

Sec. 1

.

July 1987

UILU-ENG-87-2242 ACT-79

COORDINATED SCIENCE LABORATORY

College of Engineering Applied Computation Theory

AD-A184 278

BTIC FILE COPY

A CHARACTERIZATION OF SEPARATING PAIRS AND TRIPLETS IN A GRAPH

DTIC

ELECTE SEP 1 0 1987

Arkady Kanevsky Vi**j**aya Ramachandran

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Approved for Public Release. Distribution Unlimited.

0 3 6

8

UNCLASSIFIED

ſ

ことのことで、「ころ」

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

AD A184278

PLUELAND ARABUTEL ARABAL ARTIAL		16. RESTRICTIVE N	ARKINGS								
Unclassified		None	· · · · · · · · · · · · · · · · · · ·								
SECURITY CLASSIFICATION AUTHORITY		3. DISTRIBUTION/AVAILABILITY OF REPORT									
N/A 25. DECLASSIFICATION/DOWNGRADING SCHEDULE N/A 4. PERFORMING ORGANIZATION REPORT NUMBER(S) (307 70)		Approved for public release; distribution unlimited 5. MONITORING ORGANIZATION REPORT NUMBER(S)									
						(ACT-79) UILU-ENG-87-2242					
						NAME OF PERFORMING ORGANIZATION	SO. OFFICE SYMBOL	74 NAME OF MONI	TORING ORGAN	ZATION	
Coordinated Science Lab	(If applicable)	National Sci.	Found., Se	miconductor s Program	Res. Corp						
University of Illinois	N/A	The second second									
1101 W. Springfield Avenue		1800 G. Stree	t, N.W., Wa	shington, D	C 20550						
Urbana, Illinois 61801		P.O. Box 12053, Research Triangle Park, NC 2									
		800 N. Quincy	Street, Ar	lington, VA	22217						
NAME OF FUNDING SPONSORING	Sb. OFFICE SYMBOL	9. PROCUREMENT	SAL COL PL	ENTIFICATION N	UMBER						
Contraction that y drive y doub	N/A	JSEP N00014-8	600; SKC 80 4-C-0149	,- <u>1</u> 2-107;							
ADORESS (City State and ZIP Code)	<u> </u>	10. SOURCE OF FU	NDING NOS								
00 G. Street, N.W., Washington	n, DC 20550	PROGRAM	PROJECT	TASK	WORK UN						
O. Box 12053, Res. Triangle Pl	K., NC 27709	ELEMENT NO.	NO.	NO.	NO.						
U N. Quincy St., Arlington, VI	A 22217	1]								
characterization of separating	g pairs and	N/A	N/A	N/A	N/A						
PERSONAL AUTHOR(S)		<u> </u>	<u> </u>	1	<u>_ L</u>						
Kanevsky, A	rkady and Ramach	andran, Vijaya		<u> </u>							
S& TYPE OF REPORT 13% TIME COVERED		14. DATE OF REPORT (Yr. No., Dey) 15. PAGE COUNT									
chnical FROM	TO	1 7									
SUPPLEMENTARY NOTATION		JULY 1987		<u> </u>							
SUPPLEMENTARY NOTATION	18. SUBJECT TERMS (C	Continue on reverse if no	rcessery and identi	i5	(F)						
SUPPLEMENTARY NOTATION N/A COSATI CODES FIELD GROUP SUB. GR.	18. SUBJECT TERMS (C	Continue on reverse if no	remery and identi	ily by block numbe	r,						
SUPPLEMENTARY NOTATION N/A CCSATI CODES FIELD GROUP SUE. GR.	18. SUBJECT TERMS /C connectivity, triconnected	Sonanue on reverse of re separating pa undirected gra	tremery and dense firs, triple	i/y by block numbe ets, biconne	cted and						
SUPPLEMENTARY NOTATION N/A COSATI CODES FIELD GROUP SUB. GR.	18. SUBJECT TERMS (C connectivity, triconnected	Sonanue on reverse if no separating pa undirected gra	irs, triple phs	ity by block number	cted and						
SUPPLEMENTARY NOTATION N/A CCSATI CODES HELD GROUP SUE GR ABSTRACT Continue on reverse if necessary and We obtain tight upper bours	18. SUBJECT TERMS /C connectivity, triconnected (denn/y by block number is of n(n-3) an	Semanue on reverse of ne separating pa undirected gra r. d (n-2) (n-4) f	irs, triple phs	ets, biconne	ected and ating						
SUPPLEMENTARY NOTATION N/A COSATI CODES TIELO GROUP SUE. GR. ABSTRACT Continue on reverse if necessary and We obtain tight upper bound	18. SUBJECT TERMS (C connectivity, triconnected identify by black number is of $n(n-3)$ and 2	Someone on reverse if no separating pa undirected gra d $\frac{(n-2)(n-4)}{2}$ f	for the numb	ity by block number ets, biconne per of separ	cted and ating						
N/A CCSATI CODES ILO GROUP SUB GR ABSTRACT Continue on reverse if necessary and We obtain tight upper bound sirs and triplets in an undirect	18. SUBJECT TERMS (C) connectivity, triconnected identity by black number is of $n(n-3)$ and 2 cted biconnected	Someone on reverse if no separating pa undirected gra $\frac{(n-2)(n-4)}{2}$ for and triconnection	for the number	vy by block number ets, biconne per of separ respectivel	acted and mating y, where						
SUPPLEMENTARY NOTATION N/A CCSATI CODES HELD GROUP SUE GR ASSTRACT Continue on reverse if necessary and We obtain tight upper bound airs and triplets in an undirect is the number of vertices in a ir unper bounds. Finally, the	18. SUBJECT TERMS (C) connectivity, triconnected identify by black number is of $n(n-3)$ an 2 cted biconnected a graph. We pre-	Separating pa undirected gra $\frac{(n-2)(n-4)}{2}$ f and triconnections sent worst-cas	for the number of the second s	ets, biconne per of separ respectivel at exactly	ating y, where achieve						
N/A CCSATI CODES ILD GROUP SUB GR ABSTRACT Continue on reverse if necessary and We obtain tight upper bound Lirs and triplets in an undirect is the number of vertices in a ir upper bounds. Finally, we connected graph.	18. SUBJECT TERMS (C connectivity, triconnected identify by black number is of $n(n-3)$ an 2 cted biconnected a graph. We pre- give an $O(n)$ cha	Someone on reverse if no separating pa undirected gra d $(n-2)(n-4)$ f and triconnect sent worst-cas racterization	for the numb red graph, for the sep	ets, biconne ets, biconne per of separ respectivel pat exactly parating pai	acted and Tating y, where achieve rs in a						
N/A COSATI CODES IELO GROUP SUB GR ABSTRACT Continue on reverse if necessary and We obtain tight upper bound uirs and triplets in an undirect is the number of vertices in a ur upper bounds. Finally, we connected graph.	18. SUBJECT TERMS (C connectivity, triconnected definition by blace number is of $n(n-3)$ and 2 cted biconnected a graph. We pre- give an O(n) charge	Senance on reverse if no separating pa undirected gra $\frac{(n-2)(n-4)}{2}$ f and triconnec sent worst-cas racterization	for the number ted graph, for the sep	vy by block number ets, biconne per of separ respectivel vat exactly varating pai	acting y, where achieve rs in a						
SUPPLEMENTARY NOTATION N/A COSATI CODES IELO GROUP SUE GR ABSTRACT Continue on reverse if necessary and We obtain tight upper bound We obtain tight upper bound uirs and triplets in an undirect is the number of vertices in a ir upper bounds. Finally, we connected graph.	18. SUBJECT TERMS (C) connectivity, triconnected identify by black number is of $n(n-3)$ and 2 cted biconnected a graph. We pre- give an O(n) chains	Continue on reverse if no separating pa undirected gra $\frac{(n-2)(n-4)}{2}$ f and triconnect sent worst-cast racterization	for the number of the number ted graphs the for the seg	ets, biconne ets, biconne per of separ respectivel wat exactly barating pai	acted and ating y, where achieve rs in a						
