“M0-R483 900 SOLVING ﬁ CLRSS OF SPﬁTlﬂL REASONING PRO. LEMS :
HININAL-COST PATH PLANNING IN THE CARTESIAN PLANE (V)
NAYAL POSTGRADUATE SCHOOL MONTEREY CA R F R HlOURI
UNCLASSIFIED JUN 87 G 12/9

|

o
E
EEEE

cs'EFEFE
< ¢
s R E-

-——
.
—
[
[4
re
- et

1.8
Y P

MICROCOPY RESOLUTION TEST CHART
Lo o BAINAL OURCA) OF STANDAROS: 19934

D
4‘0‘ t.
\‘!
I‘t.ll..l .

v, 'Q-
‘.. a'.

% ""

e Lk oUR

NAVAL POSTGRADUATE SGHOOL

Monterey, Galifornia

AD-A183 900

_DTIC

@\ AUG 3 1 1987

“o

THESIS

SOLVING A CLASS OF
SPATIAL REASONING PROBLEMS:
MINIMAL-COST PATH PLANNING

IN THE CARTESIAN PLANE

by
Robert F. Richbourg
June 1987

Thesis Advisor: Neil C. Rowe

Approved for public release; distribution is unlimited.

87 8 25 040

I R A T et e T L R I A

unclassified . 4/73 90’0

ITY CL 1F)] Gl A
REPORT DOCUMENTATION PAGE

1b. RESTRICTIVE MARKINGS
3 OISTRIBUTION/ AVAILABILITY OF REPORT
Approved for public release;
2b. DECLASSIFICATION / DOWNGRADING SCHEDULE distribution is unlimited.
4 PERFORMING ORGANIZATION REPORT NUMBER(S) S MONITORING ORGANIZATION REPORT NUMBER(S)
6a. NAME OF PERFORMING ORGANIZATION 60 OFFICE SYMBOL | 7a NAME OF MONITORING ORGANIZATION
(it spplicable)
Naval Postgraduate School 52 Naval Postgraduate School
6c. ADDRESS (City, State. and ZIP Code) 7b. ADORESS (City, State, and ZIP Code)
Monterey, California 93943-5000 Monterey, California 93943-5000
82 NAME OF FUNDING / SPONSORING 80 OFFICE SYMBOL |9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (I applicable)
8c ADORESS (City, State, and 2P Code) 10 SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT Task WORK UNIT
ELEMENT NO |NO NO ACCESSION NO

'! TITLE (include Secunity Clasuficaton) g1 yING A CLASS OF SPATIAL REASONING PROBLEMS:
MINIMAL-COST PATH PLANNING IN THE CARTESIAN PLANE

WAL AUTHOR(S) Richbourg_, Robert F.

*3a TYPE QF REPORT 13b T'ME COVERED 14 DATE OF REPORT (Year Month Day) ['S PAGE (OuNT
Doctoral Thesis FROM 10 1987 June 429

'6 SUPPLEMENTARY NOTATION

124 COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and dentify By biock number)

¢ELD GROUP SuUB-GROuUP Spatial reasoning; Snell's Law; path planning;

artificial intelligence; search; geodesic

‘9 ABSTRACT (Continue on reverse if necessary and rdentify by block number)

This work presents an algorithm to solve a two-dimensional weighted-region
problem that requires finding the least-cost path between two points lo-
cated on a map of homogeneous-cost regions. Such regions have a constant
cost rate per unit distance accrued by paths passing through them. Conven-
tional graph search applies standard search strategies to graphs whose
links represent the only possible paths. We use Snell’'s law as a local-
optimality criterion to create corresponding graphs for the weighted-region|
problem; the nodes in our graphs represent areal subdivisions of the phy-
sical environment. The performance of our Snell's-law-based algorithm

is compared to that of a dynamic-programming, wavefront-propagation tech-
nique. Test results show average-case superiority of the Snell's-law-
based algorithm, as measured by time, space and solution-path cost. We
present a criterion to predict the time for the wavefront-propagation

M 'JUTION / AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION
&‘v‘ LASSIFIEOUNLIMITED [SaMe as reT O onc usERs unclassified
228 NAME OF RESPONSIBLE 'NDIVIDUAL 220 TELEPHONE (Include Area Code) | 22¢ OFF'CE SYMBOL
Prof. Neil C. Rowe (408) 646-2462 Caode S2Rpn
00 FORM 1473, sa maRr 8) APR edition may be used until exhausted SECURITY CLASSIFICATION OF TwiS PAGE
Alt other editions are cbsolete

unclassified
1

hmm:'“:-:a:':.'JC'”‘r:;c':-cnt‘tiﬁ "I‘|l*‘f‘ - \J‘f\.“.“.’\ ".‘f\\'\\-.\f\.\\\'.‘ \

toav i

JLIE S

-

-~ B

r £ 8 ¥ 2 8 _=»

s %

jfied
SECUMTY CLASSIFICATION OF THIS PAGE (When Dats Entered

BLOCK 19 CONTINUATION

algorithm and the Snell's-law algorithm to solve problems; this R,
allows the selection of the fastest algorithm. We also develop
improvements to the wavefront-propagation algorithm that de-
crease its average-case time requirements and we prove proper-
ties of Snell's law when applied to the weighted-region problem.

3

S/N 0102 LF- 014- 6601 ' ifi
unclassified

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

2

AT N
[M A

N LY ¥ ™ AP - n RgPp™ " -y -
St 'v"'!“-k"'t‘-‘..‘-'.‘u‘.-.;’.'d!'ﬂ.. v |'!'~‘. AT TN A XN WU, t‘. \ '..'l'. f\ ' LA inAs, '.\., U

B A
:

Approved for public release; distribution is unlimited

‘ Solving a Class of Spatial Reasoning Problems:

Minimal-Cost Path Planning in the Cartesian Plane
by
Robert F. Richbourg
Major, United States Army
B.S., Wake Forest University, 1976
M.S., Naval Postgraduate School, 1984
Submitted in partial fulfillment of the
requirements for the degree of
DOCTOR OF PHILOSOPHY IN COMPUTER SCIENCE
from the

NAVAL POSTGRADUATE SCHOOL
June 1987

Author: J

@ Approved by: obert F. Rithbourg
Llo L. kodies D: e NN

Uno R. Kodres Robert B. McGhee
rofi of puter Science Professor of Computer Science

DL K<)

- D 4
MichaelY, Zyda Douglas R. Smith
Associate Professor of Computer Science = Computer Scientist, Kestrel Institute

Gilbert T. Howard Neil C. Rowe
Associate Professor of Associate Professor of Computer Science
Operations Research Dissertation Supervisor

Approved by: % / (
e

Vincent Y. Lu¢3 irman,Department of Computer Science

Approved by:

David A. Schrady, Acaﬁe@dbem

&

3

&.‘_' ;','"‘n“__" ;{,; Wb, :‘,. ’q‘ " '1“,. .o. ‘|’l‘§.“e.‘...g'.'!'.‘.“..“'..g.. r . ‘- ’ w n.-. "\-' " . -. -.-- .,'..v.',’r. . ws

.........

Al

- - -

- w

- R N I O A Sl

" -

-’

-y

N

............

ABSTRACT

This work presents an algorithm to solve a two-dimensional weighted-region
problem that requires finding the least-cost path between two points located on a
map of homogeneous-cost regions. Such regions have a constant cost rate per unit
distance accrued by paths passing through them. Conventional graph search
applies standard search strategies to graphs whose links represent the only
possible paths. We use Snell’s law as a local-optimality criterion to create
corresponding graphs for the weighted-region problem; the nodes in our graphs
represent areal subdivisions of the physical environment. The performance of our
Snell’s-law-based algorithm is compared to that of a dynamic-programming,
wavefront-propagation technique. Test results show average-case superiority of
the Snell’s-law-based algorithm, as measured by time, space and solution-path
cost. We present a criterion to predict the time for the wavefront-propagation
algorithm and the Snell’s-law algorithm to solve problems; this allows the
selection of the fastest algorithm. We also develop improvements to the
wavefront-propagation algorithm that decrease its average-case time requirements

and we prove properties of Snell’s law when applied to the weighted-region

problem.

N

S)
(]
¢
A
.|
¥l

. TABLE OF CONTENTS
Page
ACKNOWLEDGEMENT 8
I. INTRODUCTION 9
A. SPATIAL REASONING 9
B. PROBLEM DEFﬂVITION AND BASIC ASSUMPTIONS - 12
C. THESIS ORGANIZATION 14
II. SURVEY OF PREVIOUS WORK 15
A. INTRODUCTION 15
B. WEAK METHODS OF SEARCH 16
C. PROBLEM REPRESENTATION 34
D. PLANNING 37
@ E. SOLVING A BINARY-TERRAIN PATH-PLANNING
PROBLEM 44
F. SOLVING THE GENERAL PATH-PLANNING PROBLEM 57
G. SUMMARY 80
III. IMPROVING WAVEFRONT-PROPAGATION
PERFORMANCE 84
A. INTRODUCTION 84
B. DEFINING THE PROPAGATION PROCEDURE 86
C. DECREASING WAVEFRONT-PROPAGATION TIME
REQUIREMENTS 101
D. PERFORMANCE COMPARISONS 107
E. SUMMARY 112
L : '

o A Y T ST S S s S S]

IV. PROPERTIES OF SNELL'S-LAW PATHS 154 @
A. INTRODUCTION 154 |
B. TERMINOLOGY AND DEFINITIONS 155
C. DERIVATION AND STATEMENT OF SNELL'S LAW - 162
D. CONVEXITY OF THE SNELL’S-LAW PROBLEM 165
E. DEVELOPING PRELIMINARY RESULTS 169
F. RELATIONS BETWEEN ADJACENT WEDGES 191
G. PRUNING CRITERIA 199
H. COST BOUNDS 209
I. PHYSICAL BOUNDS 217
J. LIMITATIONS IN THE APPLICATION OF SNELL'S LAW — 224
K. SUMMARY 233

V. SNELL'S-LAW-BASED A* SEARCH 235 ey
A. INTRODUCTION 235 .-
B. INITIALIZATION 239
C. SELECTING A WEDGE FOR REFINEMENT 246
D. LOCATING THE CLOSEST UNSOLVED SEARCH POINT ——- 247
E. ITERATIVE SOLUTION OF SNELL’S LAW 255
F. WEDGE REFINEMENT 268
G. ADDING NEW WEDGES TO THE AGENDA 277
H. TOTAL INTERNAL REFLECTIONS 278
I. BLIND REGIONS AND LOCALITY ASPECTS 202
J. REDEFINING THE ALGORITHM 292
K. DEMONSTRATION 204

TR
o oA

Ca 5 € T Callp) O 0 €7 ¥ W on g & o F o, 8 e, T e v e r o,
Lt N M‘A‘Lﬁ'fr I T S PN P P P e RO e A YR

AR P P R N

&

L. COMPARISON WITH THE CONTINUOUS DIJKSTRA
ALGORITHM

M. SUMMARY
V1. PERFORMANCE COMPARISON

A. INTRODUCTION
THEORETICAL MEASURES
PROLOG IMPLEMENTATIONS
SELECTING TEST PROBLEMS
COMPARATIVE DATA

WAVEFRONT PROPAGATION PATH-COST ACCURACY -
ALTERING COST-RATE RATIOS
H. SUMMARY
VII. CONCLUSIONS
A. INTRODUCTION

@ ® =B U 0oUu

B. WAVEFRONT PROPAGATION: STRENGTHS
AND WEAKNESSES

SNELL’'S-LAW-BASED ALGORITHM: STRENGTHS
AND WEAKNESSES '

SELECTING THE APPROPRIATE SOLUTION METHOD -
POSSIBLE EXTENSIONS
OTHER APPLICATION AREAS

Q

S

=

G. SUMMARY

LIST OF REFERENCES
APPENDIX (DEMONSTRATION)
INITIAL DISTRIBUTION LIST

Page

299
301
302

352

355
360
366
368
369

[2]
~3
—

375

427

ACKNOWLEDGMENT

Primarily, I wish to thank my wife Alice for her unfailing support. Without
her help, the completion of this work would have required much more time. I
would also like to thank Dr. Neil Rowe for his attention to detail and for his
insightful guidance. The intellectual maturity of Dr. Robert McGhee and
enthusiastic support of Dr. Michael Zyda were also greatly appreciated. Finally, I
wish to recognize Dr. David Hsiao for his initiative in establishing a computer sci-

ence doctoral program at the Naval Postgraduate School.

This work was supported in part by the U.S. Army Combat Developments

Experimentation Center (USACDEC) under MIPR ATEC 88-86.

I. INTRODUCTION

A. SPATIAL REASONING

Robotics has been characterized as the field concerned with the "intelligent
connection of perception to action". [Ref. 1]. A key to establishing the
connection between computers and human-like activity involves spatial reasoning;
reasoning about objects bﬁsed on descriptions of their spatial properties such as
location and shape [Ref. 2]. As an example, suppose that a robot manipulator is
used to take parts from one bin and put the parts into another bin. Before this
task can be accomplished, the robot must "know" the location, size and shape of

both bins as well as how to move its arm between bins.

Spatial reasoning problems can be varied in nature; there does not seem to be
a single spatial reasoning problem that represents the entire set of such problems.
One class of spatial reasoning problems that has received much attention is path
planning. That is, given a map of the physical environment that provides the
location, shape and size of distinct regions and associates a cost per unit distance
with moving through each such region, find the least-cost path between two given
points on the map. Clearly, if a robot is to move its arm (between bins for

example), it must be able to solve an instance of the path-planning problem.

Optimal-cost route planning is not a new problem area. There have been

many successful search techniques developed. particularly in the operations

research field, to solve different instances of path-planning problems. Search is

nL e

IR B s g*h W - afh 2Th at} g°] P YT T VI T XK UOOoUoRR o mn

the process of exploring different alternatives that lead to or constitute solutions.
Normally, the techniques tacitly rely on a strong assumption: a finite graph that A2
exhaustively lists every possible path in the environment is either available or can
be generated. This implies that there is a finite number of turns that can be
taken at every branch point (i.e., each node in the graph has a finite branching
factor). This assumption is reasonable for many path-planning domains. As an
example, when the problem is to plan a roadway route between two locations,
then a graph that represents the road network connecting the two locations is an
accurate problem representation. However, a finite graph where graph nodes
represent locations and graph links define avenues for movement between

locations, does not exist for all path-planning problems.

The type of graph structure discussed above is an example of a problem
representation that facilitates a path-oriented approach [Ref. 2] to the path- PRy
planning problem. To illustrate the inadequacies of the path-oriented approach,)

| suppose that an optimal-cost route between two locations is desired and that the

locations are connected by a road network. If the agent (i.e., some entity capable

of independant motion) for which the path is to be planned is not restricted to p

road-only travel, then the road network does not exhaustively represent all

possible paths between the two locations. If the agent happens to be a human on

foot. a roadway may not be a desirable terrain feature to include on the path.
For example. if the human wishes to avoid detection. a wooded area wouid be

|
i preferable to an open road.

In general. a solution path appropriate for a highly-mobile agent includes path

’
»

segments that cross several different terrain features. Again, using the example of

s _®
.:s‘:-.ij
S

10

AL N LT e e)
A I ST TN SR e, WP P WY

a walking human, the most desirable paths often combine some roadway and off-
road portions. Such solution paths do not seem to come from selecting one from a
finite number of possible paths through a graph. If a road is considered to be a
series of connected line segments, then due to the existence of real numbers, there
exists an uncountably infinite number of points where a path could exit the road
to begin an off-road path segment. Thus, there exists an uncountably infinite
number of possible paths involving on-road and off-road path segments. Clearly,
a finite graph where one node has an infinite number of neighboring nodes is self-

contradicting.

But, even though there exists an infinite number of possible paths comprised
of on-road and off-road path segments, the differences between all but a finite
number of them cannot be represented on any machine that has finite precision.
So, a finite static graph that reasonably closely models all possible paths has to be
large. The alternative is to decrease the resolution (precision) of the
representation, resulting in solutions of decreased accuracy. In many domains, the
type of solution that can be achieved based on simplified approximate problem
representations is satisfactory. However, in some instances of the path-planning
problem, where path cost is measured in terms of exposure to danger for example,

sacrificing optimality for computational simplicity is not a good strategy.

Another more promising method of solving path-planning problems in
domains where the path-oriented approach is inadequate involves shape-oriented
reasoning [Ref 2]. Instead of relying on the search of a large graph that includes
links for all possible paths between two locations. reason about the spatial

relations and properties of the terrain features themselves (as represented by

11

i Tt R

- N

"

IR

WA SRR

regions having uniform properties). Shape-oriented spatial reasoning can be used
to create a graph that represents areal combinations of different terrain features.
In this work, we present methods of creating and searching such spatially-oriented

graphs that allow solutions to the path-planning problem.

B. PROBLEM DEFINITION AND BASIC ASSUMPTIONS

The path-planning problem that we solve has been named the weighted-region
problem [Ref. 3| and requires finding the least-cost path between two given points,
a start and a goal that both lie in the same Cartesian plane. We assume, as a
given, the existence of a area-cost map that is large enough to include the start,
the goal, and the least-cost path between them. The area-cost map is comprised of
homogeneous-cost regions, described as non-intersecting polygons such that each
polygon defines an area of equal cost rate. A cost rate is a generic measure of cost
per unit distance, generic in the sense that the unit of measure itself is irrelevant
and could be, for example, time, exposure to danger, energy required, or a similar
unit of measure. Cost rates are defined only in terms of location (i.e., not in terms
of heading or time) and for a specific agent. By agent, we indicate some entity
capable of independent motion over the area represented by the area-cost map.

There is a single cost rate associated with each homogeneous-cost region.

A path is a series of connected line segments or path segments, that begins at
the start and ends at the goal. There is one path segment on a path for each
portion of the path that is inside a single homogeneous-cost region. Thus, a path
is comprised of path segments such that there is one path segment endpoint at

the start, one path segment endpoint at the goal, and one path segment endpoint

12

P e A N By S Ry (P J0 (P ® N Oy P
A "'."" """ L '~.‘ ‘l"'l' .4‘-.“ -.b'-.!.-'l.» LA "'."l'l'b“.n- W, 8% 4% 4 .l'a‘l'- ".-.c'. n‘.‘!‘l.:" AN 0, A" AN b“'l.- Iy oV, ‘.\I.- (1 -'..l') ."

at each point where the path intersects a boundary of a homogeneous-cost region.
The cost of a path can be calculated by summing the costs of each of its path
segments. Since each path segment goes through a single homogeneous-cost
region, a single cost rate can be associated with each path segment. The cost of a
path segment is equal to the cost rate for that segment multiplied by the length of

the segment.

Let Py, be the set of all simple, start-to-goal paths for a specific instance of a
least-cost-path problem. For each p.ePg., let p, be the locus of points (z,y) such
that z = h.(s) and y = g.(s). Let C(z,y) be a piecewise constant function such
that TC = C(z,y) is a unique cost rate (per unit distance) associated with
coordinates (z,y) on the area-cost map. Then, the least-cost-path problem can be
expressed as:

min, p,, [Clh(s).4,(s)) ds

Note that this formulation represents a problem in the calculus of variations
|[Ref. 4]. In this work, we exploit the nature of the problem itself to devise a
solution technique that is based on less complex mathematical models.
Specifically, we define a local optimality criterion that allows the computation of
piecewise-linear paths from the start to the goal that have locally optimal cost,
locally optimal among the set of all start-to-goal paths that intersect a particular
set of homogeneous-cost region boundaries. The problem then reduces to finding
the single least-cost path from the set of all locally optimal-cost paths. Let L be
the set of all such locally optimal-cost paths such that l.eL and that each I is

comprised of n_path segments. denoted ps (where ;¢ 'l...nj). A unique cost.

