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EXECUTIVE SUMMARY

The Office of the Manager, National Communications System
(OMNCS) has developed a system-level approach for estimating
the effects of High-Altitude Electromagnetic Pulse (HEMP) on
the connectivity of telecommunications networks. This approach
incorporates a Bayesian statistical model which estimates the
HEMP-induced failure probabilities of telecommunications
switches and transmission facilities. The OMNCS has received
comments from members of the EMP community recommending that
sensitivity studies be conducted on the parameters employed by
the Bayesian model. The recommendation is addressed in this
report.

A major input to the Bayesian model is simulated HEMP
equipment test data. In a typical test program, each equipment
tested is exposed to a range of HEMP stress levels. The sole
criterion of each HEMP exposure for purposes of this analysis
is whether the equipment is operable following exposure. Based
on the results of the HEMP tests and a non-informative prior
distribution, equipment failure Probability Density Function .%
(PDF) and Cumulative Distribution Function (CDF) curves are
developed for each tested equipment. The PDF and CDF curves
provide the basis by which the system-level model probabilis-
tically estimates whether a network switch or transmission
facility survives an exposure to HEMP.

The non-informative prior distribution is selected because
it represents an unbiased view of interpreting experimentaldata (reference 5). That is, all possible experimental

outcomes are treated equally prior to observing the data. This
characteristic makes the non-informative prior ideal for
interpreting the EMP test data, because before the data are
interpreted, nothing is really known about the EMP effects on
the equipments. The non-informative prior allows the data to
have the greatest effect possible in producing the posterior
estimates of the failure probability distribution. Thus the
non-informative prior is considered the optimal prior for this
application.

[The purpose of this analysis is to address the sensitivity
of the Bayesian model. This is done by systematically varying
two model input parameters--the number of observations, and theV.
equipment failure rates. Throughout the study, a non-informa-
tive prior distribution is used. The sensitivity of the
Bayesian model to the non-informative prior distribution is
investigated from a theoretical mathematical perspective...
Exhibit ES-l illustrates the effects of varying the number of
observations for an equipment that fails at an observea rate of
50 percent during testing at a HEMP stress level. The PDF

ES- 1



EXHIBIT ES-I
Probability Density Functions: 50 Percent

Observed Failures

oI 0

0,

I'°

01O 00 a 0 0.0 04 o 0g 0 7 so8 0 9)0 00

Prolb (FAIL)"- .

.I **

EXHIBIT ES-2 ,'

Cumulative Distribution Functions: 50 Percent [':
Observed Failures

- S-

0 ' i

, ,.k., .'.

0'..-o
_ _ .. . '. .

- ',i " , , - " ',U J . . . " " '. " - -' " - .' '. " " -" -" "- •"-" "- -' '- -'" "..2.0



0

curves indicate that by increasing the number of observations,
the standard deviation around the mean (50 percent) decreases.
In other words, curves for large observation sizes are more
densely centered around the mean than curves with lower obser-
vation sizes. Therefore, higher observation sizes have the
effect of providing greater confidence in the results of the
tests. This phenomenon is illustrated with a comparison of the
20 and 100 observation curves, implying 10 and 50 equipment
failures, respectively. For the PDF curve with 100 observa-
tions, it is seen that the entire curve lies within the range
of 40-60 percent failure probability. In contrast, the curve
with 20 observations has its PDF curve ranging between 20-80
percent failure probability. -

Exhibit ES-2 illustrates the CDF curves, which are theintegrals of the functions shown in Exhibit ES-l. Referring to
the same observation sizes of 20 and 100, it is seen that with
20 observations one is 83 percent confident that the failure
rate is below 60 percent, while with 100 observations the
confidence level is 98 percent. Therefore, by choosing a large
enough sample size (number of observations), one has the
ability to predict with a high confidence level the actual
equipment failure probabilities.

Exhibit ES-3 illustrates the PDF curves for observed
failure rates of 10, 20, and 50 percent with a sample size of
20. The PDFs for the same failure rates are presented in
Exhibit ES-4 for a sample size of 200. Note that the curves in
Exhibit ES-4 are more similar in shape to one another than
those in Exhibit ES-3. This implies that with large sample
sizes, the effect of variation in the observed failure rate is
to translate the location of the PDF curve over the X-axis.
This phenomenon gives credence to the selection of the
non-informative prior distribution, for it is solely the
observed failure rate (at large observation sizes) which
dictates the PDF curve position.

Results of this study indicate the validity of selecting
the non-informative prior distribution. As the number of
observations increases, the effects of the prior are minimized
and the effects of the data observations dominate. In addi-
tion, with larger sample sizes, one can predict with greater
confidence the failure probability of an equipment. As indi-
cated in Exhibit ES-5, roughly 150 observations are needed,
with no failures, to obtain a confidence level of 90 percent
that the actual failure rate of the equipment is below
1 percent. Use of the Bayesian approach in such a manner can
be a very valuable tool for EMP test planning. It can provide
insight into how many observations are needed to obtain a par-
ticular confidence level.

ES-3
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EXHIBIT ES-3
Probability Density Functions: Sample Size of 20 %
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EXHIBIT ES-5
Cumulative Distribution Functions: NO Observed Failures
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1.0 INTRODUCTION

This report presents a sensitivity study of a stat-
istical model used by the the Office of the Manager, Nat-
ional Communications System (OMNCS) to estimate failure
probability distributions of telecommunications switches
and transmission facilities subjected to High-Altitude
Electromagnetic Pulse (HEMP). The model is based on an
application of Bayesian statistical theory, and it uses
the results of HEMP testing programs as input data. The
outputs of this Bayesian model support estimates of the
effects of HEMP on the connectivity of major tele- Aft

communications networks used for National Security Emer-
gency Preparedness (NSEP) missions. This study will help
explain the meaning and limitations of such network con-
nectivity analyses by quantifying the sensitivity of the
Bayesian model outputs to variations in its inputs.

1.1 BACKGROUND

The OMNCS has been directed by the National Security
Council to identify actions necessary to mitigate the '-

potential effects of HEMP on the Nation's telecom-
munications assets supporting NSEP requirements. In res-
ponse, the OMNCS has established an EMP mitigation program
with the objective of identifying and, where appropriate,
mitigating the effects of HFMP on NSEP telecommunications
capabilities. This program includes coordinated physical
testing of selected telecommunications equipment types in
simulated HEMP environments, combined with computer-based
quantitative analyses of HEMP effects on telecommuni-
cations networks. The focus of testing and network analy-
sis for this program to date has been the Public Switched
Network (PSN), the basis for a substantial portion of the
Nation's NSEP telecommunications capabilities. In addi-
tion, special attention has been given to the estimation
of the effects of HEMP on the OMNCS-sponsored Nationwide
Emergency Telecommunications System (NETS). The goal of
these HEMP-related activities is to develop a cost-effec-
tive, comprehensive HEMP mitigation strategy, focused on
the PSN and including NETS. When combined with other
OMNCS initiatives, such a strategy could significantly
enhance the ability to maintain 3nd reconstitute NSEP
telecommunications following a nuclear attack against the
United States that includes high-altitude exoatmosphere
detonations.