N/A CCSATI CODES VELO GROUP SUB GR ABSTRACT Continue on reverse if necessary and We obtain tight upper bound uirs and triplets in an undirect is the number of vertices in a ir upper bounds. Finally, we connected graph.	18. SUBJECT TERMS (C connectivity, triconnected identity by black number is of $n(n-3)$ an 2 cted biconnected a graph. We pre- give an $O(n)$ char	Continue on reverse if no separating pa undirected gra $\frac{(n-2)(n-4)}{2}$ f and triconnect sent worst-cas racterization	for the numb red graph, e graphs the for the sep	ets, biconne ets, biconne per of separ respectivel pat exactly parating pai	acted and ating y, where achieve rs in a						
N/A CCSATI CODES VELO GROUP SUB GR ABSTRACT Continue on reverse if necessary and We obtain tight upper bound airs and triplets in an undirect is the number of vertices in a ur upper bounds. Finally, we can iconnected graph.	18. SUBJECT TERMS (C connectivity, triconnected density by black summer is of $n(n-3)$ and cted biconnected a graph. We pre- give an O(n) chart	Continue on reverse if no separating pa undirected gra $\frac{(n-2)(n-4)}{2}$ f and triconnect sent worst-cast racterization	for the number of the sep	ets, biconne ets, biconne per of separ respectivel vat exactly parating pai	ating y, where achieve rs in a						
SUPPLEMENTARY NOTATION N/A CCSATI CODES TELD GROUP SUB GR ASSTRACT Continue on reverse if necessary and We obtain tight upper bound we obtain tight upper bound airs and triplets in an undired is the number of vertices in a Ir upper bounds. Finally, we d iconnected graph.	18. SUBJECT TERMS (Connectivity, triconnected 13 of $n(n-3)$ and 2 cted biconnected a graph. We pre- give an O(n) charge	Separating pa undirected gra d <u>(n-2) (n-4)</u> f and triconnec sent worst-cas racterization	for the number for the number ted graph, we graphs the for the ser	ets, biconne ets, biconne per of separ respectivel pat exactly parating pai	acting y, where achieve rs in a						
N/A CCSATI CODES NELD GROUP SUB. GR. ABSTRACT Continue on reverse if recembry and We obtain tight upper bound airs and triplets in an undirect is the number of vertices in a upper bounds. Finally, we contend of the second of the seco	18. SUBJECT TERMS (C connectivity, triconnected density by black number is of $n(n-3)$ an 2 cted biconnected a graph. We pre- give an O(n) char	Someone on reverse if no separating pa undirected gra $\frac{(n-2)(n-4)}{2}$ f and triconnect sent worst-cast racterization	for the numb red graph, re graphs the for the sep	xr of separ respectivel at exactly parating pai	acted and ating y, where achieve rs in a						
N/A CCSATI CODES TELD GROUP SUB GR ABSTRACT Continue on reverse if necessary and We obtain tight upper bound airs and triplets in an undired is the number of vertices in a ur upper bounds. Finally, we do iconnected graph.	18. SUBJECT TERMS (C connectivity, triconnected is of $n(n-3)$ an 2 cted biconnected a graph. We pre- give an O(n) cha	Separating pa undirected gra d (n-2) (n-4) f and triconnec sent worst-cas racterization	for the number of the second s	ets, biconne ets, biconne per of separ respectivel hat exactly barating pai	ating y, where achieve rs in a						
SUPPLEMENTARY NOTATION N/A CCSATI CODES TELD GROUP SUB.GR. ABSTRACT Continue on reverse if necessary and We obtain tight upper bound airs and triplets in an undirect is the number of vertices in a ir upper bounds. Finally, we contain the number of vertices in a iconnected graph.	18. SUBJECT TERMS (C connectivity, triconnected identity by black number is of <u>n(n-3)</u> an 2 cted biconnected a graph. We pre- give an O(n) cha	Continue on reverse if no separating pa undirected gra d <u>(n-2) (n-4)</u> f and triconnec sent worst-cas racterization	for the number for the number for the number for the sep	ets, biconne ets, biconne per of separ respectivel parating pai	acting y, where achieve rs in a						
N/A CCSATI CODES NELD GROUP SUB. GR. ASSTRACT Continue on reverse if necessary and We obtain tight upper bound airs and triplets in an undirect is the number of vertices in a ur upper bounds. Finally, we do iconnected graph. DISTRIBUTION A VALABILITY OF ABSTRACE OCLASSIF-ED/UNLIMITED X SAME AS APT.	18. SUBJECT TERMS (C connectivity, triconnected denn(7 by black number ds of <u>n(n-3)</u> an 2 cted biconnected a graph. We pre- give an O(n) cha	21 ABSTRACT SEC. Unclassifie	for the number or the number for the number ted graph, a graphs the for the sep	ets, biconne ets, biconne per of separ respectivel mat exactly parating pai	acted and ating y, where achieve rs in a						
N/A CCSATI CODES SUE GROUP SUE GR ABSTRACT Continue on reverse if necessary and We obtain tight upper bound airs and triplets in an undired is the number of vertices in a ur upper bounds. Finally, we d iconnected graph. DISTRIBUTION A FAILABILITY OF ABSTRAC ACLASSIF-ED/UNLIMITED X SAME AS APT. A MAME OF AESPONSIBLE INDIVIDUAL	18. SUBJECT TERMS (C connectivity, triconnected is of $n(n-3)$ and ted biconnected a graph. We pre- give an O(n) char = $2\pi i c$ JSERS =	21 ASTRACT SECU Unclassifie	for the number for the number for the number and graphs the for the ser	ets, biconne ets, biconne per of separ respectivel pat exactly parating pai	acted and ating y, where achieve rs in a						
N/A CCSATI CODES NELD GROUP SUB. GR. ABSTRACT Continue on reverse if necessary and We obtain tight upper bound airs and triplets in an undirect is the number of vertices in a ur upper bounds. Finally, we do iconnected graph. DISTRIBUTION A FAILABILITY OF ABSTRACE CLASSIF-ED/UNLIMITED Z SAME AS APT. NAME OF RESPONSIBLE INDIVIDUAL	18. SUBJECT TERMS (C connectivity, triconnected denn(y by block number ds of <u>n(n-3)</u> an 2 cted biconnected a graph. We pre- give an O(n) char = DTIC JSERS =	21 ASTRACT SECU Unclassifie 22b TELEPICNE NI (netude Are Co	for the number for the number for the number for the sep	cation	acting y, where achieve rs in a						
SUPPLEMENTARY NOTATION N/A CCSATI CODES SUELD GROUP ABSTRACT Continue on reverse if necessary and We obtain tight upper bound airs and triplets in an undirected is the number of vertices in a undirected is the number of vertices in a ir upper bounds. Finally, we do iconnected graph. DISTRIBUTION AVAILABILITY OF ABSTRACT CLASSIFIED/UNLIMITED X SAME AS APT. NAME OF RESPONSIBLE INDIVIDUAL	18. SUBJECT TERMS (C connectivity, triconnected denn(y by black number is of <u>n(n-3)</u> an 2 cted biconnected a graph. We pre- give an O(n) cha	21 ABSTRACT SEC Unclassifie 22b ~SLEP-CNE VI (netude Are Co	or the numb for the numb red graph, re graphs th for the sep	22c DEFICE SYN	acted and ating y, where achieve rs in a						

