
HARGED BEAR E MifICA SISO(U CAIROI F RONRCE T GEPY ICS LAD
HANSCOM RFD MR C W DUBS 62 OCT 66 AFGL-TR-96-0209

UNCLASSIFIED 
F/ 26/2 NL

EmhhhIh00000hhhh0
Emhmhhhhhhhhl
Ehsmhhhhmhum



I22

IsI

w ~ ~ ~ ~ ~ ~ 6 U WW W4W. W* U

1% % ~ ~ .%o

11*2 m (VI. A/.%
~ ~ Lo ~



; LILL-=;"
AFGL-TR-6-0209
ENVIRONMENTAL RESEARCH PAPERS. NO. 962

00) Theoretical Analysis of Charging Data From Rocket
0 With Charged Beam Emission'mm,

CHARLES W. DUBS

DTICELECTE '--:S AUG 05 "7

2 October 1986

Approved for public release; distribution unlimited.

(-7)I

li t"

SPACE PHYSICS DIVISION PROJECT 7601

AIR FORCE GEOPHYSICS LABORATORY
HANSCOM AFB, MA 01731

87 8 4 023



Unc l a s s i fi e d  / €" .

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

Ia. REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS

Unclassified
2a1. SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION AVAILABILITY OF REPORT 1

2b DECLASSIFICATION / DOWNGRADING SCHEDULE distribution unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) s MONITORING ORGANIZATION REPORT NUMBER(S)

AFGL-TR-86-0209
ERP No. 962

64 7&MOF PERFQRMINC ORGANIZATION 6b OFFICE SYMBOL 7a NAME OF MONITORING ORGANIZATIONmr orce G~eophysics (if applicable)

Laboratory ,

6c. ADDRESS (City, State, and ZIPCode) 7b ADDRESS (City, State, and ZIP Code)

Hanscom 
AFB

Massachusetts 01731

B& NAME OF FUNDING/SPONSORING Sb OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If appikable)

kc. ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS 0,
PROGRAM PROJECT TASK WORK UNIT F
ELEMENT NO NO NO ACCESSION NO

62101F 76130 01
11 TITLE (Include Security Classification)

Theoretical Analysis of Charging Data from Rocket with Charged Beam Emission

12 PERSONAL AUTHOR(S) Charles W. Dubs

13a. TYPE OF REPORT  13b TIME COVERED 14 DATE1T-EPORT te At GE COUNTScientific. Interim FROM __ TO 14 Ato et - Oy 1 52

16 SUPPLEMENTARY NOTATION

17 COSATI CODES 18 SUBJECT TERMS (Continue on reverse f necessary and identify by block number)

FIELD GROUP SUB-GROUP Potential coefficients, capacitance coefficients, potential,
", " charges, rocket, beam current, return current, probe

(continued on reverse)
19 ABSTRACT (Continue on reverse if necessary and identify by block number)

To gain physical understanding, an approximate analysis is made of charging data from the
flight of a three-conductor rocket at night in the lower F-region of the ionosphere. Values
of coefficients of potential, capacity, and induction are calculated, and a method of measur-
ing them is given. Sheath radii are calculated. The extended probe is near the sheath's
edge for 1jA, and inside the sheath for all other (larger) beam currents. The potential of
the rear section is calculated; it is near zero, and is negative. The other potentials follow
from measurements of potential differences. Probe theory is used to calculate the plasma-
return current to the forward section and is found to account for the high negative values
of potential measured for unsaturated beam currents. The 374 VA and, especially, -10 mA
beam-current cases are found to be highly saturated. Approximate formulae are developed
to calculate the potential due to sheath charge. These, the coefficients, and the potentials
give the conductor and sheath charges and the part of the conductor (continued on reverse)

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION

OUNCLASSIFIED/UNLIMITED 0 SAME AS RPT ODTIC USERS Inelassified F ,

2Z& NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (include AreaCode) 2cOFFC OL

Charles W. Dubs 617-377-2931 O2.-gy

DO FORM 1473,84 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE
All other edtions are obsolete

Unclassified

'oe ¢L ,CL .. :' :,,:.:,:'. .>.,' '..' . :"..,,", . ., .' ,,,,. ..-.... ,,'.'.,',_,.r r..'.,v* '.-.,,..u,



BLOCK 18 - SUBJECT TERMS~ (continued)

theory, sheath radii, charging time constant, conductors, probe position potential,

theoretical analysis

BLOCK 19 - ABSTRACT (continued)

potentials due to the sheath. The charge on the forward section is nearly doubled due to
the presence of the rear section. The potential at the position of the probe with the probe
removed is calculated and found to differ greatly from the probe potential. The charging ~
time constant due to rocket current and capacitances is an order of magnitude larger than k

the plasma period. The time to reach steady state is determined by the charging time
constant due to capacitance for ion beam currents, and by the ion transit time for the
electron beam current.

r-77

% %



Contents

1. INTRODUCTION 1

2. EXPERIMENT 2

3. COEFFICIENTS OF POTENTIAL, CAPACITY, AND INDUCTION 5

4. NUMERICAL RESULTS 11
4.1 Absolute Potentials 11
4.2 Return Current to the Forward Section 15
4.3 Secondary Electrons and Ionization 16
4.4 Discussion 17
4.5 Sheath Radii 18
4.6 Sheath Potential Coefficients 21
4.7 Conductor and Sheath Charges 22
4.8 Probe Position Potential 24
4.9 Probe Current 24
4.10 Charging Time Constant 26
4.11 Sheath Ion Initial Transit Time 29

5. CONCLUSIONS 29

REFERENCES 33 -

APPENDIX A - Potential Due to a Charged Conducting Cylinder 35

APPENDIX B - Potential Due to the Sheath 37%
B.1 Cylindrical Sheath 37 .

