general equation

for drift waves in a tokamak, given by Tang, by taking the long

wavelength limit ka << 1 and neglecting temperature gradients.
1

The operator L0  describes drift waves in a cylinder (e.g. as

discussed by Pearlstein & Berk 
I
) and depends only on the shear and density

gradient at the rational surface itself; L describes the toroidal

effects and L2  introduces the radial variation of w* .

To simplify the problem further we consider the regime c s,c
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b , 6 < 1 , in which w = w. Then Eq. (2) becomes

[f - o _ + ix)2 - E(Ccos + is sine a_)- , -2 0 (6)
&

2  
+ csx

where x = kps The three parameters in the model are then

C 2E
CF c E n 1 (7)

bs bs 2  k 2L2 bs 4 (1 + U)

and the eigenvalue X is related to the mode frequency w by

= 1 (. L - 1 + b(I + r) - i6) (8)

bs
2
(1 + -) *

In the approximation w = w. the parameter 02 is real and there is

no explicit dissipation in the model. However, in the usual way, we

suppose that w has a small positive imaginary part in order to justify

neglect of initial value terms. Correspondingly a2 acquires a small

negative imaginary part.

3. RESISTIVE INSTABILITIES

Another instability which can be represented by a model similar to

Eq. (6) is the localised electrostatic resistive interchange3 ,9 in a large

aspect ratio toroidal pinch. In this case the model can be derived from

the high mode number resistive ballooning equation discussed by Bateman

and Nelson.10  In the electrostatic limit y < yn21VS1 2  [where Y is the
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growth rate, Tj the resistivity and the mode has an eikonal

representation * * exp(inS) ] this equation takes the form

Y B.V 1 B*V - p0 2 
1 1 + 2p' H x V = 0 (9)

a.n2 - B
2 

- B
2

where p0 is the density and K is the field line curvature.

In a large aspect ratio pinch, with magnetic field

B = 30 (r)(1 - A(r) cosO] , Eq. (9) can be further simplified.

Reverting to the form (1) for the perturbations and taking the long

wavelength limit it becomes

() +a(i- + ix ) 2+ a (Pi Cose + is I(Rn Kx2 a)0
()0

where the three principal parameters are

2  S r
2
p8  

r
2

= , * KR  2 .111)
YTAn22s2  rp R cs2(yA) 2 (nqsL)2

Here A is the Alfv4n time, S is the magnetic Reynolds number and rp

is the pressure scale length. The other parameters p1 I P2 , Rc are

related to the magnetic field strength by

1 d(mB 0 ) dt1  AR aF - P, 1  Rc - A P2  = (S
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and L
-2 

= - (1/a)(d
2
(z/dr

2
) represents the radial variation of the

cylindrical curvature term a

4. DEGENERACY AND ITS REMOVAL

We have noted in Sections 2 and 3 that drift waves and resistive

instabilities in a large aspect ratio torus can both be described by the

model equation

[2- a
2 ( + ix) 2 - c(cose + is sine -

2
- xJ2 0

2x2  
(8 ax

(12)

(where we set apl = a 2 
= 

c in the resistive case). If Fourier modes

- exp(-ime) are introduced into Eq. (12) it can be seen that a

determines their radial width, K describes the difference between modes

on neighboring rational surfaces and E describes the coupling between

modes. Thus, despite the many simplifications, the model retains the

features necessary for both Fourier mode and ballooning mode descriptions.

The distinction between drift and resistive instabilities lies in the sign

of 0
2 

. For drift waves 0
2 
> 0 and for resistive instabilities

o
2 

< 0 . In this section we concentrate on drift waves.

We treat both c and K as first order small quantities and seek a

solution of Eq. (12) in the form
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4,= C u (x) exp(-ime) (13)

where

u (x) u(x - m) = exp[-io(x - m)
2
/2] (14)t m

satisfies the zero-order equation

d2 
2(m -X)2~y (15)

with X0  - ic

Each u (x) represents a separate wave propagating from its rationalm

surface x = m • When o has the small imaginary part referred to in

Section 2 the amplitude of this wave decreases with distance from the

rational surface. The eigenvalue X0  corresponds to a drift wave

frequency

rqs= bI+ )+i[6_ n 1 (16

which exhibits the competition between the destabilising term 6 and the

'shear damping' - (r ns/Rq) associated with the 'outgoing wave'

feature
( } 

of the u (x)

So far, the modes u m(x) are degenerate and the coefficients cm

: -7-



are completely arbitrary. The appropriate combination of c for the
m

toroidal problem is determined when the additional terms of Eq. (12) are

introduced and the degeneracy is removed. Then we have

L01 1 + r' 2 )0 0 - '0 - "10O= 0 (17)

where L0 is the differential operator which appears in Eq. (15) and L1

and CL2 are the remaining operators of Eq. (12). The quantity , can2ca1

be annihilated by the operator

f dx 4 dO u (x) exp(imO)