A Characterization of Separating Pairs and Triplets in a Graph

Arkady Kanevsky Vijaya Ramachandran

Coordinated Science Laboratory University of Illinois Urbana, IL 61801

July 1987

ABSTRACT

We obtain tight upper bounds of $\frac{n(n-3)}{2}$ and $\frac{(n-1)(n-4)}{2}$ for the number of separating pairs and triplets in an undirected biconnected and triconnected graph, respectively, where *n* is the number of vertices in a graph. We present worst-case graphs that exactly achieve our upper bounds. Finally, we give an O(n) characterization for the separating pairs in a biconnected graph.

1. Introduction

ġ.

i e

Connectivity is an important graph property and there has been a considerable amount of work on algorithms for determining connectivity of graphs [BeX,Ev2,EvTa,Ga,GiSo,LiLoWi]. An undirected graph G = (V,E) is kconnected if for any subset V' of k-1 vertices of G the subgraph induced by V-V' is connected [Ev]. A subset V' of k vertices is a separating k-set if the subgraph induced by V-V' is not connected. For k=1 the set V' becomes a single vertex which is called an articulation point, and for k=2,3 the set V' is called a separating pair and separating triplet, respectively. Efficient algorithms are available for finding all separating k-sets in k-connected undirected graphs for $k \leq 3$. [Ta,HoTa,MiRa,KaRa].

We address the following question: what is the maximum number of separating pairs and triplets in biconnected and triconnected undirected graphs, respectively?

An undirected graph G on n vertices has a trivial upper bound of $\begin{bmatrix} n \\ k \end{bmatrix}$ on the number of separating ksets, $k \ge 1$. The graph that achieves this bound for all k is a graph on n vertices without any edges. For k=1 the maximum number of articulation points in 1 connected graph is (n-2) and a graph that achieves it is a path on n ver-

This research was supported by the National Science Foundation under ECS 8404866, the Semiconductor Research Corporation under 86-12-109 and the Joint Services Electronics Program under N00014-84-C-0149.

[] [] tices.

R

8

S

8

ġ

ğ

R

In this paper we show that for k=2 the maximum number of separating pairs in an undirected biconnected graph is $\frac{n(n-3)}{2}$ and a graph that achieves it is a cycle on *n* vertices. Further, we observe that there is an O(n)representation for the separating pairs in any biconnected graph (although the number of such pairs could be $\Theta(n^2)$). Finally, we prove that for k=3 the maximum number of separating triplets in a triconnected graph is $\frac{(n-1)(n-4)}{2}$ and we present a graph, namely the *wheel* [Tu], that achieves it.

In a companion paper [Ka1] we prove that the number of separating k-sets in a k-connected graph is $O(c^k n^2)$ and we show that the bound is tight up to the constant c.

2. Graph-theoretic definitions

An undirected graph G = (V, E) consists of a vertex set V and an edge set E containing unordered pairs of distinct elements from V. A path P in G is a sequence of vertices $\langle v_0, \dots, v_k \rangle$ such that $(v_{i-1}, v_i) \in E, i=1, \dots, k$. The path P contains the vertices v_0, \dots, v_k and the edges $(v_0, v_1), \dots, (v_{k-1}, v_k)$ and has endpoints v_0, v_k , and internal vertices v_1, \dots, v_{k-1} .