I1-I



To date, the OMNCS has performed extensive HEMP test-
ing of selected telecommunications equipment types deemed
important to fulfilling NSEP requirements. Recently these
equipments have included the TI digital cable transmission
system, the FT3C multi-mode fiber optic transmission sys-
tem, the AT&T Technologies 5ESS switching system, and a
prototype OMNCSsponsored NETS call control module cabi-
net. Other types of equipment have been HEMP-tested by
agencies other than the OMNCS in earlier test programs.
These equipments include the AT&T lESS switching system,
the TD-2 digital microwave transmission system, and the L4
analog cable transmission system. An equipment HEMP ef-
fects evaluation based on the testing to date is presented
in Reference 1. While not all types of PSN switching and
transmission systems have been tested, the knowledge that
has been obtained to date provides a basis for studying
the potential effects of HEMP on the entire PSN and those
elements of the PSN selected for use in NETS.

Reference 2 introduces the methodology used by the
OMNCS to estimate HEMP effects on network connectivity.
As shown in Exhibit 1-1, the methodology is based on a
Monte Carlo network-level analysis approach, with input
data consisting of network topology information and net-
work element estimated failure probability distributions.
The required failure probability distributions come from
the Bayesian model described in this report. Reference 3
presents the results of applying the network-level analy-
sis approach to a major portion of the PSN. The network
analyzed in that report consists of those PSN switches and
transmission facilities which comprised the AT&T toll net-
work prior to divestiture. Finally, Reference 4 presents
the results of a network-level analysis of estimated HEMP
effects on NETS.

1.2 PURPOSE

This report focuses on the sensitivity of the Bayesian
failure model outputs to variations in its inputs; it does
not address the resultant sensitivity of network-level 7V
analysis results to variations in the Bayesian model in-
puts. Such network-level sensitivity studies are being
conducted by the OMNCS in a related effort, and will in-
corporate the results of this study.

The sensitivity study in this report is in lirect res-
ponse to comments received by the (OMNCS from meTbels .
the EMP analysis com-unity :cncerne'i with riterpretin] the
outputs of the Bayesian I. SFpe f ic qu i nave .

1



EXHIBIT 1-1
Network-Level HEMP Effects Analysis Approach
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been raised regarding the response of the output posterior
Failure probability distribution to the assumed prior
distribution. The rationale and conseauences of selectinq
the "noninformative" prior distribution for the Bavesian
application are offered in response to these concerns.

1.3 APPROACH

Three basic inputs to the Bayesian failure probability

model, as shown in Exhibit 1-2, are used here. In ad-
dition to an assumed prior distribution, these inputs
relate to test sample sizes and numbers of observed fail-
ures from HEMP-induced eauipment failure testing. The -

approach used in this study to investigate model sensitiv-
ity is to address the three types of input information
separately. Thus, if there is specific concern with, for
instance, sensitivity of estimated failure probability
distribution to test sample size, the sensitivity results
for that input parameter can be referenced independently
of the other two inputs.

For the two discrete integer model inputs--sample size
and number of failures--sensitivity is studied para-
metrically. That is, fixed values are selected for each
input, and the resultant model outputs are plotted and
interpreted. No attempt is made to compare the fixed
values used in this parametric analysis to actual test
data observed in the test programs conducted by the OMNCS
or other agencies. Thus, this sensitivity study is gen-
erally applicable and is not constrained by specific
testinq.

The third Bayesian model input--the assumed prior
distribution of Failure probability--is studied by showinq
the theoretical effect of the selected noninformativ.
prior distribution on the output posterior distribution.
An alternative approach postulating prior distributions
other than the noninformative prior distribution and
observing the corresponding posterior distributions res-
ponse has been suqgested. Such an approach has been re-
jected for this study because, even though alternative
prior distributions are available for actual analyses, no
qualitative or quantitative basis exists for selectino a
prior other than that which is least informative relative
to the data. Thus, this study presents the theoretic
basis for deriving the mathematical representation of the
noninformative prior distribution, and justifies its use
on theoretical grounds. The consequences of using the

1-4
J.-.'?
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EXHIBIT 1-2

Bayesian Failure Probability Model:
Functional Flow Diaqram
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noninformative prior distribution are shown graphically as
they affect the shape of the output posterior distri-
butions for different test conditions.

1.4 ORGANIZATION

This report describes the Bayesian model, presents the
results of the three individual sensitivity studies cor-
responding to the three different model inputs, and sum-
marizes the findings of the studies for consolidated ref-
erence. An appendix shows a listing of the computer code
which implements the Bayesian model, followed by the list
of references cited throughout this report.
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2.0 BAYESIAN METHODOLOGY

This chapter presents the rationale and mathematical

derivation for the Bayesian statistical interpretation of
test data to estimate EMP-induced telecommunications
equipment failure probabilities. The numerical approxi- Il.
mations used to actually calculate the Bayesian posterior .
failure probability distributions are presented, and the .
computer code which implements the numerical approx- ..,'
imations is introduced. This chapter draws heavily upon ,€#
information presented in Reference 5, includinq some verb-
atim passages.

2.1 RATIONALE

The use of data from EMP tests of telecommunications .

equipment to estimate the EMP-induce(I -failure proh-
abilities of those eauipments can be treated as a problem.-'..
in statistical inference. As a statistical inference --'.
tool, Bayesian analysis provides an approach for incorp-..-
orating test data and assumptions tooether into a single. .'
quantitative analysis methodology to infer information:.•"
indicated by the data. A prior distribution, which is
supposed to represent what is known about unknown para-,.@
meters before data is available, plays an important role '-%
in Bayesian analysis. Such a distribution can be used to
represent prior knowledge or ignorance about the parameter ik
under study--in this case, failure probability.

in problems of scientific inference where empiricat •
test data are available, it is often desirable for all-.-,
estimates regardinq the characteristics of the parameter .
under study to be based on the available data. Cons,- .5
cuently, it is often appropriate to conduct the analysis i
as if a state of relative ignorance existed a priori. In._.
this analysis, a "noninformative" prior distribution is [
used. The aim is to obtain an inference which would be i.'"
appropriate for an unoreiudiced observer. It should he '•"

acknowledged that, even within the statistical community,
there is some uneasiness about the use of prior distri .....
hutions, which is often associated with the fear that the : [_
prior may dominate and distort the information contained -
in the empirical data. By careful choice of an infer-,' '

ential parametric model structure and an appropriate non- ..-
informative prior, Bayesian analysis ran produce the .%
reverse of what is feared.

