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Chapter 1

TRACE

a=

An extensive experimental session was conducted to investigate the

behavior of Laser Induced ElectroMagnetic Pulses (LIEIP) parametrically

with CO2 laser intensity within a decade of 10 OW/cm2 . Parametric

variations were also made with background air pressure from I microtorr to

a torr. Twelve hundred (1200) data shots were taken with measurements of

electric fields on a ground plane outside a glass vacuum chamber, Faraday

cup (FCi) measurements with the vacuum chamber 30 cm from the Copper

target and 30 degrees off the incident laser vector, and current

measurements in the target plane were made with a Rogowski style monitor

(FIM) within a 3 cm diameter of the target.

Theoretical work leads to the following model for the behavior.

The incident laser light is self-focussed such that its intensity is

increased by a few fold before it reached the critical surface. At that

point, resonance absorption places laser energy into the electrons that

have a suprathermal distribution with a hot temperature of 200 eV or so

depending on intensity. Some of these electrons then leave the target as

an electron beam, creating the LIEMP effect as well as observable currents

in the ground plane FMM detector and a FC1 detector. The most energetic

electrons observed were 1.6 keV, with more typical energies of 600 eV

observed 30 cm from the plasma.

Analysis of the experimental data leads to well founded scaling

rules for the currents at le-6 torr and for the Faraday cup currents at

P'



both pressures.

7MM-current a Intensity 3 1 2

3/4
FCI current - Intensity

FCI energy = Intensity*

FCI current - FIM current

For the electric fields there is conflicting data with respect to

the theory. At le-6 torr the bulk of the data scales as

Field - Intensity 3 / 2

which is not easily made consistent with theory (- 1/2); however, one data

point at the very lowest intensity could be construed to bring the scaling

to the 1/2 power, consistent with the 3e-3 torr data which experimentally

scales as

Field - Intensity1/2

The electric field observations were made difficult by high

frequency components at low pressure.

The scaling as 11/2 is consistent with radiation from a virtual

cathode oscillator, but theory shows that these high frequency

oscillations are probably smaller than the quasi-static plume fields that
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radiate on the order of 20 times more in these experiments. We use the

quasi-static plume E-field scaling in scaling to higher laser energies.

The quasi-static plume field scales as (wavelength)1/3 at a constant

intensity. Thus there is a weak supression of these fields at shorter wave-

lengths. This means that electric fields created by CO2 lasers and shorter

wavelength lasers have little system effect from the field. Millimeter wave

lasers, however can create Megavolt potentials for isolated targets in space

and may be a threat. The laser must create a plasma for these effects to

become apparent.

The scaling of field with pressure is well explained by classical dE/dx

of the electrons in the background gas leading to reduced charge separations.

The electric field is reduced 20% per decade of pressure between le-5 and

I torr. This is an exponential reduction in the field strength with pressure

and consistent with the dE/dx calculation in the text. This effect, coupled

with beam propagation calculations, are well founded theoretically and

experimental inferences are consistent with this model.

Neither direct observation of the isotropy of the electrons, nor the

change of energy with pressure are available, since the Faraday cups were not

fielded on the pressure scans or at varying azimuthal angles. In future

work, placement of identical cups at varying angles and maintaining these

cups throughout the experiments is recommended. In addition, DD2 and RIM

data should be passively electronically integrated before recording to

eliminate digitization difficulties.

3
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Chapter 2

INTRODUCTION

An extensive experimental session was conducted to investigate the

behavior of Laser Induced ElectroMagnetic Pulses (LIEMP) parametrically

with CO2 laser intensity within a decade of 10 GW/cm2 . Parametric

variations were also made with background air pressure from I microtorr to

a torr. Twelve hundred (1200) data shots were taken with measurements of

electric fields on a ground plane outside a glass vacuum chamber, Faraday

cup measurements within the vacuum chamber 30 cm from the Copper target

and 30 degrees off the incident laser vector and current measurements in

the target plane were made with a Rogowski style monitor within a 3 cm

diameter of the target. Data was recorded on oscilloscopes and

subsequently digitized for integration and other analysis. The overall

experimental arrangement is shown in Figure 2.1.

The experiments were conducted at Los Alamos National Laboratory

using a 1.3 + .15 joule 10.1 ± 1. nanosecond CO2 laser by AFWAL/FIESL,

Technology Scientific Services and LANL personnel after preliminary

experiments performed at AFWAL and after joint planning with PRC. PRC

provided and tuned the Faraday cups. The incident laser pulse was

asymetric with a typical risetime of 2 ns and an average full width at

half maximum of 10 ns. Laser waveforms were monitored with a pyroelectric

detector and energy was monitored with a calorimeter. The incident

waveform is shown in Figure 2.2. The laser spot size was measured to be

.84 + .05 mm FWHM and intensity was computed for each laser shot.

4



Intensity variations were created using neutral density filters before the

100 cm focal length lens.

PRC was retained to perform theoretical analysis and deduce scaling

relations from the reduced data set. First the theoretical analysis was

done based on the parameter space of the experimentR using existing

literature and original calculations. The reduced data was then provided

by AFWAL and PRC analyzed the data for empirical relations and compared

the theory to the data. Theory and experiment agree well and form the

basis for an understanding of the complex plasma processes and scaling

laws to predict subsequent behavior of other systems.

The report is organized as the analysis process occurred. The

theory is presented in Chapter 3, the Data Analysis in Chapter 4, and the

Scaling in Chapter 5. Appendices are added for details not appropriate

for the main report. A detailed description of the experiments is outside

the scope of this report and interested parties are referred to

AFWAL/FIESL, Lt. Adam Bigelow.

5
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Chapter 3

THEORETICAL ANALYSIS

3.0 INTRODUCTION TO THE THEORETICAL ANALYSIS

Since the LIEfP and fast particle detector signals are caused by

fast electrons from the target, in section 3.1 we evaluate the threshold

intensities and gradient scalelengths required for various processes known

to generate hot electrons when an intense laser irradiates a target. We

conclude from these thresholds that the incident laser intensity in the

experiment is below the threshold for production of hot electrons by

parametric instabilities (the process of interest in the higher-intensity

laser-fusion experiments). Even allowing for the increase in intensity at

the critical surface due to "swelling", the intensity at the critical

surface is probably below the instability thresholds. But in section 3.2

we show that the threshold and timescale for rippling the critical surface

is exceeded, so that resonance absorption is possible. Resonance

absorption Is known to generate hot electrons.

Not all of the fast electrons generated (by whatever process) near

n - n escape very far from the target. Even when the target is grounded,
C

the population of hot electrons with velocities away from the target

creates a negative space-charge cloud, or virtual cathode, just in front

of the target. That space charge serves as a barrier for all but the most

energetic of the hot electrons. The self-consistent physics of the space-

charge barrier Is analyzed in section 3.3, and It is found that the

8
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barrier thickness is related to the hot electron Debye length, i.e., to

the density and temperature of the hot electrons.

The current of escaping fast electrons is analyzed in section 3.4.

There is no theoretical model that gives the 1.75-power scaling with laser

intensity indicated by the current loop monitor, but the analysis does

lead to electric fields scaling as observed in the experiment. (It may

be, as discussed in the data analysis of section 4, that the loop monitor

is shorting.)

In the experiment, time-resolved measurements were made of the

arrival of some of the escaping fast electrons at a Faraday cup 30 cm from

the target. Since the escaping electrons have to go over a space-charge

barrier, they are delayed (as compared with the transit times calculated

without barrier). In section 3.5 we show that the amount of this delay

allows estimating whether the target is in fact electrically grounded or

isolated; the delay when the target is grounded is small (it is calcuilated

in appendix A), whereas electrically floating targets give large delays

(calculated in Appendix B).

The fast electrons that escape beyond the barrier form a plume. In

vacuum this plume spreads under the repulsive forces of its own space

charge as it expands outward from the target. This is treated in section

3.6. The plume typically has spread from a relatively narrow cone near

the barrier to a broad (tens of cm) front by the time it reaches the

Faraday cup. The spreading is less when there is appreciable ionization

of a background gas, because background secondary electrons can move to

reduce the net space charge, i.e., the self-repulsion.

Ionization of background has a negligible effect for the 10-6 torr

"vacuum case," but when gas is introduced the plume is more roncentrated

9



(less spread by its space charge). is this concentration offset by

collisional slowing of the fast electrons themselves? At high pressures

of course the fast electrons are slowed and scattered and do not even

reach the detector. For intermediate pressures some estimate of the

collision processes is necessary and this is provided in section 3.7.

In section 3.8 we calculate the electric and magnetic fields of th.

escaping electron plume, and the motion of secondary electrons under the

influence of theme fields. What limits the radial excursion of secondary

electrons is the experiment timescale. Since they are slow, they don't

move very far (a few cm). After the pulse of escaping fast electrons is

over these secondary electrons move back into the region where the plume

was, since they are attracted there by the ions created by the ionization.

They overshoot and oscillate about the secondary ion cloud. This is also

treated in section 3.8. The space charge plume (fast electrons +

secondary electrons - secondary ions) may be approximately thought of as

an antenna, loaded by the time-dependent and space-dependent charge

density. This antenna radiates an electromagnetic field with frequency

inverse equal to the timescale of the plume. This is also treated in

section 3.8 and is distinct from the htgher-freq,,ency elect romAgnet to

components radiated from time-varying space charge (etc.) in the suh-

millimeter-size space-charge cloud of the potential harrier near the

target.

Later, in the chapter oin scaling of data (Chapter S) we bring

together various of the formulas derived in this chapter (3) to interprtt

the theoretical scaling of fast electron current, ctirrent density at the

Faraday cup, electromagnetic signals, etc., In conbanction with the

ob)served experimental scaling. It 4hould he noted that the liqer-

I l)



wavelength scaling of the LITRP signals and of the other measurable

quantities is completely contained in the dynamics of the electron plume

and space-charge layer. Once the hot electron temperature Th and the

escaping hot electron current density J are calculated from the laser

intensity I and wavelength X as in sections 3.1-3.5, the dependence of the

obeervables on I and A is completely specified, except that the weak

dependence of the function f on X (Eq. 3.52) is not known.

II1
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3.1 THRESHOLDS FOR VARIOUS PROCESSES KNOWN TO PRODUCE FAST ELECTRONS AT

LASER TARGETS

3.1.1 Density-Gradient Thresholds for Instabilities Generating Plasma

Waves

The ablation of plasma from a laser-irradiated target in vacuum

produces a region of nearly uniform electron temperature with a time-

dependent density profile approximated by

x + Cst
ni M ns exp( c t(3.1)

where n. is the density of the solid, c. is the sound speed in the plasma,

and x is the distance from the solid surface. For a CO2 laser

19 -3(A - 10.6 mm) the critical surface where w - tw occurs at n -10 cmp e

well out in the ablation region at all but the earliest times. The

electron density gradient scale height

1 3n -1't = (_.- T _) (3.2)

e

is then, on the spatial average, roughly of order

C cst , (3.3)

which increases from , 10 um at t - I ns to > 100 um at t = 10 ns. At the

laser intensities of the experiment,

I - 101t - 2 x 10 11W/cmr2

12



the plasma electron temperature is expected to be of order Tc M 7-10 eV,

with a coexisting hot-electron component of much lower density and much

higher temperature Th.

At least two instabilities are known to occur at sufficiently high

laser intensities, which can accelerate electrons to very high velocities,

comparable to the phase velocities of the associated waves. We examine

the threshold intensities of the ones with growth times shorter than the

-10 ns laser pulse of the experiment. In addition, resonance absorption

is known to produce hot electrons.

The instability with lowest threshold is the two-plasmon decay, or

2wp instability, in which the laser electromagnetic wave decays into two

electrostatic plasma waves in the vicinity of w - 2w, i.e., near the

"quarter critical" surface, where n = 1/4 n (Liu and Rosenbluth, 1976;

Simon et al., 1983).

A second instability is that of stimulated Raman scattering, in

which the laser electromagnetic wave gives rise to a scattered

electromagnetic wave and an electrostatic plasma wave, at a range of
-,t

densities n < n (Liu, Rosenbluth, and White, 1974).

In both cases, the plasma waves can grow to sufficient amplitudes

to trap thermal ("cold") electrons and accelerate them to velocities much

greater than thermal (Manheimer and Klein, 1974).

The threshold for the 2w instability in a density gradient with

scaleheight I is given roughly by

"vosc ( 2 1/2 (3.4)
2Th

with

13
.4.

.a-*p'.a -- ~~ .'£ . .' 4 %V' ]



eEpkI _/
v = 270 (/ca02(/10.6 tin) (3.5)08C M

and vTh - 4.2 x 107 VT (eV). The threshold then can be written as

I(W/cm 2)(A/10.6 um) - 1.6 x 10 IT (eV)/L(pm) . (3.6)

Both Tc and L increase with time during the laser pulse, but for

T - 8 eV and I 85 pm one can see that the threshold CO2 laser intensity

would be of order 1.5 x 101 0 W/cm2 . We use this example because a soft

threshold behavior for significant LIEMP signal is seen in the experiment

at vacuum intensity of order 1.5 x 10 W/cm 2, and Tc is expected to be

7-10 eV.

The threshold for the stimulated Raman scattering (SRS) instability

in a density gradient of scaleheight I is (Estabrook et al., 1980)

V'Osc > 1.4 2/337)

i.e.,

1(cm) > 10 1 I -3/4 (-IT A )-1/2

010W/cm 2 x .6 " (3.8)

This instability is thus quenched by the short scaleheight/low intensity

in the experiment.

3.1.2 Hot-Electron Temperatures from Resonance Absorption

Even in the absence of unstably generated plasma waves, it is well

known that resonance absorption near the critical density can generate hot

14



electrons (Forslund et al., 1977; Estabrook and Kruer, 1978). Here a

P-polarized wave incident at a slight angle from the local normal suffers

a resonance increase in the longitudinal E field of the wave near the

critical surface, corresponding to Landau-damped space-charge waves.

Quiver motion of electrons near the resonance leads to a drift and

acceleration of the electrons due to ponderomotive (wave pressure) forces

(Hora, 1979). See Fig. 3.1.

Several estimates have been made of how the resulting hot-electron

temperature, Th, should scale with intensity and wavelength. The first

one considered is (Forslund et al., 1977)

T - 70 T 1/3 [( I )( 2P1/3 (3.9)
10 W/cm 10.6 um (9

b4

The second (Estabrook and Kruer, 1978) is a curve-fit to simulation data:

5-

T 47 T004 2]0.42 (3.10) "h c 10 2)(.10 ol/cm 10.6 um

for IX2 values between 1014 and 101 7 (W/cm2)(Um) 2 . In all cases, Th and

Tc are understood to be in eV.

