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A Characterization of Separating Pairs and Triplets in a Graph

Arkady Kanevsky
Vijaya Ramachandran

Coordinated Science Laboratory
University of Illinois
Urbana, IL 61801

July 1987

ABSTRACT
We obtain tight upper bounds of &2-3) and K"—%"-“) for the number of

separating pairs and triplets in an undirected biconnected and triconnected graph, respec-
tively, where n is the number of vertices in a graph. We present worst-case graphs that
exactly achieve our upper bounds. Finally, we give an O(n) characterization for the
separating pairs in a biconnected graph.

1. Introduction

-\ Connectivity is an important graph property and there has been a considerable amount of work on algorithms
for determining connectivity of mphs%vZ,Ev’Fa,Gt.GiSoL&LoWi]i An undirected graph G = (V.E) is k-
connected if for any subset V“ of k-1 vertices of G the subgraph induced by V-V is <:onnecte(/b‘fﬁ-.f}.i A subset V*
of k vertices is a separating k-set if the subgraph induced by V-V “ is not connecied. For k=1 the set V * becomes a
single vertex which is called an articulation point, and for k=2,3 the set V * is called a separating pair and separating
triplet, respectiviely. Efficient algorithms are available for finding all separating k-sets in k-connected undirected
graphs fmkﬁ_mmt >
; \-\t addmcs the following question: what is the maximum number of separating pairs and triplets in bicon-
nected and riconnected undirected graphs, respectively? <« -

An undirected graph G on n vertices has a trivial upper bound of [ﬁ on the number of separating k-

sets, k 2 1. The graph that achieves this bound for all k is a graph on n vertices without any edges. For k=1 the

maximum number of articulation points ir 1 connected graph is (n-2) .nd a graph that achieves it is a path on n ver-

This research was supported by the National Science Foundation under ECS 8404866, the Semiconductor Research Corporation under 86-12.109
and the Joint Services Electronics Program under N00O14-84-C-0149.
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In this paper we show that for k=2 the maximum number of separating pairs in an undirected biconnected

graph is L(Ez—ﬁ and a graph that achieves it is a cycle on n vertices. Further, we observe that there is an O (n)

representation for the separating pairs in any biconnected graph (although the number of such pairs could be 8(n2)).

(n~1)(n—4)

Finally, we prove that for k=3 the maximum number of separating triplets in a triconnected graph is 2

and we present a graph, namely the wheel [Tu], that achieves it.

In a companion paper [Kal] we prove that the number of separating k-sets in a k-connected g}aph is 0 (c*n?)
and we show that the bound is tight up to the constant c.
2. Graph-theoretic definitions

An undirected graph G =(V,E) consists of a vertex set V and an edge set E containing unordered pairs of dis-

tinct elements from V. A parh P in G is a sequence of vertices <vg, * * - ,v;> such that v;.1,v)EE,i=1, - -- k. The
path P contains the vertices v, * * - ,v; and the edges (vo,vy), " * * ,(Ve-1, Vi) and has endpoints v, v, and internal
vertices Vie " " s V-

We will sometimes specify a graph G structurally without explicitly defining its vertex and edge sets. In such
cases, V(G) will denote the vertex set of G and £ (G) will denote the edge set of G. Also, if V’ < V and ve V we will

use the notation V"Uv to represent V' (v).

An undirected graph G=(V,E) is connected if there exists a path between every pair of vertices in V. For a
graph G that is not connected, a connected component of G is an induced subgraph of G which is maximally con-

nected.

A vertex veV is an articulation point of a connected undirected graph G =(V,E) if the subgraph induced by

V—{v} is not connected. G is biconnected if it contains no articulation point.

Let G=(V.E) be a biconnected undirected graph. A pair of vertices v,,v,€ V is a separating pair for G if the

induced subgraph on V~(v,,v,] is not connected. G is triconnected if it contains no separating pair.