We will sometimes specify a graph G structurally without explicitly defining its vertex and edge sets. In such cases, V(G) will denote the vertex set of G and E(G) will denote the edge set of G. Also, if $V' \subseteq V$ and $v \in V$ we will use the notation $V' \cup v$ to represent $V' \cup \{v\}$.

An undirected graph G = (V, E) is connected if there exists a path between every pair of vertices in V. For a graph G that is not connected, a *connected component* of G is an induced subgraph of G which is maximally connected.

A vertex $v \in V$ is an articulation point of a connected undirected graph G = (V, E) if the subgraph induced by $V - \{v\}$ is not connected. G is biconnected if it contains no articulation point.

Let G = (V, E) be a biconnected undirected graph. A pair of vertices $v_1, v_2 \in V$ is a separating pair for G if the induced subgraph on $V - \{v_1, v_2\}$ is not connected. G is triconnected if it contains no separating pair.

A triplet (v_1, v_2, v_3) of distinct vertices in V is a separating triplet of a triconnected graph if the subgraph induced by $V - \{v_1, v_2, v_3\}$ is not connected. G is four-connected if it contains no separating triplets.

Let G = (V, E) be an undirected graph and let $V' \subseteq V$. A graph G' = (V', E') is a subgraph of G if $E' \subseteq E \cap \{(v_i, v_j) | v_i, v_j \in V'\}$. The subgraph of G induced by V' is the graph G'' = (V', E') where $E'' = E \cap \{(v_i, v_j) | v_i, v_j \in V'\}$.

3. The tight upper bound for k=2

R

3

Theorem 1 The maximum number of separating pairs in an undirected biconnected graph is $\frac{n(n-3)}{2}$.

Proof: Let $\{v_1, v_2\}$ be a separating pair of a biconnected graph G on n vertices and m edges, whose removal separates G into nonempty G_1 and G_2 (see Figure 1).

Let g(n) be the maximum number of separating pairs in a graph on *n* vertices. Then we can divide all separating pairs into four types:

1). Separating pairs completely inside $G_1 \cup \{v_1, v_2\}$,

2). Separating pairs completely inside $G_2 \cup \{v_1, v_2\}$,

3). Separating pairs with one vertex from G_1 and one vertex from G_2 ,

4). The separating pair $\{v_1, v_2\}$.

The number of separating pairs of type one and type two are upper bounded by g(l+2) and g(n-l), respectively, where l is the cardinality of $V(G_1)$ and n-l-2 is the cardinality of $V(G_2)$. The number of separating pairs of type three is trivially upper bounded by l(n-l-2). Hence, any function g(n) that satisfies the recurrence

Figure 1. Separating G into nonempty G_1 and G_2 by separating pair $\{v_1, v_2\}$

$$g(n) = \max_{l} \left[g(l+2) + g(n-l) + l(n-l-2) + 1 \right].$$

is an upper bound on the number of separating pairs in a graph on n vertices.

We note that
$$g(n) = \frac{n(n-3)}{2}$$
 satisfies this recurrence.

Graph C_n , the cycle on *n* vertices, has $\frac{n(n-3)}{2}$ separating pairs, so the bound is worst-case optimal.

Even though the number of separating pairs in a biconnected n-node graph G = (V, E) can be as large as $\Theta(n^2)$, we observe that there are more succinct representations for them.

- 1 The tree of triconnected components of a biconnected graph has size O(m+n), where |E| = m [HoTa,MiRa], and this is a representation for all separating pairs together with the triconnected components of the graph.
- The algorithm in [MiRa] enumerates the separating pairs as a collection $C = \{V_1, \dots, V_s\}$ of subsets of V, with the interpretation that any pair of vertices within a single V_i is either a separating pair for G or the endpoints of an edge in a specified 'ear' in G, and further, every separating pair for G appears in at least one of the V_i 's. It is not difficult to establish that $\sum_{i=1}^{s} |V_i| = O(n)$; thus this gives an O(n) representation for separating pairs. We omit the proof of this result here since it requires extensive background material from [MiRa]. It will appear in [Ka2].

4. The upper bound for k=3

8

ß

5

Ň

É

E

The wheel W_n [Tu] is C_{n-1} together with a vertex v and an edge between v and every vertex on C_{n-1} . It is easy to see that W_n is triconnected and has $\frac{(n-1)(n-4)}{2}$ separating triplets. In the following theorem we prove that this is the worst-case for the number of separating triplets in a triconnected graph.

Theorem 3 The number of separating triplets in an undirected triconnected graph is $\leq \frac{(n-1)(n-4)}{2}$ for any *n*. *Proof:* Assume there exists a separating triplet $\{v_1, v_2, v_3\}$ in *G*, which separates *G* into nonempty G_1 and G_2 (see Figure 2). Now, we can divide separating triplets in *G* into 6 distinct types:

- 1). Separating triplets completely inside $G_1 \cup \{v_1, v_2, v_3\}$,
- 2). Separating triplets completely inside $G_2 \cup \{v_1, v_2, v_3\}$,
- 3). Separating triplets with one vertex from G_1 , one vertex from G_2 and one vertex from $\{v_1, v_2, v_3\}$,

Figure 2. Separating G into G_1 and G_2 by separating triplet $\{v_1, v_2, v_3\}$

- 4). Separating triplets with one vertex from G_1 and two vertices from G_2 ,
- 5). Separating triplets with two vertices from G_1 and one vertex from G_2 ,
- 6). The separating triplet $\{v_1, v_2, v_3\}$.

Ň

8

Ĩ

Let the number of vertices in G_1 be k, then the number of vertices in G_2 is n-k-3. Let g(n) be the maximum number of separating triplets in a graph on n vertices, h(k,n-k) be the number of separating triplets of the third type and f(k,n-k) and f(n-k,k) be the number of separating triplets of the fourth and fifth types respectively.

Then any g(n) that satisfies the recurrence

$$g(n) = \max(g(k+3) + g(n-k) + h(k,n-k) + f(k,n-k) + f(n-k,k) + 1)$$

is an upper bound on the number of separating triplets in G.

Let us now find the upper bounds for the functions h and f.