2-1<
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2.2 DERIVATION

The use of Bayesian inference to characterize
EMP-induced eauipment failure probabiliti.a is based on an

application of Bayes' Theorem. Suppose that y is an oh-
servation whose conditional probability distribution
f(y:p) depends on the value of a parameter p. Suppose
also that p itself has a probability distribution f(p).
Then, f(y:p)f(p) = f(y,p)=f(p:y)f(y). Here, f(y,p) is the
joint probability distribution for y and p, f(p:y) is the
conditional probability distribution for p dependent upon
y, and f(y) is the probability distribution for y. Given
the observed data y, the conditional distribution of p is %

f(p:y) = f(y:p) f(p). (2.1)

f (y)

Also, if p is continuous, f(y) can be written as

f(y) = E [f(y:p) 1 = C -  =f (v:p)f(p) rp

where the integral is taken over the admissible range of
p, and where E[f(y:p) 1 is the mathematical expectation of
f(y:p) with respect to the distribution f(p). The quan-
titv C is merely a "normalizing" constant necessary to
ensure that the distribution f(p:y) integrates to one. 'F

Eauation 2.1 can thus be written alternatively as

f(p:y) = C f(y:p) f(p). (2.2)

The statement of (2.1) or its equivalent (2.2) is usually
referred to as Bayes' theorem. In this expression, f(p)
which tells what is known about p without knowledoe of the
data, is called the prior distribution of p, or the dis-
tribution of p a priori. Correspondinqlv, f(p:v), which
tells what is known about p given knowledge of the data,
is called the posterior distribution of p qiven y, or the
distribution of p a posteriori.

Now, given the data v, f(y:p) in eauation (2.2) may be
regarded as a function not of y but of p. When so re-
garded, it is called the likelihood function of p for
given y and can be written L(p:v). Bayes formula can thus .
be written as:

E(p:v) = L(p:y) f(p) . (2.3)

In other words, Bayes' theorem says that the probability
distribution for the parameter p posterior to the data y

.% %
2-2 .~
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is proportional to the product of the distribution for p
prior to the data and the likelihood for p given y. That
is,

posterior distribution oc likelihood x prior distribution.

The likelihood function L(p:y) plays a very important role

in Bayes' formula. It is the function throuah which the
data y modifies prior knowledge of p. It can therefore he
regarded as representing the information about p coming
from the data.

The likelihood function is defined up to a multiplica-
tive constant, that is, multiplication by a constant
leaves the likelihood unchanged. This is in accord with
the role it plays in Bayes' formula, since multiplying the
likelihood function by an arbitrary constant will have no
effect on the posterior distribution of p. The constant
will cancel upon normalizing the product on the riqht hand
side of ecuation (2.3). Only the relative value of the
likelihood function is important. Thus, much of the
derivation which follows uses proportionality statements
rather than equations for the sake of simplicity. Also,
when the integral JL(p:y)dp, taken over the admissible ...O
range of p, is finite, then occasionally it will be con-
venient to refer to the quantity

L(p:y)
JL(p:y) dp.

This expression is called the standardized likelihood,
that is, the likelihood scaled so that the area under its
curve is one.

The contribution of the prior distribution in helping
to determine the posterior distribution of a parameter p
is dependent on its sharpness or flatness in relation to
the sharpness or flatness of the likelihood with which it .9
is combined. For example, after a single test data
observation, the likelihood might not be sharply peaked
relative to a particular prior distribution. The prior
distribution would therefore be influential in determining
the posterior distribution. On the other hand, after
multiple observations, the prior distribution miqht be K
relatively flat compared with the likelihood function.
Such a prior would therefore not be very influential in
deciding the correspondinq posterior distribution of p.
It would be said that, after multiple observations, the
prior is dominated by the likelihood. Exhibit 2-1

2-3



EXHIBIT 2-1
Dominant Likelihood and Prior Distributions
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illustrates inferential analyses in which the likelihood
dominates the prior (a) and vice versa (h).

It is often appropriate to analyze data from scien-
tific investigations on the assumption that the likelihood
dominates the prior. Two reasons for this are:

(1) A scientific investigation, such as controlled
EMP testing of telecommunications ecuipment, is
not usually undertaken unless information
supplied by the investigation is likely to be
considerably move precise or valid than infor-
mation already available. In brief, expensive v
testing and analysis is not usually undertaken
unless it is likely to increase knowledge by a
substantial amount.

(2) Even if strong prior beliefs are held about the
value of a parameter, nevertheless, in reportinq
analysis results it would usually be appropriate
and most convincinq if the data were analyzed
against a reference prior which is dominated by
the likelihood. Then, irrespective of what any-
one believed at the outset, the posterior dis-
tribution would represent what someone who a
priori knew very little about the parameter
should believe in light of the observed data.

The term reference prior, introduced above, refers to
a prior which is convenient to use as a standard. In
principle, a reference prior may or may not be dominated
by the likelihood. In qeneral, a prior which is dominated -.-
by the likelihood is one which does not change very much
over the region in which the likelihood is appreciable,
and does not assume large values outside the range, as in
figure (a) of Exhibit 2-1. A prior distribution which has
these properties is referred to as a locally uniform
prior. For such a prior distribution, the result from
Bayes' formula can be approximated by substituting a con-
stant for the prior distribution. Thus, for a locally
uniform prior, the posterior distribution is approximately
numerically equal to the standardized likelihood.

At this point, an argument is presented for choosing a
particular metric, in terms of which, a locally uniform
prior can be regarded as noninformative about the param-
eters. It is important to bear in mind that one can never
be in a state of complete ignorance; further, the state-
ment "knowing little a priori" can only have meaning
relative to the information provided by an experiment.
For example, prior knowledqe may be substantial compared

2-5 1
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with the information from just a single experimental

observation, but it would likely be noninformative rela-
tive to that from a very large number of observations. A
prior distribution is supposed to represent knowledge "W
about a parameter before the outcome of a projected
experiment is known. Thus, the main issue is how to
select a prior which provides little information relative
to what is expected to be provided by the intended
experiment.

In general, suppose it is possible to express the
unknown parameter p in terms of a metric g(p) so that the
corresponding likelihood is data translated. This means
that the likelihood curve for g(p) is completely deter-
mined a priori except for its location, which depends on
the data yet to be observed. Then, to say little is known
a priori relative to what the data will show, may be ex-

pressed by saying one is almost eaually willing to accept
one value of g(p) as another. This state of indifference
may be expressed by taking o(p) to be locally uniform a
priori, and the resulting prior distribution is called
noninformative for g(p) with respect to the data. In
general, if the noninformative prior is locally uniform in .'

g(p), then the correspondinq noninformative prior is
-lbLt-ally proportional to dg/dp, assuming the transformation
is one to one (Reference 5).

For the case of n independent trials, in each of which
the probability of failure is p, a binomial model for the
number of observed failures may be employed. The prob-
ability of y successes in n trials is given by the
binomial distribution:

Prob (y:p) = n pY(I - p)n-y, v = 0 ... . . n,
y. (n - v)!

so that the likelihood is:

L(p:y) cc py(l - p) n-y.

For the binomial distribution, a transformed metric
for which the likelihood curve is very nearly data trans-
lated, and for which a locally uniform prior distribution
is nearly noninformative is given by: "

q(p) = sin-I. .

(Chapter 3.0 shows why this particular metric meets
the reauirements described above for producinq a noninfor-
mative prior distribution.) This, in turn, implies that
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the corresponding nearly noninformative prior for p is
proportional to:

f(p) C dq C rp(l - p)1-1/ 2 .
dp

If this approximately noninformative prior is employed,
then the posterior distribution for p given y becomes
proportional to:

f(p:y) oC py - 1/2(1_ p) n - y - 1/2, o< p< 1.

