
-A183 856 BOOLEAN CLASSES(U) MASSACHUSETTS INST OF TECH CAMBRIDGE 1/1
ARTIFICIAL INTELLIGENCE LAB D MCALLESTER ET AL SEP 86
AI-M-911 N88@14-85-K-8t24

UNCLASSIFIED F/G 12/5 NLEEEEEEEEEEEEElllllll
IEEe..

25

____ .L 12.

I~Llu6

UNCLASS I FIED ;Ui~ X~i
REPORo.I :a T. DCUMIshE hNAN& PAG RADIN0RCTO

REPOT DCUMETATON PGESEFORE COMPLETING FORM
I *two*? OU0411ft2. GOVT ACCESSION 00 a. 49CIVICUMS CATAL.OG NUM41101

4 VIT.E ted Sw61tS. rvvlt or REPORT a PER~IOD covenea

Boolean Classes Al_______Memo______

7. AUlMORIS) 11- COWNACT OR GRNT wUMSER~ej

David McAllester

Ramin Zabih NOOO 14-85-K-0 124
9*EOROORM14G ORGANIZATION NAMIE AMC ADDRESS IS. POONAI ELEMNPT. PROJECT. TASK'

10 Artificial Inteligence Laboratory AI ORUI UUR

00 545 Technology Square
Cambridge, MA 02139

1.I CONTROLLN 12IENM NOAOESI. REPORT DATE

00_ Advanced "Res;earch PrAoje~ts0Agency tpmbe 1986
TO 1400 Wilson Blvd. Is. NUMAIKrO PAGES

Arlington, VA 22209 14
14 MONITORING AGENCYV NAN1ES ACON185WH 4ID..in5 be Cow"1ft 01006) IS. SECURITY CLASS. 0 60 mie ep.ef)
Office of Naval ResearchO Information Systems
Arlington, VA 22217 17r.. " OEC&S.I.ICAION/ DOWNGRADING

Is WIT "' OUTIOM ST ATLMIEN? l* et #A*euvjf

Distribution is unlimited.

I7. O#2?RI9UTI@M* STATEMEtNT V*Il ELECT1 E1V* 10 0 1410N1 11"

to. SuPOLCUIEWARY NOTES
geAGl) 1A

None-

is. Ktc WORDS0 (C.masg rewo 0d 1800D 0P Aws- D5 Ip 60Wknowmw)

Class Hierarchy, Data Types, Inheritance, Object-Oriented Prograumming,
Propositional Inference

20. ABSTRACT (Co~* PWWOld It 000M ugOW~ 00 ISAe OF ae100a 000ft

(on~ Reverse Side)

DID I PJ n 7 1473 COI TION or I Nov668 is 00804.IE UNCLASS I FIED
SECURITY CLASSIFICAION OF TISt PAGE (%No DWO

Abstract. Object-oriented programming languages all involve the notions of claw
and object. We extend the notion of clas so that any Boolean combination of
class is also a clas. Boolean classes allow greater precision and concisenes, in
naming the clas of objects governed by a particular method. A clas can be viewed
as a predicate which is either true or false of any given object. Unlike predicates
however classes have an inheritance hierarchy which is known at compile time.
Boolean classes extend the notion of clas, making classes more like predicates,
while preserving the compile time computable inheritance hierarchy.

I)

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
ARTIFICIAL INTELLIGENCE LABORATORY

A. I. Memo No. 911 September, 1986

Boolean Classes

David McAllester
IRamin Zabih

Abstract. Obje t-oriented programming languages all involve the notions of class
and object. T extend the notion of class so that any Boolean combination of
classes is also a class. Boolean classes allow greater precision and conciseness in
naming the class of objects governed by a particular method. A class can be viewed
as a predicate which is either true or false of any given object. Unlike predicates
however classes have an inheritance hierarchy which is known at compile time.
Boolean classes extend the notion of class, making classes more like predicates,
w hile preserving the com pile tim e com putable inheritance hierarchy. '_-__ J

IDTIC TAH [

J ,stf c.i:+''

By

- tr

Acknowledgments. This paper describes research done at the Artificial Intelli-
gence Laboratory at the Massachusetts Institute of Technology, supported by the
Advanced Research Projects Agency of the Department of Defense under Office of
Naval Research contract N00014-85-K-0124. Ramin Zabih is supported by a fel-
lowship from the Fannie and John Hertz Foundation. This is a revised version of a
paper to appear in the 1986 OOPSLA Conference Proceedings.

