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Two necessary criteria for a theory of superconductivity are a phase coherence of 'TY

the wave function and an attractive electron-electron interaction. We review how .HSLCUO

the BCS theory achieves these criteria and then show how a valence bond wave
function can also meet these conditions. The energy scale of the latter approach
has a larger range in principle than that possible via the electron-phonon interac-
tion.

Introduction

The recent discovery of ceramic high-T superconductors has forced a re-examination of the
basic concepts and physical assumptions employed in current theoretical approaches. In re-
examining basic concepts, it is well to remember that the true N-electron wave function may
be expanded in terms of components each of which is made up of N single particle functions
and that this expansion can be made in (at least) two different ways:

C,

(molecular orbitals/Bloch orbitals/delocalized basis)

=E d,, O. (

(valence bond orbitalsi/localized basis).

The former expansion is the one typically assumed both in molecular and solid state
work. The ease with which the single particle basis can be obtained in this case is certainly a
significant advantage. Furthermore, it might be argued that either approach is equivalent in
the end, and hence it makes sense to choose the mathematically more straightforward
approach. In fact, one always considers only a small fraction of the terms in either expansion (
and the more relevant question is which is more rapidly convergent and/or more physically



motivated. The concepts derived by the two approaches may be quite different. This has been
illustrated recently in a series of molecules and dusters, (1-5) for which calculations using
Equation (2) were carried out. For metal dusters it was found (1,2) that electrons became
localized into interstitial regions. And for double (3), triple (4) anJTinjugated bonds (C1H6)
(5), it has been found that bent-bonds made up of essentially'tetrahedral hybrids describe the
bonding. These conclusions are quite different than those based on MO theory.

A key factor in superconductivity is the presence of an energy gap which separates the
ground state (superconducting state) from the continuous single particle spectrum characteris-
tic of the normal state of a metal. Let us write the many electron wave function as

V - Ea, Op, (3)

without specifying the representation. Assume Op are solutions of H (H 4,, = E,,$.) and
the full Hamiltanian is H = Ho + U. The question is what forms do L? and'i need to have in
order to produce a significant energy lowering of the ground state with respect to the E,?
That is, how can an energy gap be produced? The total energy is

W=EE,, lop + E U. a;a, (4)
5' 5*'

A significant lowering in energy can be achieved, as is well known (6), if the E,, are all nearly
equal and the U. are all nearly equal. In this case, if the E, E. and the U, t- -V, the
energy is

W = E. -V E a,*. ,, (5)

with the lowest energy obtained when all the ap are the same. If there are m terms contribut-
ing in the expansion of the wave function, the result is

W-E -mV (6)

with the energy gap

A = (E.- W) - V E a,. a -mV. (7)

Hence to produce a gap, one has to devise a physically meaningful wave function that has
phase coherence and equal amplitudes for the f,' and a potential U which is attractive (i.e.,
leads to matrix elements Uw - 4). In the next section, we review how Bardeen, Cooper and
Schrieffer (7) (BCS) met this challenge.

Review of the BCS Theory of Superconductivity

Here' we present a brief review of the essential aspects of the BCS theory of superconductivity
which was introduced in 1957 and is still the most successful and complete theory of supercon-
ductivity which exists. The purpose of this section is to stress the unique features of the super-
conducting wave function which should be preserved in any new theory which involves a
different mechanism for obtaining the ground state wave function.

In the BCS theory, the normal (non-superconducting) state of the metal is described by
Bloch single particle eigenstates (8) k> labelled by a wavevector k,

'11 iM,'



h Ik> = ek Ik>, (8)

where h is the single electron Hamiltonian and Ck is the single particle energy of state jk>.
The wave function of the metal is described by the occupation of single particle states Ik > and
in the ground state all single particle levels are filled up to the Fermi energy EF with states
above Ep being unoccupied. This Bloch model does not include correlations between elec-
trons due to Coulomb forces nor the interaction of the electrons with the lattice vibrations
(phonons). In the superconducting state the phonon interaction is accounted for, but the elec-
tronic correlation is neglected except for effects produced by the electron-phonon coupling.
The argument for ignoring other electronic correlation effects is that they are characteristic of
both the normal and superconducting phases and therefore cannot be responsible for produc-
ing a gap.

