

We developedvision techniques for handling difficult roads, and built
range finder programs for detecting and avoiding cbstacles. ,1 : I.t

Both the Sidewalk II and Park experiments were built into complete systems
using CODGER, a novel whiteboard developed as part of the project.
ODGER provides tools for handling geometry, motion over time, multiple
processes, and multiple languages.

This report is dived into four main sections. Section 1 is an introduction
and overview, including a chronology for the project and a list of 1986
publications. Section 2 describes the Sidewalk II system; section 3 describes
the Park experimnets, and section 4 is about CODGER.

$

~%

1986 Year End Report for Road Following
at Carnegie Mellon

Chatles Tho"p and Takeo Kanade
Principal Investigators

CMU-RI1-TR-87-1 11

LAccesion For
NTIS CRA&l

DTIC TAB
The Robotics Institute

Carnegie Mellon University
Pittsburgh, Pennsylvania 15213

May 1987 ~i :.n

oric A,...~

Copyright 0 1987 Carnegie Mellon University

This research was supported by the Strategic Computing Initiative of the Defense Advanced Research
* Projects Agency, DoD, through ARPA Order 5351. and monitored by the U.S. Army Engineer

Topographic Laboratories under contract DAiCA7B-85-C-0003.

1111(1111 Wil

Table of Contents

AbsftW:1

1. Irnduction and Overview 2
-i jhrijtion 2
Overvlew 2
Chronology 4
Personnel 4
Publications 4
References 6

11. Sidewalk II: Perception and System Capabilities 7
Perception unsing colored-range Image 7
System capabliltes 11
Appendix: A method for calibrating a color camera and a range scanner 11

INl. Vision and Navigation for the Carnegie Mellon Navlab 16
Introduction 16
Naviab: Navigation Laboratory 16
Color vision 19
Pereption In 3-D 30
System building 34
Conclusions and future work 40
References 42

IV. The CMU System for Mobile Robot Navigation 43
Introduction 43
Design of the system architecture 45
Parallelism 49
Sensor fusion 51
Local control 5
Navigation map 56
Other tasks of the system 57
Conclusions 58
Acknowledgements 59
References 60

Abstract
This repout describes progress in vision and navigation for outdoor mobile robots at the Carnegie

Melon Robotics Institute during 1986. This research was sponsored by OARPA as part of the Strategic
- In ve.

Our work during 1986 culminated in two demonstration systems. The first system drives the
* Telngator, a desk-sized robot with six wheels, around the network of campus sidewalks. This system,

Iwe Sidewalk II, uses a video camera to follow sidewalks and a laser rangefinder to detect and avoid
stairs. Sidewalk II makes extensive use of map data, for visual predictions and for path planning.

The second system, Park Navigation, uses the Navlab, our new Chevrolet Van robot. The Park system
concentrated on vision for following difficult roads, including curves, dirt and leaves, shadows, puddles,
and both moving and fixed obstacles. We developed vision techniques for handling difficult roads, and
bulk range finder programs for detecting and avoiding obstacles.

Both the Sidewalk II and Park experiments were built into complete systems using CODGER, a novel
whi eboard developed as part of the project. CODGER provides tools for handling geometry, motion over
time, mulple processes, multiple processors, and multiple languages.

This report is divided inlto four main sections. Section I is an introduction and overview, including a
chronology for the project and a lt of 1986 publications. Section 2 describes the Sidewalk II system;
section 3 describes the Park experiments, and section 4 is about CODGER.

2

Section I

Introduction and Overview

1. IntroducUon
Th repod revws progress at Carnegie Melon from January 15, 1986 to January 14, 1987 on

research sponsored by the Strategic Computing Initiative of DARPA, DoD, through ARPA Order 5351, and
monitored by the US Army Engineer Topographic Laboratories under contract DACA76-85-C-0003, titled
"Road Following'. This report consists of an introduction and overview, and three detailed reports on

speciic areas of research.

2. Overview
During this contract year we have built two complete systems, Sidewalk II and Park Navigation; used

two robot vehicles, Terregator and Navlab; buik a single underlying software system, the COOGER
"whteboadl; and transferred technology to Martin Marietta. Each of these are explained below.

A key concept in our work is integration. We have Integrated data from various sensors, such as video
and range, in our sensor modules. We Integrate map data with perceived objects to update the vehile's
position. The whteboard integrates separate modules into a coherent software package. And our
systems integrate software, computing hardware, and mobile chassis into robots. In short, we have
integrated all the separate components necessary to produce functioning mobile robots, capable of
moving through difficult, realistic, outdoor scenes.

2.1. S1dewalk II
The Sidewalk II system uses information from a map, from video and range sensors, and from the

Teregator's dead reckoning, to drive around the Carnegie Mellon campus sidewalks. Sidewalk II
demonstrated the Teregator in continuous motion down straight paths and through intersections, and
was the first actual testbed for the CMU whiteboard and system architecture. Sidewalk II perception
includes low-level data fusion, buildiq a colored range image, to recognize and locate stairs on the
campus sidewalk network. The stairs are then used both as obstacles to be avoided and as landmarks
for position update. Further information on Sidewalk II can be found in section II, "Sidewalk I: Perception
and Capabilities." The use of the whiteboard by Sidewalk Il is described in section IV, "The CMU System
for Mobile Robot Navigation."

2.2. Park Navigation
The Park system drives the Navlab robot van along a winding, narrow, asphalt path through Schenley

Park adjacent to the CMU campus. The focus of Park work was real world perception, both video for road
following and range for obstacle avoidance. Park perception copes with difficult circumstances, including
changing lighting, lmited a priori models, and irregularly shaped natural objects. When the system
detects an obstacle, it drives around it if possible, or if there is no clear path on the road, stops and waits
for the object to move or be moved. Park navigation uses the whiteboard for system coordination. The
Park navigation system is explained In detail in Section III of this report, "Vision and Navigation for the

3

Carnege Mellon Navlab."

2.3. Trrsgator
The Terregalor is the vehicle we used for all our experiments during 1985, and continues to be used for

our sidewalk experiments. It is about the size of a desk, carries power and communications gear, and
provides built-in motion commands. This year we have added a platform for more room, and have
replaced the microwave link with two VHF video transmitters. Details of the Terregator were reported by
Whittaker (2].

2.4. Navlab
The Navlab (named from "Navigation Laboratory") is a self-contained laboratory for navigational vision

system research. The Navlab was based on a commercial van chassis, and is large enough to carry
power, computers and researchers on board. It has been a great asset to our work to have processing
and experimenters close to the action. We no longer have problems with video communications to
remote computers, and researchers can quickly see the actions of their programs, and greatly speed up
the debugfreprogramltest cycle. The Navlab was built under separate DARPA funding, and has been used
for our Park experiments since fall 1986. The design and construction of the Navlab are chronicled by
Singh [1].

2.5. Whlteboard
Inteligent mobile robots need to reason about geometrical relationships and how they change with

time. A mobile robot system is built of many cooperating processes which need to communicate and to
synclonize themselves. During the last year we have developed CODGER, a whiteboard, which provides
tools for handling geometry, time, synchronization, and communication. On top of the CODGER tools we
have bull an architecture that sets conventions for control and data flow. This system structure is the
basis of both the Sidewalk II and Park Navigation systems. CODGER and the associated architecture are
described In Section IV of this report, "The CMU System for Mobile Robot Navigation."

2.6. Technology Trasfer
Part of our charter is to cooperate with Martin Marietta in the development of the ALV (Autonomous

Land Vehicle). Accordingly we have during the last year participated in the ALV quarterly meetings, in
several Critical and Preliminary Design Reviews, and in a variety of less formal contacts with Martin
Marietta. We have hosted a visitor from Martin for most of a year, first as a visiting scientist and since
September as a graduate student. We have influenced the design of the ALV software and hardware
architecture. The current combination of Suns and specialized processors on the ALV should make it
relatively easy in the future to run CMU software on the ALV.

We have also contributed several stand alone modules to the ALV. Early in the year, they received a
path planner that uses a terrain database of the Martin Denver site to plan paths for the ALV. In March
they received code for obstacle detection using the ERIM scanner. And in October they acquired our
code for terrain analysis, again using ERIM data.

4

3. Chronology
Janury: Adaptive color runs
February: Color cone finding

February: First prototype whiteboard system runs

February: Coior-ERIM registration
March: Terregator using ERIM runs in coal mine

March: Navlab runs under joystick control

April: First color segmentation run using Navlab with remote computers

June: Hosted Blackboard workshop

August: Navlab runs for the first time with on board computing, using ERIM

August: FIDO stereo runs on Warp

October: ERIM terrain analysis software exported to Martin Marietta

October. Sidewalk II navigates complete course, including 90 and 135 degree turns, with
continuous motion

October Whiteboard runs on Navlab

October: First Navlab run with on board vision

November: First vision runs using texture

November Successful runs stopping for obstacles and restarting

November DARPA demo of Navlab Park system

December Sidewalk II drives Terregator successfully around stairs

4. Personnel
Faculty: Martial Hebert, Katsushl Ikeuchi, Takeo Kanade, Steve Shafer, Chuck Thorpe, Jon Webb,

William Whittaker.

Staff: Paul Allen, Mike Blackwell, Tom Chen, Jill Crisman, Kevin Dowling, Ralph Hyre, Jim Moody,

Tom Palmeri, Eddie Wyatt.

Visiting scientists: Ann Agarwal, Yoshi Goto, Take Fujimori, Kichie Matsuzaki, Taka Obatake

Graduate students: Keith Gremban, Karl Kluge, InSo Kweon, Doug Reece, Bruno Serey, Tony Stentz,
Rich Wallace

5. Publications
Crisman, J.

Machine Perception.
Unix ReWew 4(9), 1986.

Elfes, A.
A Sonar-Based Mapping and Navigation System.
In IEEE Intemational Conference on Robotics and Automation. 1986.

Goto, Y., Matsuzaki, K., Kweon, I., and Obatake, T.

5

CMU Sidewalk Navigation System.
In FAN Joknt Computer Conference. ACM/IEEE, November, 1986.

Hebert, M., and Kanade, T.
Outdoor Scene Analysis Using Range Data.
In IEEE International Conference on Robotics and Automation. 1986.

Kanade, T., Thorpe, C., and Whittaker, W.
Autonomous Land Vehicle Project at CMU.
In ACM Computer Conference. February, 1986.

Kanade, T. and Thorpe, C.
CMU Strategic Computing Vision Project Report: 1984 to 1985.
Technical Report, The Robotics Institute, Carnegie Mellon University, 1985.

Krogh, B., and Thorpe, C.
Integrated Path Planning and Dynamic Steering Control for Autonomous Vehicles.
In IEEE International Conference on Robotics and Automation. 1986.

Matthies, L.H., and Shafer, S.A.
Error modelling in stereo navigation.
In Fag Joint Computer Conference. ACM/IEEE, November, 1986.

Serey, B. and Matthles, L.
Obstale avoidance using -O stereo vision.
Technical Report, Carnegie Mellon Robotics Institute, 1987.

Shafer, S., Stentz, A., Thorpe, C.
An Architecture for Sensor Fusion in a Mobile Robot.
In IEEE International Conference on Robotics and Automation. 1986.

Singh, J. et al.
NavLab: An Autonomous Vehicle.
Technical Report, Carnegie Mellon Robotics Institute, 1986.

