
A f916M THE PROGRAMMER' S APPRENTICE: A PROGRAM SYNTHESIS /'AD-All SCENRRIO(U) MASSACHUSETTS INST OF TECH CAMBRIDGE

UNCLSSIFE ATIFICIAL INTELLIGIENCE LAB C RICH ET AL. NOV 67I Ua RIEAI-M-933 N 4-65-K-614O12 I/5NL

I fllllllllfllflfl
Iflllllllllllll
EEEEEEEElll

1..8

m"icoop NE SOLLU TEST CW
-MMOf symqCSIWS

-w .w *w- - rm~- -.- -lam,

UNC LASSIFI ED

*r I S':~~ -IS AS E *%e.Do#. a 9101d)FIE.Ej

REPORT DOCUMENTATION PAGE 1EFORE COMPLETIN F

I *too*? 1.umslt[2. GOVT ACCESSION NO 3. RECIPIENTS CATALOG NUMSER

9331

4 T1TLE (*ndll Sw&t'1@) S. TYPE Oi REPORT PERIOOD COVERED

The Prograwuer's Apprentice: A Program
Synthesis Scenario

6. PERFORM NG ORG. REPORT NUMIeR

7 AUT.ON(s) G. CONTRACT 01 GRn~iT NUMIIR(s)

NSF Grant#TL-8616644
Charles Rich & Richard C. Waters IBM & Sperry Corp.

ARPA/CNR Grant#NO001485K012
*lRrOAMING ORGANIZATION NAME AN ADDRESS tO. PROGRAM ELEMENT. PROJECT. TASK

___ Artificial Intelligence Laboratory AREA a WORK UNIT NUMUERS

545 Technology Square
0 Cambridge, MA 02139

I. CONTROLLING OIPrPCE NAME AND AOORESS 13. REPORT DATI
Advanced Research Projects Agency November 1986

00 1400 Wilson Blvd. IS. UMUSE OF PAGES
U Arlington, VA 22209 45'4:4 MONITORING AGENCY NAME S AOORESS(1 IIff o.oo. Coeltollot. Olie*) sI. SECURITY CLASS. (ofo tis rpM)

Office of Naval Research
Information Systems UNCLASSIFIED
Arlington, VA 22217 1. VICATION' OOWNGRADING

I. DISTRISUTION STATEMENT (of thie R ep.)

)istribution is unlimited.

17. OISTRI@UTION STATEMENT (of IN* Oefet neo Week" Da. . Jiiorn h~Iasm ARepwe) t)"T1 ::
__A 6~ U 25 1987

1S. SUPPLEMENTARY NOTES

None

Is. KEaY WORDS (Caeffi.. an fUweO side of Nneoemy OW 04eUtlF~ mop 04 anmer)

Programmer' s Apprentice
Automatic Programming
Software Engineering
Program Synthesis

20. A .,STRACT (Continue an ewe ,, sie Of pesp mE 1~011F &F o.._ .00)

A scenario is used to illustrate the capabilities of a
proposed Synthesis Apprentice. Given a specification, the
Synthesis Apprentice will be able to make many of the design
decisions needed to synthesize the required program. The
Synthesis Apprentice will also be able to detect various
kinds of contradictions and omissions in a specification.

DD , 73 1473 EDITIoN OF I Nov so is oUsoL t UNCLASSIFIED

SECURITY CLASSIFICATION OF TNIS PAGE ftfm. Deve fietfre

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
ARTIFICIAL INTELLIGENCE LABORATORY

A.I. Memo No. 933 November 1986

The Programmer's Apprentice: iiiS _GTA---

A Program Synthesis Scenarioi Uanced 0
Justificatio

by

Charles Rich I Distribution/

Richard C. Waters Availability Codes

opy lot Special

Abstract - -

ZA scenario is used to illustrate the capabilities of a proposed Synthesis
Apprentice. Given a specification, the Synthesis Apprentice will be able
to make many of the design decisions needed to synthesize the required
program. The Synthesis Apprentice will also be able to detect various kinds

of contradictions and omissions in a specification.,

Copyright (D Massachusetts Institute of Technology, 1986

This report describes research done at the Artificial Intelligence Laboratory of the Massachusetts Insti-

tute of Technology. Support for the laboratory's artificial intelligence research has been provided in part

by the National Science Foundation under grant IRI-8616644, in part by the IBM Corporation, in part

by the Sperry Corporation, and in part by the Advanced Research Projects Agency of the Department

of Defense under Office of Naval Research contract N00014-85-K-0124.

The views and conclusions contained in this document are those of the authors, and should not be inter-

preted as representing the policies, neither expressed nor implied, of the National Science Foundation,

of the IBM Corporation, of the Sperry Corporation, or of the Department of Defense.

87 8 19 064

Synthesis Apprentice

The Programmer's Apprentice Project
The Programmer's Apprentice project uses programming as a domain for studying

and attempting to duplicate human problem solving skills. Recognizing that it will be
a long time before it is possible to fully duplicate human abilities in this domain, the
near-term goal of the project is the development of a system, called the Programmer's
Apprentice, which provides intelligent assistance in various phases of the programming
task.

Viewed at the highest level, software development is a process that begins with
the desires of an end user and ends with a program that can be executed on a ma-
chine. The first step of this process is traditionally called requirements acquisition,
while the last step is called implementation. Figure 1 shows how the current and pro-
posed demonstration systems in the Programmer's Apprentice project support these
activities.

Implementation
Apprentice

User ; ",-.....-......". ,Machine

Requirements Synthesis
Apprentice Apprentice

Figure 1: Parts of the Programmer's Apprentice along the spectrum of software

development activities.

To date, most of the research in the project has focused on the development of
an Implementation Apprentice. This has resulted in a working demonstration system
called the Knowledge-Based Editor in Emacs (KBEmacs)[6]. The principal benefit of
KBEmacs is that it allows a programmer to construct a program rapidly and reliably
by combining algorithmic fragments stored in a library. An additional benefit of the
knowledge-based editing approach is that it provides a basis for intelligent program
modification and maintenance.

This paper describes a prototype Synthesis Apprentice, which we are now beginning
to develop. In comparison with the Implementation Apprentice, the Synthesis Appren-
tice will have increased reasoning abilities and will be able to assist in a greater portion
of the programming process. In particular, the Synthesis Apprentice will be able to de-
tect errors and inconsistencies in the programmer's specifications and design decisions,
which the Implementation Apprentice cannot do. It will also be able to automatically
make many straightforward implementation choices.

We are also beginning to develop a prototype Requirements Apprentice[4] to assist
a systems analyst in the creation and modification of software requirements. Research
on the Requirements Apprentice establishes a second beachhead from which to attack
the problem of automating the programming process. Requirements acquisition is an
opportune place for such a beachhead because, like implementation (and unlike the
middle parts of the programming process), it is constrained by contact with a fixed
boundary. Among other things, this means that the Requirements Apprentice can

2 Rich & Waters

be used as a separate module before the entire Programmer's Apprentice is completed.
Producing a requirements document with a high degree of confidence in its completeness
and consistency is very useful in and of itself.

Our plan for the future is to link up the Requirements Apprentice with the Synthesis
Apprentice to provide support for the entire programming process. However, there is
currently a significant gap between the proposed capabilities of the two prototypes.
This gap corresponds to what is sometimes called high-level system design. Work on
the Synthesis Apprentice will focus on the problem of detailed (low-level) design, and
yield insight into the nature of the gap between that and requirements.

This paper describes the proposed Synthesis Apprentice via an extended scenario.
Our main goal is to give a clear picture of the desired capabilities of the Apprentice.
The underlying knowledge representation and reasoning techniques that will be used
to achieve these capabilities are described elsewhere[2,3], as is the relationship between
our approach and other related work[6,5].

Introduction to the Scenario
The scenario is presented as a sequence of scenes showing specifications written by

the programmer, dialog between the programmer and the Apprentice, and programs
synthesized by the Apprentice. Before beginning, however, it is important to set the
stage by discussing what the Apprentice does and does not know at the beginning of
the interaction. The scenario shows the construction of a device driver program. It is
assumed that the Apprentice has extensive knowledge about device drivers in general.

Device drivers were chosen as the domain for the scenario for two reasons. First,
device drivers are of significant practical importance. Second, they are an example
of a kind of domain where the Apprentice can be particularly helpful, namely one in
which large numbers of similar programs need to be written, but these programs are
not similar enough to allow a program generator approach.

In domains where the set of similar programs is very well understood, it is often
possible to write a completely automatic program generator. When this is possible,
it has many advantages over using an assistant system. However, the applicability of
current program generators is quite limited. The Synthesis Apprentice extends the
range of automation to domains in which programs, despite their basic similarity, can
differ in unpredictable ways.

The first step in applying the Apprentice to any domain is to develop a comprehen-
sive store of knowledge about the domain. This is an unavoidably costly task. However,
if there are many programs which need to be written in the domain, then the benefits of
using the Apprentice should amply return the investment in developing the knowledge
store.

In the domain of device drivers, significant unpredictability comes both from the
idiosyncratic nature of various hardware devices, and from variability in the high-level
operations which have to be supported by drivers. A key feature of our approach is
that the Apprentice can help with the stereotyped aspects of a program, even if the
program also contains significant aspects about which the Apprentice knows little. .

Synthesis Apprentice 3

Clich6s
4The Apprentice's knowledge of programming in general, and device drivers in par-
*ticular, is represented as a library of clichia. A clich6 is a standard method for doing

something. It consists of three parts: roles, a matrix in which the roles are embedded,
and constraints on the roles. Roles correspond to parts of the clich6 which are expected
to change from one use of the clich6 to another. The matrix provides the fixed context
for the roles - it shows how they fit together. The constraints specify what kind of
objects can be used to fill the roles and the required relationships between them.

For example, consider a clich6 for the format of a business letter. This clich6 would
have roles for the sender's address, the recipient's address, the greeting, the body of
the letter, etc. The matrix would specify the physical arrangement of these roles on the
page and certain fixed aspects of the letter (e.g., that the date should appear after the
sender's address). Constraints would specify that whatever fills the recipient's address
must be an address, that the person in the greeting should be the same as the person
in the recipient's address, etc.

In the Synthesis Apprentice, there are clich6s for standard kinds of specifications,
standard algorithms, and standard kinds of hardware. These are organized into tax-
onomic hierarchies, with additional information about how one clich6 can be used to
implement another.

Device Drivers
The way a device driver is written varies depending on the operating system it is

designed to fit into. The driver program in this scenario is being written in the context
of the XINU operating system[I]. XINU is a textbook example of an operating system.
It is written in C and runs on the PDP/11. The scenario assumes that the target
machine has the same basic architecture as the PDP/11 (i.e., memory mapped I/O
and 16-bit data paths). However, the driver in this scenario is written in Common
Lisp rather than C. This reflects the fact that, although the approach taken by the
Synthesis Apprentice is essenti "ly programming-language independent, Common Lisp
will be the first target language supported.

In XINU, all device drivers have the standard architecture shown in Figure 2. The
top layer in XINU always consists of the nine device-independent I/O functions shown
in Figure 3. The bottom layer of the architecture is determined by the physical structure
of the given hardware device. The middle two layers are the new driver code that needs
to be written for each new type of device. This driver code acts as an interface between

Device Independent I/O

Upper Level of the Driver

Lower Level of the Driver

The Hardware Device

Figure 2: The architecture of a XINU device driver.