A third estimate (Albritton and Langdon, 1980) is

a 4 2 0.4 2 1 /Th 9 X 10 (fIx2T c for fIX2 < 1011 T3 2c (3.11) i

" 9 x 10- 7 (flA2 ) 2 / 3  for fI 2 > 101 1 T3 / 2  (3.12)
c

with f a numerical factor of order 0.3 representing the conversion of

laser power to hot electrongs, and with I in W/cm 2 and A in Pm. The high-

15
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Fig. 3.1 Resonant matching absorption. The sinusoidal line
represents the electric field E of laser light oscillating at
frequency w. The sloping surface represents a density gradient in
the plasm that increases toward the target. Because the light is

oblique (at anfle 6), it is reflected when the density of the plasma
reaches nc cos 0. Oblique light also has a component of its field

perpendicular to the surface, and that part of the field can tunnel
inward to couple with the longitudinal electrostatic field of the

plasma wave. This coupling occurs most efficiently at the resonant
matching point, that is, the point where the plasma density equals
n, and the plasma frequency w equals w. The steeper the density
gradient, the smaller the gapPbetween the reflection and resonant
matching points and the more efficient the absorption.

16
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intensity portion of this scaling law is similar to the estimate of Max

(1982)

Tb 30 [f-1( 'abs)( X )2]2/3 (3.13)
o10 1W/cm 10.6 ijm

with f a flux-limit factor for hot electrons, of order 0.1, and labs the

absorbed intensity.

All of these scalings predict Th - 200 eV for C02 laser intensity

of 1011W/cm2 and T. - 7 eV. We note that the mean-free path of an

electron of energy C becomes longer than the density gradient scaleheight

£ when E(eV) > 20(WTTiiY, and for anticipated 100 Pm gradients this

indicates that a soft threshold for hot electron emission should occur

around I (at n ) - 101 1W/cm2 for CO2 lasers. The observed escaping 'tail'c

of this hot distribution should be at energies several times Th because of

the space-charge barrier that forms to control the hot-electron escape

rate. Such circumstances appear to be more-or-less as observed in the

experiment. These scalings would also agree "reasonably" with the fast

electron energies inferred from Faraday-cup-arrival-time data in the LANL

experiment.

[At early times, one should note, the cold-electron temperature Tc

depends on I in a way not made explicit in the scaling laws referred to

above, in that the quiver energy of initially cold electrons gives a

temperature

T (eV) > 0.37 (_ X )2 (3.t4)
10 W/cm 10.6 i'm

but by the time a 5 ns risetime laser pulse has delivered appreciable

17



power, Tc has generally reached values an order of magnitude or more in

excess of this initial quiver temperature.]

Resonance absorption requires density gradients at a slight angle

to the direction of incidence. Less-than-optimal angles lead to lower

values of Th, and probably to fewer hot electrons. The steepening and

corrugation of electron density contours by the laser probably is

responsible for the generation of non-normal incidence from a laser-target

geometry in which the laser is initially incident normal to the target.

Corrugation of density contours proceeds together with filamentation of

the laser beam and its local enhancement of peak-intensity "hot spots" in

the laser irradiance profile (Estabrook, 1976), so that the peak intensity

at nc may be larger than the intensity in vacuum. Filamentary intensity

enhancement and rippling of the critical surface are discussed next.

18

S• • • •.............. .... o..•.o ••u ,°, °°"t~,,



3.2 FILAMENTATION: MECHANISMS, THRESHOLDS, AMPLITUDES, AND EFFECTS

Critical-density surface corrugations at a copper target can occur

on a time scale much faster than ion motion because one may think of the

electron density as ne - z(T c,Th)ni; cold or hot electron temperatures Tc

or Th can often change faster due to instabilities than can ni (Tripathi,

Ottinger, and Guillory, 1983). When the cold-electron mean-free path near

the critical surface is shorter than about A/10, this thermal instability

mechanism is more important than ponderomotively-driven filamentation

(Kruer, 1985).1* For a 7 eV plasma at n - n - 1019cm 3 , the thermal

electron mean-free path is about 0.1 Um.

The thresholds for thermal and ponderomotive filamentation of the

laser beam are, respectively [Kruer, 19851

I0 n 3 T 5 •02

10 W/ > 0.2 (e --- ) ~).~ (3.15)10 10 W/cm 2 z 2"

and

Io n10 > 0.2 -c TeV (100 um)(10.6 umr n1

10 2 T X(3.16)
10 W/cm 0

Both thresholds are exceeded for al, intensities in the experiment. To

demonstrate filamentation it suffices to estimate the e-folding length for

the weaker process and show that it is already adequate to yield order-of-

*The reader is cautioned, however, that the calculation on which this
conclusion was based ignored radiative heat transport compared with
conduction. Our experience with simulation of comparable plasmas
indicates that radiative heat transport may dominate, and tends to smooth
out temperature perturbations. Hence, thermally-driven filamentation and
ponderomotively driven filamentation may be of comparable importance.

I.,

19



magnitude transverse modulation of the laser intensity.

An estimate for the gain length (e-folding length) of laser beam

ponderomotive filamentation near ne M nc can be made from the review by

Palmer [Palmer, 19721:

-I ~101

(Unm) - 28 (10 0 (10.6 Urm) Xv (3.17)
0

with the fastest growing filaments there having transverse dimension

1010 c2 1/2

k-l(um) - 5 T1 / 2 (10W/cm (10.6 Pm) (
eV 10X

10 2One can see that for expected parameters (TeV - 10 eV, I0 Z 10 10/cm

I 100 Um density scaleheight) the filamentation, on transverse scales of

order 15 um or less, can e-fold several times in the course of getting to

the critical density. If the 'unperturbed' vacuum profile of the laser

intensity has peaks and valleys of order 10%, these may totally filament

the laser beam and easily lead to at least a doubling of the peak

intensity, quite independent of the resonance 'swelling' of intensity.

During the laser pulse (~10-8s), copper ions moving transversely at

the sound speed can move a distance of order

d(jm) < 16 T ,
eV

which is consistent with plasma filamentation on the same scale as the

filaments of laser intensity.

20



3.3 SPACE-CHARGE LAYER NEAR AN ELECTRON-EMITTING TARGET IN VACUUM

The potential energy of an electron in a space-charge potential

4(r) is U(r) - -e#(r). Since the Hamimltonian 1/2 mv2 + U is a constant

of motion, a two-temperature Maxwellian distribution of electrons (nc =
-3

cold electron density, cm , nh - hot electron density, nc + nh - n) has

the form

1 -3 2 + U)/To

f(vzV 1 ) 3/2n e474 c
e

1 2  (3.19)

h
Since vmv + U)/T2

Since v 2 v2 + v2 , the distribution remains isotropic at all z where thez

Maxwellian model is valid. At point r where U - U(+), the cold and hot

densities are expressed in terms of densities at U - 0 (taken at

- 0) by

-U(r)/Tc -U(r)/Th

nc(r) - ncoe , nh(r) - nhO e . (3.20)

We will subsequently derive a correction to nh due to hot electron loss.

Since we are interested mostly in values of U >> Tc, we will ignore the
+

cold electron density everywhere except very near r - 0, where it is

mostly neutralized by ions anyway.

Poisson's equation,

V2 # - + 4we(ne - n )
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can be written in terms of scaled variables, in spherical coordinates,

S= e+/T = -U(r)/T n /n = C
h h hc n

2 1/2
x r/AD x AD w (T b/4wn ne ) 1 T c/T = CT

I a 2 i
S2 - (x r-x + 2 sine -(sine@ ) = e , (3.21)

x x sn

where we have ignored the cold charge density since it is very well offset

by positive ions, whereas nh is not. For our problem, * 4 0 everywhere.

This model is valid from z - 0 (e = w/Z), which we take as a ground plane

(( - 0), out to the first minimum of *I (maximum of U); beyond that we will

assume only outward-bound hot electrons and will use a different model for

n(M) as a result.

The transit time of an electron emitted with normal velocity v0 at

the source z 0 0, U 0 0, is

r r

- d = r dr , (3.22)

0 0 ;2v0 u()

where u(r) = 2U(r)/m = - 2e*(r,e)/m evaluated in the direction (0) of

travel; it is assumed that for the fast electrons of interest e does not

change appreciably during the motion.

11(r) first increases from zero, and then decreases, i.e., the

electron is retarded at first by the hot electron space-charge cloud

centered at r > 0, then accelerated outward once It has passed throughq

the cloud.
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m

Fig. 3.2 Potential vs distance from ground plane, in direction of
detector.

Electrons born with v0 greater than the escape velocity v.,

v2- mx u, (3.23)
r

reach a detector at large r, while those with v 0 < v do not. The transit

time of those that do reach the detector is a function of vo, obviously.

The electron phase space is shown In Fig. 3.3, along with f(vr) at various

r.

Fig. 3.3. Electron phase space and radial velocity distribution.
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Since some of the hot electrons do escape, and these are balanced

"in the large" by an influx of cold electrons along the ground plane, the

potential at large distances r >> rq ts that of an electric dipole: the

negative charge -Q at z - + r and the posittve image charge 4<) atq

z - -r , resulting in
q

4(r >> r ) 20rq cos 8 (3.24)
q 2r

If the inductance or capacitance of the target-grouiidplane system

prevents or slows the influx of cold electrons, the potential also can

have a monopole -Q/r contribution (which goes aver to a form like -Q/r q

near r - 0).

From Ftg.3.3,one can see that the fast electron density at r < rq

is given by

mf f(vr)d 2vdvr

vr--v|(r)

2 2
with v2(r) -v - u(r) and u(r) - 2U(r)/m, rather than by

E2

I f(vr)d2vIdv - nhOe-41(r ),T
Ir h

This restilts in a corrertion:

"-U(r)/T v 12 - 1'(r)

h c

S -W 2
(erfc z e (w),

z

KiN"



i.e..

nh n n 0h( 1 _ erfc (Mj j)1 , (3.25)

vhere

* *O<o.
< #-

We mote for later reference that erfc(O) - 1, so that at 0 - ** Eq. (3.25)

gives a factor of 2 reduction in nh, as can be expected intuitively from

Fig. 3.3. At * - 1/2 *, erfc < 0.48, and at # - 0 if 1#10 > 3 the erfc is

< .O85, i.e., a correction of < 4.32 to the uncorrected nh.

For r > rq

m 2
n f f(v,r)d vIdv r

vr)+v2(r) _ r

2 2v2 (r) -= -€ r

Continuity (along with the quasistatic assumption an/at a 0) gives

2 2

r n<v r> - nvr >1r (3.26)rIr q

in spherical geometry, where < > means an average over f(v,r) at r, i.e.,

<vr > - f(v*r)vr dv rd v

and suobscript I refers to r - rq. One can show that for Maxwellian hot

electrons at r - 0, this results in

-JAU(r)I/Th r 2
nh(r > r ) - n (r - r ) e -- ) .(3.27)
h q h q r'
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where IAUIJ is the change in potential between rq and r.

[AU - U(r) - U(r q) is assumed to be negative, i.e., the electrons are

accelerated outward.] Thus in this exterior region one has in dimension-

less variables

S( 2 2a a 1 sin 34 _x 2 2*(r )4
a__ 2__ q q

T+ (x 2 e (3.28)

*(rq)

since nh(rq) - 1/2 nOhe q [*(rq) < 01. At large r, of course, + + 0

but exp(2*(r )) is small so that V 2 0 as expected.q

To estimate the magnitude of *(rq ) and the location rq, we consider

the I-D analog of the problem, with the approximate (e*) form of n:

d2 e , x < x (3.29)
dx q

with boundary condition *(0) - 0. The behavior of * at large x will be

incorrect because of both the 1-D model and the altered form of the right-

hand side. We note that a one-parameter family of first integrals is

*(x q)
dx_ - F2(eV - C), 0 < C < e
dx- -

and

*(xq) • ' • 0. (3.30)

Letting w - reV -C, we have e w2 + C and (3.31)

_-w w2 + C
dx

Since w(x-0) - [ -- C > 0, the solution is
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w - C tan (k - ax) for ax < K , (3.32)

where

S- tan-I( :) and a - C-2' . (3.33)

Then since w2 a# - C, we have

* - tnC - 21n cos(i -ax) x < x - c/a. (3.34)

--q

When x - i/a the In term is zero and *(r ) = InC < 0. When x - 0,
q

the condition * - 0 requires cos2 K C, which is identically true. The

value of C then is determined either by the electric field at the ground

plane,

-xj . -V277 -C7 (3.35)

or by the density at xq: *q -C < I is the dimensionless density there,

i.e., the ratio of nh at Xq to nh at x - 0.

The dimensionless potential * is shown vs x in Fig. 3.4.

/
/

/

A LC - .- : .10

Fig. 3.4. Space-charge potential in 1D.
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The position Xq is then / cos-B where N - C - n(x q)/n(O) < 1.

For N << 1, cos /2 and r q - / D where XD is the Debye length

of hot electrons at x - 0, as defined previously. The potential barrier

height is

je*l - Thtn(I/N)

at

r q= 2 N XD (3.36)q

for the grounded target plane in l-D. To the extent that rq is less than

or comparable with the spot size, the 1-D analysis should be rather

realistic for r < 1.5 r~ q

Note that when the potential barrier height is a few times Th the

number density of hot electrons at and beyond the barrier is quite small:

N - nh(rq)/n(o) - e l << , (3.37)

and their mean energy at large distances, assuming 4 + 0, is of order

<Th tn(l/N)>.

We note in passing that the dynamics of outbound fast electrons is

nearly collisionless near and outside the critical surface, since their

mean free path is

Th2 /n ITh(keV)] 2 n
Xmfp(cm) 4 h 1.6 h + ZT)jn (3.3n)

we (1 + Z)+nA
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for CO laser n . This is easily seen to be longer than a 100 um density
2 c

gradient scaleheight once the typical hot-electron energy Th exceeds about

160 eV (for Z - 3). Hot electrons then are decoupled from the plasma when

outward bound, except for electrostatic retardation; only the inbound ones

lose their energy collisionally to the dense cold electrons and to

inelastic processes.