B.2 Spherical Sheath 39

APPENDIX C -Initial Ion Transit Time Through the Sheath 41 . ..........

Av.;.il :jity oe

iii tc

0 2.1



Illustrations -

1. Rocket Configuration 3

2. Cylinder With Cylindrical Sheath 8

3. Cylinder With Spherical Sheath 19

Tables

1. Rocket Dimensions 4

2. Measured Beam Current and Energy, Rocket Altitude, and Conductor
Potential Differences 4

3. Forward and Rear Section Current and Potentials 13

4. Sheath Radii and Sheath Potential Coefficients 20

5. Conductor Charges and Potentials due to the Sheath, Probe Position
Potential, and Probe Current 23

6. Charging Time Constant and Initial Ion Transit Time Through the
Sheath 28

.%

.4



Acknowledgments

I thank our experimentalists for additional data, and my colleagues for

helpful criticism. I am particularly grateful to Pradip Bakshi for reading several

versions of manuscripts and for much helpful discussion.

(4

, .q l



NOMENCLATURE

Different meanings are separated by semicolons.

1 = conductor 1, forward section, also used as a subscript

2 = conductor 2, rear section, also used as a subscript

3 = conductor 3, extended probe, also used as a subscript

a = radius of a sphere or a cylinder

A,A n = area, area of conductor n; Ampere

b = half length of a cylinder

B = half length of cylindrical sheath

c(a,b) = capacitance of a conducting right circular cylinder a,b, Eq. (5)

c. = coefficient of capacity or induction, element of matrix C, Section 3

C = capacity; Coulomb

C = 3 x 3 capacitance coefficient matrix, Section 3

Cf = capacitance of the forward section by itself

Cf' = capacitance of the forward section with the rear section attached,
insulated, and uncharged

C fr = capacitance of the forward and rear sections attached and electrically
connected

vii
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Nomenclature (cont'd)

DPllP22 - P 12 
2 ; determinant of P, Section 3

e = magnitude of electron charge; 2.718... ; subscript refers to electrons

E = electric field

Eb kinetic energy of beam particle

g = electrical conversion factor, l/(4 o ) = 8.9876 m/nf

Ib  = beam current leaving forward section

I = net (ion and electron) current from plasma to conductor

I n  = current from plasma (excluding beam particles) returning to conductor n

Invm = conventional voltmeter current from conductor n to 1, Section 4

k = Boltzmann constant when multiplied by T; otherwise 1.777

m = mass

me = mass of an electron

mi  = mass of an ion

n o  = ambient electron or ion number density

Pii = coefficient of potential, element of matrix P, Section 3

= value P1 3 would have if conductor 2 were missingP103 1

= value P1 3 would have if conductor 1 and 2 were connected

P = 3 x 3 potential coefficient matrix, Section 3

q = electric charge

qi = charge on conductor i, element of Q; instantaneous charge on i, Section
4.10

q = charge in the sheath

Q = 3 x 1 column charge matrix

r = spherical radial coordinate

rc = ratio of charge on conductor 1 to that on 2 when both are at the same
potential

R = (usually cylindrical) radial coordinate
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Ve€

_ ".-.II,



Nomenclature (cont'd)

Rs  = sheath radius r N

t = time

t t  = initial ion traverse time through the sheath, Section 4.11

V = potential; Volt

V = 3 x 1 column potential matrix, Section 3 -

Vi  = potential of conductor i, element of matrix V

Vs  = 3 x 1 column matrix of conductor potentials due to sheath, Section 3
Vis = part of Vi that is due to the sheath charge, element of Vs

z = cylindrical axial coordinate

Z = resistance of voltmeter between conductors i and 1

6 = mean number of secondary electrons per primary incident particle,
Section 4

= ratio of conductor radius to Debye length

p = net electrical charge density

T = charging time constant of conductor 1 due to currents and capacitance,
Section 4.8

Oil = Vi - VI

x = eV/kT

..' .'-'
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Theoretical Analysis of Charging Data
From Rocket With Charged Beam Emission

I. INTROI)UCTION

The emission of an ion or electron beam from a spacecraft into the ambient

plasma changes the potential on the beam-emitting section and, by induction, on

other parts of the spacecraft relative to that of the ambient plasma. The values

of the resulting potentials depend on the parameters of the beam, rocket, and

plasma. Since this dependence was not well-known, Cohen et al. carried out

an experiment with a rocket in the lower F-region of the ionosphere at night.

Potential differences between pairs of three isolated conductors were measured

when a positive ion or electron beam was emitted from one of them. These volt-

ages seemed remarkably high, even for relatively low positive beam currents.

Questions arose as to why some of the measured values resulted. This report

analyzes some of the data to try to answer the questions, and to gain further

understanding of the results. After the original analysis, 2 Katz and Mandell 3

(Received for publication, October 1986)

1. Cohen, H. A., Sherman, C., and Mullen, E. G. (1979) Spacecraft charging %
due to positive ion emission: an experimental study, G.R.L. 6:5-15.