. Cp @ #,a ,F.ll 1, pfi~e/e.l~r~r 'me.r. rL#-,e_. € ,p ¢. - .- ,r_. . . o~r ,r . .- . .- €-. ..- -. ,.%. .- - - . " ,

4 Rich & Waters

the hardware and the device independent functions.
Each of device-independent I/O functions shown in Figure 3 takes as its first ar-

gument a device identifier (e.g., (PUTC device character)). The device identifier is an0
index into a device table. Each device table entry contains information about a spe-
cifc device and pointers to driver functions which support the various I/O operations.
Indirecting through the device table mahus it possible for one fixed set of functions to
support I/O to every kind of device.

The CODNTOL function is a catchall which is used to support various idiosyncratic
operations-in particular, device specific ones. Its second argument is a code that
indicates what operation to perform. For example, (CONTROL device :CLm) might be
used to blank the screen on a terminal.

Each driver is divided into an upper and a lower level in order to simplify the
task of writing drivers and the task of verifying that the operating system as whole
possesses certain important properties, such as deadlock avoidance. The upper level of
the driver contains one function for each device-independent I/O operation supported
by the driver. The lower level of the driver contains functions that communicate directly
with the hardware device.

The cliches in the Apprentice focus on the lower three levels of Figure 2. To start
with, there is an abstract clich6 driver which contains information which is common
to all drivers. In addition to encoding the information presented above, it contains a
number of constraints on driver functions.

Neither upper-level nor lower-level driver functions are allowed to have any internal
state. All state variables must be in the driver table. (This allows one copy of the
driver code to be used for multiple instances of a hardware device.) Interrupts from a
hardware device cannot be used to trigger upper-level driver functions. They must all
be fielded by lower-level functions. Lower-level functions are not allowed to wait. (This
restriction reduces the likelihood that deadlock will occur.) Upper-level functions can
wait, but they should not busy-wait. Instead, they should use semaphores and suspend
themselves when waiting. (Busy-waiting squanders system resources.) In addition,
upper-level functions should not, in general, communicate directly with the hardware.
All communication should be routed through lower-level functions.

GETC Get a character.
PUTC Put out a character.
REM Read in a block of characters.

WRITE Write out a block of characters.
INIT Initialize the device.
OPEN Open the device (e.g., connect to a file).

CLOSE Close the device (e.g., disconnect from a file).
SEEK Move to a particular position (e.g., on a disk).

CONTROL Catchall for other operations.

Figure 3: Standard device-independent I/O functions in XINU.

Synthesis Apprentice 5

In addition to the abstract clich6 driver, the Apprentice knows a number of spe-
cific cliches for particular kinds of drivers. Consider, for example, the clich6s printer. driver and interactive display driver. The printer driver clich6 specifies things such as
the fact that printer drivers usually only support the operations PUTC and WRITE and

* that complex output padding is sometimes required after characters which cause large
movements of the printing head or platen.

Much of the content of a typical clich6 is in the form of links to other cliches which

are intended to be used with it. For example, the printer driver clich6 is linked to clichis

which specify how to buffer up characters before printing them and how to keep track

of the line number and page number in the output. Families of specialized cliches exist

for dealing with particular classes of printers. For example, there are simple cliches for

dealing with printers that do not require special output processing, such as padding.

More elaborate clich6s specify how to support padding and how to reorder output to

take advantage of bidirectional printers.
Much of the following scenario revolves around the interactive display driver cliche.

This clich6 captures the standard structure of a driver for a terminal with keyboard.

It specifies that both input and output is supported and what the typical control

operations are. It has links to cliches that specify how to buffer characters on input
and output, and how to implement echoing of the input. Families of supporting clich6s
specify how to implement rubout processing in the input stream, and how to take

advantage of direct cursor positioning and screen editing commands (e.g., commands
which delete lines and characters) in the output.

The Apprentice also knows a number of hardware clich6s, which can be used to
describe particular devices. Two examples of this are the cliches interactive display
device and serial line unit (SLU).

An interactive display device is a terminal with keyboard. The clich6 includes

information such as that the terminal typically has a screen of some fixed height and
that I/O with the display is typically carried on in terms of characters in one the
standard coding schemes (e.g., ASCII or EBCDIC).

The similarity in name between the clich6s interactive display driver and interactive
display device reflects the fact that these clichis are closely related. Each driver clich6

has links to the hardware cliches for compatible classes of devices.

The SLU clich6 specifies the structure of a standard kind of bus interface that is
used by many different kinds of PDP/11 hardware devices. For example, it is used by
both printers and interactive displays.

The basic structure of an SLU is shown in Figure 4. There are four registers in
consecutive words. The address of the first register is used as the address of the SLU
as a whole. The receiver control and status register (RCSR) contains bits which indicate
the state of the receiver side of the SLU and which allow the receiver to be controlled.
For example, bit 7 is set to 1 by the SLU whenever a character is received. In addition,

bit 6 controls the signalling of interrupts. If bit 6 is set to 1 then an interrupt occurs
whenever a character is received. The transmitter control and status register (ICSR) has

analogous bits referring to the transmission side of the SLU.

When bit 7 of the tCgl is 1, then the receiver data buffer (RBUF) contains the char-

- I~p

tZ~Z~K~&z4 zz~.- z

W.
'

""W

6 Rich & Waters

Register High-Order Byte Low-Order Byte

am unused receiver control
MW receiver errors receiver data
1CIM unused transmit control
IBUF unused transmit data

Figure 4: The registers in a serial line unit.

acter last received. Reading the RBUF clears bit 7 of the RCSl. The top half of the RBUF
contains bits which are set when errors such as bad parity and overrun occur. Bit 15
is set to 1 if any error occurs.

When bit 7 of the XCsM is 1, writing a character in the tranamitter data buffer (XBUF)
triggers its transmission. After a character is written, bit 7 of the XCSR becomes 0 until
the transmission is complete. At that time bit 7 is reset to 1 and an interrupt will
occur if bit 6 is 1. There are no transmission error bits.

IJ.

)'I

'A

A1

,-

Synthesis Apprentice 7

Scene 1: The Initial Driver and Its Specification
In the firs scene, input from the programmer comes in two forms: the specification

for a driver and a dialog with the Apprentice which clarifies the specification. The
specification is shown in Scenes 1A and lB. This specification may have been created

-.directly by the programmer without the assistance of the Apprentice. The Apprentice
can also help a programmer evolve a specification just as it can help him evolve a
program (see Scene 8).

When looking at Scene 1, the reader should bear in mind that the Apprentice does
not support interaction in free-form English. The input language has not been designed
in detail. However, from a linguistic point of view, it will be very simple. The text
in Scene I is designed to illustrate the straightforward nature of the input language.
Keeping the input language simple is important, because it keeps the work focussed
on the problems inherent in programming, without getting bogged down in natural
language understanding.

A key feature of the input language is that it makes heavy use of extra-linguistic
features and conventions to simplify the syntax of individual sentences and paragraphs.
For example, much of the text is in the form of outlines, which use nesting to indicate
the structure of the text.

Another feature of the input language is that the vocabulary allowed is quite re-
stricted. Only a few simple verbs are allowed. The only nouns allowed are the names
of cliches, roles, and programmer-defined concepts. The definition of a new noun is
signaled by using quotes, as illustrated in the first line of Scene IA. Except for a few
acronyms, such as SLU or K7, upper case is used to indicate an identifier from the
program space, such as the name of a function or variable.

The specification in Scene IA consists of two parts. The first part describes an

The "UT" is an interactive display device where:
The screen height is 4 lines.
The screen width is 40 characters.
The character format is ASCII.
Direct cursor positioning is not supported.
The keyboard has three keys:

key character
ACKNOWLEDGE ACK #0006
YES Y #0131
NO N #0116.

The bus interface Is a standard SLU except that:
Writing a 1 in Bit 1 of the XCSR initializes the device.

Initializing the device blanks the screen and homes the cursor.
Completion of initialization is signaled in the same way as the
transmission of a character.

Sending characters to the K7 and initializing the (7 cannot be
done at the same time.

The "engine diagnosis display" is a (7 where:
The device address is #0177120.
The receive interrupt address is #0640.
The transmit interrupt address is #0642.

Scene LA: Specification for the K7 device type, and an instance.

S Rich & Waters

imaginary device called the K7. The first line of the K7 specification names the device
and says that it is an instance of the interactive display device cich6. The remaining
lines specify how various roles of the interactive display device clich6 are filled in. For
example, the screen of the K7 is 4 by 40 and the character format is ASCH.

The K7 is a very simple kind of interactive display device. In particular, the screen
is very small and there are only three keys that the user can press. The intended use
of the K7 is for a message to be displayed on the screen and for the user to provide a
simple response.

The K7 specification contains both positive information, e.g., how particular roles
are filled in, and negative information. For example, the K7 does not support commands
to move the cursor to arbitrary locations. There are other aspects of the interactive
display device clich6 about which nothing is. For example, the specification does not
indicate which output characters are actually displayed on the screen and which are
ignored.

In reality, specifications are almost always incomplete. The Apprentice is expected
to operate in an environment of incomplete information. To assist with this, each clich6
is annotated with information about what parts of the clich6 are mandatory, likely, and
only poiUe. For example, it is mandatory that the screen have some height and that
some output characters be supported. Therefore, even though the programmer has
said nothing about them, the Apprentice can depend on the fact that there are some
output characters which are supported. In contrast, it is only likely that an interactive
display device will have some cursor positioning command, but not mandatory. In
this case, the Apprentice makes no assumptions at all unless the programmer says
something. Finally, it possible that an interactive display will have commands for
editing the screen (e.g., deleting characters and lines), but not likely. The Apprentice
assumes that features which are only possible are not present unless the programmer
says that they are.

The features of a clich6 typically depend on each other in a number of ways. As
a result, making specific statements about the presence or absence of a few of the
features usually makes it possible to infer which other features are present. For example,
interactive displays which do not support cursor positioning do not support screen
editing.

The first nine lines of the K7 specification describe various external features of the
device. The last five lines specify how the device communicates. This description relies
heavily on the SLU clichd . The phrase "except that" is used to describe the K7 by
modifying the SLU clich6 rather than merely filling in roles. The exception describes
a novel feature which is not present in standard SLUs. The exception makes use of a
number of terms (i.e., "CSR", "initialize the device", "blank the screen", "home the
cursor", "completing an operation", etc.) which are defined in the context of hardware
interfaces in general and the clich6 SLU in particular. The availability of this rich
vocabulary makes it possible for the programmer to describe succinctly what happens
when a I is written in bit I of the iCsR.

The second part of Scene 1A describes the "engine diagnosis" display. This display is
a particular K7 which has its device and interrupt addresses jumpered to the addresses -

Sm

Synthesis Apprentice 9

shown. The scenario assumes that this is the specific device the programmer wants
a driver for. (The expression "#0177120" is the standard Common Lisp construct for
specifying an octal number.)

Scene 1B is the specification for a driver for the K7. This specification relies heavily
on the interactive display driver clich6. As with the K7 specification, most of the driver
specification says how various roles of the clich6 are filled in. The first two lines indicate
that, in keeping with the simplicity of the K7 itself, only a simple driver is desired.

The next segment of the specification indicates which device-independent I/O func-
tions should be supported. Each of these functions is so stereotyped that nothing needs
to be said about it other than whether it should be supported or not. The term "ig-
nored' means that calling the specified functions should do nothing, but not cause an
error. In contrast, calling an unsupported function causes an error.

The various control codes to be supported are specified in greater detail, because
they z.re more idiosyncratic in nature. Each control code is followed by a brief speci-
ficaticn. For example, calling CONTROL with the code : LINE-NUMBER returns the current
cursor line (i.e., the number of the line the cursor is on). The clich6 interactive dis-
play driver contains information about how to support various common control codes.
However, there is no limit to the kind of operations which a programmer might desire.