The fraction of hot electrons near the critical surface which

escape over the potential barrier depends on:

(a) their probability of collision before escape

(b) the ratio of potential barrier height to Th

(c) oscillations of the potential barrier

(d) the angular distribution of their prod,,ction.

The last of these depends on the degree of corrugation of the

density contours near the production region. Many hot electrons may

"reflex' through the strong-field region, i.e., be reflected by the

potential barrier, scatter in angle in the denser plasma, and be re-

accelerated on a second passage. About half of the hot electrons produced

near nc probably enter the dense plasma and/or solid at n < n and lose

most of their energy collisionally to the plasma, increasing Tc. The

probability of momentum transfer collision of a fast electron with birth

energy E0 traveling out from the source in direction 0 in a distance z is
0h

approximately

[1 + Z(T )]secO dz n(z) Th 2

Pm 2zcO n C - U(Z)Pimz1.6 T h0 c Oz

when this is < 1, from Eq. (3.38). Here £Oz c C cos 2 0. The minimum of
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COz - U(z) occurs in front of the plasma, where n(z) << nc. Near nC9

where U/Th is small, the square bracket is nearly Th/C0cos 2 and one thus

has

1 + Z(T ) z n(z)
P(ZCe) - C sec5 8 f dz when < 1 (3.40)2 0 n

1.6 c0 c

with £0 in keV. The free-escape probability can then be estimated

approximately as

P esc(Z ,',e) - 1 - PAm(ZEo0 e) * (3.41)

The integral of n/nc is approximately the density scaleheight.

Because of the strong 8 dependence, one can estimate the 0-width of

escaping fast electrons of energy C0:

cos Ae(£0) 0 1.2[t(cm)] 0 2 [C 0 (keV)] (3.42)

(We have taken Z - 3 as expected in the copper blow-off at 7-10 eV.) For

C 0 Th no particles escape over the barrier because Umax Z 3 Th. For

0 Ž 4 Th - 1 keV and L "- 100 um, this expression implies a plume angle of

order 60bx [ 0(keV) OoI7 and an escaping fraction

n fe/nh exp (- U /T) (3.43)

for an isotropically produced Maxwellian. The barrier spreads the angular

width of the electron distribution passing over it, but recontracts it on

the outward-acceleration side.
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Fluctuations in the barrier height typically occur on timescales

2T/w (hot), which can be written in terms of the escaping currentp

approximately as

Tosc(no) - 0.35 a0(mm)[e(kev)J1/ 4 [Ib(A)]-1/ 2  (3.44)

where a0 is the radius of the space charge cloud, of the same order as the

radius of the laser spot. The magnitude of these fluctuations cannot

easily be assessed, but because U IT is typically around 3 or 4, the
m h

ratio of current fluctuations to steady current is around 3 or 4 times as

large as 6U/U and could thus be significant. These current fluctuations

on timescales of order 1/2 ns can lead to radiated (non-space-charge)

E-fields with correspondingly high frequencies, superimposed on the fields

with pulse-duration timescales. This will be discussed further in section

3.8.

The foregoing calculation of the space-charge barrier is

appropriate in vacuum, where ionizing ambient gas cannot provide charge

neutralization by driving out newborn plasma electrons. Except at very

high pressures and hot-electron current densities, ionization by hot

electrons is probably negligible, as considered further in section 3.7.

But photoionization from the heated target is not necessarily negligible

at pressures of order 10-3 torr and above. Using the approximate formula

for photoionization rate

nI0 (W/cm 2) a (cm2)

1.6 x 10-19 < 0 (eV)4

with the radiated blackbody intensity
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I (W/cM 2 2.5 x 106 T• 4 r• 2 2 (3.46)

in a blackbody spectrum with emissivity e and photon energies peaking at

$ ~3 T, and with photoionization cross section of the gas

a i 2 x I0-17 cm2  (3.47)

and gas density no a 3.5 x 10 16P(torr), we arrive at

(1010 cm'3 per ns) 2 1 2 3 (3.48)
r (cm2) 3 x 10-3 torr

for r »> r 0 , the irradiated target spot size.

At 3 x 10-3 torr, this could lead to a ball of ionization (falling

off in density at /r 2) comparable to the hot electron density

-ii(r )
nh(r) - nh(O)e q (r /r)2

h h q

after times of order 5 ns, if nh(OMr 2 3 x 1012 cm-1 (for * = 4).
h18 -3 -2

In fact, however, we estimate n h(0) - 10 18cm3 and r q- 102 cm, whichh q

would imply photoionization density of order 1% of the fast electron plume

density at small distances (10-2 to 10 cm).
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3.4 CURRENT DENSITY OF ESCAPING FAST ELECTRONS

If one assumed a current density of fast electrons (at the target)

related to the hot-electron temperature by the Richardson equation, J

would scale as Th2

J(A/cm2) - 1.6 x 10 [Th(eV) 2exp[- ee m /T . (3.49)

[For Th scaling as 11/3 (Eq. 3.9) this would give a frequency for the

virtual-cathode-oscillation component of the LIE4P signal scaling as 11/3,

for the vacuum case.] But, in fact, the current densities from electron

acceleration at the critical surface must be less than the cold electron

source rate, rather than having their saturated values. Their current is

given from the acceleration flux across the E-field layer at the critical

density, and this is limited by the cold electron thermal flux

Jth(A/cm 2) - 1.68 x 107 [Tc(eV)]l/2(10.6 u/X) 2  (3.50)

so that the hot electron current density beyond the barrier is at most

limited to

J(A/cm2 1.68 x 107 (10.6 tim/X))2 [T c(eV)] /2exp[- e4 m /T h (3.51)

The cold electron temperature of the copper target plasma is limited by

radiation,

aT4 4 < IL T (eV) < 17.8 1 1/4lo3.52
c -L c 10 W/cm 52)
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(We use IL to denote the incident laser intensity, to avoid confusion with

current.) Combining (3.9), (3.41), and (3.42) gives

J(A/cm 2) < 7.t x 107 (10.6 Pme2 [ I L 1/8exp[- e4 /Th]
10 W/cm

as an upper bound on J due to the limitation on electron supply.

But an even more stringent limitation comes from the capacitance of

the system, i.e., from the timescale for the ground plane to resupply

conduction electrons to the target as it loses fast electrons over the

space-charge barrier.

Considering the path of an accelerated electron as part of the

circuit by which current is retirned, one has

(a) the accelerating region at the critical surface, treated as a

battery,

(b) the nonlinear capacitance of the space-charge barrier, the

thickness of which is NADh (N is a number of order 3, and

x h is the hot-electron Debye length in the layer),

(c) the inductance of the vacuum path of the escaping hot

electrons in the 'fountain', until they return to the ground

plane. (The fact that ý= E in this region makes it

inductive.)

(d) the resistance of the skin-depth conduction layer in the

copper ground plane.

See Figure 3.5.
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The capacitance is of order

C~p) - 185 n~1O 00eV 1/2 r02
0 185 8c-3-T hr 2 (3.53)

The inductance is of order

L(nH) - (path length, cm)

The skin depth in copper (conductivity 5.88 x 107 Mho/m) is approximately

-4 Tr 1/2

8(c) - 3.3 x 10- (2.5 .s)" (3.54)

I * ..
" Wy..-, w WV..

Fig. 3.5. Equivalent circuit of hot electron paths from a grounded
target, showing capacitance of the hot-electron space charge layer,
inductances of the return paths of escaping hot electrons, and
resistance of the cold electron currents flowing in the ground
plane.

where Tr is the laser pulse risetime (ar /2.5 ns - 1). The resistance of

the copper out to radius r is then

R I dr
r0
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(r 0 is the radius of the space-charge cloud, of order 1/2 mm); i.e.,

R(fl) = 5.z x io- 3 (2.5 ns)1/2 TI En (3.55)
r r 0

(where the square bracket is unity for r = 1 m.)

The circuit relation can be simplified by approximating the

distributed circuit as a lumped circuit with a typical path, i.e.,

assigning typical values to L and R (guessing appropriate path dimensions

for the hot electron plume). The analysis will turn out to be somewhat

insensitive to this, because the capacitance will he found to dominate

(though not by a large margin). The circuit equation

1

LI + RI + f I dt - V(t)
C

when, Fourier transformed, becomes

(- iwL + R + 1-- I(W) = V(W)

or

I ~ (R -A--+ I r l- v (3.56)
T

-1
with T - w- T the laser risetime. From a typical 20 nH inductance

and a 2.5 ns risetime, we get

L/ - 8- , (3.57)
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T 018 -3 T 1/2 2

T/C - 14 " r(10 cm h /LI (3.58)
% T100 V r0

R ~ 4 1x 0-3 (2.5 ns) 1/2 (3.59)
T

r

When T/C dominates, we should expect capacitively limited current

I " CV/T, or

c2

7 .5. s)( 1nh 100 eV)/2( em r 0  2
I (A) - 72 2 ) 02 V (3.60)

Cr 0 cm

which scales as (nhTh )1/2 since e# is a few time Th. This results in a

current density at the potential barrier of

n T /

21 3(2.5 ns)( nh Th /
Jc(Alcm2 1 r-0~ I0 r ''O8 3TML"Y) (0.61)

wr0r 10 cm

for T/C > L/T, i.e., for capacitively limited current, and for

e m/Th - 4. The inductance L of an average current path is not accurately

known, and larger currents than this capacitive limit can be drawn when

the risetime T is tuned to /L-C, i.e., when resonance occurs. This iq
r

nearly the case (probably within a factor of 2) in the experiment, but the

resonance should be quite sharp because the resistance is small.

Note that since e4t is a few times Th, If we assume the scaltin

Th ~ ~ (L21/3,

hL

as in Eq. (3.9), the hot-electron current density at the space-charge

barrier in Eq. (3.51) would scale as
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nh/2(" 2) I/6
h L

One can make an approximate dimensional estimate of the hot-electron

density, nh, near the critical surface (or quarter-critical surface when

they are generated by the 2 wp instability) as follows: the energy flux

of hot electrons,

nv T nT 31 2

h h h h h

is some fraction f of the laser input energy flux, 1l. The fraction f

appears, in computer simulations, not to vary strongly with ILO although

it my increase with A. Thus if one assumes the Th scaling of Eq. (3.q),

one has

1/2
nh L f(M)/A . (3.62)

This given a capacitively-limited current density at the target qcaltng an

I - f(1)A I l 1/2 -1(.63)
C L r

until T r becomes a- small as the IL-C ringing time, where a sharp regonance

my occur. For shorter T than this, the current is inductively (or
r

otherwise) limited and scales with Tr. The v'-C time scaleq as

f ( ) - i !1 / 4 -5 1 ! 2 ,



which is nomewhat nhorter at long vavelengths and is almost independe'nt of

intensity ( I/24
L

It is appropriate to mention here, however, that the experimentally

observed scaling of fast electron current, if the current loop monitors

are in fact measuring this, appears to scale as IL to a power near 1.75,

rather than as 1I/2 as implied by the capacitively-limited current model
L

of this section. The electric fields measured, on the other hand, do

scale as approximately 12/3+ as they would based on the capacitive-limit

theory presented here. (The "+" is accounted for by the slight increase

of cold-electron temperature in 9q. 3.9 with laser intensity; T IL/4.)e L

There is no theoretical basis for total current proportional to 1 ,
L

unless Th 1 .i"25 (rather than T a 1 1 /3+) and J is not capacitively
h L h L

limited. In the next %ection and in section 4, we will argue from fast

electron transit times and arrival-time distribution that Th appears to

scale much more %lowly than IL-

39

•, ,,e'.'• ,'¢','•: •; r.,';'•.,, •- .7.r _ ,.;... ,•vo.A .. ;... ,...i..• .•....,.. .. •_'.7 -"•-• -"%



3.5 FAST ELECTRON TRANSIT TIMES FROM ISOLATED VS GROUNDED TARGETS

3.5.1 Mapping of Velocity Distribution onto Arrival-Time Distribution
t 0,

Fast electrons are born at r = 0 with velocity distribution f(vO)

(for velocities in the direction of the detector). They move in a

potential well U(r,t), slowing down as they go toward the detector. When

U(r,t) has its t-dependence much slower than an electron transit time,

there is a well-defined escape velocity ve . Electrons with v0 >> v.

arrive first, and those with v0 a vy arrive last, after a transit time

T = T (r,v ), where r is the distance to the detector. The dN particles

between v0 and v 0 + dv 0 arrive (in reverse order) between T(v 0 + dv) and

T(v 0 ). The rate of arrivals is thus

dN dN/dv0 f(v 0 )

•-d -dr/dv0  ldT/dv0o

since dT/dv0 is always negative (at least when U is nearly constant). The

transit time (for nearly constant U) is

r 2 2 2

T r dr with v 2 v --U O(r)
"0v 0 m

for a monotonically time-varying U this generalizes to

dr with dv I aU

0 - mar

evaluated at r,t(r) for each r of the integration.

If particles are born at r - 0 during a range of values of t, their

arrival distributions are superimposed:
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dN f 1(v (Vt - T(v0 )) dt
dt • IdT/dv 0 1

If U(r,t) is slowly time varying, dr/dv0 must be evaluated at t. If

U(r,t) varies on the same timescale as T, more convoluted measures are

required.

3.5.2 Target Potential and Fast Electron Transit Times

In Appendix A we show that for the self-consistent dipole

potential, that is, when the liberated hot-electron space charge is

exactly balanced by a positive image charge, the unperturbed transit time

of electrons

'To r/vo (3.64)

is modified only by the addition of terms of order rq/vO, when

v -2 / A is unity or larger (i.e., for the faster, earlier arrivals).

Since rq << r is expected, these corrections are a few percent for the

early arrivals. (rq is the "charge radius," i.e., the distance from

ground plane to the most negative potential.)

But if the capacitance and inductance of the target and ground-

plane system are such that the image charge cannot completely match the

emitted electron space charge, then the target is at a negative potential,

rather than zero as in the dipole model. In that case even relatively

early arrivals will be delayed, as we shall see presently. We refer to

this as the monopole case (in contrast with the dipole case).

In Appendix B we show that for reasonably early arrivals with
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A - 1, the unperturbed transit time in the monopole case is multiplied by

the factor 1l + (l/A):

t(A > 1) - L + (3.65)

where again v/v -/ 2 A and v• is the escape velocity. But in the

monopole case v. is determined by the net charge (i.e., the well depth),

whereas in the dipole case v. was determined by the self-consistent

potential barrier height at a distance of several Debye lengths from the

target.