2. Dubs, C. (12 Nov. 1982) Potentials and Charges on Conducting Rocket
Sections, AFGL-TR-82-0349, ADA130143.

3. Katz, I., and Mandell, M. J. (1982) Differential charging of high-voltage
spacecraft: the equilibrium potential of insulated surfaces, J. G. R.,
87:4533-4541.
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issued a paper that contains some analysis of' this experiment. These analyses

are compared. This report is a revision and an extension of the original

analysis.

In this report. "ion" means "positive ion." Section 2 outlines the experi-

ment and Lists the data analyzed here. Values of coefficients of potential,

capacity, and induction are determined in Section 3. They contribute physical

insight, including the charge on each conductor and in the sheath, the potential

of the position of the probe if the probe was removed, and the charging time

constant due to capacitance and currents. For any configuration, these coeffi-

cients depend only on the geometry. Foir sufficiently simple geometry, they can

be calculated, as is done in this case, without direct use of potential theory.

How they can be measured before or after flight for verification, or in lieu of

calculation for any geometry and number of conductors, is outlined. In Section

4, the absolute potentials of' the ro'cket conductors, charges on them), sheath

parameters, probe position potential, time constants for steady state, etc., arc

determined from the given parameters. Useful empirical formulae are also given

for the thecriies of Laframboise. Langmuir-Blodgett, and Lam. Discussion includes

the charge and potential behavior after the beam is turned on, comparison of

measured currents with those calculated from probe theory, secondary electrons,

sense of surface charge densities, saturation phenomena, and the effect of
voltmeter resistance. The conclusions are summarized in Section 5..

2. EXPERIMENT

Cohen et al. flew a rocket with three conductors insulated from each other:

forward section, 1, rear section, 2, and extended thermal emissive probe, 3 (see
Figure 1 and Table 1) to 258 km altitude at night. Conductors 1 and 2 were

coaxial cylinders separated by an insulating ring. Conductor 3 was a sphere

and a short, thin, hot wire filament (not shown). At certain times, an ion or

electron beam of known current, Ib and particle energy, Eb was emitted from

the front of the forward section, causing certain steady-state potentials and

charges to develop on the three conductors. Voltmeters measured 2l=V 2 -V 1

and =V -V. The numbers in Table 2 are the part of the results, nine

cases, that are analyzed here. The value of I designates the case. The plasma9 3 b
density was near 10 9m -3and the temperature, T, of both ions and electrons was

near 5500 K, so these values are assumed here. The potentials were measured

after steady state was reached, so the return current from the plasma, minus

secondary electron current, plus returning beam current if above saturation

-2-
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Table 1. Rocket Dimensions in Meter

a1  a2 a3  b1 b 2  b12 s d

.19 .19 .019 1.27 .205 1.475 .26 1.71

Table 2. Measured Beam Current and Energy, Rocket Altitude, and Conductor
Potential Differences

Beam Ion Ion Ion Ion Ion Ion Ion Ion Electron

Ib  1 8a  8b  8c  9 10.9 12 374 -104 WA

E .2 1 1 1 1 2 2 2 .09 keV
b

ohen Table Fig. Fig. Fig. Table Fig. Table Fig. Table
et 1 1 4 3 3 1 5 1 5 1

Alti- 158 153 138 163 161 160 km
tude

€21 50 580 423 506 420 550 -90 V

•31 20 339 291 370 250 470 340 1,040 -90 V

(Section 4), equals I1), and electrostatic theory is used, except for charging and.

ion transit times. An ion beam was emitted with the electron beam, but its cur-

rent was negligibly small; thus, it is ignored in the "electron" column of Tahle 2.

At least for ion-beam emission, the data were found to be independent of pitch

angle and neutral number density. For this reason, as well as for simplicity, the

magnetic field and neutral density are ignored in the analysis. 'ie effect of ra ,in

4
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is neglected since the rocket orientation is unknown, but it should be important

for ion current. Questions arose: What were the absolute values of the poten-

tials? Why was *31 f 021 ?  The purpose of this report is to make an approxi-

mate analysis of the measurements in Table 2, and to gain an understanding of

some of the basic electrical phenomena, as well as to try to answer these

questions.

3. COEFFICIENTS OF POTENTIAL, CAPACITY, AND INDUCTION

The purpose of this section is to determine values of the coefficients of

potential, capacity, and induction for the three conductors of the rocket system.

These coefficients relate the charges to the potentials on these conductors. Since

they were not measured, they are calculated. Fortunately, the geometry is simple

enough so that it is not necessary to start from potential theory. The coefficients

are obtained by using Smythe's formula 4 for the capacitance of a conducting right

circular cylinder, an empirical formula found for the potential at a point near such

a charged cylinder, carrying out three gedanken experiments, and interpolating.

Let pij cii, and cij for i x j be the coefficients of potential, capacity, and

induction, respectively, the elements of matrices P and C. From electrostatics,

e.g., a slight generalization of Page, 5

V = PQ + VS ,  (1)

Q = C(V-V s), (2)
C = p-l, (3)

P and C are symmetric, the pij and cii's are positive, and the ci's for i x j are

negative. Vs accounts for the effect of the plasma.
Physical reason leads to the inequality of rocket capacitances P.