After substitution of the appropriate normalizing
constant, the corresponding posterior distribution for p
is the beta distribution, whose probability density
function is given by:

f(p:y) = u(n + 1) py-/2 ( 1 p)ny/2 0<p<1
F(y + 1/2)Fr(n-y + 1/2)

The corresponding cumulative distribution function is
therefore:

Fp (x:n,y) = Prob (o<p<x)

= F(n +)
F(Y + 1/2) F(n-v + 1/2) py-I/2 (l-p) n-y-i/ 2 dp

for o<x 1. 0x

This cumulative distribution function for p describes the
Bayesian posterior distribution for the actual probability
of eauipment failure given that y failures were observed
in n trials, assuming a noninformative prior distribution
for failure probability.

2.3 NUMERICAL APPROXIMATION -.

The posterior cumulative distribution function for
Failure probability is the basic output of the Bayesian
model described here. To calculate probability values
using this function, a numerical approximation is em-
ployed. The numerical approximation begins by noting that
the cumulative distribution function above has the form of
an incomplete Beta function, Ix(a,h) , with

a = y + 1/2
b= n - y + 1/2
y = number of observed failures
n = total observations (sample size)
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because

x
Ix(a,b) = r(a+b) f t a-1 b-1r(a) r(b.. (1-t t 0<xf ..;

0a

The incompl'_ete-3ta- function is described in Refer-
ence 6, Equation 26.5.1. This function can be approxi-
mated numerically using the cumulative distribution func-
tion, P(z), of the standard normal distribution as follows
(from Reference 6, Equation 26..5.21):

Ix(a,b) = P(z)

where:

z = 3[v(1-l/9b) - w(l-l/9a)1.
[v2 /b + w2/ali/2

v = (bx)1/ 3

w fa(l-x) 1 1/3.

This approximation to the incomplete Beta function is
accurate to within +5xi0- 3 if a+b> 6.

The cumulative distribution function, P(z), of the stan-
dard normal distribution can be approximated numerically
through a polynomial function as follows (Reference 6,
Equation 26.2.19):

P(z) = 1-(1/2) (l+d z+d z 2+d z 3+d z4+d z5+d z6) -16
1 2 3 4 5 6

where: d 1  .0498673470
d2 =.0211410061
d3 = .0032776263
d4 = .0000380036 "e
d5 = .0000488906
dA = .0000053830.

This approximation to the standard normal cumulative dis-
tribution function is accurate to within +1.5 x 10-7.

Appendix A lists the computer code that actually cal-
culates the Bayesian posterior failure probabilitv cumula-
tive distribution functions and approximates their asso-
ciated probability density functions. The basic inputs to
the model are:

2-8
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n = The number of EMP test shots to which a piece of
telecommunications eauipment is subjected at a
particular EMP stress level, or within a ranqe of
stress levels.

v = The number of failures observed out of the n
observations above.

For a particular analysis, the decision of what consti-
tutes an observation and a failure would have to be made.
Also, although the OMNCS uses this model to characterize
EMP-induced telecommunications ecuipment failure prob-
abilities, the statistical methodology described above is
applicable beyond the EMP context.

The output of this Bayesian model is a probability .5-w

density function and a cumulative distribution function
for failure probability corresponding to a particular
(n,y) pair. For examole, if a test is conducted in whicoh
there are 25 observations with exactly one resultinq in -3
failure, the output Bayesian probability density function
would be as shown in Exhibit 2-2. The function shows that .
the actual Failure probability (x-axis) of the unit under
test is most likely near 0.04 (where the curve peaks).
However, there is some possibility that the actual failure
probability is lower or higher than 0.04, and may be as
high as 0.25 (where the curve approaches zero on the
x-axis). The probability density function aives a graphic
indication of the most likely value of the actual failure
probability, near where the curve peaks. Also, the width
of the curve indicates graphically how likely the actual
value of the parameter is near the curve's location of
central tendency. However, the probability density func-
tion does not directly allow numerical probabilistic
statements regardinq the actual value of the parametr.
Instead, the cumulative distribution function is used.

Exhibit 2-3 shows the cumulative distribution function

corresponding to the case of 25 observations and one fail-
ure. The y-axis gives the probability that the actual
failure probability is less than the indicated value, on
the x-axis. In this example, there is a probability of
0.50 (y-axis) that the actual failure probability is less
than 0.05 (x-axis). The actual failure probability is
almost certainly less than 0.25 in this example, where the
cumulative distribution function approaches 1.0.
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EXHIBIT 2-2

Example Bayesian Probability Density Function
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EXHIBIT 2-3
Example Cumulative Distribution Function
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3.0 PRIOR DISTRIBUTIOM

In this chapter, the prior distribution used to derive(:

the Bayesian posterior probability distribution in the
previous chapter is shown to meet the requirements for a
noninformative prior. The approach used herein to inves-
tigate the sensitivity of the Bayesian posterior distri- N.

bution to the prior was selected over simple examination
of how the posterior distribution responds to alternatepriors. There is no basis for selecting alternate priors
with justification stronger than that for the noninfor-
mative prior. Thus, this chapter focuses on demonstratinq
the insensitivity of the posterior distribution to minor
changes in the prior bv showing that the previously se-
lected transformation, q( ), has a likelihocd that is
approximately data translated. That is, the likelihood
for g(p) is nearly independent of the data y except for
its location.

3.1 NONINFORMATIVE PRIOR

As mentioned in the previous chapter, and documented

in Reference 5, if a noninformative prior is locally
uniform in g(p), then the corresponding noninformative J,
prior for p is locally proportional to dg/ep, assumin the
transformation is one to one. The transformation selected
here, and used in the derivation of the Bayesian posterior
probability distribution, is:

c (p) = sin-' q -'-.

Suppose, for illustration, that there are n=24
trials. Then figure (a) in Exhibit 3-1 shows the stan-
dardized likelihood for y=3, y=12, and y=21 observed fail-
ures. The standardized likelihoods have different shapes,
dependinq on the number of observed failures. Fioure (b)
in Exhibit 3-1 is the corresponding diaciram obtained by
plotting the standardized likelihood in the transformed
metric, g(p) . Because the standardized likelihood curves
are defined onlv up to a constant, there is no y-axis
indicated, and the curves show only proportionality.
Although in terms of g(p), the likelihood curves are not ,.
exactlv identical in shape and spread, thev are nearlv
SO. Thus, in this metric, the likelihood curve is nearlv
data translated, and a locallv uniform prior distribution
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EXHIBIT 3-1
Standardized Likelihoods (Solid Curves)
and Noninformative Priors (Broken Curves)
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(the dotted line in figure (b)) is nearly noninformative.
This in turn implies that the corresponding nearly nonin-
formative prior for p (the dotted line in figure (a)) is
proportional to do/dp, as described in the previous
chapter :

f(p) oc d/Op oc f[p(l-p) 1 -1/ 2.

3.2 SENSITIVITY VA,

The insensitivity of the posterior distribution to
minor changes in the prior has been demonstrated locically
by the following steps:

If a noninformative prior is locally uniform in a
transformed metric, then the corresponding non- r
informative prior for the untransformed parameter
is locally proportional to the derivative of the
transformation with respect to the parameter,
assuming the transformation is one to one.