A triplet (v,,v2,v4) of distinct vertices in V is a separating triplet of a triconnected graph if the subgraph

induced by V ~ {v,,v3,v;} is not connected. G is four-connected if it contains no separating triplets.
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Let G=(V,E) be an undirected graph and let V'gV. A graph G'=(V',E") is a subgraph of G if
E'CEN((viv)v;,vjeV’). The subgraph of G induced by V° is the graph G"=(V',E”) where E"=E

[(V,',VI') ! v;,vje V'}.
3. The tight upper bound for k=2

Theorem 1 The maximum number of separating pairs in an undirected biconnected graph is ﬂ"z‘i

Proof: Let (v,,v,) be a separating pair of a biconnected graph G on n vertices and m edges, whose removal
separates G into nonempty G, and G, (see Figure 1).

Let g(n) be the maximum number of separating pairs in a graph on a vertices. Then we can divide all separating

pairs into four types:

1). Separating pairs completely inside G, U{v,,v,},
2). Separating pairs completely inside Gaw(v,,v,},
3). Separating pairs with one vertex from G, and one vertex from G,

4). The separating pair (v,.v,}.

The number of separating pairs of type one and type two are upper bounded by g ({+2) and g (n-!), respec-
tively, where [ is the cardinality of V(G ) and a—{-2 is the cardinality of V(G ;). The number of separating pairs of

type three is trivially upper bounded by /(n—{~2). Hence, any function g (n) that satisfies the recurrence

Figure 1.
Separating G into nonempty G, and G, by separating pair {v;,v,)




g(n)= m'ax[ gU+2)+g(n=-D)+1(n-1-2)+ l] .
is an upper bound on the number of separating pairs in a graph on n vertices.

Wenote that g (n) = "—("2:2- satisfies this recurrence.

Graph C,, the cycle on n vertices, has -'5"3—3—) separating pairs, so the bound is worst-case optimal.

Even though the number of separating pairs in a biconnected n-node graph G = (V,E) can be as large as
6(n?), we observe that there are more succinct represcnt'ations for them.

1 The tree of triconnected components of a biconnected graph has size O (m+n), where |E | = m [HoTa,MiRa],

and this is a representation for all separating pairs together with the triconnected components of the graph.

B 2R O 9 G2 @ TN aE

2 The algorithm in [MiRa] enumerates the separating pairs as a collection C = (V, ---,V,} of subsets of V,

i

with the interpretation that any pair of vertices within a single V; is either a separating pair for G or the end-

points of an edge in a specified 'ear’ in G, and further, every separating pair for G appears in at least one of

L
the V;’s. It is not difficult to establish that 3" IV, ] = O (n); thus this gives an O (n) representation for separat-

inl
ing pairs. We omit the proof of this result here since it requires extensive background material from (MiRa).
It will appear in [Ka2].

4. The upper bound for k=3

The wheel W, (Tu] is C,_, together with a vertex v and an edge between v and every vertex on C,_;. Itis

easy 1o see that W, is wiconnected and has Q-—ind separating triplets. In the following theorem we prove that

A a2 MR = R

this is the worst-case for the number of separating triplets in a triconnected graph.

il Theorem 3 The number of separating triplets in an undirected triconnected graph is < -("——l—)i("—'ﬂ for any n.

Proof: Assume there exists a separating triplet {v,,v,,v4} in G, which separates G into nonempty G, and G, (see

Figure 2). Now, we can divide separating triplets in G into 6 distinct types:

. 1). Separating wiplets completely inside G, U {v,,v;,v1},
2). Separating triplets completely inside G, U (v,v3,v,),

3). Separating triplets with one vertex from G |, one vertex from G, and one vertex from (v,,v;.v,}.

=)




Figure 2.
Separating G into G, and G, by separating triplet {v{,v,,v3)}

4). Separating triplets with one vertex from G, and two vertices from G,
5). Separating triplets with two vertices from G, and one vertex from G,

6). The separating triplet (v;,v3,v3]).

Let the number of vertices in G, be k, then the number of vertices in G, is n—k-3. Let g(n) be the maximum
number of separating triplets in a graph on n vertices, & (k,n—k) be the number of separating triplets of the third type

and f (k,n—k) and f (n —k,k) be the number of separating triplets of the fourth and fifth types respectively.

Then any g (n) that satisfies the recurrence

gn)= max (g (k+3) + g(n=k) + h(k.n—k) + f (k,n—k) + f (n—k,.k) +1)
is an upper bound on the number of separating triplets in G.