The BCS superconducting state is characterized by an attractive potential between elec-
trons arising from an electron-phonon interaction. We will now review how this interaction is
derived (9). The direct electron-phonon interaction is a result of the potential between the
electrons and the nuclear charges when the nuclei vibrate about their equilibrium positions.
The electron-ion (e-i) interaction is expanded in terms of displacements Qj of the nuclear
coordinates from their equilibrium positions Rj,

V, (r,-R -j) = Ve4 (r-, - Rj) + Qr V Ve (r.,- Rj) + (9)
-z

r= . electron coordinate; V, (r., - Rj) = - R I"

By making a Fourier transformation of Vei. and using a plane wave basis jk> for the
electrons, we can consider the electron-ion interaction in the usual scattering terms in which
we consider the amplitude Mq to transfer momentum q to the electron state jk> "scattering"
it into state Ik + q>. The corresponding diagram for this process in Figure 1.

Fr6hlich (10) showed how second order perturbation theory could be applied to derive
an effective interaction between electrons from the direct electron-ion interactions. The physi-
cal idea is that as one electron scatters from a nuclear center it distorts the lattice, this distor-
tion is felt by another electron, and thus the electrons experience an indirect interaction. The
result is that we can think of the electrons as exchanging phonon momentum q in an electron-
electron scattering process shown in Figure 2. The effective potential of interaction between
the electrons for a scattering involving a change in momentum q is (11),

IMq 12
V -(ak - )2.- (#/ )2 (10)

where Mq is the amplitude for the electron to directly absorb a phonon of momentum q; "k
and ek., are the single particlk energies before and after scattering, and N w. is the energy of
the phonon. The important point is that for I k - ekq I < N wq, the potential is attractive and
it is this attractive interaction which leads to the superconducting state. Counterbalancing this
attractive interaction is the repulsive Coulomb interaction which in momentum space is

4we
2

Vt: _k 'k 2 12  (1)

creating the potential for the scattering of an electron from I k, > to I k2 > in the Coulomb
field of another electron.

-7 w i .w.-: p , | tt~t .u Afi.t .-. , .. ......



The object of the BCS theory was to maximize this attractive electron-phonon (e-ph)
interaction since it could possibly lead to a physically different state, lower in energy than the
normal metal. To maximize the interaction BCS considered only electron-phonon interactions
for which VO is negative which requires scattering of electrons from states Jk> to Ik">
such that Ilki, - I < X w, where X w, is some average phonon frequency of the order of a
Debye frequency. In other words only Jk> states within a region ±]t w, of the Fermi energy
can contribute to the scattering process. To simplify matters further an average constant
attractive potential -V was defined as -V = <V, +V> which is an average of the electron
phonon potential and the Coulomb potential over the k region defined for attractive V, .

The next crucial step in the theory was the development of a superconducting wave func-
tion that both optimizes the attractive phonon interaction and minimizes the Coulomb repul-
sion. This means specifying a particular occupation of Ik> states. Considering the matrix ele-
ments of the attractive potential, BCS showed that the optimal wave function involved an ocu-
pation of k states such that if state kIu > with momentum k and spin a is occupied then the
state with opposite momentum and spin, I -k-r> is also occupied. This condition is referred
to as electron pairing and is responsible for the coherence of the wave function. The scatter-
ing from VA only occurs from the pair state Ik,-k> to another pair state Ik',-k" > where k'
= k + q as shown in Figure 2 and again k and k" are in the restricted region near the Fermi
level. The paired wave function is written at,

'ts - I (v + ukb)Io> (12)

where Uk is the amplitude to have pair state Ik,-k> occupied, u'k is the probability to occupy
pair state Ik,-k>, vk is the amplitude to have pair state Ik,-k> unoccupied, bt = cL ctk, is
the pair creation operator in second quantized form, and 10> is the vacuum.

In the ground state at 0*K of the normal metal uk, the probability to occupy pair state
ik,-k>, is unity up to the Fermi energy after which it is zero. In the superconducting state uk
differs from the Fermi distribution by the excitation of some pair states above the Fermi level.
These pairs interact ia the attractive potential which more than compensates for the excita-
tion energy above the Fermi level. Thus a rounded Fermi distribution is obtained (Figure 3).