I
Cf < Cf' < Cfr. (4)

4
Smythe gave the following empirical formula (here slightly modified to make it

correct within .30% instead of .41%) for the capacitance of a conducting right

circular cylindrical conductor of radius a and half-length b for a18 -_ b !- 8a:

4. Smythe, W. R. (1962) Charged right circular cylinder, J. Appl. Phys.
33:2966-2967.

5. Page, L. (1935) Introduction to Theoretical Physics, Second Edition. § 120.

5
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766

c(a,b) =[.0707 + .0615(b/a)*7 ]a nf, (5)

a and b in meter. In particular, from this and Table 1,

C f =.0629 nf (6)

C fr .0689 nf. (7)

Three gedanken experiments, designated with the subscripts a, b, and c,

are now carried out in a vacuum. Eq. (1) with V5s = 0 is used for each. In the

first experiment, charge q l is put on 1 while 2 and 3 are left uncharged. Then

V1 la pl (8)

V 2a = 2q (9)

V 3 a = 3la (10)

When uncharged, 3 is small and far away enough from 1 and 2 to affect their

potentials negligibly, so

ql CfVila' (11)

and

p1 1  lICfV. (12)

Physical consideration shows that I V2 al 1< I ,J so Eqs. (8) and (9) show that

< p 1 1 *(13)

In the second experiment, charge q l is put on 1 and q bon 2 such that V, lb
V 2bwith no charge on 3. Then

V = plq P2b (14)Illb lb 1 2 2
Vilb = P12qlb l+)2q2 (15)

V 3b = P13qlb + P2 3 q2b. (16)

Again, 3 is small and far away enough so that

V b=(1b'(12b )CGr (17)

Vlb (q1 ~

The former may then be written

P12  (r C 1)C f1 -1- r cpll. (18)

6
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Substituting this into the latter leads to

P 2 2 = rc 2pi - (rc 2 _ 1)Cfr-1 (19)

How is rc obtained? Smythe 4 expressed the surface-charge density of a charged

conducting right circular cylinder as fractional power series, in z for the side,

and in R for the ends (inner cylinder, Figure 2). He obtained the coefficients

for several values of b/a. The coefficients for this ratio equals 8 are used since

b12/a1 = 7.76. q, and q2 are obtained by integrating these surface densities

over 1 and 2 separately. The ratio gives

rc = 3.770 (20)

Details of this calculation are in Reference 2, Section Al. Thus, P1 1 ' P12" and

P22 may be obtained given Cf'.

From Eq. (10),

-1P13  = q1a/V3a' (21)

The value P 13  would have if 2 were missing is shown in Appendix A and is

given by Eq. (A5),

.260 nf. (22)P103 5

Since 3 is small and far enough away, if 1 and 2 were electrically connected,

-1
P1 3  would be

-1 qlb + '12b
P123 - V3b (23)

Eq. (A6), Appendix A. Physical reason shows that --"

-1 P1-1 -1l,) ,
P 1 0 3  <P < P 1 2 3  , (24)

similar to Eq. (4). V3 b from Eq. (23) and qlb= rcq 2b are substituted into

Eq. (16), yielding

P2 3  (rc + l)P 1 2 3  1rP3 " (25)

7
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In the third experiment, charge q3c is put on 3 with no charge on I or 2.

Then

V = P 3 3 q3 c. (26)

A maximum effect calculation shows that the presence of 1 and 2 changes V3c by

less than .1%, so this effect is neglected. Therefore, q3c = C3 V3c' where the

capacitance of 3 is C3 = a3 /g + Cw , where C w is the capacitance of the hot wire.

For the wire, 2a = .00381 cm, 2b = 3.175 cm, so Cw = .0002620 nf, obtained for

q/V from Eq. (Al) with R = a and z = 0, Appendix A. (It could also be obtained

from the formula for the capacitance of a wire, the diameter of which, 2a, is small

compared to its length, b/[g ln(b/a)] = .0002625 nf. Smythe's formula, Eq. (5), %

cannot be used since it does not reduce to the latter for b >> a). This is 11% of

C3 . So, from the value of a3 in Table 1,

P33 = 420 (nf) - . (27)

Thus, all pij's may be obtained given Cf' and p13  .

P13]
With Eqs. (4) and (24) in mind, the value b1 + b 2 /2 of effective half-length

of conductor 1 due to 2 being present, and the average of P03 1 and P 1 2 3
1 for

P1 3 -1 are chosen. Then

Cf' call 1 2 /2) = .06595 nf, (28)

and

= .261 nf. (29)
P1 3

These result from using the values in Table 1, Eqs. (5), (22), and (23). The

value in Eq. (28) accurately equals the average of the values in Eqs. (6) and

(7). From the above,

15.2 12.1 3.831

P 12.1 23.'7 3.91 (nf) 1  (30) Si
L 3.83 3.79 420 j

These values should be correct within 5%, assuming negligible errors in the

numbers in Table 1. From Eqs. (3) and (30),

9 '. -j'
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[111. -56.2 -. 503]

C = -56.2 70.7 -. 1261 pf. (31)

L-.503 -.126 2.391

Ignoring 3, a good approximation,

C = P2 2 /D, (32)

C12 = c21 = -P1 2/D, (33)

c 2 2 = P1 1/D, (34)

D = pllP2 2 - P 1 2
2 = (r + 1) 2 C f,-I Cfr 35)

Choosing q 2 = - ql, the capacity between 1 and 2 is

ql/(V - V 2) - l/(pl I - 2 p 1 2 - P 2 2 )

4ciC2 2 -c12 2)/Mc + 2c 1 2 + c2 2 ) = I/(CfD). (36)

So, as the gap between I and 2 approaches 0, this capacity and Ic%1 become

very large since Cf' approaches Cfr Including 3, as Cf' approaches C fr' D

approaches 0 and P 1 3 approaches P 12 3 . e

Since the value of Cf' can be critical, the question naturally arises, "How

reasonable is Eq. (28)?" Rocket sections 1 and 2 were separated by a 2-inch

thick cylinder of fiberglass that was essentially hollow except for a one-half-inch

thick fiberglass disc. To check, the capacitance between the two ends of an

18.7 cm length of the rocket that included the gap was measured and found to be -'

44.7 pf. A correction due to the missing lengths of I and 2 is calculated to be

10.2 pf. Adding this and equating to Eq. (36), D is obtained, which from Eq.

