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A Characterization of Separating Pairs and Triplets in a Graph

3 Arkad Kanevsky
Vijaya Ramachandran

3 Coordinated Science Laboratory
University of Illinois

Urbana IL 61801

July 1987

ABSTRACT

We obtain tight upper bounds of n(n-3) and (n-lXn-4) for the number of2 2
separating pairs and triplets in an undirected biconnected and triconnected graph, respec-
tively, where n is the number of vertices in a graph. We present worst-case graphs that
exactly achieve our upper bounds. Finally, we give an O(n) characterization for the
separating pairs in a biconnected graph.

- t1. Introduction

- '- Connectivity is an important graph property and there has been a considerable amount of work on algorithms

for determining connectivity of graphsfBoXv2,EvTa,C.lGiSoJLoWi]. An undirected graph G = (VE) is k.

, connected if for any subset V' of k-I vertices of G the subgraph induced by V-V' is connectedfEv! A subset V"

of k vertices is a separating k-set if the subgraph induced by V-V" is not connected. For k=l the set V' becomes a

I single vertex which is called an articulation point, and for k =2,3 the set V' is called a separating pair and separating

triplet, respectively. Efficient algorithms are available for finding all separating k-sets in k-connected undirected

graphs fork $3iT.Hjo'F a KaRaI. --

I , M address the following question: what is the maximum number of separating pairs and triplets in bicon-

nected and riconnected undirected graphs, respectively? < --

An undirected graph G on n vertices has a trivial upper bound of [ on the number of separating k.

3 sets, k a 1. The graph that achieves this bound for all k is a graph on n vertices without any edges. For k=l the L I

maximum number of articulation points ir, i connected graph is (n -2) .,nd a graph that achieves it is a path on n ver-

This research wa spponed by the National Science Foundation under ECS 8404866. the Semiconductor Research Coroauin under 86-12.109

an de Jon l Serv Elsctics Prmgrn under o014-54-C-0149.

k L



2

tices.

3 In this paper we show that for k=2 the maximum number of separating pairs in an undirected biconnected

graph is n (n-3) and a graph that achieves it is a cycle on n vertices. Further, we observe that there is an 0 (n)2

representation for the separating pairs in any biconnected graph (although the number of such pairs could be e(n 2)).

Finally, we prove that for k=3 the maximum number of separating triplets in a triconnected graph is (n-1)(n-4)
2

and we present a graph, namely the wheel [Tul, that achieves it.

In a companion paper [Kal] we prove that the number of separating k-sets in a k-connected graph is O0(ckn2)

and we show that the bound is tight up to the constant c.

S 2. Graph-theoretic definitions

An undirected graph G =(VE) consists of a vertex set V and an edge set E containing unordered pairs of dis-

tinct elements from V. A path P in G is a sequence of vertices <v, .- vk> such that (vj- ,vi)eEi=l, ..k. The

path P contains the vertices v0 , . ,vt and the edges (vo,vj), ... ,(vk-,,vk) and has endpoints vo, vk, and internal

vertices v I , " vk-i.

We will sometimes specify a graph G structurally without explicitly defining its vertex and edge sets. In such

cases, V (G) will denote the vertex set of G and E (G) will denote the edge set of G. Also, if V Q V and ve V we will

I use the notation Vtv to represent Vt (v).

An undirected graph G =(VE) is connected if there exists a path between every pair of vertices in V. For a

graph G that is not connected, a connected component of G is an induced subgraph of G which is maximally con-

S nected.

A vertex v e V is an articulation point of a connected undirected graph G =(VE) if the subgraph induced by

" V- (vI is not connected. G is biconnected if it contains no articulation point.

Let G =(V.E) be a biconnected undirected graph. A pair of vertices v1 ,v 2 V is a separating pair for G if the

induced subgraph on V- {vl, v2) is not connected. G is triconnected if it contains no separating pair.

A triplet (v1 ,v2 ,V3 ) of distinct vertices in V is a separating triplet of a triconnected graph if the subgraph

induced by V - (vI,v 2 ,v 3) is not connected. G isfour-connected if it contains no separating triplets.
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Let G=(V,E) be an undirected graph and let V'rV. A graph G'=(V t,E') is a subgraph of G if

I E'.En'[{(v5,v)j)Iv 5.vjeV). The subgraph of G induced by Vt is the graph G"=(V,E") where E"=E-

((v 1,v,) i v,vje Ve).