Thorpe, C.
Vision and Navigation for the CMU Navlab.
In SPIE. Society of Photo-Optical Instrumentation Engineers, October, 1986.

Wallace, R., Matsuzaki, K., Goto, Y., Crisman, J., Webb, J., and Kanade, T.
Progress in Robot Road-Following.
In IEEE International Conference on Robotics and Automation. 1986.

• P1

6

References

[1] Slgh, J. et al.
NavLa(: An Autonoous Vehicle.
Technical Report, Carnegie Mellon Robotics Institute, 1986.

[2] Whittaker, W.
Terregator - Terrestral Navigator.
Technical Report, Carnegie-Mellon Robotics Institute, 1984.

Section II

Sidewalk II : Perception and System Capabilities

Y. Goto , T. Obatake
I. Kweon, K. Matsuzakl

This section describes the perception and system capabilities of the Sidewalk Navigation System II.
The Sidewalk II system architecture is described in section IV.

1. Perception Using Colored-Range Image

1.1. PERCEPTION Module Architecture for Sensor Fusion
The main effort in designing the PERCEPTION module is deciding how to combine several types of

sensors and sensor data processing modules into one system, and how to make them work efficiently.
We designed a hierarchical structure and a monitor module which manages all parts of the hierarchy (see
figure 1).

I PILOT

'

PERCEPTION MONITOR

Predicted Object Position VebI le
Postuon Objects

POSITION CALIBRATOR

DetectedTObject Position
........... I OBJECT

WORKING MEMORY FINDER

.....

ParaffetersPATCH MAKER

Segmentation Segmentaation [

Figure 1: Structure of PERCEPTION module

J1111

8

1.1.1. PERCEPTION MONITOR
The PERCEPTION MONITOR has two major roles: communication with other modules (the PILOT)

and control of internal submodules. The design principle of this system is to provide a common structure
for different sensors and algorithms. This tends to make the module interface rather high level. For
example, a desired vehicle position for image input is usually decided by an external module using sensor
parameters. However, if there are several types of sensors with different view angles, the common
interface for those modules will be where PERCEPTION should see instead of where PERCEPTION
should look from. This means the perception module itself must decide the best position from which to
see the requested place. Communication with other modules means interpretation between the high level
module interface commands and actual commands to internal submodules.

The control flow of the perception process is rather simple: it progresses from segmentation to position
update. The PERCEPTION MONITOR activates the PATCH MAKER and the POSITION CALIBRATOR
in this sequence. The functions for the interpretation of the high level commands from the other planning
module (the PILOT) are described in the following paragraphs.

The PILOT requests what objects to see, but does not say which sensor should be used. The
PERCEPTION MONITOR decides which sensor and segmentation module is the best for the requested
objects. The current system has two sensors and segmentation modules. If all requested objects are
sidewalks or intersections on a flat plane, the PERCEPTION MONITOR selects the color segmentation
module as a PATCH MAKER. It three-dimensional objects such as stairs and slopes are included in the
requested objects, the PERCEPTION MONITOR selects the colored-range segmentation module.

The PILOT module does not say when PERCEPTION should see an object because the view frame of
PERCEPTION depends on the sensor used, and the PILOT does not know which sensor will be used.
Instead, the PERCEPTION MONITOR uses its internal position decision algorithm.

The position decision algorithm has two steps. First, this module simulates the view frame and the
vehicle's future path which is posted in the BLACKBOARD by LOCAL PATH PLANNER. When the
simulated view frame covers the region which the PILOT has requested PERCEPTION to see, this
vehicle position is defined as the image input position. Second, this module monitors current vehicle
position by watching the moving vehicle position on the BLACKBOARD. When the moving vehicle
position reaches the image input position, this module controls sensors to input an image.

1.1.2. PATCH MAKER
The PATCH MAKER, the region segmentation sub module, has a color segmentation module, a range

segmentation module, and a colored-range segmentation module. They are described in section 1.2.

The data structure which holds Patch data segments is common to all three segmentation modules.
This data includes color type, surface type and normal, polygons for boundary shape, and relation to
neighbor segments.

1.1.3. POSITION CALIBRATOR
The predicted objects are described in the current coordinate system, but the vehicle coordinate

system is used to describe the detected objects. The POSITION CALIBRATOR then computes the
vehicle position in the current coordinate system, by applying the transformation matrix between the two

9

coordinate systems. The problem for this computation is that the predicted object shape and the detected
object shape are not the same because of imperfections in the MAP and in perception. Therefore, the
POSITION CALIBRATOR must find the most appropriate match for these two shapes.

To get the best matching point, the POSITION CALIBRATOR calculates the distance between the
predicted lines and the detected lines of object polygons, and finds the position which minimizes the
distance. Sometimes a scene is composed of only parallel lines (for example sidewalk), which are
insufficient to decide a matching point. In this case, the POSITION CALIBRATOR derives a line equation

on which the vehicle is located instead of a point for vehicle position.

1.2. Colored-Range Image Analysis
It is very difficult to recognize complex objects in outdoor scenes using only one kind of sensor, but

several different sensors can provide many clues about the environment. For example, use of both range
data and color images provides a very powerful vision system for outdoor scene analysis: range data
provide information about the geometry of the scene, and color images provide information on the
physical properties of objects. In order to use these different types of sensor data, we must integrate them
using sensor fusion techniques. The registration between range data and color images can be a first step
of sensor fusion. We call the image which has both color information and depth values a colored-range
image. Next we describe the registration algorithm for color and range image, the segmentation
procedure for range data, color segmentation algorithm, and how to use a colored-range image.

1.2.1. Registration
Colored-range images are created by registering color data onto range data. In order to register them,

we need to know the camera parameters: the position and the orientation of the color camera relative to
the range scanner. We developed a method to obtain these camera parameters, which consists of two
steps: the initial value estimation and the optimum value estimation. The parameters calculated by the
first step can be used for some simple objects. However, they are not accurate enough for our test site.
The second step can give more accurate camera parameters by an iterative numerical method using the
result of the first step as starting values. The details of these methods are described in the Appendix to

this section.

1.2.2. Range Image Segmentation
We have two main processing modes in range segmentation: rough region segmentation and the

extraction of vertical surfaces. Rough segmentation uses three basic attributes: jump edges, surface '
normals, and surface curvatures. Flat, horizontal surfaces can be extracted by using the surface normals,
and large obstacles will be detected with surface normals pointed in other directions. This process,
however, cannot provide a detailed description of a scene with small objects. In order to obtain a detailed
description of a scene we need to use special purpose processing. For a scene containing stairs, we
extract vertical surfaces using the fact that pixels along the column in the range image will have constant
depth value. We produce the final range segmentation by combining the regions from these processes.

",,.

11

1.2.4. Segmentatlon of Colored Range Image
The segmentation of colored range images is executed using both color segmentation and range

image segmentation. Color segmentation assigns a color label to each pixel. Range image segmentation
assigns a surface label to each pixel. Therefore, each pixel in a colored range image has both a color
label and a surface label. Our method creates segments so that in each segment all pixels have the
same color label and the same surface label.

1.2.5. Reuit of Real Scne Analysis
One good example to show the effectiveness of the colored-range segmentation module is a slope and

stairs scene on the CMU campus sidewalk. The slope and the stairs are made of concrete and have the
same gray color. The slope and roadside grass are almost on the same plane. Therefore, segmentation
using only color can not separate the slope and the stairs, and segmentation using only range can not
separate the slope and the road side grass. Overlap segmentation using a colored-range image can
extract the concrete slope which is the only navigable region in this scene. Figure 3 shows the results of
color segmentation, range segmentation, and final overlap segmentation.

2. System Capabilities
Using perception as described above and the system architecture described in section IV, the Sidewalk

Navigation System can drive the vehicle, Terregator, on the CMU campus. It has capability
" to execute a prespecifled user mission over a mapped network of sidewalks, including

turning at the intersections and driving up the bicycle slope,

* to recognize landmarks, stairs and intersections under different weather conditions including
sunny days, rainy days, and even if scenes include fairly sharp shadows, and

" to drive continuously at 100 mrn/sec, slowing down in turning to keep turns stable.

Figure 4 illustrates the vehicle trajectories in the real runs. The vehicle navigated along the square and
diagonal test course (a), and drove up the bicycle slope, avoiding the stairs (b).

1. APPENDIX: A method for calibrating a color camera and a range scanner.
In this appendix, we describe the details of the calibration method for a color camera and a laser range

scanner. The calibration consists of two steps: the initial value estimation and the optimum value
estimation. We used a conventional lens calibration method to obtain a nonlinear transformation (a third
order polynomial was adopted in our experiment) between the real image plane and the ideal image
plane. The focal length of the camera was assumed to be unity in this experiment. Then, if we transform
real image points to ideal ones using the result of the lens calibration, we can use the linear perspective
projection model.

1.1. Initial estlmatlon by a least-squares criterion
In the initial value estimation step, the measured tilt angle of the color camera is used to simplify the

problem. Thus the position of the camera relative to the range scanner and its focal length are the only
unknown parameters. The unknown parameters are computed by solving a least-squares criterion.

A pair of range/color images is first measured, then a set of of points P,= (x,, y,, z,) is selected in the
range image along with the corresponding set of pixels (ri, cQ). From the homogeneous transformation, the

":1

12

0B

(a) Color segmentation

2

(b) Range segmentation

(c) Colored-range segmentation

110

(d) Colored-range segmentation on x-y plane
Figure 3: Colored range segmentation

following relationship between camera-centered points and range scanner-centered points can be
obtained.

where, Pji and Pj are a 3D scene point in a camera-centered coordinate
and a range scanner-centered coordinate respectively,

13
SW PV %2t olo-v orpaim

enbe" " mSM 11111 8113"

(a) Along the square and diagonal test course

stairs

L

inter ;ect ion t
slope

(b) Around the bicycle slope and the stairs

Figure 4: The Vehicle trajectories
P is the position vector of the camera relative to the range scanner,W
and R Is the 3x3 rotation matrix between two sensors.

Perspective transformation provides the following equations.

x. r. =fzC
2C
(2

xi
IN-

y

where, Pic- (xjf, y, Z') andf is the focal length of the camera.

2 111, 11'! 111I

14

By substituting Eq. (1) into Eq. (2) and Eq. (3) and rearranging it, we can obtain the following
equations.

RP~iri - Pri -fR 3P~i + P" - 0

R Pi ci- P ci- fR 2 P'i + P -0 (4)

where, R,, R2, and R3 Is each row vector of rotation matrix R and Py = f P " .=P fP

Using Eq. (4), the criterion can be written in the following form,

C- I ((A'i - P, Bi - f Ci + + (Di - P, E8 -fF i + P;)2)
whera, Ai, Rtli r., ei ,,rCi - R3 ,Oi. i R, P ci, E - - c,, and~ - 2

where, Ai i 2~=~anF Pi

To make a simpler form, we use a matrix representation.

C a JIU - A V12 + 11W - B Mei1 (5)

where,V=[P. P'P,'f, A=(B 0-1 C,, U=(AI... A', and W-[DI... DJ'

The camera parameters, which minimize the criterion, can be determined in the following form by
taking the partial derivative of Eq. (5) with respect to the vector V and setting it to zero.

V - (A A + BI)-T (A' U + B' W) (6)

The problem of finding camera parameters is now just a matrix computation and the matrix form is
given in Eq. (5).