The Hamiltonian which describes these interactions is simply,

H~cS - E ek 4, ci E V,,,b[ bk (13)

V1,k. is the potential obtained for each scattering of pair state Ik,-k> to lk',- k' > for kk in
the region near the Fermi level The energy is simply

ECs - 2 E u ek - E Vak.& ua vk uk" vi'. (14)

k 1kh-

The coefficients u k and Vk are determined variationally giving (see Figure 3),

u- 1/2 ( - tk/Ek), P12 (1 + 9k/Ek). (15)

it is assumed that the matrix element Vi,,,. z! V (i.e., are independent of k and are non-zero
only in the vicinity of 'F). This leads to a gap parameter

A - V E ukv. (16)
t o



which may be compared to Equation (7) and a new quasiparticle energy given by Ek =

V 'T(12).
That"a set of nonzero uk has been obtained for k>kF means that a new many-electron

state has formed with a lower energy than the normal state. The key feature of the new state
is its stability to single particle excitations. In the normal metal, single particle excitations
above the Fermi level can be made with vanishingly small energies. In the superconducting
state there is not only an energy lowering of the whole system relative to the normal metal but
there is also a finite energy gap to single particle-like excitations of the order of the gap
parameter A. This gap to single particle excitations is responsible for most of the physically
observable properties of a superconductor including a specific heat which grows as exp(-
A/kT) and perfect diamagnetism to be discussed below.

Wher a magnetic field is applied to a superconductor, a current i6 induced in the
material wn..4 creates a new field opposed to the applied field such that B = 0 in the material
(Meissner effect). The quantum mechanical current densityj in the material is given by,

jV'W-_'PV -- A'k (17)
2rnc Mc

where A is the vector potential defined by B = V x A. The first term is the paramagnetic con-
tribution to the current and the second is the diamagnetic term. T is the wave function in the
presence of the field A which differs from the ground state superconducting function to to
first order in A by,

'="0 + r <' A-p IO> >
Apo (E. - Eo)

where In> are excited states above O'. E. - E. is at least as large as the gap parameter A
which makes the perturbation to T relatively small; thus we can use * = to in the calculation
of J. In the ground state WO, the paramagnetic term in the current is zero, hence the only
response of the system is purely diamagnetic, J - -(e2 /mc) A 'P*P. Since V2 A = -(4n/c) J,
A = A exp(- V(4_n2/mc2) z), which shows, in the one-dimensional case, the exponential
drop of'the field as z increases into the material from the surface. This shows that diamagne-
tism is a direct consequence of the stability of the superconducting state to single particle like
excitations.

Finite temperature effects are easily included in the theory by modifying all the matrix
elements by including Fermi-Dirac factors, 1/(exp(-O6E.) + 1). Variationally minimizing the
free energy G - U - TS shows the gap function decreasing as a function of temperature until it
reaches zero at the critical temperature T,, at which the transition to the normal state occurs.
The expression for T, is, kt - $w, exp(-1 / N(0)V), for N(0)V<l. N(O) is the density of
states of the normal metal at the Fermi Jevel.

To summarize, the BCS theory of superconductivity provides an energy gap and a physi-
cal mechanism to achieve: (1) phase coherence in the wave function and (2) an attractive
interaction. Both of these are required to produce a gap as seen in the discussion of the Intro-
duction. The BCS mechanism of pairing electrons with k and -k momenta is the key to accom-
plishing these goals.

- Why, then, are there so many discussions of new mechanisms to explain the high T
superconductors? First, there is a limitation to the magnitude of V if it arises from the
electron-phonon interactions; second, the density of states for these oxide materials is quite
low. Taken together, these observations make it difficult to understand a transition tempera-
ture of 901. Recently, the band structure of the tetragonal/Lo 2CuO4 compound has been
calculated (13,14). The results indicate a partiday filled band at the Fermi level which can be
well describea W a tight binding model as Cu d,.,s and O p orbitals in the plane hybridizing to
form the four Cu-O bonds in the plane. The Fermi surface of the undistorted tetragonal



lattice in 2-D is just a square. The lattice vibrations associated with a transition from the
tetragonal phase to an orthorhombic structure have wave vectors that exactly span the Fermi
square and hence can cause a Peierls distortion (15) to the orthorhombic phase and opens a
gap at the Fermi level, creating a semiconductor. The Ba substituents are believed to change
the Fermi level thus changing the shape of the Fermi surface and destroying the Peierls insta-
bility, bringing the symmetric structure back without the semiconducting band gap. Unfor-
tunately, new experiments (16) seem to indicate that the lattice distortion can occur in the
superconducting state.