13

RPN

¢, can be associated with each such path segment. Let the Euclidean distance
along path segment ps i be denoted d i+ Given this formulation, the weighted- @

region problem becomes:

n.

mm, .) dej
=1

C. THESIS ORGANIZATION

In the following chapter, we examine solution techniques for some related
problems, beginning with general graph search strategies. The chapter includes a
brief discussion of the wavefront-propagation technique as a solution method for
the weighted-region problem. Because wavefront propagation is a widely used
method, Chapter III is devoted to a detailed discussion of the method as well as

some modifications that can enhance its performance.

ey
In Chapter II, the survey of related work also includes a discussion of a @
weighted-region problem solution technique that relies on Snell’s law, commonly
used in optics. Chapter IV presents a mathematical analysis of the application of
Snell’'s law to the weighted-region problem. The properties exhibited by Snell’s
law when applied to the weighted-region problem that are developed in Chapter
IV provide the foundation for the Snell’s-law-based algorithm developed in
Chapter V. A prototype version of the algorithm has been implemented. In
Chapter VI. we present performance comparisons of the Snell's-law-based
algorithm and the wavefront-propagation technique. This chapter provides the
data that is the basis of the conclusions presented in Chapter VII.
-S:g;

14

OGN DN j ™, LS) AW N % LS WS
B e I T N U A U M MR M LR I e o IO SN G T W o e it N W W M WY M W

I1. SURVEY OF PREVIOUS WORK

A. INTRODUCTION

Recall that the weighted-region problem requires finding the optimal-cost path
between two known points given an appropriate area-cost map. The weighted-
region problem is related to several other problems in the fields of computer
science and operations research. Solving the weighted-region problem requires
search. There are many search strategies that can be applied to the problem. Each
strategy has unique characteristics that determine its suitability. In Section II.B,
we discuss the characteristics of well-known search strategies that have been

applied to the weighted-region problem.

Work completed in the artificial intelligence field has demonstrated that
determining the most suitable search strategy for a particular problem is but a
single step towards constructing a problem solving syétem. Many other aspects are
involved. Problem representation, discussed in Section II.C, is one important
aspect. In Section II.D we discuss these issues in the context of problem solving

systems created by artificial intelligence researchers.

The discussions presented in Sections II.B and II.D develop basic principles for
constructing problem solving systems that rely on search. Section II.LE exemplifies
the application of these principles to the simplest instance of the weighted-region

problem. This restricted version of the problem requires finding optimal-cost

paths through an environment consisting only of obstacle areas (those areas

having infinite costs associated with passing through them) and traversable areas

(those areas having finite constant costs associated with passing through them). @

Section IL.F presents completed work that has been directed towards solving
the general-case weighted-region problem. Each technique has its own
characteristic advantages and disadvantages. These characteristics are developed

leading up to Section II.G, the summary.

B. WEAK METHODS OF SEARCH

Search is required whenever there is no closed-form solution for the problem at
hand. That is, if the best that can be done when presented with a problem is to
make a plausible guess at its solution, search is required to solve the problem. An
oversimplification of this statement is that search is required whenever a complex
problem having many plausible alternative solutions, must be optimally solved. .m
Thus, search is a fundamental requirement in producing solutions for many

important problems. Because search problems are ubiquitous, many different

search strategies have been developed and are well understood. These strategies
are often called weak methods [Ref. 5|. The term weak method is not meant to
reflect problem solving power. Rather, the classification indicates that the
method does not have a strong reliance on a particular aspect of a problem, the

problem structure and is thus generally applicable to a wide range of problems.

At least three requirements must be met by every problem-solving system
before a weak method can be successfully applied. First, there must be some way
of describing the problem and its subparts. That is. there must be a problem

representation that describes every object or state that is involved in solving the

>

e,
S
O

L4

16

I
\ C ; ‘&M‘{? : ;I\ ;:,:c,,cyl :u\g-‘d;g:\:y,v:\ :\:‘::\‘_\‘:ﬁ!\:rc'\ :‘:‘J

e e e -
s P NN

&

problem. Secondly, there must be some way of specifying motion, or
transformations, from one state to another. Operators are state modification rules
that specify how a state can be transformed and describe states resulting from
transformations. Finally, there must be some method of ordering operator

application. A control strategy establishes a precedence among the operators.

Constructing efficient operators and problem representations are important
issues that are discussed in Section II.C. In this section, we focus on control
strategies. To facilitate the discussion. we assume that the problem representation
is a graph consisting of nodes and links. Each node represents a state. There is a
link in the graph between each two states when they are related by a single
application of an operator. Using this graph structure allows the explanation of

basic terminology.

Node A is a parent of node B if there is a directed link from A to B. (Thus,
the state represented by A can be transformed into the state represented by B by
a single application of an operator.) In this case, node B is a child of node A. If
there is a chain of links leading from node A to node B then node A is an ancestor
of node B and node B is a successor of node A. Two or more child nodes that
have the same parent node are siblings. A fundamental step in graph search is
node generation. A node is generated when it has been derived by traversing the
link from its parent node. Once a node has been generated. the parent of that
node has been ezplored. Ezpanding a node requires generating all of the node’s
children. The minimum number of links from a node back to the start is the

depth of the node.

17

«
% 80 30 ML, A L 0N S

by » L n T AW WS T AR TR T N | L] " . LS 2P B vy, ¢ Wi Wy =
"‘.'! .'! » s‘l‘u"‘n’\‘c'l,."l\ ,\. ;Onlo‘.n .1.. i -.,9'0 » N N “\'5 .‘" W > b/ v 0, \ a‘l \ s .‘1 e

oy g,

Weak methods can be characterized by the type of solutions they produce.
The solution type is normally dictated by the task at hand. The task can be an
optimizing, satisficing or semi-optimizing task [Ref. 6]. If the task requires finding
the exact most desirable solution, then it is an optimizing task. The task is
satisficing when solutions that are "good enough" [Ref. 7| are acceptable.
Satisficing tasks usually involve the use of heuristics, or rules of thumb which
serve to lessen the search effort. Here, optimal solutions are not guaranteed.
Often, the first solution found during search is acceptable for a satisficing task.
When the task is to find a solution that is within a specified tolerance of the exact
optimal solution, the task is semi-optimizing. The latter type of task appears
frequently for several reasons. First. a task can be semi-optimizing because the
effort required to improve a solution that is close to optimal is not justified by the
amount of improvement. Secondly, a task can be semi-optimizing due to
numerical issues such as precision and accuracy. If the exact optimal solution is.
for example, 7, no machine currently available can exactly display the number.
The weighted-region problem is a semi-optimizing task for both of these reasons.
As such, a search strategy suitable for the weighted-region problem must support
semi-optimizing tasks. Normally, this implies that the strategy be capable of

providing optimal solutions, given an unlimited amount of resources.

Weak ‘methods can also be characterized by the nature of their control
strategy. A control strategy is systematie if it is both complete and non-redundant
[Ref. 6,8]. Completeness implies that a solution, if one exists, will not be
overlooked. Non-redundancy implies that the search will not repeat itself by

exploring any alternative more than once. Control strategies that do not meet

18

o~
)
D

O AL I OAY R A A IO O G O IR AL NS o AT a F o En ¥ o (o Oy oy ¢,)

these requirements are non-systematic. Clearly, a control strategy suitable for the
weighted-region problem must be systematic. Since the task is semi-optimizing,
the strategy must be complete. Non-redundancy ensures only the most

rudimentary form of efficiency.

Thus, we desire a weak method that is systematic and appropriate for a semi-
optimizing task. Several weak methods have been applied to the weighted-region
problem. Prior to discussing these methods, we discuss the primitive search
strategies that form the basis for the more advanced weak methods of search.
(Note that, unless otherwise stated, our discussions of the following search
strategies assume that the first solution a strategy finds is the solution that the

strategy returns.)

The two simplest systematic strategies for conducting a graph search are
depth-first search and breadth-first search [Ref. 6]. To illustrate the differences in
these strategies, suppose that node N has two child nodes, C1 and C2. Assume
that node N has been explored. When using a depth-first strategy, if Cl is
selected for expansion before C2, then all of the successors of C1 will be explored
before C2. Thus, depth-first search choses for expansion first those nodes that
increase search depth in the graph. Breadth-first search uses an opposite
philosophy. All nodes at the same depth in the graph are expanded before the
search moves to a greater depth in the graph. Thus, all siblings of node N would

be explored before either C1 or C1 in the above example.

When depth-first search reaches a node that has no children, it must backtrack
by exploring sibling nodes. Thus, if node C1 is selected for expansion but C1 has

no children, a depth-first strategy would explore node C2 next (in a depth-first

19

-
o T -

D, e o

e - T btttk ik el dadnheandy -

manner). Since graphs do not have infinite branching factors, there is no

breadth-first analogy to backtracking. However, both strategies are subject to 5',{;‘:4
faly’

cyeling. When there is more than one path to a node (including the case where a
node is a successor of itself) either strategy can cycle, or repeat the search effort
by generating the same node more than one time. To prevent such occurrences,
both strategies rely on maintaining two sets of nodes called Open and Closed [Ref.
8]. Open is the set of all nodes that have been generated but not yet expanded.
Closed is the set of all nodes that have been expanded. Cycling is prevented by
inspecting each node selected for expansion to ensure that it is not already in the
Closed set. Generally, when the node is a member of Closed, it need not be

expanded a second time and can simply be removed from the Open set.

Whenever either strategy returns the first solution th-at they find, they act as
satisficing techniques. Heuristics can be added to either strategy to ensure that A
optimal solutions are discovered. Optimality can also be ensured by non-heuristic
means. Either strategy can be used to conduct an ezhaustive search of the graph
so that the entire graph is searched. In an exhaustive search, all solutions will be

found and the single best solution can be returned as optimal.

1. Uniform-Cost Search

Uniform-cost search is a type of breadth-first search that is suitable for
optimizing tasks when different costs are associated with traversing links. Recall
that breadth-first search exhaustively explores a graph at one level of depth before
progressing to the next level. Uniform-cost search employs the same strategy
except that the graph is explored in equal levels of cost rather than equal levels of

depth. To effect the change, only a small modification is required to a procedural

A
20 "

definition of breadth-first search. Instead of directly adding all children of a
newly expanded node to the Open list, the children are first sorted into a new list,
ordered by increasing cost to reach the child from the start node. The new list is
then merge-sorted into the Open list. Cost information must be available for each
node on the Open list to complete the merge sort. Thus, it is most convenient to

require the elements of Open to be two-tuples of the form (Cost,Node).

The merge sort maintains Open so that the least-cost element is always the
first element. Thus, the graph is searched by always expanding the least expensive
path found so far. Clearly, when the goal node is the first element on Open, it
represents the least expensive goal path that has yet been found and it can be
returned as the optimal-cost solution. A procedural definition of uniform-cost

search is presented in Table 1.

Uniform-cost search has also been called a branch-and-bound strategy since
the name is descriptive of the strategy’s behavior. The node chosen for expansion
always represents a lower bound on the cost to reach the goal. If that node is not
the goal, the strategy branches to some other, possibly unrelated, node on the
next expansion. The branch-and-bound name is often used for this strategy in
the artificial intelligence community. Branch-and-bound is also an archetypal
search strategy used in operations research. However, the operations research
version of branch-and-bound is a different algorithm. similar to the A* strategy
(discussed in Section [I.B.3 below). Uniform-cost search has also been cailed
Dijkstra’s algorithm after E. Dijkstra who first developed the strategy in 1956

[Ref. 9].

21

Lo L I S N ol il o o 8 LB W C o AQE TP A o AT AT

A + * L]

T

S e S

s A RS

Rt N N N N

[o

’ .
N

TABLE1
UNIFORM-COST SEARCH @

Uniform_cost(Closed,Open)
{
If Open is empty, stop, announcing no solution exists
Otherwise

{

Split Open into 2 parts, Node which is the first element
of Open and RestOpen which is Open with the first
element removed.

If Node is the goal and all other nodes having lower cost
have been expanded, stop, announcing success

Otherwise

{

Expand Node

Create UpdatedClosed by adding Node to Closed
If Node has no successors

{
Uniform cost(UpdatedClosed.RestOpen)

}

Otherwise

Create the list SortedChildren which contains each
child of Node, not already on Closed or Open,
sorted by path cost from the start.

Create UpdatedOpen by merging RestOpen and
SortedChildren.

Uniform _cost(UpdatedClosed,UpdatedOpen)

}

oLy
e

Uniform-cost search is a strategy that rests on the dynamic programming
paradigm. Clearly. the first path found to any node constitutes the optimal path
to that node. Thus, in the process of finding the optimal start-to-goal path, the
optimal path to every node (when the secondary paths have cost less than the

solution cost) expanded along the way is also found. This is analogous to the

. ':{: 3\‘

Lg _\\

22

A 00 0 g OAOOO00 0 ¥ W o O A AN » e WAL TR TRTNL
St Y R b L i o R Ry AT N T I L T T g S T S SR Y

dynamic programming principle of solving all subproblems in order to solve the

overall problem.

Uniform-cost search is classified as an uninformed (or "blind") strategy. (In
fact, when the cost to reach any child node from its parent node is constant,
uniform-cost search reduces to breadth-first search.) In the context of a graph-
structured problem representation, uninformed strategies are those that have no
notion of the location of the goal until it is found. That is, in uninformed
strategies, the order of node expansion is not affected by the location of the goal
node.' Clearly, depth-first, breadth-first and exhaustive search strategies are also
uninformed. Efficiency considerations normally imply that uninformed strategies
are impractical for application to problems represented by large graph structures.
However, the methods are important. They form the basis for more sophisticated,
tnformed control strategies. The weak methods presented in the following three

sections are all informed strategies.

2. Best-First Search

Best-first search is the basic informed strategy. The technique relies on
heuristics that evaluate newly generated nodes in terms of their estimated
proximity to the goal node. That is, if nodes A and B are newly generated and
node A seems closer to the goal than B, the heuristic component of the algorithm

will rate A as more promising than B and A will be expanded hefore B.

Best-first search provides a way to combine breadth-first and depth-first

search. Procedurally, best-first search is a variant of the uniform-cost strategy.

Exactly the same algorithm may be used except that a modification must be

<
-

VX XD ANIAr S

>

made to the method of evaluating the cost associated with each node. Instead of

maintaining a "running" account of the cost to reach a node, a heuristic
component that evaluates the "closeness" of the node to the goal is required. In
the simple version of best-first search that we define here, the accrued cost to
reach a node is unimportant. (We note that more sophisticated versions of best-
first search rely on a "composite" evaluation at each node that includes a
"running" account component and a "closeness" component. A* search, discussed
below, is such a best-first strategy.) Once the cost evaluation for each node has
been established, the nodes are again ordered in terms of increasing cost and
merged into the Open list. Thus, the node that seems closest to the goal is always
selected as the next node to expand. Again, the merge-sorting requirement
dictates tliat elements of Open are (Cost,Node)-tuples. A procedural definition of

best-first search is provided in Table 2.

The accuracy of the heuristic evaluation function has a great effect on the
efficiency of best-first search. If the estimator is perfect, always returning the
exact cost to reach the goal from any node, then there is no search involved in the
problem. When using a perfect estimator, one child of each node expanded must
be on the solution path and that child must be closer to the goal than the parent.
Thus, no node not on the optimal path is ever expanded. Perfect estimators allow
best-first search to behave as if it were depth-first search that always happens to
choose the correct node for expansion. However. problems that require search (i.e.,
do not have closed form solutions) do not have perfect estimators. Normally,
best-first search alternates between breadth-first and depth-first exploration of a

graph.

24

----- Al L, N ASK"S A A

'y~
5

" ag v B2V ARS 'Y . ~» L A m R a® ana sy Tge P AT A AP APAYRI A" AT AR AR L M 2.0 AP AT R AR
RIUOOUR FACRM R Wk X K \ W N1 Ngr ot) ‘-’4"’ af e’ n f ;. ‘A A oo LA .. ' Lt v P,

|

2 \
SEARCH b

TABLE
@ BEST-FIRST S

Best first(Closed.Open) 7
{ N
If Open is empty, stop, announcing no solution exists :
Otherwise ¢

Split Open into 2 parts, Node which is the first element
of Open and RestOpen which is Open with the first

element removed. o
If Node is the goal, stop, announcing success
Otherwise n
{
Expand Node

Create UpdatedClosed by adding Node to Closed
If Node has no successors

Best first(UpdatedClosed.RestOpen)
} - |

Otherwise

- Create the list SortedChildren which contains each
% child of Node, not already on Closed or Open,
sorted in order of increasing estimates to reach
the goal from the child.
Create UpdatedOpen by merging RestOpen and
SortedChildren.
Best first(UpdatedClosed,UpdatedOpen)

e .~y

e
P . “

haad
‘-’!IS.I'V"’

The heuristic estimator also determines the type of solution returned by

]

our simple version of best-first search. If the éstimator is perfect. optimai solutions

are provided. Without perfect estimators. our best-first search is not guaranteed

-,

to provide optimal solutions. Overestimating the cost to reach the goal from a
node on the optimal solution path will cause the expansion of that node to be

delayed. Some other path leading to the goal can be found during the delay if the

25

L I ', I AT LI P S RS v
A G T S T L SRR P O

:‘.‘.'.'i‘yﬂsss ~

overestimate is sufficiently high. Similarly, a heuristic component that
underestimates remaining cost can lead to less than optimal solutions. In this
case, the problem stems from ignoring accrued cost to reach a node. As an
example, suppose that node N is expanded, yielding children C, and C,, both of
which have the goal node, G, as a child. Let the cost of the N-C, link be 10
units while the cost of the N-C, link is 20 units. Let the cost of the C, -G link
be 15 units and the cost of the C,—G link be 10 units. Assume that the heuristic
component underestimates the remaining cost from both C, and C,, but is
accurate enough to prefer C, to C, since the former is closer to the goal. The path
through C, will be explored first, yielding a solution having a cost of 30 units.
The path through node €, is better, having a cost of 25 units. but that path is

not explored.

Our simple best-first search is appropriate for satisficing tasks when the
size of the problem representation requires an informed strategy and there is a
good estimator available. The strategy is not suitable for optimizing or semi-
optimizing tasks. However, our simple best-first search can be modified to provide

optimal solutions. The modification is presented in the next section.

3. The A* Search Strategy

A* search [Ref. 10| is the culmination of all the strategies that have thus
far been presented. The strategy combines the informed nature of best-first
search with the optimizing character of uniform-cost search. As a result, whenever

a good estimator is available, A* search is the leading candidate for the best

strategy to apply to optimizing or semi-optimizing tasks.

s v s

The A* strategy relies on maintaining a composite cost evaluation for each
node stored on the Open list. The composite is the sum of the known cost to reach
the node (as in uniform-cost search) and a heuristic lower-bound underestimate of
the cost to reach the goal from that node (similar to the evaluation used by our
best-first search). The normal names given to these costs are f(N) for the
composite cost at node N, g(N) for the known cost to reach node N and h(N) for
the lower-bound heuristic evaluation component. Thus, f(N)=g(N)+h(N) in this
terminology. A* search overcomes the inefficiency of uniform-cost search by using
the lower-bound component and changes the satisficing nature of best first search

to optimizing through the known-cost component.

The above is an oversimplification. A* search cannot provide an optimal
solution unless the lower-bound component is guaranteed to underestimate
remaining cost. That is, the lower-bound component must provide an evaluation
that is less than or equal to the actual remaining cost to reach the goal. In
general, if the lower-bound component overestimates remaining cost, a node on
the optimal path can be overlooked (as in the case of best-first search). However,
using a lower-bound component that underestimates remaining cost guarantees

that A* returns optimal solutions.

The amount that the lower-bound function underestimates true remaining
cost affects the work required by A" ro reach a solution. The closer the evaluator
comes to perfection, the less work required by A*. Altering the values returned

by either the known-cost or lower-bound function changes the behavior of the A*

algorithm. These behavioral changes are summarized in Table 3.

@ 4 & %, ', 7 S g%) Cpi Tad g p ¥ BN [T 3 [N ENENEN .3 C i e

J ~ TABLE3
ALTERING A* BEHAVIOR oI
A¥ Optimality t'&f\‘
known cost lower bound Behavior Guaranteed
. true cost true cost depth first, no backtracking ves
p true cost underestimate - yes
‘ true cost overestimate - no
true cost 0 uniform-cost search yes
0 0 random no
0 any estimate simple best-first search no

A* search, like the other strategies presented, requires use of both the
Closed and Open lists to prevent cycling. However, there is an important
difference in how the lists are maintained when a duplicate node is generated (i.e..
' a node already on Closed). Unlike uniform-cost search, A* may not generate the
. optimal path to an intermediate node the first time it finds a path to that node.
This is due to the underestimate provided by the lower-bound component. The

. . _ .. e
evaluation is based on remaining cost to reach the goal node, not on remaining PN A
@

C o~

cost to any intermediate node. As an example, suppose that nodes N, and N,
both have a single child, C, and that the known cost for N, equals the known cost
for N,. Let the actual cost from N, to C be 5 units while the cost from N, to C is
only 3 units. If the lower-bound evaluation for N, is less than the lower-bound
evaluation for N,, then the path reaching C through N, will be generated prior to

the less expensive path through N,.