For the binomial mean, p, the transformation
sin-lf-pyieldi a standardized likelihood that
is approximately data translated; that is, its
shape is independent of its location.

A locally uniform prior for the transformed
metric is noninformative, because, when it is
multiplied by the standardized likelihood of the
transformed metric, the resultant posterior .
distribution chanaes uniformly over its whole
range.

Therefore, the derivative of sin-V-fVields the
noninformative prior for the oriqinal param-
eter, p.

The insensitivity of the posterior distribution to the
selected prior is thus inferred deductivelV.
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1.-.-%.



7

IF I T

4.0 SAMPLE SIZE

.-3

IV-

%

,P _,T
%.

'-a.



4.0 SAMPLE SIZE

This chapter investigates the sensitivity of the out-
put Bayesian failure probability distribution to vari-
ations in the input sample size parameter assuming a non-
informative prior distribution. For this investigation,
sample size is set at the discrete values of 10, 20, 50,
100, and 200 observations. For each sample size, the
output failure probability density functions and cumu-
lative distribution functions are calculated corresponding .*,-.

to discrete percentages of observed failures of 50, 20,
and 10 percent. Also, for each discrete sample size, the
output failure probability cumulative distribution func-
tion is studied for the cases of no observed failures and
exactly on observed failure. After investigating the
effect of sample size on the posterior distributions,
conclusions are drawn regarding the implications of the
sensitivities for test planning and analyses.

4.1 SENSITIVITY

Exhibit 4-1 shows the Bayesian posterior failure prob-
ability density functions corresponding to discrete sample
sizes. The number of failures used for each sample size
is 50 percent of the sample size. Thus, for a sample size -,.
equal to 10, the number of failures is 5; for a sample
size equal to 20, the number of failures is 10. The
resultant plot shows how the probability density functions
for the larger sample sizes are more tightly grouped about
the 50 percent failure probability point, while the lower
sample sizes are more widely distributed over the range of
possible failure probabilities. This narrow concentration
for high sample sizes and wide spread for low sample sizes
shows that, for a fixed percentage of observed failures,
larger sample sizes produce a greater likelihood of the
failure probability being located near a single point.
Put another way, in the case of 50 percent failure prob-
ability, an analyst would be more confident that the
actual failure probability is near 0.50 with a sample size
of 200 than with a sample size of 10.

Exhibits 4-2 and 4-3 show similar results for the .. •.,
cases of 20 percent and 10 percent observed failures,
respectively. For the case of 20 percent observed fail-
ures in Exhibit 4-2, the larger sample sizes produce post-
erior failure probability density functions that are not
only grouped more tightly around a single probability
point (0.20), but are also less skewed than for smaller
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EXHIBIT 4-1

Probability Density Functions:
50 Percent Observed Failures
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1 EXHIBIT 4-2
Probability Density Functions:
20 Percent Observed Failures
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sample sizes. This skewness for smaller sample sizes is
even more pronounced for the case of 10 percent observed
failures in Exhibit 4-3. Another observation from Ex-
hibits 4-2 and 4-3 resulting from the skewness phenomenon
is that, for small percentages of observed failures, the
mode of the probability density functions becomes increas-
ingly less than the mean of the distribution as the sample
size decreases.

Exhibit 4-4 shows the cumulative distribution func-
tions corresponding to the probability density functions
in Exhibit 4-1 for 50 percent observed failures and the
different discrete sample sizes. The curves show that,
for smaller sample sizes, there is a greater estimated
probability that the actual failure probability is much
less than or much greater than the observed failure rate
(0.50). For example, using a sample size of 20, there is
an estimated probability of 0.25 (y-axis) that the actual
failure probability is less than 0.40 (x-axis), while for .
a sample size of 200 the estimated probability is nearly
zero. Likewise, for a sample size of 200, the estimated
probability is nearly 1.00 that the actual failure prob-
ability is less than 0.60, while for a sample size of 10,
the estimated probability is only 0.75. This means that
for sample size of 10, there is still an estimated 27
percent probability that the actual failure probability is
greater than 0.60 even though there were only 50 percent
observed failures. For a large sample size of 200, such a
probability approaches zero.

Exhibits 4-5 and 4-6 show the cumulative distribution
functions corresponding to the cases of 20 percent and 10
percent observed failures, respectively, for the different
discrete sample sizes. These cumulative distribution
functions correspond to the probability density functions
in Exhibits 4-2 and 4-3, respectively. Exhibit 4-5 shows,
for example, that with a small sample size of 10 with 20
percent observed failures (2 observed failures), there is
an estimated probability of only 0.90 (y-axis) that the
failure probability is less than 0.40 (x-axis). Put
another way, there is an estimated 10 percent probability
that the actual failure probability is greater than 0.40
even though the fraction of observed failures is only
0.20. For sample sizes above 50, the estimated prob-
ability is effectively zero that the actual probability is
greater than 0.40.

In the case of 10 percent failures (Exhibit 4-6), the
implication of the skewed probability density functions
for small sample sizes becomes apparent. This implication

4-4

%-*-.



EXHIBIT 4-3
Probability Density Functions:
10 Percent Observed Failures
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EXHIBIT 4-4
Cumulative Distribution Functions:

50 Percent Observed Failures
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EXHIBIT 4-5
Cumulative Distribution Functions: -

20 Percent Observed Failures
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EXHIBIT 4-6
Cumulative Distribution Functions:

10 Percent Observed Failures
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may be demonstrated by using the cumulative distribution
functions in Exhibit 4-6 to construct confidence intervals
for failure probability. For example, a 90 percent,
2-sided confidence interval for failure probability may be
constructed by identifying the probability points (x-axis)
corresponding to the 0.05 and 0.95 cumulative prob-
abilities (y-axis). With a sample size of 10, this ap-
proach would yield a 90 percent, 2-sided confidence inter-
val of approximately [0.02, 0.32]. The center of this
2-sided confidence interval is at approximately 0.17,
which is greater than the 0.10. observed failure rate.
This indicates that the actual failure probability is
estimated as more likely to be greater than the observed
0.10 rate for small sample sizes. A 2-sided, 90-percent
confidence interval constructed similarly for the case of
a sample size of 200 is approximately [0.07, 0.131. This
confidence interal is centered approximately at 0.10,
which is the observed failure rate, and it has a half
width of approximately 0.03. Thus, there is high confi-
dence with large sample sizes that the actual failure
probability is near the observed failure rate.

In addition to investigating the sensitivity of the
output Bayesian failure probability distributions to
sample size with fixed percentages of observed failures,
it is possible to investigate the effect of sample size in
the case where there is only one observed failure. For a
sample size of 10, this case corresponds to the 10 percent
observed failure rate addressed earlier. Exhibit 4-7
shows the cumulative distribution functions for the dif-
ferent discrete sample sizes and exactly one failure. It
should be noted that the curves in this exhibit are plot-
ted only over the x-axis probability range from 0.00 to
0.10. This is done to allow greater resolution on the
curves corresponding to high sample sizes, in the range
from 0.00 to 0.10 (y-axis). The curves show, for example,
that with a sample size of 10, there is a 0.44 (y-axis)
probability that the actual failure probability is less
than 0.10. For a sample size of 20, the probability that
the actual failure probability is less than 0.10 rises to
approximately 0.75. A sample size of 50 yields a 98 per-
cent probability that the actual failure probability is
less than 0.10, while sample sizes above 100 effectively
yield a 100 percent probability that the failure prob-
ability is less than 0.10.