Let us now find the upper bounds for the functions 4 and f.
Lemma 2: f (k.n—k) + f (n—k,k) S % (3n-14).
Proof: Let (w,,w3,w3) be a separating triplet with w,&€ G, and wy,w3€G,. The separating triplet (w,,w3,w,)
separates G, into L; and L ,, and separates G, into L and L, (see Figure 3). Let us see how the original separating
triplet {v,,v,,v4] is separated by the separating triplet (w, ,wy,w3]).

All v,,i=1,2,3 cannot belong to one separated component of G with respect to the separating triplet
{w,,wq,w4], otherwise either w; would be an articulation point, or {w,,w;) would be a separating pair, or both.

W.L.0.G. assume that v, belongs to one separated component and v,v4 o the other.




Figure 3.
Separating G, intoL, and L, and G, into Ly and L4 by {w;,w2,w3)}

Subgraph L; must be empty, otherwise (w,,v,} becomes a separating pair. Since the graph is triconnected,
(wi,v1)EE, 3x,yeLyuwauws: (x,v)EE, (3,v1)EE and V zeLyUL guvauvs: (2,v)eE. Hence, vertex wy is
unique up to a division of the original separating triplet {v,,v,,v,} into v, and v,, v4. So, if there is a separating
triplet of the fourth type which separates v, from v, and v, then there is no separating triplet of the fifth type which
separates v, from v, and v,.

Let us see how many separating triplets of the fourth type there are in G that separate the original separating

triplet (v,,v,,v3} into v; and v,, v5. The vertex w, must belong to all of them. Let us see the choices for

{wgq,w4}, such that {w, ,w,,w,} is a separating triplet of the fourth type.

Assume there is a separating triplet of the fourth type {w),u,,u,}, where u €L, uz€L,. The separating tri-

plet {w,,u,u3) separates L into L 3 and i,. and separates L, into L 7 andf.‘ (see Figure 4).

The vertex v, is connected by an edge to only one of the L ‘yuu, and [:3. otherwise {w,u,,u,} is not a
separating triplet. If v, is not connected to the L yuu, and [.-3 then (w;,w,} is a separating pair. W.L.O.G. assume
Vxei.;: (x,v|)eE. By the symmetry {v,, v5} is connected to only one of the L', and l-.¢. Let us see how the
separating triplet (w,,u, .44} separates {wy,w3}.

If vertices w, and w are not separated by {w,u,,4,) then there are four cases to consider.

When w, and w4 belong to the same component as L and L, with respect to the separating triplet
{w,.uy,42) and (v,,v4} is connected by an edge o0 Z4 then (w,u,) is a separating pair which separates

LzU[Vz,Vg]UL-4 from Vi UL;U{W:,W] }UL ‘4.
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Separating L 5 into L’3 and L, and L, into L’ and Z4 by {(wq,u1,u,)
When w, and w, belong to the same component as Ly and L, with respect to the separating triplet

(wy,u,,u,) and {v,,v,] is connected by an edge to L 'y then (u;,u,} is a separating pair which separates Z3u1:4
from the rest of the graph.

When w, and wjy belong to the same component as 1:3 and i., with respect to the separating triplet
{wi.,u;,u42) and [v;,v4) is connected by an edge to L’y then {u,,u4,} is a separating pair which separates

Egu {wi, w1 ]uI:., from the rest of the graph.

When w, and w; belong to the same component as [_.3 and Z4 with respect to the separating triplet

{wi,u,,u2} and {v,,v1] is connected by an edge to Z4 then {w,,u4,) is a separating pair which separates L 3uv,

from the rest of the graph.

Hence, w, and w; belong to different components with respect to the separating triplet (w,,u,,u,}. Sub-
graph i; must be empty; otherwise (u,,w3} becomes a separating pair. Hence, (u;,w,)€e E, otherwise {w,, w5} is
a separating pair. If (v,,v3) is connected to L’y then (u,,u2] is a separating pair or {w,k,4;} is not a separating
triplet. So,V xel’y: (x,v2)eE, (x,vy)eE, 3 y,z€ Z4u{w2,w3]: (y.v2)EE, (z,v3)e E. Subgraph L °, must be empty,
otherwise {w,,us} is a separaung pair or (w,,u;,u,} is not a separating triplet. Hence, (u;,w,)e E, otherwise

{wy,w3] is a separating pair (see Figure 5).

