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~TRODUCTION
The search for understanding of the physical mechanisms operating in the recently

discovered high Tc superconductors 4 forces a re-examination of the basic concepts and
physical assumptions of current theoretical approaches Is it possible to generalize the
Bardeen-Cooper-Schrieffer 2 pairing mechanism and ob an alternative attractive interaction
while preserving the basic structure of the Surely, the answer must be in the
affirmative. The BCS theory- n so highly successful in describing the physical
properti r!.3 revtoIs superconductors that the structure must be fundametally correct. Thus
thpk5co is on alternative pairing mechanisms.

SThe attractive interaction of a more general theory may be rather more complicated than
the electron-phonon interaction usually assumed. In fact, it probably contains the critical
chemical parameters of the material. This is the motivation for the present work in which the

focus is two-fold: first, to call attention to some recent developments in our understanding of
the chemical bond, and second, to propose that this new understanding is not only germane
to the electronic structure of solids but also provides a new perspective on the relationship
between the chemical bond and superconductivity.

Studying the connection between chemical bonding and superconductivity would seem to
be a rather academic exercise if it were not for the high temperature superconductors. These
new materials have brought to our attention in a dramatic fashion the ignorance which exists in

relating chemistry to the important physical parameters of a superconductor. Although this
point was raised in numerous contributions by Matthias,;its full import was never so apparent

when the superconductors were "traditional" metals and alloys. <._ <-

The new materials are certainly rather more complicated chemically and structurally than
the physicists' favorite model of a metal - the free electron gas! Typically the structure and
bonding in these ceramic oxides has been rationalized by chemists in terms of ionic concepts
introduced by Pauling and others many years ago. 4 Thus, there is a serious dichotomy between
the two starting points which one might employ to describe the metallic oxides. Suggesting

that our understanding of the electronic structure of these materials is rather primitive can be



accepted readily. However, finding agreement on the appropriate theoretical approach and the

choice of models which should be adopted is difficult. This is one reason why these materials
are such an exciting area for theoretical activity at present

In re-examining basic concepts, it is useful to remember that the true N-electron wave
function may be expanded in terms of components each of which is made up of N single
particle functions and that this expansion can be made in (at least ) two different ways:

'I' = cA,¢, (I)
V

{molecular orbitals / Bloch orbitals / delocalized basis)
or

IF = X dv4)vt  (2)
v

(valence bond orbitals / localized basis).

The former expansion is the one typically assumed both in molecular and solid state
work. The ease with which the single particle basis can be obtained in this case is certainly a

significant advantage. Furthermore, it might be argued that either approach is equivalent in the

end, hence it makes more sense to choose the mathematically more straightfoward approach. In
fact, one always considers only a small fraction of the terms in either expansion and the more
relevant question is which is more rapidly convergent and/or more physically motivated. The
concepts derived by the two approaches may be quite different. This is illustrated in Section 2
for a series of molecules and clusters.

In order to motivate the discussion on molecules and clusters, which involves the use of
Eq. (2), it is important to realize that the concepts derived from these small systems can be

transferred to the solid. This will be elaborated upon below. Further, in order to appreciate the
connection that a valence bond description has to superconductivity, it is instructive to consider
those aspects of the BCS theory which are essential to any model of superconductivity.

Therefore the electronic structure problem is best set up in its most general context.
The many-electron wave function is written as:

TV av Ov. (3)

The Ov' are solutions of H0 (H0o Ov' = Ev 0,') and the full Hamiltonian is H = H0 + U. The

question is what forms do U and TV need to have in order to produce a significant energy
lowering of the ground state with respect to the Ev? That is, how can an energy gap be . . .

produced? The total energy is:

WmX E, la,12 + Uav al,"av (4) - -
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A significant lowering in energy can be achieved, as is well known,5 if the Ev are all nearly
equal and the Ug v are all nearly equal. In this case, if the E, = E0 and the Ujv - V, the energy

is:

W = E0 - V I ag*av, (5)

and the lowest energy is obtained when all the av are the same. If there are m terms contributing

in the expansion of the wave function, the result is: W = Eo -mV. An energy gap parameter

can b. defined as:

A = (Eo- W) = V 71 a,*av = mV. (6)
ILV

Hence to produce a gap, one has to devise a physically meaningful wave function that has
phase coherence and equal amplitudes for the Ov' and a potential U which is attractive (i.e.,

leads to matrix elements Uv --- -V).

BCS chose to consider Eq. (3) in the form of Eq. (1), using Bloch functions as a basis

set and working in reciprocal space. In this case E0 becomes the Fermi energy EF. They found
a gap was achieved if: (1) the wave function was made up of pairs of electrons having opposite
spins and opposite crystal momenta (k, -k) and (2) the potential U was an electron-electron

attraction mediated by phonons, which has non-zero matrix elements, Ukk', for k values
within a characteristic phonon energy Nioc above and below the Fermi surface.

An alternative procedure would be to employ Eq.(2), use a localized valence bond basis
set, and work in real space. Such an approach has recently been suggested by the author. 6 In
this model, the gap is produced by forming a ground state which is a superposition of a special
class of terms, entering with equal amplitudes and phases and corresponding to a spatial

alternation of valence bonds.7.8 It turns out that this approach is mathematically very similar to
the description of "resonance stabilization" in benzenoid molecules. In order to appreciate fully
the concepts used in this approach as applied to solids, it is necessary to review some recent

developments in understanding the chemical bond in molecules.
In the succeeding sections, an attempt is made to provide the following connections.