(35) leads to Cf' = .0653 nf, insensitive to the value of capacity between 1 and 2,

close to the value in Eq. (28).

These calculations of P can be checked or replaced by six measurements of

capacity by hanging the rocket over 10 times its largest dimension (for < 5%

error) from comparable and larger size conductors and ground, and running a -'

small ground wire, 0, to the vicinity of the rocket. Measurement of the capa-

cities between 1 and 0, 2 and 0, and 3 and 0 give the pi.'s. Measurement of the

capacities between I and 2, 2 and 3, and 3 and I give the pi.'s for i j.

How this may be generalized to any number of conductors is evident.

10
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4. NUMERICAL RESULTS

This section contains calculations of numerical values of at least ten types of

physical quantities and a discussion of them. Unlike Reference 2, probe theory

is used. Where applicable, calculated results are compared with experiments, and

deductions are compared to those of Katz and Mandell. 3

4.1 Absolute Potentials

First, the potentials, Vi, of the three conductors relative to that of the

ambient plasma are calculated. This is done by determining the values of V2 '

then using the measured values of (il from Table 2. In Reference 2, it was

assumed that V 2 = 0. V2 must be sufficiently negative to attract a return

current equal to the voltmeter current, 1, = 02 1/Z12, plus net current due to

secondary electrons. The latter current is neglected, but it could be important.
ZI= 10 9 Q. ¢

12
The formulas used here that relate the return current, I, due to ions, Ii , ,

and to electrons, Ie' from the surrounding plasma to a conductor at a negative
potential V, are the following: %

= x(ii) (37)

= ex (38)

I +.i (39)
I= rio e

10 m e

I I i + I e (40)

'I I 0i (41)

1 =1 i (2
Ie I eoie (42)

I. = neviA 
(43)

10 o tI

e° = - ei° (44) -,

eo e

V kT (45)
ex.

11 ",'-"

0 V P'.- N
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vti =-
ti '2 (46)

Eq. (39), (40), (41), (42), or (44) is redundant. T = T. = T is assumed since

ion and electron temperatures are nearly the same in this experiment.

Since Table 1 shows a2 and b 2 to be nearly equal, spherical probe theory is

used for Eq. (37) to determine V2 . The effect of V on I2 the current to 2, is

neglected. Probably V1 being negative only cuts down the electron collecting

area, affecting only the 1 tjA case. For Ib = 1 iA or -10 mA, IV2 1 is small
6benough for the results of Laframboise to apply. For < 5, the following fit to

Table 5c of Laframboise 6 is used:

1 - k 1  .

-1 kk(i i - 1) + k ln[1 + k 2 (i i - 1)] (47)

2

6.83E - .685E
2

k(5 - 1.7 (48)

= )1.7"

k2 0051 (5- 7 (49)

These have an error of less than 1% for 1, 2% for E < 3, and 4% for < 5.

Interpolated correction factors are used so that the error is cut to - .2%. A Ir

more accurate interpolation and extrapolation for < .5 is given in Section 4.9.

I = 12, and the conductor area, A, and radius, r 2 , are chosen to satisfy A
2 , r2 = 4.28. The results are IV = 1 and -104 PA

co 2  2 T 2a2bi t Ie b
columns of Table 3. For each of the other values of beam current, I V 2 1 is so
large that i. is negligible, so is set equal to zero in Eqs. (38) to (42), and X is

out of the range of Laframboise's results. For them, Lam's 7 "highly negative"

spherical probe potential theory is used for Eq. (37). (The Langmuir-Blodgett

formula for V is (4/-) 1/3 times the Lam tormula with the argument of F multiplied

by 1.26 (larger unless 2 j - 16), so it gives larger values for '2 It is not

used since it disagrees much more with values extrapolated from Laframboise's

results, and since it leads to currents further from experimental values.)

6. Latramboise, J. G. (1966) Theory of spherical and cylindrical Langmuir ",
probes in a collisionless, Maxwellian plasma at rest, UTIAS Report No. 100.

7. Iam, S. Hi. (1965) Unified theory for the Langmuir probe in a collisionless
plasma, Phys. Fluids 8:73-87. IN

8. Langmuir, I. and Blodgett. K. B. (1924) Currents limited by space charge
betw.een concentric spheres, Phys. Rev. 24:49-59.
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Table 3. Forward and Rear Section Currents and Potentials

Ib 1 8a  8b  8c  9 10.9 12 374 -104 PA

Eb 200 1,000 1,000 1,000 1,000 2,000 2,000 2,000 90 eV

12 .05 .58 .423 .506 .42 .483 .55 1.96 -. 09 pA

1b-2 .95 7.42 7.58 7.49 8.58 11.45 372 -104 A

I1Lam 2.58 11.7 9.57 10.7 9.53 10.4 11.3 25.8 -853 A
. .am%

V1  -50 -588 -428 -512 -425 -489 -557 -2,000 90 V

V2  -. 26 -7.7 -4.7 -6.3 -4.7 -5.8 -7.1 -43 -. 15 V

V3  -30 -249 -137 -142 -175 -19 -217 -960 -. 15 V
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- -2/3
E2

~I.
] F6

io M (50)

10K

I 10 (51) k

= 1.056 + 3.19(E2j)-2 5. (52)

These are valid for E - 1, and for the argument of F large compared to 1 + - 1
.