The above means that for each separating triplet (w,,w,,w3] there exists at most one separating triplet

{wy.u,,u3} such that ueLyand usely. So, Vxel’s, V)’Ei-a (wixows), {wyxus), (wiywal, (wiyu)




W'—v-r““'vw'w-.ur-w

Figure 5.
DNlustrating the configuration between separating triplets (wy,w3,w3} and {(w,,4;,u2)}

and {w,,y.x) are not separating triplets.
Let the number of vertices in L 3 be [ then the number of vertices in L-4 will be (n-k-3-1—4)=(n—-k-I-7).
Then the maximum number of separating triplets that use w is
r(n-k-3)= m‘ax[r(n ~k~l-5)-1+r(l+2)-1+ 4] =

m’ax[r(n—k-I—S) + r(I+2)] +2, r@)=1,r1)=0,
where r (n~k—{-5) - 1 counts all separating triplets which use w, and two vertices from Z4uu2UW3. rd+2)-1

counts all separating triplets which use w, and two vertices from L ‘juu,uUw; and 4 counts (w,,u;,u;},

{wi.wa,wi}, {wy,uy,w,} and {w,u3,w3}.

The solution for this recurrence is r(n—-k-3) < %(n—k-3) — 2. Since there exists a unique w,, for every
separation of v; i=1,2,3 from the other two v;’s, the upper bound for the separating triplets of the fourth and fifth

types together is:

3 3 3
fkn—k) + f (n—=k.k) < 3( 1srzlil“x_‘?'max( (n-k-3),k)-2)< -2—'[3(11 -4)—% = —2-(3n—l4).
a

Corollary The maximum number of separating triplets of the fourth type which separate {v;} from {v,,v;,v;3}-{v,}

S %(n —k-3)-2.

Analogously, we can state corollary for the fifth type separating triplet.




Lemma 3 h(k,n—k)Sk(n-k-3).
Proof: Assume there is separating triplet (w;,v,,w;]} of the third type in G, where w, €G, andw, €G,. It
separates G, into X, and X, and separates G, into Ky and K. Vertices v, and v, must belong to the different

components with respect o separating triplet {w,,v,,w2}, otherwise either (w,,v,} is a separating pair, or {w,,v,)

is a separating pair, or both.

) 05 Gl 255 Gl

Claim 1 Vertex v, has a direct edge to every nonempty subgraph X, .K,,K3,K 4.

W.L.O.G. assume that X, is not empty and VxeK, (x,v;)¢E. Then {v,,w,} is a separating pair of G,

4.-,
e
%. - td

which separates X; from the rest of the graph.

m]
Now, we will prove that there are no separating triplets of the third type which use v, or v4. We will prove
this by contradiction. W.L.O.G. assume there is a separating triplet {u,,v,,u4,}, where u, €G; and u; €G, (&,
may be equal to w, and u, may be equal to w,).

Case 1: uy €K,, if K, is not empty (see Figure 6).

K B

' Figure 6.

,‘ [llustrating Case 1 in the proof of Lemma 3

Y

N By Claim 1 for v, and the existence of separating triplet {u,,v,,u;}), K,, w,, K5 — u, belong to the same
-..: E connected component with respect (0 separating triplet (u,,v;,u;}. If v, belongs to the same component then
i, " (vi,u,} is a separating pair which separates K yuw, UK ,Uv; from the rest of the graph. If v, does not belong to

the same component then (v .4} is a separating pair which separates K, uw, UK, — u; from the rest of the graph.
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Analogously, u,¢ K ,.

Case2:uy=w;.

Since {uy,v,,u3} is a separating triplet then v, does not have any edges to K, and hence, K, is empty by
Claim 1. Butthen (v,,u,} is a separating pair, if {u,,v,,u,} is a separating triplet.

Analogously, u, #w,.
Case3: uy €K, and u; €Ks.

If {uy.v.u,) is a separating triplet then either {uy,uz},0r {uy,vy},0r {v,,u,) isa separating pair.