Calculations of the phonon modes and BCS electron phonon coupling constants (17)
suggest that a high T is the result of the high frequency of a Cu-O(1) in-plane bond-stretchlg
mode (w ) rather than a strong election phonon coupling parameter. The highest T calcu-
lated was 40K, limited by the highest Cu-O frequency. Unfortunately replacement of 160 with
10 in this system (18) shows no change in T, casting doubts on this mechanism.

The first conclusion to be drawn from this work is that calculations based on the BCS
model cannot presently explain the T's of order 90'K given the phonon frequencies and band
structures calculated. This points out that perhaps a mechanism other than an electron-
phonon mechanism is involved, which depends on parameters with larger energy scales. A
possibility is an electronic mechanism, many of which have been proposed. We will discuss
one of these in the next section.

The second point is that the oxide electronic structure is discussed in a real space local
bonding framework although traditionally band structure/k-space methods have been used.
The simple picture of the k-k pairing in BCS seems to be lost in these complicated band struc-
ture calculations. It should be noted also that there have been serious difficulties associated
with applying traditional band structure concepts for predicting the nonnal behavior of metallic
oxides. As a typical example, simple band filling models for MnO cannot avoid attaining a
partially filled band indicating that it should be a conductor (19,20); however, MOO is one of
the best insulators known in nature. Such difficulties led to theiuseof the Hubbard model (21)
of metals, which includes strong atomic-like correlation effects in a model Hamiltonian form
to rationalize some of these band problems. More of the history of the importance of correla-
tion effects in the oxides can be found in References 19,20,22. The point is that correlation
effects have been known to be very important for predicting the properties of oxides, and this
should be kept in mind when using the results or concepts of mean field theories which neglect
these very important effects.

Valence Bonds and Superconductivity

One of the authors (22), has proposed a model of superconductivity which is based on a highly
correlated descriptio-n'of metals, closer to the Wigner lattice limit of electron localization (23)
than to the free electron limit usually assumed. For small metal clusters of Li atoms McA'on
and Goddard (1,2) have shown using correlated ab-initio methods that electron pairs localize
in tetrahedral inthrstices of the lattice. It also has been shown (24) that one can obtain a very
good approximation to the experimental charge density of Be usrg this description. Further-
more, studies on molecular systems (3-5) have shown an energetic preference in sp valence
atoms for bent bonds formed from ttrahedral hybrids rather than the traditional o," bonds
based on MO theory. The use of tetrahedral hybrids for Be metal suggests that the electron,
pairs can localize into tetrahedra in two separate ways, as shown in Figure 4. The fully sym-
metric wave function is a coherent superposition of the two structures. However, each of these
structures is only a shorthand way of describing a large number of valence bond structures
with alternative hybrids forming bonds. But, what does this have to do with superconductivity?

Lct us return to the discussion in the Introduction and recall that to obtain a theory of
superconductivity it is necessary (see Equations 4-7) to have an attractive potential, -V, and to
have the a., of Equation (3) be equal. In the BCS theory, Equation (1) was used as the basis
of the model. Here, we use Equation (2) as our starting point. The question, as it was above
in the discussion of BCS theory, is how do we obtain a physically meaningful wave function
and potential to satisfy these criteria?