- _2/3:,;:

F(x) = [9(-a) 
2](53)

wher (53)odet.

where (-a)2 as a function of x = r0 /r is given by Langmuir and Blodgett. 8

The following empirical formula found for F is correct within I%:

4/3 3 .F(x) =(1.5) + 1.28c

1 + .44E + .67E 2  (54)

C = x - 1. (55)

Given F, e from Eq. (54) is correct within 2/3% for 0 < E < 1. The resulting

values of V2 for Ib = 8, 9, and 12 wA are in Table 3. low the values are ob-

tained for Ib = 10.9 and 374 uA is explained later. The values of V 1 and V3 in

Table 3 follow from Table 2.

The values of V2 are seen to be relatively close to zero. This is to be

expected since Z is large. After an ion (electron) beam is turned on, the

positive (negative) charge removal causes an increasing negative (positive)

charge on 1 that induces a negative (positive) potential on 2. Thus, both sec-

tions attract return ions (electrons) from the plasma. In steady state, I must_-.

be sufficiently negative (positive) to attract a return current equal to the beam

current minus the secondary electron current, here neglected, minus I Conduc-

tor 2, however, must be only negative enough to attract a return current to can-

cel voltmeter and secondary electron current from 1 to 2. The secondary electron

current, here neglected, effectively decreases Z2 1 making V2 more negative. So,

ql and q2 must induce nearly equal but opposite potentials on 2. The sign of q2

is the same as that of the beam particles, opposite to that of ql, and q < q i.

14
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4.2 Return Current to Forward Section

Lam's' "highly negative" cylindrical probe potential theory is used to

calculate the return current from the plasma to 1, I = 1lLam' from each value of

VI in Table 3.

r ~, 2/3

' - m- (56)

,r 1 1 1 m <,

Im - 1 10 -r~ 10 57
2 •4 + r.943

G(x) = 9__ _o2 2/3

-x (58)

2 9
where (-) as a function of x = ro/r is given by Langmuir and Blodgett. An Z

empirical formula found for G correct to 1% is

(1.5y)4 /3 + .869y3

G(x) 2
1 + . 271y + .417y (59)

= In x. (60)

9(This *, is the negative of Langmuir-Blodgett's y). Given G, x - 1 from Eq.

(59) is correct within 3/4% for 1 < x < 2. The values of I obtained are in
1 Lam

Table 3.

For the 1b = 10.9 and 374 pA cases, 021 was unknown, so, by starting with

an initial intelligent guess and iterating, I, 12, V1 , and V2 are determined so as

to satisfy xl( 1 ) from Lam's cylindrical probe theory, x2 (I 2 ) from Lam's spherical

probe theory, and 21 Z 12Z12' For Ib = 10.9 W A, Ib = II + 12 is also used. For

1b = 3 A, the trial assumption is made that the case is saturated (el= -
Eb), so V1 = -2000 V. The value of V3 follows from V and o from Table 2.

b31 31
The values obtained for these five quantities, for each of these two cases, are

shown in Table 3. For 1b 10.9 jA, V3 is out of line with other values of V3because "31 is out of line.

9. Langmuir, I. and Blodgett, K. B. (1923) Currents limited by space charge
between coaxial cylinders, Phys. Rev. 22:347-356.
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For beam currents from 1 through 12 iA, l1lLam is seen to agree roughly

with Ib - 12, so Lam theory accounts for the high negative potentials of 1. The

discrepancy for low values of Ib could be due to simplifying assumptions. Ions

incident on the forward section have an energy -eV At 160 km altitude and 33'

latitude, returing NO+ ions moving perpendicularly to the magnetic field have'a

gyro-radius of 450 (150) m at 500 (50) eV energy. For other angles, these radii

are decreased by the factor sin ,,, where u is the pitch angle. Since the lower

energy ions are more inhibited from returning by the magnetic field, perhaps this

discrepancy is due to the geomagnetic field. Alternatively, te measurement of I b

may have been low at the small values, or a combination of both of these factors

could have caused tile discrepancy.
4

For beam measurements of 374 and -10 A, 11Lam is seen to be much less

than Ib - 12' so these cases were highly saturated; most of the returning current

is beam current reflected back near the sheath boundary. For the 374 .A case, %

this is consistent with the interpretation of Katz and Mandell, 3 Section 4.1.