That means that if there is a separating triplet of the third type which uses one of the v;,i=1,2.3 then there are

no separating triplets of the third type that use the other v;,j=1,2,3, j#i.

Since the number of choices for w; is |V (G,)| = k and the number of choices for w, is 1V(G,)1 = (n—k=3),

the number of separating triplets of the third type is A (k,n—k) < k (n =k -3).

TR

a

Let us now tighten the upper bound for the number of separating triplets in the triconnected graph G. Assume

V(G

that {v,,v,,v3] divides the graph such that the ratio W)—' is as close to one as possible over all separating tri-
2

plets in G. From Lemma 3 we know that there is a unique vertex among (v,,v,,v} that participates in the separat-

ing triplets of the third type. W.L.0O.G., let this vertex be v,.

Lemma 4: If there is a separating triplet of the fourth type or the fifth type that separates v, from v, and v then

there are no separating triplet of the third type.

Proof : WL.O.G., assume there exists a separating triplet of the fourth type (w,,w;,w;}, with w,eG, and

g we CE K= o

w2,w3€ G2, which separates v, from v, and v,. It separates G, into K, and K ;, and separates G, into K ; and K ,.

From the proof of Lemma 2, X, is empty, (w,.v,)eE and (x,v,) €E, VxeG v \Uva—w, (see Figure 7).

Assume there is a separating triplet of the third type {u,,v3,4,), where u;€ G| and u;€ G,. By Claim 1 v,
must be connected by an edge to every nonempty component of G,,G, which is created by the separator

{u1,v2,42). By the proof of Lemma 3 u;, =w,. If v; and v, are separated by (w,,w,,w;) then (vo,w3)EE,

(v2,w3)eE and (x,v,)€ E,Vxe G,~wy-w. Furthermore, by Claim 1, no separating triplet of the third type exists.

If v, and v4 are not separated by (w,,wy,w1} then (v,,u,) isa separating pair. These two contradictions prove the
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Figure 7.
Iustrating the proof of Lemma 4

lemma.

0

Now we will do a case by case analysis of trade-offs between separating triplets of the third type and the
separating triplets of the fourth type and the fifth type.

Case 1: There are no separating triplets of the fourth type or the fifth type.

Let g (n) be the maximum number of separating triplets of G on n vertices. Then, using Lemma 3 we obtain the fol-
lowing recurrence relation
= + - -k -
g(n) 15‘;"3-4(8(k+3) gn=k)+k(n H+1)
The smallest function satisfying this recurrence is g(n) = -;-nz - %n +2. Note that, with this solution, equality

holds since the wheel W, has this number of separating triplets.

a

By Lemma 2, if there exists a separating tripiet of the fourth type that separates v, from v, and v3, then no
separating triplet of the fifth type exists which separates v, from v, and v,. Since the separating triplets of the

fourth type and the fifth type are analogous, we need only consider one of them in the case analysis.

Case 2: There is a separating triplet of the fourth type that separates v, from v, and v;.

Let {w;,w,,w3) be such a separating triplet, with w;€ G, and w;,w3€G,. It separates G, into G and éz

and G, = [w;]uél. Furthermore, suppose {w;,w,,w3} maximizes | V(G" )|, where G, is the part of G,

BOALOUALEN ;!‘ . -'st*'gt"]'.v'-';?.. "‘l‘;(_lr-l';}ill.‘i5“_‘5‘0"
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separated by (v,,w,,w3). Define 62 =0y-G3-wa—wiandlet | V(G )l =1. Now we will consider three

cases depending on whether separating triplets of the fourth and fifth types exist, which separate v; from v,,v,. We

do not restrict separating triplets which involve v,.
Case A: There are no separating triplets of the fourth type or the fifth type that separate v, from v; and v,.
If there is a separating triplet (u,,v;,u,}, of the third type where u,€G, and u,€G,, then use 52 by Claim 1.