First, the problem of electron correlation and the chemical bond for finite systems is
considered. This leads to some generalizations which can be applied to solids. These, in turn,
suggest that metals may be described by the highly correlated Wigner lattice limit as a starting
point rather than the more traditional electron gas starting point. Next, this allows one to think
of electron pairing in real space and make a connection to superconductivity. Finally, the
connections among superconductivity, the spatial alternation of valence bonds ( a particular
form of "resonance" ) and the oxide materials will be discussed.

%!



1.1 Digression: Comment on Band Theory and Oxides

It is worthwhile to recall some of the theoretical issues which have arisen in the past in
describing simple transition metal oxides, as they are likely to have relevance in the high Tc

oxide context. Foremost among the issues is the adequacy of band theory to describe the

properties of these materials. Band theoretical calculations by Mattheiss9 for CaO, TiO, VO,
MnO, FeO, CoO and NiO found CaO to be an insulator and the other oxides to be metals. In

fact, while experiment does find CaO to be an insulator and TiO and VO to be metals, the

remaining oxides (MnO - NiO) are found to be antiferromagnetic insulators. Spin-polarized

energy band calculations I0 found MnO and NiO to be semiconductors, but Mattheiss argued

that similar calculations for FeO and CoO would yield metallic results. Thus it was concluded9

that even spin-polarized band calculations are inadequate for the oxides MnO, FeO, CoO and
NiO and that they should be considered as Mott insulators. This is in agreement with other

approaches which stressed the importance of electronic correlation effects.1

Recent band structure results for the high Tc oxides by several groups12-' 4 identify Cu

3d- 0 2p interactions as the key to understanding the metallic and superconducting properties

of these materials. However, the various issues associated with describing important

correlation effects must be kept in mind.

2. NEW CONCEPTS OF CHEMICAL BONDING

The most common computational approach for molecules and clusters of atoms is the

molecular orbital method, which describes the wave function as an antisymmetrized product

of delocalized one-electron spin-orbitals in the Hartree-Fock approach or as a Hartree product

of delocalized spin-orbitals in the local density functional approach. This is, of course, the

finite analog of the band theoretic approach to solids where one uses Bloch functions instead of

molecular orbitals. In each case the basis functions transform as irreducible representations of

the appropriate symmetry group (point group for molecules or space group for solids) of the

Hamiltonian. Using the Hartree-Fock wave function as a starting point there is a systematic

procedure to carry out ab initio calculations which introduce various electron correlation

effects. However, for the density functional approach, no well-defined method exists for

adding electron correlation beyond the mean-field local density approximation. Hence, to

study the systematics of electron correlation effects computationally (without using model

Hamiltonians), one is forced to use ab initio methods on finite systems.

In the development to follow, the emphasis will be on the expansion of the wave function

according to Eq. (2). Unlike the expansion in Eq. (1), in which the one electron basis

functions (t), the N-electron determinants (k) and the N-electron wave function all transform

according to irreducible representations of the symmetry group, neithe- the basis functions (pj)

nor the N-electron terms (0.t) in Eq. (2) are symmetry functions. Only the full many-electron

wave function has the symmetry of the Hamiltonian.

' ", ?',,7 ,,a.' : . . %%"" *,, : v, . ,. . • . ".. .-- ' ". . .. ." • . .•. . . . . . .. . ...



2.1 Molecules

The paradigm for ab initio correlated calculations on molecules has become the Hartree-

Fock plus Configuration Interaction (HF + CI) approach. In this case the wave function is

written as a linear combination of Slater determinants made up of orthogonal spatial orbitals

(see Eq. 1). That is, for N electrons in a singlet state:

Ov = det I ( ' ev, (7)
j(v)

with <v 10 9 > = 8v and <(kI 01 > 8k. However, another approach to the problem of

correlation effects would be to consider the expansion given in Eq. 2, where the 4), are non-

orthogonal and are made up of non-orthogonal spatial orbitals:

* = det[( 1 qpj ) ev], (8)

j(v)

with < Ov* I OI*> * &p and < pk I ip > Z &j. In each case Ov is an N-electron spin function.

Specifically,

ev= civ ei, (9)
i

where the ei are a set of linearly independent spin couplings spanning the N-electron spin

space. The latter approach is vastly more complex mathematically. However, if the latter series

is more rapidly convergent and the individual terms are more easily motivated physically than

in the case of Eq. (1), the additional complexity may be worth the effort. This in fact is the

case as illustrated below, hence this approach is adopted in the following discussion.
In some molecules, one term in Eq. (2) and one spin coupling in Ov suffices to give a

reasonable description of the electronic structure of interest. Then each of the spatial orbitals,
one for each electron, can be determined self-consistently from a variational calculation.15 The
form of the wave function is:

Ot = dt Pj 0], (10)

where the spin function consists of singlet coupled pairs:
e [a(i) 0(i+1) - P(i) a(i+l)] /'42. . (1

For the case of C2F2, the orbitals of 0* (i.e., the qpj of Eq. 8) are shown schematically in

Fig. la. Note that all the orbitals are highly localized and are approximately tetrahedral hybrids.