(Massachusetts Institute of Technology 1986

87 8 19 054

Boolean Classes1

1. Introduction

Object-oriented programming languages such as CommonLoops [1], SmallTalk
[2] and Flavors [3] all involve the notions of class and object. A given object can be
"in" a class C and thus "inherit" information attached to C. In this paper we view

classes as predicates; if an object x is in a class C then we say that C is true of x; if x
is not in C then we say that C is false of x. In Flavors and in CommonLoops a class
C is true of x just in case the expression (typep x C) returns T. Unlike ordinary
lambda predicates, however, the classes of object-oriented programming languages
have a (compile time) computable inheritance relation. Given any two classes C,
and C2 there is a uniform way to determine if C, inherits from C2. Object-oriented
programs specify behavior in terms of classes. A behavioral specification, such
as how an object should respond to a message, is associated with ("governs") a
particular class C. If C is true of an object x then the specifications associated with
C apply to x.

We wish to extend the notion of class so that any Boolean combination of classes
is also a class. Boolean classes allow greater precision and conciseness in naming
the class of objects governed by a particular specification. For example, consider
a battlefield video-game with the classes TARGET and PROJECTILE where targets
are things like tanks, ships and planes while projectiles are things like missiles,

torpedoes, or cannon shells. Suppose that the game also has the classes LAND-
OBJECT, AIR-OBJECT and SEA-OBJECT. Now consider a particular procedure for
displaying the explosion of a surface target, i.e. a target which is not an air object.
The class governed by the explosion display procedure can be written as

(:and TARGET (:not AIR-OBJECT))
The above class need not be mentioned in any user defined inheritance relationships.
Boolean classes (and the associated specifications) are automatically placed at the
appropriate location in the inheritance hierarchy.

1.1 Boolean Classes vs. Simple Multiple Inheritance

Boolean classes make it easier to specify and maintain inheritance hierarchies.
In a certain sense any object-oriented language with multiple inheritance can sim-
ulate Boolean classes; any inheritance hierarchy involving Boolean classes can be
expressed as a hierarchy among non-Boolean classes (see below). With Boolean
classes however the construction of this inheritance hierarchy can be largely auto-
mated and the hierarchy can be automatically updated in non-trivial ways when
new classes are introduced and when new inheritance relations are given by the
user.

Boolean classes can be simulated in any system with multiple inheritance by
manually installing the appropriate inheritance relations. For example consider the
Boolean class (:or C, C2). This class corresponds to the set of all things which are
either in class C1 or in class C2. The Boolean class (:or C1 C2) can be simulated
with a "primitive" class OR-Cl-C2 where the user specifies that both C, and C2

inherit from the class OR-Cl-C2. Once this is done any class which inherits from

Boolean Classes 2

either C1 or C2 will necessarily inherit from OR-Cl-C2. Similarly, consider the class
(:and C1 C2) which corresponds to the set of all things which are in both the class
C1 and the class C2. This class can be simulated with a primitive class AND-C1-C2
where for each class C3 that inherits from both C1 and C2 the user specifies that

C also inherits from AND-Cl-C2.

Note that simulating the class (:and C1 C2) requires the user to know about all

classes that inherit from both C1 and C2 . This is an unreasonable requirement for
large systems where different classes are constructed at different times by different
users. With genuine Boolean classes the inheritance relationships for the class
(:and C1 C2) are constructed automatically by the system so the user need not
know all the classes that inherit from both C1 and C2.

1.2 Technical Difficulties

There are two technical difficulties involving Boolean classes: the uninstantiable
class problem and the modularity breakdown problem. The uninstantiable class
problem involves classes which are inherently uninstantiable. For example the class
(:or C1 C2) cannot be directly instantiated; as we shall see, if x is created by
instantiating (:or C1 C2) it is not appropriate for x to be a member of C 1. Neither is
it appropriate for x to be a member of C2. We solve the uninstantiable class problem
by identifying those classes which are inherently uninstantiable and specifying that
any attempt to directly instantiate an uninstantiable class should signal an error.

The modularity breakdown problem occurs when a class written for one system
is inherited by a class in a totally unrelated system. For example consider the class
(:not C) which includes all objects which are not in class C. The class (:not C),
and any behavioral specification associated with it, will be inherited by a totally
unrelated class D. The modularity breakdown problem can be solved with simple
restrictions on inheritance specifications and on the classes which are allowed to
carry behavioral specifications.