3. The tight upper bound for k=2

Theorem 1 The maximum number of separating pairs in an undirected biconnected graph is n (n-3)

Proof. Let (v1,v2) be a separating pair of a biconnected graph G on n vertices and m edges, whose removal

separates G into nonempty GI and G2 (see Figure 1).

ILet g (n) be the maximum number of separating pairs in a graph on n vertices. Then we can divide all separating

Ipairs into four types:

1). Separating pairs completely inside G 1 v (v1 ,v2 ),

2). Separating pairs completely inside G 2 UIV 1 ,v2 ),

3). Separating pairs with one vertex from G I and one vertex from G2,

4). The separating pair Iv1 ,v 2 ).

The number of separating pairs of type one and type two are upper bounded by g ( +2) and g (n-1), respec-

Itively, where I is the cardinality of V(G 1) and n -1-2 is the cardinality of V(G2). The number of separating pairs of

type three is trivially upper bounded by I(n-1-2). Hence, any function g(n) that satisfies the recurrence

IV
v 2

I
Figure 1.

Separating G into nonempty GI and G2 by separating pair (v1,v2)

I
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is n uperounong(n)=ma gQ1+2)+g(n-fl+(n-1-2)+

II
I is an upper bound on the number of separating pairs in a graph on n vertices.

We note that g (n) = n (n -3) satisfies this recurrence.
2D

0

Graph C,, the cycle on n vertices, has n(n-3) separating Pairs, so the bound is worst-case optimaL
2

Even though the number of separating pairs in a biconnected n-node graph G = (VE) can be as large as

e(n2), we observe that there are more succinct representations for them.

1 The tree of triconnected components of a biconnected graph has size 0 (m +n), where I E I = m [HoTa,MiRa],

and this is a representation for all separating pairs together with the triconnected components of the graph.

2 The algorithm in [MiRa] enumerates the separating pairs as a collection C = (V V,} of subsets of V,

with the interpretation that any pair of vertices within a single Vj is either a separating pair for G or the end-

points of an edge in a specified 'ear' in G, and further, every separating pair for G appears in at least one of

the Vi's. It is not difficult to establish that j I Vi I = 0 (n); thus this gives an 0 (n) representation for separat-
iml

ing pairs. We omit the proof of this result here since it requires extensive background material from [MiRa].

It will appear in [KA].

4. The upper bound for kW3

The wheel W. (Tul is C.-I together with a vertex v and an edge between v and every vertex on C,_-. It is

easy to see that W2 s ticonnected and has (n-l)(n-4) separating triplets. In the following theorem we prove that

this is the worst-case for the number of separating triplets in a triconnected graph.

I Theorem 3 The number of separating triplets in an undirected triconnected graph is< (n-l 2n-4) for anyn.

Proof: Assume there exists a separating triplet (v 1,V 2,v 3 ) in G, which separates G into nonempty G, and G 2 (see

Figure 2). Now, we can divide separating triplets in G into 6 distinct types:

1). Separating triplets completely inside GI I {v 1 v2 .v 3 ),

2). Sepwating triplets completely inside G2 U (v 1 ,v 2 ,v 3 ),

3). Separming mplets with one vertex from G 1, one vertex from G2 and one vertex from (v 1 ,v 2 ,v 3 ),

UtI -
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Figure 2.
Separating G into GI and G2 by separating triplet (v1 ,v2 ,v 3)

4). Separating triplets with one vertex from G I and two vertices from G2,

5). Separating triplets with two vertices from G I and one vertex from G 2,

6). The separating triplet (V1,v 2 ,v 3 }.

Let the number of vertices in G I be k, then the number of vertices in G 2 is n-k-3. Let g (n) be the maximum

number of separating triplets in a graph on n vertices, h (kn -k) be the number of separating triplets of the third type

A and f (k,n -k) and f (n -kk) be the number of separating triplets of the fourth and fifth types respectively.

Then any g (n) that satisfies the recurrence

~~g (n) = max (g (/k +3) + g (n -k) + h (k,n --k) + f (k,n -k) + f (n .-k,k ) + 1)
II

S is an upper bound on the number of separating triplets in G.