The dots denote that the orbitals are occupied by electrons; the lines denote which orbitals are

coupled to form chemical bonds. For the "lone pairs" of electrons on the F atoms, t;'e orbitals

are shown as containing a pair of electrons. In fact, there are two orbitals for each pair - one for

" . .'- -' ,." .. ,.,-.-f .,,.,• : , . . .. .. . .. ,:. .. . .. ,. . .



each electron, but the angular dependence of the two orbitals in a pair are practically identical,
so the simplified representation of Fig. I is used. In order to obtain the identical description
from Eq. (1), it would require an expansion of 211 orthogonal determinants! It is interesting to

observe that the usual description obtained by molecular orbital theory (one term in Eq. 1),

consists of orbitals of a and it symmetries. The results presented here 16 with electron

correlation taken into account do not support such a description. Three equivalent bonds are

energetically preferred for the carbon-carbon triple bond, not a a and two it-bonds.

F C C F 0 C 0

a b

(a) (b)

Figure 1. Schematic representation of multiple bonds: (a) the C-C triple bond in the C2F2
molecule; (b) the C-O double bonds in CO2. Note the approximate tetrahedral hybrid nature of
all the orbitals. The calculations on which this figure is based are described in the text (refs. 16
and 17).

Another example"7 is the case of CO2 which has double bonds between the carbon atom

and each of the oxygen atoms. In this molecule, two terms in Eq. (2), each with one spin

coupling, are required to give a first order approximation. In Fig. lb, a schematic

representation of the orbitals of the first component are shown. Again, the atoms C and 0

exhibit localized orbitals which are essentially tetrahedral in nature. The second component of

the wave function can be obtained from the first (see Fig. Ib) by a rotation of 900 about the

internuclear axis, and the wave function is a coherent superposition of these two alternative

structures. Thus in the case of double bonds there is also support for equivalent bent-bonds Q

- bonds) as opposed to the molecular orbital concepts of a and i-bonds.

A third example 18 to consider is benzene which has been the prototypic molecule for it-

bonding. In Fig. 2a, a schematic representation of the carbon-carbon bonding in the ring is

shown as obtained from the calculations. The wave function, Eq. (2), contains tvfo terms (the

two Kekule' structures of benzene) and in each there is an alternation of double and single

bonds. However, the variational principle is found to favor approximately tetrahedral hybrids

leading to equivalent bent bonds rather than sp 2 hybrids leading to i-bonds. In Fig. 2b, the

orbitals forming a double bond in one of the Kekule' structures are shown.



In any of these cases, forcing the orbitals to become o- and n-like (by imposing

variational constraints) increases the calculated energy of the ground state, demonstrating that it

is a worse solution. From these and other calculations, the conclusion is that the carbon atom
and other atoms in this row of the periodic table (which have only s and p orbitals available)

form essentially sp3 hybrids regardless of their bonding environments. Furthermore, one may
use this insight to formulate a simple method for predicting the molecular structure of sp-

bonded molecules. 19 Namely, to first order, the structure of sp-bonded molecules arises as a
consequence of two simple principles: (1) each atom shares electron pairs so as to achieve a
closed shell configuration (the Lewis-Langmuir octet rule), and (2) the atoms arrange

themselves so that the electron pairs about each atom are approximately tetrahedrally distributed
(minimization of pair-pair repulsions). These principles are illustrated in Figs. 3 and 4. In
Fig. 3a, two schematic representations of a C-H bond are shown. In the upper diagram, the

correlated nature of the two electron bond is represented; a shorthand notation is given in the

lower diagram. In Fig. 3b, using

(a)

(b)

Figure 2. Bonding in the benzene molecule: (a) schematic representation of the orbitals forming
the double and single bonds in one of the Kekule' structures; (b) calculated orbitals of one of
the double bonds, with the upper orbitals forming one bond and the lower orbitals forming thL
other.



the shorthand notation, the many-electron wave function of CH4 is depicted; note the

tetrahedral distribution of electron pairs. In Fig. 3c, the bonding in C2H4 is illustrated; 20

observe that two electron pairs are shared by the carbon atoms. Fig. 3d shows the bonding for
B2H 6. The similarity to C2H4 is very clear in this representation. The molecule can be
considered as arising from the removal of a proton from each carbon nucleus of C2-4 with the
protons attaching themselves to the electron pairs shared by the resulting boron atoms in order
to preserve charge neutrality. It must be kept in mind what the shorthand notation actually

stands for. For example, the electron pair at a bridging H in Fig. 3d is shorthand for a situation

which is more accurately represented in Fig. 3e. There are three orbitals, one from each atom,
which have two electrons distributed among them. The two electrons are singlet coupled and
the actual wave function will be a superposition of these various alternatives.

H

C-& H -H

(a) (b)

H
0@

H

(C) (d)

H

(e)

Figure 3. Schematic representations of bonding determined from the orbitals of correlated
many-electron wave function: (a) the orbitals of a C-H bond showing "left-right" correlation of
the bonding electron pair, together with a shorthand notation employed in the otlher diagrams;
(b) diagram of the bonding in CH4; (c) bonding in the C2H4 molecule, showing how electron
pairs are shared between the two C atoms; (d) bonding in B2H 6 showing the close
correspondence to the C2114 molecule; (e) the three orbitals among which two electrons are
alternatively placed in a three-center two-electron bond (as in B2H6).