To overcome this problem. care must he taken when the same child node is
generated by different parent nodes. If there is a newly generated node, N. such
that the new known cost for N equals G1 and N is already on the Open list with

an old known-cost value of G2. then comparing G1 and G2 determines the correct

. Iﬂ\
W

<

2 8 '\!’"\

{
'.‘-a.?l'. "‘\‘.‘l‘. l‘ NIy 9y f : ‘l .;-.'.-,\ - ' '. ' Y ,'. '. RN Ty (.'}..h..* ."}."».;".ﬁm-" ":'h.'.&‘ -im e ‘C';::"' ROy 'vl‘.;-‘.'j‘

action. If G2 < G1, then the newly generated instance of N can be discarded. If
‘ the converse is true, the new instance of N must replace the old instance of N on
Open so that the least-cost ancestry of N is recorded. If the replacement does not
occur, the effect of the incorrect known-cost value for N is propagated to all
successors of N, which could cause the optimal solution path to be overlooked.

The situation is more complicated if the newly generated node already appears on

the Closed list.

When a newly generated node, N, is a duplicate of an explored node stored
on the Closed list, the known-cost functions for both occurrences of N must again
be compared. Again, let the new instance of N be such that the new known-cost
value for N is G1 while the old instance of N has a known-cost value of G2. If G2
< G1, then no actions are required and the new instance of N can simply be.

@ discarded. If G1 < G2, the ancestry records of the instance of N appearing on
Closed must be updated. Moreover, N can be an ancestor of other nodes
appearing on either Closed or Open. The cost difference for the known-cost value

at the new instance of N must be propagated to each of the previously generated

successors appearing on either list.

There are two options to update the known-cost values for the successor
nodes. First. the procedure outlined above may be followed. finding each
successor and updating its known-cost value and ancestry records. This option is
advantageous if the cost of generating successor n;)des is relatively high. The
second option is to simply remove the instance of the duplicate N from Closed
and insert the new instance of N on the Open list as normal. This option avoids

tracing through the ancestry records of nodes on Open and Closed at the cost of

29

LIS RO AW L UL AP, T N AP D S O A B I I . AL S -
T AT Vo M T S A I T e i M W D A O AT

........................

regenerating some successor nodes. In many cases. the cost of expanding a node is

low, particularly when a graph structured problem representation is used. Thus.
our procedural definition of the A* strategy employs the latter option. (We note
that "Closed" is not the best name for the list of expanded nodes since the nodes

may be regenerated. However, we use this terminology for historical reasons.)

The requirement to compare known-cost values for duplicate generations of
the same node means that these values must be available. Thus, each element of
Open must now be a tuple of the form (f(N),g(N),N) which is a short notation for
(composite evaluation, known-cost value, lower-bound evaluation). The f(N) (i.e..
composite evaluation) values are required to sort the Open list. The Closed list
must now be comprised of elements having the form (g(N),N). A procedural

definition of A* is provided in Table 4.

4. Epsilon-Admissible A* Search

A* search as described in the preceding section is an appropriate strategy
for optﬁnizing tasks. However, there is often a significant overhead involved in
computing and maintaining heuristic evaluation (i.e.. the lower-bound h(N)
values). A natural question arises: is there a way to improve performance of an
A* strategy while accepting only a bounded decrease in solution quality? An
algorithm founded on this premise is well suited to the many interesting problems

that have semi-optimizing requirements.
Epsilon-admissible speedup A*, normally written A_*, is a semi-optimizing
strategy that guarantees its solution has cost less than or equal to (1 +e¢) times

the cost of the exact optimal soiution [Ref. 6. The value of ¢ can be specified for

30

" T TABLE4 2
Q A* SEARCH)
A*(Closed,Open) ‘q'
If Open is empty, stop, announcing no solution exists. :?
Otherwise K
{
Split Open into two parts,(f(Node),g(Node),Node) which ¥
is the first element of Open and RestOpen which is Open %
with the first element removed. X
If Node is the goal, stop, announcing success. ¢
Otherwise "
{ .
Expand Node. v
Create UpdatedClosed by adding (g(Node),Node) to Closed. '
For each child, C, of Node \
{ g
calculate g(C), h(C) and f(C).
if C is on Closed with a g(N) value of G2 and Y
G2 < g(C), then discard C. 0
otherwise, if C is on Closed, remove the instance '
e of C from Closed and merge (f(C),g(C),C) into o
% RestOpen. 54
otherwise, if C is on RestOpen with a g(N) value of 3
of G2 and G2 < g(C), discard C. Ay
otherwise if C is on RestOpen, delete the old instance Rt
of C on RestOpen and merge (f(C),g(C),C) onto Ky
RestOpen. N
otherwise merge (f(C),g(C),C) into RestOpen.]
} -
A*(UpdatedClosed,RestOpen) |’I
Y
} I
} :

any particular problem. A, “ operates in the same manner as A" except that two :
heuristic functions h(N) and h focal(N) are required and one new list, normally ‘
called Focal, is maintained in addition to Closed and Open. Focal is a subset of ‘5
Open. Let the first node on Open be N min This node. by definition, has the

Pl

lowest composite evaluation (i.e., f(N) value) of all nodes on Open. N_. is a

) min .
'

'@ 3‘
) .

)

31

A L N N R T S T AT AT

member of Focal. Every other node on Open that has a composite evaluation less

than or equal to f(V_,) + € is also a member of Focal.

Instead of selecting N directly from Open to be the next node

min
expanded, all nodes on Focal are rated by a second heuristic function, h_focal(N).
The member of Focal that receives the lowest h focal(N) rating is chosen as the
next expanded node. The heuristic h_focal(N) is intended to estimate the work
required to arrive at a solution from node N. Often, h _focal(N) is identical to the
lower-bound evaluation, h(N), reflecting the theory that the node closest to the
goal should require the least amount of work to complete a solution path. When
h(N) = h focal(N), the procedure examines successive members of Open,
beginning with N_. , until the composite evaluation of the member exceeds
f(N_;,) + €. Of these nodes, the one with the lowest lower-bound evaluation is
selected for expansion. If multiple nodes have the same lower-bound evaluation,

the node with the lowest composite evaluation is selected. Table 5 provides a

procedural definition of A, * search.

Other than the process used to select the next expanded node, A _*
operates exactly as does the A* algorithm. In many cases, A4 ,* is more efficient
than A* since some nodes can be "skipped over" in the expansion process. Thus,
A_ 7 is often more appropriate for semi-optimizing tasks. This is particularly true
when there are many feasible solutions whose cost is very close to optimal. Then,
the A_* algorithm avoids the necessity of finding each such solution by returning

the first solution found to be within ¢ of the optimal solution.

32

'.rj'a‘a o Ca W Ly, Lo W S W . - .

LU SRR R i a
. o) g g) '-A-‘.\n\ﬂn\s\!'.'r'\c-:‘:"\thz"r} .

o

g \r‘:
LY

- .

W o am W e - e H
IO AR

o -~
-

R Mol

e S

e -

CORRRRAR ! v

TABLE 5 ,
O EPSILON-ADMISSIBLE A* SEARCH '

Epsilon A*(Closed.Open) 3
{
If Open is empty, stop, announcing no solution exists.)
Otherwise

Let Focal be the empty list
Set f min to be the f(N) value of the first node on Open
While Node on Open has f(N) < f min + ¢

PR IET Ve w

{

Evaluate h _focal(Node)

Merge Node onto Focal, in order of increasing
h _focal(Node) values

P Nl

Split Open into two parts,(f(Node),g(Node),Node) which
is the first element of Focal and RestOpen which is Open
with the first element of Focal removed.

If Node is the goal, stop, announcing success.

Otherwise

{

Expand Node.

% Create UpdatedClosed by adding (g(Node),Node) to Closed.
For each child, C, of Node

{
calculate g(C), h(C) and f(C). :
if C is on Closed with a g(N) value of G2 and 3

G2 < g(C), then discard C. “
otherwise, if C is on Closed, remove the instance .
of C from Closed and merge (f(C),g(C).C) into N
RestOpen. v
otherwise, if C is on RestOpen with a g(N) value of N
of G2 and G2 < g(C), discard C. o
otherwise if C is on RestOpen, delete the old instance o

of C on RestOpen and merge (f(C).g(C),C) onto
RestOpen. ‘
otherwise merge (f{C),g(C).C) into RestOpen. i’
|
Epsilon A*(UpdatedClosed.RestOpen) "
} .

}

N
"
8 :
33 v

& Lo
*.‘ f J"..“ ‘

C. PROBLEM REPRESENTATION

Problem representation is a core area within artificial intelligence that has @
produced volumes of material [Ref. 2.6.8.11|. It is inappropriate to review all of
the literature within the confines of this work. Rather, we begin with the generally
agreed upon observation that, "State space representations are more suited to
problems in which the final solution can be specified as a path or as a single node
[in a graph|" [Ref. 6, p.26]. Clearly, a solution to the weighted-region problem is a "

path and thus, the state space representation is appropriate.

A state space representation of a problem includes both states and operators.
A state is an encoding of the current progress towards reaching the solution. The N
operators specify methods of moving between states. Framing these definitions in]
the context of a path:pla.nning problem, suppose that the task is to find the
shortest-distance on-road route from intersection A to intersection B and that the &ﬁﬁfb ‘

system has determined the best path from A to an intermediate intersection, I. \

Figure 1 depicts this situation; the heavy line represents the path from A to L.

The state at the point depicted in Figure 1 describes progress towards the
goal. Thus, it must capture the distance already traveled from A to I. the fact
that the known path terminates at I, and some estimate of the cost remaining to
complete the path from I to B. There is a single operator that allows movement 3
from the current intersection (I) to those intersections adjacent to it (I1.12.I3, and
14). If each intersection is labeled with its state information, then Figure 1
satisfies the definition of a state space graph, a graph where each state is .
connected to its successor states. In general. a state space graph includes one link
for each operator that can be applied to any state. .

(‘I‘b;\ 1S
34 !

3

- LY

N LN e
YRS E AR,

-oe . e =g

)

12 .
I1

RCE AL L i

. TN A el

@ =

I4 ;

Figure 1. A Road Network Problem

35 >

&'
! n“.v"‘.v".-".o".a".t

Recall the requirements of the A* algorithm and note that these are all met

by our definition of a state description. A* is an informed systematic strategy that
attempts to avoid expanding useless states (states not on the solution path).
Thus, A* prunes useless states from the search. Note that this ability is closely

tied to the state description provided by the problem representation.

Due to the pruning ability evinced by the A* strategy it is classified as a
split-and-prune [Ref. 6] method. In the split-and-prune paradigm, partial solutions
(such as the path from A to I in Figure 1) represent a set of complete solutions
(all paths from A through I to B). Whenever a partial solution is refined by
applying an operator, yielding another partial solution, the set of possible
solutions has been split. As an example, extending the partial solution of Figure 1
to intersection I3 splits the set of possible solutions from I into one subset that
includes I3 as the next intersection on the path and one subset that does not.
Then, those subsets representing solutions that cannot possibly contain the

optimal solution can be pruned from the search.

Systematic strategies are complete and non-redundant. The completeness
requirement implies that no set of possible solutions can be pruned if that set
might contain the optimal solution. The non-redundancy requirement implies that
splitting a set of solutions should not regenerate previously discovered partial
solutions. Thus. a state space problem representation must account for these
requirements. There is an obvious solution when the problem requires finding the
shortest distance route on a road network. A correct representation for the

weighted-region problem is not as self-evident.

36

...... .
AP R N A N U T O

- v

Ly
°

A suitable problem representation for the weighted-region problem minimizes
information loss, specifies easily computable state transformation operators, and
supports the use of the split-and-prune paradigm by a systematic strategy. These
are general requirements of the representation. More specific properties are

developed in the following sections.

D. PLANNING

Research into the planning process has been a central activity in the artificial
intelligence community for many years [Ref. 12]. The concerns usually involve
task or activity planning while specific route-planning problems have received
more attention from the operations research community [Ref. 13.14|. However,
the operations research effort has generally been directed towards devising search
strategies to be used on graph representations of static linear media, road
networks as an example. Artificial intelligence work has been inore focused on
devising intelligent problem representations that enhance the search process. The
weighted-region problem seems ill-suited to description by finite graphs since a
continuous real-world environment must be modeled. Representing a continuous
environment by a finite graph is tantamount to developing a 1:1 mapping
between the reals and integers. Clearly. any such mapping cannot be totally
information preserving. A principal goal then is to devise a problem
representation that minimizes information ioss while providing for efficient
operators. In the following sections, we examine several planning systems that

exhibit properties useful in solving the weighted-region problem.

37

oy ' o . - R R I A R R R L P D PR R
0 A N o A N e i e E C Ca A S T

.

e e o

>

L

TGS N A

a

BT I

-~

et

o
-
>~
L
o«
-

1. The General Problem Solver (GPS)

GPS was developed as a model of the human problem solving process [Ref.
15]. It was intended to be sufficiently general so thav it could be applied in a
variety of planning domains [Ref. 12|. Comprehensive studies have been made of
GPS performance in the areas of cryptoarithmetic, formal logic, and chess
playing. Protocol analysis of humans solving problems in these same domains

show that human behavior and GPS behavior correlate to a high degree [Ref. 12].

The main problem solving strategy incorporated in GPS is means-ends

analysis. The planning process is viewed as an iterative application of operators

that transform the start state into the goal state. The sequence of operators
eventually used to produce the desired transformation becomes the finished plan.
Operators are rated prior to application by measuring the amount that they can
decrease the difference between the start and goal state. Means-ends analysis

attempts to eliminate particular levels of difference through recursive techniques.

There are several drawbacks in the means-ends analysis paradigm. The
heuristic nature of the method (rating differences and operator applicability) can
create long chains of problem solving steps that abruptly dead end. Also, means-
ends analysis does not strive for optimal solutions; any solution will suffice.
Further, means-ends analysis does not deal with interacting subproblems
effectively. If the completion of one subgoal prevents completion of another. GPS
can only return to the start and attempt a different ordering of subgoals.
Further, GPS requires specific knowledge allowing problem decomposition (by

stating the effects of operator application). Thus. although GPS is a reasonable

38

¥]
)

Yo
L]
-&l’t:'”l;'
cl?{ (t y

SN |
Fa Wy ol
vy

model of the human problem solving process in at least three domains, it does not

seem applicable to this particular path-planning problem.

However, some key issues involved in the GPS paradigm are desirable.
GPS presents a method for saving as much of a workable plan as possible,
recursion. In fact, recursive decomposition will prove to be useful in solving the
weighted-region problem. Rating the differences eliminated by operators and
choosing for application those that produce the most substantial reductions is
akin to the human ability to view the physical world as homogeneous regions, not
as discrete points. GPS also utilizes a dynamically changing world view (again
through recursion), not a static representation. Finally, GPS completes its plans

in a hierarchy of abstractions.

2. Opportunistic Planning

In [Ref. 16] a different and more complicated theory of human planning is
developed. This paradigm, called island driving or opportunistic planning,
incorporates the human trait of attempting to produce optimal (in some sense)
plans. This model recognizes the human ability to move freely between many
levels of abstraction during the planning process. This characteristic has been
termed multidirectional processing. Another salient observation of the human
planning process is that it is opportunistic. Humans are able to exploit situations
in which the compietion of one subgoal is sreatly enhanced by (or even included
in) the completion of another subgoal. (If I go around the mountain, I'll not only
avoid a long slow climb, but I'll end up very close to a major highway as well.)
Through opportunism. human planning has a bottom-up component. Steps in a

plan can be included when they are conveniently introduced.

39

o . e I I TR I I 'J" -.‘-J--,."
R T R S P AT AL RS AR AN

e w ¥ B KB

V9

The findings of [Ref. 16] include several key observations. Knowledge of
the domain is very important and optimal planning relies on the specific
capabilities (options) of the subject for which the plan is being developed (much
as the area-cost map, as defined in Chapter I, is keyed to the abilities of a specific
agent). Key observations about the physical world can dictate immediate
inclusion of some parts of a plan (the river must be crossed at the bridge). This
indicates the value of eliminating fixed steps in the planning process, such as
dogmatically proceeding from start to goal in a graph search. A multidirectional
approach can be beneficial. Finally, humans use levels of abstraction in planning.
This suggests that representing terrain in a similar fashion can be useful. A simple
abstraction might view terrain as homogeneous regions at one level and as lattice

points at another.

The implementation of the [Ref. 16] model is quite complex and includes
many different planning specialists who communicate through a shared
blackboard that has five different planes of planning decision categories. The
implementation is intended to serve as a general problem solving apparatus.
Without further discussion, we suggest that the geometric nature of the problem
at hand favors a less complex system. However, key observations made in [Ref.
16] should prove very useful.

o

3. Refinement of Skeletal Plans

The human problem solving process has also been studied and reported in
[Ref. 17]. The key observation of this work is that humans tend not to "reinvent
the wheel". Specifically, the study observed scientists who were planning

experiments. It was noted that the process often began with an abstract proven

40

e AW N0 W e W T T "t St N At T AT RTA" A "» M ATA TR
"l',“‘.‘l‘.‘\’.‘l.-\\..’f"‘:"'-'.'g...""t AU AT AN . o.|,l‘l,‘l M %) "Q:h.‘.!(:‘ i W) Y

skeletal plan that included the basic steps that the particular experiment should
follow. Using domain knowledge of the specific problem at hand, one of a set of
such general purpose plans would be expanded to produce the desired experiment
plan. Thus, the general process can be viewed as the incremental refinement of a

general-purpose skeletal plan.

The theories developed in this work have been implemented in the
MOLGEN system that can be used to plan experiments in the molecular genetics
field. MOLGEN has two primary components, one that chooses an appropriate
skeletal plan, and one that refines this chosen plan. Work has not progressed far
on the plan selection process. A table look-u;; of a taxonomy of predefined plan
utility values comprises the general methodology. The refinement process relies on
a large hierarchically arranged knowledge base of laboratory techniques. The steps
of the selected plan are linearly processed against the knowledge base material to

complete the process of plan instantiation.

This work formalizes an important human planning trait. Utilization of
skeletal plans is the paramount example of reusing already expended effort. In a
sense, this is a form of opportunistic planning. One can make use of a known
solution to a similar problem to guide the search for a solution to the problem at
hand. There may be a method to incorporate this technique into a solving system
for the weighted-region problem. However. some difficulties must be overcome.
The linear instantiation methods used by MOLGEN contlict with the interacting
subproblems inherent in the weighted-region problem. Further, describing a
previous solution by its general utility seems inappropriate. In cases where a

problem is a nearly exact copy of a previous case, the applicability of skeletal

41

plans is obvious. However, due to the continuous nature of the physical world,

such a situation does not occur with any regularity. When new instances of the
weighted-region problem are different from stored solutions to old problem

instances, it is difficult to see how the old solutions might be exploited.

4. Nets of Action Hierarchies (NOAH)

The NOAH system was created to operate in the problem solving and
planning domair [Ref. 18]. NOAH is regarded as the archetypal hierarchical
planning system. This work is not based on the human paradigm per se, but is
intended to address some of the. key difficulties that were apparent in other
planning models (such as GPS, HACKER, and INTERPLAN). NOAH plans
actions in a procedural net framework that contains both declarative and
procedural knowledge. The procedural knowledge is tied to a specific problem
domain and is capable of expanding goals into subgoals. Declarative knowledge is
used to express the effects of executing parts of a plan. Such knowledge is useful
in noting how the state of the problem has been altered by executing particular

problem solving operators.