This leads to a recurrence relation for the c
m

(k<U 2> + K <x2u2>)C. + I (<UmU1> + s <umDu I > ) C

1 ~ 2 > mm+ m m+1 m+1 +

(19)

+ u £ l >- s <umDu 1 >) cm I  = 0

where

d
. f...dx and D (20)

Using the explicit expression (14) for the u (x) , Eq. (19) can be
m

reduced to a form well-known in the theory of Mathieu functions:
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q(cm+1 + CmI ) (a - m
2 )  

(21)

where

q = 0s) exp -1 ) and a = - (22)

Note that the symbol q is used here to conform with standard notation

for Mathieu functions: it should not be confused with the toroidal

'safety factor' in Section 1. The boundary conditions on Eq. (21) are

that c i 0 as ImI + - and the required solutions are related to the

'period-' Mathieu functions ce2 n and se 2n

5. STRUCTURE OF TOROIDAL EIGENMODES

The preceding section shows that the structure of the toroidal

eigenmodes is determined, through the recurrence relation (21), by the

parameter q . This parameter incorporates the influence of toroidal

curvature, the width of a basic Fourier mode and the variation of

diamagnetic frequency with 'he location of its resonant surface.

When Iqi is small the fundamental eigenvalue of Eq. (21) is11

a = -2q
2 + 7 q4 + .. 3)

and the associated coefficients c decrease rapidly with m,
m
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co  = , c, = -2q , c2  = q
2
/2 (24)

Consequently, when JqJ is small only c0  is significant. Recalling

that a factor - exp(-im 0) was extracted from the perturbation (Eq. (I))

this shows that the toroidal eigenmode comprises a single, well-localised

Fourier mode on the rational surface nq(r) = m0 with weak and rapidly

decreasing sidebands on adjacent rational surfaces. These weak sidebands

provide the only ballooning effect. There is a small reduction in shear

damping (compared to Eq. (16)) but this is due to the variation in w,

across the plasma profile rather than to toroidal coupling.

On the other hand, when Jqi is large the toroidal eigenmodes take

on an entirely different structure. In one of them c varies slowlym

with m and Eq. (2') may be replaced by a differential equation, treating

m as a continuous variable

d 
2
c

q + (m
2 
- a + 2q) c = 0 (25)d2 m

Then the fundamental eigenvalue is

a = 2q - iql
/2  

(26)

and the corresponding c arem

c m  = exp(-im2
/2ql/ 2

) (27)

(where we take 0 < Arg q < 2n ). Thus the c are essentially constant
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from m = 0 out to m - ±JqJ114 and fall off exponentially beyond this

point.

There is also another elgenmode when q is large. In this cm

exp(imt) - which corresponds to replacing the poloidal angle 6 by

6 + ic in a mode with slowly varying c . This signifies that this

second mode is centered on the inside edge of the torus (6 = 7) rather

than the outside (0 = 0). Writing c = e imc' , where c' varies
m m m

slowly, one finds for this eigenmode

a = -2q + ql/
2  

(28)

and

c = exp(imn - m
2
/2ql

/2
) (29)m

with -n < Arg q < it.

At large q , therefore, the toroidal eigenmodes extend over many

rational surfaces, involve many poloidal m numbers and have a strong

ballooning character. This is the situation described by the conventional

ballooning mode approximation. If Re(q) > 0 the more strongly

ballooning mode is centered at 0 = ?t , (,n the inside edge of the torus)

and the shear damping of this mode is reduced by toroidal coupling if

s > 1/2 - in agreement with the detailed computations of toroidal drift

modes by Hastie, Hesketh and Taylor.
7
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In a typical tokamak ( B - 3T , Te - Ti - 2 keV , a 20 cm.

R - 100 cm ) q is - 102 - 10
3 

for drift waves with ka - I so thatI

such drift waves lie well within the ballooning regime. They are

therefore well-described by the conventional ballooning mode approximation

(see Section 7).

6. ANOTHER BALLOONING EFFECT

For resistive interchanges we replace c by -io R and the coupling

coefficient q becomes

-E R URS R) exp(- O (30)

R

where we have again set p, = p2 and eR = ap2

In a typical pinch experiment aR is large and qR is exponentially

small. Consequently resistive interchanges do not show the ballooning

effect discussed so far and are not described by the conventional

ballooning mode approximation. However, they may show a different

ballooning effect which, although small when R is large, is not

exponentially small.