This paper begins with a formal specification for Boolean classes. We then give
an algorithm for constructing inheritance relations and identifying uninstantiable
classes, and present a rigorous proof of the correctness of this procedure. We also
formally prove that the modularity breakdown problem is solved via certain simple
restrictions on the inheritance hierarchy and on the classes which are allowed to
carry behavloral specifications. We do not discuss the nature of behavioral spec-
ifications or the way that specifications are combined when several specifications

apply to the same object.

2. Formal Specification

We assume that classes are named with class expressions where a class expres-
sion is either a class symbol or a Boolean combination of other class expressions.

Definition: A class expression is either a class symbol or an expression of the
form (:not E), (:or El ... E,) or (:and El ... E,,) where E, EI, ... E,, are

., rr ,,-, v ,€ ' , ''. u '¢,a '' Cz € €€-, € ., ,€ , P0O

Boolea:i Classes 3

ot her class expressions. A literal is either a class symbol C or the negation of
a class symbol, i.e. (:not C).

We view classes as predicates: given a class C and an object x, if x is in the
class C then we say that C is true of x and if x is not in C then we say that C
is false of x. Boolean class expressions are interpreted as predicates in the obvi-
ous way: the class expression (:not E) is true of an object x just in case E is

false of x; (:or E, E2 ... E,) is true of x just in case some Ei is true of x, and
(:and E, E2 ... E,) is true of x just in case all of the classes Ei are true of x.

r; defining a set of classes a programmer provides a set of class expressions
and a, specified inheritance hierarchy for those class expressions. In languages such
as Flavors and CommonLoops the inheritance hierarchy is specified by associating
each c'ass with a list of "superior" or "included" classes. For theoretical generality
and cnc ctual simplicity we genetalize inheritance specifications to allow for an
arbitri ry set of implications of a certain form.

Definition: An inheritance specification is a finite set of implications of the
--1, rm (:inuplies C E) where C is a class symbol and E is any class expression.

lntultively an implication of the form (:implies C E) says that for any object z,

if C is true of x then E should be true of x, i.e. every instance of C should be an
, inSt,.&TV'e of E. and thus that C inherits from E.

The ,standard specifications of inheritance relations can be easily translated into

iriplit lici of the above form. More specifically, to state that a class C inherits
irofn I he -cmponents" Ci, C -... C,, one uses the implications

(:irmplies C CI)
(:implies C C 2)

(:iniplies C C")

V *:v1:;C (' iueri15; from,, Lj (7' then we say that C' is a generalization of
(i. (, vi an i nheri tance si,,. , In I and a class C we would like to construct

t1 w s, , geiera l/atiorls of iOw ca,,,s (7, i.e. the set of all class symbols which
C inh 'ris rom.I In langu.grs such a: Flavors and CommonLoops the process of
crimp :. ll;I of the generaliiitiO,:, of a given class is bssically a transitive closure

operal iol. one ! nlds ;Ltl iin, diate generalizations, the immediate generalizations

of tlo . e gerieralizations, arid ,o on.

I 11f(rtiiruately computing the set of generalizations of a class is more complex
w n ii (,,;,.n expressions av' used in the inheritance specification. For example

consi!er thi following inheritaice specification:

(:imlplies CG (:or C2 C3))

ot. now we consider only those generalizations which are class symbols; Boolean gen-

eral zai ions will be discussed aeor.

Mnl I10I l kti r

Boolean Classes 4

(:implies C2 C 4)

(:implies C3 C4)

Let x be an arbitrary object such that C1 is true of z. The first implication says

that either C 2 or C3 is true of x. In either case the above implications state that
C 4 must be true of x. In short, if C1 is true of an object then C 4 is true of that

object. Thus C4 is a generalization of C1.

An inheritance specification I can be viewed as a set of formulas of propositional
logic where each formula is true of all objects. To compute the set of generalizations
of a class C one must examine the logical consequences of the formulas in I.

Definition: Let C be a class symbol and let E be a class expression. We

say that E is a generalization of C under an inheritance specification I (or
that C inherits from E under I) if the expression (:implies C E) is a logical

consequence of the conjunction of all the implications in I.