Let us now find the upper bounds for the functions h andf.
R 3

Lemma 2: f (k,n -k) + f (n-k,k) S - (3n -14).
2u Proof: Let (wI,w 2 ,w 3 ) be a separating triplet with w gIeG and w2 ,w 3 e G2 . The separating triplet (WIW 2 ,W 3)

separates G1 into Lt andL 2, and separates G2 intoL 3 andL 4 (see Figure 3). Let us see how the original separating

triplet (vI.v 2 ,v 3 ) is separated by the separating triplet [w2 ,w 2 ,w 3 ).

All v ,i=1,2.3 cannot belong to one separated component of G with respect to the separating triplet

(w,,w 2,w 3 ), otherwise either w, would be an articulation point, or (w 2,w 3 ) would be a separating pair, or both.

W.L.O.G. assume that v, belongs to one separated component and v2 ,v 3 to the other.

U
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U
I.

Iv
U4

SeparatingG I intoL I and L 2 and G 2 into L 3 and L 4 by ( 1 ,W 2 ,W3 )

Subgraph L I must be empty, otherwise (w 1,v I) becomes a separating pair. Since the graph is triconnected,

(w1,v1)eE, 3 xyeL3VW2 Q~W 3: (Xyv1)eE, (yMv 1)E and V zeL 2 tL 4 U..V2QV 3: (z,v1)eE. Hence, vertex w, is

~~ unique up to a division of the original separating triplet (V1 ,V2,V3 ) into Y, and V2, V3. So, if there is a separating

triplet of the fourth type which separates v I from V2 and v3 then there is no separating triplet of the fifth type which

ISeparates V Ifo n

3 Let us see how many separating triplets of the fourth type there are in G that separate the original separating

triplet fv1,V2,V3} into v, and V2, V3- The vertex w, must belong to all of them. Let us see the choices for

3 (W2,W31, such that (w1 ,W2,w3 ) is a separating triplet of the fourth type.

Assume there is a separating triplet of the fourth type (W1,u1 ,U2). where ujeL3, u2eL4. The separating tri-

plet (W 1,111,U2) separates L3 into L3 and L3, and separates L4 into L4 and Z4 (see Figure 4).

3 The vertex v, is connected by an edge to only one of the L' 3uu1 and L3, otherwise (W1,u1 ,u2 ) is not a

separating triplet. If vi is notconnected totheL~uu, andL 3 then (W2,W3) is aseparating pair. W.L.Q.G. assume

3VXEL 3: (x,v1)eE. BY the Symmetry IV2, V3) is connected to only one of the L4 and Z4. Let us see how the

Separating triplet (W1,as1,M2) Separates (W2,W3 ).-

If vertices W2 and W3 are notseparated by fW1,U1,zs2) then there are fourcases toconsider.

3 When w2 and w3 belong to the same component as L 3 and L 4 with respect to the separating triplet

(W1,U1,U2) and (V2,V3) is connected by an edge to L4 then (W1,"2) is a separating pair which separates

1L2kJ4v 2,V3J)L 4 from vjuLp...(W2,W3 ).L'4.
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Iv

W w
3

~v2

v2

Figure 4.
I SeparatingL 3 intoL' 3 andL 3 andL 4 intoL' 4 andL 4 by {w1 ,u1 ,u 2}

When w 2 and w3 belong to the same component as L 3 and L 4 with respect to the separating triplet

(w1 ,u1,u2} and (v2 ,v 3) is connected by an edge to L4 then (u1 ,u2) is a separating pair which separates L3uL4

from the rest of the graph.

When w2 and w3 belong to the same component as L3 and L4 with respect to the separating triplet

{w1 ,us,u 2 ) and (v2,v 3 ) is connected by an edge to L4 then {u1 ,u2 ) is a separating pair which separates

L 3 w W2 ,w 3J 1L 4 from the rest of the graph.

When w2 and w 3 belong to the same component as Z 3 and L 4 with respect to the separating triplet

{wj ,u1 ,u2) and {v2 ,v 3) is connected by an edge to L 4 then (wj,uj) is a separating pair which separates L 3uv1

from the rest of the graph.