Because the focal length is fixed as unity in our projection model, the partial derivative with respect tof
is equal to zero. This causes the following changes in A , U, B, and W of Eq. (5).

V:,(P P'P"J
Am[(iO -1]

U= [A, - C .. A, - C,1]I
W-[D-,I.. . D , - , t

1.2. Optimum camera parameters by Newton-Gauss method
Once the initial camera parameters are computed by the first step, the optimum camera parameters

including positions and orientations of the camera can be numerically computed by using the Newton-
Gauss method.

The vector V has the unknown parameters as its elements. The unknown parameters are the position
vector (P. Py P,) of the camera relative to the range scanner, the pan (a), the tilt (3), and the rotation (y)
angle of the camera and the focal length f. With the measured color image points (r, c,), the
corresponding 3-D position vectors (xi yi zi) and the initial parameters computed by the first step, we can
easily find a function F1(V) which represents the relationship between the given 3-D scene points and the
corresponding color image points. The error between the measured color image points and the ideal
image points can be expressed by the following equation.

C - I/i - Fi(V)112

15

I:, - - F1(V0) - JjA V1I
(7)

where,
Ii - I ' C,
V - (p; P,'Pjfa PY],

F.() - [(f x - ,)/ N Xc - P,), (fy' - P')/(z(- P,)] and
J is the Jacobian matrix of a function F

The condition for minimum error value is that the partial derivative of Eq. (7) with respect to camera
parameters should be equal to zero. From this condition, we obtain the following equation.

/i A() + ow)- 0(8)

where, f is Jacobian of function F,
AM is correction for camera parameters,
and A(C).-(-,(V.))

Finally the equation for the correction of camera parameters can be obtained as

~(9)

Using Eq. (9) the procedure is iterated until there is no change in the correction values of the camera
parameters.

b

A.

'U

Section III

Vision and Navigation
for the Carnegie Mellon Navlab

Charles Thorpe
Martial Hebert
Takeo Kanade
Steven Shafer

and the members of
the Strategic Computing Vision Lab

1. Introduction
Robotics is where Artificial Intelligence meets the real world. Al deals with symbols, rules, and

abstractions, reasoning about concepts and relationships. The real world, in contrast, is tangible, full of
exceptions to the rules, and often stubbornly difficult to reduce to logical expressions. Robots must span
that gap. They live in the real world, and must sense, move, and manipulate real objects. Yet to be
intelligent, they must also reason symbolically. The gap is especially pronounced in the case of outdoor
mobile robots. The outdoors is constantly changing, due to wind in trees, changing sun positions, even
due to a robot's own tracks from previous runs. And mobility means that a robot is always encountering
new and unexpected events. So static models or preloaded maps are inadequate to represent the robot's
world.

The tools a robot uses to bridge the chasm between the external world and its internal representation
include sensors, image understanding to interpret sensed data, geometrical reasoning, and a concept of
time and of the vehicle's motion over time. We are studying those issues by building a mobile robot, the
Carnegie Mellon Navlab, and giving it methods of understanding the world. The Navlab has perception
routines for understanding color video images and for interpreting range data. CODGER, our whiteboard,
proposes a new paradigm for building intelligent robot systems. The CODGER tools, developed for the
Navlab and its smaller cousin the Terregator, handle much of the modeling of time and geometry, and
provide for synchronization of multiple processes. Our architecture coordinates control and information
flow between the high-level symbolic processes running on general purpose computers, and the lower-
level control running on dedicated real-time hardware. The system built from these tools is now capable
of driving the Navlab along narrow asphalt paths near campus while avoiding trees and pausing for
joggers that get in its way.

This report describes the Navlab [Singh 86] and the software we have built over the past year: color
vision, for finding and following roads [Thorpe 86]; 3-D perception, for obstacle avoidance [Hebert 86];
and the CODGER whiteboard [Shafer 86].

2. Navlab: Navigation Laboratory
The Navigation Laboratory, Navlab, is a self-contained laboratory for navigational vision system

research (see figures 1 and 2). The motivation for building the Navlab came from our earlier experience
with the Terregator, a six-wheeled vehicle teleoperated from a host computer through a radio link. The

f ~ -- *,]

19

needs. It steers the van along circular arcs, and has commands to set speed and
acceleration, and to ask for the current dead reckoned position estimate. The controller will
evolve to do smoother motion control, and to interface with an inertial guidance system
possibly even with GPS satellite navigation. It will also eventually watch vital signs such as
computer temperature and vehicle hydraulic pressure.

3. Color Vision
The Navlab uses color vision, specifically multi-class adaptive color classification, to find and follow

roads. Image points are classified into "road" or "non-road" principally on the basis of their color. Since
the road is not a uniform color, color classification must have more than one road model, or class, and
more than one non-road class. Because conditions change from time to time and from place to place
over the test course, the color models must be adaptive. Once the image is classified, the road is
identified by means of an area-based voting technique that finds the most likely location for the road in
the image.

3.1. Vision Principles for the Real World
We based the development of our vision system on the following principles:

Assume variation and change. On sunny days there are shadowed areas, sunlit areas, and patches
with dappled sunlight. On rainy days, there are dry patches and wet patches. Some days there are wet,
dry, sunny and shadowed areas all in the same image. The road has clean spots and other places
covered with leaves or with drips of our own hydraulic fluid. And as the sun goes behind a cloud or as the
vehicle turns, lighting conditions change. We therefore need more than one road and non-road color
model at any one time, those color models must adapt to changing conditions, and that we need to
process images frequently so that the change from one image to the next will be moderate.

Use few geometric parameters. A complete description of the road's shape in an image can be
complex. The road can bend gently or turn abruptly, can vary in width, and can go up- or downhill.
However, the more parameters there are, the greater the chance of error in finding those parameters.
Small misclassifications in an image could give rise to fairly large errors in perceived road geometry.
Furthermore, if all the road parameters can vary, there are ambiguous interpretations: Does the road
actually rise, or does it instead get wider as it goes? We describe the road with only two free parameters:
its orientation and its distance from the vehicle. Road width is fixed, we assume a flat world, and we
decree that the road is straight. While none of these assumptions is true over a long stretch of the road,
they are nearly true within any one image; and the errors in road position that originate in our
oversimplifications are balanced by the smaller chance of bad interpretations. If our system classifies a
few pixels incorrectly as road, the worst it will do is to find a slightly incorrect road. A method that tries to
fit more parameters, on the other hand, may interpret parts of the road perfectly, but could find an abrupt
turn or sudden slope near any bad pixels.

Work In the Image. The road can be found either by projecting the road shape into the image and
searching in image coordinates, or by back projecting the image onto the ground and searching in world
coordinates. The problem with the latter approach comes in projecting the image onto an evenly spaced
grid in the world. The points on the world grid close to the vehicle correspond to a big area in the lower
part of the image; points farther away may correspond to one or a few pixels near the top. Unless one
uses a complex weighting scheme, some image pixels (those at the top that project to distant world

.~ .' ~ . .

20

points) will have more weight than other (lower) points. A few noisy pixels can then have a big or a small

effect, depending on where in the image they lie. On the other hand, working directly in the image makes
it much easier to weight all pixels evenly. We can directly search for the road shape that has the most

road pixels and the fewest non-road pixels. Moreover, projecting a road shape is much more efficient
than back projecting all the image pixels.

='

Calibrate directly. A complete description of a camera must include its position and orientation in
space, its focal length and aspect ratio, lens effects such as fisheye distortion, and nonlinearities in the

optics or sensor. The general calibration problem of trying to measure each of these variables is difficult.
It is much easier, and more accurate, to calibrate the whole system than to tease apart the individual
parameters. The easiest method is to take a picture of a known object and build a lookup table that
relates each world point to an image pixel and vice versa. Projecting road predictions into the image and

back projecting detected road shapes onto the world are done by means of table lookup (or table lookup
for close-by values with simple interpolations). Such a table is straightforward to build and provides good
accuracy, and there are no instabilities in the calculations. '.

%'

5'.

Use outside constraints. Even without a map of our test course or an expensive inertial navigation
.-

system, we know, based on the previous image and on vehicle motion, approximately where the road
should be. Our whiteboard, described in section 5, can predict where the road should appear if the road
were straight and vehicle navigation were perfect. Adding a suitable margin for curved roads and sloppy

navigation still gives useful limits on where in the image to look for the road.

Test with real data. We ran our VCR nearly every time we took the vehicle out, to collect images
under as many conditions as possible. We recorded sunny days, cloudy days, rainy days, leaves on
trees, leaves tuming color, leaves falling, early morning, noon, after dusk, even a partial solar eclipse.
Strategies that worked well on one set of images did not always work on the others. We selected the
toughest images, ran our best algorithms and printed the classification results, chdnged parameters or

algorithms, reran the data set, and compared results. This gave us the best chance of being methodical "

and of not introducing new bugs as we went. When the image processing worked to our satisfaction, we
ran simulations in the lab that included the whiteboard, range processing, path planning, and a vehicle
simulator, with the vision component processing stored images and interacting with the rest of the system.
When the simulations worked in the lab, we moved them to the vehicle. Only after the simulations worked

on the vehicle's computers, and we were sure that all necessary software was on the van, did we go into
the field for real tests. Even then not everything worked, but there were many fewer bugs than there
would have been without the simulations and tests.

3.2. Road Following Algorithm
We followed these principles in building and tuning adaptive color classification for following roads.

Figure 3 shows a relatively simple scene to help explain our algorithm. As shown in figure 4, the

algorithm involves three stages:
1. Classify each pixel.

2. Use the results of classification to vote for the best-fit road position.

3. Collect new color statistics based on the detected road and non-road regions.
Pixel classification is done by standard pattern classification. Each class is represented by the means,

.vdivariances, and covariances of red, green, and blue values, and by its a priori likelihood based on .5-

:5.
.%-

i ,. ,. ,. . .. , % . .- ." ". ". ". " .' - - - -"y. ". "-"" -" •"'-" " "" ". ' " •.. ".' '."" •5 "." " "."" """"" .' "5 """

29

that point is an arctangent curve in the parameter space. Because the road has a finite width, the arctan
curve has to be widened by the width of the road at that pixel's image row. Road width for a given row is
not a constant over all possible road angles but is nearly constant enough that it doesn't justify the
expense of the exact calculation. Each pixel's vote is weighted by its calculated confidence. Pixels
classified as non-road cast negative votes (with their weights reduced by a factor of 0.2) while road pixels
add votes. In pseudo C code, the voting for a pixel at (row, col) is

for (theta = -1; theta <- 1; thata+- 0.1) (
center - col + azctan (theta);
for (c, - center - width/2; c <- center + width/2; c++) I

pazraeter space(theta] [c] +- confidence;
}

At the end of voting, one road intercept/angle pair will have the most votes. That intercept and angle
describe the best road shape in the scene.