A particularly interesting part of the driver specification is the implementation
guidelines section at the end. The Apprentice uses these guidelines to decide which
specific algorithms to pick when implementing the driver. The first guideline states that
the algorithms chosen must not do dynamic storage allocation. The second guideline
states that the programmer considers storage efficiency to be more important than time
efficiency.

The third guideline instructs the Apprentice that consideration of error checking is
to be deferred until a later time. This makes it possible for the programmer to produce
a testable driver quickly, without worrying about specifying the program's behavior
under exceptional conditions. As discussed in conjunction with Scene 7, this is an
example of a way in which the Apprentice supports rapid prototyping.

There are a variety of other guidelines the programmer could have selected. For

The K7 driver is an interactive display driver where:
Echoing is not supported
Rubout handling is not supported.
The basic software functions are:

Supported: PUTC. WRITE & GETC.
Ignored: OPEN k CLOSE.
Not supported: READ & SEEK.

The control codes are:
:CLEAR - blanks the screen.
:RESET - does a :CLEAR and flushes pending input.
:LINE-NUMBER - returns the cursor line.

The implementation guidelines are:
I- Do no consing.
2- Favor space efficiency.
3- Defer error checking.

Scene IB: Specification for the K7 driver.

I0 Rich & Waters

example, he could have told the Apprentice to favor time efficiency. Alternately, he
could have told the Apprentice to use only simple, straightforward algorithms. By
making the programs produced easier to understand, this guideline facilitates both
rapid prototyping and future modification.

Note that the specifications in Scene 1 are relatively detailed. They deal quite specif-
ically with what needs to be implemented, rather than stating criteria to be satisfied.
For example, it is no accident that the specification for :CLEAR uses the imperative
phrase "blank the screen" rather than providing a non-constructive specification such
as "cause there to be no characters shown on the screen". By referring to the interactive
display driver clich6, the specification indicates indirectly (through the connections in
the knowledge base) what families of algorithms should be used. In addition, except for
the implementation guidelines (which are drawn from a small set of fixed choices), there
are no global constraints in the specification; everything is relatively local in nature.

The detailed nature of the specification in Scene 1 makes it much easier for the
Apprentice to create a program corresponding to the specification. However, it also
illustrates the fact that a "design apprentice" will be required to bridge the gap between
the output of the Requirements Apprentice and the input of the Synthesis Apprentice.

Having completed the specification, the programmer now asks the Apprentice to
write code for the driver. The dialog which ensues is shown in Scene 1C. (The input
typed by the Programmer is shown in a slanted font.)

> Write code for the K7 driver and a device table entry for the engine diagnosis display.

Request for Advice: I do not know how to support :CLEAR. -
Note:
(1) :CLEAR blanks the screen.
(2) The only K7 operation that blanks the screen is initialization.

Unfortunately:
(3) Initializing the K7 homes up the cursor.
(4) A device should not be initialized except by the init function.

>:CLEAR should home the cursor.
Support :CLEAR by initializing the device.

Request for Advice: I do not know how to support :LINE-NUMBER.
Note:
(1) :LINE-NUMBER returns the cursor line.
(2) No K7 operation returns the cursor line.

>Postpone.

Constraint Violation: There should be a lookahead operation.
Note: The following are the standard types of lookahead operation:
(1) :ARE-CHARS-WAITING returns T if there are pending input characters.
(2) :NUMBER-CHARS-WAITING returns the number of pending input characters.
(3) :PEEK returns NIL if there are no pending input characters and

returns the next character (without removing it from the input
buffer) if a character is pending.

> Use (2).

Scene 1C: Dialog between the Apprentice and the Programmer.

r ..

Synthesis Apprentice 11

The programmer's first command tells the Apprentice to implement the K7 driver
and create a device table entry for the engine diagnosis display. Before creating any
code, the Apprentice analyzes the specification. It then asks a series of questions to
clarify various aspects of the specification. These questions fall into three categories:
requests to fill in essential parts of the specification which have been left unspecified,
requests for advice on how to implement parts of the specification, and requests for
the programmer to fix inconsistencies in the specification. Examples of each type of
request are found in Scene 1C.

The first request concerns :CLEAR. The Apprentice notes that there are difficulties
with implementing this operation. It has determined that, since the K7 does not
support cursor positioning or screen editing, the only plausible way to blank the screen
is to initialize the device. However, there are two problems with this solution.

First, the specification for what happens when the K7 is initialized does not match
what the programmer said the clear operation should do. This problem stems from an
error in the specification. The user resolves it by changing the specification.

This problem may seem somewhat artificial. Assumedly, in addition to the terms
"blank the screen" and "home the cursor", the Apprentice understands that the term
"clear the screen" means blank the screen and home the cursor. If the programmer
had used the term "clear the screen" when describing both initialization of the K7
and the clear operation, then this problem would not have arisen. However, this prob-
lem is a good example of the kind of small difficulty which comes up all the time in

lal. programming, no matter how careful a programmer is.
The second problem with implementing :CLEAR by initializing the device is that it

violates a general constraint on the use of the interactive display device clich& Since
initialization typically resets every piece of state in a device, it should only be used
when starting up the device. Here, however, the programmer decides that this general
constraint is not applicable. The ability to override constraints is an important feature
of the Apprentice.

The second request in Scene 1C illustrates how the Apprentice responds in situations
where it has no idea of what to do. The problem here concerns : LINE-NUMBER. Since the
K7 device does not have a hardware command to determine the current cursor line,
the Apprentice has no idea how to implement the line number operation.

In response to the Apprentice's request, the programmer tells the system to post-
pone worrying about the line number operation. The ability to defer questions posed
by the Apprentice is essential in order for the programmer to maintain control over the
interaction. The Apprentice keeps track of the fact that the question has been deferred
and inserts a stub corresponding to the line number operation.

The third request in Scene 1C illustrates how constraints attached to a clich6 can
be used to check the reasonableness of a specification. A constraint in the interactive
display driver clich6 says that if any input functions are supported, then there should
be some control operation which allows a user of the driver to determine whether or not
there are any characters waiting to be read. The Apprentice notes that this constraint
is violated and proposes three ways in which the specification could be fixed. These
alternatives are generated based on the list of common control operations which are

12 Rich & Waters

also part of the interactive display driver cliche.
The programmer decides to follow one of the Apprentice's recommendations. He

could, however, have specified that the constraint does not apply to this particular
driver and that there is therefore no lookahead operation. He could alternatively have
specified some idiosyncratic operation which satisfies the constraint.

In general, when the Apprentice finds a problem, it initially reports it with rela-
tively little explanation. For example, the third request in Scene IC states that there
should be a lookahead operation without saying why. (The Apprentice does suggest
a few potential solutions.) If the programmer requests an explanation, however, the
Apprentice can provide one. Scene ID shows the output which would be produced if
the programmer requested an explanation immediately after seeing the third request
in Scene 1C.

>Explain.

(4) It any input operations are supported, then a lookahead operation
should be supported.

(6) GETC is an input operation.
(6) There is no lookahead operation.

>Explain (4).

(4) is a constraint of interactive display driver cliche, which is
inherited from the driver cliche.

Scene 1D: Example of explanation.

After the requests in Scene 1C have been resolved, the Apprentice creates code for
the K7 driver. This code is shown in Scene 1E. For the most part, the code is standard
Common Lisp. However, a few special functions are used. These functions will be
described as they come up.

The code is divided into four segments. The first segment of the code defines the
device control block (DCB) for the K7. The function CREATE-K7 allocates a K7 DCB
and fills it in with appropriate data. The DCB contains the address of the device and
a number of fields which are used when communicating with the device. IDLE-SEX is a
semaphore that specifies whether or not the device is idle and ready to accept output.
IN-BUFFER is a queue which is used to store characters that come from the device. IN-
SEN is a semaphore that keeps track of the number of characters in the input buffer.
OUT-BUFFER is a queue that is used to store characters which are to be sent to the device.
OUT-SEN keeps track of the number of empty slots in the output buffer. (The reason
for the asymmetry between OUT-SEM and IN-SEM is discussed below.) SENDING? specifies
whether or not the driver is in the middle of sending a group of characters to the device.
The fields WATERKM and PENDING are used to support watermark processing.

(Watermark processing increases the efficiency of the output functions. Suppose
that the user writes a string of characters which is longer than the size of the output
buffer. Since characters can only be transmitted to the device slowly, the output buffer
will eventually fill up and the WRITE function will have to wait. From that point on, -
each time a character is sent, WRITE will be reactivated and put another character

Synthesis Apprentice 13

CONTROL BLOCK DEFINITION FOR K7

(deiconstant K7-mnit 60002)
(defatruct K7
addr idle-sea in-buffer in-sen out-buffer out-son
sending? watermark pending)

(defun create-K? (addr)
(make-K7 :addr addr

idle-sea (create-sea 1)
:in-buffer (create-fast-q 10)
:in-sea (create-sen 0)
:out-buffer (create-fast-q 20)
out-sea& (create-sea 20)
sending? nil
:watermark 8
:pending 0))

(defun 17-init (dcb)
(1 lush-fast-q (K-in-buffer dcb))
(setf (sea-count (K?-in-sea deb)) 0)
(flush-fast-q (K-out-buffer dcb))
(set! (sen-count (1-out-sem deb)) (fast-q-size (17-out-buffer dcb)))
(setf (K?-sending? dcb) nil)
(set! (1-pending dcb) 0)
(Mstore CSR-int-disable (ICSR (K?-addr dcb)))
(busy-wait-not XCSR-buzy (ICSR (K?-addr dcb)))
(Ustore 17-unt (ICSR, (K?-addr dcb)))
(busy-wait-not ICSR-busy (ICSR (K?-addr dcb)))
(sett (sea-count (1-idle-sea dcb)) 1)
(Ustore CSR-int-enable (XCSR (K?-addr dcb)))
(Xatore CSR-int-enable (RCSR (K?-addr dcb))))

;DRIVR TABLE FOR THE ENGINE DIAGNOSIS DISPLAY

(defconstant *engine-diagnosia-display* 14)

(set! (get-device *engine-diagnosia-display*)
(make-device

in-int-addr 60640 :out-int-addr 60642
:in-int-fn O'K?-receive :out-int-fn #'K7-done
:init *1(7-nt :dcb (create-K? #0177120)
:open *io-noop :close #'io-noop
:putc #'C7-patc :write *'17-write
:getc #'K?-getc :control VKT-control))

Scene lE: Initial code created by the Apprentice (part 1).

14 Rich &Waters

;U-LEVEL FUNCTIONS FOR K7 DRIVER

(defun K-control (dcb code krest Ignore)
(without-interrupts

(case code
(CLEAR (flush-fast-q (K-out-bufer dcb))

(Gott (sea-count (K-out-sea dcli))
(fast-q-size (K-out-buter dcb)))

(sen-wait (K-idle-sea dcb))
(K-clear dcli))

(:RUET (flush-fast-q (K-in-buffer dcb))
(sett ("ea-count (K-in-sem dcb)) 0)
(K-control dcli :CLEAR))

(:LINE-NUNBER {not-yet-impleaented)
(:NUJ4BU-CHARS-WAITING (sen-count (K-in-se. dcb))))))

(defun KY-getc (dcb)
(without- interrupts

(sen-wait (K-in-sea dcb))
(code-char (fast-deq (K-in-butter dcb)))))

(defun KY-write (dcb buffer length)
(dotiaes (pointer length)
(K-putc dcb (&ref buffer pointer))))

(defun K-putc (dcb char)
(without- interrupts

(if (not (K-sending? dcb)) (sea-wait (K-idle-sea dcb)))
(sea-wait (K-out-sea dcb))
(fast-enq (K-out-buffer dcb) (char-code char))
(when (not (K-sending? dcli))

(sett (K-sending? dcb) T)
(K-send dcb))))

LOWER-LEVEL FUNCTIONS FOR KY DRIVER

(defun KY-receive (dcb)
(without- interrupts
(fast-enq (KY-in-buffer dcb) (%got (RBUF (K-addr dcb))))
(sen-signal (K-in-sea dcb))))

(defun KY-done (deb)
(without- interrupts

(if (K-sending? dcb) (K-send dcb))
(if (not (K-sending? dcb)) (sea-signal (K-idle-sea dcb)))))

(defun KY-send (dcli)
(let ((count (sea-count (K-out-sea dcb))))
(cond ((- count (fast-q-size (K-out-butter dcb)))

(Got (K-sending? dcb) nil))
(T (Ustore (fast-deq (K-out-butter dcb)) (13FWK-addr dcli)))

(cond ((> count (K-atermark dcb))

((sea-signal (K-out-sea dcb)))
(i (incf (K-pending dcb)) (K-wateraark deb))
(Gott (K-pending dcli) 0)
(sea-signal (K-out-sea dcb) (K-wateraark dcb))))))))

(defun KY-clear (dcli)
(%store (logand CSR-int-enable KY-mit) (1CSR (KY-addr dcli))))

Scene 1E: Initial code created by the Apprentice (part 2).