To investigate this alternative ballooning effect we return to the

model equation (10)
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2+ 2 ( --- + ix) 2 + + p1 cose + isP 2 sine ) -.. x2 ]p = 0

(31)

where we drop the subscripts on a and K but explicitly indicate the

normal and geodesic curvatures since the geodesic curvature p2  plays a

dominant role when a >> 1 •

We now observe that when a >> I the basic Fourier mode is very

narrow and therefore introduce a new length scale y = ai/ 2x ; then

)2 i a a p2 a
2+ - (2y - + - sine

6e2  ol/2 a

(32)

+ [- - 2( 1 + IL) + a (I + plCOS)$= 0ay 6 2 02 -

We now seek a solution

r 0 (y,8) + *1(y,e) + (33)
a1/2

and, to ensure maximal ordering, we take a a , K 02  Then in

lowest order f0 = %0(y) and in first order

iasp 2  Sine d o0
1- a sinO + i1 (y) (34)

In second order, after annihilating * by integration over e , we have

-13-



2'-' _ y2 o2 + 0 (35)

Thus at large a , 0 differs slightly from the basic Fourier mode

and there is a small shift in the eigenvalue. However, the interesting

feature is the appearance of the contribution 01 , proportional to sine

This is a "ballooning" component located near the same rational surface as

the primary Fourier mode 0 and proportional to 0r3/
2 

. It is thus

quite distinct from the ballooning components considered hitherto which

are located on rational surfaces adjacent to that of the primary mode and

are exponentially small in a . It is, however, the effect referred to as

"ballooning" in discussions of interchange modes by some Soviet authors

(see, for example, Ref. 12).

This 'centered' ballooning effect can be regarded as a result of

coupling between the harmonics of the basic Fourier modes u which are
m

usually neglected. These harmonics are given by Hermite functions

k 1/2 2 - -

u2x W) exp[ - ] (x - m)- m (36)
F 2 in

with k > 0. If we return to Section 4 and include these harmonics in

the expansion of 0 0 so that

k k
00 = cm u(x) exp(-ime) (37)

km

then in place of the recurrence relation (21) we obtain (retaining only

the dominant geodesic curvature p2 in Sq. (31) and ignoring K

-14-



k as P2 ~(<ukD UI> c I <uk D u1 > c1 1I

kka mm + + m in-1i -II

(38)

with czkj2k+ •

Bearing in mind that ck for k * 0 is small compared to cU and
m i

that a- cx0 , we have for k = 0

(a -a)C
0  0O'2 ~(<u0D uy mncA <uO D u > c1

1  (39)
0 m m m+ + 1M1

and for k *0

k -p 2  (<uk D ., > - < D k u., co _ ) (40)

(ak - a 0 )ck m + +I-m M1=

so that

(a - a)c a0 sp2 <uO O > c - <0 DO>
0 i m m+ I in+1 m > M-I 1 1 +

a2,2 2 ____{o
012Ju l>< D uO >c0 - <uI uo,~u

1* (a) m in+1
1 m+1 M+2 M+2 in+1 Um CM

< D I><u A Di u1c - < D uO_ >CO - ]}

m M1 M-1 m M-1 2m21

(41)
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Compared to the earlier calculation of Section 4, there is a change in the

coefficient of c
o 

equivalent to a shift in the eigenvalue a by an
m

amount

a
2s 

2p
2

0 2 1 uX >2+ <um D u 12

1 * j m 
0  m + l m r - i4 2

Eq. (40) shows that there is also an additional component of the

perturbation, given by

a0s P2  c o - i (m+ 1)e E) <u -' D u 
0

> U -' (43 )

m (a-a) n+1 4m+1

The individual matrix elements in (42) and (43) involve the overlap

between Hermite functions centered on different rational surfaces and are

consequently exponentially small when a >> I . However, the expressions

(42) and (43) are not themselves exponentially small. It can be shown,

using the Hermite generating functions, that for large a the expression
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(42) is -02
2
p
2
/o

2 
and agrees with the shift in eigenvalue given by Eq.0 2

(35). Similarly the expression (43) is - %sP 2 /a and agrees with Eq.

(34) at large a . Note again, that although this contribution to the

perturbation is proportional to exp(-i(m+1)e) it is localised near the

th
m rational surface, (i.e. near the same surface as the primary

component c
0 

).rM
m

7. THE BALLOONING REPRESENTATION

2,7In the usual theory of high n ballooning modes one maps the

poloidal angle e on to an extended coordinate ri with -- < il < and

writes the perturbation in the form

0(x,n) = A(x) e
- i x ( n

+ k) f(n,x) (44)

Then A(K) is taken to be a slowly varying 'envelope' (on the scale

x in ) and to lowest order in (I/n ), f(in,x) satisfies a 'local'

one-dimensional eigenvalue equation in the extended n] coordinate (with

x fixed). For the present drift wave model this one-dimensional equation

is

[0 d2
S + ( k) 2+ E(cos i+ s( Y + k)sin T+ jcx

2 + X]f(tl,x) 0 , (45)
d-n

2



where X(k.x) is the local eigenvalue.