Color Update. The parameters of the road and non-road classes need to be recalculated to reflect
changing colors. We divide the image into tour regions plus a "safety zone": left off road, right offroad,
upper road, and lower road. We leave a 64-pixel wide "safety zone" along the road boundary, which
allows for small errors in locating the road, or for limited road curvature. For each of the four regions, we
calculate the means of red, green, and blue. We use the calculated parameters to form four classes, and
reclassify the image using a limited classification scheme. The limited reclassification allows road pixels
to be classified as either of the two road classes, but not as non-road, and allows non-road pixels to be
reclassified only as one of the non-road classes. The reclassified pixels are used as masks to recalculate
class statistics. The loop of classify pixels/recalculate statistics is repeated, typically 3 times, or until no
pixels switch classes. The final reclassified pixels are used to calculate the means, variances, and
covariances of R, G, and B for each of the classes, to be used to classify the next image. Limited
reclassification is based on distance from a pixel's values to the mean values of a class, rather than the
full maximum likelihood scheme used in classifying a new image. This tends to give classes based on
tight clusters of pixel values, rather than lumping all pixels into classes with such wide variance that any
pixel value is considered likely.

Calibration. There is no need for complete geometric calibration. The vision algorithms calculate the
road's shape (road width and location of the horizon) from the first training image. We also take two
calibration pictures, with a meter stick placed perpendicular to the vehicle, 8 and 12 m in front. Then
during the run, given the centerline of a detected road in image coordinates, it is easy to get the x position
of the road at 8 and 12 m, and then to calculate the vehicle's position on the road.

Performance. This algorithm is reliable. Running on the Navlab, with predictions of where the road
should appear, our failure rate is close to 0. The occasional remaining problems come from one of three
causes:

" The road is covered with leaves or snow, so one road color class and one non-road color
class are indistinguishable.

" Drastic changes in illumination occur between pictures (e.g. the sun suddenly emerges from
behind a cloud) so all the colors change dramatically from one image to the next.

* The sunlight is so bright and shadows are so dark in the same scene that we hit the
hardware limits of the camera. It is possible to have pixels so bright that all color is washed
out, and other pixels in the same image so dark that all color is lost in the noise.

31

analysis is relatively fast, running in about 5 s on a Sun 3/75, and is adequate for smooth terrain with
discrete obstacles.

Simple obstacle maps are not sufficient for detailed analysis. For greater accuracy we do more careful
terrain analysis and combine sequences of images corresponding to overlapping parts of the environment
into an extended obstacle map. The terrain analysis algorithm first attempts to find groups of points that
belong to the same surface and then uses these groups as seeds for the region growing phase. Each
group is expanded into a smooth connected surface patch. The smoothness of a patch is evaluated by
fitting a surface (plane or quadric). In addition, surface discontinuities are used to limit the region growing
phase. The complete algorithm is:

1. Edges: Extract surface discontinuities, pixels with high jumps in x-y-z.

2. Clustering: Find clusters in the space of surface normals and identify the corresponding
regions in the original image.

3. Region growing: Expand each region until the fitting error is larger than a given threshold.
The expansion proceeds by iteratively adding the point of the region boundary that adds the
minimum fitting error.

The clustering step is designed so that other attributes such as color or curvature can also be used to
find potential regions on the object. The primitive surface used to compute the fitting error can be either a
plane or a quadric surface. The decision is based on the size of the region. Figure 17 shows the
resultant description of 3-D terrain and obstacles for the image of figure 16. The flat, smooth, navigable
region is the meshed area, and the detected 3-D objects (the two trees) are shown as polyhedra.

Obstacle detection works at longer range than terrain analysis. When the scanner is looking at distant
objects, it has a very shallow depression angle. Adjacent scanlines, separated by 0.5 degree in the range
image, can strike the ground at widely different points. Because the grazing angle is shallow, little of the
emitted laser energy returns to the sensor, producing noisy pixels. Noisy range values, widely spaced,
make it difficult to do detailed analysis of flat terrain. A vertical obstacle, such as a tree, shows up much
better in the range data. Pixels from neighboring scanlines fall more closely together, and with a more
nearly perpendicular surface the returned signal is stronger and the data cleaner. It is thus much easier
for obstacle detection to find obstacles than for terrain analysis to certify a patch of ground as smooth and
level.

When neither video nor range information alone suffices, we must fuse data to determine mobility or
recognize an object. One such case occurs in navigating the smaller Terregator vehicle around campus
sidewalks. At one spot, a sidewalk goes up a flight of stairs and a bicycle path curves around. Video
alone has a tough time distinguishing between the cement stairs and the cement bicycle path. Range
data cannot tell the difference between the smooth rise of the grassy hill and the smooth bicycle ramp.
The only way to identify the safe vehicle path is to use both kinds of data.

We start by fusing the data at the pixel level. For each range point, we find the corresponding pixel in
the video image. We produce a painted range image in which each pixel is a {red, green, blue, x, y, z)
6-vector. Figure 18 shows the painted range image, rotated and projected from a different angle. We
can then run our standard range segmentation and color segmentation programs, producing regions of
smooth range or constant color. For the stairs in particular, we have a special-purpose step detection
program that knows about vertical and horizontal planes Pnd how they are related in typical stairs. It is

, ." , , , ""'. - "... " -". . ". .. " , " '.- "

34

5. System Building

5.1. Artificial Intelligence for Real World Robots
We have developed a new paradigm for intelligent robot system building. Artificial Intelligence

systems, including intelligent mobile robots, are symbol manipulators. Indeed, the very definition of
intelligence, artificial or otherwise, includes symbol manipulation. But the manipulation used by most Al
systems is based on inference, either by the logic of predicate calculus or by probabilities. The bulk of the
work of a mobile robot, in contrast, is based on geometry and on modeling time. Inference may be a part
of a mobile robot system, but geometry and time are pervasive. Consequently, intelligent mobile robots
need a new kind of expert system shell, one that provides tools for handling 3-D locations and motion.

This fits into the context of changes in the field of Al as a whole. Early systems, such as the Logic
Theorist or GPS [Cohen 82], were search engines that had no domain knowledge. They could solve
problems such as the Towers of Hanoi or Missionaries and Cannibals that are essentially logic puzzles.
"Expert systems" brought lots of knowledge to bear on a problem. A system such as Ri or MYCIN [Cohen
821 has thousands of rules of the form "if P then try Q" or "if X is true then Y is true with confidence 0.7".
This type of knowledge allows these programs to deal with many real world problems. However, it is
"shallow" knowledge in the sense that it deals with externally visible input-output behavior, with no
knowledge of internal structure or mechanisms. MYCIN is like a doctor who has never taken Anatomy or
Physiology, but has seen a lot of cases. Its knowledge is adequate for handling things it has already
seen, but, because it does not understand the underlying mechanisms and structures of its domain, there
is a limit to its competence in reasoning about new or unexpected behavior. The newest generation of
expert systems is beginning to embed more "deep knowledge." For instance, the ALADIN aluminum alloy
design system [Rychener 86] includes both shallow knowledge rules ("If the alloy is too heavy, try adding
lithium") and deep knowledge of crystal structure and chemical interactions.

The evolution of mobile robot systems is following an analogous course. Early systems such as SRI's
Shakey were based on deduction. Shakey could decide which light switch to flip and in what order to
traverse a sequence of rooms; it was a success with respect to logical action, but it lacked the deep
knowledge needed to move and live in a complicated environment. Its home was a series of empty
rooms with flat floors and uniform walls that allowed Shakey to function with very simple perception and
motion capabilities. In contrast, a robot that must move through the real outdoor world, needs a vast
reservoir of deep knowledge of perception, object models, motion, path planning, terrain models,
navigation, vehicle dynamics, and so forth.

The deep knowledge needed by a mobile robot must be supported by the system architecture and by
the system building tools. We have developed and followed the following tenets of mobile robot system
design in building our system:

Use separate modules. Much of the deep knowledge can be limited to particular specialist modules.
The effects of lighting conditions and viewing angle on the appearance of an object, for instance, are
important data for color vision but are not needed by path planning. So one principle of mobile robot
system design is to break the system into modules and minimize the overlap of knowledge between
modules.

Provide tools for geometry and time. Much of the knowledge that needs to be shared between

..........

35

modules has to do with geometry, time, and motion. An object may be predicted by one module (the
lookout), seen separately by two others (color vision and 3-D perception), and used by two more (path
planner and position update). During the predictions, sensing, and reasoning, the vehicle will be moving,
new position updates may come in, and the geometrical relationship between the vehicle and the object
will be constantly changing. Moreover, there may be many different frames of reference: one for each
sensor, one for the vehicle, one for the world map, and others for individual objects. Each module should
be able to work in the coordinate frame that is most natural; for instance, a vision module should work in
camera coordinates and should not have to worry about conversion to the vehicle reference frame. The
system should provide tools that handle as many as possible of the details of keeping track of coordinate
frames, motion, and changing geometry.

Provide tools for synchronization. A system that has separate modules communicating at a fairly
coarse grain will be loosely coupled. Lock-step interactions are neither necessary nor appropriate.
However, there are times when one module needs to wait for another to finish, or when a demon module
needs to fire whenever certain data appear. The system should provide tools for several different kinds of
interaction and for modules to synchronize themselves as needed.

Handle real-time vs symbolic Interface. At one level, a mobile robot reasons symbolically about
perceived objects and planned paths, probably on a slow time scale. At the same time, the vehicle is
constantly moving, and low-level servo processes are controlling steering and motion. The top level
processes need to be free to take varying amounts of time to process scenes of varying difficulty. They
are often event driven, running when a particular object is seen or a particular event occurs. The servo
processes, though, must run continuously and in real time (not "simulated real time" or "real time not
counting garbage collection"). The system should provide for both real-time and asynchronous symbolic
processes, and for communications between them.

Provide a virtual vehicle. As many as possible of the details of the vehicle should be hidden. At
Carnegie Mellon, we have one robot (the Terregator) that has six wheels, steers by driving the wheels on
one side faster than those on the other side, and carries a camera mount approximately 6 ft high. A
second robot (the Navlab) is based on a commercial van, steers and drives conventionally, and mounts
its camera 2 ft higher. We need to be able to use one system to drive either of the vehicles, with only
minor modifications. This requires hiding the details of sensing and motion in a "virtual vehicle" interface,
so a single "move" command, for instance, will use the different mechanisms of the two vehicles but will
produce identical behavior.

Plan for big systems. It takes good software engineering to build a mobile robot. The system may be
written in a mixture of programming languages, will probably run on multiple processors, and may use
different types of processors including specialized perception machines. System tools must bridge the
gaps between languages, data formats, and communications protocols.

In addition to these tenets of good design, we have identified certain approaches that are
inappropriate. Many good ideas in other areas of Al present difficulties for mobile robots. Specifically, we

avoid the following.

Do not throw away geometric precision. Mobile robots need all the information they can get. It is
often important to know as precisely as possible where an object is located, either for planning efficient
paths or for updating vehicle location. There is no need to turn a measured distance of 3.1 m into fairly

36

close. Given the relative costs and speeds of computers and vehicles, it is more efficient to spend extra
computing effort (if any) to handle precise data than to plan fuzzy paths that take the vehicle
unnecessarily far out of its way.

Do not concentrate on explanations. It is important to have hooks inside the vehicle's reasoning, for
debugging and for learning about the system behavior. However, the prime output of the vehicle is its
externally observable behavior. Producing explanations is nice, but is not the primary product as it is in
expert systems for diagnosis or in intelligent assistants.

Do not build an omniscient master process. In some systems (notably early blackboards) a single
master process "knows" everything. The master process may not know the internal working of each
module, but it knows what each module is capable of doing. The master controls who gets to run when.
The master itself becomes a major Al module and can be a system bottleneck. In contrast, the individual
modules in a mobile robot system should be autonomous, and the system tools should be slaves to the
modules. The module writers should decide when and how to communicate and when to execute. The

system support should be as unobtrusive as possible.