The electron distribution and bonding in B4Ho is shown schematically in Fig. 4. Here a

further simplification in notation is employed from that used in Fig. 3. The B-H two-center

~u



two-electron bonds (involving the four terminal hydrogen atoms) are now represented as dark
connecting lines between the atoms. The electron pairs involved in three center bonds with S

hydrogen (bridging hydrogens) are not explicitly shown as the hydrogen atom marks the I

approximate position of the charge distribution center. The hybrids from the B atoms which
share electron pairs are shown as light connecting lines. There is one pair of electrons which is
not shared by a proton; it is shown as a shaded sphere.

HH

B®

H
H He

HH

Figure 4. Schematic representation of B4H,10 wave function. The lighter connecting lines
represent tetrahedral hybrid orbitals originating from the boron atoms. Two hybrids overlap to
share an electron pair (denoted by shaded sphere); four such electron pairs are also shared with
protons (bridging hydrogens) to create "three-center two-electron bonds." See text.

The concept of approximate tetrahedral hybrids for describing the bonding of C and B
compounds is thus seen to be very useful and general. The fact that boron hydrides are
electron-deficient molecules raises the possibility that the concept may be applicable to other
electron deficient materials, for example, metal clusters and bulk metals. This is investigated

next.

2.2 Metal Clusters "

Recently, a very important contribution to the understanding of electronic structure in

metals has been made by McAdon and Goddard21 . They studied the electronic structure of

many Li clusters using explicitly correlated many-electron wave functions and demonstrated
that electrons in such clusters occupy localized orbitals in interstitial regions between the

atoms. A schematic representation of some of their results is shown in Figs. 5 and 6. For one-
dimensional chains of atoms (Fig. 5a) they found that one orbital localizes between each pair of
atoms and is occupied by one electron. The orbitals in adjacent interstitial sites couple to form

singlet pairs, but the dominant bonding is via the one-electron bonds formed by the interstitial
electrons. In fact, all the electrons can be high spin coupled and the chain is still stable with

respect to dissociation into Li atoms! This is quite different than the situation for normal



covalent two-electron bonds. The origin of this behavior is the small overlap between the
interstitial orbitals of the metal cluster, which then allows the calculated spin excitation

spectrum to be accurately fit by a Heisenberg Hamiltonian model.

For the one-dimensional chain there are no low lying excitations (within kT) which could
lead to electrical conductivity. However, for two-dimensional sheets there are a variety of low
lying excited states. This is shown schematically in Fig. 5b. For these planar arrays of atoms,

the orbitals localize into triangular interstices among three atoms with one electron in each

orbital. Orbitals in adjoining interstices are singlet coupled in the ground state. In three-
dimensional clusters, it was found that the orbitals localize

L i L i L i L i L i

(a)

(b)

Figure 5. Schematic representations of one- and two-dimensional Li clusters: (a) linear chain of
Li atoms, showing the interstitial orbitals localized between neighboring atoms with the orbitals
occupied by a single electron and singlet coupling between adjacent orbitals; (b) two
distributions of interstitial orbitals for planar arrays of Li atoms. See ref. 21.

into tetrahedral interstices with either one or two electrons in the tetrahedra, depending upon

the cluster geometry. Fig. 6a shows a schematic representation of the results for the Li23 '1 fcc

geometry. The cluster has eight tetrahedra about the central atom (labelled 1); four are occupied

by correlated electron pairs. These pairs are shown in the figure as shaded spheres. One of

these four tetrahedra is made up from the atoms labelled I to 4. The faces of the remaining four

tetrahedra each contain one electron (shown as darker shaded spheres). These electrons are

singlet coupled into pairs.

For the three-dimensional clusters, some interesting questions to ask are: can we predict

where the interstitial electrons should be without detailed calculations? Can the concept of

interstitial electrons be used to think about bulk metals? If so, is it possible to predict where the

interstitial electrons should be in the metal? What will be the consequences? For the moment,



only the first question is considered. McAdon and Goddard21 have presented some rules which
are derived from their calculational results, but they are strictly empirical and lack a more
fundamental basis. However, it has been found from our studies 22 that: (1) the tetrahedral
hybrids offer a natural way to understand the electron distribution and predict the results of

their cluster calculations; (2) tetrahedral hybrids provide insight about bulk metal alloys. Only
one example is given here, namely, the Li13

+ fcc cluster. In Fig. 6b, it is shown how each of

the tetrahedral hybrid orbitals on the central atom overlap with hybrids from three other atoms
so as to share an electron pair. This is the origin of the calculated results (see Fig. 6a) which

show that four of the eight tetrahedra about the central atom contain electron pairs which are
tetrahedrally oriented. The other interstitial electrons are each shared by three atoms with each

atom contributing one tetrahedral hybrid orbital.

o

O O 0
00

(a) (b)

Figure 6. Li1 3+ fcc cluster: (a) schematic representation of results of ref. 21, showing electron
pairs as lightly shaded spheres and single electrons as darker shaded spheres. The pairs are
localized in tetrahedra such as formed by Li atoms 1,2,3 and 4; (b) the tetrahedral hybrids
(shown as light lines) of the atoms overlap so as to optimally share electrons, which determines
the positions of the interstitial electrons for the fcc cluster geometry.