The parameter k , representing an as yet undetermined radial

wave-number, and an equation for the radial envelope function A(x) are

determined in higher orders of the expansion in (1/i7) . Thus k is

obtained from the equation

U (x,k) = 0 (46)6k

and A(x) satisfies the equation

1 52
) d

2
A x

2 
F2

),
+ (X- X - -- )A = 0 (47)

2 ak
2 dx

2  0 2 ax
2

The condition for self-consistency of the theory, that A(x) vary

slowly, is satisfied therefore if

a / ,> I (48)

~2

To assess this criterion in the present model we can determine

X(k,x) from Eq. (45) by perturbation in E and K . [This expansion is

quite distinct from the ballooning expansion in i/F .3 In leading order

the outgoing wave condition
7 

implies

f0 = exp[i(n + k1212o] (49)

with eigenvalue . = -io • In next orderI0

• -18-



[ 
2 d2

-2 + (tr + k) 2 
+ XJfl

+ [(cosl + s( n + k)sin )- Kx
2  

+ X1]fO

Annihilating f1 by the operation f djf0  (recalling that a nas a

small positive imaginary part) we find

ki = Kx
2 - 2Kq cosk (51

where q is the parameter introduced in Section 4.

The requirement of Eq. (46) can therefore be satisfied by k = ..0,

k =it , corresponding to ballooning modes centered on the inside or the

outside of the torus, consistent with the discussion of Section 5. It

then follows from Eq. (51) that

= 2cq and - = 2K (52)

ok 
2  6x

2

and the self-consistency condition (48) reduces to Iqj >> 1 . This is

again precisely what we expect in the light of the discussion given in

Section 5 and confirms that the ballooning approximation is valid when

Iqf >> 1

When IqI is small the ballooning approximatio:. 2. ,!,valid; A(x)

-19-



does not vary slowly and the consistency condition (48) is not satisfied.

Nevertheless the ballooning formalism may sometimes be useful even when

jq < 1 . This is because the Ansatz

O(x,T) = e- X f() (53)

satisfies the model equation exactly if K/E can be neglected. For

drift waves this is never possible when qi < 1 since KI/E must then

be large. However, for resistive interchanges, when q is given by Eq.

(30) and aR is large, we may have both jqj and K/e small. In such

an event the lowest order approximation of ballooning theory (analogous to

Eq. (45)) provides a good estimate for the correct eigenvalue (and f(i)

incorporates the alternative ballooning effect discussed in Section 6) -

even though the formal development of the ballooning approximation breaks

down.

8. SUMMARY AND CONCLUSIONS

We have investigated the connection between two seemingly opposed

views of toroidal eigenmodes. In one the eigenmodes are basically

cylinder Fourier modes -u (x)exp(-im@) localised near a particularm

rational surface. In the other, the eigenmodes are ballooning structures

which extend over many rational surfaces. Using a model which represents

both drift waves and electrostatic resistive interchange instabilities, we

have determined the parameter which determines whether the eigenmodes are

Fourier-like or ballooning-like. This parameter q , defined in Eq. (22),

-20-



embodies the competing physical effects of coupling between Fourier modes

(which enhances the ballooning tendency) and variation in the frequency of

Fourier wodes from one rational surface to another (which reduces the

ballooning tendency).

As q increases, the conventional ballooning effect first manifests

itself through coupling of the fundamental Fourier modes u
0
(x) on

m

adjacent surfaces. This produces a toroidal eigenfunction consisting of a

primary Fourier mode with weak 'sidebands' on neighboring rational

surfaces. These 'sidebands' then increase in amplitude and extend across

the radius until the 'quasi-mode'-like structure of the conventional

toroidal ballooning mode is produced. When Jqi is large the ballooning

mode extends over - q
1
/
4 

rational surfaces.

This analysis supports the criterion given earlier
2 

for the validity

of the conventional ballooning approximation in a toroidal system and

shows that this approximation is appropriate for drift waves in a tokamak

but not for resistive interchanges in a pinch. For resistive interchanges

the conventional ballooning effect is negligible but they may show another

ballooning effect. This involves a sideband centered on the same rational

surface as the primary Fourier mode and does not lead to a radially

extended quasi-mode structure. It can be considered as the result of

indirect coupling between harmonics of the Fourier modes. Surprisingly,

although the conventional ballooning theory then breaks down, its lowest

order approximation may still be useful.
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