We have followed these tenets in building the Navlab system. At the bottom level, we have built the
CODGER "whiteboard" to provide system tools and services. On top of CODGER we have built an
architecture that sets conventions for control and data flow. CODGER and our architecture are explained
below.

5.2. Blackboards and Whiteboards
The program organization of the NAVLAB software is shown in figure 19. Each of the major boxes

represents a separately running program. The central database, called the Local Map, is managed by a
program known as the Local Map Builder (LMB). Each module stores and retrieves information in the
database through a set of subroutines called the LMB Interface which handle all communication and
synchronization with the LMB. If a module resides on a different processor than the LMB, the LMB and
LMB Interface will transparently handle the network communication. The Local Map, LMB, and LMB
Interface together comprise the CODGER (COmmunications Database with GEometric Reasoning) system.

The overall system structure-a central database, a pool of knowledge-intensive modules, and a
database manager that synchronizes the modules-is characteristic of a traditional blackboard system.
Such a system is called "heterarchical" because the knowledge is scattered among a set of modules that
have access to data at all levels of the database (i.e. low-level perceptual processing ranging up to
high-level mission plans) and may post their findings on any level of the database; in general,
heterarchical systems impose de facto structuring of the information flow among the modules of the

system. In a traditional blackboard, there is a single flow of control managed by the database (or
blackboard) manager. The modules are subroutines, each with a predetermined precondition (pattern of
data) that must be satisfied before that module can be executed. The manager keeps a list of which
modules are ready to execute. In its central loop it selects one module, executes it, and adds to its
ready-list any new modules whose preconditions become satisfied by the currently executing module.

The system is thus synchronous and the manager's function is to focus the attention of the system by
selecting the "best" module from the ready-list on each cycle.

We call CODGER a whiteboard because although it implements a heterarchical system structure, it

Lf

6=

¢ '<' J".'," '°.' "-,."'.'';,'. ,. ". ". ' -' - -'i -''" ", " T'-'" '' - ' '' "" '.""." " " "'" " " ":-" - " -- "-" " --'--' " -

37

FigurB 19: Navlab software architecture

diffrs from a blackBoard in several key respects. In CODGER, each module is a separate, continuously

running program; the modules communicate by storing and retrieving data in the central database.
Synchroiiization is achieved by primitives in the data retrieval facilities that allow, for example, for a
module to request data and suspend execution until the specified data appears. When some other
module stores the desired data, the first module will be reactivated and the data will be sent to it. With

COOGER a module programmer thus has control over the flow of execution within his module and may
implement real-time loops, demons, data flows among cooperating modules, etc. COOGER also has no
precompiled list of data retrieval specifications; each time a module requests data, it provides a pattern for
the data desired at that time. A whiteboard is heterarchical like a blackboard, but each module runs in
p rullel, with the module programmer controlling the synchronization and data retrieval requests as best
suited for each module. Like other recent distributed A architectures, whiteboards are suited to execution
on multiple processors.

5.3. Data Storage and Retrieval
Data in the COOGER database (Local Map) is represented in tokens consisting of classical

attribute-value pairs. The types of tokens are described in a template file that tells the name and type of
each attribute in tokens of each type. The attributes themselves may be the usual scalars (integers,
floating-point values, strings, enumerated types), arrays (or sets) of these types (including arrays of
arrays), or geometric locations (as described below). CODGER automatically maintains certain attributes
for each token: the token type and id number, the generation number as the token is modified, the time at
which the token was created and inserted into the database, and the time at which the sensor data was
acquired that led to the creation of this token. The LMB Interface provides facilities for building and

dissecting tokens and attributes within a module. Rapid execution is supported by mapping the module
programmer's names for tokens and attributes onto globally used index values at system startup time.

A module can store a token by calling a subroutine to send it to the LMB. rokens can be retrieved by
constructing a pattern called a specification and calling a routine to request that the LMB send back
tokens matching that specification. The specification is simply a Boolean expression in which the

fo i-point " u , tn , u e e types),p array (.... o t ,, ar rs of

38

attributes of each token may be substituted; if a token's attributes satisfy the Boolean expression, then
the token is sent to the module that made the request. For example, a module may specify:

tokens wih type equal to "intersection" and traffic-control equal to Istopsign"
This would retrieve all tokens whose type and traffic-control attributes satisfy the above conditions. The
specification may include computations such as mathematical expressions, finding the minimum value
within an array attribute, comparisons among attributes, etc. CODGER thus implements a general
database. The module programmer constructs a specification with a set of subroutines in the CODGER
system.

One of the key features of CODGER is the ability to manipulate geometric information. One of the
attribute types provided by CODGER is the location, which is a 2-D or 3-D polygon and a reference to a
coordinate frame in which that polygon is described. Every token has a specific attribute that tells the
location of that object in the Local Map, if applicable, and a specification can include geometric
calculations and expressions. For example, a specification might be:

tokens with location within 5 units of (45,32) [in world coordinates]
or

tokens with location overlapping X
where X is a description of a rectangle on the ground in front of the vehicle. The geometric primitives
currently provided by CODGER include calculation of centroid, area, diameter, convex hull, orientation, and
minimum bounding rectangle of a location, and distance and intersection calculations between a pair o
locations. We believe that this kind of geometric data retrieval capability is essential for supporting spatial
reasoning in mobile robots with multiple sensors. We expect geometric specifications to be the most
common type of data retrieval request used in the NAVLAB.

CODGER also provides for automatic coordinate system maintenance and transformation for these
geometric operations. In the Local Map, all coordinates of location attributes are defined relative to
WORLD or VEHICLE coordinates; VEHICLE coordinates are parameterized by time, and the LMB
maintains a time-varying transformation between WORLD and VEHICLE coordinates. Whenever new
information (i.e. a new VEHICLE-to-WORLD transform) becomes available, it is added to the "history"
maintained in the LMB; the LMB will interpolate to provide intermediate transformations as needed. In
addition to these basic coordinate systems, the LMB Interface allows a module programmer to define
local coordinates relative to the basic coordinates or relative to some other local coordinates. Location
attributes defined in a local coordinate system are automatically converted to the appropriate basic
coordinate system when a token is stored in the database. CODGER provides the module programmer
with a conversion routine to convert any location to any specified coordinate system.

All of the above facilities need to work together to support asynchronous sensor fusion. For example,
suppose we have a vision module A and a rangefinder module B whose results are to be merged by
some module C. The following sequence of actions might occur:

1. A receives an image at time 10 and posts results on the database at time 15. Although the
calculations were carried out in the camera coordinate system for time 10, the results are
automatically converted to the VEHICLE system at time 10 when the token is stored in the
database.

2. Meanwhile, B receives data at time 12 and posts results at time 17 in a similar way.
3. At time 18, C receives A's and B's results. As described above, each such token will be

tagged with the time at which the sensor data was gathered. C decides to use the vehicle

39

coordinate system at time 12 (B's time) for merging the data.

4. C requests that A's result, which was stored in VEHICLE time 10 coordinates, be
transformed into VEHICLE time 12 coordinates. If necessary, the LMB will automatically
interpolate coordinate transformation data to accomplish this. C can now merge A's and B's
results since they are in the same coordinate system. At time 23, C stores results in the
database, with an indication that they are stored in the coordinate system of time 12.

5.4. Synchronization Primitives
CODGER provides module synchronization through options specified for each data retrieval request.

Every time a module sends a specification to the LMB to retrieve tokens, it also specifies options that tell
how the LMB should respond with the matching tokens:

" Immediate Request. The module requests all tokens currently in the database that match this
specification. The module will block (i.e. the "request" subroutine in the LMB Interface will
not return control) until the LMB has responded. If there are no tokens that match the
specification, the action taken is determined by an option in the module's request:

• Non-Blocking. The LMB will answer that there are no matching tokens, and the module
can then proceed. This would be used for time-critical modules such as vehicle
control. Example: "Is there a stop sign?"

" Blocking. The LMB will record this specification and compare it against all incoming
tokens. When a new token matches the specification, it will be sent to the module and
the request will be satisfied. Meanwhile, the module will remain blocked until the LMB
has responded with a token. This is the type of request used for setting up
synchronized sets of communicating modules: each one waits for the results from the
previous module to be posted to the database. Example: "Wake me up when you see
a stop sign."

" Standing Request. This provides a mechanism for the LMB to generate an interrupt for a
running module. The module gives a specification along with the name of a subroutine. The
module then continues running; the LMB will record the specification and compare it with all
incoming tokens. Whenever a token matches, it will be sent to the module. The LMB
Interface will intercept the token and execute the specified subroutine, passing the token as
an argument. This has the effect of invoking the given subroutine whenever a token appears
in the database that matches the given specification. It can be used at system startup time
for a module programmer to set up "demon" routines within the module. Example: "Execute
that routine whenever you see a stop sign."

5.5. Architecture
Several modules use the CODGER tools and fit into a higher level architecture. The modules are:

* Pilot: Looks at the map and at current vehicle position to predict road location for Vision.
Plans paths.

* Map Navigator: Maintains a world map, does global path planning, provides long-term
direction to the Pilot. The world map may start out empty, or may include any level of detail
up to exact locations and shapes of objects.

* Color Vision: Waits for a prediction from the Pilot, waits until the vehicle is in the best
position to take an image of that section of the road, returns road location.

e Obstacle Detection: Gets a request from the Pilot to check a part of the road for obstacles.
Returns a list of obstacles on or near that chunk of the road.

N Helm: Gets planned path from Pilot, converts polyline path into smooth arcs, steers vehicle.

, Graphics and Monitor: Draws or prints position of vehicle, obstacles, predicted and

40

perceived road.
There are two other modules in our architecture. These have not yet been implemented:

* Captain: Talks to the user and provides high-level route and mission constraints such as
avoid area A or go by road B.

* Lookout: Looks for landmarks and objects of importance to the mission.

These modules use CODGER to pass information about driving units. A driving unit is a short chunk of
the road or terrain (in our case 4 m long) treated as a unit for perception and path planning. The Pilot
gives driving unit predictions to Color Vision, which returns an updated driving unit location. Obstacle
Detection then sweeps a driving unit for obstacles. The Pilot takes the driving unit and obstacles, plans a
path, and hands the path off to the Helm. The whole process is set up as a pipeline, in which Color

Vision is looking ahead 3 driving units, Obstacle Detection is looking 2 driving units ahead, and path
planning at the next unit. If for any reason some stage slows down, all following stages of the pipeline
must wait. So, for instance, if Color Vision is waiting for the vehicle to come around a bend so it can see
down the road, Obstacle Detection will finish its current unit and will then have to wait for Color Vision to
proceed. In an extreme case, the vehicle may have to come to a halt until everything clears up. All
planned paths include a deceleration to a stop at the end, so if no new path comes along to overwrite the
current path the vehicle will stop before driving into an area that has not been seen or cleared of
obstacles.

In our current system and test area, 3 driving units is too far ahead for Color Vision to look, so both
Color Vision and Obstacle Detection are looking at the same driving unit. Obstacle Detection looks at an
area sufficiently larger than the Pilot's predicted driving unit location to guarantee that the actual road is
covered. Another practical modification is to have Obstacle Detection look at the closest driving unit also,
so a person walking onto the road immediately in front of the vehicle will be noticed. Our system will try to
plan a path around obstacles while remaining on the road. If that is not possible, it will come to a halt and
wait for the obstacle to move before continuing.