Hence, w2 and w 3 belong to different components with respect to the separating triplet {wI,UI,U2}. Sub-

graph L 3 must be empty; otherwise {ut,w3) becomes a separating pair. Hence, (uM,w 3 )4 E, otherwise {w1 ,w 2) is

a separating pair. If (V 2 ,V3 ) is connected toL 4 then (9 1 ,U 2 ) is a separating pairor (w 1 ,u1 ,u2 ) is nota separating

triplet. So, V xeL 4: (x,v 2)EE, (x,v 3)EE, 3 y,zEL 4 .Iw 2 ,w 3): (Y,V2)eE, (z,v 3 )eE. Subgraph L 4 must be empty,

otherwise {w2 ,u2} is a separating pair or {w1 ,u1 ,u 2) is not a separating triplet. Hence, (u2 ,w2)eE, otherwise

S (w1 ,w3) is a separating pair (see Figure 5).

The above means that for each separating triplet fwI,w 2 ,w 3 } there exists at most one separating triplet

I {w 1 ,u 1,u 2 } such that u1 EL 3 andu 2eL 4. So, VxeL3, VyeL 4 fWIXW3}, (W 2,{U2 ), (WIYW 2 ), (Wl,y,Ul)

, ~ ~ w .... .... MMM 401 t ...... I
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• W

Figure 5.
illustrating the configuration between separating triplets (w1 ,w2,w3} and (w 1 ,Ui ,U2)

and {wl ,y,x) are not separating triplets.

Let the number of vertices in L 3 be I then the number of vertices in L 4 will be (n-k-3-1--4) = (n-k-1-7).

Then the maximum number of separating triplets that use w I is

r(n-k-3) =max[r(n-k-I-5)- 1+r(I+2) -1 44

max, r(n-k-1-5) +r(1+2)] +2, r(2)--1,r(1)=O,

where r(n-k--5)- 1 counts all separating triplets which use w, and two vertices from L4 Uu 2Uw 3 . r(1+2) - 1

counts all separating triplets which use w, and two vertices from L'3UUIW 2 and 4 counts (w 1 ,u 1 ,u2 },

3 [W1 ,W 2 ,W 3 , [w 1 ,ul,w 2 ) and (W1 ,U2 ,W 3 }.

The solution for this recurrence is r(n-k-3) < 3(n-k-3) - 2. Since there exists a unique w1 , for every

separation of vi i=1,2,3 from the other two vi's, the upper bound for the separating triplets of the fourth and fifth

types together is:

f(k,n-k)+f(n-kk)<3-( max -!-max((n-k-3),k)-2)!5 • 3(n-4)- = 2(n-14).

Corollary The maximum number of separating triplets of the fourth type which separate (vi) from {v I,v 2 ,v 3 -f v,}

is: <--(n -k-3) - 2.

2

Analogously, we can state corollary for the fifth type separating triplet

L
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~~ Lemma 3 h(kn-k)!Sk~n-k-3).

3 Proof: Assume there is separating triplet (W1 ,Y2 ,W2 ) of the third type in G. where w, EGI andW2 eG 2 . It

separates G I into K I and K2, anid separates G02 into K3 and K 4.- Vertices v I and V 3 must belong to the different

components with respect to separating triplet (w I V2 ,W 2 ), otherwise either ( w1, v2) is a separating pair, or (W 2 , V2 1

is a separating pair, or both.

Claim 1 Vertex v 2 has a direct edge to every nonempty subgraph K1 ,K2,K3,K 4.

W.L.O.G. assume that K, is not empty and VxeK1 , (XyV2 )eE. Then fvl,w 1J is a separating pair of G,

which separates K, from the rest of the graph.

Now, we will prove that there are no separating triplets of the third type which use v I or v 3. We will prove

this by contradiction. W.L.O.G. assume there is a separating triplet I(U1 , V1 , U2 ), where u I e G1 and U 2 EG 2 (U I

may be equal tow I and U 2 may be equal to W2).

41.Case 1: I1 e K 2 , if K 2 is not empty (see Figure 6).

IK

UU

4. Figure 6.
Illustrating Case 1 in the proof of Lemma 3

By Claim 1 for v, and the existence of separating triplet fu1,V1 ,u2 ), K1, w1, K2 - isi belong to the same

S connected component with respect to separating triplet fU1 ,V1 ."21. If v,. belongs to the same component then

(v1 ,ul ) is a separating pair which separates K 3 UW 2uK 4 QV3 from the rest of the graph. If V2 does not belong to

S the same component then (vi,ut) is a separating pair which separates Kluw..K 2 - U1 from the rest of the graph.
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Analogously, u2e K 4.