When T is written as T - (r/v 0 )F(A), one has

dT _ T + r aF 2v 0  T 2r aF
dv-_- v • +2 -v 0  v - (3.66)

0 0 0 V~ C £

where one always has a monotonic F(A) > I and (aF/aA) < 0, since

Lim F - 1. In terms of the arrival time distribution dN/dT, it is T
A*"

(rather than v0 or A or v ) that is the measurable independent variable,

and so T - (r/v 0 )F(A) must be solved for v0 (T) and Eq. (3.66) must be

expressed in terms of T. For the very first arrivals (v 0 >> vC), which

are negligible in number for a Maxwellian velocity distribution, T - r/v 0

so

dT/dv0  -r/v02  . -rT 2 /r 2  . -T2/r (3.67)
0 0

and 1 2 2 -2
- m0_T - rt Th

e e (3.68)

giving an arrival time distribution which begins as
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dN r a/.r2P(T - d- - e (3.69)

with

r .2 /Th (3.70)

This is non-expandably small as -T 0 but becomes significant at

T - T (3.71)
1 Th

i.e., at v 0 WT /, if the corrections (F) to free-streaming have not

already become important by the time the arriving "vo S" have dropped to

this value. In the case of the self-consistent dipole potential,

electrons with this nearly thermal speed are all reflected and never

appear at the detector, so even before time T1 the arrival time

distribution P(T) begins to fall below the unperturbed values of Eq.

(3.69). In the case of the monopole potential due to net charge imbalance

Q (which depends on circuit conditions at the ground plane), thermal-speed

particles may be transmitted to the detector if Q is small enough, and if

no dipole potential barrier reflects them. Generally, the highest barrier

determines v., ad only v0 > v. are detected (which implies that at least

by time T - r/v, the arriving pulse has significant dispersion so that it

has values below the curve of Eq. (3.69) in Figure 3.6).

i/I

Fig. 3.6. Arrival-time distribution for a Maxwellian burst
at t - 0, without retarding potentials.
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The technique just described for inverting the arrival-time

distribution to infer the energy distrtbution of the fast-electron source

is useful only when the source duration is short compared with the

arrival-time distribution. When both the source strength and the source

distribution of energies vary with time on the same timescale as the

arrival-time distribution, not enough information is contained in the

latter to infer both the source strength and the temperature; the mapping

is a many-to-one mapping.

When the source energy distribution can be approximated as fixed,

however, one can again in principle invert the arrival time distribution

to infer source strength provided the delay introduced by the potential

barrier is small; each arrival moment t samples velocity v of the

distribution weighted by the source strength at t - L/V.

If the source flux is

F(v,t) - S(t-) f fI(v)vddv1  (3.72)

with fI(v) the velocity distribution integrated over V., then the arrival-

time distribution is proportional to

P(t) - r S(t - L/V)fI(v)vIdv* . (3.73)
0

Dropping the subscript I and transforming to the variable T L/v this

becomes

t
P(t) - r S(t--)G(T)d , (3.74)

0
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where

2 3G(T) - (f(v)] i LvL/T . (3.75)

Because this integral equation is a convolution, it can be formally

solved by Laplace transforms. Denoting the transform of G(T) by G(s),

that of S(t) by S(s), and that of P(t) by P(s), we have

F(s) - S(s)G(s) (3.76)

so

S(t) , (3.77)

whereZ-1 denotes the inverse Laplace transform operator.

Shown above the t axis in Figure 3.7 are the orbits x(t,t') of

electrons leaving the target at time t' and detected at x - L at times t

and t + dt. Shown below the t axis are the velocities which lead to

detection between t and t + dt, for electrons born at t', over a range of

t' values from 0 to t or t + dt. If one imagines the source velocity-

times-density distribution as a product of hot electron density nh(t') at

the source times a velocity distribution (with unit area) f(t',v), the

domain of this function is the lower half-plane of Figure 3.7. The

density of the orthogonal cross-hiatching in the figure represents the

height of nh(t')f(t',v) on the strip of (t,v) space, for a pulsed source

with a typical f monotone-decreasing in v.
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Figure 3.7
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However, in modeling the integrand of Eq. (3.72) by Maxwellian or

power-law velocity 'tails' with T - L/v, one mast take heed that there is

only a finite region in (t,t') space on which the integrand is nonzero.

The power-law energy distribution, which gives simpler Laplace transforms

than a Maxwellian model, has both a minimum and a maximum velocity for its

applicability; and fast electrons cease to originate from the target very

soon after the laser source is turned off. This delimits the region of

nonzero integrand as shown in Figure 3.8, and the (infinite-interval 0-")

Laplace transform is not that of a power, but of a function which is a

power-law inside the parallelipiped of Figure 3.8 and zero outside it.

This complicates solving the convolution integral equation of the first

kind (Eq. 3.74) by the Laplace-transform procedure.

For t > L/v (as in the region of nonzero P(t) in themax

experiment), the integral representing the arrival-time distribution is

P(t) frvnh(t-¶)f(v - L/T)dT/¶ 2 , (3.78)

with upper limit equal to the minimum of t and L/vmin, and lower limit

equal to the maximum of t - Tp and L/vmax. (See Figure 3.8.)

The formal Laplace inversion of this to give S(t) is

S) X [ P( (3.79)
Xf(LIT)T

when it exists.

For a "constant" source strength during the pulse duration T with
-p1

an energy distribution f(c) Z C between cmin and c max' one can easily

show that the arrival time distribution P(t) has the form
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Z >± :source/
L o0 ,

-,- -
p41n

Mlax

t

Fig. 3.8. Integration region in t,T space. Integration to give
F(t) covers the shaded arg', where the solid vertical line
represents the instantaner,us value of t.

"P(t) Min(tL/v min - Max (t - L/v m

shown in Figure 3.9.

In a typical data example (Figure 4.4d), we have (L - 30 cm)

L/v mi 30 ns, L/v ma 20 ris, rp 0 10 ns. From L/v inwe get a minimum

Vmm" mal p I I

energy escaping over the potential barrier C mi - 280 eV, and a maximum

energy max 640 eV corresponding to the first arrivals. If we assume a

per law fe from in to C a and correlate this with the

P-t aMn ,/Vn)-a ( - p Vmax)

temperature of a Maxwellian distribution most closely resembling this
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power law, i.e., f a exp (-e/T .). we get Th - 435 eV, based on the

assumption of a source strength uniform in time over the pulse length,

with approximately constant Th.

F t) JýorV co n s4antA

W~ih V-2 11
L LI

Fig. 3.9. P(t) for "constant" source over T and f v- froi min
to vmaxe
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3.6 RADIAL SPREADING OF THE FAST-ELECTRON PLUME

The radial expansion of the fast-electron plume under the influence

of its self-field depends on the degree of charge and current neutraliza-

tion by background ions and electrons, and can be approximately described

by an envelope equation (Lee and Cooper, 1976; Lawson, 1975) when the

expansion is not so extreme as to make v > vr z

At very low background pressure, e.g., 10-6 torr (the "vacuum" case

in the experiment) the space-charge and current of the fast electrons are

not neutralized, and electrostatic repulsion forces dominate over magnetic

pinching forces by a factor of c/v i. For that case the magnetic field

can be ignored in the beam envelope equation. More generally, the net

expansion depends on the parameter

2 2S(I - f - /c 2 (3.80)

2e b
mvb

where r 0 is the radius of the beam of fast electrons at the space-charge

virtual cathode source, no is its density there, fe is the fractional

neutralization of spsce charge by ions, and vb is the speed of the fast

electrons outward from the source.

In terms of the parameter K, the beam envelope equation, neglecting

any rotation and any slowing down of the beam, is approximately

d z

For initial conditions dr/dz = 0 at z = 0, this has the implicit

solution
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/tn(r/rO) 2
7 z_ f r exp(t 2)dt . (3.82)
2 r 0 0

Numerically, when f << I we finde

---7 = I(A)/34c(keV) . (3.83)

Since I - 3A and C - I keV typically in the experiment, AK77 is typically

of order 0.3. We show tabular values of the integral in Eq. (3.82) as a

function of r/r 0 in the following:

r/ro: 10 50 100 300 103

f: 4.2 15.35 27.4 70.9 209

Thus for r 0 - 1 mm, one has a predicted plume radius of order 30 cm at

z - 24 cm when there is negligible space charge neutralization. Although

this large spreading violates the paraxial assumption of the envelope

equation, we take it as indicative of the expected spread, in the vacuum

and short-pulse limits. Only after ionization of background neutrals can

build up f 1 1 does the remainder of the fast-electron stream remain
e

focused.
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3.7 FAST ELKCTRON SLOWItNG-DOW4 AND IMPACT IONIZATION IN LOW-PRESSURE

GAS

The range of the fast electrons in air or N2 is roughly

r - 7 cm/P(torr) for E 1 keV

and

r - 42 cm/P(torr) for C - 5 keV

so at P £ 10 torr where the observed EM fields are strongest, the fast

electron range is longer than the distance to the detectors. At the

higher pressure P - I Torr (where the LIEMP effect is weak) the fast

electrons are stopped before reaching the Faraday cup. This clearly

affects the high-pressure scaling of the LIEMP fields from the fast-

electron emission plume, but does not, per se, alter the fields due to the

localized hot-electron space charge layer near the target.

The ionization by the fast electrons can be represented by

dn

1 n0 f of(e)v(c)ff

4.7 x 10 9P(torr)n fe(cm-) at I keV

or
dni -312S(cm- 3/nx) - 1.56 x 10 P(torr)J(A/cm 2) at I keV

where .1 is the fast eleetron current density.

The tons qo produced can move only on a slow (ton motion)
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timescale, while the secondary electrons may be expelled to fairly large

(cm or meter) distances on ion timescales by the (predominantly) space

charge field of the fast electron beam. (At large currents, the magnetic

field of the beam tends to limit the radial excursion of the

secondaries.) The plume space charge is thus neutralized on a timescale

TEN (ns) -O.2/P(torr)

when this is less than the beam pulse duration and when the secondary

electrons are expelled. For the low pressures at which the peak LIEMP

fields yere seen, one has TEN ) Tfe, i.e., space charge neutralization is

incomplete. Once the pressure is large enough for the neutralization to

take place in -1 ns, the space charge electric field pulse is

significantly shortened and corresponding E-field-driven effects should

become mutch less significant.
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3.8 PLUME ELECTROMAGNETIC FIELDS AND THE NOTION OF SECONDARY ELECTRONS

IN THE COLLISIUNLESS LIMIT

3.8.1 Notion of Secondary Electrons

A simple picture of plume space charge neutralization in the low-

pressure regime assumes rapid radial expulsion of the secondary electrons.

As the beam space charge becomes compensated by the positive ions, we

might ask whether the magnetic field of the beam will be strong enough to

confine the secondary electrons inside some beam halo well before complete

electrical neutralization is obtained, since Er can be less than B.c. We

estimate the effects of the magnetic field in this section; for beam

parameters of interest we conclude that "free" escape of the secondaries

from the beam region is a reasonable assumption through much of the charge

neutralization phase at pressures below the transition pressure estimated

subsequently.

At pressures well below the transition pressure, the secondary

electrons might accumulate enough density near the beam to be a potential

worry as far as two-stream type instabilities are concerned. But typical

orbits place the average position of these electrons far from the beam

region, so they cannot contribute significantly to the cascade ionization

inside the beam of low pressure.

We consider the fields and secondary electron motion that would

result from a Bennett beam profile and a constant beam radius. Since the

impact ionization by fast electrons gives

ani
- vnB , (3.84)

54

• • a w, "• , '.• • '• , • .• • " • L • .', I.,.'.•-. ,. .'. ,. - ,.• -• ' ." .'- % . '-• • '. -• ' '.'= ", -'.: . -•, • = • • - .." -"-.,



(with nB the "beam" density of fast electrons), we have for the fractional

charge neutralization

nii

f =n . V t , for t 4 v- (3.85)

with v the primary ionization rate (vi = 109 Ptorr in air).

Photoionization from the target emission has been neglected. If the fast-

electron beam current is Ib and a fraction fe of its charge is neutralized

by background ions, then the fields are

Be - 01 Br c

E = (1 f e ,1 (3.86)r e2w(a 2 + r 2) vzB

B 0 B2 (3.87)
2w(a + r)

We consider a secondary electron born at rest at a radius r - ri. The

motion is treated in the collisionless limit, the fields are assumed

constant in time during the motion, and we neglect the E. fields due to

the time-dependence of the neutralization fraction and the attraction of

the ground plane. All these neglected factors will generally enhance the

escape of the secondaries at low pressure, although collisions will

ultimately retard the escape rate at sufficiently high pressures where

mean-free paths become Rmaller than the beam radius.

The equations of motion with v. = 0 are

dv
mTr ,- (3.88)

dVr
m -e(E - v ZB) a (3.89)
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de ev , (3.90)
rr

with

I 2(V2r+ v2
T r z

Using vr - dr/dt, from Eqs. (3.89) and (3.90) we have

2 c I r2 + a2
/Mc - (I - f ) 0 In 2  (3.91)

e VzB 1 r + a(9
i

with the initial condition v - 0 at r - ri, and the definition

4' mc
I0 - - 17,000 amps . (3.92)

From Eq. (3.88) we have for constant 1B

v z Ill r 2 + a2

- -- On 2 (3.93)

From Eq. (3.89) we obtain

vr2 1B 1 2 ~2 r2 + 2

cv , 2 {(1 -_ e )(c/VzB) - (I b/I O) In r2 + a 2 Itn r ÷ a
2 ' 2 2

i (3.94)

The solution for the orbit r(t) from Eq. (3.94) is complicated, but we are

mainly interested in the outer limit of the orbit, rM. For constant I8

this is where vr = 0, which requires
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r ÷ a2 2 10 - f
Ln M 0 e BV:t-b (3.95) _

r2 + 2 1 B (v ZbC)-
I

The smallest value of r. is obtained with particles starting near the axis

(ri << a); their turning radius is explicitly given by

2
rN 221(0 -f

= expE[ --•-v-,.3---] -1. (3.96)
a B zB

As fe + 1, rM + ri - 0. But we see that rM is larger than a for

almost all fe, especially for currents much less than 17 kA.

However, the actual maximum radial displacement of secondary

electrons during the time the beam of primary fast electrons is flowing,

is r; - (vr/c)TB, i.e.,

r• - (CT )(1 /15 kA)(c/v )tn(l + r2/s2 (3.97)
M B B r 2 a) 3.7

For 3A of I keV primary electrons (v zB/c - 0.06) lasting 50 ns, this gives

a radial traverse of order 5 cm, which then subsequently reverses

(secondary electrons collapse back toward the axis) and oscillates, after

the primary fast electron current has passed.