Returning to the linear chain and two-dimensional clusters, one might ask how tetrahedral

hybrids can explain the structures. Recall that the tetrahedral hybridization is a consequence of

two effects: (1) the stability inherent in forming a closed shell of electrons about each atom (the

octet rule) and (2) the minimization of pair-pair repulsions. If one chooses to arrange atoms in a
way that tetrahedral hybrids cannot be effectively used (as in linear chains or two-dimensional

.,
structures), a rehybridization will be required in order to optimize the energy of the structure

chosen. It should be clear, however, that the energy of the optimal 1-D and 2-D st'uctures will
be higher than for the optimal 3-D structures. This is in fact found by the calculations of
McAdon and Goddard.2 1 For the l-D case, it is easily seen that the best overlap of orbitals is

achieved for sp-hybridization, which leaves two orbitals unoccupied on each atom. For the 2-D

ca.e, it is the sp 2 -hybridization which is most favorable, leaving one orbital/atom unoccupied.



The relative energy of the I-D cluster is less favorable than for the 2-D cluster. In general, for

atoms with s and p orbitals, the use of approximate hybridizations other than tetrahedral will

raise the energy of the molecule or cluster.
Thus the concept of tetrahedral hybrids, together with the simple principles stated above

(the octet rule and the minimization of pair-pair repulsions), provides a powerful way to

understand the structure of molecules and clusters. This is a very different picture than

provided by a non-correlated approach: molecular orbital theory.

2.3 Solids
One of the potential advantages of using a framework based on localized orbitals is that

these orbitals can have transferability from one system to another, i.e., from molecule to
molecule and molecule to solid. Thus the tetrahedral nature of the bonding in diamond, cubic-

BN and BeO is not surprising. In fact, there are a large number of III-V and II-VI

semiconductors involving only s and p orbitals in their bonding which have either zincblende

or wurzite structures. Discussion of these semiconducting solids in terms of sp 3-hybrids is
quite common. 23 However, from the above results on metal clusters, it might be anticipated

that tetrahedral hybrids would be a useful concept with which to study bonding in simple
metals. In fact the concepts of localized orbitals, tetrahedral hybrids and interstitial electrons

obtained from studies of molecules and metal clusters suggest a rather different viewpoint for

metallic solids than traditionally accepted.

If these concepts are applied to metallic Be or Zn, for example, a structure which has each

metal atom tetrahedrally surrounded by four electron pairs would be anticipated. Starting with

ZnO (or BeO), which has the wurzite structure (two interpenetrating hcp lattices), replace each

O atom with a pair of electrons localized in this vicinity. This achieves an hcp metal lattice with

electron pairs in tetrahedral interstices of the lattice such that each metal atom has four electron

pairs distributed tetrahedrally about it. Such an array of electron pairs can be thought of as a

useful starting point for considering the ground state properties of the metal. 6 There are, of

course, two tetrahedra per electron pair into which electrons can be placed. The two ordered

arrays of pairs are only a shorthand way of describing a large number of valence bond

structures. Before proceeding down this path, however, it is reasonable to ask if this

description is consistent with known facts - for example, the charge distribution of the metal.

Fortunately, recent experimental work has produced a high quality charge density for the case

of Be metal.24

In order to compare the results of localized electrons with this experimental data, it is

necessary to describe some recent cluster calculations for Be which were used to generate a

charge density for the bulk metal.25 The hcp structure can be thought of as constructed from

face-sharing tetrahedra of Be atoms separated by face-sharing octahedral voids as shown in



Fig. 7a. Considering just the atoms labelled 1 to 5, a cluster calculation was set up with

boundary conditions appropriate to the solid.

4

qY
5

(a) (b)

Figure 7. Atomic arrangement in hcp Be: (a) the lattice as network of face-sharing tetrahedra;
(b) the calculated charge density in the plane of atoms 1,4,5 for the pair of tetrahedra labelled
1,2,3,4,5.

The form of wave function with the pair of electrons in one of the tetrahedral interstices,

e.g., that defined by atoms 1,2,3 and 4, was determined by a variational calculation. The

calculation was repeated for the pair in the tetrahedron defined by atoms 1,2,3 and 5. To

construct a proper wave function for the pair of electrons, a coherent superposition of these

two alternative structures must be made (as in the representation of benzene by the two Kekule'

structures 8 ). The charge density resulting from the superposition of these components (one

with the pair in the upper tetrahedron and the other with the pair in the lower tetrahedron) was

obtained and is shown in Fig. 7b. Finally a periodic array of these charge densities was

superposed to obtain an approximate charge density in good agreement with experiment 25 and

bulk band structure calculations.26 Thus, the concept of electron pairs largely localized to

tetrahedral interstitial sites is consistent with the known charge density of Be, even though it is

not the commonly held view.