A key contribution of NOAH was the use of a least-commitment strategy
to avoid the difficulties of subproblem interaction suffered by most other planning
systems. The least-commitment principle requires that subgoals not be ordered
until absolutely necessary. Subgoals are assumed to be executable in parallel
unless interaction difficulties become apparent. This philosophy may be applicable
t-o the weighted-region problem. Since the weighted-region problem does not seem
to be readily decomposable, intermediate subgoals may have to be selected at the

latest possible time. NOAH includes active agents, called critics, whose specific

42

=3
X

%
X

,§,5

L]

. I -
-

task is to find interaction problems. Only when a critic reports a conflict is an o

@ ordering imposed on subgoal completion. As a trivial example, consider a :,';.

| movement problem involving a bridge. Suppose that the original problem is to ~
\

| move from start, A to goal, B, and that a river with a single bridge, located at C, EES
i lies between them. Domain (procedural) knowledge would decompose the original :g'
1 move(A,B) goal into two subgoals; move(A,C) and move(C,B). Declarative .ﬁ
knowledge would be used to describe the problem state associated with each ::‘:
subgoal. A critic would then find the readily apparent subgoal conflict and suggest "

‘ an ordering of first move(A,C), then move(C,B). ::.i
'

L The key concept that can be learned from NOAH (relative to the general :?:
} weighted-region problem) is the importance of actively planning for interaction -
L . conflicts. Delaying the selection of intermediate subgoals can lessen the impact of N
L % these conflicts. Also, knowledge plays an important role in this system. Both rﬁ
domain and declarative knowledge have been employed. Clearly, the value of :

domain knowledge has been espoused by most of the schema examined. NOAH i':'::

has also shown the importance of declarative knowledge in reasoning about the -.\.'

b

state of the system itself. : ‘

5. Summary ‘.

We have seen that human-like planning can be a very complex process \

which need not be as well ordered as a graph search from start to goal. The 3

amount of knowledge brought to bear on a problem is very important, not only in ‘:

.

allowing decompositions, but in taking advantage of randomly occurring “
opportunities as well. Humans also tend to reuse frameworks of plans that have "

- proven successful in past enterprises. Reusing known solutions to solved instances

%
r a5 d

43

It AL

?‘4"‘ O.i’s.l",.l‘v, N ‘

of the weighted-region problem may prove helpful. Rating the performance of
available operators by the amount of progress (difference reduction) they achieve @
is also an important aspect of human planning. Actively planning for interaction
conflicts is valuable. When such conflicts are found at an early stage, the number
of subgoals involved will remain low and replanning will be minimized. Finally,
levels of abstraction are also important in that they can simplify reasoning. The
selection of an appropriate problem representation is fundamental in fulfilling

these requirements.

E. SOLVING A BINARY-TERRAIN PATH-PLANNING PROBLEM
1. Introduction

Much has been accomplished in the areas of planning motions for robot

manipulators and planning movements of mobile robots within localized areas. In

..
:09

both problem domains, the task is to plan an optimal-cost path for movement of
the robot (or a robot manipulator) that does not intersect any obstacles in the
physical environment (i.e., the physical working space for the robot). These
problems are often termed binary-case problems because there are only two
possible classifications for any point in the environment. In binary-case problem
representations, every specifiable point in the environment is classified as
traversable or non-traversable: thus every point belongs to a "free space" area or

an obstacle area.

The binary-case problems constitute a simplified special case of the general
weighted-region problem. Since all traversable space is the same, there is no point

in including a cost term in the objective function that is to be minimized.

44

L AR A RN AN R TR YT UM Y Y TN Y T U W VW UT L IR LTy .:;

Y

"

Removing the cost term simplifies the task to that of finding the shortest-distance ‘.
W,

@ path between the two given points, the start and goal. Thus, binary-case f:;
'9

techniques take advantage of the straight-line principle: a straight line between 2
4

§

any two points constitutes the shortest distance between those two points. :::
]

(X

0,

Occasionally, the solution techniques are designed to prefer paths that do Y

not "run too close" to obstacle areas. These techniques allow for some amount of

error by a robotic agent executing the plan because they view their plans as exact

L IO YL O,

specifications for sequences of motion. A solution path for the general weighted-
region problem normally covers a much greater range of motion than those plans

generated by binary-case techniques. Thus, solution paths for the general

» o o o

weighted-region problem are more appropriately viewed as general guidance for

add

movement, not as exact routes to be carefully followed. In this case, producing >

@ plans that allow for agent error is not a relevant concern. ;

Aside from this issue, solution methods for the binary-case problems solve N
a special case of the weighted-region problem. In both domains, the cardinal task
is that of planning an optimal-cost route over a continuous space. Thus,

examining the binary-case techniques is important. The most conceptuaily simple

>, 0t

binary-case strategy is based on the generate-and-test paradigm. In this paradigm,

e .
- £

a plausible move generator proposes a possible solution that is inspected for v

acceptability by a test procedure. [Ref. 8|. :

2. A Simple Localized-Improvement Model .

The simple localized-improvement technique used to solve binary-case
path-planning problems posits a representation of the environment that includes S,

@ -

45

£ ¢ 0 0 0

N

~ *

I ” ” « - ol el e Y e B a e . AT A T S, S, 0 T] AY

‘l‘m'l‘.‘l..'l.l 0‘.‘!‘5!‘-.'!_.'{.‘!‘. l'.'{\ l_.‘l’o’ X XY ‘..0."\.. Ny l’.'l‘...l!.‘! |'ﬁl|'|‘,g' [N X \'} N '..uf.' NV \‘. N . TR 94) e . ,, Py A " 'y

rectangular obstacles defined by the Cartesian coordinates of each vertex and of
the starting and goal locations [Ref. 19|. The straight-line principle is used as the
path generator in that a line segment from the start to the goal is proposed as the
initial solution for the optimal start-to-goal path. This line segment is inspected
for intersections with any of the rectangular obstacles. If no intersection is found,
the problem has been solved. However, if an intersection does occur, intermediate
subgoals defined by two of the obstacle vertices are proposed. The two vertices
chosen are normally diagonally opposite each other (although it is possible that
the two vertices define a face of the obstacle in some cases). Two new possible
solution paths are then generated. One runs from the start to the first
intermediate subgoal to goal and the other from start to the second intermediate
subgoal to the goal. The corresponding line segments are then inspected for
obstacle intersections. The results of such inspections dictate actions analogous to

those required for the originally proposed path.

This method has several key advantages, the first of which is its conceptual
simplicity. The required algorithms are easily implemented and do not require
sophisticated techniques. Secondly. the method can utilize the straight-line
principle to generate only plausible solutions. Obstacles and paths that do not
intersect the generated (possible) solution paths and are thus far afield can be
ignored. Thirdly. the method allows the problem description to be developed
dynamically. The routes generated can be viewed as paths through a graph where
graph nodes are obstacle vertices and graph links represent clear (non-obstructed)
paths between obstacle vertices. The graph is created dynamically in that new

nodes are added to the graph only when required by a coilision (i.e., a path

46

N MR OR Ra a aS te e e e -"?\"""*.‘-'\‘\"'-""\ S

s P

W/
N 4

{
by

A%

&

AT AT AT

L et u o

intersection with an obstacle boundary). A final advantage of this method is due

-

-

O to the combined effects of the first three characteristics. The method provides a

solution relatively quickly because it avoids wasted computations.

..
This simple technique also has several distinct disadvantages. While :
modeling obstacles as rectangles allows the development of simple decision criteria $
for defining intermediate subgoals, it is a poor assumption to posit that every :
object in the physical environment can be adequately modeled by a rectangle.
(One could argue that calculus is based on a similar premise. A key difference in
this case is that a rectangle width can never reach zero as a limit and as rectangle ’:
width decreases, the number of obstacles to be considered grows accordingly. .:.
Such growth invalidates the simplicity and efficiency of the method.) A second,
and much more serious, deficiency associated with this simple technique is that it '.:.
% may yield non-optimal solutions. The method functions perfectly if only one o
obstacle is involved. However, when two or more obstacles are present in the -,:
environment, interacting subproblems can confound the technique. Figure 2 :S:
shows an instance where this anomaly occurs. 4
In Figure 2. the original straight line path from start (s) to goal (g) is ._
hypothesized by a plausible move generator. A collision on this path is detected .
and the interesting points of the obstacle are determined to be ol and 02. Then, 3
segments s-ol. ol-g, s-02 and 02-g are tested. Segments s-ol, ol-g and s-02 are
found to be obstacle free. Another collision involving interesting points 03 and o4 \
is detected on the proposed 02-g segment. The new segments 02-03, 03-g, 02-04 }'
and o4-g are all tested and determined to be obstacle free. Path lengths are then ;
ﬁ? computed and the s-ol-g path has the shortest length of all paths, so it is :
Nt -
w “ :
:
N

IR AN QUM DGO AR AORN N A0 TR N e I 0 o s, g = e S Es e e 1ol S N RGN

o 20 T WO W W W M, o W e WO Y, o Y M ardi M s

40,

35

30

28 .
'&
.l
N
20 \
Path Distances "
e
[!
1% (s,0l,g) path: 41.4107 “ig?
(s,02,04,g) path: 41.4111
4
(s,02,03,g) path: 42.066

10 3
(s,03,g) path: 41.167 i
(not checked) ;
'
5
\J
1
\
bhi
Y
o 20 25 30 ‘
;
i
)
Figure 2. Fallacy of Simple Methods q

o
'-.‘:x.:s .
48 e ;
Kt

}
S

W9

b
B e e A g e e e T

returned as the optimal solution. However, the segment s-03 is obstacle free.
Thus, the route s-03-g is legitimate and is ciearly shorter than the s-02-03-g route
that was used to determine optimality. It could easily be true that s-03-g is

shorter than the s-o0l-g) route that was selected as the optimal-cost solution path.

From this example, it is clear that the simple and intuitively appealing
localized-improvement approach may not yield optimal results. An additional
procedure to smooth out (i.e., remove unnecessary points) the routes must be
interposed between route finding and selecting the solution path if optimality is
desired. The smoothing operation can be very expensive, dependent upon path
length, because all points on the path, except adjacent points, have to be

inspected for possible elimination. Therefore, a path with n points would require
1=n—2
that Y ¢ point pairs be inspected (an O(nz) operation). Moreover, all paths

i=1
can be subjected to this procedure. Notice that in the example, the optimal path

is generated by smoothing out the greatest-distance path.

3. The VGraph Solution Technique

An alternative to the simple localized-improvement model invoives the
search of an explicit undirected graph and has been called the Visibility Graph or
VGraph model [Ref. 17]. Here, obstacles are modeled as convex polygons,
represented by listing the coordinates of each vertex. The coordinates of the start
and goal are also known. A graph is created such that each node in the graph
corresponds to the starting coordinates, the goal coordinates, or the coordinates of
an obstacle vertex. A link is included in the graph for each straight line segment

that can connect any two vertex coordinates (represented by graph nodes)

49

-

R L

A e o

" t’l'((n'l"..

a_n

¥ v

- - -y

without intersecting an obstacle. Once such a graph has been constructed,
standard graph search techniques such as Dijkstra's Algorithm or one of the A*
family can be applied to find an optimal solution. No smoothing operations are
ever required. The lower half of Figure 3 depicts a completed graph construction,
built from the associated environmental space description (i.e., the configuration

of obstacles in the working space of interest) shown in the top half of the figure.

The VGraph approach eliminates the difficulties associated with the simple
localized-improvement paradigm. Obstacles can be more realistically modeled as
convex polygons and truly optimal paths (in terms of the problem representation)
are provided without the use of expensive ancillary operations. Also note that the
straight-line principle is used in this method to determine membership in the link
set of the graph. However, there are also costs associated with the VGraph

method. The creation of the problem representation can require a large amount of
1=N-1
computation. If there are N nodes in the graph then ¥ i line segments must

be inspected for possible inclusion into the link set (an O(NZ) operation).
(However, this is an absolute upper bound on inspections. An intelligent
procedure would note that interior chords produced by two vertices of the same
obstacle need not be inspected. However, if obstacles are allowed to overlap, the
number of inspections required tends toward the upper bound.) Thus. unlike the
localized-improvement method. the VGraph method considers all obstacies in the
environment in that the graph is statically created before search begins by an
exhaustive search of all obstacles. In Figure 3 for example, all links associated

with obstacle A are extraneous. In a situation where path planning takes place

@

Goal -

Start (

;?a Obstacles Y
|

}] Goal g
I

|

|

Resulting
graph created W)
from links be-
tween obstacle]
vertices and

) obstacle edges

Figure 3. VGraph Obstacle Space and Graph

51

--..-v..’.' .‘.(‘u\‘v
\&J:ﬂj‘ 5 }A'_‘-_'A:!.’_'A‘.’f“‘ 3

Mo anam e a4

L an oa AR o o

over the same area many times, the costs of graph creation can be spread out and

thus made less important over time. However, such a situation may not always

prevail.

4. Free Space Characterization Methods

An approach that relies on the use of generalized cones [Ref. 20| developed
in connection with vision research has also been developed. Generalized cones
(also known as generalized cylinders) are normally used to represent the volume
and shape of three-dimensional objects. The cones are described by sweeping a
cross-sectional area (two-dimensional) along a curve in space called a spine. The
shape of the cross section is deformed by a predefined sweeping rule as it moves
along the spine [Ref. 21]. As a path-planning paradigm. the free space between
obstacles is described as a series of overlapping, two-dimensional cones. The cones
have straight spines and the cross sections are represented as line segments. This
explains the loss of one degree in dimensionality since line segments are used as
opposed to areal figures. The line segments (used in lieu of cross sections) are
positioned perpendicularly to the spine and the length of the left and right
portions of the segment are varied independently as sweepiné takes place. The
sweeping rule is a predefined piecewise-linear function created by measuring
distances to obstacle edges from the spine [Ref. 21] (see Figure 4). Any two
obstacle edges are candidates for creating free space defining cones. Essentially.
the requirements for two edges to define a cone are that they belong to different
obstacles and that they approximately face each other. (Obstacle edges face each
other when they lie approximately parallel and they have no other obstacle edges

separating them.} Once a complete set of cones has been formed, a graph is

52

-y n
s .
A-.f l.‘.'s

¢

ines

te cone sp

ica

d

in
Shaded areas are obstacles

Dashed lines

L s s b R R g g g AN el il ottty

INANANITE o 2 XL USSR s NN e 5

L e el e e LT

——— ~pom e - ..lll||._|ll|l‘

Figure 4. Generalized Cones of Free Space
53

constructed by using spine intersection information. The nodes in the graph

correspond to the coordinates of spine intersections. The graph link set is
composed of links between consecutive spine intersections. The graph is essentially
a Voronoi diagram [Ref. 14| of the environment space. A solution to the path-
planning problem is provided by conducting a search of the graph representing

this Voronoi diagram.

The cost of this algorithm can be high, primarily due to the graph
creation. If E is the number of obstacle edges, then the time complexity is, at

worst O(E‘), but may be as low as O(E'Ic2 Iog")

due to the similarities to the
Voronoi diagram [Ref. 21|. This free space characterization method is primarily
concerned with lessening the rotational problems (i.e., how to rotate an irregularly
shaped body so that it can "fit" between slightly separated obstacles) and the
"not too close" problem for a two-dimensional object (i.e., not a point) moving
through a two-dimensional space and thus has added complexity. However, it is
interesting in this analysis for several reasons. As usual, the method employs the
straight-line principle and attempts to establish a graph-theoretic basis to
facilitate the search for the optimal path. A new feature is that a free space
characterization is emphasized, not an obstacle space representation. Emphasis on
free space may be important for a general-case solution because it is the diversity
of these traversable areas that gives rise to much of the added complexity of the
problem. when compared to a binary-case representation. Also, characterization of

free space results in a smaller graph than that required by the VGraph method.

This method has the salient drawback that following spines does not produce

optimal routes.

..

5. The Potential-Fields Method

Another binary-case solution technique is called the potential-fields
approach [Ref. 22]. This technique is also concerned with planning for paths that
do not run too close to obstacles. Conceptually, obstacles are modeled as areas of
increased elevation, i.e., hills with sloping sides where the hilltop is the center of
the obstacle. The object to be moved can be regarded as a ball bearing that has
an initial location corresponding to the starting coordinates. In operation, the
entire environment space is "tilted" from the start to the goal so that the ball
bearing "rolls" in the desired direction. The path followed by the ball bearing is

provided as a solution.

This method has some salient deficiencies. The ball bearing can roll into a
box canyon and become trapped before arriving at the goal. In such an instance,
backtracking measures are necessary to restart the procedure. Also, a path that
requires going over a small rise near the start is avoided, even though it may lead

to the optimal solution path.

The potential-fields method employs a graph-theoretic basis in the form of
a regular grid. The stmighg-line principle is also brought to bear in the form of
gravity. Thus, key similarities are present when compared to the other methods.
In many ways, the method is similar to the wavefront-propagation technique
(discussed in Section ILF.2). The potential-fields method models a continuously

varying cost (i.e., elevation change) as discrete point costs in a lattice-like graph.

.........

i
1
04

PO e e e TR e AT e N T e T '..
T A o Lo T L B T W P N A N e TR,

6. Summary

There are other methods which have been developed to solve the binary- . :?\\.
case problem [Ref. 23.24,25,26,27,28,29,30]. Although differing in detail, each of
these can be classified as a version of one of the methods discussed above.

Important problem characteristics can be extracted from the examination of

solution techniques. Interacting subproblems can confound problem

VGraph method used an exhaustive search of a particular representation (the

visibility graph) to overcome the interaction problem.

' decomposition, as evinced by the simple localized-improvement method. The
’
A primary strategy is to find a graph-based problem representation, either
; by the characterization of obstacles or free space. Once such a representation has
[been established, well-founded graph search techniques can be applied to solve the
path-planning problem. However, the creation of an exhaustive graph can be Staan
computationally expensive. A dynamically created graph is more efficient (as in
the simple localized-improvement model) if interaction problems can be overcome.
A problem with the dynamic graphs of the simple localized-improvement method
is that only lo;:al information is used. This greedy method is insufficient to
support the requirement for global optimality. Finally, the straight-line principle
is crucial to the success of each method. Many of these observations are important
in developing solutions to the general-case weighted-region problem because of
shared characteristics. In fact, one solution method, known as the dynamic
programming, regular grid or wavefront-propagation method, has often been

applied to both versions of the weighted-region problem. We now examine

solution techniques appropriate for the general-case weighted-region problem.

s
o
o
Iy

56

[4 Ld LN LAY LY L L I UL R R I S AT L Pt U VAR S
O N N AN A et T A n 7 o n T a i T M AT AT r e At P S et e e T T T e L T T e T

F. SOLVING THE GENERAL PATH-PLANNING PROBLEM

@ 1. Introduction

The general-case weighted-region problem differs from the binary-case
ot version by the inclusion of cost ratings for the traversable areas. As the cost of
traversing one area can be quite different from another, a new parameter is

introduced into the cost computation for each possible path. In the binary-case

Py

:' problem, the cost of traversing every route is computed by the simple formula
s "

r Cost=7Y,d, where there are n line segments in the complete path and d; is the
b i=1

0

¥ Euclidean distance along the ith line segment. In the generai-case problem, the
a

n

o formula becomes Cost=Y) c.d. where n and d; have the same meaning. The new
Y

t 1=1

14 @ parameter, ¢, is the cost per unit length of the ith line segment. Also, the number
of line segments is typically increased. As an example. a path crossing two

X different cost areas consecutively is represented by two line segments. Only one

line segment is required to reflect the same situation in a binary-case

representation. The addition of cost information has the effect of invalidating the

~
b straight-line principle so prevalent in the binary-case solution techniques.
»
¥
h)

A second major difference between general-case and binary-case instances

of the weighted-region problem is based the opportunity to perform problem

A“
€
:‘ decomposition. In the binary-case version, decomposition can be done because
;1' the optimal-cost start-to-goal path must either be a straight line between them or
g
K a path that includes obstacle region vertices as intermediate turn points. Thus, it

is simple to construct a graph representation of the problem, as done in the

B @
i .. []
o) ' 57

AL I W,

VGraph technique. In general-case instances of the problem, decomposition into
subproblems is very difficult to achieve. There are some special cases, (see [Ref.
31] for example) where a graph similar to that used in the VGraph technique can
be constructed. However, in general, it is not possible to specify a finite set of
points that must include all turn points on an optimal-cost start-to-goal solution
path. Because of this, the general-case instance of the weighted-region problem is
much more difficult to solve. Thus, there has not been as much progress in solving
the general-case weighted-region problem as we have seen for the binary-case
version. The first attempts to solve the general-case problem were extensions of an

exhaustive search method used to solve strict binary-case representations.

2. Wavefront Propagation

Wavefront propagation is the most commonly used method to solve the
weighted-region problem. The method’s popularity is justified by its conceptual
simplicity and flexibility. The technique can be applied to both binary-case and
general-case instances of the weighted-region problem without modification in
either implementation or computational complexity. (Of course, the problem

representation must reflect the task at hand.)

Wavefront propagation can be viewed as an extension of the VGraph
philosophy in that the complexity of solving the problem is primarily borne by
some component that creates the specific graph-based problem representation.
Given an appropriate representation, a standard weak method of search is applied
to yield an optimal-cost solution path. When using wavefront propagation, the
graph-based problem representation is actually a lattice structure, as described

below.