The fast electron plume may be thoughtof as having set up a

nonlinear space-charge perturbation In the plume-created plasma of %

secondary electrons, with a frequency of order

f sp - 3 x 10 [P(torr)T B(ns)l B(A)/ CB(keV)l /a(cm) , (3.98)

which is usually comparable with the laqer pulse length in the experiment
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for P - 1562 torr and a - 3 cm.

The apace charge E field due to the fast-electron beam is

1 (V/cm) 0 950 1 b(A)/[a(cm)/C eVT) at r - a (peak E) (3.99)rb

for bare unneutralized current 1b, with radius a, in a more-or-less

cylindrical beam.

If the space charge is neutralized by secondary electron expulsion

at a distance d - a behind the beam front, the field strength r at r - a

is reduced to 2/3 of the above value. (The largest value of Er occurs at

r m a.)

The inductive E. field due to B8 is approximately

E (V/cm) - 2 x 10- 1 b () T0-8sat r - a , (3.100)z b Tbr

where Tbr is the beam net-current risetime.

From these formulas one can see that for a 10 ns beam pulse

risetime vithout space-charge or cirrent neutralization, the space charge

electrostatic field dominates over the inductive E field for a values

expected in the experiment.

3.8.2 Fields of Time-Dependent Space-Charge Plume

When the Fourier-analyzed current in a center-driven linear

traveling wave antenna of half-length L is

10 (w)exp(iwlzl/c) , Izl 4 L (3.101)
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and the center input current is

1o(t) - (2w)-I f I 0 (w)exp(-iwt)dw , (3.102)

and when L/c is small compared to the pulse duration of the signal, the

radiated field is approximately

E(r,t) - (P 0 /C0 ) /2(sinO/2wr)(L/c) I- I(t - r/c) (3.103)

when there are no reflected waves in the antenna itself, and

E(r,t) u (u 0 /Ao)1/2(sine/2wr)(L/c) 2a2 I(t - r/c) (3.104)
at

when there is a reflected wave of intensity equal to the outgoing wave on

the antenna, i.e., when the Fourier-analyzed current is a standing wave,

IO(W){exp(iwajzl/c) - exp[iu(2L-IzI/c]l . (3.105)

(In both cases I is polarized transverve to r but in the rz plane.)

(Sengupta and Tai, 1976).

Between these limiting cases the radiated field is more

complicated. The radiated waveform is distorted from the input driving

voltage by both the radiation mechanism itself and the reflections from

the ends of the antenna. One can see, however, that transients in the

antenna current may, up to a point, give large oscillatory signals.

Resistive loading of the antenna, i.e., suppression of reflected waves,

causes the radiation field of a transient to decrease at late times.
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On the other hand, when the current signal in the antenna

propagates much more slowly than c, one can for comparison calculate the

quasi-static fields. In the experiment there are both electrostatic,

partly radial (at the receiver) fields as well as transverse induced fields

at the E probe (1 m from the driving point); the detector is polarized to

pick up the transverse field, including the electrostatic part parallel to

the antenna.

The electrostatic part of the E field arises from the dipole-like

space charge distribution and may be estimated in the quasistatic limit

from

f ene(r',z')r'dr dz'
Ez = 97 /V(r-r')2 + (z-z,)2

using a time-dependent model for ne(r',z') representative of the expected

space-charge plume, including the halo of expelled background electrons

and their remaining ions where appreciable, and including the advance of

energetic ions at late times.

For a uniform line charge density -pL on the axis from z - 0 to

z - L, and its image charge +pL at z < 0, the electrostatic Ez is

E = OLf - 2 + 1 1

r- z r + (L_) 2 + (L-z) /r2 + (L+z) 2  (L+z)

(3.107)

in the static limit where ýL and t are small. This field becomes dipole-

like for r >> L. Modifications to this quasistatic field arising from

finite radial extent of the plume can be calculated from an assumed plume
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shape (which may also change slowly with time), but the complication makes

the result less useful. It is sufficient to point out from this formula

that once the plume length L is several centimeters, the quasistatic space

charge field at the D detector, I m from the source and near the ground

plane, can give a reading even though it is not strictly a radiative

field. This portion of the E field follows changes in pL and L in the DC

manner, i.e., the behavior of E. (in the absence of fast transients in

PLL) mimics that of changes, pulsations, etc., in the net charge at and

near the plume. It is proportional to pLL2 /r 3 for r 2 » L2 .

Nondispersive modeling of the signal propagation at the fast

electron plume and its secondary electron halo would be justified only if

the excitation frequency spectrum were to lie well above the natural

resonance frequencies, e.g., the range of w space charge oscillationsP

that convert, e.g., at density gradients, to EM waves radiated outward

into regions where w < w. Neglecting collisions, the local dielectric
P

function for frequency w transverse waves is

2

CT 2 (3.108)

where ne2 . 47e (r)/m. This Just follows from the collisionless response
p e

of the background plasma electrons

2
3 P E (3.109)

s W

(where 9 indicates 3/at and the v*Vv term has been neglected) once the

Fourier transform of w 2E has been approximated by -iww 2g.
p p

Somewhat more generally, one has before Fourier transforming
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VxVXE + (E + W E) = - (3.110)
c 

c

2
where w may be a function of r, z, and t, and where Jb is the fast-

p

electron current density. Because of the 3z3 r terms the Er and Ez fields

are coupled in this vector-pair of partial differential equations.

By taking the divergence of this equation and using the continuity

equation for nb, one can of course show that the net charge density

oscillates with frequency w :
P

2 2 2net

(W2 + a )(n ) (v /C)3nb n (3.111)
p t net b tb

After passage of the fast electrons, this represents pulsation of the

remaining column of secondary electrons, although one should note that

fast ions follow the fast electron pulse. To the extent that Ez is

quasistatic and mimics these oscillations, its oscillation frequency-

squared should scale linearly with pressure, because until collisions

actually impede the fast electrons (at P > 0.1 torr), the number density

of secondaries is linear in the gas density, for a given fast-electron

pulse profile.
-1

A fast electron plume which has duration w 1, with w determined
p p

approximately from the peak secondary electron density near the end of the

pulse, should set up the largest oscillations; thus for any pressure there

is a pulse length which maximizes the LIEMP (except for high-frequency

components due to transients). Conversely, if the pulse length is fixed,

there should be a 'resonant' pressure, once the fields due to pulsating

secondaries exceed the vacuum field of the fast electron pulse itself.
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At very low pressure then, when secondaries can be neglected, the

Ez fields should scale in the same way as the current of fast electrons

measured by magnetic loops. At higher pressures, Ez should display an

oscillating 'tail' and its amplitude may scale as Jb/2/T (since

W 2 . n above.)
p net

3.8.3 Radiation Field from Oscillation of the Space-Charge Cloud near the

Target

The "virtual cathode" formed by the fast electron reflection layer

near the target surface is not a completely static feature, but oscillatet

about its equilibrium configuration (Birdsall and Bridges, 1961), as well

as changing in time as the fast-electron production rate changes. In

addition to radiation produced by the deceleration of electrons as they

are returned to the target by the potential barrier (Barkhausen and Kurz,

1920), radiation is also produced by the oscillations of the position and

shape of the electron cloud (Kwan, 1984). This radiation has typical

frequencies on the order of (5/2) wp (Walsh and Sullivan, 1985) (w p being

the plasma frequency corresponding to the fast-electron current)
a,

f osc(GHz) - 0.32 J(A/cm ) 1/2 (3.112)

The radiation frequencies of the individual reflected electrons are

also of this order, because the potential barrier scale size over which

the reflection takes place is of order I the hot-electron Debye

length. The oscillation of the potential barrier, however, is a

relaxation oscillation, the return toward the target being much more rapid

than the outward expansion (Birdsall and Bridges, 1961) and thuq ha' i a

..

N.
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broadband frequency spectrum.

Using the capacitively limited current estimate of Eq. (3.61), with

potential barrier height Ie*mI - 3 Th(eV), this gives

(2.5 ns1/2, ( n h (T h 1/4 (31)f (GHz) ~ 0.8 (2. ns)I[2 T)h) (3.13
o8c (G[( 0-8 _3) 100 eVr 1 cm

as a typical fundamental frequency of the broadband spectrum of radiation

from the vibrating virtual cathode. From Eq. (3.62) and Eq. (3.9), this

should scale roughly as laser intensity, and with wavelength as

[) l/3f(WW)}I .

The power radta!ed by a charge q oscillating over a distance d is

-18q2( u2)d2m2)4(s-4) 314
PT(W) - 1.1 x 10 q (Gaul )d (M 2 )W (S ) - (3.114)

If the charge q Is the hot electron content of the space-charge cloud

2 2
q - ewr 0 2 TAnN (x = 0) (3.115)

from Eq. (3.36), one has

-7 r0 2 n h(x - 0) T h 1/2q~~ c ,>,,7 _ _ i_ __s , - (T--m• ) f e l { • - k') " ( 3 . 1 16 )
q(Coui1) = 1.68 x 10 8 0)T 2[e(!iV~1 ~~12 316

10 cm

For d - 1/2 rq, I.e., a 50% oscillation In the thickness, rq, of the

space-charge layer, and for 1*mI - em lI/Th N 3, one has
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r0 4 Th 2 f 4

P T(W) - 5.3 x 10-4 h osc
"1I z (3.117)

(scaling as d 2 ). Using the capacitively limited current to determine the

oscillation frequency then gives the power scaling

S5ns 2[ nh(x-0)" Th 3 r0 4

PT(W) - 6.7 x 04 " )[ 18 _3J(T- )(-) (3.118)
r 10 cm

for 50% oscillation in thickness of the layer, where Tr is the risetime ofr

the laser, nh(x-O) is the hot electron density of the critical surface,

and r 0 is the radial extent of the space-charge layer, approximately equal

to the laser spot size. In fact, the power radiated by the space-charge

layer oscillation is generally somewhat larger than this because, scaling

4
as w , it is weighted toward the higher harmonics of the savtooth

oscillation waveform, whereas Eq. (3.118) is calculated based on the

fundamental frequency.

The radiation electric field corresponding to virtual cathode

oscillation is

Ev(V/cm) - 27.4 [PT(W)] 1/2 [ sine20 1/2 (.119)

r (cm )

measured near the ground plane at distances larger than the wavelength

C/fosc, this is

Evc(V/cm) - 9.47 x 10-2 [P()]I 1/2(r/l m)-I
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5 x 1 nh(x-0) 1/2 Th 3/2 r 0 2 -1
r 1018 cm- T - T

(3.120)

or, using Eq. (3.9) for Th as a function of IX2,

c(V/cm) - 3x 10- 25r n[(x-0) 1/2 T 1/2 r0

r 10 cm MM

IL 1/2 r -1

(1010 W/cm2 " 0 )m (T-) , (3.121)

which scales as I•/ 4 /f(X) if nh is scaled according to Eq. (3.62) and if

Th c (ILx 2 )I/ 3 .

This is to be compared with the quasistatic field due to the

unneutralized "beam" space charge of the longer plume of escaping fast

electrons (Eq. 3.107)

241b (A)[L(cm)]2 r -

Eplume(Vcm) 2.4 x 10- 1 (keV) I /2 m (3.122)

With Ib ~ IA, e*m - 1 keV, and a 20 cm plume, this lower-frequency field

at the detector (r - 1 m) is of order 0.1 V/cm, with rise time of order

3 ns. Assuming e4 m Th (I x2)1 /3 from Eq. (3.9), L2  T2e# (L - vr),
_3/2

and current Ib scaling as TL 3 the quasistatic plume electric field would

scale as

Eplume T2(IL)5/3x1/3 (3.123)

with T the laser pulselength, whereas the radiation field from virtual-

ccathode oscillations would appear to scale as (n T3)1/2/T i.e., as
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E 'r-1 13 / 4/f(
ye r L

with Tr the risetime of the laser pulse and with f(M) presumably only

weakly dependent on X. Based on the observed plume current it

would appear that the fundamental GHz field from vc oscillation has

smaller magnitude (- .5 mV/cm at laser intensities I - 1010 W/cm2 ) than

the monopole field of the plume unless the effective plume length is

-2 cm or smaller.

Regardless of the scaling assumed for nh, Th, and 1b' one should

have

T1/2 2

Eplume aT IbT (3.124)

and

E nh(O)Th 3 r " (3.125)

As discussed in Chapte4 4, Faraday cup arrival-time data show Th
1I/3an mgntcoosgnl

scaling even more weakly with I than , and magnetic loop signals

appear (if functioning correctly) to show 1b -'1.75, while the electric

"field data, somewhat more ambiguous, could be interpreted as either

E- 1/2 or E 13/2

67



Chapter 4

DATA ANALYSIS

Of the 1200 shots taken during the experiment, a highly selective

subset was chosen for detailed analysis through mutual discussion between

ANWAL and PRC. The shots represented parametric scans in intensity at

le-6 torr and at 3e-3 torr with a full data compliment, and pressure from

le-6 torr to 1 torr. The shots chosen had a full diagnostic set and a

nominal laser pulse waveform as shown in Figure 4.1. Data from these

shots were subsequently reduced at AFWAL by Technology Scientific Services

and the data were differentiated and integrated per PRC request. Whenever

possible, five data sets were chosen for each parametric point.

The graphical data were then tabulated for subsequent plotting as a

function of intensity, pressure or other dependent variable to yield the

scaling information for comparison with the theoretical predictions.

Where sensible, least squares linear fitting was performed on the data

sets to derive empirical scaling relationships. Other manipulations of

the data are described on a case-by-case basis.

4.1 GENERAL WAVEFORM ANALYSIS

The observed waveforms for the intensity data are shown in Figure

4.2. Data from the Electric Field Detector (d/dt of the Field) MD2 are

shown at two pressure., le-6 torr and 3 e-3 torr, as a function of the

attenuator thickness (and thus intensity). The transmissions of the

Attenuators are given by:
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Thickness Transmission

0 -m 100%

Im 64%

3 m 32%

6 am 9%

The transmission of the salt vacuum window was 92%.

The individual photos also show the volts and time per division of

the oscilloscope and the shot number of the data. Except for shot 651,

which is the only low intensity le-6 torr shot with a full data set, the

other shots are representative of the data used in the analysis.