The above definition treats the inheritance specification I as a formula of Boolean

logic (the conjunction of all the implications in I). It is natural to ask whether

any Boolean formula could be used as an inheritance specification. The answer is

no; to avoid the modularity breakdown problem we have intentionally restricted
the inheritance hierarchy to be a set of implications of a certain form. However the

restrictions on the inheritance hierarchy are extremely weak; most Boolean formulas

can be faithfully translated into a legal inheritance hierarchy and there is a simple

semantic characterization of those formulas which can be translated into a legal
inheritance specification.

The semantic characterization of the formulas which can be translated into

inheritance specifications involves the notion of a "lost" object. We say that an
object z is lost if every class symbol is false of z. Note that if I is a legal inheritance

specification and x is a lost object then x satisfies every implication in I; x satisfies

an implication of the form (:implies C E) because the antecedent C is false of x.

Since lost objects satisfy every implication in any inheritance specification, every

inheritance specification has a model and thus every inheritance specification is

logically consistent (one can never derive a contradiction from the formulas in an

inheritance specification.) It turns out that any Boolean formula which is satisfied

by lost objects can be translated into a legal inheritance specification.

Lemma I. Let B be any Boolean expression. If B is true of lost objects
then there is an inheritance specification I such that the conjunction of all

implications in I is logically equivalent to B.

Proof.- Suppose that B is true of lost objects and let E be the conjunctive

normal form of B. The expression E is a conjunction of disjunctions of liter-

als where every disjunction of literals. Note that each disjunction in E must

contain at least one negative literal because a disjunction which contains only

positive literals is false on lost objects and if E contained such a disjunction

then E would be false on lost objects violating the assumption that B is true

Boolean Classes &

of lost objects. Since every disjunction in E contains a negative literal, ev-

ery disjunction can be written as (:or (:not C) Li ... L.) which is logically
equivalent to the implication (:implies C (:or L, ... La)). (Actually the dis-

junctive clause might contain only the single literal (:not C) in which case it

is equivalent to the implication (:implies C (:not C)).) Thus E is equivalent

to a conjunction of implications of the desired form.

The requirement that lost objects satisfy inheritance specifications plays an impor-

tant role in the solution of the modularity breakdown problem.

2.1 Mi king Instances of a Class

In most object-oriented programming languages objects are created by "instan-

tiating' classes. If the object x was created by instantiating some class symbol C

then wc will call x an instantiation of C. In this section we only consider instan-

tiation- of class symbols. We do not allow a class expression E to be instantiated

directly. Instead, one can construct the inheritance specification (:implien C E)

for some new class symbol C and then one can instantiate C.

Class expressions introduce some subtleties in instantiation. In most object-

oriented languages, if x is an instantiation of a class C and E is any other class then

E is trite of x just in case C inherits from E. Unfortunately this principle does not

hold when E can be a Boolean class expression. In particular it is possible for C

to inherit from neither E nor (:not E) but clearly either E or (:not E) must be

true of x. if x is an instantiation of C we must be careful to specify exactly which

classes are true of x. It suffices to specify the class symbols which contain x; to

determine if a Boolean expression E is true of x it suffices to know whether or not

each ci iss symbol in E is true of x.

Sipecification: Let C be a class symbol, I be an inheritance specification, and

let x be an instantiation of C. For any class symbol C' we specify that C' is

trie of x just in case C' is a generalization of C under I.

N,,w consider the case where C does not inherit from either the class symbol

C' or (:i)ot C'). If x is an instantiation of C then the above specification requires

that C' is false of x. This implies that (:not C') is true of x even though (:not C')

is not. ;.. generalization of C.

2.2 Urinstantiable Classes

"This section formally definos .he notion of an uninstantiable class. A proce-

dure f r identifying uninstantiable classes is given in a later section. A class is

uninst;.ntiable if instantiations of that class would be "pathological". Any attempt

to instantiate an uninstantiable class should generate an error.

Definition: We say that an object x violates an inheritance implication (:im-

plies C E) if C is true of x but E is false of x. Now let I be any inheritance

Boolean Classes 6

specification and let C be any~ class symbol. We say that C is uninstantiable
under I if an instantiation x of C would violate some implication in I.

It is easy to see how uninstantiable classes irise. For example suppose that I
includes both the implications

(:Implies C, C2)

and

(:implies C1 (:not C2))

Clearly any instantiation of Clwould violate one of these implications.

A more interesting example, mentioned in the introduction, involves an inher-
itance specification containing the following single implication:

(:Implies C1 (:or C2 C3))

Under this inheritance specification neither C2 nor CG is a generalization of C1.
Both C2 and C3 would be false of an instantiation x of C1. Thus an instantiation
of C, would violate the above inheritance specification which says if C1 is true of x
then either C2 or C3 must be true of x.