Lemma 2:
$$f(k,n-k) + f(n-k,k) \le \frac{3}{2} (3n-14)$$
.

Proof: Let $\{w_1, w_2, w_3\}$ be a separating triplet with $w_1 \in G_1$ and $w_2, w_3 \in G_2$. The separating triplet $\{w_1, w_2, w_3\}$ separates G_1 into L_1 and L_2 , and separates G_2 into L_3 and L_4 (see Figure 3). Let us see how the original separating triplet $\{v_1, v_2, v_3\}$ is separated by the separating triplet $\{w_1, w_2, w_3\}$.

All v_i , i=1,2,3 cannot belong to one separated component of G with respect to the separating triplet (w_1, w_2, w_3) , otherwise either w_1 would be an articulation point, or $\{w_2, w_3\}$ would be a separating pair, or both. W.L.O.G. assume that v_1 belongs to one separated component and v_2, v_3 to the other.

1

6

1.0

Figure 3. Separating G_1 into L_1 and L_2 and G_2 into L_3 and L_4 by $\{w_1, w_2, w_3\}$

Subgraph L_1 must be empty, otherwise $\{w_1, v_1\}$ becomes a separating pair. Since the graph is triconnected, $(w_1, v_1) \in E, \exists x, y \in L_3 \cup w_2 \cup w_3$: $(x, v_1) \in E, (y, v_1) \in E$ and $\forall z \in L_2 \cup L_4 \cup v_2 \cup v_3$: $(z, v_1) \notin E$. Hence, vertex w_1 is unique up to a division of the original separating triplet $\{v_1, v_2, v_3\}$ into v_1 and v_2, v_3 . So, if there is a separating triplet of the fourth type which separates v_1 from v_2 and v_3 then there is no separating triplet of the fifth type which separates v_1 from v_2 and v_3 .

Let us see how many separating triplets of the fourth type there are in G that separate the original separating triplet $\{v_1, v_2, v_3\}$ into v_1 and v_2 , v_3 . The vertex w_1 must belong to all of them. Let us see the choices for $\{w_2, w_3\}$, such that $\{w_1, w_2, w_3\}$ is a separating triplet of the fourth type.

Assume there is a separating triplet of the fourth type $\{w_1, u_1, u_2\}$, where $u_1 \in L_3$, $u_2 \in L_4$. The separating triplet $\{w_1, u_1, u_2\}$ separates L_3 into L'_3 and \tilde{L}_3 , and separates L_4 into L'_4 and \tilde{L}_4 (see Figure 4).

The vertex v_1 is connected by an edge to only one of the $L'_3 \cup u_1$ and \tilde{L}_3 , otherwise $\{w_1, u_1, u_2\}$ is not a separating triplet. If v_1 is not connected to the $L'_3 \cup u_1$ and \tilde{L}_3 then $\{w_2, w_3\}$ is a separating pair. W.L.O.G. assume $\forall x \in \tilde{L}_3$: $(x, v_1) \in E$. By the symmetry $\{v_2, v_3\}$ is connected to only one of the L'_4 and \tilde{L}_4 . Let us see how the separating triplet $\{w_1, u_1, u_2\}$ separates $\{w_2, w_3\}$.

If vertices w_2 and w_3 are not separated by $\{w_1, u_1, u_2\}$ then there are four cases to consider.

When w_2 and w_3 belong to the same component as L'_3 and L'_4 with respect to the separating triplet $\{w_1, u_1, u_2\}$ and $\{v_2, v_3\}$ is connected by an edge to \tilde{L}_4 then $\{w_1, u_2\}$ is a separating pair which separates $L_2 \cup \{v_2, v_3\} \cup \tilde{L}_4$ from $v_1 \cup L_3 \cup \{w_2, w_3\} \cup L'_4$.

8

Ŕ

83

E

Figure 4. Separating L_3 into L'_3 and \tilde{L}_3 and L_4 into L'_4 and \tilde{L}_4 by $\{w_1, u_1, u_2\}$

When w_2 and w_3 belong to the same component as L'_3 and L'_4 with respect to the separating triplet $\{w_1, u_1, u_2\}$ and $\{v_2, v_3\}$ is connected by an edge to L'_4 then $\{u_1, u_2\}$ is a separating pair which separates $\tilde{L}_3 \cup \tilde{L}_4$ from the rest of the graph.

When w_2 and w_3 belong to the same component as \tilde{L}_3 and \tilde{L}_4 with respect to the separating triplet $\{w_1, u_1, u_2\}$ and $\{v_2, v_3\}$ is connected by an edge to L'_4 then $\{u_1, u_2\}$ is a separating pair which separates $\tilde{L}_3 \cup \{w_2, w_3\} \cup \tilde{L}_4$ from the rest of the graph.

When w_2 and w_3 belong to the same component as \tilde{L}_3 and \tilde{L}_4 with respect to the separating triplet $\{w_1, u_1, u_2\}$ and $\{v_2, v_3\}$ is connected by an edge to \tilde{L}_4 then $\{w_1, u_1\}$ is a separating pair which separates $L'_3 \cup v_1$ from the rest of the graph.

Hence, w_2 and w_3 belong to different components with respect to the separating triplet $\{w_1, u_1, u_2\}$. Subgraph \tilde{L}_3 must be empty; otherwise $\{u_1, w_3\}$ becomes a separating pair. Hence, $(u_1, w_3) \in E$, otherwise $\{w_1, w_2\}$ is a separating pair. If $\{v_2, v_3\}$ is connected to L'_4 then $\{u_1, u_2\}$ is a separating pair or $\{w_1, u_1, u_2\}$ is not a separating triplet. So, $\forall x \in L'_4$: $(x, v_2) \notin E$, $(x, v_3) \notin E$, $\exists y, z \in \tilde{L}_4 \cup \{w_2, w_3\}$: $(y, v_2) \in E$, $(z, v_3) \in E$. Subgraph L'_4 must be empty, otherwise $\{w_2, u_2\}$ is a separating pair or $\{w_1, u_1, u_2\}$ is not a separating triplet. Hence, $(u_2, w_2) \in E$, otherwise $\{w_1, w_3\}$ is a separating pair (see Figure 5).