Returning, then, to the expansion of Equation (2), we note that the terms represent
different valence bond structures. Why should they all have the same amplitude and phase?
This situation is very similar to the problem of determining the "resonance energy" of ben-
zenoid molecules (25,26,27). In that case, of all the possible valence bond structures which
might contribute, oi-y"0ei"Kekule' structures are used. For large benzenoid systems this is
only a small fraction of the total number of structures. Furthermore, it is assumed that they all
enter with equal expansion coefficients (i.e., equal amplitude and phase). In addition, the
matrix elements which convert one structure into another are set equal to a common value,
determined empirically. Thus, the energy lowering associated with "resonance" in benzenoid
molecules has a mathematical structure which maps onto the discussion in the Introduction.
However, there are some important differences.

A necessary, but not sufficient, condition for producing a superconducting ground state
is that the number of available orbitals exceeds the number of electrons. In order to describe
a superconducting metal, the lowering of the ground state produces a gap with respect to a
continuum of single particle excitations. From a valence bond viewpoint such a continuum is
easily achieved when the number of orbitals (hybrids) is significantly larger than the number of

electrons (e.g., the rato # of electaons may be in the range - 1.1 - 4.0). For the oxide materi-

als it is the ratio of orbitals to holes which is important. However, for the benzenoid molecules
this ratio is unity and the ground state is an insulator, the lowest lying excited states will have
significant excitonic and polaronic effects. Thus, in spite of the coherent superposition of
alternative bonding structures ('spatial resonance') in these molecules, which is one of the
necessary conditions for superconductivity, there are insufficient orbitals for the number of
electrons, therefore failing another of the requirements.

For superconducting metals, the non-Kekule' valence bond structures (analogs of
Dewar and "long-bond" structures) provide the basis for constructing the continuum of single
particle excitations. Raising the temperature in this model will eventually destroy the stability
gained from the resonance because the entropic term, -ST in the free energy will increase
when the electron pairs take on the many other possible configurations that are available to
them than just those which maximize the resonance energy. A more quantitative discussion
will be given elsewhere (28).

In order to discuss"le new superconductors with this model, it must be shown that such
a coherent spatial resonance can occur in these materials as a consequence of their local bond-
ing. As a first step, we have calculated the electronic structure of the SF6 molecule to gain
some insight into the bonding occurring in octahedral complexes which are an important part
of the environment in the new superconductors.

Bonding in a Octahedral Environment

The molecule sulfur hexafluoride (SF ) has recently challenged both molecular spectroscopy
with its unexpected rotational spectra f29) and electronic structure theories with novel correla-
tion effects (30,31,5). The electronic structure must explain the molecule's high stability,
octahedral symmetry, and, most importantly, provide a simple picture of the bonding. At first
glance, the traditional chemical models do not appear to be appropriate because sulfur seem-
ingly forms six bonds to fluorines, yet the sulfur s$p4 valence configuration allows for at most
two covalent bonds.

In this section we report on some preliminary results which suggest a novel interpreta-
tion of the electronic structure of SF6 by considering the wave function as a coherent superpo-
sition of low symmetry generalized valence bond structures involving ionic bonding and little
sulfur d-orbital character. This coherent superposition provides a significant fraction of the
correlation energy by including both intra- and inter-pair correlation while retaining a local
picture of the bonding.

At the lowest level, SF is described by the molecular orbital Hartree-Fock wave func-
tion with doubly occupied orgitals 0 which are determined self consistently in the mean field
of the other pairs,



tiff- det a4J ..... (19)

The Hartree-Fock calculations were performed at the experimental (32) octahedral
geometry with a S-F bond length of 1.564k. A standard double zeta basis wasused for the
fluorine atoms (33), while the sulfur was described by an effective potential (34) with a valence
double zeta s-p "asis. In a separate calculation a single d polarization functIo-n with exponent
.532 was added to the sulfur basis to assess the importance of d functions.

The most striking feature of the results is that SF6 is not bound with respect to the
&eparated atoms when d functions are not included in the sulfur basis while the introduction of
the d function on sulfur lowers the energy by 10.5 eV making SF6 bound by 5.6 eV. Similar
results were obtained by Reed (30). Without further evidence this result would suggest that
sulfur has a large sp3 d2 component from which six equivalent S-F bonds can be made.

From the Hartree-Fock calculation, the zeroth order description of SF is of fluorine
forming partially ionic bonds to sulfur, with a small population of the sulfur dfimction ener-
getically very important for bonding. Reed has concluded that the d orbital occupation is
small because the d orbitals are high in energy. The Hartree.Fock binding energy falls far
short of the experimental value of 20.1 eV indicating that there are major correlation effects
neglected, which we will discuss below.