2.3 Inheriting Methods and Instance Variables

We allow information to be attached to any class expression. For exam-
ple we might define a method that handles messages sent to objects in the class
(:or C, C2). Similarly one might declare that objects in a given class, such as
(:and C1 (:not C2)), should all have a certain instance variable. In general we
will simply speak of "information" that is inherited by objects in a given class. We
assume that there is a finite set of information bearing class expressions, i.e. class
expressions which either have method definitions or instance variables associated
with them.

Let C be a class symbol which is instantiable relative to an inheritance spec-
ification I. If x is an instantiation of C then the above specifications determine
the set of information bearing class expressions which are true of x. The same set
of information bearing classes applies to all instantiations of C so it is possible to
build a "method table" for the class C which summarizes all the information which
applies to instantiations of C (we are not concerned here with how information gets
combined).

To solve the modularity breakdown problem we place a simple restriction on
the class expressions that are allowed to carry information. Recall that an object x
is called lost if every class symbol C is false of x.

Specification: All information bearing class expressions must be false of lost
objects, i.e. lost objects do not inherit any information.

For example the class (:not AIR-OBJECT) should not carry information because
this class is true of lost objects. If the class (:not AIR-OBJECT) carried information

Boolean Classes 7

then that information would be inherited by classes in totally unrelated systems;
one would be faced with modularity breakdown.

Any attempt to associate information with a class expression that is true of
lost objects should generate an error. The following lemma establishes that the
above condition on information bearing classes together with the definition of a
legal inheritance specification solves the modularity breakdown problem.

Lemma H. Let I be an inheritance specification and let D be a set of infor-
mation bearing class expressions. If C is a class symbol which does not appear
ir either I or D and if x is an instantiation of C then all information bearing
crass expressions in D are false of x, i.e. x does not inherit any information
from D.

Proo!: First we prove that C is the only class symbol that is is true of x. It is
svfficient to show that for every other class symbol C', C' is not a generalization
of C. To show that C' is not a generalization of C we must show tat there
e:_ists a propositional model of inheritance specification I which makes C true
and C' false. Let y be an object such that C is true of y but no otier class
symbol is true of y. In particular every antecedent of every implicaticn in I is
false of y so y is a model of I which makes C true and C' false.

Now since C is the only class symbol which is true of an instantiation x of C,
and since C does not appear in any information bearing class expression, an
information bearing class expression E is true of x just in case E is true of
lost objects. But since no information bearing class is true of lost objects, no
irformation bearing class is true of x.

3. Implementation

Un fbrtunately it can be difficult to compute the set of generalizations of a
given class under a given inheritance specification; the algorithm presented here
has a; exponential worst case running time and we cannot expect to find a non-
expononI ial procedure. iowever the procedure presented here is exponential in the
numb, r of "complex" implications in the inheritance hierarchy and in practice only
a very snall fraction of the implications are complex. Furthermore the procedure is
rnod,lair. the tiie required to find all generalizations of a given class is not effected
by the presence of unrelated classes and inheritance specifications. Thus we expect
that !he exponential worst case behavior will not be a problem in practice. First
we sh, w that the problem of determining whether one class inherits from another
is co-*\ P coomplete and thus we cannot expect to find a non-exponential algorithm.

3.1 Deteri-ining Inheritance is Co-NP Complete

It is easy to show that determining whether or not a class symbol C inherits
from another class C' under a specification I is co-NP complete. More specifically
one can reduce the problem of showing that a set of disjunctive clauses is unsatisfi-

- "

Boolean Classes 8

able to the problem of determining whether the implication (:implies C C') follows

from an inheritance specification I. Given a set B of disjunctive clauses let C, C'
and C" be symbols not occurring in B and let I be the inheritance specification
containing the implication (:implies C (:or C" C')) together with all implications

of the form (:implies C" E) where E is a clause in B. We will show that C'
follows from I and C just in case B is unsatisfiable. If B is unsatisfiable then I

implies (:not C") and thus I and C imply C'. On the other hand if B is satisfiable

then consider a model of B in which C" is true, C is true, and C' is false. This

model satisfies all implications in I while making C true and C' false. Thus if B is
satisfiable then C' does not follow from I and C.