The DD2 data at le-6 torr and low laser intensity are very noisy

and a reproducible pattern is hardly discernible. As intensity is

increased, a negative-going signal is observed that increases with

Increasing intensity, yet retains high frequency components. This high

frequency ringing is from plasma frequency oscillations in the expanding

blowoff plasma and probably represents the low frequency end of a spectrum

of oscillations that generally exceeded the bandwidth of the recording

system. The noise in the system made hand digitization less accurate than

would be desireable for deriving scaling information and, in retrospect,

it would have been better to passively integrate the d/dt signals to

obtain the fundamental field parameters.

At 3e-3 torr, the DD2 signal is stronger, and the high frequency

oscillations have been damped by intervening plasma in the vacuum tank.

Again the peak signal values increase with intensity, and the duration of

the main signal is the same as the laser pulse length. There are

differences in the fluctuations for shots 974 and qS9 that are not

analyzed since they occur late in time. I-ate osctllAttonq are ohservahle,
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but are not considered in the data analysis.

At both pressures the data traces from Faraday Cup #1 (FCI)

increase with intensity and are similar in shape. The initial bump in the

traces is due to the differentiated pyroelectric signal that was used as a

timing marker. The electrons arrive at the detector about 20 ns after the

leading edge of the laser pulse. There was a 3.4 ns cable delay that imust

be subtracted from the timing shown for FCI to compute the electron

energies. The energies of the first observed electrons are of order I keV

at the FCl station 30 cm from the target. The FC1 waveforms at 3e-3 torr

have a slower decay than the le-6 traces.

The FMM traces measured the time derivative of the current through

a loop at a radius of 3 cm from the target in the ground plane. The

traces at hard vacuum are of the same duration as the laser pulse, while

those at 3e-3 torr show a significant tail that is longer than the laser

pulse by a factor of 3 or more. PRC believes this is due to flashing of

the detector or in the ground plane. The detector had an inductance of 2

nH and the L/R decay time of the trace leads to a -esistance of .2 ohms

which is consistent with plasma resistivities in parallel with the 50 ohm

cable impedance. The flashing phenomenon is clearly indicated in Figure

4.3.

At a pressure between le-5 and Ie-4 torr there iq an abrupt rhangv.

in the FMM waveform to the long decay shape. The change occurs at the

peak in the F7M signal and tusually is associated with a glitch in the

waveform. Once the waveform changes shape they are similar up to thf.

highest pressures of .1 to I torr, where the waveform Is further nhodifled

by background pressure. The f)f2 and B2 waveforms Indicate 'in electro-

magnetic wave In observed, since the waveforms Are similar -it ill
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pressures and there is no observable phase change between the two. The

high frequency noise in DD2 and 12 at le-6 torr is rapidly damped at

higher pressures and the strength of the wave increases modestly at higher

pressures. Long-term ringing of the ground plane is apparent after the

initial impulse produced by the laser, so data after 10-15 ns is

contaminated with reflections.

4.2 DATA TABULATION

To obtain more quantitative data, the waveforms and moments were

tabulated at given times. The tabulated data were then plotted against

intensity or other independent variable to derive scaling information.

The points where the information was taken are shown in Figures 4.4

a,b,c,d. Figure 4.4a is laser intensity data, 4.4b is DD2 data, 4.4c is

FiM data, and 4.4d is Faraday cup data. The intensity tabulation is shown

in Table 4.1 and the pressure data are shown in Table 4.2.

Figure 4.4 shows the intensity (pyrometer) data for shot 612, both

as original digitized data and also integrated and differentiated, as a

function of time In nanoseconds. This data was tabulated for all shots

for comparison to the calorimeter data (cal) and used to derive peak

intensity. The peak pyro d/dt was also tabulated for comparison to rate-

dependent data, but the data have significant spikes from the digitization

process that need to be amoothed before believable inferences could he

made.

Figure 4.4b shows the DD2 data (b, or time derivative of electric

field). The original data are spiky by nature and the peaks are recorded

for plotting. More believable data occur after Integration to obtain the
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electric fields, and the peak electric field was tabulated at IDD2. The

"action integral" of the D02 signal, i.e., the time-integral of

2
(dE/dt) , was tabulated at the peak field and was used as a consistency

test of the digitization since this should scale as the square of the

fields and is proportional to the energy in the electric field.

Figure 4.4c shows the tabulation points for the FHM (magnetic field

time derivative) data. The current and the charge (IFMM and LIF7MM) were

taken at 40 no to avoid late-time drifts in the detector that occurred

after the laser pulse was off.

Figure 4.4d shows the tabulation points for the FCI data. The zero

time is taken as the peak of the risetime of the fiducial, which is a

differentiated pyro signal. This places t - 0 at the leading edge of the

laser pulse. Subsequent times are taken from the differentiated waveform.

Tfcl is where the trace goes through zero and represents the leading edge

of the observable signal (fastest observed electrons). Tfc11n is the

inflection time, i.e., when the rate of rise of the FCi signal is maximum.

TFCIN is the time of the maximum Faraday cup signal. All the signal

timings include the measured TDR times for cable lengths.

Table 4.1 shows the data taken at both l.e-5 and 3.e-3 torr as a

function of the filter thickness. The laser data was then used to derive

the peak intensity using the measured spot st .e and spatial distribution

of the energy. The intensity of the peak was computed %ising a gaussian

approximation to the data which leads to a factor of 1.93 between the peak

and the average intensity. Thus if the reader needs the spatially

averaged intensity, he can divide by 1.93 (or subtract .29 from the log)

of the tabulated data. Where data is missing, it was either not suitable

for reliable reduction or was missing.
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Table 4.2 shows the data in the pressure scan and is tabulated as a

function of pressure. Five data points are available at all pressures

except I torr, which has two data points.
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Table 4.l

Intensity Tabulation

shot pr oa.L py py t I /at.tn fm ItmI t dd2 Id2 IIdt ttam ttfo tfa a Ifo
* tor"w me voam /&&V/aa2 A/s asps uooul rat T 4.2 AT no no no nooul

12 1." 1.16 10. 1 0." 2.7 0.04 -132 36 1 o 22:0 280i m 1:2 10.4 0.J0* 111 .1 . 0.05 20152 53 :0 002: 1
:'j 1o.. 1o00.0 0 210 0 20.0 24.0 2.53

0010. 0.08M 1 15 0 29.0 21.0 24.5 2.15
22U1.0 10.1 1.8 1.46 0.0390.9 0.02 17 490 16 10.0 20.0 l.0 1.47laim 1. 0 2 1.4  00 802 1 2 2:0.20:

1.04 10.6 .10 0. 0 0.02 2 1 02.0 22.0 25.5 1.43
1.01 10. . 0 .1I 0 0 0: 0.02 27 0 1 1 3.0 22.0:26.0 1.5

941 1." 1.38400 o.2 40 1.1 0:1 0.2 0.01 68 71 8 32.0 20.0 2
413m L1 1 ,, . 0o, 00 o.o 2 6o U : 0 20.o :5 o:.

651 1 3t06 1.37 420 10.6 4.4 556 0.69 0.017 0.0 0.78 - - - 29 33.5 23.0 25.5 0.43

~ 2.0 " 7.0 3U1-3 W: 10.j 4:.228 1- ~JTOO 1. 4.80 120 244 17P2 50 22. 0: 4:
f A 10.11 3 18" 1. .00 135.0 2.70 60 190 618 84 2. 20.0 295N

!33.3-03 1.28 'A" 10.8 1.2 j211 1.:6 2.1 0 1 :80 T '911 2 94 22.0 29.5 1.48
m1.2 2 1 2., 2 2.,oo ,oQo 1 17 1 1 22.5 0.0 1.14

[I6 1.2.•, 11.:2 :20o . : 1:0 22. 2.0 1.0: 1 4 40 1 4.0 .51.21 10: 3 .5 IF, 1.4~ 2:300 130.0 2.ri111 3 1.0 2:1.5 :1.
02 3.;3-0 :, 10.1 4.02 1.20 0.8 0510 0: 1 1, 21.0 o 0 06

1 1L 1i 0-7 11809 2j0 2 .0 21.0

1.1434011.4:1IT, 1:09 0:.Fj 44.507T4 - 149 370 1 2.08 22.0 24:0 1.1
60 3" 1.06 358 9.6 1:4 202 0.~ 0.3 7.4 0 :1 41 29 27 0.5 22.0 24:0 0.42

1.11 1 1264 0Oj 20 0o - 4. V0 0.4
3 .10 10. 0:1 - 5 2 2 3:002100All 1.05 OT 10: 10 .5 OI1V 0.13 5- 2 3. .0 0.1
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Table 4.2

Pressure Tabulation

abot presa ol py pk py t Ipy py/dt f Irf Iltu dd2 Idd2 _1dd2
# tor j mO na vn [4,/a A/a Amps jooul V/u/s V/m pV 2s/n^2 _

768 1.3-06 1.25 410 10.3 4.110 230 0.09 1.:3 0.07 105 172 360.0
770 1.23 417 10.8: 4.50 2N 0.0S 1.40 0.05 - - -
1 1,. 0 10. 3 20 0.0. 1o . 0 0.04 144 131 90.0

1.15 312 10.1 3.85 230 0.08 1:6 0.04 137 165 200.0
73 1.22 387 10.3 4.00 240 0.11 5.85 0.13 - - -

T j1.3-05 1.20 10i~ 4.10 310 0.19 4.00 0.08 164 272 00.0

1 40 ?: J9 :0 1? 0.
741 1:I 358 10.5 4.00 0 1.15 0.09 145 300 ~150.0
743 1.1Z 370 10.5 3.90 200 0.16 4.20 0.07 181 338 630.0

7 8 1.3-04 1 152 487 9.2 4.80 255 1.44 53.00 1.3 400 512 800.0711 1.09 360 10.8 3.90 204 0.75 00 1.0 225 310 360.0
091 00 10. 120.0U .6
0.9 I 10.3 240 0.72 3.00 1 -- -- -1 80-

796 3.E-04 1.18 414 9.8 3.90 102.40 135.00 3.90 192 90.0
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1: ~~43810244 2 600f00 .0 15
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4.3 ANALYSIS OF TABULATION - INTENSITY SCALING

The calorimeter data was plotted against the integral of the

pyroelectric detector to check linearity of the data, since the intensity

was computed using the calorimeter energy and the pyro FWHM. The results

are shown in Figure 4.5 and demonstrate that the system was well behaved.

A linear least-squares fit goes nearly through the origin and leads to

confidence in the intensity numbers. Figure 4.6 shows the calorimeter vs

the pyro d/dt signal. The curve is nearly flat since the energy is

proportional to the amplitude of the laser rather than to an increase in

the pulse length. Thus the basis for "subsequent characterization of

laser intensity by calorimeter data in this study" is well founded

statistically.

The DD2 data are plotted in Figure 4.7 in both semilog and log-log

forms. The semilog plot shows a threshold behavior at 30 Gw/cm2 , but when

plotted log-log, the evidence for power law behavior is more apparent.

the power-law dependence is consistent with the current data that will be

shown subsequently. The data for DD2 are noisy and if the lowest point in

the le-6 data is ignored, there is a substantial discrepancy between the

behavior of the le-6 and 3e-3 torr data. The data at 3e-3 torr scale

roughly as the 1/2 power of intensity; however, if the lowest-intensity

data are ignored, the le-6 torr data scale as the 3/2 power. The 1/2

power scaling is roughly consistent with the theoretical modeling, and the

experimental data at 3e-3 torr is strongly for the weaker scaling. The

lowest-intensity point at le-6 torr, if valid, would discount the 3/2-

power scaling at le-6 torr as well. This is a major discrepancy that we

are unable to resolve.
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In Figure 4.8 the integrated DD2, i.e., the electric field data,

are shown. This integration presumably smooths some of the numerical and

detector noise, but the difference still exists between the le-6 and 3e-3

data scalings. The combined data were fitted with a least-squares

approximation and the data scale as the 1/2 power of intensity.

The FMM data and its moments are plotted in Figure 4.9 at le-6

torr. The data are well behaved and clearly power-law in nature. The

current and charge are scaling as intensity to the 1.5-2 power. Since E

and B (i.e., current) should scale together, this lends credence to the

vacuum case scaling about to the 3/2 power. But as discussed in section

3.4 (and subsequently in section 5.1) such a scaling does not appear

consistent theoretically with either the weak dependence of hot electron

energies or with 1/2-power scaling of the electric fields. The FMM data

at 3e-3 torr, shown in Figure 4.10, also scale as intensity to the 3/2

power, in spite of the concerns about the detector flashing behavior

mentioned before. This is indicative of the detector flashing at the time

of the large trailing edge dI/dt, thus preserving the largest amplitude of

FMM before L/R decay.

The Faraday Cup data are plotted as a function of peak intensity in

Figure 4.1. Since there was little difference in FCI as a function of

pressure, data for both pressures are plotted together. The energies of

arriving electrons scale as the .1 power of intensity, while theory would

predict a .2-.4 dependence. Given the scatter in the data, this is not -

far from the observations. At 30 Gw/cm2 , the mean energy for the leading

edge is 1.6 keV, the mean inflection energy is I keV and the mean energy

at the peak is 630 eV.

The FCl currents-and charge were plotted, Figure 4.12, for both
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pressures, shoving that the FCI current scales to the 3/4 power of the

intensity, which in turn implies a 1/2 power scaling with the FMM since

FMM scales as the 3/2 power of intensity. This relation is confirmed in P

Figure 4.12. This is convincing experimental evidence for beam-like

propagation that is intensity-dependent, rather than a uniform cosine

distribution of the charge. There were no Faraday Cups at other azimuthal

angles, so we do not have direct experimental evidence of the angular

liqtrihution, but must rely on the inference from this plot.

4.4 ANALYSIS OF TABULATION - PRESSURE SCALING

Since the integral of DD2 is the Electric Field and a fundamental

quantity as well as being smoother than the DD2 data, the pressure

relations were plotted in field and FMM current (IFMM). Figure 4.14 is

the electric field and current scaling as a function of pressure. In this

plot all data points in Table 4.2 are shown. There is considerable

Scatter in the semilog plot, with factor-of-two fluctuations common.