58

ClE)

) PP] ; ’ ; T T T T L T A TR
N UNAAA ‘.:‘l.q’t’.&“ y 1 B, 0% b LMt by by T, . ') K > o m N

a. Basic Wavefront Propagation

Recall that the VGraph technique relies on an exhaustive graph
consisting of a node for each obstacle vertex and a link for each pair of vertices
that can be connected by an unobstructed line segment (i.e., pass a "line of sight"
test). This structure is appropriate for binary-case problems because of the
straight-line principle. However, the same graph structure is not valid for the
general-case weighted-region problem because region vertices do not play the same
all-important role. Turn points on the optimal path can occur anywhere.
However, if the graph consists of a node for every representable point in the
environment, then the graph must include a node for every representable turn
point. The resolution of the problem representation plays an important role here.
The number of discrete points used to model the continuous environment specifies
the resolution of the representation. The nodes are uniformly spaced and
resolution determines the intra-node spacing. This is the basic premise of the

wavefront strategy; apply a standard search strategy to a finite exhaustive graph.

Having established the basic premise, the wavefront strategy departs
from the VGraph model. Instead of creating an explicit link between each two
obstacle vertices having line of sight, the wavefront graph implicitly includes a
link between each node and all of its physically adjacent neighbors. So, instead of
representing long distance. unobstructed path segments, the wavefront graph links
represent small movements that could be made from each discrete point in the
environment modeled by a graph node. Thus, there is a regular pattern of links
between uniformly placed nodes. The result is as if a grid (or lattice structure) has

been superimposed on the environment. The graph is made applicable to the

59

- o
LT

general-case problem by associating a variable cost with each link, reflecting the
cost to traverse space in the environment represented by the link. (For a binary %
problem, the cost is constant.) Nodes that lie in obstacle areas have conceptually

infinite-cost links.

Again, resolution plays an important role. A determination must be

made as to how many physically adjacent nodes should be recognized as

-

-
.~

neighboring since this determines the branching factor at each node. The more

links in the graph, the more time required to search the graph and the more space

required to store the graph. Specifying eight neighbors is usually judged as the

P

point of diminishing returns between time and space required to reach a solution

"and the accuracy of the solution. To understand this, consider the operation of

-
-

- -
-

the strategy.

Wavefront propagation applies omnidirectional, uniform-cost search (as @
defined in Section ﬁ.B.l) to a directed graph representing the environment. It is
essentially a dynamic programming solution to the problem. Recall that uniform-
cost search finds the optimal path to each node in the graph that can be reached
I before the solution is found. This is the dynamic programming principle of solving
Y all subproblems in order to solve the overall problem. In a physical analogy, the
" wavefront-propagation process is akin to dropping a pebble into a calm body of
water and observing the propagation of the resulting wavefront. When the
wavefront touches the goal, a solution path can be retrieved by tracing gradients
i to "snapshots" of the wavefront back to its origin (which corresponds to the start
' location). Implementations using uniform-cost search reduce the gradient-tracing

requirement to referencing backpointers set as the search progressed.

[y A
o NN
L] A

60

- .

Y

*
e DAEMOMOROROAY) D W) 0 ' ‘)
S A T e e T T e e S Y i e T M i

< - " p" - "‘\\
NI U Ko Q'.lt"" a !. " X '. o

Resolution is important to the accuracy of the solution paths reported
by wavefront methods. A true wavefront (as in the pebble and water analogy)
would change its position along a continuum. Implementations of the wavefront-
propagation algorithm model this change of position as a series of discrete points
(nodes in a graph). Obviously, the number of nodes in the graph helps determine
the accuracy of the solution. Thus, the satisficing nature of wavefront propagation
becomes apparent; a simplified problem representation is used to reduce the
amount of search required to arrive at a "satisfactory" solution path. In general,
however, the weighted-region problem is a semi-optimizing task because, in most
cases, the true optimal path can only be described as two-tuples of real numbers
indicating turn points of a path in the Cartesian plane. The exact real numbers
cannot, in general, be represented on a finite-precision machine. Thus. because the
task is semi-optimizing, the problem representation only needs to provide a
resolution that ensures an acceptable level of error. Often, the choice is made to
equate a screen pixel to a node. When a map is displayed on a computer graphics
screen, the pixel is the highest possible unit of resolution. Thus, wavefront-
propagation methods are sometimes referred to as pizel planners. The pixel
resolution allows the satisficing nature of wavefront propagation to approximate,

as closely as possible, the semi-optimizing character of the weighted-region

problem.

The number of nodes in the graph is essentially a localized resolution
issue. The number of links (per node) in the graph has a more global effect on
solution accuracy in that the branching [actor at each node determines the

physical pattern of the search. As a ~implifying assumption for illustrative

61

'} | b, o« S SN N 3
TV e By c'-:"‘-‘,-“\:

-

l

R ARAAAS

e

W LN o e M o DA S M O o LA SOt P W

vvvvv

purposes, suppose that the start is placed at the origin of a two-dimensional

ol

coordinate system, that the cost of traversing links is constant, and that no ‘%y’
obstacles are present. Then, in a perfect situation where there is a link between e
| each two nodes having line of sight (a conceptually infinite branching factor at
each node), a uniform-cost search expands in a circular pattern (centered at the
start). Constraining the number of allowable links modifies the search pattern by
introducing approximations. That is, the circular shape is approximated by a
(linearly sided) polygon inscribed in the circle. The polygon vertices lie exactly on
the circle and are determined by sequences of homogeneous links (links that do
not change direction). Thus, the number of polygon vertices corresponds exactly

to the number of links allowed at each node. Between each polygon vertex, the

circular shape is approximated by a chord.

Suppose that the problem is as described above and that the search I
8.

relies on a four-way connected graph (i.e., a branching factor of 4 at each node)

where each node has two vertical and two horizontal outgoing links. Then, the
pattern of search (node expansion) during wavefront propagation assumes the

shape of a square that has vertices on the x and y axis, as in Figure 3. The

accuracy of a solution based on this model is worst where the chord is farthest
from the circumscribing circle. This occurs on headings that are multiples of 45
degrees from the origin. For these points. uniform-cost search vields a solution
path having cost C' when the true straight-line path has cost TC, the Euclidean
distance of the path multiplied by the appropriate cost factor. The error in the
solution can be expressed as a ratio of the actual cost to the computed cost.

TC/C=co8(45)=0.707

62

« B9, AY,

true wavefront
location

Path with
greatest error

error

approximation of
wavefront location

Figure 5. Wavefront Search Pattern

T .t'

Thus, there is a potential for approximately 30% error in the solution cost.
Increasing the connectivity of the graph so that diagonal links are also represented
results in an eight-way connected graph. Again, the greatest error occurs at
midpoints of chords, now located on headings that are multiples of 22.5 degrees
from the origin. This representation limits the maximum error of path cost to
approximately 8% and has become the practical standard of acceptable error for

wavefront-propagation implementations.

The time complexity of wavefront propagation is best expressed in
terms of the number of nodes expanded during the search. In the worst case, the
search expands all nodes within a circle of radius equal to the cost of the solution
path. The area of a circle is 7rr2, so the complexity can be loosely tied to an O(nz)
bound. Relying on this bound, it is clear that there is a direct tradeoff between
the time and space required to solve the problem and the accuracy of the solution.
The pre&etermined resolution fixes this tradeoff. Note that increasing the
resolution by a factor of X increases the number of nodes in the graph by X2 As
an example, to represent a 10 square mile area using a resolution of 1/10 mile, 100
nodes required. Increasing the resolution by a factor of 10 to achieve a resolution

of 1/100 mile necessitates 10,000 nodes.
b. A* Search and Wavefront Propagation

Work reported in [Ref. 32,33] has identified problems in the wavefront
strategy and implemented partial solutions for their effects. Digital bias is an
effect that is evident in wavefront solutions and is directly attributable to the
discrete graph representation of a continuous environment. Specifically, wavefront

solutions use connected series of line segments to model straight line paths, i.e., a

64

QOO
m.._’o.‘.'ﬁl.'i..

n
il

i

DODGOOL i
IGACSINC U

"stair-step" approximation to the line. This modeling anomaly means that there is
a set of optimal paths. all having the same digital cost. between almost every two
points that can be named (the exception occurs when the optimal path consists of
homogeneous links, as defined above). As an example, Figure 6 depicts three
paths across a uniform-cost region that all have the same number of vertical and
horizontal links and thus have the same digital cost. Clearly, the middle path in

Figure 6 best models any single line segment.

The wavefront-propagation techniques reported in [Ref. 32,33] include
heuristics that reward "corner points" (i.e., points where the path changes
heading), thus favoring paths with more turn points. This strategy prefers the
middle path of Figure 6 based on this heuristic. It was also noticed that using a
lower-bound cost evaluation function, such as that required by A* search, favors
the desired paths. When Euclidean distance assumed to be traveled at optimal
cost is used as the lower-bound component. the composite value (i.e., the f(N)
rating) is lowest for those paths closest to a line between two points. These
heuristics do not totally overcome the problems of digital bias. At first thought, it
seems that A* evaluations would defeat.the problem. However. recall that the
lower-bound function estimates remaining distance to the global goal, not to
intermediate turn points along a path. Newer work has used simulated annealing
[Ref. 34| as an optimization procedure to reduce the stair-step appearance of

solution paths [Ref. 35|.

Some work reported in [Ref. 32,33] also centered on using A * as a
search strategy and performance improvements (in time) ranging up to twenty

times are cited. It should be noted however, that this work is intended to support

65

L4

....... C 0

Y / "4 L LAY 2N LI R PR P o S T "y Lo
‘.0. 'u"'."h"\"u"ﬁ"‘."ﬁ |~Q 1.0... LR LA -~ WV .' N ‘N N AR "y, e .‘- o, -

-
e

o

Note that the paths have been offset vertically by two
units (for clarity). All paths begin and end at the same
locations and have equal lengths.

covopn .o -l

ccchordancd

ccopocflocpocll
)
N
»
.
-l
[]
’
0

Figure 6. Digitally Biased Paths of Equal Length

O N Y T o7 T A > N AT AR e g e 't N e e e A AN BN N AN LN I N

@

I

a specific wheeled autonomous vehicle, the DARPA sponsored autonomous land

vehicle (ALV) built by Martin Marietta [Ref 36]. The ALV is best suited to
roadway travel and thus greatly prefers that media over all other terrain features.
The link costs in the graph subjected to A, * search correctly reflect this
preference. As a result, the A ‘* search generally resembles a standard wavefront
until a roadway is reached. The search then proceeds along the road network until
the goal is found. Off-road shortcuts are not considered. Clearly, the A _*
technique may not offer the same time improvements when the agent for which
the path is being planned does not greatly favor one medium for travel over all

others.
c. Wavefronts Exploiting Parallelism

There are several implementations of wavefront propagation that
exploit the advantages of parallel-architecture machines [Ref. 29,36]. The most
prominent development is the ADS system [Ref. 36|, again intended to support
the DARPA ALV [Ref. 36]. The work reported in [Ref. 36] refers to the strategy
as a dynamic programming solution, which, as has been noted, is a correct

characterization of the wavefront-propagation strategy.

Discussing the ADS system requires introduction of some new
terminology. The gra;h used by a wavefront-propagation strategy can also be
thought of as a cost map divided into a regular structure of small cells. Recall
that the wavefront graph includes uniformly spaced nodes. Suppose that the
nodes are drawn on paper so that their spatial arrangement reflects the physical

displacement of the real world terrain points that they represent. Drawiag in the

67

.....

N

LTSI
A A N

o v s . A A AR N T AT e T T L T UL SR JE SO RS
'i.!'n.:'i‘ WV, .l.,‘ (X |'I‘Q. "\ N 4 R NN w 5 \‘-A.'f ': AR Al A T e ’ ny

[e R0

ARy

" DRy gt

'; 't' 7; ll" ‘. %

-

P rAdr i g o
A L X

i

R

i NI LR
25 v

arcs of a four-way connected graph results in a regular grid. This grid is
equivalent to a set of regular cells. Instead of assigning costs to links, assign costs

to each cell, reflecting the cost to move through the cell (in any direction).

The ADS system utilizes a conceptual structure similar to the map
made of many small cells as described above. In addition to the stored cost for
passing through each cell, they also use a Figure of Merit (FOM), an accumulated
cost to reach a cell from a known starting point. Initially, the cell containing the
goal point has a FOM of 0 and all other cells have infinite FOM’s. The algorithm
operates by selecting a cell and trying to replace the FOM’s of neighboring cells,
based on the FOM of the selected cell. A FOM in a neighbor cell is replaced if
the FOM of the selected cell plus the cost to move into the neighbor cell is less

than the FOM already stored in the neighbor cell.

Up to this point, the ADS implementation is essentially the wavefront-
propagation technique based on a slightly different conceptual structure. However,
note that in a graph having constant link costs, uniform-cost search is breadth-
first search. In the ADS system, a depth-first component in added. The
algorithm "sweeps" across the map in a specific direction (i.e., left to right, top to
bottom, etc.). Each time a cell is selected, its eight neighbors are examined for
possible FOM replacement. After the eight neighbors are updated, the one
neighbor that corresponds to movement in the same direction (i.e.. the right
neighbor in a left to right sweep) becomes the new selected cell and its eight
neighbors are examined for FOM update. This process begins at one edge of the
map and continues moving in the selected direction until the opposite edge of the

map is encountered. Once every row (or column, depending on the direction of

68

L, " -, e
-J

LA L TP I N IR I S I R T a® g
TV VL) A, 0 D I s I v S R A S Ryl

......

.
R

]

sweep) has been swept across, the algorithm names a new starting edge and a new
direction for sweeping. The map is swept in this manner, attempting to change

FOM values on each sweep, until no cell changes its FOM value.

The ADS system exploits parallelism by assigning different processors
to different "swatches" of the map. To illustrate, the ADS system uses maps that
are 512 cells wide by 512 cells high. Suppose that the direction of sweep is left to
right and that two processors are available to conduct the search. Each processor
is assigned a 256 high by 512 wide "swatch" of the map to examine. FOM
propagation occurs independently within the two swatches. Results reported by
ADS state that the FOM values stabilize after 20 to 30 sweeps. ADS has
published some timing resuits for the algorithm. Solving a problem on a
(uniprocessor) DEC VAX 11/780 required 10 minutes. Solving the same problem
on a Butterfly machine (see [Ref. 36]) with 40 processing units (computational

nodes) required 1.05 minutes.

There is a side effect that arises from starting the propagation at the
goal instead of the start. The ADS dynamic programming method yields the
optimal path to the goal from every cell on map. If an agent strays off-course
during the execution of a planned route and the goal has not changed. the agent
need only locate itself in the correct map cell and retrieve the new optimal path.

No further computations are required.

An attractive alternative to the ADS parallel wavefront-propagation
implementation could be based on machines having mesh-connected architectures.
such as the connection machine [Ref. 37 . The lattice structure problem

representation used in wavefront propagation mirrors the physical structure of

69

L T PR W ST Y g .« 0t - DI -
A T S T A AT AT o T VT VL AT A 8 5,

Ll LA

-
.
-
)
]
p

such machines. One computational element could be assigned to each node in the

lattice and the physical connections in the machine could model links of the
lattice. Theoretically, this organization would establish an O(n) time bound for
the algorithm (where there are n nodes in a solution path). Also, the wavefront-
propagation technique has been implemented on neural-network machines in a
similar manner, although no specific time requirements have been cited in this

work [Ref. 38].
d. Linear Programming

It seems appropriate to mention the fact that four well-known
problem-solving techniques have been mentioned. Generate-and-test was involved
in the first binary-case solution method examined. In connection with the same
examination of the localized-improvement technique, difficulties with. interacting
subproblems were discovered. This characteristic has serious effects on divide-
and- conquer strategies. Many diséussions have mentioned greedy techniques, such
as the A* algorithm. The fallibility of total reliance on local information has been
shown (in connection with the localized-improvement technique for example).
Wavefront propagation falls into the fourth classical category of dynamie
programming models since it solves all subproblems as a means to securing the
single desired solution to the overall problem. For completeness, we note that the
classic technique of linear programming used in operations research can also be
applied to the weighted-region problem. Linear programming is discussed in

connection with the wavefront-propagation models because both techniques rely

on the same problem representation.

< L,

ALY LWL [DT [W af - B Y Ayt - g n

"
.l
a!
l‘
The graph used by wavefront-propagation techniques can also be n
"
@ viewed as a network. In this context, the weighted-region problem becomes the E:
€
Al
classic operations research problem of finding an optimal path by solving a
1l
minimum-flow through a network problem. In the minimum-flow problem, the ,:
(M
\
start is the source and the goal is the sink. Link costs are the same. A single unit o‘
of flow is injected at the source and balance equations are used to force the flow '
3
out of the sink. Assume there are n nodes in the network and let the cost along ‘:
.(
\)
the link from node, to node i be denoted 7 Assume that the source is node, and)
the goal is nodey. Then, the mathematical formulation is:)
9 9 "
. . .]
Minimize}, 1 €;i%i; ::
i=1j=1
Subject to
g g ")
050 E Zim~ 2 znlzl y
m=1 n=]
g g
) Zym™)y zng=—1
m=] n=1 N
g-1 g-1 :
Y Tim— X 2,y=0 %
m=2 n=2 “
Y
z'.je[0,1]fori,j=2,3,...,g—1 '
]
The constraints restricting z; to be either zero or one are used to
indicate those arcs on the minimal-cost path. The network flow formulation can ¢
.0
be transformed into a simple (non-integer) linear programming formulation since -
.i
the flow conservation equations require the problem to be unimodular. Thus, the ::
constraint z,.jc[O,l] can be simplified to z,.>0 and the standard simplex algorithm A
L}
t
i |
71 ;
.
%

D A L AR LA e At . o e AT A A D HN ST A N NS S e ey

can be applied. Rewriting the simplified formulation yields:

9 9
Minimize Y Y €%,
i=lj=1
Subject to
g g
E Zim~ 2 zul=l
m=] n=1
g g
z Zom ™ 2 zng=—1
m=1 n=1
g-1 g-1
X Zim™ z za'g=0

m=2 n=2

z; ,-?0
This formulation has been included only for completeness of discussion.

Since the weighted-region problem has only positive costs associated with each

link, it falls into a special category of minimal-cost network flow problems. Thus é‘%’ﬁs
the linear programming formulation is impractical. Least-cost path problems

with non-negative link costs are more efficiently solved by other methods, notably

the uniform-cost strategy employed by wavefront-propagation techniques [Ref.

13].

3. The Calculus of Variations Method

After the Second World War, significant importance was given to the
problem of computing optimal trajectories for missile flight. Later, in the 1960’s.
the optimal routing of ocean-going ships was studied in a similar fashion. Both of
these problems are similar to the general-case weighted-region problem. All three

posit a starting location, a goal location, and the existence of forces that act

72 @

n“;l;‘?'." O ‘?Ot‘:ca‘t“' Yot

R Y

against the movement of an object en-route. The forces are heterogeneous. A
calculus of variations problem, formally known as the problem of Bolza, was
successfully solved in the missile trajectory and ship-routing domains.
Conceptually, the method operates by proposing an initial path from the start to
the goal and allowing the prevalent forces along the route (the costs from the
area-cost map in the weighted-region problem) to warp this path until it becomes
optimal [Ref. 39).

This method is presented here because it has been used to solve problems
similar to the general-case weighted-region problem without reliance on reduction
to a graph theoretic basis. Instead, a complex and very powerful mathematical
technique has been applied. (Calculus of variations develops a calculus for
functions of functions. An introduction to the subject area can be found in [Ref
4]. A very brief overview is contained in [Ref. 40].) The calculus of variations
approach is not totally a.ppropriafe for the weighted-region problem for several
reasons. First, to avoid convergence on a local minimum, the method requires a
reasonable approximation to the optimal solution as input to be used for an initial
path. While this is relatively easy in the missile trajectory and ship routing
domain, obtaining a fairly close approximation in the land route-planning domain
requires effort tantamount to fully solving the problem. Without a given,
reasonable initial solution, the calculus of variations method may never converge.
Secondly, the method requires continuous derivatives of the active forces in the
environment space. These cannot be guaranteed in the weighted-region problem.
Also, solving the Bolza problem with the calculus of variations method requires a

discrete representation of the environment, in that vectors of forces must be

73

T-—-'——'—_————"'_ .

associated with discrete portions of the environment. Associated difficulties have
been presented in connection with the wavefront method. The calculus-based @
method is not guaranteed to find a global minimum. Less expensive techniques
can provide local minima for the weighted-region problem. The final difficulty
associated with the calculus of variations model involves its computational costs.
Recall that a primary difficulty of the wavefront method is its wastefulness and
computational excess. It seems that the mathematical complexity of the calculus
of variations model poses similar problems in terms of computational cost. There
should be a simpler method to solve the weighted-region problem, based on the

structure of the problem itself.