Hence, the following recurrence relation is obtained using the corollary to lemma 2:

- 304 -

gn)= 1sTgs(g(k+3) +g(n—k)+ oy"s‘.a}a-s(k(n k—[-5) + > A+ -2)+1).
Since the function to be maximized is linear in /, the maximum is reached at one of the endpoints of the interval for
l. If k<1 then the maximum is reached when [ = n—k—6. But in this case {v,,w;,w,} would be chosen instead of

(vy,v2,v3). If k>1 then the maximum is reached when { = 0 and the recurrence becomes

gn)= lsr"nga“x_s(g (k+3) + g(n=k) + k(n—k-5) + 2),

whose solution is no greater than the bound of Case 1.

Case B: There is a separating triplet of the fourth type which separates v, from v, and v,.
Let {x,.x,.x3} be such a separating triplet, with x,€ G, and x,,x3€ G,. Furthermore, suppose {x,,x,.x4} maxim-

izes | V(52 )1, where 52 is the part of G, separated by (v4,x5.x1}.

Vertices x,,x;€ (:Jzuwzuw;. otherwise G is not triconnected. Define éz = 62 -G,-x2- x3 and let
IV(Gy)! =1. Ifthereisa separating triplet of the third type {u,,v,,u,)}, where u;€ G, and u,€ G,, then by Claim
1 uje é 2. Hence, the following recurrence relation is obtained using the corollary to lemma 2:

- 3 -
= - -k =]=]= —_ +4) - .
gln) 15!:13.5(5’(/:4-3) +g(n~k)+ ogrg-a-i-s k(n—k-1-1-5) + > ({+1+4) - 4) +1)
0gISA—k—I-5
As in Case A, the maximum is reached when [={=0, if k>1. Hence, the equality becomes
g(n)= lsTgJ&_s(g (k+3) + g(n—k) + k(n—k~-5) + 3),
which again gives a worse upper bound than the bound of Case 1. If k=1 then the maximum is reached when either

I=n-k-5and1=0or/=n-k-5and [ =0. But in this case either (v,,wy,w3} or {v3.x,x3} would be chosen

instead of {v,,v5,v4).

Case C: There is a separating triplet of the fifth type which separates v, from v, and v,.
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Let {x,,x;,x3} be such a separating triplet, with x, € G; and x,,x,€ G. Furthermore, suppose {x,,x;,x3} maxim-
izes | V(G, )!, where G, is the part of G, separated by {v3,x5,x3). Define G, =G, ~G, ~x2—x3-w, and

let | V(él)l =1, Since {v{,v2,v3) was chosen as the initial separating triplet instead of {v,,v2,x,} or {w,,v2,v3},

1 IV(Gy)! - IV(G3)! | €1. Therefore, k=[l;% or [%. Since these two cases are analogous, assume

k=|_"—;3ﬂ.

If there is a separating triplet of the third type {u;,v,,4;}, where u,€ G| and u,€ G2, then by Claim 1 u;€ G 1w,

2x =B T 1B

and u,€ G 2ux;. Hence, the recurrence relation obtained is using the corollary to lemma 2:

sm=s(| 23 +s (T M)+ max (53 -1- 15 -T-1)+ J0+T+4)- )

o;u'%—’]-z

& 2%

osz'd};—’j -2

The right hand side is bilinear in / and 1, hence the maximum is reached at the endpoints of the intervals. If / or lis

"> equal to O then we get a degenerate case that is equal to case A. If / =|'-'l;—3'| =2 and7=|_-’-'—'2-i_| — 2 then the equal-
i ity becomes
I
3
sm=3(| 22+ 2H)+ 2(a-3)-2). |
&8 2 2 2 |
& The solution to this recurrence is < -g-nlogzn + -153- For any n 2 19 this solution gives an upper bound smaller than {
z (n=1)(n-4) . . . .
—s All triconnected graphs on 5S<n< 18 vertices with constraints of Case C have less number of
% separating triplets than the wheel on n vertices. Hence, for case 2
g(n) s (n-1)(n-4)
- 2
:::- for all .
pl . .
& Note: Case 2 includes the case when no separating triplet of the third type exists.
@ This concludes the case by case analysis of the trade-offs between separating triplets of G of the third type
5 and the separating triplets of the fourth and fifth types.
ﬁ The established upper bound on the number of separating triplets of G for all n is

2 (m)S (n=1)(n—4)
< 5 .
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