Stince there were fluctuations in the laser intensity that were small, the

data were linearized to the laser calorimeter energy and averaged before

ro'plotting as in Figure 4.15. This figure also shows the regions where

ton and thermocouple gauges were used to measure the pressure. On sample

im-.Asirements in the overlap region these devices indicated a discrepancy

" ?')-fold; this region is approximately indicated. Thus, the data points

in and around this region may be translated significantly from their

apparent position. For example, the points at le-3 torr could be at le-2

torr and then the curves would be c)ntinuous rather than showing the bump

hWhav1 or.
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The electric field data show a graduate rise, betwwen le-6 and le-5

torr, of a factor of two. Although this appears statistically

significant, it may be due to improved digitization of the original

waveforms, since the very high frequency ringing is damped rapidly ns the

pressure rises. There is no ready theoretical explanation for this rise

in E-field at such low pressures and an argument can be thus made that the

electric field scaling should be flat until le-3 to le-2 torr where the

effects of electron dE/dx begin to take hold in the background gas. After

that the electric field intensity drops nearly exponentially with

pressure, which is the expected classic'l behavior for electrons in a

neutral background gas. The dE/dx of the electrons scales as I/E; the

ranges vary as a function of the energy in the distribution at least until

the peak of the ionization cross section at 100 eV, Figure 4.16. The

lowest energy of electrons observed in the experiments is 300 eV, although

electrons must exist to eV energies. The range of the fast electrons, as

discussed in section 3.7, is:

e folds at

Energy Range le-2 torr, 60 cm

I keV 7 cm/P(torr) .09

.3 keV 2 cm/P(torr) .30

.1 keV .7 cm/P(torr) .9

Since electrons are present down to relatively low energies, the

low energy electrons from the distribution are slowed first as the

pressure rises, and this has the effect of reducing the field. As the

pressure rises to .1 torr, the range of even the faster electrons becomes

comparable to the system size and these electrons are also slowed, further
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reducing the fteld Intensity. If the Feradav Cups h*4 i.en present fer

the pressure %can, these resulets rould have been verified 01th dirert

electrron energy measurements.

Figure 4.17 shows the pressure data pn a Ion-lol plot to) highlight

the current dependence on the pressure. The current increases until .1

torr when the range of the electron* tecomrs smIt compared to the %vqtP

size whereupon the signal decays towards zero. 'ore quantitative

statemants are not possible since the FWM detector showed evidence of

flashing above 3e-4 torr.

4.5 EXPERIMENTAL SCALING SUMMARY

Analysis of the experimental data leads to scaling rules for the

currents as le-6 torr and for the Faraday cup currents at both pressures.

FMM current - intensity3 /2

FCI current - intensity3 /4

FCl energy - intensity"

FCl current - FMM currentl/ 2

For the electric fields there is conflicting data. At le-6 torr

the bulk of the data appears to scale as

Field - Intensity3 / 2

which is consistent with theory if the current also scales with 3/2
L
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hoever, om data point at the very lowest intensity could be construed to

bring the scaling to the 1/2 pomar, consistent with the lo-3 torr data

which experimentally scale@ as

1/2
Field - Intensity .

This is roughly consistent with theory if the current does not scale as

3/2 1/2
L but as some considerably weaker power of ILI e.R., I as discussed
L L

at the end of Sec. 3.4. The electric field observations were mmde

difficult by high frequency components at low pressure, yet the cleaner

data does not agree with the theoretical expectation that the field should

scale nearly the same as the current.

The scaling of field with pressure is well explained by classical

dE/dx of the electrons in the background gas leading to reduced charge

separations. The electric field is reduced 20% per decade of pressure

between le-5 and I torr. This is an exponential reduction in the field

strength with pressure and consistent with the dE/dx calculation in the

text. This effect coupled with beam propagation calculations are well

founded theoretically, and experimental inferences are consistent with

this model. Direct observation of the isotropy of the electrons and the

change of energy with pressure are not available, since the Faraday cups

were not fielded on the pressure scans or at varying azimuthal angles. In

future work, placement of identical cups at varying angles and maintaining

these cups throughout the experiments is recommended. In addition, DD2

and FMM data should be passively electronically integrated before

recording, in order to eliminate digitization difficulties.
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Chapter 5

SCALING OF OBSERVABLES WITH LASER INTENSITY, WAVELENGTH,

AND BACKGROUND GAS PRESSURE

5.1 INTENSITY SCALING

5.1.1 Total Current

The fast-electron current Ib, as measured by a magnetic loop around

the target in the target plane, scales with the laser intensity, IL, as

1 3/2-2 (5.1)b L

-3

with the 3/2 observed at P - 3 x 10 torr and the 2 observed at

P = 10-6. (See Figs. 4.9 and 4.10.) There appear to be no theoretical

calculations in the literature giving any scaling laws for the rate of

fast-electron production as a function of laser intensity, although there

are many giving scaling laws for the fast-electron temperature.
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5.1.2 Current Density at the Faraday Cup

The current density, measured by Faraday cup 100 from the laser

axis at 30 cm from the target, scales approximately as

J(z - 29.54, r - 5.21) a 1 (5.2)
L

at both pressures where the scaling was evaluated (10-6 and 3 x 1O-3

torr), indicating that the effective area over which the beam or plume of

fast electrons was spread varied as the square root of the current:

J a i1/2 + Aeff (z - 29.54) 1/2 (53)b (5. b

(see Figures 4.12 and 4.13).

If the emission always occurred with a cosine angular distribution

as is sometimes postulated, one would expect J a I b. Thus, there is some

current-dependent beam spreading of the fast-electron plume, and the beam

of fast electrons is narrower than a cosO distribution at least at the

lower currents. The actual beam radius at the detector depends on both

the initial angle spread AO0 and on the space-charge spreading. For

Ae0 small, one can fit the results of Table 3.1 to a form

a 2 (cm 2 ) 2 200 [1b (A)/E(keV) 3 / 2 l1. 1 1 7  (5.4)

at the detector (a is the beam radius). Since this value of a is

typically larger than the 5.2 cm detector radial position (measured from

the axis) by only a factor of 2, and since the plume probably has a bell-

shaped distribution of current density with width -a, the actual current
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density measured at the Faraday cup could scale in a complex way, e.g.,

J I Iba-2ba [I + (5.21/a)2]-2 (5.5)

for a Bennett distribution with radius a given approximately by

a 2 ~ a0 2(AO) + 200 [1b/E 3/2] .17 (5.6)

(with a in cm, Ib in A, and E in keV). When the two terms in Eq. (5.6)

are comparable, J can scale roughly as 11/
2 over an order of magnitude in

T bb
Ib•

5.1.3 Electric Field

The peak electric fields seen by the "D dot" detector I m from the

source near the ground plane (z - 2 cm) scale with laser intensity as

/2 at P = 3 x 10-3 torr (Fig. 4.8), while in vacuum the dependence on IL

is less clear but could be stronger, e.g.,

E c I3/2 (5.7)L

Theoretically the low frequency part of E should scale as Ib until

space-charge neutralization by ionization sets in at - 10 - torr (actual

pressure depending on Ib). The higher frequency part of E, which is seen

from the data traces (Figures 4.2 and 4.3) to dominate at low P, should

scale as fluctuation amplitudes, e.g.,

V x E -- + 6E 6 /T (5.8)c net osc
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with T- (osc) 1 il/2.
b -3

At P - 3 x 10 torr, these fast oscillations are somewhat

suppressed and the E field (integral of DD2 in Figures 4.1 and 4.2) is

dominated by the low-frequency component, which is presumably proportional

to the net current Inet' Nonetheless, the observed 1 /L scaling of the

electric field is consistent with theory only if I 1 1•/4 at this
net b

pressure.

5.2 WAVELENGTH SCALING

As GFI short wavelength experiments were not done, no experimental

information is available on wavelength scaling. Theoretical estimates of

hot-electron temperature tend to scale with the combination ILA2 (IL -

intensity, A - wavelength), indicating much weaker effects at short

wavelength. There is no theoretical information available on fast-

electron current scaling other than our calculations of Sec. 3.4, but at

short wavelength the temperature is too low to provide significant

electron escape, so the current should drop approximately as

exp-[1/mfpf(Th)] , (5.9)

with L the density scaleheight, and with the mean free path Xmfp
2 presumabp

proportional to Th, presumably

A mf p c T2 (IX 2 ) 2 / 3 . (5.10)

Electric and magnetic fields on the laser pulse timescale should

102

~ A ~ U AJAI



vary in roughly the same way as the currents, while fields at higher

frequency may scale differently with wavelength because their source is

fluctuations in the space charge layer and the current. The wavelength

scaling of the high-frequency fluctuations is unknown. The non-sinusoidal

"virtual cathode oscillations" of the space-charge barrier near the target

give a radiation field (Eq. 3.121)

E -I
vc h nh(Or

a 3/4 /(
L

at the fundamental frequency (-1/2 GHz, Eq. 03.113>).

This is to be compared with the 'quasistatic" (-0.1 GHz) field due

to the space charge of the longer plume of escaping fast electrons (Eq.

3.122), which should scale as

E - I L2 /1/2 ()
plume b b

With Ib - IA and e# - 1 keV as observed, this lower-frequency field at the

D detector (r - 1 m) would be of order 0.1 V/cm for a 20 cm plume, and

would have a risetime of order 2-10 ns. Assuming e#, a Th - (I 2)1/3

I2 T2e anasungcrnt
from Eq. (3.9), assuming L - vT, i.e., L 2 T and assuming current,

1b, scaling as ( LX 2 ) 3 / 2 as observed, the 'quasistatic" plume electric

field would scale as

Eplume L 2(1LA2)5/3
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with T the laser pulselength, whereas the radiation field from the

virtual-cathode oscillations appears to scale as

EvcK T-1(I x2 ) 11/2
vc r L

f osc (ILX 2 3/4

with Tr the laser pulse risetime. Based on the observed plume currents

(- 1/2 A) it would appear that the fundamental (- GHz) field from vc

oscillation has smaller magnitude (- 0.5 mV/cm at laser intensities

IL - 1010 W/cm2 ) than the monopole field of the plume, unless the

effective plume length is -2 cm or smaller.

5.3 PRESSURE SCALING

From 10-6 to 10-3 torr, fast electron currents should scale only

slowly with pressure, the dependence being due to (a) collisional slowing

of electrons in the gas, and more importantly, (b) reduction of the space-

charge barrier by gas ionization near the target. Secondary electron

currents neutralizing in part the fast electron current scale as pressure

times fast electron current, but have a large-scale oscillation at late

time, the amplitude of these oscillations depending on the laser

puilselength and the secondary current, and the period, as estimated in Eq.

(3.105), depending on pulselength r, fast-electron current 1b, and

pressure P as

I

t c (I bP)-1/2 (5.11)
osc1
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The net current, seen as low-frequency (t r) magnetic field via

the field magnetic monitor (FMM), should scale as

mnet Ib[I - const. P Ibt2] , (5.12)

because the secondary current is proportional to the number of secondary

electrons ( I bPt) times the E2 field (a Ib) times the acceleration times

t, at low pressure. The early-time history of the current should be

unaffected by P because secondaries wll not have had time to form or

move.

Above 10-3 torr, the fast-electron slowing reduces the size of the

current plume (see Sec. 3.7) and the secondaries become less inertia-

limited and more collision-limited

(J c E instead of J - E)5 5@

Experimental results for pressure-dependence of the FMM current

(proportional to Inet) were shown in Figure 4.17 and are subject to a

major uncertainty in the pressure scaling because of an order-or-magnitude

disagreement in the pressure reading from two different diagnostics.

At higher pressures, of order 0.1 torr, where the collision

frequency of secondary electrons becomes comparable with their plasma

frequency or with the beam timescale, the large oscillation of the

secondary cloud is damped, and both E and B measurements should and do

confirm this (Figures 4.15, 4.17). This leads to the observed 20% per

decade of pressure reduction in the field strength.
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APPENDIX A

HOT-ELECTRON TRANSIT TIMES IN A SELF-CONSISTENT

GROUNDED-DIPOLE POTENTIAL

1. Transit time to rq:

r q r ____ q
T(r dr dr 2U

q 0 v 0 2 u~ r)

0

Let U -e# Let L nh(O) .
_ - -;(. .7_

h h - . L Lq)

From * - InC - 2 in cos(K - ax) with K - cos-'v'c, a - T7, and with

inC -L, we get

* - - L + 2 in sec(,c - ax)

where x S- r/AD and

T h 1/2 ',

)*D m 4we nh(O)(0

2 2 )
Here, again, u -- U ( Th

m h

2 2

Let X " e Tb) so that v- 2 • T h1

Then
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- (v b 12,tnX - + In sec2 (ic - CLX)

(1. T 1/2 vtI e 2 e x

where R - xC > I for transmitted particles.

Thus
'C /Q

T(r ) - f-/2 x f dx

O [jtn[R sec2 (I - Mx)]

since x(rq) q K/aI

T(rq) - 2-1/2W-1 f dx
q p 0 'tnR se 2 ( -ax)

where - (4we 2 nh(O)/m)1/ 2 .

To do the integral

'C/a dx

O An[R sec2( -ax)j

let

- I 2W - Ln[R sec (K -oCx)]

so that

dx R/2 w2 -1/2- - (e - R)- dw.

Then
f/a K x/M_ _R 1/2

0 w 3- ew f
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Upper Limit: see 2 (O) - I , - -

Lower Limit: (K - cos-li/N wo sec 2 K - 1/N). W - /tn(RIN).

R1/2 f 17'n(R/N)

a f/777Iz~~ e2- R

It is this integral we now evaluate.

Let w -. tn[R sec2 (, -ax)], R > 1, as before.

Note that Min. w - iti!, at x - PC/a,

Let w0  v= ,' . Expand ew2 about v02 . InR.

Let w2 u and u0 W tn R.

Then

u uo + Au u0 Au Au

e u e = e e A Re

I2 I

R[I + (u - u0 ) + (u - u0 ) 2+ [u - u0) + ...

So,

/ew2 - F euR

R /2(u- u0)1/2 (1 + A. (u - u ) + 1 u + 1/2
0)/ 2 0 W u u0) +.

and
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F 2- 11[ 1 2- "

- R (w - I nR) r v - n ) + ~ ( t R 9 0

on expanding the 1 I1/2 square root.