Case2: ul =wl.

Since {au,v 1,u2) is a separating triplet then v2 does not have any edges to K, and hence, K, is empty by

Claim 1. But then {v1 ,u2) is a separating pair, if {u1 ,v,u 2) is a separating triplet.

Analogously, u2 *w2.

Case 3: ul eK, andu 2 eK 3.

If (ut,vt,uz)is a separating triplet theneither {uj,u 2}, or {u 1 ,v1 , or {v I ,u2) is a separating pair.

That means that if there is a separating triplet of the third type which uses one of the vi,i=1,2.3 then there are

no separating triplets of the third type that use the other v,j-1,2,3, j*i.

Since the number of choices for w, is I V(G1) I = k and the number of choices forW2 is I V(G2)l = (n-k-3),

the number of separating triplets of the third type is h (k,n -k) < k (n -k -3).

Let us now tighten the upper bound for the number of separating triplets in the triconnected graph G. Assume

IV(G0).that {vI ,v2 ,v3} divides the graph such that the ratio TV(G2) I is as close to one as possible over all separating tri-

plets in G. From Lemma 3 we know that there is a unique vertex among (v1 ,v2,v3) that participates in the separat-

ing triplets of the third type. W.L.O.G., let this vertex be v 2.

Lemma 4: If there is a separating triplet of the fourth type or the fifth type that separates v2 from v1 and v 3 then

there are no separating triplet of the third type.

Proof : W.L.O.G., assume there exists a separating triplet of the fourth type {wI,w 2 ,w 3), with wIEGI and

w2,w3eG 2, which separates v2 from v, and v3. It separates G1 into K1 and K2, and separates G2 into K3 and K4.

From the proof of Lemma 2, K, is empty, (wt,v 2)eE and (x,v2) eE, VxEG I Uv~Iv 3-w I (see Figure 7).

Assume there is a separating triplet of the third type u 1,v 2,u2}, where ule G I and u2E G2. By Claim I v2

must be connected by an edge to every nonempty component of G ,G2 which is created by the separator

1U1 ,v 2,U2 ). By the proof of Lemma 3 ul =wl. If v, andV 3 are separated by {w1 ,w2,w3} then (v2,w2)eE,

(v2,w 3)eE and (x,v2)iE,Vxe G2-w 2-w 3. Furthermore, by Claim 1, no separating triplet of the third type exists.

If v, andV 3 are not separated by (w1 ,w2,w3} then {v2,u2} is a separating pair. These two contradictions prove the

UH
JillMI
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U U

Figure 7.
Illustrating the proof of Lemma 4

lemma.

Now we will do a case by case analysis of trade-offs between separating triplets of the third type and the

separating triplets of the fourth type and the fifth type.

Case 1: There are no separating triplets of the fourth type or the fifth type.

Let g (n) be the maximum number of separating triplets of G on n vertices. Then, using Lemma 3 we obtain the fol-

lowing recurrence relation

g(n) = max (g(k+3) +g(n-k) +k(n-k-3) + 1)

The smallest function satisfying this recurrence is g(n) = -L -n + 2. Note that, with this solution, equality

holds since the wheel W, has this number of separating triplets.

By Lemma 2, if there exists a separating triplet of the fourth type that separates vI from v2 and v3 , then no

separating triplet of the fifth type exists which separates v, from v2 and v3. Since the separating triplets of the

fourth type and the fifth type are analogous, we need only consider one of them in the case analysis.

Case 2: There is a separating triplet of the fourth type that separates v from v 2 and v 3.

Let {w I,w 2,w 3) be such a separating triplet, with wE G1 and w 2 ,w3 eG 2. It separates G2 into G '2 and G2

and G1 = {w.JG 1 . Furthermore, suppose {w1,w2 ,w3 maximizes I V(G' 2 )1, where G' 2 is the part of G2
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separated by (V1,W2,W3). Define G2 =G 2 -G' 2 -W 2 -w 3 and let I V(G2 )I =1. Now we wil consider three

3cases depending on whether separating triplets of the fourth and fifth types exist, which separate V 3 from V I, .2 We

do not restrict separating triplets which involve V 2.

Case A: There are no separating triplets of the fourth type or the fifth type tat separate V 3 from V I and V 2.