The above means that for each separating triplet $\{w_1, w_2, w_3\}$ there exists at most one separating triplet $\{w_1, u_1, u_2\}$ such that $u_1 \in L_3$ and $u_2 \in L_4$. So, $\forall x \in L'_3$, $\forall y \in \tilde{L}_4$ $\{w_1, x, w_3\}$, $\{w_1, x, u_2\}$, $\{w_1, y, w_2\}$, $\{w_1, y, u_1\}$

Figure 5. Illustrating the configuration between separating triplets $\{w_1, w_2, w_3\}$ and $\{w_1, u_1, u_2\}$

and $\{w_1, y, x\}$ are not separating triplets.

Let the number of vertices in L'_3 be *l* then the number of vertices in \tilde{L}_4 will be (n-k-3-l-4) = (n-k-l-7). Then the maximum number of separating triplets that use w_1 is

$$r(n-k-3) = \max_{l} \left[r(n-k-l-5) - 1 + r(l+2) - 1 + 4 \right] = \max_{l} \left[r(n-k-l-5) + r(l+2) \right] + 2, \quad r(2) = 1, \quad r(1) = 0,$$

where r(n-k-l-5) - 1 counts all separating triplets which use w_1 and two vertices from $\tilde{L}_4 \cup u_2 \cup w_3$, r(l+2) - 1counts all separating triplets which use w_1 and two vertices from $L'_3 \cup u_1 \cup w_2$ and 4 counts $\{w_1, u_1, u_2\}$, $\{w_1, w_2, w_3\}, \{w_1, u_1, w_2\}$ and $\{w_1, u_2, w_3\}$.

The solution for this recurrence is $r(n-k-3) \le \frac{3}{2}(n-k-3) - 2$. Since there exists a unique w_1 , for every separation of v_i i=1,2,3 from the other two v_i 's, the upper bound for the separating triplets of the fourth and fifth types together is:

$$f(k,n-k) + f(n-k,k) \le 3 \cdot (\max_{1 \le k \le n-4} \frac{3}{2} \cdot \max((n-k-3),k) - 2) \le \frac{3}{2} \cdot \left[3(n-4) - 2\right] = \frac{3}{2}(3n-14).$$

Corollary The maximum number of separating triplets of the fourth type which separate $\{v_i\}$ from $\{v_1, v_2, v_3\} - \{v_i\}$ is $\leq \frac{3}{2}(n-k-3) - 2$.

Analogously, we can state corollary for the fifth type separating triplet.

Proof: Assume there is separating triplet $\{w_1, v_2, w_2\}$ of the third type in G, where $w_1 \in G_1$ and $w_2 \in G_2$. It separates G_1 into K_1 and K_2 , and separates G_2 into K_3 and K_4 . Vertices v_1 and v_3 must belong to the different components with respect to separating triplet $\{w_1, v_2, w_2\}$, otherwise either $\{w_1, v_2\}$ is a separating pair, or $\{w_2, v_2\}$ is a separating pair, or both.

Claim 1 Vertex v_2 has a direct edge to every nonempty subgraph K_1, K_2, K_3, K_4 .

W.L.O.G. assume that K_1 is not empty and $\forall x \in K_1$, $(x, v_2) \notin E$. Then $\{v_1, w_1\}$ is a separating pair of G, which separates K_1 from the rest of the graph.

Now, we will prove that there are no separating triplets of the third type which use v_1 or v_3 . We will prove this by contradiction. W.L.O.G. assume there is a separating triplet $\{u_1, v_1, u_2\}$, where $u_1 \in G_1$ and $u_2 \in G_2$ (u_1, u_2) may be equal to w_1 and u_2 may be equal to w_2).

Case 1: $u_1 \in K_2$, if K_2 is not empty (see Figure 6).

Figure 6. Illustrating Case 1 in the proof of Lemma 3

By Claim 1 for v_1 and the existence of separating triplet $\{u_1, v_1, u_2\}, K_1, w_1, K_2 - u_1$ belong to the same connected component with respect to separating triplet $\{u_1, v_1, u_2\}$. If v_2 belongs to the same component then $\{v_1, u_1\}$ is a separating pair which separates $K_3 \cup w_2 \cup K_4 \cup v_3$ from the rest of the graph. If v_2 does not belong to the same component then $\{v_1, u_1\}$ is a separating pair which separates $K_1 \cup w_1 \cup K_2 - u_1$ from the rest of the graph.

i

Ň

3

Ň

20

8

Ē

Analogously, $\mu_2 \notin K_4$.

Case 2: $u_1 = w_1$.

S

ß

83 84

8

5

X

Ś

8

Since $\{u_1, v_1, u_2\}$ is a separating triplet then v_2 does not have any edges to K_1 and hence, K_1 is empty by Claim 1. But then $\{v_1, u_2\}$ is a separating pair, if $\{u_1, v_1, u_2\}$ is a separating triplet.

Analogously, $\mu_2 \neq w_2$.

Case 3: $u_1 \in K_1$ and $u_2 \in K_3$.

If (u_1, v_1, u_2) is a separating triplet then either $\{u_1, u_2\}$, or $\{u_1, v_1\}$, or $\{v_1, u_2\}$ is a separating pair.

That means that if there is a separating triplet of the third type which uses one of the v_i , i=1,2.3 then there are no separating triplets of the third type that use the other v_j , j=1,2,3, $j\neq i$.

Since the number of choices for w_1 is $|V(G_1)| = k$ and the number of choices for w_2 is $|V(G_2)| = (n-k-3)$, the number of separating triplets of the third type is $h(k, n-k) \le k(n-k-3)$.

Let us now tighten the upper bound for the number of separating triplets in the triconnected graph G. Assume that $\{v_1, v_2, v_3\}$ divides the graph such that the ratio $\frac{|V(G_1)|}{|V(G_2)|}$ is as close to one as possible over all separating triplets in G. From Lemma 3 we know that there is a unique vertex among $\{v_1, v_2, v_3\}$ that participates in the separating triplets of the third type. W.L.O.G., let this vertex be v_2 .

Lemma 4: If there is a separating triplet of the fourth type or the fifth type that separates v_2 from v_1 and v_3 then there are no separating triplet of the third type.