Synthesis Apprentice 15

in the output buffer. Operating on one character at a time in this fashion leads to
a considerable amount of scheduling overhead per character. Watermark processing
changes things so that no characters are entered into the output buffer unless a certain
watermark is reached in which case at least WATERMARK characters can be entered at
once.)

In a production environment, one would expect to see comments in the code con-
taining information such as that discussed above. The Apprentice will be capable of
generating such comments based on the clich6s used to construct a program. However,
to keep the figures in this scenario manageably small, such comments are not shown.

The function KU-INIT is used to initialize a DCB and the associated device at system
startup. The first six lines initialize fields in the DCB. The next four lines initialize the
K7 associated with the DCB. They turn off the K7 transmit interrupt, busy-wait until
the device is idle, set the initialization bit, and then busy-wait until the initialization is
complete. The last three lines of K7-INIT initialize IDLE-SEM and turn on the K7 receive
and transmit interrupts.

Note that the functions CREATE-K7 and K7-INIT call a number of special Lisp func-
tions which are assumed to be part of the operating system hosting the driver. The func-
tion (CREATE-SEN initial-value) creates a semaphore. The form (SEM-COUNT semaphore)
returns the value stored in a semaphore. If the form is used as the destination
of a SETF, it sets the value of the semaphore triggering pending waits if necessary.
Both of these functions are part of a package of functions which support standard
semaphores. This package also includes the function (SEM-WAIT semaphore) and (SE4-
SIGNAL semaphore {amount}). SEN-WAIT suspends itself until the indicated semaphore
has a positive value and then decrements the semaphore. SEN-SIGNAL increments the
indicated semaphore by an amount which defaults to 1, possibly reawakening one or
more SEN-WAITs.

The functions (CREATE-FAST-Q size) and (FLUSK-FABT-Q queue) are part of a package
of functions which operate on queues of characters. These functions are discussed in
conjunction with Scene IF below.

The macro (XCSR address) takes the address of an SLU and returns the address of
its XCSR register. Analogous macros are provided for accessing the other SLU registers.
In addition special constants such as CSR-INT-ENABLE and CSR-INT-DISABLE are defined
which allot bits in the various SLU registers to be set and cleared without using undoc-
umented literal constants in the code. It is assumed in the scenario that these macros
and constants already exist, since other device drivers access SLUs. An additional con-
stant K7-INIT is defined which corresponds to the initialization bit of the XCSR for the
K7.

The function (%STORE value address) stores the value into the memory location
specified by the address. The companion function (%GET address) gets the value from
the indicated memory location. The form (BUSY-WAIT-NOT mask address) repeatedly
reads the indicated memory location and busy-waits until all the bits corresponding to
the bits in the are zero.

The second segment of code in Scene 1E is a device table entry for the engine
diagnosis display. A constant *ENGINE-DIAGNOSIS-DISPLAY* is defined which holds the

16 Rich & Water.

index of the entry. An entry is them created and stored in this position. (The macro
(GEr-DrVcI dots) is used to accem device table entries.)

The device entry contains a DCB for the engine diagnosis display. The DCB is
created using the function CUATE-17 described above. The device entry hold the inter-
rupt addresses for the device and the functions to be triggered when interrupts occur.
At system startup, these functions are installed in the interrupt handling routine. The
remainder of the device entry contains pointers to the appropriate device dependent
I/O functions. The function I0-NOOP is used to implement device independent functions
which are ignored.

For example, the following function call would be used to clear the engine diagnosis
display.

(control *engin.-diagnosis-display* :clear)

As shown below, the function CONTROL indirects through the device table to obtain
the appropriate DCB and device specific control function.

(defun control (device code arg)
(let ((entry (get-device *engine-diagnosis-display*)))

(funcall (device-control entry) (device-dcb entry) code arg)))

Part 2 of Scene 1E show. the code the Apprentice has written for the upper and
lower levels of the K7 driver. The first upper-level function, 17-CONTROL, supports the
device independent function CONTROL To support :CLEAR, [-CONTROL first flushes any
pending output characters from the output buffer. (It would be a waste of time to send
characters to the device immediately before blanking the screen, because they would
not be in view long enough for the user to see.)

After flushing the output buffer, the code supporting :CLEAR waits to make sure
that the device is in a state where it can process an initialization request. The code
then calls the lower-level driver function K7-CLEAR to initialize the device.

To support the reset operation, K7-C0NTROL flushes the input buffer and does a clear.
The form "(NOT-YET-INPLEMENTD)" is used to indicate that :LIIE-NUMBER has not yet
been implemented. :NUNIR-CHAR-WAITING reports the number of characters in the
input buffer.

The function K7-GETC waits until there is an input character available and then
returns it. (Waiting with interrupts disabled does not cause deadlock because the wait
suspends the entire process. Other processes then run which can get interrupted.) The
function K7-WRITE (see Scene 1E) writes out a group of characters by repetitively calling
[7-PUTC.

The function K7-PUTC enters a character into the output buffer. It operates in one
of two modes. If SENDING? is T then it merely adds the new character into the buffer.
To do this, it uses the semaphore OUT-SEN to make sure that there is space for the
character in the buffer.

However, if SENDING? is NIL then K7-PUTC needs to take control of the device before
starting to output characters. It does this by waiting on IDLE-SEN. In addition, after

Synthesis Apprentice 17

putting the character into the buffer, K7-PUTC sets SENDING? to T and calls KT-SEND to
get the actual transmission going. After the transmission of characters starts, KY-SEND

is called repeatedly by KY-DONE until the output buffer is empty.
It is important not to be misled by the apparent complexity of the algorithm used

by KY-PUTC and the way it interacts with the other functions in the driver. Viewed from
first principles, it is a complex algorithm. However, the Apprentice does not have to
construct it from first principles. It is a combination of two quite standard pieces. The
wait on IDLE-SEN is used to arbitrate between KY-PUTC and :CLEAR.

The rest of the code in K7-PUTC is a standard method for sending batches of charac-
ters to a device-it is part of the clich6 interactive display driver. This code is somewhat
convoluted because of the restriction that lower-level driver functions cannot wait. If
KY-SEND could wait until a character was ready to send, then the code in K-PrrC would
be as simple as the code in KY-RECEIVE. Instead, KY-PUTC waits until there is an empty
slot in the output buffer. The processing centered around the DCB field SENDING? is
then needed because KY-PUTC has to call KY-SEND to initiate transmission when it is not
already underway.

The second half of the driver code in Scene 1E is composed of the lower-level driver
functions. The function KY-RECEIVE is called whenever the K7 signals a receive interrupt
indicating that a new character is available. KY-RECEIVE moves the character to the
input buffer. As per the programmer's request, no error checking is performed.

The function KY-DONE is called whenever tile K7 signals a transmit interrupt. If
SENDING? is T it calls KY-SEND. Otherwise, it resets IDLE-SE4.

The function KY-SEND sends characters to the K7. It assumes that it will only be
called when the K7 is idle. If there are no characters to send, it sets SENDING? to NIL
(after which KY-DONE signals IDLE-SEM). If there is a character to send, 17-SEND puts it
in XBUF and updates OUT-SEM4. The task of updating OUT-SE14 is somewhat complicated
due to the watermark processing.

The function KY-CLEAR clears the K7 by setting the initialization bit. It assumes
that it will only be called when the K7 is idle. The WAIT has to be in K(-CONTROL because
lower-level driver functions cannot wait.

The code in Scene 1E makes extensive use of a group of functions which operate
on queues. These functions are shown in Scene 1F. If necessary, the Apprentice would
write code for these functions as part of coding up the K7 driver. However, the queue
functions might already exist for some other reason as part of the operating system.

Several features of the queueing functions are worthy of note. In accordance with
the implementation guidelines in Scene 1B, they do no consing (except when queues
are created at system startup). Instead, they operate on queues of fixed maximum
sizes. They also do not support a full range of operations. In particular, it is not
possible to reliably determine how many characters are stored in a queue because it
is not possible to discriminate between an empty queue and a full queue. (In the
driver code, semaphores are used to record how many characters are in the queues.)
A final specialized aspect of the queue functions is that they do no error checking.
The d.equeue function assumes that it will never be called on an empty queue and the
enqueue function assumes that it will never be called on a full one.

wmwwu

18 Rch& Waters

(defstruct 1 head tall buffer)

(detu create-fast-q (o)
(mke-iQ :head 0 :tall 0 :bu fer (nk-hzray size))) .

(detun fast-q-uize (queue)
(length (7-bufter quoeM)))

(defun flush-fast-q (queue)
(etf (79-head queue) (1-tall queue)))

(defum fast-deq (queue)(let ((stei (qeu -buffer queue) (19-head quue))))

(it (lnusp (dect (79-head queue)))
(seti (lQ-head queue) C0- (length (l-buffer qwu)))))

ite))

(defun fast-"nq (queue Item)
(setf (aref (7Q-buffer queue) (l-tail queue)) item)
(if (minusp (dec (l9-tail queue)))

(serf (F-tail queue) (I- (length (7Q-butter queue))))))

Scene IF: Functions supporting fast queues.

These features make the queueing functions simpler and more efficient at the cost
of a low of generality. The Apprentice is able to derive this specialized queue data
abstraction based on the way queues are used in the driver code. This is a good
example of the classic automatic programming problem of data structure selection.

0

ww~

Ne

Synthesis Apprentice 19

Scene 2: Changing a Design Decision

Once the Apprentice produces the driver code, the programmer looks it over. He

may test parts of it and/or ask the Apprentice questions about parts of it. Scene 2A

shows the programmer asking about the watermark processing.

> Why are you using watermark processing?

Because:
(1) Watermark processing should be used unless the output buffer is large.
(2) The output buffer is small.

>Why (2) ?

Because:
(2.1) The specification states that space efficiency should be favored.

>Make the size of the output buffer equal to the total screen size.

Watermark processing is no longer advisable. I have removed it.

Scene 2A: The programmer asks to have watermark processing removed.

The programmer asks why the Apprentice chose to use watermark processing. The
Apprentice responds by giving the reasoning behind its decision. The response is a
formatted printout of the dependencies which form a record of its reasoning.

Note that the Apprentice's response in Scene 2A does not include a tutorial descrip-
tion of the watermark algorithm. (It assumes that the programmer already knows what
watermark processing is.) In general, work on the Apprentice will focus on supporting
explanation at the level of design decisions, rather than deep understanding of algo-
rithms. The Apprentice should have a lot of knowledge about when various algorithms
should be used, but it is not intended to be an aid to algorithm design.