A similar analysis of the curves can be performed for
the 0.01 probability point (x-axis). A sample size of 10
yields only about a 0.03 probability (y-axis) that the
actual failure probability is less than 0.01. With a
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EXHIBIT 4-7
Cumulative Distribution Functions:

One Observed Failure
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sample size of 200, the probability rises to 0.75 that the
actual failure probability is less than 0.01.

Two-sided, 90 percent confidence intervals for failure
probability can also be constructed from the cumulative
distribution functions in Exhibit 4-7 for sample sizes of
50, 100, and 200. Such confidence intervals cannot be
constructed from this exhibit for sample sizes of 10 to 20
because the 95 percent (y-axis) cumulative probability

points are not plotted beyond the 0.10 x-axis range. A
90 percent, 2-sided confidence interval for the actual
failure probability with a sample size of 100 is [0.002,
0.038]. This confidence interval is not centered on 0.01,
which is the observed failure rate.

Exhibit 4-8 shows how the Bayesian posterior failure
probability cumulative distribution functions are sensi-
tive to different sample sizes for the case where no fail-
ures occur. It should be noted that the x-axis is only
plotted over the range from 0.00 to 0.01. The curves
show, for example, that with 34 percent confidence
(y-axis), the actual failure probability is less than 0.01
(x-axis) if no failures occur in a sample of size 10.
With 84 percent confidence, the actual failure probability
is less than 0.01 with a sample size of 100, but is less
than 0.001 with a confidence of only 0.34. These curves
can be used to select test sample sizes required to
achieve a given level of statistical confidence that the
actual failure probabiity of the equipment under test is
arbitrarily close to zero in the event of no failures.
With a sample size of 200, there is a 95 percent confi-
dence that the failure probability is less than 0.01.

4.2 CONCLUSIONS

The plotted curves and specific examples of the pre-
ceding section show how the output Bayesian failure prob-
ability density functions and cumulative distribution
functions are sensitive to different sample sizes. The
sample size comparisons at different fixed, observed fail-
ure percentages and the case of one observed failure show
how the sensitivity of the output failure probability
distributions to sample size changes as a function of the
observed failure rate. The sensitivity to this observed
failure rate is studied in the next chapter.

The cumulative distribution function plots show the
diminishing returns achieved as sample size increases.
Thus, as sample size increases, the increase in confidence
about the actual value of the failure probability becomes
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EXHIBIT 4-8
Cumulative Distribution Functions:

No Observed Failures
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succeedingly smaller per sample. Therefore, these curves
may help bound the sample sizes deemed necessary to
achieve a desired level of statistical confidence in a
particular test circumstance.

The cumulative distribution function curves also show
that the greatest increase in confidence per unit sample
increases most rapidly when the number of observed fail-
ures is nearly half of the total sample. Conversely, for
a relatively small (near zero) or large (near 100) percent
of observed failures, the conf.idence increase per unit
sample is smaller. This is illustrated by the fact that,
in Exhibit 4-4, the curves are more "spread out" laterally
than they are in Exhibit 4-6. To estimate confidently the
actual failure probability, relatively large sample sizes
are required if the equipment fails nearly half the time.
Smaller sample sizes are sufficient to achieve the same
confidence if the equipment fails either rarely or almost
always.
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5.0 NUMBER OF FAILURES

This chapter presents findings on the sensitivity of
the output Bayesian failure probability distributions to V
variations in the number of observed failures in the input
data. The investigation shows how the location and shape
of the Bayesian posterior probability density function and
cumulative distribution function change in response to
changinq percentages of observed failures for different
sample sizes.

5.1 SENSITIVITY

In this analysis, the number of observed failures is
fixed at 10, 20 and 50 percent of the sample size for sam-
pie sizes of 10, 20, 50, 100, and 200. The case of
exactly one observed failure and no failures is also in-
vestigated for the sample sizes noted. For selected fixed
sample sizes, the probability density functions are plot- %-'
ted to demonstrate graphically the change in location and
shape as the number of observed failures changes. The
cumulative distribution functions are plotted for each
fixed sample size to draw numerical examples of prob-
abilistic statements that can be made regardin sensitiv-
ity to the number of observed failures.

Exhibit 5-1 shows the output Bayesian posterior prob-
ability density functions corresponding to 1, 2, and 5
observed failures with a sample size af 10. These numbers
of observed failures correspond to observed failure rates '
of 10, 20, and 50 percent of the sample size. The curves
show that as the number of observed failures decreases,
the central location of the probability density function
decreases correspondingly, while the shape of the function :1
narrows. Skewness, however, increases with the decreasing
number of observed failures. Also, the 10 percent and 20
percent curves show that the mode of the probability dens-
ity function is less than the observed failure rate, de-
creasing as the number of observed failures decreases.
For example, the mode of the curve for 20 percent observed -%i
failures is at approximately 0.17 (x-axis), while the mode
of the curve for 10 percent is at approximately 0.05.
Although the curves do not show it directly, the means of
the distributions may be expected to more closely match
the observed failure rates.

For comparison, Exhibit 5-2 shows the probability d
density functions for different numbers of observed fail-
ures with a sample size of 20. The numbers of observed
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EXHIBIT 5-1
Probability Density Functions:

Sample Size Of 10
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failures are 2, 4, and 10, correspondinq to 10, 20, and 50
percent observed failure rates. Also, the probability
density function from exactly one observed failure is
plotted. Comparison of Exhibit 5-2 with Exhibit 5-1 shows
that the basic sensitivities of function location and
shape remain the same, regardless of sample size. Sample
size does, however, have an effect on sensitivity to per-
centage of observed failures. The 20 sample size case
shows that the modes of distributions are nearer to the
percentage of observed failures than they are with the 10
sample size case. Also, the sh.ape of the density func-
tions changes less radically, as the number of observed
failures decreases, for the larger sample size case. The
single observed failure case in Exhibit 5-1 can be com- 'A-
pared to the single observed failure case in Exhibit 5-2,
but can also be compared to the 10 percent observed fail-
ure rate in Exhibit 5-2.

Exhibit 5-3 shows the probability density functions

for different percentages of observed failure with a sam-
ple size of 50. For graphical representation purposes,
the scale of the y-axis has been incre-sed to accommodate
the high function value corresponding .o the single ob-
served failure case. Thus, Exhibit 5-3 should not be com-
pared directly to Exhibit 5-2 to contrast the 50 sample
size case with the 20 sample size case. Instead, the 20
sample size case is plotted again in Exhibit 5-4 using the
same y-axis scale as the 50 sample size case. The two
different scales maintain resolution for the curves cor-
responding to the lower sample sizes.

Comparison between the 20 and 50 sample size cases
shows how the sensitivity of the probability density func-
tions to percentage of observed failures changes in
response to different sample sizes. With larger sample
sizes, the shapes of the probability density functions
changes less radically as the percentage of observed fail-
ures decreases, and their modes and locations of central
tendancy are nearer to the percentage of observed failures.