Proof: W.L.O.G., assume there exists a separating triplet of the fourth type $\{w_1, w_2, w_3\}$, with $w_1 \in G_1$ and $w_2, w_3 \in G_2$, which separates v_2 from v_1 and v_3 . It separates G_1 into K_1 and K_2 , and separates G_2 into K_3 and K_4 . From the proof of Lemma 2, K_1 is empty, $(w_1, v_2) \in E$ and $(x, v_2) \notin E$, $\forall x \in G_1 \cup v_1 \cup v_3 - w_1$ (see Figure 7).

Assume there is a separating triplet of the third type $\{u_1, v_2, u_2\}$, where $u_1 \in G_1$ and $u_2 \in G_2$. By Claim 1 v_2 must be connected by an edge to every nonempty component of G_1, G_2 which is created by the separator $\{u_1, v_2, u_2\}$. By the proof of Lemma 3 $u_1 = w_1$. If v_1 and v_3 are separated by $\{w_1, w_2, w_3\}$ then $(v_2, w_2) \in E$, $(v_2, w_3) \in E$ and $(x, v_2) \notin E, \forall x \in G_2 - w_2 - w_3$. Furthermore, by Claim 1, no separating triplet of the third type exists. If v_1 and v_3 are not separated by $\{w_1, w_2, w_3\}$ then $\{v_2, u_2\}$ is a separating pair. These two contradictions prove the

Figure 7. Illustrating the proof of Lemma 4

lemma.

Å

Ś

8

R.

Ď

C

с÷ У

533

Ř

secondse | secondse seconds

Now we will do a case by case analysis of trade-offs between separating triplets of the third type and the separating triplets of the fourth type and the fifth type.

Case 1: There are no separating triplets of the fourth type or the fifth type. Let g(n) be the maximum number of separating triplets of G on n vertices. Then, using Lemma 3 we obtain the following recurrence relation

$$g(n) = \max_{k=1}^{n} (g(k+3) + g(n-k) + k(n-k-3) + 1)$$

The smallest function satisfying this recurrence is $g(n) = \frac{1}{2}n^2 - \frac{5}{2}n + 2$. Note that, with this solution, equality holds since the wheel W_n has this number of separating triplets.

By Lemma 2, if there exists a separating triplet of the fourth type that separates v_1 from v_2 and v_3 , then no separating triplet of the fifth type exists which separates v_1 from v_2 and v_3 . Since the separating triplets of the fourth type and the fifth type are analogous, we need only consider one of them in the case analysis.

Case 2: There is a separating triplet of the fourth type that separates v_1 from v_2 and v_3 .

Let (w_1, w_2, w_3) be such a separating triplet, with $w_1 \in G_1$ and $w_2, w_3 \in G_2$. It separates G_2 into G'_2 and \overline{G}_2 and $G_1 = \{w_1\} \cup \overline{G}_1$. Furthermore, suppose $\{w_1, w_2, w_3\}$ maximizes $|V(G'_2)|$, where G'_2 is the part of G_2

separated by $\{v_1, w_2, w_3\}$. Define $\tilde{G}_2 = G_2 - G'_2 - w_2 - w_3$ and let $|V(G'_2)| = l$. Now we will consider three cases depending on whether separating triplets of the fourth and fifth types exist, which separate v_3 from v_1, v_2 . We do not restrict separating triplets which involve v_2 .

Case A: There are no separating triplets of the fourth type or the fifth type that separate v_3 from v_1 and v_2 . If there is a separating triplet $\{u_1, v_2, u_2\}$, of the third type where $u_1 \in G_1$ and $u_2 \in G_2$, then $u_2 \in \tilde{G}_2$ by Claim 1. Hence, the following recurrence relation is obtained using the corollary to lemma 2:

$$g(n) = \max_{1 \le k \le n-5} (g(k+3) + g(n-k) + \max_{0 \le l \le n-k-5} (k(n-k-l-5) + \frac{3}{2}(l+2) - 2) + 1).$$

Since the function to be maximized is linear in l, the maximum is reached at one of the endpoints of the interval for l. If $k \le 1$ then the maximum is reached when l = n-k-6. But in this case $\{v_1, w_2, w_3\}$ would be chosen instead of $\{v_1, v_2, v_3\}$. If k > 1 then the maximum is reached when l = 0 and the recurrence becomes

$$g(n) = \max_{1 \le k \le n-5} (g(k+3) + g(n-k) + k(n-k-5) + 2),$$

whose solution is no greater than the bound of Case 1.

X,

88

(i)

P

10 20 20

3

ž

R

}4

Case B: There is a separating triplet of the fourth type which separates v_3 from v_1 and v_2 .

Let $\{x_1, x_2, x_3\}$ be such a separating triplet, with $x_1 \in G_1$ and $x_2, x_3 \in G_2$. Furthermore, suppose $\{x_1, x_2, x_3\}$ maximizes $|V(\overline{G}_2)|$, where \overline{G}_2 is the part of G_2 separated by $\{v_3, x_2, x_3\}$.

Vertices $x_2, x_3 \in \tilde{G}_2 \cup w_2 \cup w_3$, otherwise G is not triconnected. Define $\hat{G}_2 = \tilde{G}_2 - \tilde{G}_2 - x_2 - x_3$ and let $|V(\bar{G}_2)| = \bar{l}$. If there is a separating triplet of the third type $\{u_1, v_2, u_2\}$, where $u_1 \in G_1$ and $u_2 \in G_2$, then by Claim $1 \ u_2 \in \tilde{G}_2$. Hence, the following recurrence relation is obtained using the corollary to lemma 2:

$$g(n) = \max_{1 \le k \le n-5} (g(k+3) + g(n-k) + \max_{\substack{0 \le l \le n-k-5\\ 0 \le l \le n-k-l-5}} (k(n-k-l-\overline{l}-5) + \frac{3}{2}(l+\overline{l}+4) - 4) + 1).$$

As in Case A, the maximum is reached when $l=\bar{l}=0$, if k>1. Hence, the equality becomes

$$g(n) = \max_{1 \le k \le n-5} (g(k+3) + g(n-k) + k(n-k-5) + 3),$$

which again gives a worse upper bound than the bound of Case 1. If k=1 then the maximum is reached when either l = n-k-5 and $\overline{l} = 0$ or $\overline{l} = n-k-5$ and l = 0. But in this case either $\{v_1, w_2, w_3\}$ or $\{v_3, x_2, x_3\}$ would be chosen instead of $\{v_1, v_2, v_3\}$.