After considering the Apprentice's reasons for using watermark processing, the pro-
grammer decides that it is a false economy in this situation. When using the K7, one
never outputs more than the number of characters on the screen without pausing to
wait for input. Since the screen is quite small, there is a relatively small bound (only
160) on the number of characters which will ever have to be buffered. (Allocating a
buffer of this size probably does not take more space then is occupied by the watermark

processing code.)
The programmer tells the Apprentice to increase the size of the output buffer. (The

clich6 interactive display device defines the term "total screen size" to be the product

of the screen height and width.)
After changing the output buffer size, the Apprentice checks all of its design deci-

sions in light of the change. It notices that watermark processing is no longer desirable
because the buffer is large. (The interactive display driver clichk contains a statement
that an output buffer which is as large as the whole screen is a large one.)

Thus the programmer's command to change the buffer size has the effect of getting
rid of the watermark processing. The programmer could have done this directly by
simply telling the system to stop using watermark processing. However, this would be

11 :1 11 1 11[1 11 11 , 1 1'p

20 Rich &Water.

CONTROL BLOCK DEFINITION FOR K7

(defconstant K-mit 00002)
1 (defcoastant K7-height 4)
1 (defcoustent, K-width 40)

(defstruct K7
1 addr Idle-son in-buffer in-ses out-buffer out-sen sending?)

(defun create-KY (addr)
I(lot ((out-size (* K-height K-width)))

(sake-KY :addr addr
idle-sea (create-sea 1)

:in-buffer (create-fast-q 10)
in-sex (create-sea 0)

I :out-butter (create-fast-q out-size)
I:out-sea (create-sen out-size))

:sending? nil))

(defun KY-Iit (deb)
(flush-fast-q (K-in-buffer dcb))
(sett (sea-count (K-in-sea dcb)) 0)
(flush-fast-q (K-out-butter dcb))
(sett (sea-count (K-out-sea dcb)) (fast-q-size (K-out-butter dcb)))
(setf (K-sending? dcb) nil) 2Iz

I (store CR-nt-disable (ZCR (K-addr dcb)))
(busy-wait-not ICSR-busy (KCSR (KY-addr dcb)))
(%store KY-mit (ZCSR (K-addr deb)))
(busy-wait-not XCSR-busy (XCSR (KY-addr dcb)))
(sett (sea-count (K-idle-sea dcb)) 1)
(Mstore CUR-mnt-enable (XCBR (K-addr dcb)))
(Wtore CUR-mnt-enable (RCSR WK-addr dcb))))

;DRIVER TABLE FOR THE Ewain DIAGNOSIS DISPLAY

(defconstant *engine-diagnosio-di splay* 14)

Csetf (get-device *engine-diagnosis-displayOs
(aake-device

:in-int-addr 00640 .out-int-addr #0642
in-m-it-ia #*K-receive :out-int-fn *SKY-done
:init #IKY-init :dcb (create-KY 10177120)
:open fSio-noop :close 0Slo-noop
:putc #'K7-putc :write # KY-write
:gotC S'K7-getc :control #*KY-control))

Scene 2B: Code with watermark processing removed (part 1).

Synthesis Apprentice 21

; UPPER-LEVEL FUNCTIONS FOR K? DRIVER

(defun K-control (dcb code krest ignore)
(without- interrupts

(case code
(:CLEAR (flush-fast-q (K-out-buffer dcb))

(set! (sea-count (K-out-sen dcb))
(fast-q-size (K-out-buffer dcb)))

(sen-wait (K-idle-sea dcb))
(K-clear dcb))

(:RESET (1 lush-fast-q (K-in-buffer dcb))
(setf (sea-count (K-in-sea dcb)) 0)
(K-control dcb :CLEAR))

(:LINE-NUNBER {not-yet-implementedl)
(:NUMBER-CHARS-WAITING (sea-count (K-in-sea dcb))))))

(defun KY-getc (dcb)
(without-interrupts

(sea-wait (K-in-sea dcb))
(code-char (fast-deq (K-in-buffer dcb)))))

(defun K-write (dcb buffer length)
(dotiaes (pointer length)

(K-putc dcb (aref buffer pointer))))

(defun KY-putc (dcb char)
(without- interrupts
(if (not (K-sending? dcb)) (sea-wait (K-idle-sea dcb)))
(sea-wait (K-out-sea dcb))
(fast-enq (K-out-buffer deb) (char-code char))
(when (not (K-sending? dcb))

(setf (K-sending? dcb) T)
(K-send dcb))))

LOWER-LEVEL FUNCTIONS FOR KY DRIVER

(defun K-receive (dcb)
(without- interrupts
(fast-enq (K-in-buffer dcb) (%get (RBUW (K-addr dcb))))
(sea-signal (K-in-sea dcb))))

(defun KY-done (dcb)
(without- interrupts
(if (K-sending? dcb) (K-send dcb))
(if (not (K-sending? dcb)) (sea-signal (K-idle-sea dcb)))))

(defun KY-send (dcb)
(cond ((-n (sea-count (K-out-sea dcb))

* I (fast-q-size (K-out-buffer dcb)))
(setf (K-sending? dcb) nil))
(T (Mstore (fast-deq (K-out-buffer deb)) (XBUW (K-addr dcb)))

* I (sea-signal (K-out-sea dcb)))))

(defun K-clear (dcb)
(%store (logand CSR-int-enable KY-mnit) (XCSR (KY-addr dcb))))

Scene 2C: Code with watermark processing removed (part 2).

22 Rich & Waters

unwise if the output buffer size were not increased. More importantly, the illustrated
sequence of events makes it possible for the Apprentice to be more helpful if a related
change is made in the future. For example, the Apprentice will reintroduce watermark
processing if something comes up which indicates that the output buffer is, in reality,
not large.

Scene 2B shows the code which results after the changes requested by the program-
mer. Change bars ("I') in the left margin indicate which lines of code are different
from the code in Scene 1.

The DCB fields WATERLMAK and PENDING have been removed, which changes the
functions CREATE-K7 and K7-INIT. The function KT-SEND is modified by removing the
code which does the watermark processing.

The function CREATE-K7 is also changed to increase the size of the output buffer. The
constants K7-HEIGHT and K7-WIDTH are introduced so that CREATE-K7 will not contain the
integer 160 as a mystery constant. This is done on the theory that constants which are
derived from something concrete like the screen size should reflect this facL in the way
they are coded. The code uses two constants and an expression (which the compiler
computes at compile time) because total screen size is a derived concept.

ZO

S.

'S

' ..

Synthesis Apprentice 23 J

Scene 3: Making an Orthogonal Addition N.,
At this point in the scenario, the programmer is testing the K7 driver. This exper-imentation is oriented toward testing the specification rather than testing the code.

To a considerable extent, the Apprentice guarantees that the code corresponds
to the specification. There are only two main exceptions to this. First, there may
be parts of the specification which the Apprentice cannot understand and does not
produce any code for (e.g., the line number operation). Second, there may be complex
logical consequences of the specification which the Apprentice's reasoning abilities are
not powerful enough to detect.

In contrast to the code, the specification is almost certainly not correct. For ex-
ample, it is incomplete in many ways (it does not say anything about what output
characters are supported by the K7). Further, experimentation may well reveal that
some additional (or different) operations should be supported.

During the testing, the programmer decides that it would be useful to keep a trace
of the situations in which the driver sends information to the K7. In Scene 3A, the
programmer asks the Apprentice to insert tracing code. An interesting aspect of this
command is that it describes what should be done somewhat indirectly. Instead of
saying exactly where tracing should be inserted, the command describes the logical
properties of the place(s) where tracing should be inserted. Instead of saying exactly
what information to record, the command merely says that the "state of the driver"
should be saved.

>Collect a trace of the state of the driver at each point where information is sent to the
hardware device.

Scene 3A: The programmer asks to have tracing added.

The tracing instrumentation added by the Apprentice is shown in Scene 3B. Code
is added in three places: right after K7-INIT sets the initialization bit, right after
K7-CLEAR sets the initialization bit, and right after K7-SEND writes a character in the
transmission buffer. Each section of instrumentation code pushes a string identifying
the action being performed, the time, and a copy of the DCB onto a list of debugging ,?
information. The function COPY-ALL is part of a package of instrumentation functions.
It copies a structure and all of its substructures. This is necessary so that subsequent
execution of the driver will not alter stored debugging information.

Instrumentation is a domain of expertise which is orthogonal to the driver do-
main. The fact that knowledge about instrumentation is separate from knowledge
about drivers makes it possible for the Apprentice to assist in the instrumentation of 'S.

many kinds of programs. In addition, instrumentation provides a second domain in
which to investigate the kind of facilities and reasoning capabilities which are needed
to assist a programmer.

145

24 Rich & Waters

CONTROL BLOCK DEFINITION FOR K?

(delconstant 17-init #0002)
(delconstant 17-heilght 4)
(deiconstant 17-width 40)
(defstruct K7

addr idle-sen in-buffer in-son out-buffer out-sen sending?)

(defun create-K? (addr)
(let ((out-size (* 17-height 17-width)))

(nake-K7 :addr addr
idle-sen (create-sen 1)
:in-buffer (create-fast-q 10)
in-sen (create-sen 0)
:out-buffer (creat.-fast-q out-size)
out-sen (create-sen out-size))
sending? nil))

(defua 17-iit (dcb)
(!lush-fast-q (K7-in-buffer dcb))
(set! (sen-count (1-in-sen dcb)) 0)
(flush-fast-q MK-out-buffer deb))
(set! (sen-count (17-out-sen deb)) (fast-q-size MK-out-buffer dcb)))
(set! (17-sending? dcb) nil)
(Ustore CSR-int-disable (XCSR (K7-adidr dcb))) f
(busy-wait-not XCSR-busy (XCSR (K7-addr dcb)))
(Ustore 17-nt (XCSI, (17-addr dcb)))

I (push (list :action "K7-init set initialization bit"
tine (get-universal-tine)
:dcb (copy-all dcb))

debugging-inlo) ;TEMPORARY INSTRUMNTATION
(busy-wait-not XCSR-busy (ICSR (K7-addr dcb)))
(set! (sen-count (17-idle-sen dcb)) 1)
(%store CSR-int-enablo (XCSR, (K?-addr dcb)))
(%store CSR-int-enable (RCSR. (17-addr dcb))))

;DRIVER TABLE FOR THE ENGINE DIAGNOSIS DISPLAY

(d.!constant *engine-diagnosia-display* 14)

(set! (get-device *engine-diagnosis-display*)
(nake-device

:in-int-addr #0640 :out-int-addr #0042 4

:in-int-!n #'K?-receive :out-int-!n #'K?-done
:iftit *'K7-init :dcb (create-K? #0177120)
:open #'io-noop :close *Cio-noop
:putc C'K7-putc :write #1(7-write
:getc #1(7-getc :control #1(7-control))

Scene 3B: Code with tracing added (part 1).