-4.3 Seton1larm Ehle ronm mid hitizalioei"

The effect of secondary electrons is now considered briefly. The rocket

surface was iridite-treated aluminum. For the ion-beam cases, values of , the

coefficient of secondary emission of electrons, for NO+ ions on this surface for

energies up to 2 kcV are needed. In lieu of this, tile value assumed is .18, the

yield from I keV 0+ ions on molybdenum. 10 All of the secondary electrons from I

escape, so, I should have been compared to (l - 1.2)(1 + .'). This slightly
imib

increases the discrepancy at small values of I . Assuming .18. the secondary

electron density at the surface of 1 is - l', of the ion density, less away from tile

surface, so conductor and sheath charges are affected negligibly.

lhe electron-beam case is much dliflerent. Using the fornmla of Sterniglass 11 %
10F.

and tile values for aluminum : .97 and U - 300 V, .72 is obtained '%
M r Ill;max e%

for U 90 V. Since the secondaries have but a few eV energy. none escape. so %

the return current is unchanged. If all of the secondaries left the surface with

3 eV of energy, the electron density at the surface would be nine times as great

as with 6 = 0, and the secondaries would extend - 1/4 m from the surface.

10. Stannard, P. R., Katz, I., Mandell, M. J., Cassidy, J. J., Parks, D. E.,
Rotenberg, M., and Steen, P. G. (1980) Analysis of the Charging of the -.

SCATHA (P78-2) Satellite, Report NASA CR-165348, SSS-R-81-4798,
pp. 22-24, 29.

11. Sterriglass, E. J. (1954) Backscattering of kilovolt electrons from solids,
Phys. Rev. 95:345.
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Nevertheless, the magnitude of the total charge of the secondaries is small com-

pared to I qj, so ql and qs are little affected. Some incident electrons are

backscattered. The number is less than the number of secondaries, and they are

finally captured.

Ionization by beam and return ions is less than a few percent of the peak

value due to small ion speeds, so is negligible. For the electron-beam case,

however, the outward and returning beam and the return electrons from the

plasma produce ionization in the sheath, especially close to the forward section.

The minimum ionization mean free path (at the peak of the ionization cross section

vs energy curve) is 400 m at 138 km, and 1300 m at 160 km altitude; so, it is

expected to have a moderate effect at the most. 12 Since ionization constitutes an

additional return current, the sheath radius must be diminished to maintain the

same total return current. The effect is not treated quantitatively here. The

magnetic field causes the electrons to gyrate, and thus inhibits their flow across

the field. This effect is not treated quantitatively here either.

4.3 Discussion

The values of V in Table 3 for ion-beam emission are relatively small and

negative in qualitative agreement with the value in Case I, Table 2, of Katz and
3Mandell. Except for Ib = 1 iA, however, they are appreciably more negative

than indicated by their value. This is due mainly to taking the voltmeter cur-

rent into account here. The front part of 2 had a positive surface charge den-

sity. It received most or all of the secondary electrons that went from I to 2. .

If 10% (probably much too high) of the secondaries from 1 went to 2, I would be

increased 19 to 33% by increasing 6 from 0 to .18. The sign of the charge on the

rear part of 2 may be determined by comparing the charge on 2 that is tied up in

the capacitance between the two sections, with the total charge on 2. The former

is the product of 021 and this capacitance. (A value of the latter consistent with

Cf', Eqs. (35) and (36), pij's, and qi's should be used.) The resultant product

is 1.3 to 1.5 times q 2 " So, the charge on the rear part of 2 is concluded to be
3negative, contrary to the statement of Katz and Iandell, Section 3.1. Trajec-

tories of plasma ions existed to all parts of 2 except possibly to the (unknown)

wake side. The (-.312) plasma electron current for the 1 wA case must have

reached mainly the negative surface charge density part of 2 because of the

negative potential barrier near the other parts. For the -10 mA case, the
- . -

12. Leadon, R. E., Woods, A. J., Wenaas, E. P., and Klein, H. H. (1981)
Analytical Investigation of Emitting Probes in an Ionized Plasma, %
AFGL-TR-81-0138, ADA104166, § 3.4.2.
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forward and rear section potentials were of opposite signs, so there was a zero-

potential surface surrounding 2 that closed on the separating insulator. As with

ion-beam cases, but with opposite signs, the front part of 2 had a negative sur-

face charge density and the rear part a positive surface charge density. Second-

ary electrons from 1 could not escape, and those from 2 were negligible since V2

was so close to zero. The ionization of neutral air molecules by beam and return-

ing electrons, here neglected, similar to increasing n0 , is expected to increase q,

and I qs I significantly, but not to affect the conductor potentials appreciably.

4.5 Sheath Radii -

Sheath radii are calculated by assuming that the plasma return current V

equals the thermal current density of the attracted specie times the sheath area.

When the sheath is small, it is cylindrical (Figure 2), so

nev(2wR 2B+wR =11 (61)o t sc sc) i.(1

where

B bR -
a _- ..N%

sd a
(62)

The latter is the simplest expression found for the half-length of a cylinder that

increases from b to R with dB/dRsc non-negative and increasing monotonicallysc s

from < 1 to 1 as Rsc increases from a to Rsc - b. When the sheath is large

compared to the rocket, the sheath is spherical (Figure 3), so

noevt4,,R ss = II . (63)

Except for Ib = 10.9, 374, and -104 A, these sheath radii are calculated both for

1 = 1 2 :Rs & R , and for I I = IlLa: RsLam & RL. The results

are shown in Table 4. Column Im , and rows Rsc m and Rss m , are for I1 = Ib - 12.
For the ion-beam cases, these would be 8 to 11% larger if . were assumed to be