4. The Homogeneous Regions Model

A method for reducing the size of the graph used as the problem
representation, which we term the homogeneous regions method, has been c{,},‘}
reported in [Ref. 41). A key assumption of this method is that the physical terrain
can be described as a finite number of large "patches", each of which exhibits
uniform traversability characteristics. Archetypal "patches" are areas such as
swamps or open fields. This organization is similar to that described in connection
with the area-cost map of Section I.B. However, in [Ref. 41] these areas are
assumed to be convex and centrally-symmetric so that the distance from the
center of the representing polygon to any point on the polygon boundary is
approximately equal. Given these characteristics, a graph is created where the

nodes are patch center points and links connect all physically adjacent nodes. The

cost of traversing a link is determined by finding the proportion of the link that

lies in each associated patch and multiplying through by an appropriate fraction

of each patch cost figure [Ref. 41].

There are several obvious difficulties with this method. Most real-world
terrain does not seem to fit well with characterization by centrally-symmetric
polygons. Linear features, such as roads and rivers, are prime examples of objects
that are not easily characterized by centrally-symmetric polygons. Further,
moving from area center to area center can produce errors which are difficult to
estimate and thus the method, except in very rare cases, does not produce optimal
paths. The method also espouses a beam-search strategy [Ref. 5. Such a search
strategy omits from consideration any feature that lies outside the selected beam
width. No basis is provided for this assumption, nor is such a basis readily
apparent. Thus, this method is truly a satisficing technique. A greatly simplified
problem representation is used to reduce the search effort, resulting in solution

paths that may not be optimal.

The important aspect of the homogeneous regions method is evident in its
title. An effort is made to avoid the exhaustive uniform-grid representation of the
environment by explicitly recognizing the fact that homogeneous-cost regions do
occur in the real world. Although the proposed usage of this observation does not

seem feasible, an important contribution has been made by stating the premise.

5. The Continuous Dijkstra Technique

In his PhD. dissertation, Joseph S. B. Mitchell develops an elegant method

for solving the weighted-region problem [Ref. 42]. (Note that the work reported

in [Ref. 42] was completed independently and simultaneously with the work

. P LR A M a9 DN AP L)

W

Pl

I §.

PRIl AV

reported in this thesis.) Mitchell’s Continuous Dijkstra Algorithm (CDA) can be
applied to three-dimensional binary-case or two-dimensional general-case
instances of the weighted-region problem. In the latter instance, CDA relies on
two key concepts. The first is that a homogeneous-cost region representation of
the problem (similar to the area-cost map defined in Section I.B) is more
appropriate than a graph consisting of uniformly spaced nodes and predetermined
links. The second is that Snell’s law can be borrowed from optics and applied as a
basic guiding principle for local optimization in the general problem. Snell’s law
plays a fundamental role, similar to that played by the straight-line principle in

binary-case problems.

Snell’s law is used in ray optics to characterize the refracfion path that a
light ray follows when projected through optical media of different refractive
indices. The relation expressed by Snell’s law is possible because Fermat’s
Principle states that the optical path length along a light ray from some initial
point to some terminal point must be an extremum [Ref. 43]. Without providing
all the details necessary to adapt Snell’s law to the weighted-region problem
(which is the subject of Chapter IV), we note that there is a similarity between
the two problem domains. Equating homogeneous-cost regions to optical media,
the cost of passing through a region to refractive indices, and minimum-time
paths to minimum-cost paths makes the similarity evident. Specifically, suppose
that there is a flat sided, glass container partially filled with water and that a
pencil is suspended in the container so that it is partially under water. Looking at
the pencil through the glass, it appears that the pencil is "broken" at the point

where it enters the water. Snell’s law explains this appearance by stating that the

76

N T T R s T Y A e el

&

paths followed by light rays "bend" every time they intersect a media allowing a

different speed of light. Air and water are the media in this example.

The amount of "bend" is determined locally by two angles. §, and 8,, and

two indices of refraction, r, and r,. Snell’s law states that the relation
r.8in(f.) = r,sin(d,)

must hold at each bend point. (Snell’s law is illustrated several times in this
thesis. See Figure 55 in Section IV.C for an example where reciprocals of
refractive indices are used.) Let B denote the boundary between the two media
having different refraction indices and let N denote a normal to B through the
point where the ray of light strikes B. 0, is the angle between the light ray and ¥

in the medium with index r, and 4, is the angle between the light ray and V in

1
the other medium.

Reliance on Snell’s law is intuitively appealing for the weighted-region
problem. Suppose that point P, is in a low-cost region and Py is in a high-cost
region. The optimal path between the two points must be some perturbation (i.e.,
warping) of the straight line between them that trades increased distance in the
low-cost region for decreased distance in the high-cost region. If B is the boundary
between the two regions, the distance tradeoff is achieved by "bending" the path
towards a normal to B in the high-cost region and away from the normal in the
low-cost region. In Chapter IV. we prove the applicability of Snell’s law to the

weighted-region problem.

The first requirement for using CDA is that each homogeneous-cost region

must be triangularized: each polygon defining a region must be broken up into a

77

o ™
6 N S T T R Syt s B A L A S SRS

«* ., N
".a DS AR W

- (-
oo ATt S

XA AY,

set of spatially disjoint triangles. Given the triangularization and a starting point,

the CDA applies Dijkstra’s algorithm (the uniform-cost strategy) and Snell’s law
to create a planar subdivision of the representation. The subdivision stores
information so that finding the optimal path from the start to any point on a

triangle boundary requires little more than indexing the correct answer.

Greatly oversimplifying, CDA uses Snell’s law to create disjoint "intervals
of optimality" on triangle boundaries that are characterized by "wedges" of
minimal-cost paths from the start to that boundary. Snell’s law can be used to
find the single minimum-cost path within a wedge. This cost is used in place of
the (known) node-to-node accrued cost required to execute Dijkstra’s algorithm.
That is, the cost is used to define minimum-cost wedges (in place of paths) from
the start to intervals of optimality (on triangle boundaries) that are progressively
more costly (conceptually, farther away) to reach. Relying on the dynamic
programming flavor of Dijkstra’s algorithm, the algorithm is continued until the
minimum-cost wedge for each interval of optimality on every boundary in the
problem representation has been found. Thus, at the conclusion of the algorithm,
wedges containing the optimal path from the start to every point on all triangle
boundaries have been characterized and stored. Given a specific goal, the optimal

path can be found by iteratively solving Snell’s law within the correct wedge.

The work reported in [Ref. 42| marks a large conceptual advance over
other techniques applied to the weighted-region problem and deserves a fuller
explanation than has been provided. We avoid discussion in greater detail for two
reasons. First, many of the basic principles used in the CDA are also fundamental

to the solution presented in Chapters IV and V of this work and there is no need

78

‘e ".:s
/7

R
-

*e t '+
.

’.

T i o T R A R P A e A A N W A N S N N N AT AT L T T A

to discuss the same issues more than once. Secondly, the CDA was developed
from within the operations research community and is thus primarily oriented
towards establishing a firm mathematical foundation. A principal contribution of
the work in [Ref. 42] is the establishment of worst-case time and space bounds for
the CDA. The algorithm has time complexity O(nTL) and space complexity
O(ns) where n is the number of boundaries in the triangularization and L relates
to precision. To achieve these bounds, the CDA is not constructed for optimal
time and space performance in the average case. [Ref. 42] states that some
implementation choices were based solely on the need to establish worst-case
order classes. The procedure that iteratively solves a given Snell’s-law problem is

a primary example.

Clearly, establishing a firm mathematical foundation is an important
contribution. This having been established, we focus on improving the average-
case performance of a Snell’s-law-directed solution to the weighted-region
problem. There are differences caused by the two approaches. Note that CDA
relies on an uninformed strategy, the dynamic programming paradigm as
embodied by Dijkstra’s algorithm. Chapter V discusses a solution based on an
informed strategy, A* search. Although worst-case performance is more difficult to
predict, A* search normally performs better than does uniform-cost search (i.e.,
Dijkstra’s algorithm). Recall from Table 4 that A° behavior degenerates to
uniform-cost search in the absence of heuristic information (i.e.. when the lower-
bound evaluation = 0). This example also evinces the importance of heuristics
and pruning criteria to the methods described in Chapter V. Thus, for these

reasons, we prefer to discuss fundamental issues in an appropriate context.

79

ot

L L L N i o
RN NSO I VAT W N

-
N

P

2y 8

a5 oy v TR

-

[P

L]

.
»
n:
)
Y
8

6. Summary

The general-case weighted-region problem can be solved, although the
Snell’s-law-based method used in the CDA is the only technique that provides a
high degree of solution path accuracy. The wavefront-propagation method relies
on a finite, exhaustive graph while Snell’s-law-based methods utilize dynamic
graphs. The more accurate solution paths generated by the Snell’s-law-based
method do not suffer from digital bias. The order classes of the Snell’s-law-based
and lattice-based methods are fundamentally different and the average-case

performance of both methods can be improved.

G. SUMMARY

From the previous discussions, we have seen that a solution technique for the
general-case weighted-region problem will have several key properties. First, there
must be provisions to account for the interaction of subproblems because failure
to do so leads to non-optimal solutions such as those provided by the simple
localized-improvement model. Specific domain knowledge can been employed to
prevent these difficulties as is the case in the VGraph model. Here. knowledge
that, in the binary-case, turn points on the optimal path must coincide with
obstacle vertices leads to the exhaustive decomposition of the probiem into a
graph of obstacle vertices which can be intelligently searched. Such iecomposition
18 possible in the binarv-case (ue o the cnain of impucations:

Straight-Line implies Shortest-Distance implies Least-Cost

We have seen that the verity of such an implication rests on a uniform-cost being

associated with all traversable areas. This uniform-cost premise 1« 10t applicaty.
80
EROMERAMARM " S ADAANA A PPt 1 0 A O Ca ' o Oty T @y s Jvqr e T am X0 a0 e T N

CN RN
P A T T e

in the general-case weighted-region problem. Thus, the analogous problem

decomposition for the non-binary case leads 7o the imposition of a uniform lattice
structure as in the wavefront-propagation technique. Again, an intelligent graph
search can be conducted to find an optimal solution. The salient difference is that
an unintelligent problem representation limits the accuracy of the search strategy
and leads to problems of combinatorial explosion, accumulation of error, and a
multiplicity of solutions which appear to represent equal-cost solution paths in the
physical environment because they all have the same (digital) cost in the
representation. The homogeneous regions approach attempted to establish a more
intelligent problem representation by grouping similar points together to form
regions. However, this "echnique aiso fails ro accurately solve the general-case
weighted-region problem due to poor representational robustness (not all physical
world features can be adequately modeled) and the lack of an appropriate
straight-line hvpothesis to guide search (moving from region center to region
center 1s inadequate ') characterize optimal-cost solution paths). Examination of
the binary-case techniques also indicated that a dynamically created graph can
vad ‘o zreater oHeency Oy oavonding wastefui computations when rhe cost of
graph creation cannot be amortized). The Continuous Dijkstra Algorithm
combined these last observations. proposing Snell’s law as an underlying principle
or che eneras oromem Here snetl’s Jaw aets as ¢ ojocal optimality criterion.

The omat-ake panmng ~vstems chat ve gave discussed exhibit several
principies They make use of both domain knowledge and procedural knowledge.

In the weighted-region probiem. these tvpes of knowledge correspond to

topographicar knowiedge ana knowledge of agent capaoniiities (the agent that wiil

81

e e MR AS."."2 » LA LA R F O s vty rwl R R RS ELS .

atatataTMEERA AL S PR AN,

- .Te" 2 & ¢ O W WER C."."."

e« o t_a

P A M. & A A e e A v_"_".'n % B MEm %_e

< X’.—m’:‘.\‘:.(“m{;f ' A_\.L'.'L_'.'A.fle}L} A“‘A_P:;‘_é:.l‘:{l

execute the planned solution path). Human-like planning also has an

opportunistic element. Although completing muitiple tasks at one time is not a
component of the weighted-region problem, one can view special cases of terrain
features as presenting opportunities for problem decomposition. We have used the
example of a bridge as presenting such an opportunity. This concept generalizes
to the appearance of a corridor through an otherwise impenetrable obstacle. A
simple example is a door in a building. A more important example is the
occurrence of a single road through a densely wooded and treacherous mountain
area. A suitable solution technique for the weighted-region problem must be able
to achieve opportunistic decomposition by recognizing similar situations. Another
useful aspect of human-like reasoning is that it is mulitidirectional. Moreover.
directionality is intelligently specified. @ The wavefront technique is
multidirectional, however, omnidirectional search is not an intelligent strategy.
Bidirectional search has often been cited as a good strategy due to its limiting

properties [Ref. 2,5,16].

The wavefront technique would benefit from bidirectional search in combating
combinatorial explosion. The number of nodes examined in this technique is
roughly proportional to the area of a circle describing the wave boundary. The
area of a circle is 7r’. If waves were propagated from both the start and goal, the
sum of their final radii would be approximately equal to the final radius of a
single wavefront generated from the start. We know that az*b:-\.(a*b)2 by the

amount 2ab. Thus, combinatorial explosion can be somewhat abated by a simple

bidirectional search.

#D

-

In summary, a suitable solution method for the general-case weighted-region
problem could exhibit several properties. These include the use of a basic guiding
principle for search (such as Snell's law) that serves as a local optimality criterion.
domain knowledge, capability knowledge (knowledge about the abilities of the
agent that must execute the planned path), multidirectional (at least
bidirectional) and informed search, opportunistic decomposition, and an
intelligent problem representation. Also. the solution provided should be in some
sense optimal. We note that optimality can be measured by many factors such as
time, fuel used, visibility. danger avoidance, and so on. Another consideration is
the amount of computation required to obtain the solution. The tradeoff between
processing time and optimality must aiso be considered. We note that humans
are able to quickly solve path-planning problems, but not necessarily with optimal
results. The graph-theoretic techniques that we have discussed can provide
optimai solutions (in terms of the problem representation that they use). but not

necessarily quickly. A suitable solution method for the weighted-region problem

will achieve the best traits of both.

m WU WWEWUTUE Y T -

N
II. MPROVING WAVEFRONT-PROPAGATION PERFORMANCE @

A. INTRODUCTION

Wavefront propagation is an appealing solution technique for the general-case
weighted-region problem because it is conceptually simple, easy to implement and
flexible. Also. the method only relies on simple arithmetic operations such as
addition and subtraction. Thus, the technique is not greatly affected by numerical
errors that can often occur. when using trigonometric functions for example. As a
result, the performance of wavefront-propagation algorithms is consistent in most
circumstances. However. the simplicity of the algorithm has attendant drawbacks.
Increasing the accuracy of wavefront solutions requires increasing representational

resolution. We have noted that increasing resolution by a factor of X increases

Py

time and space requirements of wavefront propagation by a factor of X% This

v ———

increase is primarily attributable to the uninformed nature of uniform-cost search.
The strategy produces optimal solutions (optimal in terms of the lattice-based
problem representation) because it is semi-ezhaustive; it looks everywhere, but

only up to a certain point.

Improving the performance of wavefront-propagation algorithms can involve
several areas. Preceding sections discussed the difficuities associated with node
resolution, link resolution, digital bias and accuracy. All of these problem areas
arise from the information loss that occurs when the problem representation is

generated. The appropriate cure for these ills lies in the creation of a problem

84

o
Sl

»

representation that has an information preserving nature, not in devising strategic
changes to the search algorithm. Such changes can diminish the impact of
representational problems, but control flow is fundamentally the wrong area to
address information loss. In this chapter, we do not address the problem-
representation issues. Given the representational difficulties, the algorithmic
problems involve retrieving the best solution path and decreasing time and space

requirements.

A natural question arises: Is it possible to retain the simple nature of
wavefront propagation yet overcome the semi-exhaustive character of uniform-
cost search? Replacing uniform-cost search by A* search is an effort in this
direction. However, recall that exhaustive search can be more effective than
informed strategies for tasks that have comparatively low node-generation costs.
In the problem representation used by wavefront propagation, the cost of node

generation is low.

In this chapter, we examine the operation of the wavefront-propagation
algorithm in greater detail. Our effort is directed towards improving the
performance of the algorithm so that we can establish a baseline standard of
performance for weighted-region problem solution techniques. In Chapter VI we
compare the performance of a Snell’s-law-based solution technique against this
standard. Four new versions of wavefronv propagation are introduced. These are
named the bidirectional strategy, the heuristic-selection strategy, the ellipse
strategy and the ellipse-and-heuristic-selection strategy. The performance of these
strategies are compared to known wavefront-propagation algorithms

(unidirectional, A “-based, and A . -based). We first address methods of retrieving

85

IR

solutions once the goal has been found. Then, simple strategic alterations that
decrease the time requirements of the algorithm are introduced. These 0
modification have low overhead yet improve average-case performance. Finally, a
performance comparison of different strategies is provided and the results of the

comparison are summarized.

B. DEFINING THE PROPAGATION PROCEDURE

There are two principal methods of retrieving a solution path once the goal

has been found. The first is to save snapshots of the wavefront as it progresses

towards the goal. Saving a snapshot of the wavefront requires saving the exact
location of the entire wavefront at a specific instance of time. Once the goal is
reached, a gradient-tracing routine can project normals from the goal, through
each snapshot, back to the start, determining a solution path. This method has {g&
three primary deficiencies. First, gradient tracing invites resolution problems that
affect the algorithm as well as the problem representation. Deciding how many
snapshots should be saved and at what interval is arbitrary. Secondly, computing
the intersections between normals and wavefront snapshots can increase time
requirements (a factor we wish to decrease) and, again, the amount of increase is
a factor of resolution. Note that, for each snapshot saved, the first intersection of
the normal with the snapshot must be found. (There will be two such
intersections. one on each side of the shapshot.) Even though only one path must
be found by gradient tracing, we should to avoid this post-processing step if a less
time consuming method is available. Finally. gradient tracing is not the simplest

method of recovering a solution from a uniform-cost search. The solution retrieval

£

%

86

) 5’ iy |' A% Cx f‘.t“i. S h o"o"o 8

question is simply put: given a node on a path, where is the parent of that node?
This information is readily available during the search. Thus, when ancestry
information (i.e., information that specifies the parent of each node) is preserved
during the search, the solution retrieval question is answered by tracing the
ancestry of the goal node. The choice between maintaining ancestry records or
saving snapshots for a gradient-tracing routine involves the classic time/space
tradeoff. Keeping ancestry records requires storage, but the time required to
retrieve a solution is decreased. Saving snapshots also requires storage, the
amount of which is determined by the resolution. If every second wavefront is
saved, approximately one half of the nodes expanded must be stored as different

snapshots.

Preserving ancestry records amounts to maintaining backpointers during node
expansion. When a child is generated, a backpointer from the child to the parent
must be set. (We only allow one parent for each node as discussed below.) Given
a static, eight-way connected graph, the minimal storage required to save
backpointers is 3 bits per generated node. To see this, note that in an eight-way
connected graph, the parent of any node must be one of the node’s 8 neighbors.
Thus, storing one of eight directions suffices to specify a link to the parent for any
node and choosing one of 8 alternatives requires only three bits of information.
This is a minimal storage requirement. [f storage is not a limiting factor.
preserving an unencoded specification of the parent is more convenient.

Specifically, storing the Cartesian coordinates of the parent or an index to an

array that contains the parent facilitates tracing backpointer links.

Given that backpointers are maintained. there are two times when these can
be set. A pointer may be set as soon as a node is generated or setting the pointer
can be delayed until the node is eligible to be put on the wavefront. The specific
knowledge of the wavefront-propagation operation necessary to understand this
issue is developed below.

Because there is a predetermined finite number of links (we assume 8 in the
following discussions) associated with each node, there is no need to explicitly
store any link. Instead. we can use the indices of a two-dimensional array to
provide this information. As an example, suppose that the coordinates of a node
are (X,Y). Then, the eight neighbors of this node have coordinates (clockwise
from the northern neighbor) (X.Y+1), (X~+1,Y+1), (X+1.Y), (X+1,Y-1),
(X,Y-1), (X-1,Y-1), (X-1,Y) and (X-1,Y+1). When links are implicit, the
cost of traversing a link must be associated with the node itself, just as is done in
the ADS dynamic programming model [Ref. 36]. Conceptually, nodes are cells
that have static cost rates; the cost associated with passing through the node
(from any other connected node). Note that this organization means that every

link associated with a given node has identical link cost.