6. Conclusions and Future Work
The system described here works. It has successfully driven the Navlab many tens of times,

processing thousands of color and range images without running off the road or hitting any obstacles.
CODGER has proved to be a useful tool, handling many of the details of communications and geometry.

Module developers have been able to build and test their routines in isolation, with relatively little
integration overhead. Yet there are several areas that need much more work.

Speed. We drive the Navlab at 10 cm/sec, a slow shuffle. Our slow speed is because our test road is
narrow and winding, and because we deliberately concentrate on competence rather than on speed. But
faster motion is always more interesting, so we are pursuing several ways of increasing speed. One
bottleneck is the computing hardware. We are mounting a Warp, Carnegie Mellon's experimental high-
speed processor, on the Navlab. The Warp will give us a factor of 100 more processing power than a
Sun for color and range image processing. At the same time, we are looking at improvements in the
software architecture. We need a more sophisticated path planner, and we need to process images that
are more closely spaced than the length of a driving unit. Also, as the vehicle moves more quickly, our
simplifying assumption that steering is instantaneous and that the vehicle moves along circular arcs

becomes more seriously flawed. We are looking at other kinds of smooth arcs, such as clothoids. More

41

important, the controiler is evolving to handle more of the low-level path smoothing and following.

Map. One reason for the slow speed is that the Pilot assumes straight roads. We need to have a

description that allows for curved roads, with some constraints on maximum curvature. The next steps

will include building maps as we go, so that subsequent runs over the same course can be faster and

easier.

Cross-country travel. Travel on roads is only half the challenge. The Navlab should be able to leave

roads and venture cross-country. Our plans call for a fully integrated on-road/off-road capability.

Intersections. Current vision routines have a built-in assumption that there is one road in the scene.

When the Navlab comes to a fork in the road, vision will report one or the other of the forks as the true

road depending on which looks bigger. It will be important to extend the vision geometry to handle
intersections as well as straight roads. We already have this ability on our sidewalk system and will bring

that over to the Navlab. Vision must also be able to find the road from off road.

Landmarks. Especially as we venture off roads, it will become increasingly important to be able to

update our position based on sighting landmarks. This involves map and perception enhancements, plus
understanding how to share limited resources, such as the camera, between path finding and landmark
searches.

Software Development. Our current blackboard system can manipulate primitive data elements but
has no concept of data structures made up of tokens on the blackboard. We need aggregate data types

for representing complex 3-D geometric descriptions of objects for recognition. We will also be
implementing a Lisp interface to our blackboard. All current modules are written in C, but we will soon
want to write higher-level modules in Lisp.

Integration with Work from Other Sites. Other universities and research groups cooperating with

Carnegie Mellon through DARPA Strategic Computing Vision program. We plan to incorporate some of
their programs into the Navlab system in the coming years as it evolves into the "new generation vision

system" that is the goal of that program.

Acknowledgments
The Terregator and Navlab were built by William Whittaker's group in the Construction Robotics

Laboratory, and the Warp group is led by H. T. Kung and Jon Webb. The real work gets done by an army

of eight staff, nine graduate students, five visitors, and three part time programmers.

This research was supported by the Strategic Computing Initiative of the Defense Advanced Research
Projects Agency, DoD, through ARPA Order 5351, and monitored by the U.S. Army Engineer

Topographic Laboratories under contract DACA76-85-C-0003. Views and conclusions contained in this

document are those of the authors and should not be interpreted as representing official policies, either
expressed or implied, of the Defense Advanced Research Projects Agency or the United States

Government.

-p

%p

42

References

[Cohen 821 Cohen, P., Barr, A., Feigenbaum, E., eds.
The Handbook of Artificial Intelligence.
William Kaufman, 1982.

(Goto 86] Goto, Y., Matsuzaki, K., Kweon, I., Obatake, T.
CMU sidewaic navigation system.
In Fall Jint Computer Conference. ACM/IEEE, 1986.

[Hebert 861 Hobert, M., Kanade, T.
Outdoor scene analysis using range data.
In IEEE International Conference on Robotics and Automation. 1986.

(Rychener 861 Rychener, M. D., Farinacci, M. L., Huithage, I., Fox, M. S.
Integration of multiple knowlede sources in Alladin, an alloy design system.
In AAAI-19M6. AAAI, 1986.

[Shafer 861 Shafer, S., Stentz, A., Thorpe, C.
An architecture for sensor fusion in a mobile robot.
In IEEE International Conference on Robotics and Automation. 1986.

(Singh 861 Singh, J., at al.
NavLab:, an autonomous vehicle.
Technical Report, Carnegie Mellon Robotics Institute, 1986.

[Thorpe 861 Thorpe, C.
Vision and navigation for the CMU Navlab.
In SPIE. Society of Photo-Optica Instrumentation Engineers, October, 1986.

Section IV

The CMU System for Mobile Robot Navigation

Yoshimasa Goto
Anthony Stentz

- The Robotics Institute

Carnegie-Mellon University
Pittsburgh, PA 15213

Abstract

This paer describes the current status of the Autonomous Land Vehicle research at Carnegie Mellon
Universty's Robotics Institute, focusing primarily on the system architecture. We begin with a discussion
of the Issues concerning outdoor navigation, then describe the various perception, planning, and control
components of our system that address these issues. We describe the CODGER software system for
integrating these components into a single system, synchronizing the data flow between them in order to
maximize parallelism. Our system Is able to drive a robot vehicle continuously with two sensors, a color
camera and a laser rangefinder, on a network of sidewalks, up a bicycle slope, and through a curved road
through an area populated with trees. Finally, we discuss the results of our experiments, as well as
problems uncovered in the process and our plans for addressing them.'

1. Introduction
The goal of the Autonomous Land Vehicle group at Carnegie Mellon University is to create an

autonomous mobile robot system capable of operating in outdoor environments. Because of the
complexity of real-world domains and the requirement for continuous and real-time motion, such a robot
system needs system architectural support for multiple sensors and parallel processing. These
capabilities are not found in simpler robot systems. At CMU, we are studying mobile robot system
architecture and have developed the navigation system working at two test sites and on two experimental
vehicles [2, 3, 4, 8, 10, 11]. This paper describes the current status of our system and some problems
uncovered through real experiments.

1.1. The Test Sites and Vehicles
We have two test sites, the Carnegie Mellon campus and an adjoining park, Schenley Park. The CMU

campus test site has a sidewalk network including intersections, stairs and bicycle slopes (figure 1). The
Schenley Park test site has curved sidewalks in an area well populated with trees (figure 2).

Figure 3 shows our two experimental vehicles, the Navigation Laboratory (Navlab) used in the

1Thi research was suppored by th. Strategic Computing Initiative of the Defense Advanced Research Prolecte Agency, DoD,
through ARPA Order 5351, and monitored by the U.S. Army Engineer Topographic Laboratories under contract DACA76-85-
C-O003. Views and conclusions contained in this document are those of the authors and should not be interpreted as representing
oflicial poids, either expressed or implied, of the Defense Advanced Research Prolect Agency or the United State Government.

Figure 1: Map of the CMU Campus Test Site

Figure 2: Map of the Schenley Park Test Site

46

2.1. Design Goals and Principles
The goals of our outdoor navigation system are:

" map-driven mission execution: The system drives the vehicle to reach a given goal
position.

" on- and off-road navigation: Navigation environments include not only roads but also open
terrain.

* landmark recognition: Landmark sightings are essential in order to correct for drift in the
vehicle's dead-reckoning system.

" obstacle avoidance

" continuous motion In real time: Stop and go motion is unacceptable for our purposes.
Perception, planning, and control should be carried out while the vehicle is moving at a
reasonable speed.

In order to satisfy these goals, we have adopted the following design principles.

" sensor fusion: A single sensor is not enough to analyze complex outdoor environments.
Sensors include not only a TV camera and a range sensor but also an inertial navigation
sensor, a wheel rotation counter, etc.

" parallel execution: In order to process data from a number of sensors, make global and
local plans, and drive the vehicle in real-time, parallelism is essential.

" flexibility and extensibility: This principle is essential because the whole system is quite
large, requiring the integration of a wide range of modules.

2.2. Outdoor Navigation Tasks
Outdoor navigation includes several different navigation modes. Figure 4 illustrates several examples.

On-road vs. off-road is just one example. Even in on-road navigation, turning at the intersection requires
more sophisticated driving skill than following the road. In road following, the assumption that the ground
is flat makes perception easier, but driving through the forest does not satisfy this assumption and
requires more complex perception processing.

According to this analysis we decompose outdoor navigation into two navigation levels: global and

local. At the global level, the system tasks are to select the best navigation route to reach the destination
given by a user mission, and to divide the whole route into a sequence of route segments, each
corresponding to a uniform driving mode. The current system supports the following navigation modes:
following the road, turning at the intersection, driving up the slope.

Local navigation involves driving within a single route segment. The navigation mode is uniform and
the system drives the vehicle along the route segment continuously, perceiving objects, planning path
plans, and controlling the vehicle. The important thing is that these tasks, perception, planning, and
control, form a cycle and can be executed concurrently.

2.3. System Architecture
Figure 5 is a block diagram of our system architecture. The architecture consists of several modules

and a communications database which links the modules together.

N N*

47

Figure 4: t.,itdoor navigation

2.3.1. Module Structure
In order to support the tasks described in the previous section, we first decomposed the whole system

into the following modules:

* CAPTAIN executes user mission commands and sends the destination and the constraints
of each mission step to the MAP NAVIGATOR one step at a time, and gets the result of each
mission step.

" MAP NAVIGATOR selects the best route by searching the Map Database, decomposes it
into a sequence of route segments, generates a route segment description which includes
objects from the Map visible from the route segment, and sends it to the PILOT.

" PILOT coordinates the activities of PERCEPTION and the HELM to perform local navigation
continuously within a single route segment.

" PERCEPTION uses sensors to find objects predicted to lie within the vehicle's field of view.
It estimates the vehicle's position if possible.

" HELM gets the local path plan generated by the PILOT and drives the vehicle.

The PILOT is decomposed into several submodules which run concurrently (figure 6).
• DRIVING MONITOR decomposes the route segment into small pieces called driving units. A

driving unit is the basic unit for perception, planning, and control processing at the local
navigation level. For example, PERCEPTION must be able to process a whole driving unit
with a single image. The DRIVING MONITOR creates a driving unit description , which
describes objects in the driving unit, and sends it to the following submodules.

* DRIVING UNIT FINDER functions as an interface to PERCEPTION, sending the driving unit
description to t and getting the result from it.

- .-' ' "w , ', , ' .",.- ;-;',. '. ;' .: ,-' . - ., . , .';- '-. ", ' '- : , " - , C,.

48

CAPTAIN I

INAVIGATOR CODGER [1 PILOT

IPERCEPTION HL

Flaure 5: System architecture

MAP

NVIGATOR

DRVMNM O

F guReX 6:I Sumlsrctuefth PLO T IO

ivy ~POITO d%* C..w.W. q * ** E***r

POITO Z.--vS.* TMAT**O .aR* * - U

49

* POSITION ESTIMATOR estimates the vehicle position using both the result of
PERCEPTION and dead-reckoning.