%'

Synthesis Apprentice 25

;UPPER-LEVEL FUNCTIONS FOR 1(7 DRIVER

.0 (defun 17-control (dcb code &rest ignore)
(without-interrupts

(case code
(:CLEVA (f lush-fast-q (1(-out-buffer dcb))

(setf (sea-count ([-out-s.. dc b))
Cf ast-q-size (1(-out-buffer dcb)))

(sea-wait (1(-idle-sea dcb))
([-clear dcb))

(:RESET Cf lush-fast-q (1(-in-buffer dcb))
(setf (sen-count (1(7-in- son deb)) 0)
([-control dcb :CLEAR))

(:LINE-NUMBER {not-yet-iapleaenited))
(:NUMBER-CEARB-WAITING (sea-count (1(-in-sem dcb))))))

(defun 17-getc (dcb)
(without- interrupts
(sea-wait ([-in-sea dcb))
(code-char (fast-deq (1(-in-buffer deb)))))

(defun 17-write (dcb buffer length)
(dotiacs (pointer length)

(1(-putc dcb (aref buffeor pointer))))

(defun 1(7-putc (dcb char)
(without-interrupts
(if (not ([-sending? dcb)) (sea-wait (W-idle-ses dcb)))
(soa-wait ([-out-sea dcb))
(-fast-enq ([-out-buffer dcb) (char-code char))
(when (not ([7-sending? dcb))

(setf (1(-sending? dcb) T)
([7-send dcb))))

LOWER-LEVEL FUNCTIONS FOR K7 DRIVER

(defun [7-receive (dcb)
(without-interrupts

(fast-enq ([-in-buffer dcb) (%get (RBUF W[-addr dcb))))
(sea-signal ([-in-sea dcb))))

(defun 17-done (dcb)
(without-interrupts
(if (1(-sending? dcb) ([-send dcb))
(if (not ([7-sending? dcb)) (sea-signal ([7-idle-sea dcb)))))

(defun [7-send (dcb)
(cond ((- (sea-count (1(-out-sea dcb))

(fast-q-size (1(-out-buffer dcb)))
(setf ([-sending? dcb) nil))
(T (Mstore (fast-deq (1(-out-buffer dcb)) (XBUF (K7-addr dcb)))

(push (list :action "[7-send sent char"
:tiae (get-universal-tiae)
:dcb (copy-all dcb))

debugging-info) ;TEMPORARY INSTRUMENTATION
(sea-signal (1(-out-sea dcb)))))

(defun [7-clear (dcb)
(%~store (logand CSR-int-enable 17-mnit) (XCSR ([7-addr dcb)))
(push (list :action "[7-clear set initialization bit"

:time (get-universal-tiac)
:dcb (copy-all dcb))

debugging-info)) JTEPORARY INSTRUMENTATION

Scene 3B: Code with tracing added (part 2).

26 Jh&Wm

V0.

Synthesis Apprentice 27

Scene 4: Changing a Major Design Decision

In this scene, the programmer makes a fundamental change in the way the driver
functions interact. Looking at the code, the programmer notices that a considerable
amount of complexity revolves around IDLE-SEN. At the start of Scene 4, the program-
mer asks the Apprentice to explain why this semaphore is being used. As in Scene 2A,
the Apprentice relates the chain of reasoning which led to this design decision.

Given the Apprentice's explanation, the programmer's first thought is that there
really is no excuse for the way the hardware guys designed the K7. However, hardware £

devices never seem to be defined exactly the way you want them to be. After mentally
shrugging his shoulders, the programmer tries to figure out some way to get around
the ugliness of the hardware and streamline the driver code.

> Why are you using IDLE-SEM?

Because:
(1) If two pieces of code initiate device operations that cannot be done

at the same tine then a semaphore must be used to arbitrate between
then.

(2) PUTC sends characters to the K7.
(3) :CLEAR initializes the K7.
(4) Sending characters to the K7 and initializing the K7 cannot be done at

the same time.

>Have the clear operation busy-wait before and after calling K7-CLEAR.

Constraint Violation: Driver functions other than the init function
cannot busy-wait.

>Merge the functions KT-CLEAR and K7-SEND by multiplexing the clear
operation through the function K7-PUTC.

Request For Clarification: What character should I use for encoding :CLEAR ?

>#\Page.

Scene 4A: The programmer introduces multiplexing.

The programmer first tries to simplify the driver by modeling the function 1(7-CLEAR

after the function 1(7-INIT. He reasons that if the clear operation busy-waits before and
after calling K7-CLEAR, then there will be no risk of contention with the function K7-

PUTC. Unfortunately, this approach cannot be used because driver functions other than
the init function are not allowed to busy-wait.

The programmer then decides to use multiplexing to simulate the way the K7
should have been designed. The idea here is to combine 1(-SEND and 1(-CLEAR into
one function. A special character code will then be used to tell the combined function
when to initialize the device as opposed to sending a character. The Apprentice asks
the programmer for a character to use.

Scene 4B shows the driver code after multiplexing has been added. There are two
major changes. First, IDLE-SEN has been removed. This results in minor changes to
the functions CREATE-K7, K7-INIT, UT-PUTC, and K7-CONTROL. In addition, the function

*o1

w ..

28 Rich &Water.

;CONTROL BLOCK DEFINITION FOR IT

(defconstant K-it 80002)
(defcoustant K-height 4)
(detcoastant K-width 40)
(detstract VY

addr in-buffer in-sea out-buffer out-son sending?)

(deiun create-K? (addr)
(lot ((out-size (* K-height K-width)))

(make-K? addr add:
in-bufier (create-iast-q 10)
:in-sen (create-son 0)
:out-buffer (creat.-iast-q out-size)
:out-sea (create-son out-size))
sending? nil))

(deiun KY-mnit (dcb)
(ilush-fast-q (K-in-buffer dcb))
(setS (sen-count (K-in-se. dcb)) 0)
(flush-fast-q (K-out-bufler dcb))
(setS (sen-cout (K-out-se. deb)) (iast-q-aize (K-out-buffer dcb)))
(setS (K-sending? dcb) ail)
(%store CBU-mt-disable (ICSR (1-add: dcb)))
(busy-wait-not ECUR-busy (ICSR (K-addr dcb)))
(%.store K7-imit (ECU1 (K-addr dcb)))C
(push (list :action "KY-mnit set initialization bit"

tim (get-universal-ties)
:dcb (copy-all dcb))

dobugging-inlo) ;TEMPORARY INSTRUMENITATION
(busy-wait-not ECSR-busy (XCSR (K-add: dcb)))
(%store CUR-mt-enable (XCSR (K-addr dcb)))
(%store CUR-mt-enable (RCSR (K-add: deb))))

;DRIVR TABLE FOR THE ENGINE DIAGNOSIS DISPLAY

(duiconstant *engine-diagnosis-display* 14)

(setS (get-device *engine-diapnosis-display*)
(make-device

.in- iut-addr #0640 :out-nt -addr MM62
:in-int-in OWK-receive :out-int-in #17-send
:init #'K7-init :dcb (create-K7 #0177120)
:open 0'io-noop :close *io-noop
:putc #KY-putc :write #17-write
:getc #'KY-getc :control #'K-control))

Scene 4B: Code with multiplexing added (part I).

Synthesis Apprentice 29

UPPER-LEVEL FUNCTIONS FOR K7 DRIVER

(defun K-control (dcb code krest Ignore)
(without-interrupts

(case code
(CLEAR (1 lush-fast-q (K-out-buffer dcb))

(setf (sen-count (K-out-sea dcb))
(fast-q-size (K-out-buffer dcb)))

(K7-putc dcb #\Page))
(:RESET (1 lush-fast-.q (K-in-buffr dcb))

(setf (sen-count (N-in-sea deb)) 0)
(K-control dcb :CLEAR))

(:LINE-NUMBER {not-yet-iapleaentedj)

(:NUMDER-CHARS-W&ITING (sen-count (1-in-sea dcb))))))

(dofun 17-getc (dcb)I

(sen-wait (K-in-sea dcb)) 1

(code-char (fast-deq (K-in-buffer deb)))))

(defun K-write (dcb buffer length)
(dotines (pointer length)

(K-putc dcb (aref buffer pointer))))

(defun K7-putc (deb char)
(without-interrupts

I (sen-wait (1-out-sen dcb))
(fast-onq (K-out-buffer dcb) (char-cods char))
(when (not (K7.sending? dcb))

(setf (K-sending? dcb) T)

(K-send dcb))))
;LOWER-LEVEL FUNCTIONS FOR KY DRIVER

(defun K-receive (dcb)
(without- interrupts

(fast-enq (K-in-buffer dcb) (Kget (EBUF (K-addr dcb))))
(sea-signal (K-in-sea dcb))))

(defun KY-send (dcb)
(without- interrupts

I (if (a (sea-count (K-out-sea dcb))
I (fast-q-size (K-out-buffer dcb)))

I (sett (K-sending? dcb) nil)
(let ((char (fast-deq (K-out-buffer dcb))))

I (cond ((-n char (char-code *\Page))
I (%store (logand CSR-int-enable K-init) (XCSR (K-addr dcb)))
I (push (list :action "KY-send set initialization bit"

I :tiae (get-univereal-tis)
:dcb (copy-all dcb))

I *debugging-inf 0*)) ;TEMPORARY INSTRUMENTATION
I (T (Mstore char (IBUF (K-addr dcb)))
I (push (list :action "KY-send sent char"

I :time (get-universal-tiae)
I :dcb (copy-all dcb))

I *debugging-info*))) ;TEMPORARY INSTRUMENTATION
I (sea-signal (K-out-sea dcb))))))

Scene 4C: Code with multiplexing added (part 2).

ww~~~~~~VV VVn nV.s V fl1f l lf rlnrMW- f,

30 Rich & Waters

K7-DONI is no longer needed. The function K7-SKUD is directly installed as the function
triggered by transmit interrupts.

Second, the functions KU-SEND and KT-CLEAR have been combined into one. The new
version of K7-SUD has to operate without interrupts because it responds directly to an
interrupt request rather than being called by K7-Doin. The instrumentation inserted in
scene 3 is moved and changed appropriately.

The clear operation is supported by calling K7-PUTC with the special character
#\Page. (Flushing the output queue before doing this promotes efficiency in exactly the
same way that it did before.) KV-SEND initializes the device when it receives a #\Page.

Multiplexing is an interesting clich6, which is somewhat different from the other
cliches described above. To a considerable extent, it is a clich6 about how to transform
a program rather than a clichi about how to create a program. Like knowledge about
instrumentation, it does not have anything to do with drivers in particular-it is useful
in a wide range of contexts.

.

A]

Synthesis Apprentice 31

Scene 5: Making a Low-Level Addition
At this point, the programmer feels that the driver code is complete and asks the

Apprentice to install it in the operating system. The Apprentice points out that there
are a number of reasons why it would not be a good idea to install the driver code as is,
and asks the programmer to confirm the fact that he really wants to install the driver.

The programmer could force the Apprentice to install the driver as is. However, he
decides that it would be a good idea to fix a few things first. He starts by telling the
Apprentice to remove the instrumentation. He then sets about telling the Apprentice
how to support :LINE-NUMBER.

>Install the driver.

Warning: It is not a good idea to install the driver.
Because:
(1) There is debugging instrumentation in it.
(2) :LINE-NUl4BER has not been implemented.
(3) There is no error checking.

>Remove the instrumentation.
Add a DCB field LINE-NUMBER. LINE-NUMBER tracks the cursor line.
Make :CLEAR set LINE-NUMBER to 0.
When KT-PUTC is called with #\Return, increment LINE-NUMBER by 1.

Request For Clarification: What should LINE-NUMBER be initialized to?

>0.

Scene 5A: The programmer says how to calculate the line number.

In this scene, it is assumed that the Apprentice does not understand very much
about the concept "cursor line" (the line the cursor is on). The purpose of this is to
illustrate the fact that a programmer can give very specific directions to the Apprentice,
if desired. At this level of interaction, the Apprentice operates in much the same way .
as the current KBEmacs system. %

The programmer tells the Apprentice to add a DCB field named LINE-NUMBER. He
then says exactly where and how to modify this field. The only thing which links the
LINE-NUMBER field up with the concept "cursor line" is the programmer's assertion that
the new field tracks the cursor line.

Examining the programmer's commands at a superficial level, the Apprentice no-
tices that the value of LINE-NUMBER will be undefined until the first clear operation is
performed. It therefore asks the programmer to provide an initial value.