The traditional view has been to consider the electronic properties of metals by starting

from the free electron gas model and constructing theories which incorporate various

approximations to the electron-electron interactions in order to discuss the behavior of real

metals. Another point of view, and the one adopted here, is suggested by the results discussed

above - choose as the starting point the opposite extreme of highly correlated electrons

localized at interstitial lattice sites. This viewpoint is not so radical as it may first sound; it is

very similar to the electron lattice proposed by Wigner27 fifty years ago to describe the electron

gas at low density. Real metallic densities are roughly in the range of 2.5 < rs < 5.5, and it

generally has been assumed (based on various theoretical estimates) that the Wigner lattice limit

,.-,....



would correspond to much lower densities (rs > 10-20). Thus, the emphasis has been on the

development of theoretical techniques for the high density limit (rs< 1) with the expectation that
it offered a better chance of approaching densities of physical interest in metals. After many
years of effort, however, a satisfactory theory for normal metallic densities is still elusive. The
results for metal clusters using correlated wave functions suggest that the Wigner lattice idea

may be more appropriate. The introduction of discrete atomic nuclei (rather than the uniform

positive background of Wigner) is probably the crucial factor in stabilizing the electron lattice at
normal metallic densities.

3. SUPERCONDUCTIVITY

Recently, the author proposed a connection between chemical bonding and

superconductivity and argued for a formulation in real space.6 It was proposed in this new

model that the superconducting ground state is a coherent superposition of bonding structures
which exhibit spatial alternation of valence bonds. With the background provided above, it

should not seem unreasonable to formulate a description of metals, and certainly the ground

state of metals, from a valence bond Ansatz. This approach is pursued here, and recent work

by Robert Murphy and the author is reported upon.7 ,8

3.1 The Wigner Lattice and Normal Metals

In the Bloch theory of metals the one-electron basis set used is labelled according to the

eigenfunctions of the kinetic energy operator (i.e., by k). There is an intrinsic importance

associated with the kinetic energy, while the potential energy (nuclear attraction and electron-

electron repulsion) is treated in a secondary manner. In the valence bond theory of metals

discussed here, just the opposite strategy is used. The potential energy (and local kinetic

energy) is treated first with the (longer range) kinetic energy taken into account afterward.

To clarify the concepts involved, consider a simple two-dimensional case with trigonal

hybrids and two electrons per atom. Figure 8 shows several valence bond structures for a small

region of the 2-D lattice. In Fig. 8a, a representation of a Wigner-type lattice of pairs of

electrons in trigonal interstices is given. As depicted, this clearly looks like an insulating state

of valence bonds. There are two electrons in each interstitial region with bonds between

orbitals of types 2 and 3. Other bonding arrangements would include bonds between types 1

and 2 and between I and 3. In order to describe normal metals, other energetically low-lying

configurations have to be considered, such as the one in Fig. 8b, where three of the' hybrids are

occupied in one interstice and only one in another. The emphasis on the potential energy

aspects of the problem are clearly illustrated in these diagrams where the electrons are localized

in interstices and the distribution of pairs is such as to minimize pair-pair repulsions. However,

there is no reason why the three electrons bhould be localized to a particular trigonal interstice

as shown in Fig. 8b. There are other alternative positions which must be considered. In

,. , :.. .. , :.... ..*.. .... ... /......



-w'. w"

addition, such a localization would significantly raise the kinetic energy. The systematic

treatment of configurations such as shown in Fig. 8b is necessary to describe normal metals

starting from the valence bond or Wigner-lattice limit. Besides the types of configurations

discussed so far there will be a large number based on alternative spin-couplings for a

particular occupancy of orbitals. For example, an alternative spin coupling for the orbital

configuration shown in Fig. 8a, is that given in Fig. 8c. For such "long bond" configurations,

the singlet coupling and triplet coupling will be nearly identical in energy and spin fluctuations

will be important. The theory of metals from this perspective is virtually unexplored.

(a) (b)

op

Figure 8. Some representative valence bond structures in a small region of a two-dimensional
lattice: (a) Wigner-like lattice of electron pairs; (b) example of a single particle excitation; (c)
example of alternative spin couplings.

3.2 Kinetic Energy and Resonance

The simplest example is considered here in order to gain some insight, 28.29 namely the

one electron case of H2
+. Assume that the solution to this problem can be written in terms of a

proton interacting with a hydrogen atom, i.e., the wave function describes a proton on the right

and a H atom on the left: (H, H+). The full Hamiltonian is used, but this "localized" description

of the wave function is used. The energy for this description, EA, is repulsive for'all values of

the internuclear separation. Hence there is no bond! The problem, of course, is that the above

description is not a proper wave function. A proper wave function for the system must be a

linear combination of the two alternative structures : (H, H ) + (H', H), where there is an

equal probability amplitude for the electron to be on the right or left proton. Now the energy is

found to be: E = EA + Tx + Vx, where Tx and Vx are the exchange kinetic energy and the

o, .." ""'..,':: ''a% ,, ' . , ; .;. '-; 2", " :,;,':',;:,':. ,':, ,, .- . ' .,:, ---.-. '-.9
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exchange potential energy, respectively. The latter two terms arise from the "exchange" of the
electron between the two protons. The exchange potential energy does not provide an attractive

interaction over the whole range of internuclear distances. The only term which is attractive is
Tx. Thus, the exchange kinetic energy is responsible for bonding! This also turns out to be the

case for the prototype of the two-electron bond, H2, which has been analyzed in detail. 28 .29

Thus, the superposition of alternative electron arrangements (exchanging electron

positions among available orbitals) leads to the only attractive term, the exchange kinetic

energy, present in the combined H + H system. This kinetic energy stabilization also can be
achieved in the one-electron case by allowing the electron to "delocalize" by forming a linear

combination of atomic orbitals. These two descriptions are, of course, equivalent in the one

electron case. In generalizing to N-electrons and the solid state however, the two approaches
are no longer equivalent. Allowing each electron to delocalize (setting up Bloch states) and

applying the canonical many-body theory to account for electron correlation effects is the usual

procedure. Solving a set of local N-electron problems with correlation effects included and then
taking a superposition of the local solutions is the valence bond approach. This superposition
of terms (structures such as in Fig. 8c) will lower the kinetic energy and allow a k vector to be

assigned to the N-electron state. Such a representation allows a description of the normal metal
within a valence bond framework.