* DRIVING UNIT NAVIGATOR determines the admissible passage in which to drive the
vehicle.

* LOCAL PATH PLANNER generates the path plan within the driving unit, avoids obstacles
and keeps the vehicle in the admissible passage. The path plan is sent to the HELM. P

2.3.2. CODGER
It is important not only to build the modules, but also to connect them into a coherent system. Based

on our design principles, we have created a software system called CODGER (COmmunications
Database with GEometric Reasoning) which supports parallel asynchronous execution and
communication between the modules. We describe CODGER in detail in the next section.

3. Parallelism

3.1. The CODGER System for Parallel Processing
In order to navigate in real-time, we have employed parallelism in our perception, planning, and control

subsystems. Our computing resources consist of several SUN-3 microcomputers, VAX minicomputers,
and a high-speed, parallel processor known as the WARP interconnected with an EtherNet. We have
designed and implemented a software system called CODGER (COmmunications Database with
GEometric Reasoning) [91 to effectively utilize this parallelism.

The CODGER system consists of a central database (Local Map), a process that manages this
database (Local Map Builder or LMB), and a library of functions for accessing the data (LMB Interface)
(see Figure 7). The various perceptual, planning, and control modules in the system are compiled with
the LMB interface and invoke functions to store and retrieve data from the central database The
CODGER system can be run on any mix of SUN-3s and VAXes and handles data type conversions
automatically. This system permits highly modular development requiring recompilatlion o,-'y for modules
directly affected by a change.

3.1.1. Data Representation
Data in the Local Map is represented in tokens consisting of lists of attribute-value pairs Tokens can

be used to represent any information including physical objects, hypotheses, plans. commands, and
reports. The token types are defined in a template file which is read by the LMB at system startup time
Attribute types may be the usual scalars (e.g., floats, integers), sets of scalars, or geometric locations
Geometric locations consist of a two- dimensional, polygonal shape and a reference coordinate frame.
The CODGER system provides mechanisms for defining coordinate frames and for automatically
converting geometric data from one frame to another, thereby allowing modules to retrieve data from the
database and representing it in a form meaningful to them. Geometric data is the only data interpreted by
the CODGER system; the interpretation of all other data types is delegated to the modules that use them.

*t4

'",

50

. .. . 1 Local Nap gluilder (1.111) ,- --

Lr Ierface

Figure 7: The CODGER software system

3.1.2. Synchronization
The LMB interface provides functions for storing and retrieving data from the central database. Tokens

can be retrieved using specifications. Specifications are simply boolean expressions evaluated across
token attribute values. A specification may include computations such as mathematical expressions,
boolean relations, and comparisons between attribute values. Geometric indexing is of particular
importance for a mobile robot system. For example, the planner needs to search a database of map
objects to locate suitable landmarks or to find the shortest path to the goal. The CODGER system
provides a host of functions including those for computing the distance and intersection of locations.
These functions can be embedded in specifications and matched to the database.

The CODGER system has a set of primitives to ensure that data transfer between system modules is
synchronized and runs smoothly. The synchronization is implemented in the data retrieval mechanism.
Specifications are sent to the LMB as either one-shot or standing requests. For one-shot specs, the
calling module blocks while the LMB matches the spec to the tokens. Tokens that match are retrieved
and the module resumes execution. If no tokens match, either the module stays blocked until a matching
token appears in the database or an error is returned and the module resumes execution, depending on
an option specified in the request. For example, the PATH PLANNER may use a one-shot to find
obstacles stored in the database before it can plan a path. In contrast, the HELM, which controls the
vehicle, uses a standing spec to retrieve tokens supplying steering commands whenever they appear.

'a'!%VV-'% % ~~ *

51

3.2. Parallel Asynchronous Execution of Modules
Thus far we have run our scenarios with four SUN-3s interconnected with an EtherNet. The CAPTAIN.

MAP NAVIGATOR, PILOT, and HELM are separate modules in the system, and PERCEPTION is two
modules (range and camera image processing). All of the modules run in parallel; they synchronize
themselves through the LMB database.

3.2.1. Global and Local Navigation
A good example of parallelism in the system is the interaction between the CAPTAIN, MAP

NAVIGATOR, and PILOT. The CAPTAIN and MAP NAVIGATOR search the map database to plan a
global path for the vehicle in accordance with the mission specification. The PILOT coordinates
PERCEPTION, PATH PLANNING, and control through the HELM to navigate locally. The global and
local navigation operations run in parallel. The MAP NAVIGATOR monitors the progress of the PILOT to
ensure that the PILOT's transition from one route segment to the next occurs smoothly.

3.2.2. Driving Pipeline
Another good example of parallelism is within the PILOT itself. As described earlier, the PILOT

monitors local navigation. For each driving unit, the PILOT performs four operations in the following
order: predict it, recognize with the camera and scan it for obstacles with the rangefinder, establish driving
constraints and plan a path through it, and oversee the vehicle's execution of ift. In the PILOT, these four
operations are separate modules linked together in a pipeline (see Figure 8). While in steady state, the
PILOT is predicting a driving unit 12 to 16 meters in front of the vehicle, recognizing a driving unit and
scanning it for obstacles (in parallel) 8 to 12 meters in front, planning a path 4 to 8 meters in front, and
driving to a point 4 meters in front. The stages of the pipeline synchronize themselves through the
CODGER database.

The processing times for each stage vary as a function of the navigation task. In navigation on
uncluttered roads, the vision subsystem requires about 10 seconds of real-time per image, the range
subsystem requires about 6 seconds, and the local path planner requires less than a second. In this
case, the stage time of the pipeline is that of the vision subsystem: 10 seconds. In cluttered
environments, the local path planner may require 10 to 20 seconds or more, thereby becoming the
bottleneck. In either case, the vehicle is not permitted to drive on to a driving unit until it has propagated
through all stages of the pipeline (i.e., all operations have been performed on it). For example, when
driving around the comer of a building, the vision stage must wait until the vehicle reaches the comer in
order to see the next driving unit. Once the vehicle reaches the comer, it must stop while waiting for the
vision, scanning, and planning stages to process the driving unit before driving again.

4. Sensor Fusion

4.1. Types of Sensor Fusion
The Navlab and Terregator vehicles are equipped with a host of sensors including color cameras, a

laser rangefinder, and motion sensors such as a gyro and shaft-encoder counter. In order to obtain a
single, consistent interpretation of the vehicle's environment, the results of these sensors must be fused.
We have identified three types of sensor fusion [8]:

* Competitive: Sensors provide data that either agrees or conflicts. This case arises when

52

Predict

Recognize/Scan

Plan

Figure 8: Driving pipeline
sensors provide data of the same modality. In the CMU systems, the task of determining thevehicle's position best characterizes this type of fusion. Readings from the vehicle's dead-reckoning system as well as landmark sightings provide estimates of the vehicle's position.

" Complementary: Sensors provide data of different modalities. The task of recognizingthree-dimensional objects illustrates this kind of fusion. In the CMU systems, a set of stairs isrecognized using a color camera and laser rangefinder. The color camera provides image
Information (e.g., color and texture) while the laser rangefinder provides three-dimensional
information.

* Indepenident: A single sensor is used for each task. An example of a task requiring a single
sensor is distant landmark recognition. In this case, only the camera is used for landmarks
beyond the range of the laser rangefinder.

4.2. Examples of Sensor Fusion Tasks

4.2.1. Vehicle Position Estimation
In our road following scenarios, vehicle position estimation has been the most important sensor fusion

task. By vehicle position, we mean the position and orientation of the vehicle in the ground plane (3
degrees of freedom) relative to the world coordinate frame. In the current system, there are two sources
of position information. First, dead-reckoning provides vehicle-based position information. The CODGER
system maintains a history of the steering commands issued to the vehicle, effectively recording the
trajectory of the vehicle from its starting point.

Second, landmark sightings directly pinpoint the position of the vehicle with respect to the world at a
point in time. In the campus test site, the system has access to a complete topographical map of the

U .. v 'U

53

sidewalks and intersections on which it drives. The system uses a color camera to sight the intersections
and sidewalks and uses these ,. ; tings to correct the estimate of the vehicle's position. The intersections
are of rank three, meaning that the position and orientation of the vehicle with respect to the intersection
can be determined fully (to three degrees of freedom) from the sighting. Our tests have shown that such
landmark sightings are far more accurate but less reliable than the current dead-reckoning system, that is,

landmark sightings provide more accurate vehicle position estimates; however, the sightings occasionally
fail. If the vehicle position estimates from the sighting and dead-reckoning disagree drastically, the
conflict is settled in favor of the dead-reckoning system; otherwise, the result from the landmark sighting
is used. In this case, the CODGER system adjusts its record of the vehicle's trajectory so that it agrees
with the most recent landmark sighting, and discards all previous sightings.

The CODGER system is able to handle landmark sightings of rank less than three. The most common
"landmark" in our scenarios is the sidewalk on which the vehicle drives. Since a sidewalk sighting
provides only the orientation and perpendicular distance of the vehicle with respect to the sidewalk, the
correction is of rank two. Therefore, the position of the vehicle is constrained to lie on a straight line. The
CODGER system projects the position of the vehicle from dead-reckoning onto this line and uses the
projected point as a full (rank three) correction. Since most of the error in the vehicle's motion is lateral
drift from the road, this approximation works well.

4.2.2. Pilot Control
Complementary fusion is grounded in the Pilot's control functions. The Pilot ensures that the vehicle

travels only where it is permitted and where it can. For example, the color camera is used to segment
road from nonroad surfaces. The laser rangefinder scans the area in front of the vehicle for obstacles or
unnavigable (i.e., rough or steep) terrain. The road surface is fused with the free space and is passed to
the local path planner. Since the two sensor operations do not necessarily occur at the same time, the

vehicle's dead-reckoning system also comes into play.

4.2.3. Colored Range Image
Another example of complementary fusion of camera and range data is the colored range image. A

colored range image is created by "painting" a color image onto the depth map of a range image. The
resultant image is used in our systems to recognize complicated three dimensional objects such as a set
of stairs. In order to avoid the relatively large error in the vehicle's dead-reckoning system, the vehicle
remains motionless while digitizing a corresponding pair of camera and range images [2].

4.3. Problems and Future Work
We have plans for improving our sensor fusion mechanisms. Currently, the CODGER system handles

competing sensor data by retaining the most recent measurement and discarding all others. This is
undesirable for the following reasons. First, a single bad measurement (e.g., landmark sighting) can
easily throw the vehicle off track. Second, measurements can reinforce each other. By discarding old
measurements, useful information is lost. A weighting scheme is needed for combining competing sensor
data. In many cases, it is useful to model error in sensor data as gaussian noise. For example, error in
dead-reckoning may arise from random error in the wheel velocities. Likewise, quantization error in range
and camera images can be modeled as gaussian noise. A number of schemes exist for fusing such data
ranging from simple Kalman filtering techniques to full-blown Bayesian observation networks [1] [7].