3.2 Computing Inheritance

The system of Boolean classes described here has not yet been implemented.
However there is a relatively simple algorithm for determining whether a class is
instantiable and for determining the set of information bearing classes that are
generalizations of a given instantiable class. The first step in this algorithm is to

convert the inheritance specification I into canonical form.

Definition: An inheritance specification I is said to be in conjunctive normal

form if every implication in I has the form (:implies C (:or L, L 2 ...)) where

each Li is a literal.

We allow the disjunction in the consequent of an implication to contain only a

single literal, in which case the implication can be written as (:implies C L). Any

inheritance specification I can be converted to an expression in conjunctive normal
form. To see this recall that an inheritance specification I consists of implications

of the form (:implies C E) where C is a class symbol and E is a class expression.
The class expression E can be written in conjunctive normal form, i.e. E can be
written as:

(:and (:or L1 ,1 ... L1,n) (:or L 2 ,1 ... L 2 ,n) ...)

The implication (:implies C E) can then be written as a set of implications of the

form

(:implies C (:or Lj,1 ... Lj,n))

Of course converting an expression to conjunctive normal form requires an

exponential amount of work in general. However it seems unlikely that this would

be a problem in practice; the Boolean expressions involved should usually be given
in conjunctive normal form anyway.

Given an inheritance specification I we are now interested in determining which ,,VPA
class symbols are instantiable, and for each instantiable symbol C we are interested

in determining the set of class symbols which generalize C. To do this we assume
that the inheritance specification I has been converted to conjunctive normal form.
Implications of the form (:implies C L) will be called simple while implications

of the form (:implies C (:or L, L 2 ... L,)) (for n > 1) will be called complex.

Boolean (lasses 9

Currcn' object-oriented programming languages only allow for simple inheritance
implications and these are indeed the easiest to process.

9 Difinition: Let T be any set of literals and let I be an inheritance specification
in conjunctive normal form. The simple closure of T with respect to I is the
le;,st set of literals 7" containing 7' such that if C is a class symbol in T' and
(:i:niplies C L) is a simple implication in I, then L is in T'.

To compute the simple closure of a set of literals T it is sufficient to compute
the transitive closure of the directed graph given by the simple implications in I.
The dt,.','- of this cornpitati':N are left to the reader. Now let C be a class ,symbol.
Clear I CVC. Iitteri in the :n: JP closure of the singleton set {C} is provable from
C and I'lowever, since I may :ontain complex implications there may be symbols
which o,iov rom C and I but which are not in the simple closure of {C}. To find
all sy loIs %%!,ic, follow from C we must enumerate models of C. A symbol C'
follov from (Just in case (7' is tre in every model Al of I such that C is true in

Al.

.k.odcl (if propositional fo:rnflas (expressions) is usually taken to be a truth
function which maps each symbol to either true or false. However, rather than
introduce truth functions on class symbols, we will represent a model by a set M
of clas- 7vrnbols; members of Mt are considered to be true while class symbols not
in Al ire taken to be false.

Defnition: Let Af be a set of class symbols. We say that a literal L is true
uider Al if either L is a symbol in M or L is of the form (:not C) where
(' .s not in Al. Let I be an inheritance specification in conjunctive normal
fo-in. The set Al is called a model of I if for every implication of the form
(:xirplies C (:or L, L2 ... L,,)). if C is in Af then one of the literals Li is true

in Al.

A s:, ,, C inherits from a symbol C' just in case the implication (:implies C C')
is pjo ' e from 1. But (:imnplies C C') is provable from I just in case every

modl of I which contaips C also contains C'. More specifically, the intersection
of al modcls of I which cntain C" yields the set of all class symbols which are
genera ization, of C. The following procedure enumerates models ! which contain

C.

T[Pe procedure takes one exp!icit argument T which is a set of literals. The
procedure also makes use of the inheritance specification I. We will show that a
class symbol C' is a generalizations of C under I just in case C' is a member of
ever -nodel returned by the following function when applied to the singleton set

{W}.

Function: All-Models(T) take!; a set of literals and produces a set of models.

1. Initializationj Let 7" be the simple closure of T with respect to I.

Ma&

Boolean Classes 10

2. [Detect inconsistency] If T' is inconsistent, i.e. if there is some symbol C in

T' such that (:not C) is also in T, then return the empty set (there are no

models of T).

3. [Choose complex implication] Let

(:implies C (:or L, Li ... Ln))

be a complex implication in I such that C is in T' but none of the literals
L,, L2 ,... Ln are in T'. If there is no such implication in I then return {M}
where M is the set of class symbols in T'.