The coherent superposition of terms in Eq. (2) is frequently referred to as "resonance."

However, this designation has come to mean so many things that it is necessary to specify

what one is talking about. Consider a term in Eq. (2):

v =det[ (Ip'1 ) 8v], where ev = civ 0j. (12)
j(v)

For any product of any set (v) of spatial orbitals (pj in (I\, there will be (2n!) / [n! (n+l)!] = TI

linearly independent singlet spin couplings Oj which will contribute to the total singlet spin state

Ev, where n is the number of electron pairs. If all dv = 0 in Eq. (2), except for one, then the

spatial orbitals are fixed; however there are still Tl terms from the spin-couplings. Such a wave

function has been proposed by Anderson 30 to describe the superconductivity in Ba - and Sr -
doped La2CuO4 and referred to by him as a "resonating valence bond" state or as a "quantum

spin liquid."
Another use of the word "resonance" or "resonance structures" comes about if the

orbitals in the 0v$ are not determined self-consistently, i.e., they are atomic orbitals. Then, in

order to obtain appropriate charge transfer from the atomic situation, ionic terms have to be

introduced. In the qualitative valence bond scheme of Pauling many such terms were required

in order to account for molecular charge distributions.

In the present context, neither of these meanings of the word '.'esonance" is appropriate.

What is required to describe the physical situation envisioned here is a wave function in which
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there are different spatial terms (i.e., there is a sum over v), but the sum over the spin-

couplings (Eq. 8) is restricted (usually to a single term). As described later this is referred to as

a spatial alternation of valence bonds, or perhaps more succinctly, as "spatial resonance" in

order to differentiate the physical situation from other uses of the word resonance.

3.3 Valence Bond Model of Superconductivity
If the superconducting ground state wave function is viewed as a superposition of

structures, Eq. (2), such as schematically depicted in Fig. 8, why should a gap form? Here

again, a comparison to a molecular situation is instructive. This time benzene and related

molecules (benzenoid molecules) are relevant. These molecules have an anomolous stability
and in a magnetic field exhibit large "diamagnetic ring currents"; two features in common with

superconductors. However, the analogy goes even farther.

(a) (b)

(c)

Figure 9.Valence bond structures: (a) one the Kekule' structures of benzene; (b) one of the
Dewar structures of benzene; (c) one of several Kekule' structures in a polyacene in which the
"benzene ring" can move down the chain.

For benzene, it has recently been demonstrated from quantitative calculations that only

two structures, the Kekule' structures (see Fig. 9a) are needed to describe the ground state.

Other structures (Fig. 9b) which involve long bonds contribute energetically very little to the

ground state wave function. This result had been deduced from semiempirical theories many

years ago, and has been the basis of the valence bond approach to benzenoid molecules. 3 1-33

The Kekule' structures, for example, describe the "delocalization" of the benzene ring in

polyacenes (see Fig. 9c). In all these molecules the ground state wave function is made up of a

superposition of Kekule'-like structures (no structures with long bonds, only those with

nearest neighbor bonds). The coefficients in Eq. (2) for all Kekule' structures are taken to be

identical; for large benzenoid systems these represent only a small fraction of the total number

of valence bond structures. Furthermore, the matrix elements which convert one structure into



another (off-diagonal matrix elements of the Hamiltonian) are set equal to a common value,

determined empirically. Thus, the energy lowering associated with "resonance" in benzenoid

molecules has a mathematical structure which parallels that of producing a gap in a
superconductor as described in the Introduction. However, there is one very important

difference.

In the benzenoid molecules the number of electrons and the number of available orbitals

are equal, whereas in a metal there are more orbitals than electrons. The latter circumstance is
necessary for transporting currents and super-currents. In the case of the oxide materials there

are also more orbitals than electrons available, although it may be more convenient to think of

the latter situation in terms of holes in occupied orbitals.

Thus it is proposed that the superconducting ground state wave function is composed of a

superposition of Kekule'-like terms which enter with identical phases and essentially identical

amplitudes. Such a combination produces the lowest kinetic energy. The energy of each of

these terms will be nearly the same - all involve different ways of forming nearest neighbor

bonds. Just as in the case of the benzenoid molecules there will be large numbers of off-

diagonal matrix elements which are the same. This leads to an energy gap of
KS

A = Upv av* av (13)

PIv

if the lowest single-particle-like excitation has an energy approximately that of one of the

Kekule' structures. The continuum of single-particle-like excitations is made up of the non-

Kekule' valence bond structures (long bond structures) and higher kinetic energy sums of the

Kekule' structures, in much the same fashion as excitations have been described previously in

terms of many-electron basis states.34 In Eq. (13) the sum is over Kekule' structures (KS),

and as mentioned above the a1L are nearly identical and large numbers of the matrix elements

will be the same. At present, nothing more quantitative about the gap can be said. The

discussion of several interesting aspects of the model must await the completion of work in

progress.8

In this valence bond model of superconductivity, raising the temperature will eventually

destroy the stability gained from the spatial resonance because the entropic term in the free

energy will increase rapidly when the electron pairs take on the many other possible

configurations that are available. There are clearly two factors which influence the gap size: the

number of contributing Kekule'-like structures and the size of the off-diagonal matix elements.