While the probability density functions show how the
location and shape of the output Payesian posterior fail-
ure probability distributions are sensitive to chanqes in
the number or percentaqe of observed failures, they cannot A
be used directly to demonstrate the sensitivity of esti-
mated failure probabilities. Thus, cumulative distribu- '-
tion functions corresponding to percent observed failures
of 10, 20, and 50 percent are examined for sample sizes of
10, 20, 50, 100, and 200.
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EXHIBIT 5-2
Probability Density Functions

Sample Size Of 20
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EXHIBIT 5-3
Probability Density Functions:

Sample Size Of 50

Failure 

~..

C

00

20

ene

5N



EXHIBIT 5-4

Probability Density Functions::4
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Exhibit 5-5 shows the cumulative distribution func-
tions corresponding to 1, 2, and 5 observed failures with
a sample size of 10. For example, the estimated prob-
ability is 0.45 (y-axis) that the actual Failure prob-
ability is less than 0.10 (x-axis) when the observed fail-
ure rate is 10 percent. The estimated probability that
the actual failure probability is less than 0.20 when the
observed failure rate is 20 percent rises to approximately
0.48. With a 50 percent observed failure rate, the esti-
mated probability that the actual failure probability is
less than 50 percent is 0.50.

Exhibits 5-6, 5-7, 5-8, and 5-9 show the cumulative
distribution functions at observed failure rates of 10,
20, and 50 percent for sample sizes of 20, 50, 100, and
200 respectively. These exhibits indicate how sensitivity -
of the output Bayesian failure probability distributions
to percentage of observed failures chanoes in response to
increasing sample size. For instance, the example just
given for the sample size of 10, showinq how the estimated
probability that the actual failure probability is less
than the observed failure rate decreases as the observed.
failure rate decreases, yields quite different results
when the sample size is 200. Exhibit 5-9 shows that, with
a sample size of 200, the estimated probability that the
actual failure probability is less than the observed fail- *. .

ure rate is 0.50 regardless of the observed failure rate.
The cumulative distribution functions in Exhibit 5-9 cor-
responding to a sample size of 200 have almost identical
shape, and are translated only with respect to location
depending on the observed failure rate. The cumulative
distribution functions in Exhibit 5-5 corresponding to a
sample size of 10 are translated not only with respect to
location, they also have different shapes.

5.2 CONCLUSIONS

The number of observed failures affects the location
of the Bayesian posterior failure probability distribution
as expected. That is, the central tendancy of the distri-
bution lies near the observed failure rate. The shape of
the distribution varies in response to different numbers
of observed failures -- this variability is especially
pronounced when the percent of observed failures is near
zero or 100 -- but the shape variability with respect to
number of observed failures diminishes as the sample size
increases.
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EXHIBIT 5-5
Cumulative Distribution Functions:

Sample Size Of 10
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EXHIBIT 5-6
Cumulative Distribution Functions:

Sample Size Of 20

0

CLb

o5 9

9A&M-6



EXHIBIT 5-7
Cumulative Distribution Functions:

Sample Size Of 50
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EXHIBIT 5-8
Cumulative Distribution Functions:

Sample Size Of 100
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EXHIBIT 5-9 V
Cumulative Distribution Functions:

Sample Size Of 200
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6.0 SUMMARY

This report presents a sensitivity study of a statis-
tical model used by the OMNCS to estimate HEMP-induced
failure probability distributions of telecommunications
switches and transmission facilities. The model uses
Bayesian statistical theory to interpret test data from
EMP test programs conducted by the OMNCS and other organ-
izations. The outputs of the model support nuclear weap-
ons effects analyses of major NSEP telecommunications
networks, and assist EMP test planning. This sensitivity
study explores the meaning and limitations of the model's
output by quantifying its response to variations in its
inputs.

The Bayesian approach used to characterize HEMP-
induced failure probabilities of telecommunications etuip-
ment combines observed test data with assumed prior know-
ledge to form posterior estimates of failure performance.
The test data are comprised of the total number of test
observations (sample size) and the number of observed
failures for a particular type of equipment at a given
HEMP stress level or stress level range. The assumed
prior knowledge is embodied in a prior probability distri-
bution of the parameter being estimated (failure prob-
ability). The application of Bayes' Theorem allows the
data and prior distribution to produce a posterior prob-
ability distribution for failure probability. The poster-
ior distribution is proportional to the product of the
failure probability likelihood and the prior distri-
bution. This output distribution is reflected in a cumu-
lative distribution function and its associated prob-
ability density function.

The prior distribution used in this application of the
Bayesian methodology is a noninformative prior distribu- "
tion. That is, no prior knowledge is assumed relative to
the data reqarding the value of the parameter being esti-
mated. The insensitivity of the output posterior failure
probability distribution to variations in the selected
prior is demonstrated in this study using a theoretical
derivation. This insensitivity is demonstrated by findin-.
a transformation of the parameter being estimated for
which a locally uniform prior is noninformative. Follow-
ing a theorem, the corresponding noninformative prior of
the untransformed parameter is locally proportional to the
derivative of the transformation with respect to the para-
meter. Because an inverse sine transformation produces a

6 - 1 . -
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likelihood curve that is nearly data translated, the in-
sensitivity of the resultant posterior distribution fol-
lows on theoretical qrounds.

The test data sample size affects the output failure

probability distribution primarily through the variance of
the distributions. Small sample sizes produce large post-
erior distribution variances; large sample sizes produce
small variances. The resulting relationship between sam-
ple size and estimation precision is quantified graph-
ically using cumulative distribution plots. These plots
can be used to construct confidence interval estimates of
failure probability. For example, if no failures are .
observed during testing, a sample size of 150 provides a
90 percent confidence that the actual failure probability
is less than 0.01.

The number of failures observed during testing affects
primarily the location of the posterior failure prob-
ability distributions. The central tendency of the dis-
tribution lies near the observed failure rate, as shown
graphically in cumulative distribution function and prob-
ability density function plots. The shape of the distri-
bution varies in response to different numbers of observed e
failures. This variability is especially pronounced when
the percent of observed failures is near zero or 100.
However, this shape variability with respect to number of
observed failures diminishes as the sample size increases.

The results of this sensitivity study can be used to
support subsequent sensitivity studies of the network
connectivity analysis models that use the Bayesian pos-
terior failure distributions as inputs. Also, the sample
size sensitivity curves can be used to guide HEMP test
planning for telecommunications equipment.
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*************** A*********** ***** *******IWXX X TMWM

C

c This Program is a Bayesian Failure Probability Model.
c The program calculates the cumulative distribution for the Bernoulli
c parameter ( Mean Failure probability ) with Noninformative Prior
c Distribution.
C

c Variable Declaration and definition: .
c
c---------------------------------------------

CHARACTER Ans*l, ' User Interactive Character string
* Eqtested*25, , Description for Equipment
* Stresslvl*lO, I Level of stress used for this data
* IObuf*lO ! An I/O Buffer used with system Functions

REAL*8 AB, , Incomplete Beta Function Interval
* WlW2, I Intermediate Function values %
* Wnum,Wden, ! "

* Term,
* CDF, ! Storage Variables for Cumulative Density
* Previous I Function and Posterior Distribution
* PDF, ! Function.