If there is a separating triplet (u I-V 2, U2 ), Of the third type where u 1ErG I and U 2 eG2, then U 2 eG52 by Claim 1.

Hence, the following recurrence relation is obtained using the corollary to lemma 2:

g g(n) = max (g (k +3) +g (n -k) + max (k (n-k -1-5) + -(1+ 2) - 2 ) + 1).

~ Since the function to be maximized is linear in 1, the maximum is reached at one of the endpoints of the interval for

1. If k:51 then the maximum is reached when I = n -k-6. But in this case (V 1,W2 ,W3 ) would be chosen instead of

(V 1 , V2 ,V 3 1 If k>lI then the maximum is reached when I =0 and the recurrence becomes

g(n) = max (g(k+3) +g(n-k) +k(n-k-5) +2),
10!sn-s

whose solution is no greater than the bound of Case 1.

LCase B: There is a separating triplet of the fourth type which separates v 3 from v I and v ..

Let (X 1 ,X2.X3) be such a separating triplet, withx Ic-G I and X2,X3e G2. Furthermore, suppose (X 1 ,X2,X3) Maxim-

izes I V(G 2 )1, where G 2 is the part of G02 separated by {V3,X2,x 3 )

Vertices X2,X 3eG2UW2 UW3, otherwise G is not triconnected. Define G2 -=G 2 -G 2 -X 2 -X 3 and let

IV(G 2)I =L If there is a separating triplet of the third type fU1,V2,U2 ), where ujeGj and U2EG2 , then by Claim

1 U2e G2. Hence, the following recurrence relation is obtained using the corollary to lemma 2:

1Yg(n) = max (g(k+3) +g(n-k) + max (k (n -k-i -7-5) + -!( 1+4) - 4) +1).
2

As in Case A, the maximum is reached when 1=1=0, if k > 1. Hence, the equality becomes

g(n) = max (g(k+3) +g(n-k) +k(n-k-5) + 3),
1sk~xRs

which again gives a worse upper bound than the bound of Case 1. If k=1 then the maximum is reached when either

I = n-k-5 and I = 0 or 7 = n-k-5 and I = 0. But in this case either (V1 ,W2,w3) or (V3 ,X2,X3 I would be chosen

instead of (Vl,V 2,V3).

S Case C: There is a separating triplet of the fifth type which separates v 3 from v 1 and v..
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Let (x1 ,x 2 ,x3) be such a separating triplet, with xe G2 andx 2,x 3eG 1 . Furthermore, suppose {x1 ,x 2,x 3) maxim-

3 izes I V(G 1 )1, where G 1 is the part of GI separated by [v3 ,X2 ,x3 ). Define G, = G, - G 1 -x 2 -x 3 -w, and

let I V(G 1) I = . Since {v 1 ,v 2,v 3 } was chosen as the initial separating triplet instead of Iv 1,V2,x1 ) or (w 1,v 2 ,v 3 ),

I ,V(Gj)I - IV(G 2)I I :1. Therefore, k=L x o. -_ . Since these two cases are analogous, assume

If there is a separating triplet of the third type {u 1, v2,u21, where u I e G 1 and u2e G 2, then by Claim I u e G' uw1

and u2e G 2Ux 1. Hence, the recurrence relation obtained is using the corollary to lemma 2:

n +31 ),z A -- 3 3 3
)(n'=g(L + max - I-

The right hand side is bilinear in I and I, hence the maximum is reached at the endpoints of the intervals. If I or " is

equal to 0 then we get a degenerate case that is equal to case A. if I= r -2 andt= L - 2 then the equal-

b ity becomes

g (n) = ) ( L -9 ) + g (r i_± 1 ) + 2(n - 3) - 2).
22 2

The solution to this recurrence iss I nog2n + -L For any n a 19 this solution gives an upper bound smaller than

(n-1)(n-4)
2 . All triconnected graphs on 5:5 n:5 18 vertices with constraints of Case C have less number of

separating triplets than the wheel on n vertices. Hence, for case 2

g(n) < (n-1)(n-4)
~2

for all n.

Note: Case 2 includes the case when no separating triplet of the third type exists.

This concludes the case by case analysis of the trade-offs between separating triplets of G of the third type

and the separating triplets of the fourth and fifth types.

i The established upper bound on the number of separating triplets of G for all n is

g (n)<- (n-1)(n -4)
2

L
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