The size of the matrix elements are strongly influenced by the degree of localization of the

orbitals involved in the bonds within the given structures. The orbitals of oxygen involved in

the high Tc oxides are much more compact than the orbitals of metal atoms in the usual

superconducting metals. This is one of several factors contributing to the large gap in the oxide

materials.

x U



3.4 Oxides, Spatial Resonance, and High Tc
In order to discuss the new superconductors using the valence bond theory proposed, it

must be shown that such a coherent spatial resonance can occur in these materials as a

consequence of their local bonding. As an example of the concepts involved, recent work on

the electronic structure of the SF6 molecule is considered.7 The S atom is in an octahedral

environment not unlike that of the metal atoms in some of the oxides of interest. At first

glance, the traditional chemical models do not appear to be appropriate because sulfur
seemingly forms six bonds to fluorines, yet the sulfur s2p4 valence configuration allows for at
most two covalent bonds. The use of d-orbitals in the bonding, from a d2sp3 configuration for

S, has been proposed frequently; however, many theoretical calculations show that there is
rather little d involvement in the bonding. Understanding the bonding in this molecule
continues to offer challenges.35

A novel interpretation of the electronic structure of SF6 is obtained by considering the
wave function as a coherent superposition of low symmetry generalized valence bond

structures involving covalent bonding, ionic bonding and little sulfur d-orbital contribution.
This superposition includes both intra-pair and inter-pair correlation effects while retaining a
local picture of the bonding. Fig. 10a shows the geometry of the SF6 molecule. The calculated

results suggest that one may think of SF6 as forming in a hypothetical sequence in which the
axial fluorines first form largely ionic bonds to sulfur, thus promoting an effective sp3 valence
configuration on sulfur. The remaining four sulfur electrons left in a tetrahedral orientation on

sulfur then form bonds to the equatorial fluorines. The inter-pair correlation intri..ced

tetrahedral sp3 orbitals bonding to the equatorial fluorines can be seen in Fig. 10b, wl,
schematic representation of the bonding results is shown. In particular, note that two pai-

electrons (denoted by shaded spheres) are pulled above the equatorial plane and two below,

thus reducing the pair-pair repulsions. The choice of the axial direction for the ionic

components is not unique. In order to obtain the wave function, a coherent superposition of

six symmetrically equivalent, yet distinct structures is necessary:
6

'l=C , 0i. (14)

Such a coherent superposition of degenerate states leads to the well-known "resonance

stabilization" and offers an explanation for the exceptional stability of this molecule.

In the oxide materials, much remains to be done in order to understand thie electronic

structure. However, the concepts of ionic and covalent bonds together with spatial resonance

(as in the SF6 molecule) are likely to play a significant role. The familiar chemical approach of

treating the oxides as ionic solids is too simplistic to deal with many of the properties. On the

other hand the band theoretic approaches of the physicist are also too simple; localization and
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correlation effects cannot be easily dismissed. High temperature superconductivity in ceramic
oxides raises many unsettling questions about the present state of understanding in electronic

structure theory.

0 O

0

(a) (b)

Figure 10. The SF6 molecule: (a) showing the octahedral symmetry of the molecule; (b)
schematic of the bonding in one of the valence bond structures, in which the shaded spheres
represent electron pairs and the connecting "bars" represent tetrahedral hybrids.

4. SUMMARY
The thesis presented in this paper is that a common basis for understanding chemical

bonding and superconductivity is provided in the framework of the valence bond theory of

electronic structure. The valence bond approach considers local bonding and correlation

effects in individual alternative valence bond structures, then takes care of kinetic energy

effects by building a wave function which is a coherent superposition of these structures (i.e.,
spatial resonance). The usual approach to solids is based on the Bloch method, where the

kinetic energy for each electron is minimized first, with the correlation effects included

afterward.

The BCS theory has taught us the essential requirements of a theory of superconductivity:

there must be (1) a gap between the ground state and the spectrum of single-particle

excitations, (2) a spatially long range phase-coherence of the electrons, (3) an effective

attractive interaction between electrons and (4) a large number of essentially identical off-

diagonal matrix elements. BCS, starting from a Bloch representation, met these requirements

by using an electron-phonon interaction which produces an effective attractive electron-

electron interaction between pairs of electrons with opposite spins and momenta (k, -k) and

by constructing a ground state wave function from these electron pairs.
The valence bond theory described here starts with a large density of nearly degenerate

valence bond structures. An in-phase coherent superposition of the Kekule'-type structures

results in a ground state which is separated by an energy gap from the single-particle
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excitations if the off-diagonal matrix elements between Kekule' structures have approximately

the same values. In benzenoid molecules the latter condition holds, and by analogy is expected

to be valid in the more general context. However, a formal proof of this conjecture about the

off-diagonal matrix elements for a realistic wave function of the solid is still lacking. If the

conjecture is true for the solid, then all the necessary ingredients are in place to have a valence

bond theory of superconductivity.
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