One way to view the operation of the wavefront-propagation algorithm is as a
simulation. Suppose that the minimal-time path is desired. Then, the wavefront
simulates all possible locations of an agent at successive instances of time. At time
zero, the agent is at the start. After one time unit passes, the agent can be in any
one of eight possible locations that are all one cost unit distant from the start.
Thus, at time zero, only the start node is on the wavefront. After one time unit

passes, up to eight nodes are on the wavefront.

88

Determining whether or not a node can be placed on the wavefront depends
on the cost to traverse the node and the direction of travel through the node. If
the cost of traversing through a node is C, then at least C time units must pass
before the node can be placed on the wavefront. The direction of travel through
the node is important because of the representation. Each orthogonal neighbor of
a node is one time unit distant from that node. However, each diagonal neighbor
is V2 units distant. Suppose that the simulation is at time zero and that each
neighbor of the start node has unit cost. Then, at time 1. each orthogonal
neighbor of the start is reached and can be placed on the wavefront. However,
only 1\ 2 of the distance from the start to each diagonal neighbor can be
traversed in one time unit so that none of these neighbors are reached. Using a
factor of 1 ,’vi for the diagonal links means that, in some instances, the
propagation effect can overflow a diagonal neighbor and continue into a node that
is not an immediate neighbor of the node being expanded. That is, the wavefront
can pass entirely through a neighboring node and move on to the neighbor’s
neighbor. Also note that in the explanation we have provided so far, the factors 1
and 1,v2 are tied to allowing only one time unit to pass between each
computation of the wavefront’s progress. Incrementing time at a rate of V2
instead of 1 associates a factor of V2 with orthogonal neighbors and 1 with
diagonal neighbors. The larger time interval is desirable because it allows the

wavefront to "take longer steps" towards the goal.

To implement this simulation, a cost rate must be associated with each node.
Then, for each node on the wavefront, inspect the node's neighbors (i.e., expand

the node, generating its children) to see if they are eligible for addition to the

89

wavefront. A node is eligible if it is not in an obstacle area, it has not already

been put on the wavefront. and the wavefront could pass through that node
during the current propagation increment of the wavefront location. Specifically,
for each orthogonal neighbor. retrieve the cost to traverse through that neighbor
and decrement it by v/2. If the decremented cost is equal to zero, the neighbor
can be added to the wavefront. If the decremented cost s less than zero, the
neighbor can be added to the wavefront and the decremented cost (equal to the
negative of the overflow amount) must be propagated through the neighbor until
it reaches zero. If the decremented cost is greater than zero. the neighbor cannot
be added to the wavefront. However, the fact that some progress has been made
towards reaching the neighbor must be saved. This is achieved by altering the
stored cost associated with traversing through the neighbor. (Note that to solve a
new problem, the original cost for each node must be restored.) The same
procedure is repeated for eligible diagonal neighbors except that stored cost rates
are decremented by 1 instead of by /2. Also, assuming integral cost rates.
overflow is not an issue for diagonal neighbors. Each explored node is removed
from the wavefront when all of its neighbors have either been placed on the

wavefront or been declared ineligible for expansion.

Table 6 provides a procedural definition of expanding a node on the
wavefront. The definition assumes that the cost to traverse through a node is
stored in a two-dimensional array Cost so that if X and Y are the Cartesian
coordinates of a node, then Cost(X,Y) yields the cost rate for that node. Also, if
Cost(1,5) is less than zero, the node at coordinates (i.j) is in an obstacle region

and is not eligible to join the wavefront. The definition also depends on an

90

o4 Y
‘-"":\

Qe

)

W
:3
TABLE 6 ot
0 EXPANDING WAVEFRONT NODES g
-"l
Expand(X,Y) ::
L
lb
Set Neighborcount = 0 4
For each of the 8 neighbors of node (X,Y) i
Generate the neighbor’s coordinates (Xn,Yn) o
if Cost(Xn,Yn) > 0 2
0
St
if (Xn,Yn) is an orthogonal neighbor i
Newcost = Cost(Xn,Yn) - v'2 !
otherwise "
Newcost = Cost(Xn,Yn) - 1 4
if Newcost <=0 ::
Neighborcount = Neighborcount + 1 ::;
Add (Xn,Yn) to the wavefront :
Set Cost(Xn.Yn) =0 ot
- .:
if Newcost < 0 .l
v Overflow(Xn,Yn X,Y,Newcost) bl
% if Newcost > 0 '
Cost(Xn,Yn) = Newcost 5
W
otherwise :E:
Neighborcount = Neighborcount + 1 b
If Neighborcount = 8 ‘
Delete node (Xn,Yn) from the wavefront \
} 3
.
overflow procedure to continue the propagation of the wavefront when required. '-
This procedure is strictly defined below. The central idea of overflow can best be ':"
l".“
explained by using the passage of time simulation view of wavefront propagation. é
.I
The wavefront overflows through a cell when enough total time has passed so that >
the wavefront can cover the entire distance through the cell and make progress :\
into a neighboring cell during the same time interval. :g
B :
o1 W
::‘
l‘|
3

e e SR D DR IOREAN

::::::

iy

The procedure of Table 6 does not include any provision to set backpointers
for newly-generated nodes. This is an important consideration for those neighbors
that cannot be added to the wavefront due to high cost rates. For these nodes,
the entry in the Cost array is updated. However, the updated entry reflects the
progress made towards reaching that node from a specific parent. No other
potential-parent node can be allowed to reference the same, updated cost rate. We
store the parent of each node in an array Parent(X,Y) so that a reference to

Parent(X,Y) yields the backpointer to the parent of the node at coordinates X,Y.

The issues involved in choosing to set backpointers as soon as possible or as
late as possible should now be apparent. The earliest that a parent can be chosen
is when a node has been generated and declared eligible for expansion. Setting the
pointer at this time means that no other potential parent can be. allowed to
generate this node as an eligible neighbor. Setting backpointers late requires
maintaining an updated cost for each potential parent. Then, once all the
potential parents of a node have been explored, the parent that allows the
wavefront to make the greatest amount of progress through (or to) the node can
be chosen as the permanent parent. Once the permanent parent is selected, the
backpointer can be set and the node is declared ineligible for expansion from any

other potential parent.

Setting backpointers as late as possible requires more time and space to realize
a very localized improvement. Figures 7 and 8 clearly show the difference between
the two methods. (We note that this analysis applies to propagating the

wavefront through uniform-cost areas.) Both figures depict backpointer trails

from all nodes explored during the search back to the start node (at the center).

92

o, ot s ' L Ty L L P T B W Ay € P P
IR N AT RANY 0 OO AN ALE M NRICH A o0 Tum AT AR B i e 1 € o ¥ O N M N i P o O

Figure 7. Paths Derived From Setting Backpointers As Soon As Possible

Figure 8. Paths Derived From Setting Backpointers As Late As Possible

Both wavefronts were propagated through uniform-cost-rate nodes (and thus, no

obstacles are involved). The wavefronts were propagated for 15 time intervals.

93

‘:' 1

I\)

ADONHEH

expanding 372 nodes. Figure 7 reflects "he "as soomn as poxsihie™ nowe wiine
Figure 8 .depicts the .inkage partern. produced Hv “he "as ate v possiine
strategy. The latter strategy required 2.8 “umes as much tine ana 37 tines as

much storage to effect a very localized change in the ancestry records The former

less expensive strategy favors paths having more turn pointe thus making better

"stair-step” approximations to straight lines Also. wavefron: propagation

153

inherently a satisticing <trategy «due ‘o the probiem representation The amount

of solution improvement otfered by the more expensive srrateg: 10es not seem
justified. For these -easons. setting backpointers as soor as possible 1+ the best

aiternative. Tabie 7 provides a new proceauras -teninition ot wavetront nouae

expansion -hat maintains ancestrv o nformation Ve assuyme “he ostence of

array. Parent(X.}). that stores the coordinates of the parent to the node iocated

at coordinates (X.}).

The definitions of Tables 6 and T both rely on a procedure *hat controls
overflow situations. Overflowing through a node is similar to expanding a node.
However. there is a directional aspect involved in overflow cases that does not
directly atfect normai node expansion. The overtlow ~tems :rom a <pecific parent
and "flows" in a specific direction. Altering the direction (from the parent) also
changes the amount of overflow. Thus. the problem is similar to the problem of
setting backpointers. In an overflow situation. the propagation must be continued
in the same direction. Thus. the input parameters to the overtow procedure (as in
Tables 6 and 7) include the node that overflow propagates through, the parent of

that node. and the amount of overflow. Table 8 provides a definition of the

overflow procedure. Note that using a factor of v 2 for orthogonal neighbors and 1

94

I-
LSy

y LN A P S

aefan

- -'.'.',-d‘ d'.--' -"

‘y-'."l))

AT A G AT y R T P T N i A TS

&
e

VA

(XYY

s
.

[7% DAL I DN BN

”_u,

N A g P

RIS

f &

R Pt A

r: LAY

..
o«

SN

TABLET
EXPANDING WAVEFRONT NODES & SETTING POINTERS

ExpandiX.Y)
{
l Set Neighborcount = 0
For each of the 8 neighbors of node (X,Y)
{ Generate the coordinates of the neighbor, (Xn,Yn)
if Parent(Xn,Yn) is undefined
Set Parent(Xn,Yn) = (X,Y)
if((Cost(Xn.Yn) > 0) and (Parent(Xn,Yn) = (X,Y))
{ if {Xn.Yn) is an orthogonal neighbor
Newcost = Cost(Xn,Yn) - v2
otherwise
Newcost = Cost(Xn,Yn) - 1
if Newcost <=0
{Neighborcount = Neighborcount + 1
Add (Xn,Yn) to the wavefront
! Set Cost(Xn,Yn) =0

if Newcost < 0

Overflow(Xn,Yn X,Y,Newcost)
if Newcost > 0

Cost(Xn,Yn) = Newcost

otherwise
Neighborcount = Neighborcount + 1

if Neighborcount = 8
Delete node (X,Y) from the wavefront

} L

for diagonal neighbors, and relying on integral cost rates, means that overflow
never occurs through diagonal neighbors. Also, the overflow procedure canno
remove a node from the wavefront. By definition. a node through wn:en we-= o

propagates has not yet been expanded and, thus, cannot be on the waver=on,

There is one other improvement that can be made to wavefron: ;- acs
as defined by Table 7. It is not necessary to inspect a!! exgh* ne ;-
for the possibility of being reached by the wavefront a< v .- .« .

95

. EPPCIEE
A alalal [
Talalwl [[
alaa] |
—[ala(a | [
Talalml [}
~almlal |
[a1}
[Talal |
[lamlal 1|
EECFFIEN,
R [[alala T}
[Talulal ||
f:llllllw

*
N
N
-t
S
N
[T

S
35
-0
Q. e
o«
x
LS
=
e
W
=t
o
xO
Q
>
Wi
X 0
-
-
=X
-
=
2.
-
=0
M"
Q
peiry
o
W
T
-
D
oo
[3
=00
no
O
oun
X~}
mP
=]
=
=]
=

“
b
i~}
=
| &
[}
[3
a.
2
E 4
a
«
H W
(3
g
|~
@«
'
w
™
o
vy
]
f <
j
f O
) <
2
>
ot
(=1
W

(o
E

EEEE
E

PP SN

:

I .l
lg 18

j Fy

<

MICROCOPY RESOLUTION TEST CWART
& NATONAL BUREAY OF STANDARDS- 198804

R '.o e .'l"‘l“‘l |.| “l'l‘l".l'~."~' al
ROARANLRNAR KRR O o
RONG .:i“'l.,'b ‘..i..:l‘|‘t el

4
RS
AL LM

.

EE

i

a

- —re. s W . T L P . P : .
oy u".u; 1 N
RSN R
4
e A

" A
st 'A“.l ."A"' .“0-":?‘5."1.‘

3

2

e, .

0;:.:! 3 \:,."

TABLE 8
PROPAGATING OVERFLOW

Overflow(Xn,Yn,X,Y.Amount)
{Determine the direction of overflow by setting
Dx=Xn-X,Dy=Yn-Y
Find the node, (Xp,Yp), overflow propagates to
by Xp = Xn + Dx, Yp = Yn + Dy
if Parent(Xp,Yp) is undefined
Set Parent(Xp,Yp) = (Xn,Yn)
if((Cost(Xp,Yp) > 0) and (Parent(Xp,Yp) = (Xn,Yn))
{

Newcost = Cost(Xp,Yp) + Amount
if Newcost <=0

Add (Xp,Yp) to the wavefront
Set Cost(Xp,Yp) =0
}

if Newcost < 0
Overflow(Xp,Yp,Xn,Yn,Newcost)
if Newcost > 0
Cost(Xp,Yp) = Newcost

}

node. If (X,Y) is the node being expanded, then only those neighbors of (X,Y)
that have an undefined parent (all nodes that have not been reached by the
wavefront have undefined parents) or already have (X,Y) as a parent need be
inspected. Clearly, the wavefront cannot be propagated back to the parent of
(X,Y). Reasoning about the direction of wavefront flow to reach (X,Y) also
eliminates other nodes from consideration. Figure 9 depicts a situation where the
wavefront has been propagated from node P to node N and N is currently under
expansion (for illustrative purposes, Figure 9 adopts the grid of cells view of the
problem representation). For illustrative purposes, the eight neighbors of N are

labeled 1 through 7 and P. Generally, the wavefront should have reached node 1

96

and node P at the same time. If not, node 1 and node N must both have node P
as a parent. The same situation is true regarding node 7. Also, nodes 2 and 6
must have been claimed as children by node P at the same time that the
wavefront reached node N. Thus, nodes 1, 2, 6, 7 and P must already have parent
nodes other than node N. This holds, regardless of node cost, since the "as soon as
possible" scheme is in use. Therefore, only nodes 3, 4 and 5 need be inspected for

further propagation from node N.

3| a| s
2 | Y| s

7
1 1p

Figure 9. Propagation to Neighboring Nodes

The direction of wavefront travel (from P to N in Figure 9) is important when
determining those three neighbors that can be reached by further propagation of
the wavefront. As there are eight possible directions of approach to a node, there
are eight sets of neighbors that can be reached from that node. Figure 10 depicts
each possible case. The arrows in Figure 10 denote the direction of propagation to
node N. the node under expansion. The eligible neighbors of N are enciosed by a

dark border.

Figure 11 shows the linkage pattern resulting from a wavefront propagation

when only three neighbors are inspected for possible expansion. The problem is

97

Figure 10. Eligible Neighbors

o8

the same as was used to create Figures 7 and 8. Note that Figure 7 and Figure 11
are identical. Both strategies were executed by a C-Prolog interpreter running on
an Integrated Solutions Optimum V workstation under Berkeley UNIX, System
4.2. The three-neighbor wavefront-propagation search required approximately
25% less time to complete than the eight-neighbor strategy used to create Figure
7. C-Prolog does not support array data structures. List structures are normally
used in their place and searching through a list is more time consuming than
directly accessing an array element. Table 9 presents a procedural definition of
expanding a node while inspecting only three neighbors. This definition
substitutes one array reference for the inspection of five neighbors (for eligibility

to join the wavefront) when compared to the procedural definition in Table 7.

|

Figure 11. Three-Neighbor Wavefront Backpointer Pattern
In C-Prolog, retrieving the ancestry information is more expensive (in time)

than it would be in most languages supporting arrays. Thus. the 25% reduction in

execution time is conservative. Note that the definition of Table 12 requires two

A

TABLE 9
3 NEIGHBOR NODE EXPANSION @
Expand(X,Y) “
{Set (Xp,Yp) = Parent(X,Y),Dx =X-Xp,Dy=Y-Yp
ifDx=0

{F1 = Sub-expand(X-1,Y+Dy,X,Y,1)
F2 = Sub-expand(X,Y+Dy,X,Y,v2)
F3 = Sub-expand(X+1,Y+Dy,X,Y,1)

}

else if Dy =0
{F1 = Sub-expand(X+Dx,Y-1,X,Y,1)
F2 = Sub-expand(X+Dx,Y,X,Y,v2)
F3 = Sub-expand(X+Dx,Y+1,X,Y,1)

else
{F1= Sub—expand(X,Y+Dy,X,Y,\/§)
F2 = Sub-expand(X+Dx,Y+Dy,X,Y,1)
F3 = Sub-expand(X+Dx,Y,X,Y,v2)

if (F1+ F2+F3)=3
Delete (X,Y) from the wavefront

Sub-expand(X,Y,Xp,Yp,Amount) 230
{if Parent(X,Y) is undefined e
Set Parent(X,Y) = (Xp,Yp)
if((Parent(X,Y) = (Xp,Yp) and (Cost(X,Y) > 0))
{Newcost = Cost(X,Y) - Amount
if Newcost <=0
{Add (X,Y) to the wavefront
Set Cost(X.Y) =0
Returnvalue = 1

if Newcost < 0
Overflow(X,Y,Xp,Yp,Newcost)
if Newcost > 0
{Cost(X,Y) = Newcost
Returnvalue = 0

}
else Returnvalue = 1
Return(Returnvalue)

} q

'd‘ 'y [
O [
100

procedures. Procedure Ezpand determines the eligible neighbors. Procedure
Sub—ezpand propagates the wavefront, if possible, and returns a value so that

Ezpand can remove the node from the wavefront when necessary.

C. DECREASING WAVEFRONT-PROPAGATION TIME REQUIREMENTS

In this section, we introduce two new concepts that can be used to decrease
the time required by wavefront-propagation algorithms to arrive at a solution
path. First, we show how bidirectional search can be used in this algorithm.
Secondly, we introduce the notion of a global bound which limits the portion of

the lattice that must be searched.

1. Bidirectional Strategies

In Section II.G we noted that a bidirectional strategy has the potential to
decrease the number of nodes expanded during wavefront propagation. This
analysis was based on assuming a circular shape for the wavefront that occurs
when it propagates through uniform-cost areas. (We note that circularity is not
required; it simply makes the analysis less complicated.) When the assumption
holds, the wavefront at solution approximates a circle of radius r where r is the
cost of the path from start to goal. Suppose that, instead of propagating one
wavefront from the start, two wavefronts are propagated. one from the start and

one from the goal. At solution. the two circles have radii . and r;and re-ro=r.

5
The number of nodes expanded is approximated by the area of the circle. Clearly,
the sum of the areas of the two smaller wavefronts is less than the area of the

single, larger wavefront.

101

.i'\‘?‘\"‘\‘..l‘.‘.l‘.».l'.‘l‘...". \,‘ﬂ. A

D e e W e e

There is some overhead associated with bidirectional wavefront
propagation and, if the objective of exploiting bidirectionality is to reduce time,
that overhead should be small. The expansion procedure defined in Table 9 is
low-level. In the definition, we have not provided a way for the procedure to
know when the goal has been found. Thus, there must be some higher-level
routine that selects nodes on the wavefront for expansion and determines when a
solution has been reached. In standard unidirectional wavefront propagation, a
solution is available when the goal node is reached through a neighboring node
that is on the wavefront. Thus, whenever an eligible neighbor is generated, its X
and Y coordinates must be compared to those of the goal. If the coordinates
match, the goal has been found and the low-level procedures (such as Expand and
Sub-expand in Table 9) can set a notification flag. In total, detecting a solution
requires three comparisons for each expanded node; one against a flag value and

one each for the X and Y coordinates of the goal.

This simple termination criterion does not work when using a bidirectional
strategy. Instead, a solution is available when the two wavefronts touch. However,
using some of the structures already available, determining wavefront intersection
is also an easy task. Suppose that we initialize the Cost array entry for the start
node to be 0 and for the goal node to be -1. Then, each time a node is added to
the wavefront (when its cost is .0), we set the Cost array entry for that node to
be equal to the entry for its parent node (instead of an arbitrary zero cost). The
two wavefronts touch when an ineligible neighbor node has a Cost array entry
different from that of the node under expansion. A slight complication arises in

that we have already assumed that unreachable nodes (i.e.. nodes inside obstacle

102

' ‘v . .
'.‘. ') .‘..“. ."':(A,,‘l.?‘ .‘l .l: '(([} " v ‘1“0‘!‘-“' 'f. .f-' . ..J'. l‘s ' ' .f. "' X ‘-' - I.l... '

L] .

%)

‘.}
)
&

2

areas) are identified by negative costs. Assume these nodes all have costs of -2.
Then, if a node ineligible for expansion has a Cost array entry greater than -2 and
different from the entry for the node under expansion, a flag can be set signaling
that a solution is available. Again, three comparisons are required to detect a
solution. However, two comparisons involve inequality (i.e., greater than and not
equal) and there is an added level of indirection since array entries must be
compared. Thus, there is a slight machine-dependent increase in overhead to
conduct a Dbidirectional search. The performance of bidirectional and

unidirectional strategies are compared in Section III.D.