4. [Recurse] If there is such an implication in I then return

U All-models(T' U {Li})
1<i<n

Note that if there are no complex implications in I then All-models({C})
is either empty or contains exactly one model which is derived by computing the
simple closure T' of the singleton set {C}.

The above procedure can be made more efficient in several ways. The search for
a complex implication in step 3 can be optimized to avoid searching all implications
in I. Also, the set of literals T used in this procedure can be represented with a

hash table so that membership tests take unit time on average. The details of these @1

optimizations are left to the reader. It is important to note, however, that this
computation is only exponential in the number of complex implications of the form
specified in step 3. All that remains is to show that this algorithm produces all the
possible models.

Lemma III. Every element of All-Models({C}) is a model of I which con-
tains C. Furthermore every model of I which contains C also contains (as a
subset) some element of All-Models({C}).

The above lemma implies that the intersection of the models in All-Mod-
els({C}) is equal to the intersection of all models of I which contain C. In other
words this intersection is the set of generalizations of C under I. The proof of this

lemma is presented in the appendix.

If the above procedure returns the empty set when applied to the singleton set

{C} then there are no models of I which contain C and thus I implies (:not C) so
C is not instantiable. If the procedure returns a set of models then the intersection
of those models is the set of class symbols which are generalizations of C. Given
the set of symbols which are generalizations of C one can can consider a hypothet-
ical instantiation y of C. This hypothetical instantiation will satisfy every simple
implication in I, but there might be some complex implication which is violated by
y. If some implication is violated by y then C is uninstantiable. On the other hand
if every implication in I is satisfied by y then C is instantiable and we can compute

the set of information bearing class expressions that are true of the hypothetical
instantiation y.

Boolean Classes 11

4. Possible Extensions

For any predicate C one would like to be able to specify the behavior of func-
tions and methods when applied to objects that satisfy the predicate C. This can
be done in two different ways: one can write explicit conditionals in the code for
methods and functions or, for certain predicates, one can represent the predicate
C as a class and define methods for that class. Boolean classes expand the set of
predicates which can be represented as classes. It might be possible to extend the
class vocabulary even further so that other predicates can be represented as classes.
For example one might want to define the class of ships whose current momentum is
greater than 1000, or the class of missiles that are within ten miles of their targets.

Predicates can be divided into three groups. First there are instance ignoring
predicates. A predicate C is instance ignoring if the truth of C on an object x
depends only on the class of x (the class that z is an instantiation of) and not
on any particular properties of the instance x. All boolean class expressions are
instance ignoring. Second there are instance sensitive time invariant predicates. A
predicate C is time invariant if the truth of C on an object x does not change over
time. Third, there are time varying predicates. A predicate C is time varying if
the truth of C on an object x changes over time. It is progressively more difficult to
extend the class vocabulary to these three types of predicates, because inheritance
information is available respectively at compile time, at object creation time and at

run time.

As an example of an instance sensitive predicate that is time invariant consider
a class COUPLING-CAPACITOR that contains those capacitor objects whose capaci-
tance is above a given threshold. We assume that the capacitance of a capacitor
is given at object creation time and never changes. Whenever a capacitor object is
created one could determine whether or not it is an instance of COUPLING-CAPACI-

TOR.

Time varying predicates are quite common and one could imagine specifying

*to implement time varying classes by automatically converting the behavioral speci-
fications associated with classes into run-time conditionals in the code for methods.

The potential benefits and pitfalls of extending the class vocabulary to more
general kinds of predicates are not yet clear; we have not investigated the uninstan-
tiable class problem or the modularity breakdown problem for instance sensitive or
time varying classes. It seems likely that any implementation of instance sensitive or
time varying classes would involve in-line conditional tests in the code for methods.
Thus it. is not clear that there is any advantage in representing these predicates as
classes as opposed to using these predicate in traditional in-line conditionals.

4.1 Acknowledgments

Richard Zippel helped persuade us to explore alternative ways of thinking about

-JM" AL

Boolean Classes 12

object-oriented programming. Alan Bawden provided useful comments and insight.
The S-1 Project at Lawrence Livermore National Laboratory and Schlumberger
Palo Alto Research provided facilities that aided in preparing this paper.

5. Appendix: The Proof of Lemma III

Consider the following procedure given in the third section of this paper.