.1
N'

" " "i" " " " " " " " " " " "" " ""'"'"" """""" " ' " "' """" " "" """5-

54

5. Local Control
In this section we discuss some of the control problems in local navigation.

5.1. Adaptive Driving Units and Sensor View Frames
Management of driving units and sensor view frames is essential in local control. As described in

section 2, the driving unit is a minimum control unit, a unit to perceive objects, generate a path plan, and
drive the vehicle. The PERCEPTION module digitizes an image in each driving unit, and the vehicle's

position is estimated and its trajectory is planned once in each driving unit. Therefore, an appropriate
driving unit size is essential for stable control. For example, the sensor view frame cannot cover a very
large driving unit. Conversely, small driving units place rigid constraints on the LOCAL PATH PLANNER,
because of the short distance between the starting point and the goal point. The aiming of the sensor
view frame determines the point at which to digitize an image and to update the vehicle position and path

plan.

In the current system, the sensor view frame is always fixed with respect to the vehicle. The size of the
driving unit is fixed for driving on roads (4-6 meters length), and is changed for turning at intersections so
that the entire intersection can be see in a single image and to increase driving stability (see Figure 9).
This method works well in almost all situations in our current test site.

Figure 9: Intersection driving unit

For intersections requiring sharp turns (about 135 degrees), the current method does not suffice.
Because there Is only one driving unit at the intersection, the system digitizes an image, estimates the
vehicle's position, and generates a path plan only once for a large turn. Furthermore, since the camera's

field of view is fixed straight ahead, the system cannot see the driving unit after the intersection until the

55

vehicle has turned through the intersection. Though the actual path generated is not so bad, it is
potentially unstable.

This experimental result indicates that the system should scan for an admissible passage, and update
vehicle position estimation and local path plan more frequently when the vehicle changes its course
faster. We plan to improve our method for managing driving units. Our new idea is:

* length of the driving unit: The length of the driving unit is bounded at the low end by the
LOCAL PATH PLANNER's requirements for generating a reasonable path plan, and at the
high end by the view frame required by PERCEPTION for recognizing a given object.

* Driving unit Interval: The driving unit interval is the distance between the centers of
adjacent driving units. Adjacent driving units can be overlapped, that is, they can be placed
such that their interval is shorter than their length. Figure 10 illustrates this situation.

L driving unit length

I driving unit interval

LV..

Figure 10: Adaptive Driving Units

*Adjusting size and Interval of driving unit: If the passage is simple, the length and
interval of the driving unit is long. If the passage is complex, for example, in the case of
highly curved roads or intersections, or in the presence of obstacles, the length and interval
of driving unit are shorter. And if the required driving unit interval must be shorter than the
length of driving unit, the driving units are overlapped. Therefore, the vehicle's position is
estimated and a local path is planned more frequently so that the vehicle drives stably (figure
10).

* Adjusting sensor view frame: The sensor view frame with respect to the vehicle, the
distance and the direction to the driving unit from the vehicle, is adjusted using the pan and
tilt mechanism of the sensor. In most cases, a longer distance to the next driving unit allows
a higher vehicle speed. If the processing time of the PERCEPTION and the PILOT is
constant, the longer distance means a higher vehicle speed. But the longer distance
produces less accuracy in perception and vehicle position estimation. Therefore, the 4
distance is determined for the required accuracy, which depends on the complexity of

56

passage. Using the pan and tilt mechanism, PERCEPTION can digitize an image at the best
distance from the driving unit, since the sensor's view frame is less rigidly tied to the
orientation and position of the vehicle.

5.2. Vehicle Speed
It is an important capability of an autonomous mobile robot to adjust the vehicle's speed automatically

so that the vehicle drives safely at the highest possible speed. The current system slows the vehicle
down in turning to reduce driving error. 4

The delay in processing in the LOCAL PATH PLANNER and in communication between the HELM and
the actual vehicle mechanism gives rise to errors ir: vehicle position estimation. For example, because of
continuous motion and non-zero processing time, the vehicle position used by the LOCAL PATH
PLANNER as a starting point differs slightly from the vehicle position when the vehicle starts executing
the plan. Because the smaller turning radii give rise to larger errors in the vehicle's heading, which are
more serious than displacement errors, the HELM slows the vehicle for turns with smaller radii. This
method is useful for making the vehicle motion stable.

We wil add to the system the capability for adjusting the vehicle speed to the highest possible value
automatically. Our idea is the following:

* schedule token: The modules and the submodules working at the local navigation level
store their predicted processing times in a schedule token in each cycle. PERCEPTION is
the most time consuming module, and its processing time varies drastically from task to task.

* adjusting vehicle speed: Using the path plan and the predicted processing time stored in
the schedule token, the HELM calculates and adjusts vehicle speed so that the speed is
maximum and the modules can finish processing the driving unit before the vehicle reaches
the end of the current planned trajectory.

5.3. Local Path Planning and Obstacle Avoidance
Local path planning is the task of finding a trajectory for the vehicle through admissible space to a goal

point. In our system, the vehicle is constrained to move in the ground plane around obstacles
(represented by polygons) while remaining within the driving unit (also a polygon). We have employed a
configuration space approach [51 [6]. This algorithm, however, assumes that the vehicle is
omnidirectional. Since our vehicles are not, we smooth the resultant path to ensure that the vehicle can
execute it. The smoothed path is not guaranteed to miss obstacles. We plan to overcome this problem
by developing a path planner that reasons about constraints on the vehicle's motion.

6. Navigation Map
Some information about the vehicle's environment must be supplied to the system a priori, even if it is

incomplete, ark ever it .t is r.ithing more than a data format for storing explored terrain. The user
mission, for example, "turn at the second cross intersection and stop in front of the three oak trees" does
not make sense to the system without a description of the environment. The Navigation Map is a data
base to store the environment description needed for navigation.

i

57

6.1. Map Structure
The navigation map is a set of descriptions of physical objects in the navigation world. It is composed

of two parts, the geographical map and the object data base. The geographical map stores object
locations with their contour potylines. The object data base stores object geometrical shapes and other
attributes, for example, the navigation cost of objects. Though, in the current system, all objects are
described with both the geographical map and the object data base, in general, either of them can be
unused. For example, the location of stairs A is known, but its shape is unknown.

The shape description is composed of two layers. The first layer stores shape attributes. For example,
the width of the road, the length of the road, the height of the stairs , the number of steps, etc. The
second layer stores actual geometrical shapes represented by the surface description. It is easy to
describe incomplete shape information with only the first layer.

6.2. Data retrieval
The map data is stored in the CODGER data base as a set of tokens forming a tree structure. In order

to retrieve map data, parent tokens have indexes to child tokens. Because the current CODGER system
provides modules with a token retrieval mechanism that can pick up only one token at a time, retrieving
large portions of the map is cumbersome. We plan to extend CODGER so that it can match and retrieve
larger structures, possibly combined with an inheritance mechanism.

7. Other Tasks of the System
Navigation is just one goal of a mobile robot system. Generally speaking, however, navigation itself is

not an end, but actually a means to achieve the final goals of the autonomous mobile robot system, such
as carrying baggage, exploration, or refueling. Therefore, the system architecture must be able to
accommodate tasks other than navigation.

Figure 11 illustrates one example of an extended system architecture which loads, carries and unloads
baggage. The whole system is comprised of four layers, mission control, vehicle resource management,
signal processing, and physical hardware. The CAPTAIN, only one module in the mission control layer,
stores the user mission steps, sends them to the vehicle resource management layer one by one, and
oversees their execution.

In the vehicle resource management layer, there are different modules working for different tasks.
Although their tasks are different, they all work in a symbolic domain and do not handle the physical world
directly. These modules oversee mission execution, generate plans, and pass information to modules in
the signal processing layer. Through CODGER, they can communicate with each other, if necessary.
The MAP NAVIGATOR and the PILOT, parts of the navigation system, are included in the vehicle
resource management layer. The MANIPULATOR makes a plan (e.g., how to load and unload baggage
with the arm) and sends it to the ARM CONTROLLER.

The modules in the signal processing layer interact with the physical world using senors and actuators.
For example, PERCEPTION processes signals from sensors, the HELM drives the physical vehicle, and

the ARM CONTROLLER operates the robot arm. The bottom level contains the real hardware, even if it
includes some primitive controller. The sensors, the physical vehicle, and the robot arm are included in

this layer.

*-

58

NAP NV QL
-**

-
mssion Contro l

IIRRCIPTXCN AUUM' CWW ignal Processing

Physlcal Nar€Ware

Figure 11: Extended system architecture

Because our current system architecture is built on the CODGER system it will be easy to expand to
include these additional capabilities.

8. Conclusions
In this paper, we have described the CMU architecture for autonomous outdoor navigation. The

system is highly modular and includes components for both global and local navigation. Global
navigation is carried out by a route planner that searches a map database to find the best path satisfying
a mission and oversees its execution. Local navigation is carried out by modules that use a color camera
and a laser rangefinder to recognize roads and landmarks, scan for obstacles, reason about geometry to
plan paths, and oversee the vehicle's execution of a Dlanned trajectory.

The perception, planning, and control components are integrated into a single system through the
CODGER software system. CODGER provides a common data representation scheme for all modules in
the system with special attention paid to geometry. CODGER also provides primitives for synchronizing
the modules in a way that maximizes parallelism at both the local and global levels.

We have demonstrated our system's ability to drive around a network of sidewalks and along a curved
road, recognize complicated landmarks, and avoid obstacles. Future work will focus on improving
CODGER for handling more difficult sensor fusion problems. We will also work on better schemes for
local navigation and will strive to reduce our dependence on map data.

59

9. Acknowledgemnts
The design of our architecture was shaped by contributions from the entire Autonomous Land Vehicle

group at CMU. We extend special thanks to Steve Shafer, Chuck Thorpe, and Takeo Kanade.

IIf

60

References

[11 Durrant-Whyte, H.
Integration, Coordination and Control of Multi-Sensor Robot Systems.
PhD thesis, University of Pennsylvania, 1986.

[21 Goto, Y., Matsuzaki, K., Kweon, I., Obatake, T.
CMU Sidewalk Navigation System.
In FJCC-86. 1986.

[31 Hebert, M. and Kanade, T.
Outdoor Scene Analysis Using Range Data.
In Proc. 1986 IEEE Conference on Robotics and Automation. April, 1986.

[41 Kanade, T., Thorpe, C., and Whittaker, W.
Autonomous Land Vehicle Project at CMU.
In Proc. 1986 ACM Computer Conference. Cincinnati, February, 1986.

[5] Lozano-Perez, T., Wesley, M. A.
An Algorithm for Planning Collison-Free Paths Among Polyhedral Obstacles.
Communications of the ACM 22(10), October, 1979.

[6] Lozano-Perez, T.
Spatial Planning: A Configuration Space Approach.
IEEE Transactions on Computers C-32(2), February, 1983.

[71 Mikhail, E. M., Ackerman, F.
Observations and Least Squares.
University Press of America, 1976.

[81 Shafer, S., Stentz, A., Thorpe, C.
An Architecture for Sensor Fusion in a Mobile Robot.
In Proc. IEEE International Conference on Robotics and Automation. April, 1986.

[91 Stentz, A., Shafer, S.
Module Programmer's Guide to Local Map Builder for NAVLAB.
1986.
In Preparation.

[101 Wallace, R., Stentz, A., Thorpe, C., Moravec, H., Whittaker, W., Kanade, T.
First Results in Robot Road-Following.
In Proc. IJCAI-85. August, 1985.

[11] Wallace, R., Matsuzaki, K., Goto, Y, Webb, J., Crisman, J., Kanade, T.
Progress in Robot Road Following.
In Proc. IEEE International Conference on Robotics and Automation. April, 1986.

I,