* Percent, ! Interval value. Interval is between 0-I
* ZA(7), ! Array used in CDF Polynomial Calculation
* Zsave, I Storage values for the Polynomial Result
* z, !
* Pz,!
* Sum,
* Coeff(7), ! Coefficeint array

* Resolution ! Requested resolution between 0-1

INTEGER*4 Ssize, ! Sample Size
* Failures, I Number of Failures
* Index, I Loop Upper Bound variable
* Ans 1, System funcion I/O conversion variables N
* Eqtested 1, 1 "
* StresslvT 1, 1 "
* lObuf 1, -

* LIB$Gt input, I System I/O Functions
* LIB$Get-symbol, !
* LIB$Set symbol, !
* OTS$CVTTI L, '
* OTS$CVT T, !
* OTS$CVT-L-TI, ! '
* LIB$STO -

c
c
c Initialize Coeff, first ZA, and strings variables.
c

% 0
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c Coeff(l) is never used.

Coeff(2) -O.049867347D0
Coeff(3) - O.O21141006100
Cooff(4) - O.0032776263D0
Coeff(5) - 3.80036D-05 %

Coeff(6) - 4.88906D-05
Coeff(7) - 5.383D-06

ZA(l) - l.ODO

Ans~l:)-'

c open Ouput file for results
C

OPEN(UNIT-7,Status-'NEW')

C

c Loop over all input data
C

Do WHILE (Not Done)%

c Initialize Cumulative Density Function, Previous retainer, and Counter

CDF -O.ODO
Previous = O.ODO

C
c Prompt Operator for program continuation
C

ISTAT - LIB$Get input(Anat'Is there data to be processed (Y/N)
* Anal1)

IF (Ans .EQ. IV) THEN

%.,%.r

C

c Retrieve necessary information for a run.

c -

ISTAT - LIB$Get input(Eqtested,'Equipment Tested ',Eqtested 1)
IF (.NOT. ISTATT CALL LIB$STOP(%VAL(ISTAT))

ISTAT =LIS$Get input(Stresslvl,'stress Level l,stresslvl 1)
IF (.NOT. ISTATT CALL LIBSSTOP(%VAL(ISTAT))

ISTAT =LIB$Get input(IObuf,'Sample Size ',IObuf 1)
IF (.NOT. ISTATT CALL LIB$STOP(%VAL(ISTAT))

ISTAT = OTS$CVT TI L(IObuf(l:IObuf l),Ssize)
IF (.NOT. ISTATT CALL LIB$STOP(%VALC(ISTAT))

A-2
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ISTAT - LIBSGet input(IObuf,'Failures ',IObuf 1)
IF (.NOT. ISTATT CALL LIB$STOP(%VAL(ISTAT))

ISTAT - OTS$CVT TI L(IObuf(1:IObuf l),Failures)
IF (.NOT. ISTATT CXLL LIB$STOP(%VAL(ISTAT))

ELSE .

c Run is complete "
p-,,

Not Done a .FALSE.

ENDIF

IF (NotDone) THEN

c Write header information to the file for this iteration
c

WRITE(07,104) Eqtested
WRITE(07,103) Stresslvl
WRITE(07,102) Ssize
WRITE(07,l01) Failures
WRITE(07,100)
WRITE(07,99)

104 FORMAT(' Equipment Tested: ',A25)
103 FORMAT(' EMP Stress Level: ',A10)
102 FORMAT(' Sample Size: ',I6)
101 FORMAT(' Failures: ',I6)
100 FORMAT(' Prob(fail) CDF PDF')
99 FORMAT( ' ----------------------- ')

C

c Setup A and B for this run, the incomplete Beta Function Interval.
c

A - Failures + 0.5DO
B - 0.5DO + (Ssize - Failures)

c

c For percentage values from 1% to 100% calculate CDF and PDF
c Increments are input from keyboard.
c

ISTAT = LIB$Get symbol('RESOLUTION',IObuf,Iobuf_1) "

IF (.NOT. ISTATT CALL LIB$STOP(%VAL(ISTAT))

ISTAT - OTSSCVT TI L(Iobuf(l:Iobuf 1),Index)
IF (.NOT. ISTATT CALL LIB$STOP(%VAL(ISTAT))
RESOLUTION = INDEX ,

C

c Loop over resolution desired converting to an interval between 0-1
c

DO 10 J = 0, Index

Percent = J / Resolution

c

0- %
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c Has the cumulative distribution reached 1? .
c It so there is no need to calculate any more.
c

IF ( CDF .LT. 1.ODO ) THEN

c
c Test the validity of the Numerical Approximation "

c If the test is true we force the PDF to 0.
c Implementation of the second approximation was not appropriate
c

Test = ( A + B - 1.0OO) * ( I.ODO - Percent)

IF ( Test .LT. 0.8DO ) THEN

Previous .ODO
CDF = 1.0DO
PDF = CDF - Previous
Previous = CDF

ELSE

c
c Calculate the probability point for Standard Normal Approximation
c

Wl = (B * Percent)**0.333333300
W2 = (A * (1.0DO - Percent))**0.333333DO
Wnum = 3.0DO*((Wl*(I.ODO-(I.ODO/(9.0DO*B))))

-(W2*(I.ODO-(l.0DO/(9.0DO*A))))) %

Wden = DSQRT( ((Wl*Wl)/B) + ((W2*W2)/A))

c
c Calculate the standard normal CDF
c '.".

Z = Wnum / Wden
Zsave = O.0D0 %

IF ( Z .LE. O.ODO ) THEN

Zsave = Z
Z = -Z

ENDIF

Sum = 1.OO
DO 20 I = 2,7

ZA(I) = ZA(I-1) * Z
Term = ZA(I) * Coeff(I)
Sum = Sum + Term

20 CONTINUE

PZ = 1.OD0 - (0.5DO * (Sum**(-16DO)))

IF ( Zsave .NE. 0.ODO ) THEN

.... ,

(. f
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Z -Zsave

PZ 1 .ODO - PZ

ENDIF

C 1

c Assign Calculated value to the Storage value
c

CDF = PZ

c Calculate the PDF from the new and previous COF

PDF - (COP - Previous) *Resolution

Previous - CDf

ENDIF

ELSE

POF - CDF -Previous

Previous =CDP

ENDIF

cI

c Write Results of this iteraion to the output tile.
c

WRITE(07,98) Percent,CDF,PDF
98 FORMAT(T3,FG.4,Tl6,FlO.7 ,T32,Fl5.9)

c Next percentage
c

10 CONTINUER.

ENDIF !For Not-done Checking

END DO I For Controlling Program Execution

CLOSE(07)

C

c System Variable updates used in control program
C

ISTAT - OTS$CVT L TI(Count,IObuf)
IF (.NOT. ISTATT IIALL LIB$STOP(%VAL(ISTAT))

ISTAT - LIBSSet symbol('COUNT',I0buf(1:1))
IF (.NOT. ISTATT CALL LIBSSTOP(%VAL(ISTAT))

WRrTE(06,*) 'End of Program'
END
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