Case C: There is a separating triplet of the fifth type which separates v_3 from v_1 and v_2 .

Let $\{x_1, x_2, x_3\}$ be such a separating triplet, with $x_1 \in G_2$ and $x_2, x_3 \in G_1$. Furthermore, suppose $\{x_1, x_2, x_3\}$ maximizes $|V(\overline{G}_1)|$, where \overline{G}_1 is the part of G_1 separated by $\{v_3, x_2, x_3\}$. Define $G'_1 = G_1 - \overline{G}_1 - x_2 - x_3 - w_1$ and let $|V(\overline{G}_1)| = \overline{l}$. Since $\{v_1, v_2, v_3\}$ was chosen as the initial separating triplet instead of $\{v_1, v_2, x_1\}$ or $\{w_1, v_2, v_3\}$, $|V(G_1)| - |V(G_2)| | \le 1$. Therefore, $k = \lfloor \frac{n-3}{2} \rfloor$ or $\lceil \frac{n-3}{2} \rceil$. Since these two cases are analogous, assume $k = \lfloor \frac{n-3}{2} \rfloor$.

If there is a separating triplet of the third type $\{u_1, v_2, u_2\}$, where $u_1 \in G_1$ and $u_2 \in G_2$, then by Claim 1 $u_1 \in G'_1 \cup w_1$ and $u_2 \in \tilde{G}_2 \cup x_1$. Hence, the recurrence relation obtained is using the corollary to lemma 2:

$$g(n) = g\left(\lfloor \frac{n+3}{2} \rfloor\right) + g\left(\lceil \frac{n+3}{2} \rceil\right) + \max_{\substack{0 \le l \le \frac{n-3}{2} - 2 \\ 0 \le l \le \frac{n-3}{2} - 2}} \left(\left(\lceil \frac{n-3}{2} \rceil - l - 1\right)\left(\lfloor \frac{n-3}{2} \rfloor - \tilde{l} - 1\right) + \frac{3}{2}(l + \tilde{l} + 4) - 3\right)\right).$$

The right hand side is bilinear in l and \tilde{l} , hence the maximum is reached at the endpoints of the intervals. If l or \tilde{l} is equal to 0 then we get a degenerate case that is equal to case A. If $l = \lceil \frac{n-3}{2} \rceil -2$ and $\tilde{l} = \lfloor \frac{n-3}{2} \rfloor -2$ then the equality becomes

$$g(n) = g(\lfloor \frac{n+3}{2} \rfloor) + g(\lceil \frac{n+3}{2} \rceil) + \frac{3}{2}(n-3) - 2).$$

The solution to this recurrence is $\leq \frac{3}{2}n\log_2 n + \frac{13}{2}$. For any $n \geq 19$ this solution gives an upper bound smaller than $\frac{(n-1)(n-4)}{2}$. All triconnected graphs on $5 \leq n \leq 18$ vertices with constraints of Case C have less number of separating triplets than the wheel on *n* vertices. Hence, for case 2

$$g(n) \leq \frac{(n-1)(n-4)}{2}$$

for all n.

Ŋ

X

8

53

8

Ç

8

2

о. С

R

[

Note: Case 2 includes the case when no separating triplet of the third type exists.

This concludes the case by case analysis of the trade-offs between separating triplets of G of the third type and the separating triplets of the fourth and fifth types.

The established upper bound on the number of separating triplets of G for all n is

$$g(n) \leq \frac{(n-1)(n-4)}{2}.$$

REFERENCES

- [BeX] M. Becker et al., "A probabilistic algorithm for vertex connectivity of graphs," *Information Processing Letters*, vol. 15, no. 3, 1982, pp. 135-136.
- [Ev] S. Even, Graph Algorithms, Computer Science Press, Rockville, MD, 1979.

8

8

Į

ß

K

8

- [Ev2] S.Even, "An algorithm for determining whether the connectivity of a graph is at least k," SIAM J. on Computing, vol. 4, 1975, pp. 393-396.
- [EvTa] S.Even, R.E. Tarjan, "Network flow and testing graph connectivity," SIAM J. on Computing, vol. 4, 1975, pp.507-518.
- [Ga] Z.Galil, "Finding the vertex connectivity of graphs," SIAM J. on Computing, vol. 9, 1980, pp. 197-199.
- [GiSo] M.Girkar, M.Sohoni, "On finding the vertex connectivity of graphs," Tech. Report ACT-77, Coordinated Science Laboratory, University of Illinois, Urbana, II, May, 1987
- [HoTa] J.E.Hopcroft, R.E.Tarjan, "Dividing a graph into triconnected components," SIAM J. on Computing, vol. 2, 1973, pp. 135-158.
- [Ka1] A.Kanevsky, "On the number of minimum size separating vertex sets in a graph," Tech. Report ACT-80, Coordinated Science Laboratory, University of Illinois, Urbana, IL, July, 1987.
- [Ka2] A.Kanevsky, Ph.D. Thesis, University of Illinois, Urbana, IL, 1988, to appear.
- [KaRa] A.Kanevsky, V.Ramachandran, "Improved algorithms for graph four-connectivity," Proc. 28th IEEE ann. Symp. on Foundation of Computer Science, Oct, 1987, to appear.
- [LiLoWi] N.Linial,L.Lovasz,A.Wigderson, "A physical interpretation of graph connectivity, and its algorithmic applications," Proc. 27th IEEE Ann. Symp. on Foundations of Comp. Sci., 1986, pp. 39-48.
- [MiRa] G.L.Miller, V.Ramachandran, "A new graph triconnectivity algorithm and its parallelization," Proc. 19th ACM Ann. Symp. on Theory of Computing, New York, NY, May 1987, pp. 335-344.
- [Ta] R.E.Tarjan, "Depth-first search and linear graph algorithms," SIAM J. on Computing, vol. 1, 1972, pp. 146-159.
- [Tu] W. T. Tutte, *Connectivity in Graphs*, University of Toronto Press, 1966.
- [Wh] H. Whitney, "Non-separable and planar graphs," Trans. Amer. Math. Soc. 34, 1932, pp.339-362.