But

v'~Ti - l~n+L(1N) 1~2 (L > 1)

So j 'tn(R/N)0

so

R1 / 2 f dv f dw I 2 (/

+ 
f F 22 (2 2dw

+ _L f (w2 _ w 0) 3/2 dw

with lower limits w0 and upper limits 0 +

First,

1v -1T T

df = cosh- +-
0  2_2 w0

But 2 = InR = tn(Xc) M tn[e 0 h (>0)

2
V 0  L

(h Th)

When v2 = L( Th) v2, particles are just barely

transmitted over the barrier. So in terms of the

escape velocity vel

2

w2 (2T) v2 ( h - v2L (v4 -2) ,0, M 0 C
E

v 2 2o

i.e2, - v 2A where A F (-- - 1)
wo ~v2
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2Thus w0 . IA

So f -dw cosh-1 /[- . Call this 11.
rwo •- WO

Next,

I2 0W W
w0

or

12L ,{(, + -A cosh- +T7-•

12 F2- Il

Here L - In(1/N) and w2 - IA, so w- 0L/ + A .

Likewise,

13 0 +f 2 - 2)3/2dw
w

0

L2 3 +3A2T T

Combining I1 terms,

I1 + 1 2 + cosh - + _L -L + -6 L 2
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-[ +g 2 + r...

(Example: For L - 4 and A - 1, II - .881, 12 = -. 266, 13 = .0256,

I1 + 12 + 13 - .64).

Then

T(rq) 2-1/2a-1-1 [I1 + 12 + 13 + .... ].

But

aI= - C/12 So T(rq) ) p 1[I + 12 + 1 3 +

inversely proportional to the 1/2 power of the hot density at rq.

2. Transit time from r. out to r >> r.:

Next we use a model for the potential at r > rq to calculate the rest

of the transit time out to r >> rq,

r dr (r-= (rq)+ 2.

r
q

The potential model must have the value U(rq) at r - rq, matching the

value of the inner solution (r 4 rq), and must go to zero as I/r 2 as

r + - in order to be dipole-like. We take

U - U(r MI + (r - r )2/r 2
q q q

for r > rq . Let s - (r/r ) - 1. Then (r - r ) 2/r2 = s2
q q q q

Again let u - 2U/m, u(s-0) = 2, and A (v,/V2  1 so that

2 2 + A).
0 +
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Then

rq f -1 r, +- 82d I d
vC 0 hl + A)(m + 2 ) T 0 0 F-+A + 2di

I1

where X is s + I evaluated at r - detector radius, i.e., X - rdet/rq.

o 5 S

a r. r

Since the integral is not known in closed form, we break the
I X-1

integration region further into f ds and f ds. In the former, we expand

0 1
in X2 . In the latter, we expand in I/X2 .

For s < 1:

- + 1+/2 2

F=+ I5+ý8 T =1+4 + S-)

,,, ( )1/2[I - y + 2(y 2 + y3 )(&, + - @..]

where y - s 2 /2A.

This seems to converge only on x < ý'W, so to have it applicable for

x < 1, we must have e=• 1, i.e., A '> 1/2. .,

113
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X 1/21 __ I X 33 [

"f ,s 4 2A.+.3,- '3 .}+ 1 8T]

. • _11 + A 1/2 xf -!y + (2A +21•- --3 y2 y3 ..

and

1 / +2 1 +11)1/2f +1 + ) 12 56A3] .2+

o 6A s 20 3 ....

For the s > I integration, since the integrand is nearly unity, we

use the fact that

r - 2r r X-1 2
T(Sultos8- X - 1) q + -1 f [ 1+8 lIds

( 0 o 0 1 + s2

where 6 -= 1(1 + A), i.e., subtract off the undelayed 1/v 0 transit time

from the integration, adding it back outside the integral. Expanding the

numerator (only) of the new integrand in l/s2:

1 2
5(

+ .
ý2 +- L

+ s2 1 - 2

-5 (_l)k (1/2 - k)! (1 - 6k)

2 1 k' 2k
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Thus we have

large 1
f ds I V1] 1 " (-l)k (1/2 - k) (I k) f d

1

J' s s ] 2- l kI I k¢,
1 ~ 6 + 9 -- 1 y-) -

ck k

(y 82)

This can be written as

(26) T/2 7 T A(6) + [ + SB(6)jln ('__T +_T 931

where

- k- l l+ 1 (• k)• I 1J• • -

A(S) kl- 2 1-- - )k 1 2

k-2 J-I k(k-j)I

and

B(S) -(.(_)k 1  - k)! k-[ -

k) - -1( 12k+l 2 (-k)
k-I j-I

This is derived using

k kI -2(k- 1))Lk-11

and

%/T-i +6 /T-

So
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Tr(2r to r) -I r-2 r(8q q 0 v 0 V 1~ 2-s) 4

2 a -- + 6B(S)].tn T T, + VT0
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APPENDIX B

HOT-KLECTRON TRANSIT TIMES IN A MONOPOLE

SPACE-CHARGE POTENTIAL WELL

For a potential as in Fig.3t due to a charge q inside radius rq, one

has

v - , with vC - /'icr the escape velocity;

rig. B1.

i 0 2 2(1-e r r c or-

0 - 79 1/ l-
rp

Let r/r a x, and again let A - v 2 -2 fraction of energy above
q

g sc , Then
Ces

r
f dr f dx

f r 2frq V0- q -

r r x.tx +.x -/ 4 A- 1/2tn -A A+A
va .~~ A)IA(j AX) + A/x

r r

2 2 .22 2rq rqV A we have v- CU + A), and thus V-Since V - v6 - 2 e ae m(

C'0; 0  vc-

For large A - I (v 0 > v., early arrivals) at x >> 1:

rfdv ./ r -1/2
rr {A(x - 1) +A

r aq

i17



with

MI + (Ax) -

and
v 0

V

/I+A

So

fr d r Vo I - 1 +nx + + 2+

q

r I Inx + M - N 1
v0  2A x

where N S [I ;71 ~ I + (1/2A).

Here the tnx/2Ax is small for large x (and if A- . the N - 1 term is even

smaller). Note that and r/v 0 is the unimpeded T.

Thus,

- I - 2 Itnx + for large A and large x,

and
Tr I77 Ax(l ÷ Ax) 1 _x +/1 +A{l

0OA
for small A and large x,

i.e., for electrons hear the escape energy.

From this,

dT T 2r aF
dv0  v0  v2A'

118



where

F - I . tnx +24 in the first case
X

or

F [V1 'x(I + Ax) I nIx + T+ I} in the second case.

In the first case:

3- = 1 for large A

so

d =r [in+ 1 + A I
0 v- o o - A 0

= nxI+A 1 + Anx

v 0 Ar ( +1 nx

vo,

1 <«

In the second case:

F m 1/2 {v'Ax(1 + Ax) - in VZx+ v'FT-+jI 1
(Ax)3/2

1x/2 V- + y 1 + [-yy } (y- Ax) 1

7y2 3/2 I 1I y AX
y

So

a (FIX1/2 - I + " tn 3 1/2Ty- 22 2 IY yi
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- TI ( I I

?7T i 2 T7 i -+y y 2VTF+-

which approaches 2y-3/ 2 for large y.

For small A but x >> 1, with Ax - 1 (Middle arrivals), we have

r r r
r -�- "- /2 '1 +Ax -- (1 +2) ++A 2Ln A

r 2) 4 A/ ' + Ax + A4xq

f .1/2 Ax-i -1/2~ "
( A _ +1 + Ax + tAx

. .r {/Ax(I + Ax) - tn IVx + /T +x A + tn( + )}Vo0A 1/2 Ax

When Ax is fairly large, this is

jdr rq x r 1

f ,1 neglecting the tn ter.
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APPENDIX C

EFFECT OF LOCAL MAGNETIC FIELDS ON ELECTRON PLUME MOTION

It is instructive to look at the typical electron magnetization and

E x B drift in the magnetic fields due to Vn/n x VT generation as well as

due to the fast-electron current. Whereas the beam self field is of order

B(G) w 0.2 Ib(A)/a(cm) , (C.0)

i.e., a few Gauss at most, giving a gyroradius of Z 10 cm for I keV

electrons, by contrast the more localized fields due to Vn x VT have much

higher peak values in the ablation layer. From

Vn
c2 V2B c e VTC2

B - (c /4w)V B-V x (v x B) - -xVT (C.2)
t i e n e

one has near the edge of the heated spot (where Vn and VT are most nearly

perpendicular) a B-field generation rate of order

B Vn x VT ~ 108 Te/h (C.3)
x ne e eV nh

with hn and hT the density and temperature scalelengths (cm) and tx in

G/s. Neglecting the saturation of this field build-up for the moment, one

estimates at early times

B(G) t(ns) 200 TV (.05 cm)(I20 1) F(--) T(C.4)
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where F(+) has maximum value unity and decays rapidly with distance from

the edge of the laser heating spot. For T - 10 eV, this would give

B - 20 kG • F(+) in 10 ns (C.5)

if the build-up of B were not saturated earlier. The local fast-electron

gyroradius in such a field is

r (cm) - 75.3 [Th(keV)] /2/B(G) , (C.6)

which could decrease to r. 30 Pm; and the gyrofrequency

Sce(s-1) - 1.76 x 1010 B(kG) (C.7)

-11
could give gyroperiods Z 2 x 10 s, i.e., perhaps short enough for the

hot electrons to be well magnetized until they drift out of the high-field

region.

The cE/B drift energy of an electron is given by

I 2 [E(kV/cm)]2 (C8)
SmvD (eV) - 2.7 (kG) L.

when this is less than Th.

If E is derived from a potential drop of order I keV over a sheath

scalelength of order 10-2 cm, the square bracket can be of order unity

where E and B are largest. Drifting at this rate, a plume electron

escapes the high-field region, of size t in a time
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t - i- ns * [RGýC) I 1(cm) (C.9)

When Z is microscopic, e.g., 100 Um, this is often negligible; when it is

macroscopic, e.g., I cm, electron densities and transit times are affected

on the experimental timescale.

But as the magnetic field is generated at the edge of the heating

spot, it diffuses and propagates away, so that during the pulse the local

peak value of B usually is limited to a value below that indicated in Eq.

(C.4).

If the copper target conductivity is at and its thickness tr, and if

the ablating plasma has conductivity aa and thickness La one can estimate

for the limiting B,

B4wT -1 (C.10)max ec a~ro 2 + . 2 +'a 2

aa aa t t

where Sr is the scalelength for nonuniformity across the spot; this limit

is reached in a time

4W I•1 1 i-1
TB < 1• 1• j2 " (C.11)

B 2 _2
c I + aL

aa aa t t

10For copper, at 4 x 10 e.s.u., and the target was thick

- t ~ 0.63 cm. For a 10 eV plasma blow-off with L equal to the densityta

gradient scaleheight, of order 100 um, one has a Spitzer conductivity

a ( /-1 0.3 x 1013 TV3/2 _ 9 X 1013 (C.12)
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giving a02 _ 9 x 109 cm2 8. Thus a ,2 can be neglected compared with
a a a

a 12t, and the square bracket in Eq. (C.11) is dominated by o t2:a a

B x(G) - 0.25 (T/10 eV)(a / 9 x 10 a3 1)(Ma /100 tim)(.05 cm/Sr)

TB ~ 0.13 ns . (C.13)

So B may be limited early in the pulse to peak values which increase

quasi-statically as T5 / 2  250 G, giving r - .2 cm for the hot electrons
g

(gyroperiod - 1.4 ns), and in this case the fast electrons are not

strongly magnetized and probably leave the strong-field region in a

portion of a gyroperiod rather than by drift motion.
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Conversion factors for U.S. Customary to metric (SI) units of measurement

MULTIPLY 00 BY r TO GET

TO GET j BY - DIVIDE

anstrom 1. 000 000 X 4 -10 meters (m)
atmosphere (normal) 1. 013 25 X E +2 kilo pascal (kPa)
bar 1.000 000 X E .2 kilo pascal (kPa)
barn 1.000 000 X E -28 meter 2 (.2)
British thermal unit (thermochemical) 1.054 350 X E +3 joule (JW
calorie (thermochemical) 4. 184 000 joule (J)
cal (thermochemical)/cm2  4. 184 000 X E -2 mega joule/m 2 (MJ/m 2 )

curie 3. 700 00') X E +1 Ogiga becquerel (GBq)
degree (angle) 1. 745 329 X E -2 radian (rad)
degree Fahrenheit = (t f + 459.67)/1. 8 degree kelvin (K)

electron volt 1. 602 19 X E -19 joule (J)
erg 1. 000 000 X E -7 joule (J)
erg/second 1.000 000 X E -7 watt (W)
foot 3.048 000 X E -1 meter (W)
foot-pound-force 1. 355 818 joule (J)

gallon (U. S. liquid) 3. 785 412 X E -3 meter 3 (m3)
inch 2. 540 000 X E -2 meter (m
jerk 1.000 000 X E +9 joule (J)
joule/kilogram (J/kg) (radiation dose

absorbed) 1. 000 000 Gray (Gy)
kilotons 4. 183 terajoules
kip (1000 lbf) 4. 448 222 X E .3 newton (N)
kip/inch2 (ksi) 6. 894 757 X E +3 kilo pascal (kPa)
ktap newton -second/m2

1. 000 000 X E -2 (N-s/m 2 )
micron 1 000 000 X E -6 meter (mW
mil 2. 540 000 X E -5 meter (m)
mile (international) 1. 609 344 X E *3 meter (m)
ounce 2.834 952 X E -2 kilogram (kg)
pound-force (lbs avoirdupois) 4. 448 222 newton (N)
pound-force inch 1. 129 848 X E -1 newton-meter (N. m)
pound-force/inch I. 751 268 X E * 2 newton/meter (N/m)

pound-force/loot 2  
4. 788 026 X E -2 kilo pascal (kPa)

pound-force/inch (psi) 6. 894 757 kilo pascal (kPa)
pound-mss (Ibm avoirdupois) 4. 535 924 X E -1 kilogram (kg)
pound-mass-foot 2 (moment of inertia) kilogram -metsr2

4.214 011 X E -2 (kg.m 2 )

pound -mass/foot3 kilogram/meterI . 601 846 X E + 1 (kg/m3)

rad (radiation dose absorbed) 1. 000 000 X E -2 *$Gray (Gy)

roentgen coulomb/hi logram
2. 579 760 X E -4 (C/kg)

shake 1.000 000 X E -8 second (s)

slug 1. 459 390 X E +1 kilogram (kg)
torr (mm Hg. 0' C) 1. 333 22 X E -1 kilo pascal (kPa)

*The becquerel (Bq) is the St unit of radioactivity; I Bq = 1 event/s.
"The Gray (Gy) is the Sl unit of absorbed radiation.

A more complete listing of" conversions may be found in "Metric Practice Guide E 380-7/4. "
American Society for Testing and Materials.
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