In order to gain both a more local and a more accurate description of the bonding in
SF6 we introduced intra-pair correlations via the perfect pairing generalized valence bond
method (GVB-PP) (35). The valence electrons are described by generalized Heitler-London
pairs,

(#d + ob 0) (OP- a) (20)

where the singlet coupled overlapping spatial orbitals 0., Ob forming a local valence bond are
variationally determined. The GVB-PP wave function is the antisymmetrized product of the
pair functions and perfect pairing refers to the orthogonality of the pair functions and the
nature of the spin coupling:

# PvB4p = det [0.(1) #b(2) 0,(3) Od(4) ... Oe]p (21)

with

_ , - (c.(1)(2) - P(1)a(2)) (c(3)#(4) - #(3)o(4)) ... (22)

Six pairs of electrons were described as correlated pairs (Equation 20) while the other
pairs were treated at the Hartree-Fock level. No symmetry restraints were placed on the wave
function for reasons that are explained below. The basis set included the sulfur d functions.
The correlation energy obtained relative to Hartree-Fock is 3.0 eV indicating the extent of
intra-pair correlation.

These GVB results suggest that we may think of SF6 forming in a hypothetical sequence,
in which the axial fluorines first form largely ionic bonds to sulfur, thus promoting an effective
Sp3 valence configuration of sulfur. The four sulfur electrons are left in a tetrahedral orienta-
tion on sulfur available for the bonds with the equatorial fluorines.

The equatorial bonds have small z components on the sulfur in the GVB results. The
lack of z character in the orbitals is a result of the high electronegativity of the fluorines, caus-
ing highly polarized bonds, the lack of inter-pair correlations in the perfect pairing method,
stemming from the orthogonality constraints between the pairs, and the neglect of the correla-
tion effects described next.



Inter-pair correlations introduced by the tetrahedral sp3 orbitals bonding to the equa-
torial fluorines can be seen in Figure 5, where we have shown schematically what the equa-
torial bonds would look like with more sulfur Pz character in the bonds. This figure shows the
inter-pair correlation occurring by pulling two pairs above the equatorial plane and two below,
thus reducing the Pauli repulsion relative to having all pairs in the plane. The choice of the
axial direction for the ionic components is not unique. To restore the symmetry in this scheme
we must also include the degenerate configuration in which this sp 3 state is reflected about the
equatorial plane and consider the four other orientations obtained from the other equivalent
"axial" positions. Thus we suggest that the SF6 wave function is described by a coherent super-
position of these six structures,

'sf, C ( 6 + + ..... + 06 (23)

Such a coherent superposition of degenerate states leads to the well known "resonance" energy
defimed as the difference in energy between the energy of 91 alone and WsF. (33,5). This
bonding scheme for introducing inter-pair correlations beyond the GVB-PP method using a
superposition of resonance structures emphasizing the atomic hybridization has been shown to
be successful for benzene (5).

Much remains to be-done to implement the ideas outlined here about valence bond
wave functions, in order to address the many questions about new high-T, materials. However
the fact that it is formulated in real space and is based on chemical bonds, should allow much
more direct contact with the chemical aspects than has been previously possible.
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Figure 1. Electron of momentum k being scattered by phonon into state with momentum k +
q.

Figure 2. Two electrons with momenta kI and k2 exchanging a phonon of momentum q in an
electron-electron scattering process.

Figure 3. Occupancy of k-states for the normal metal and in the superconducting state.

Figure 4. Schematic representation of electrons localized in tetrahedral interstices of hcp Be
metal. The electron pairs are distributed among four hybrids at each site. Only a representa-
tive number of electron pairs are shown.

Figure 5. Schematic representation of bonding in SF6 for one of the spatial resonance struc-
tures. There are six equivalent structures, each has two "ionic" bonds and four "covalent"
bonds. The shaded spheres represent the positions of electron pairs; the light connecting lines
represent approximate tetrahedral hybrid orbitals. The dark connecting lines merely show the
octahedral geometry.
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