Function: All-Models(T) takes a set of literals and produces a set of models.

1. [Initialization] Let T' be the simple closure of T with respect to I.

2. [Detect inconsistencyl If T7 ' is inconsistent, i.e. if there is some symbol C in
T' such that (:not C) is also in T, then return the empty set (there are no
models of T).

3. [Choose complex implication] Let us assume that

(:implies C (:or L1 L1 ... La))

is a complex implication in I such that C is in T' but none of the literals
L 1 , L 2 ,... L,, are in T. If there is no such implication in I then return {M}
where M is the set of class symbols in T.

4. [Recurse] If there is such an implication in I then return

U All-models(T' u {Li)
* l<i<n

Note that a recursive call in step 4 can return the empty set in which case
that recursive call does not contribute any models and has no effect on the result.
A recursive call returns the empty set if the set of literals passed to that call is
inconsistent with the inheritance specification I.

We wish to prove the following lemma:

Lemma III.

(a) Every element of All-Models({C}) is a model of I which contains C.

(b) Every model of I which contains C also contains (as a subset) some element
of All-Models({C}).

To prove part (a) let M be a model, M E All-Models({C}) Clearly M contains
C. To show that M is a model of I note that M must have been returned at step
3 of some invocation of the procedure. At step 3 of the procedure there exists a
consistent set of literals T' such that M is the set of class symbols in T' and for every
(simple or complex) implication in I of the form (:implies C' (:or L, L 2 ... L")),
if C' is in T' then some L, is in T. To show that M is a model of I consider an
implication of the form (:implies C' (:or L , L 2 ... L.)). We must show that if

Boolean Classes 18

C' is in M then some Li is true in M. If C' is in M then C' is in V". But this
implies that T' contains some Li. Now if Li is a positive literal then it is also
contained in M and we are done. On the other hand if Li is a negative literal of
the form (:not C") then since T' is consistent C" is not in T' and thus not in M
so (:not C") is true in M.

Now we must prove that every model of I which contains C also contains (as
a subset) some element of Al-Models({C}). This is proven via a more general
induction hypothesis on the function All-Models.

Definition: Let T be any set of literals and let I be any inheritance specifica-
tion in conjunctive normal form. A model M of T (relative to I) is a model of
I such that every literal in T is true in M.

Note that a model M of a set of literals T can contain class symbols which
do not appear in T. In the extreme case M might be infinite while T is finite.
We will show that, in general, every model of I and T contains (as a subset) some
member of All-Models(T). In particular this implies that every model of I and
{C} (i.e. every model of I which contains C) contains (as a subset) some member
of All-Models({C}).

To prove the general induction hypothesis we first note that the function All-
Models must always terminate because the number of literals increases in every
recursive call and if the number of literals in T becomes larger than the number
of class symbols appearing in I then T must be inconsistent and the procedure
terminates.

Now we assume that the induction hypothesis holds for recursive calls and we
show that it must then hold for the top level call. First note that if T' is the simple
closure of T every model of T (relative to I) is also a model of 2". Thus if T' is
inconsistent then there are no models of T and the lemma holds. Furthermore,
every model of T is also a model of T' and therefore must contain (as a subset)
all of the positive literals in 2". Now suppose the procedure exits in step 3 by
returning the positive literals in 2". Since every model of T' must contain (as
a subset) the positive literals in T' the lemma holds. Finally suppose that the
procedure returns the union computed in step 4. Let M be any model of I and T
and let (:implies C (:or L1 L1 ... L,,)) be the implication found in step 3. Since
T' contains C, the model M must also contain C. Furthermore, since by definition
M is a model of I, some literal Li must be true in M. This implies that M is
a model of T' {L,} (relative to I) for some Li in the implication. But we have
assumed that the induction hypothesis holds for recursive calls and so M contains
(as a subset) some member M' of All-Models(T' U {Li}). But M' is a member of
the union computed at step 4 so the lemma holds.

References

1. D. Bobrow; K. Kahn; M. Stefik; and G. Kiczales "Common Loops" Xerox

Boolean Classes 14

Palo Alto Research Center (1985)

2. Daniel H. H. Ingalls. "The Smalltalk-76 Programming System: Design and

Implementation" Proceedings of the Principles of Programming Languages

Symposium (1976)

3. Daniel L. Weinreb; and David A. Moon "Lisp Machine Manual" MIT Artifi-

cial Intelligence Laboratory (1981)

0

Mw-