Using a bidirectional strategy also allows some flexibility. It is not
necessary to expand both wavefronts uniformly. The presence of obstacles tends
to decrease the time requirements of wavefront propagation because fewer nodes
are eligible to join the wavefront, keeping the size of the wavefront small
(relatively). Propagating a wavefront out of a "box canyon" defined by obstacles
is less expensive than propagating the wavefront in 360 degrees. Thus, when using
a bidirectional strategy, the algorithm can take advantage of this fact and select
the smaller wavefront to expand during each time vcycle. Again, there is some
overhead in determining the smaller of the two wavefronts. If the wavefronts are
maintained in separate one-dimensional arrays, simply comparing the indices of
the last used array positions provides the relative size of the two wavefronts.
Thus. the time overhead is low. This strategy is referred to as the heuristic-

selection method in the performance comparisons of Section III.D.

103

Y T N

I T

S

Using more than two separate wavefronts does not seem to be a viable
option. For each path-planning problem, there are two points that are known. a
priori, to be on the optimal-cost solution path. These points are the start and
goal. A characteristic of the weighted-region problem that makes it difficult to
solve is that it is not readily decomposable. Intermediate points that must also be
on the solution path are not apparent in most cases. Since propagating wavefronts
from points not on the optimal solution path is wasted effort, using more than

two wavefronts is not helpful.

1

A final comment on bidirectional wavefront propagation relates to the
maximum error in the cost of a solution path. Recall that the maximum (cost)
error in a solution derived from a unidirectional strategy is 8% (see Figure 5) and
that this error occurs when the goal is a midpoint of a chord approximating a 22.5
degree arc. In bidirectional wavefront propagation, the maximum error occurs
when the two wavefronts touch at midpoints of chords, both approximating 22.5
degree arcs. This situation can arise when the physical relationship of the start
and goal is similar to that depicted in Figure 12 (where the start is labeled s and
the goal g). Let t=r ~+r, (as in Figure 12) be the true cost of the s-to-g path.
From previous discussions (Section II.2.E.a) we know that the chords touch when
6,=1.08d,, 6,=1.08d,, p,=1.08r, and p,=1.08r,, as in Figures 12 and 13. In Figure
13. a solution having cost p, +p,=1.08r -1.08r,=1.08¢ is reported. Thus. the
maximum (cost) error in the bidirectional strategy is. again, approximately 8%.
Therefore, the maximum error in the cost of a solution path is not increased by

using bidirectional search.

104

TR

”
b of d -~
1 .~ 2

d},—"

-’
-
o

Figure 12. A Solution Should Be Reported

When "Perfect" Wavefronts Touch

Figure 13. A Solution Is Reported When Approximating
Chords Touch

105

N A N A NIRRT AT Pn P AW s O ol 8 NaTa Rt
SNV SIRELCARECN LA SR ot o"'ﬂ‘u','q', ALY " e O AL MG O X e, " T e W) S v" X

° o
N A
o

>

-
o

Co Ty ¥ 7,
LI . '
ol ot

g™ udS s o

o o G g0 RIRTLE,

p ool M

L]
)

2. Physical Bounds

The semi-exhaustive nature of uniform cost search has been noted. The
procedure attempts to examine every neighboring node within a 360 degree arc
about the start. Clearly, those nodes neighboring the start that lead away from
the goal are less likely to be on the solution path than those nodes that are close
to a straight start-to-goal line segment. The heuristics employed by informed
strategies attempt to recognize the likelihood that an arbitrary node may be on
the solution path. As an example, the Euclidean distance between two points
(nodes) can be used to provide a good lower-bound estimate on the cost of a path
between those two points. However, measuring Euclidean distance requires an
expensive square root function. Also. informed strategies use ordered data
structures (possibly linked lists stored as arrays such that each array entry
contains a data element and a pointer to the next data element), introducing
more overhead. The costs of using evaluation functions and maintaining ordered
lists must be paid each time a node is added to the wavefront. When resolution is

high, at the pixel level for example, overhead costs can mount quickly.

A one-time overhead heuristic is achieved by physically bounding the
search space before the search process begins. Suppose that there is a feasible
solution path (a start-to-goal path that stays out of obstacle areas) to the
weighted-region problem. Let the cost of the teasible solution path be C . The
optimal-cost solution path must. by detinition. have cost less than or equal to Cp.
Also, there must be some optimal cost rate, CO. associated with the problem
representation. Given Cp and (', there must be a distance D, such that a path

covering D, at cost C, has cost equal to Cp. Db:Cp/ Cp- Since the optimal-cost

106

 id - L A2 R Al AL A Bl Ao Ale Ble Ale Al Al Al Aod dea Ard Ao s adad A & 1

solution path must have cost less than or equal to Cp’ it must travel a distance
% less than or equal to D,. Thus, D, is a bounding distance. An ellipse that has the
start and goal as foci and constructed such that, for each point on the ellipse
boundary, the distance from the start to that point plus the distance from the
goal to that point is equal to D,, must contain all start-to-goal paths having
distance less than D,. Thus, the coordinates of the ellipse boundary form physical
limits on the location of any part of the optimal-cost solution path. (Note that
this is a slightly different version of the idea used in the branch-and-bound search

strategy.)

Wavefront propagation can make use of such a physical bound by
considering the ellipse boundary as an obstacle. Using this convention. the
wavefront is never allowed to propagate outside of the ellipse. Also, there is no

@ additional overhead incurred during the search since there is already a
requirement that each node be inspected for eligibility. All overhead is incurred as
a one-time cost, before the search begins. A binary-case algorithm, even simple
localized-improvement, can ignore the cost rates for passable areas and find a
feasiblé solution on which to base ellipse construction. The comparisons of

Section III.D include data for a strategy based on bidirectional search within a

limiting ellipse (which we denote ellipse).

D. PERFORMANCE COMPARISONS

This section presents the results achieved by different variations of the

wavefront-propagation technique when applied to the same problems. The area- :§

~ cost map used for testing represents terrain at Point Lobos, California. The map !
T 3
o, ~
107 ~

o

o

o

v

<

features a ternary terrain classification scheme, i.e., each point in the environment
is either impassable, traversable at high cost or traversable at low (optimal) cost.
The cost-rate ratio of high-coet traversable areas to low-cost traversable areas is
2:1. The areacost map was designed to be appropriate for the Adaptive
Suspension Vehicle, constructed at The Ohio State University [Ref. 44]. The
actual terrain was physically inspected in order to manually assign cost rates to

regions on the area-cost map that would reflect the capabilities of this vehicle.

In this section, we present the time required and nodes (pixels) explored by
each of six different wavefront strategies to solve the same problems. The first
four methods, unidirectional, bidirectional, heuristic-selection and the ellipse
(bidirectional without using heuristics) method have been discussed. Wavefront
strategies relying on the A* and A_* algorithms are also included in the

comparison. The A* and A _* variants both rely on a heap data structure to

cost as the lower-bound evaluation (the h{n) function). All routines run in
compiled C on a multiuser, IRIS 2400 workstation under UNIX System V. The
time resuits do include some CPU time dedicated to IRIS graphics tasks.
However, the graphics overhead is approximately the same for each method and if
any bias is present, those strategies expanding fewer nodes are favored. Thus, the
rime measures can only be considered as indicative of relative performance. The
time performance cited for the ellipse method does not include the time required
to achieve an initial feasible solution (as this portion of the strategy was
accomplished manually and provided to the test algorithm). Here, initial solutions

are simple binary-case solutions where the cost of traversing regions is ignored.

108

maintain the ordered Open list. Both strategies use Euclidean distance at optimal

T

o

N,
xr

PO
NS

Thus, the shortest-distance paths that do not intersect obstacle areas are used as

initial solutions. (Feasible binary-case solutions are not difficult to generate and
thus do not require much computation time.) Thus, while the timing marks for
the ellipse method are not totally accurate, they are indicative of the method’s

relative performance.

Figures 14 through 43 depict the results obtained by each strategy. (Note
that these figures are all placed at the rear of this chapter.) In these figures, the
darkly shaded polygons represent obstacle areas. Lightly shaded polygons depict
high-cost traversable areas and the unshaded background area is the low-cost
traversable area. The figures show the location of the wavefront(s) at solution and
the solution path. The solution, start. goal and wavefront(s) are usually labeled.
Some labels are omitted for clarity of individual figures. For bidirectional
strategies, the wavefront centered at the start is labeled s wavefront; the
wavefront emanating from the goal, g wavefront. The figures reflecting ellipse-
based strategies also show the limiting ellipse as a heavy line. The solution path is
a heavy line between two circles, each of which contains either the start or goal.
Each node remaining on the wavefront at solution is shown as a single darkened
pixel. The pixels form line segments describing the entire wavefront(s), which may
be disconnected. The disconnected portions arise when the wavefront cannot be

propagated through some area. an obstacle area for example.

Figures 14 through 19 depict solutions to the first problem. denoted Probiem
A. Figures 15 and 16 are very similar, reflecting the inability of the heuristic-
selection method to improve performance on this problem. This is because the

high-cost region near the start and the edge of the map near the goa. tend to keep

109

AN 5 0 Uy \
N L A L A W

both the s and g wavefronts expanding at close to the same rate. Also, note the

search pattern of A " depicted in Figure 19. This strategy allows some nodes to

E2r
Sy
fon

L‘". N

be skipped over so that the wavefront is not contiguous. Some unexplored nodes
remain in the interior of the wavefront. This is a general behavior pattern for the
A,* algorithm that is reflected in several figures. Figures 20 through 25 depict
solutions to the second problem, Problem B. Again, performance is affected by the
edge of the map. Also note that the unidirectional strategy provides a different

solution path (near the goal), an effect of digital bias.

Figures 26 through 31 depict a problem where the shortest-distance path is
the optimal-cost path. The width of the high-cost region intersected by the
solution path is small enough that the region becomes inconsequential. In this
problem, the start is located in a "box canyon'" and the heuristic-selection method
does affect performance. Also note that the remaining wavefront for the A* «{E‘
strategy is so small that the solution path completely hides it from view. However.

the A_* method also yields the least-accurate solution.

Problem D solutions are depicted in Figures 32 through 37. Again, note the

' inability of the heuristic-selection method to improve performance. Also. there is
a large difference between the search patterns produced by 4 .’ in Problems C

and D. Traveling longer distances through high-cost regions confuses this strategy.

Figures 38 through 43 present solutions to Problem E. Note the great increase
in the area covered by unidirectional search, due to the higher-cost solution path.
Also, the heuristic-selection method has a great effect on this problem. It produces !

a very different search pattern from the simple bidirectional strategies.

/s
0

110

S e "%

e T A G L e [SRS AT S

TABLE 10
@ PERFORMANCE COMPARISON
Problem Figure CPU Time Nodes Order of
| Strategy Number | Number | (seconds) | Expanded | Performance
A 14 37.65 40585 6 |
Uni- B 20 39.65 46833 5
directional C 26 5.46 7564 5
D 32 23.13 29668 S
E 38 65.95 75149 5
A 15 | 23.23 | 25040 7
Bi- B 21 20.15 25345 3
directional C 27 7.57 10363 6
D 33 18.43 22198 3
E 39 37.05 44429 4
A 16 | 22.73 25702 3
B 22 17.38 22575 1
Heuristic- C 28 4.70 6612 4
Selection D 34 17.95 21741 2
E 40 28.62 35172 2
A 17 13.80 14546 1
B 23 18.18 23117 2
Ellipse C 29 2.22 2964 2
@ D 35 5.68 7105 1
E 41 14.30 15335 1
A 18 1950 4736 2
B 24 36.83 8609 4
A* C 30 3.60 1024 3
D 36 19.70 4604 4
E 42 30.05 7155 3
A 19 27.71 3042 >
B 25 84.18 4623 6
A C 31 1.07 360 1
D 37 80.42 3813 6
E 43 89.28 2935 6

The exact time and space performance of each strategy on each problem is
presented in Table 10. The table contains a column labeled "Order of
Performance” that rank orders each strategy, 1 through 6, by time required to
solve each problem. In Table 11, the mean time to expand a single node for each

method is tabulated. Table 11 also presents a mean rank order of performance in

111

TABLE 11
MEAN PERFORMANCE
Mean Node Mean
Expansion Standard Order Standard
Strategy Time (sec) Deviation (1-6) Deviation
Unidirectional 0.0008 0.000081 5.2 0.45
- Bidirectional 0.0008 0.000060 4.0 1.22
Heuristic-Selection 0.0008 0.000085 24 1.14
Ellipse 0.0008 0.000091 14 0.54
A¥ 0.0040 0.000327 3.2 0.71
A7 0.0163 0.016738 438 2.17

which the ellipse method (bidirectional without heuristics) rates as the best while
the unidirectional strategy is the worst performer. The table also presents
standard deviation information. Based on this data, the A c* method is the least-
consistent method, both in time to expand a single node and in mean rank order.
We note that the sample size used here is very small. However, the problems have
been chosen to represent a wide class of typical problems and thus should be

generally indicative of strategy performance.

E. SUMMARY

Table 10 shows that the bidirectional, heuristic-selection and ellipse methods
all have low overhead costs, comparable to that of the unidirectional strategy.
The ellipse method is the best overall performer. The heuristic-selection method is
occasionally good and when it does not speed the search. there is no performance
decrease. This statement cannot be made regarding the A* and 4_~ strategies.
Their high overhead is detrimental in some cases. These results confirm that low-
overhead exhaustive strategies are appropriate for wavefront-propagation

techniques.

112

s“'.\',“.t'.':é .

The results of Table 10 and 11 indicate that combining the ellipse and
heuristic-selection methods has advantages. That is, we use an ellipse to impose a
global limit on the problem and use heuristic-selection to constrain wavefront
growth within the ellipse. This method is compared against the standard ellipse
and heuristic-selection techniques in the problems depicted in Figures 44 through

52. The performance of each method is tabulated in Table 12.

TABLE 12
PERFORMANCE COMPARISON
Problem | Figure CPU Time | Nodes Order of

Strategy Number | Number | (seconds) Expanded | Performance
Heuristic- F 44 8.25 9832 3
Selection G 47 18.18 23397 3

H 30 28.69 32884 2

F 45 7.97 9250 2
Ellipse G 48 15.63 19776 2

H o1 30.15 35476 2
Ellipse & F 46 7.61 9064 1
Heuristic- G 49 14.41 19040 1
Selection H 52 20.33 25158 1

Note that the solutions presented in Figures 47 and 48 differ from the solution
of Figure 49. This is a result of solution path cost error. In Figures 47 and 48, the
wavefronts touch interior to approximating chords, the maximume-error situation.
In Figure 49, the wavefronts touch at chord endpoints. the minimum-error case.
Also note that the two separate paths are close in path cost. This can be seen by
the proximity of the wavefronts in both places where solution wavefronts intersect
(i.e., the lower portion of Figure 49 and in the upper portions of Figures 47 and

48).

113

T————————-—'————mmmm

We note that none of the methods discussed in this chapter lower the ()(nz)
worst-case complexity of wavefront propagation. (Where n is the number of é@
lattice nodes.) However, the methods listed in Table 12 improve the average-case
performance of unidirectional wavefront propagation without degrading it in the
worst case. Of all the methods, heuristic-selection within an ellipse seems to have
the lowest time requirements. Also, this method requires only a small increase in
storage space. However, it does not cure the inherent problems of wavefront
propagation. The solution paths offered by wavefront propagation are inaccurate
in terms of path cost (a topic more fully developed in Chapters VI and VII). The
inaccuracies stem from two resolution-dependent aspects inherent in the problem
representation. The first depends on the number of nodes in the lattice. The

second is determined by the connectivity, or branching factor at each node in the

4 lattice. The development and usage of a more appropriate problem representation .-;\'-'3‘
Y
for the weighted-region problem is the subject of the following chapters. d
p
A

114)

wavefront

115

ERDASROANAD) D DO
OO NS UL UM M

ladadianndy

path

g wavefrpnt
't

Figure 15. Problem A, Bidirectional Strategy

116 e

fm—— - e A A & e sdm— .

path

g waveffont
|

Figure 17. Problem A. Ellipse Strategy

118 e

fof Ot

X

RA

ol 4% 48 S8 3% 3

0

Figure 18. Problem A. A* Strategy

B
119

path

wavefron ;‘

Figure 19. Problem A. A * Strategy

R X
%Y
4
b
» 4

[4
Y%

120

SAAASALE | BINIMNEIR S AR N o el It AR,
£

gy

Figure 20. Problem B, Unidirectional Strate
121

> 0% g

Y VW LAWY U IR LY AP e

s wavefront

Figure 21. Problem B. Bidirectional Strategy

N a‘.l) 'i' .0?.'1 SO g.l 5 l.n" \ .‘.’! A

g wavefront
-—-"-'—-’

Figure 22. Problem B, Heuristic-Selection Strategy

123

Aty

£,

DEAAY JEA LAARILY

s

T“‘

®_
)
Figure 23. Problem B, Ellipse Strategy
g
124)

wavefront

»

b gy o

4

_v"hfdi
Pl

'

Figure 24. Problem B. A* Strategy

.
i)

125

TIIIAL C-Pedpaas] il

T T

-
Figure 25. Problem B, A _* Strategy

L
[
I
. .)n:' 'f" " '
126 T
!

Figure 26. Problem C, Unidirectional Strategy

L 12

e

g wavefron

Figure 27. Problem C, Bidirectional Strategy

128 ot

3
'1
N
3
A
.
g
\

Figure 28. Problem C, Heuristic-Selection Strategy

129

s % M

oy
A
'
)
t
:
i
i Figure 29. Problem C, Ellipse Strategy
&
AR,
130 o

g vy 1% MO ' [RN 1 LT I I TR LA ARSI B TP W, S YA L
e AN "u"‘.‘,'l'.‘n‘. AR N .'. ‘I" ||"o‘.‘l .\‘q&'.,l‘».b‘\. oy t‘.,l.o‘l.ufﬁ.g USEmdin ,I.' .a., " g, ': < * W .. 4 < < "‘.

on) e .

Figure 30. Problem C, A* Strategy

i
! v 131

\'&"!m' ‘r!\":'\.":'. S :'s':‘."!'.‘&'-:\’! -.":.;,-.' S AR AN RO SR R A S

- as

-

;- s v Ay

-

.- = el o e

. .. - -

O

¥ ¥ ‘WA WO CCN TN Y s e e D e e T
RENLMN .‘.uli,n."n.i!..l l"t"‘l"’l i'oﬁ‘\ U e W, AN W IR .“) ‘, 'f o

Y RAENEMNENIEENANEN EN U N EN ENIN U RNENEBERSWEBN -

|
Ex
X

65

Figure 31. Problem C, 4 * Strategy

132 W

"".f AR LA - o ‘.r‘.' “w, :-,Cf e

R - BaY, A a V. ', A

h

R TSP N O AR AR ARN N A ATAN NN SR N VR VW S Wirery i u-uj

lap e s
o

T

- o
- -

-
R "
) .
i\ a3

"'.-?i'!.l‘!\‘ \AAM t‘bl’ ' ‘l“‘t . W

»
»

Figure 32. Problem D, Unidirectional Strategy

133

Y Nk T . AT LT T IO TR TS TS T A IR ST N
. ‘(A l.l'-l--l LY 'n '-- 0 e A LA AN o)

Figure 33. Problem D, Bidirectional Strategy

134

Y
@
‘.j{&,

Pk W

-
e

i

13

-., ,{

1) 4

P P

s wavefront

N\

RS

Figure 34. Problem D, Heuristic-Selection Strategy

E-.%: 135 -

Figure 35. Problem D, Ellipse Strategy

PR
| 136 %

start

wavefront

Nl PN S
FAS A Ny

T S~~~

e ll:,“” '

Figure 36. Problem D, A* Strategy :

137

U u’tlﬂ"n .0"‘!. U

Figure 37. Problem D. 4 * Strategy

138

e

G I]

'R

E s

o

S

RS e N

iz

Figure 38. Problem E, Unidirectional Strategy

L 139

g wavefront

Figure 39. Problem E, Bidirectional Strategy

140

Figure 40. Problem E, Heuristic-Selection Strategy

Q
Figure 41. Problem E, Ellipse Strategy
o
LAY Y
142 RS

wavefront

Figure 42. Problem E, A* Strategy %
143 %
g
i
3
’
o
4

I

- A v e W =

. e

-~ -

4

G f v
et .‘gJ'\'.'r

L\
A