Scene 5B shows the code which results from the programmer's commands. The
instrumentation has been removed from K7-INIT and NT-SEND. The LINE-NUMBER field
has been added along with code which increments it and sets it to zero in the places
specified by the programmer. Because the programmer said that the LINE-NUMBER field
tracks the cursor line, its value is returned as the result of the line number operation. %

4s,,. ...

32Rich&Waters

CONTROL BLOCK DSVIIITION FOR K7

(defconstant K-miit 60002)
(defcoastant K-height 4)
(defconstant K-idth 40)
(defstruct KY

addr In-buffer ia-sea out-butter out-sen sending? lin.-aumber)

(defuna create-KY (addr)
(lot ((out-size (* K-height K-idth)))

(maks-KY addr addr
: ia.-buffer (create-feaet-q 10)
:ia-sea (create-se. 0)
* out-butter (create-fast-q out-size)
:out-sea (create-sen out-size))
: sending? nil))

(defun K-mit (deb)
Cf lush-fast-q (K-in-bufer dcb))
(setf (sea-count (K-ia-se. dcb)) 0)
Cf lush-fast-q (K-out-buffer dcb))
(sett (seo-count (K-out-se. deb)) (last-q-size (K-out-buffer dcb)))
(setf (K-sending? dcb) nil)
(setf (K-line-nuaber dcb) 0)
(Ustore CSR-int-disable (ICSR (KY-add: deb)))
(busy-wait-not ICSR-busy (ZCSK (K-addr dcb)))
(Istore K-nt (ZCSR (K-add: dcb)))
(busy-wait-not ICSR-busy (lOSR (K-addr dcb)))
(Xstore CSR-iat-enable (ICSR (K-addr dcb)))
(Ustore CS-iat-onable (EcOu (KY-add: dcb))))

;DRIVER TABLE FOR THE ENGINE DIAGNOSIS DISPLAY

(defconstant *engiae-diagnosis-display* 14)

(set (get-device *oznie-diagaosis-display*)
(saks-device

:la-int-addr 60640 :out-int-addr 06842
in-mxt-fm #SK-receive :out-lat-fa *'KY-send
:init #'KY-in~it :dcb (create-KY 00177120)
open 0*io-noop :close #,io-Moop
:putc *'KY-putc :write SKY-wite
:getc O'KY-gatc :catrol #5K-control))

Scene 5B: Code with line number computation added (part 1).

Synthesis Apprentice 33

;UPPER-LEVEL FUNCTIONS FOR K7 DRIVER

(defun KY-control (dcb code kreat ignore)
(without- interrupts

(case code
(:CLEAR (setf (K-line-number dcb) 0)

(flush-f ast-q (K-out-buff er dcb))
(setf (sea-count (K-out-sen dcb))

(1 ast-q-size (K-out-buffer dcb)))
(K-putc dcb *\Page))

(:RESET (flush-fast-q (K-in-buffer dcb))
(setf (sea-count (K-in-ce. dcb)) 0)
(KY-control dcb :CLEAR))

(:LINE-NUMBER (K-line-number dcb))
(:NUMBER-CHAR-WAITING (sen-count (K-in-sex dcb))))))

(defun K-getc (dcb)
(without-interrupts
(sen-wait (K-in-sen dcb))
(code-char (fast-deq (K-in-buffer dcb)))))

(defun K-write (dcb buffer length)
(dotines (pointer length)

(KY-putc dcb (aref buffer pointer))))

(defun K-putc (dcb char)
AAA (without- interrupts

(if (equal char *\Retun) (mncf (KY-line-number dcb)))
(sen-wait (KY-out-sen dcb))
(fast-enq (K-out-buffer dcb) (char-code char))
(when (not (K-sending? dcb))

(set! (K-sending? dcb) T)
(K-send dcb))))

LOWER-LEVEL FUNCTIONS FOR K7 DRIVER

(defun KY-receive (dcb)
(without- interrupts

(fast-enq (K-in-buffer dcb) (%got (RBUF (KY-addr dcb))))
(sea-signal (K-in-sen dcb))))

(defun K-send (dcb)
(without -interrupts
(if (- (sen-count (K-out-sen dcb))

(fast-q-size (K-out-buffer dcb)))
(set! (K-sending? dcb) nil)

(let ((char (fast-deq (KY-out-buffer dcb))))
(if (- char (char-code #\Page))

(%store (logand CSR-int-enable KY-mnit) (XCSR (KY-addr dcb)))
(%store char (XBUF (KY-addr dcb))))

(sen-signal (KY-out-sen dcb))))))

Scene 5B: Code with line number computation added (part 2).

1 0

34 Rich &Water.

:Z7

Synthesis Apprentice 35

Scene 6: Making a High-Level Addition
It is interesting to consider what the interaction in Scene 5 would have looked like if

the Apprentice had known a lot about the concept "cursor line". This scene repeats the
interaction concerning :LINE-NUMBER under the assumption that the Apprentice knows
a lot rather than only a little.

To start with, the Apprentice would have responded quite differently to the pro-
grammer's initial specification of the line number operation. Scene 6A shows what the
second request in Scene 1C would have been.

Request for Clarification: How do output characters change the cursor
line?

Scene 6A: Alternate portion of Scene 1C.

Here we assume that the interactive display device clichi contains knowledge about
what the cursor line is and how it is affected by various operations on the device. It is
also assumed that the interactive display driver clich6 contains knowledge about how
to determine the value of a quantity such as the cursor line: If there is no way to
directly query the device for the value of the quantity, you must simulate the device to
determine how the quantity changes when output is sent to the device.

In order to simulate a device you have to know how each operation on the device
alters the quantity. The specification for the K7 says that initializing the K7 homes the
cursor and therefore sets the cursor line to zero. However, the specification says nothing
about the effects of output characters. Therefore, the Apprentice asks the programmer
for clarification. (As discussed in conjunction with Scene ID, the programmer could
ask for an explanation of all this if he desired.)

In Scene 6B the programmer tells the Apprentice how output characters affect
the cursor line. The Apprentice integrates the programmer's statements with what it
knows about interactive display devices in general and comes up with a contradiction.
As described by the programmer, there is no upper limit on the cursor line.

>The only output character that changes the cursor line is #\Return.
When a #\Return is output, the cursor moves to the next line.

Constraint Violation: An output character cannot cause the cursor line to
become greater than or equal to the screen height.

>I a #\Return is output when the cursor is already on the last line,
the cursor stays on the last line.

Scene 6B: The programmer describes how the K7 changes the line number.

The programmer fixes the bug by amending his description of the effect of #\Return
on the cursor line. He could also have relieved the contradiction by saying that the K7
allows the cursor line to become greater than the screen height.

There is a fundamental difference between Scene 5 and Scene 6. In Scene 5 the
Apprentice has almost no understanding of what the programmer is doing. The goal

Wh

36 Rich & Waters

;CONTROL BLOCK DEFINITION FOR KY

(defronstazit K7-iWit #0002)
(defconstant K-height 4)
(defconstsnt, K-idth 40)
(detstruct K7
addr ia-butler in-sen out-buffer out-seon sending? cursor-line)

(defua create-KY (addr)
(lot ((out-size (* K7-height K-width)))

(saks-KY :addr addr
:in-butler (create-fast-q 10)
in-se. (create-sen 0)

:out-buffer (create-fast-q out-size)
:out-ses (create-sea out-size))
:sending? nil))

(defun K-mit (dcb)
(!lush-fast-q (K-in-butler dcb))
(sett (sea-count (K-in-sea dcb)) 0)
(flush-fast-q (K-out-butler dcb))
(set! (sea-count (K-out-sea dcb)) (!ast-q-size (K-out-butler dcb)))
(set! (K-sending? deb) nil) a

(%store CSR-int-disable (XCSR (K-addr dcb)))
(busy-wait-not XCSR-busy (1081 (K-addr dcb)))
(Ustore K-mit (1051 (K-addr deb)))
(busy-wait-not XCSR-busy (ICSR (K-addr dcb))

I(sett (K-cursor-line dcb) 0)
(Ustore CSR-int-enable (XCSR (K-addr dcb)))
(Ustore CSR-int-enable (RC81 (K-addr dcb))))

;DRIVER TABLE FOR THE ENGINE DIAGNOSIS DISPLAY

(defconstant *engine-diagnosis-display* 14)

(sett (get-device *engine-diagnosis-display*)
(ake-device

:in-int-addr 10640 :out-int-addr 1062
:in-int-!n OWK-receive :out-int-!n #SKY-mend
:init 1#'KY-init :dcb (create-KY 10177120)
:open 1#io-noop :close #*io-noop
:putc #' KY- putc :write O'KY-write
:getc *#KY-getc :control O'KY-control))

Scene 60: Code with improved line number computation added (part 1).

Synthiesis Apprentice 37

;UPPER-LEVEL FUNCTIONS FOR K7 DRIVER

(defun 17-control (dcb code &rest ignore)
(without- interrupts

(case code
(:CLEFAR (1 lush-fast-q (K-out-buffer dcb))

(sett (sea-count (1(-out-sea dcb))
(fast-q-size (17-out-buffer dcb)))

(1(7-putc dcb *\Page)
(sett (K-cursor-line dcb) 0))

(:RESET (1 lush-f ast-q (1(-in-buffer dcb))
(setf (sea-count (1(-in-sea dcb)) 0)
(K-control dcb :CLEAR))

(:LINE-NUNBER (1(-cursor-line dcb))
(:NUMBER-CHARS-WAITING (scm-count (1(-in-sez dcb))))))

(defun K7-getc (dcb)
(without- interrupts
(sen-wait (1(-in-sea dcb))
(code-char (fast-deq (K-in-buffer dcb)))))

(defun 17-write (dcb buffer length)
(dotizes (pointer length)

(K7-putc dcb (aref buffer pointer))))

(defun 1(7-putc (dcb char)
(without- interrupts

(sea-wait (1(-out-sea dcb))
(fast-enq (1(-out-buffer dcb) (char-code char))
(if (and (equal char #\Return)

I(< (1(-cursor-line dcb) (1- 17-height)))
I (inc (1(-cursor-line dcb)))

(when (not (1(-sending? dcb))
(set! (1(-sending? dcb) T)
(1(-send dcb))))

LOVER-LEVEL FUNCTIONS FOR K(7 DRIVER

(defun 1(7-receive (dcb)
(without- interrupts
(fast-enq (1(-in-buffer dcb) (%Set (RBUF (1(7-addr dcb))))
(scm-signal (1(-in-scm dcb))))

(defun 17-send (dcb)
(without- interrupts
(if (-' (sea-count (1(-out-sea dcb))

(fast-q-size (1(-out-buffer dcb)))
(set! (1(-sending? dcb) nil)

(let ((char (fast-deq (1(-out-buffer dcb))))
(if (-i char (char-code *\Page))

(Mstore (logand CBR-int-enable 1(7-init) (XCSR (K7-addr dcb)))
(Mstore char (XBUF (17-addr dcb))))

(sea-signal (K-out-sea dcb))))))

Scene 6C: Code with improved line number computation added (part 2).

an

38 Rich & Waters

of that scene is to show that the programmer can make an addition to a program even
if the Apprentice is not able to understand anything about it. In contrast, in Scene 6
the Apprentice has a detailed understanding of what the user says. The improved
understanding of the Apprentice is illustrated by the fact that the Apprentice is able
to detect a bug which it did not catch in Scene 5.

Based on the programmer's description, and what it already knows, the Apprentice
can figure out how to simulate changes in the cursor line. The driver code which
results is shown in Scene 6C. For the most part, the code is very similar to the code
in Scene 5B. However, there are a number of differences. For example, the DCB field
in Scene 6C is called CURSOR-LINE rather than LINE-NUMBER. (The Apprentice named
it based on what it is simulating.) In addition, the pieces of code which change the
CURSOR-LINE field are positioned directly after the computation which actually causes
the cursor line to change, rather than merely being placed in the correct function.

Some of the most interesting aspects of Scene 6C are places where the code is
equivalent to Scene 5 but for quite different reasons. For example, CURSOR-LINE is
set to zero in K7-INIT because K7-INIT initializes the K7, rather than merely because
the programmer said to initialize CURSOR-LINE to zero. In addition, CURSOR-LINE is
incremented in K7-PUTC rather than in K7-SEND because the Apprentice realizes that this
kind of simulation has to be done in the upper-level driver functions. This placement
is necessary because, when a user executes the line number operation he presumably
wants to know the line the next character he is going to send will go on. He is not
interested in whether or not all of his previous I/O operations have been completely
communicated to the device.

._

-'I

.V

.. "

Synthesis Apprentice 39

Scene 7: Adding Error Checking

In this scene, the programmer tells the Apprentice to add error checking into the

driver. The Apprentice responds to this by asking for clarification about how error

checking should be done.
The programmer tells the Apprentice not to worry about output errors at all. He

then says that input errors (e.g., bad parity, and input buffer overflow) should be

treated as if the bad character was never received at all. (The Apprentice suggests this

method of handling input errors because the clich6 interactive display driver specifies

that it is the standard method to use.)

>Introduce error checking.

Request for Advice: I do not know how to validate output characters.

>Do not validate output characters.

Request for Advice: I do not know how to respond to reception errors.
Note: the standard way to deal with input errors is:
(1) Treat reception errors as reception failures.

>Use (1).

Scene 7A: The programmer asks for error checking to be added.

.Scene 7B shows the error checking code which is added to the driver. A clause is
added to KY-CONTROL to check for bad control codes. Code is added to K7-RECEIVE to
discard bad input characters and prevent the input buffer from becoming over filled.
Two (previously omitted) fields of the device table entry for the engine diagnosis dis-
play are filled in with special functions which report errors if a user tries to call the
device independent functions READ or SEEK.

It is interesting to note that error checking does not have to be added to the special

queue manipulation functions used by the driver. Error checking is unnecessary in
these functions because, with the changes to K-RECEIVE, it can be proven that the
driver will never call a queueing function erroneously.

The fact that error checking can be deferred until now (without it being forgotten
altogether) is an example of a way in which the Apprentice can assist with rapid proto-
typing. The key benefit of this delay is not that it saves coding time, but rather that it
saves thinking time. The only coding time that was saved was time that the Apprentice
would have spent, not time that the programmer would have spent. However, the fact
that the programmer did not have to think about the questions in Scene 7A until now
is a very real saving.

A much more important way in which the Apprentice supports rapid prototyping
revolves around the use of cliches. There are two basic ways in which to use the

Apprentice. The first approach is to start from the clich&s it knows and modify them

adding new pieces of information until the system understands the exact specification
you have in mind. This approach was illustrated in the scenario above.

The second approach is to select the clich6s which are closest to the specification you

Z

40 Rich&Waters

;CONTRL BLOCK DEFINITION FOR [7

(delconstent K-it 60002)
(defconstent K-beight 4)
(delconstant Fr-width 40)
(defstruct K7
addr in-buffer In-son out-buffer out-sen sending? cursor-Ila)

(defun create-KY (addr)
(let ((out-size (* K-height K7-vidth)))

(make-KY :addr addr
: in-buffeor (create-fast-q 10)
in-sea (create-sea 0)
out-buffer (create-fast-q out-size)
:out-sea (create-son out-size))
: sending? nil))

(defun K-init (deb)
Cf lush-fast-q (E-in-buffer dcb))
(sett (sea-count (K-in-sea dcb)) 0)
(flush-f ast-q (K'-out-butfer dcb))
(setf ("ea-count (K-out-sea dcb)) (fast-q-size (K-out-bufer dcb)))
(setf (K-sending? dcb) nil)
(%store CSR-int-disable (XCSR (K-addr dcb))
(busy-wait-not OUR-busy (XCSR (K-addr dcb)))
(Uators K-mit (ICR (K-addr dcb)))
(busy-wait-not XCOR-busy (ZCSR (K-addr dcb)))
(setf (K-cursor-line dcb) 0)
(Istore CUR-mnt-enable (ICUR (K-addr dcb)))
(%store CBR-mnt-enable (RCSR (K-addr dcb))))

DRIVER TABLE FOR THE ENGINE DIAGNOSIS DISPLAY

(defconstant *engine-diagnosia-display* 14)

(sett (get-device *engine-diagnosia-displaya')
(make-device

:in-int-addr 00640 :out-int-addr 60642
:in-int-fn #SKY-receive :out-int-fn S*KY-send
:init 5*KY-init :dcb (create-KY 60177120)
:open Sic-noop :close 06io-noop
:putc O'KY-putc :write S'K-write
:getc OSKY-gtc :read #ilo-error
:control S'KY-control :seek #Sio-orror))

Scene 7B: Code with error checking added (part 1).

*Synthesis Apprentice 41

;UPPU-LEVEL FUNCTIONS FOR IC7 DRIVER

(defu 1(7-control (dcb code &rest ignore)
(without- interrupts

(case code
(:CLEAR (1 lush-fast-q (1(-out-buffer dcb))

(sett (sea-count (17-out-sea dcb))
(iast-q-size (17-out-bufer dcb)))

(1(-putc dcb #\Page)
(set (1-cursor-line dcb) 0))

(:RESET (I lush-fast-q (1(-in-butler dcb))
(setf (sea-count (1(-in-sem dcb)) 0)
(1(-control dcb :CLEAR))

(:LINE-IUNDER (1(-cursor-line dcb))
(:NUNBER-CHABS-WAITING (sea-count (1(-in-se. dcb)))
(OTHERWISE (error "the control code -A isnot supported by-

the K(7 display" code)))

(dfun 17-getc (dcb)
(without-interrupts

(son-wait (1(-in-sea dcb))
(code-char (fast-deq (1(-in-buffer dcb)))))

(defun 1(7-write (dcb butler length)
(dotimes (pointer length)

(1(7-putc dcb (aref buffer pointer))))

(defun 1(7-putc (dcb char)
(without-interrupts

(son-wait (1(-out-se. dcb))
(iast-enq (1(-out-buffer dcb) (char-code char))
(it (and (equal char *\Return)

40(< (1(-cursor-line dcb) (1- 17-height)))
(inc (1(-cursor-line dcb)))

(when (not (1(-sending? dcb))
(setf (1(-sending? dcb) T)
(1(-send dcb))))

;LOWER-LEVEL FUNCTIONS FOR K(7 DRIVER

(defun 1(7-receive (dcb)
(without-interrupts

(let ((data (%got (RBUF (1(7-addr dcb)))))
(when (and (not (logtest RBUF-error data))

((sem-count (1(-in-se. dcb)))
(fast-q-size (1(-in-butler dcb)))

(1 ast-enq (1(-in-buffer dcb) data)
(sen-signal (1(-in-sea dcb))))))

(defun 1(7-send (dcb)
(without-interrupts

* (if (- (sen-count (17-out-ses dcb))
(fast-q-size (1-out-butler dcb)))

(setf (1(-sending? dcb) nil)
(let ((har (fast-deq (1(-out-buffer dcb))))
(if (- char (char-code *\Page))

(%store (logand CSR-int-enable 17-mnit) (XCSR (17-addr dcb)))
(%store char (XBUW (17-addr dcb))))

(sen-signal (1(-out-sem dcb))))))

Scene 7B: Code with error checking added (part 2).

42 Rich & Waters

want and then modfy your seicaonuntil it fits Into thee cikhdu. 'This of course
doe not give you the exat program you wanted, but it gives you a program very
rAidy. ExImet with this approocimately correct program can be very usefu for
answering questions about the program actually desired.

Synthesis Apprentice 43

Scene 8: The Driver Specification Revisited
The scenario is presented as a series of modifications to the code in Scene 1. How-

ever, it could just as well have been presented as a series of modifications to the speci-
fications. In fact, both things were happening at once.

As with KBEmacs, the program code is shown to the programmer so that he can
get down as close to the details as he wants. (He could edit the program directly using
a text editor if he wanted to.)

However, the Apprentice attempts to interpret everything the programmer does as
changes to the specification. If asked to do so, the Apprentice can print out a new
specification showing the net results of the programmer's commands. This is shown in
Scene 8.

Most of the additions in the new specification are taken directly from the commands
given by the programmer. (The new specification incorporates the commands in Scene 6
rather than Scene 5.)

A new section of detailed implementation directions has been added which contains
information corresponding to the various commands given by the user.

@N.

KN'a.

44 Rich & Waters

The OX0 is a interactive display device where:
The screen height is 4 lines.
The screen width Is 40 characters.
The I/0 is in terms of ASCII characters.
Direct cursor positioning is not supported.

Outputting a C\Return moves the cursor to the next line unless the
cursor is already on the last line.

The keyboard has three keys.
key character

ACJDKVLDG ACE 0006
YES Y 60131No x Mite

The bus interface is a standard 8LU except that:
Writing a I i1 Sit I of the XCS initializes the device.

Initializing the device blanks the screen and homes the cursor.
Completion of Initialization is signaled in the sae way at the

transmission of a character.
Sending characters to the K7 and initializing the K7 cannot be

done at the sane time.

The "engine diagnosis display" is a K7 where:
The device address is 60177120.
The receive interrupt address is 60640.
The transmit interrupt address is 00642.

The 17 driver is an interactive display driver where:
Echoing is not supported
Rubout handling Is not supported.
The basic software functions are:

Supported: PUTC WRITE & GETC.
Ignored: OPEN & CLOSE.
Not supported: READ k SEEK.

The control codes are:
:CLEAR - blanks the screen and homes the cursor.
:RESET - does a :CLEAR and flushes pending input.
:LINE-NMMBER - returns the cursor line.
:NU33-CHAIS-WAITIIG - returns the number of pending input characters.

The Implementation guidelines are:
1- Do no consing.
2- Favor space efficiency.

The detailed implementation directions are:
Support :CLEAR by initializing the device.
Make the size of the output buffer equal to the total screen size.
Multiplex the clear operation through the upper-level character output
function. Do this using the character #\Page.

Do not validate output characters.
Treat reception errors as reception failures.

Scene 8: Amended specification for K7 driver.

OA.
S1.S,.

VAQ Di q4W

REFERENCES 45

Acknowledgments
Discussions with many of the members of the Programmer's Apprentice group were

helpful in formulating the ideas presented here. The authors would particularly like to
acknowledge the assistance of Yishai Feldman and Jeremy Wertheimer.

References

[1 D. Comer, "Operating System Design: The XINU Approach', Prentice-Hall, 1984.

[21 C. Rich, "A Formal Representation for Plans in the Programmer's Apprentice",
IJCAI-81, pp. 1044-1052, August 181.

(3] C. Rich, "The Layered Architecture of a System for Reasoning about Programs",
IJCAI-85, pp. 540-546, August 1985.

[4] C. Rich & R.C. Waters, "Toward a Requirements Apprentice: On the Boundary
Between Informal and Formal Specifications", MIT/AIM-907, July 1986.

[5] C. Rich & R.C. Waters (eds.), Readings in Artificial Intelligence and Software
Engineering, Morgan Kaufman, 1986.

[6] R.C. Waters, -The Programmer's Apprentice: A Session with KBEmacs", IEEE
Transactions on Software Engineering, V11 #11, pp. 1206-1320, November 1985.

- !

a%

F8

*~~~~~~o b- ~ W ~ - 4 5-