.18 instead of 0. For the electron-beam case, they are unaffected by 6. With
the possible exception of the Ib = 1 1 A case, the probe (at R = 1.71 ni) is seen '-I

to be inside the sheath. This agrees with the possible interpretation in

18
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Table 4. Sheath Radii and Sheath Potential Coefficients

b  I 1 8 8 b 8 c 9 10.9 12 374 -104 Pa

11 .95 2.58 11.7 9.6 10.7 9.5 10.4 11.3 25.8 -853 Pa

R 1.3 4.1 4.2 4.1 4.4 5.2 mscm

RscLa m  2.3 5.2 4.7 5.0 4.7 4.9 5.1 7.9 2.8 m

Rss m  1.7 4.9 4.9 4.9 5.2 6.0 m

R ssLam 2.9 6.1 5.5 5.9 5.5 5.8 6.0 9.1 3.4 m

Psc 6.8 4.3 2.1 2.3 2.2 2.3 2.2 2.1 1.4 3.7 V/nC

P3sc 4.0 3.6 2.0 2.2 2.1 2.2 2.1 2.0 1.4 3.3 V/nC

Plss 7.6 4.7 2.2 2.4 2.3 2.4 2.3 2.2 1.5 3.9 V/nC

P3ss 5.3 4.1 2.1 2.4 2.2 2.4 2.3 2.2 1.5 3.6 V/nC

Pis 7.2 4.5 2.2 2.4 2.3 2.4 2.3 2.2 1.5 3.8 V/nC

P3s 4.7 4.0 2.1 2.3 2.2 2.3 2.2 2.2 1.5 3.5 V/nC

Except for the 1m column and the Ib R sc m , and Rss m rows, the numbers are for
1 =Lam. b c

Section 4.1 of Katz and Mandell. 3 For the Ib = 1 pA case, other more realistic

sheath models are tried. The distance of the sheath edge from the rocket axis

along the line to the probe is calculated assuming 11 = 2.58 PA and the sheath

area equals I /noevt. For the forward section concentric with a prolate spheroid -.

o.4t.

4 1
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sheath having semi-minor and semi-major axes a0 and b 0 with

be ae[ + (a (64

2.6 m is obtained. The major and rocket axes are coincident; a 2.7, be
Ce

3.2 m. With the same sheath, but with the forward section displaced along its

axis so that its rear edge is a distance of .41 and .025 m from the sheath edge

parallel to the axis, 1.6 and 1.1 m, respectively, are obtained. The last model

tried is

r = 3.03 + 1.74cos 0 (65)

in a plane containing the axis rotated about the axis, the origin at the center of

the forward section, and 8 measured from the forward sense of the axis. For y =

.025 m, 2.0 m is obtained. Thus, the probe is concluded to be at or near the

sheath edge. If I = 2.58 pA, the results of the different models differ too much

to conclude whether or not the probe was inside or outside. If 1 = .95 WA, the

probe was almost certainly outside of the sheath.

4.6 Sheatit Potential Coefficients

Values of potential per unit sheath charge due only to sheath charge,

assuming a cylindrical sheath, Pjsc, and assuming a spherical sheath, piss, are-%

calculated at the surface of the forward section, j = 1, and the probe, j = 3, as

indicated in Appendix B. They are shown in Table 4 and are a function only of

tile geometry, including that of the sheath. The mean of pjse and pjss is

calculated, weighted according to sheath radius:

Pjs =(1 - F)pjsc + Fpjss (66)

F= sc 1

Rsc + b 1 -2a 1  (67)

The constants in Eq. (67) are chosen so that F = .5 when Rsc = b I. Values of

pjs, j = 1,3, are shown in Table 4. For Ib = 8, 9, and 12 jA, values of pjs for

I1 = Ib - 12 differ from those for 1 -iLam by half the percentage that the

latter current differs from the former (Table 3).

V
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4.7 Conductor and Sheath Charges

The charges on the conductors and in the sheath are now obtained for each

case. In steady state, the total rocket and sheath charge vanish; therefore, the

sheath charge is

qs = - (q, I q 2 
+ q3)

"  (68)

The potential of the conductors due only to sheath charge is

Vjs = Pjs (69)

where the approximation is made that

P2s Pls" (70)

From these equations and Eq. (1),

(P- Ps), (71)

where

= pis for i = 1 or 2

Psij
= P3s for i = 3. (72)

So,

Q = (P - P )V. (73)
5

From Eq. (30), V in Table 3, P in Table 4, and Eqs. (73) and (68), the values

of Q and qs in Table 5 are calculated. Values of Vs from Eq. (69) are also

given. By setting P. = 0 in Eq. (73), the charges qi0 are obtained that the

conductors would have at the same potential but with qs = 0. The results are in

Table 5. Except for Ib = 1 WA, the magnitudes of ql and q2 are seen to be

changed no more than 9%. So, the sheath has only a minimal effect on the con- -'

ductor charges. By using Eq. (6), if the plasma, 2 and 3 were absent and the ,m

potential of I were unchanged, then qla' shown in Table 5, would be obtained

for the charge. The results show that the presence of the rear section causes

about 89% more charge to accumulate on the forward section.
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Table 5. Conductor Charges and Potentials Due to the Sheath, Probe Position
Potential, and Probe Current

1 1 1 8 8 8 9 10.9 12 374 -104 IAb m a b C

ql -7.7 -6.5 -69 -51 -60 -50 -58 -66 -229 11 nC

q 2.2 2.5 31 23 27 23 26 30 107 -4.7 nC

q 3  -. 083 -. 074 -.44 -.22 -.21 -.32 .079 -.37 -1.6 -.005 nC

qs 5.6 4.1 38 28 33 28 32 36 123 -6.6 nC

Vls 40 18 83 68 76 68 73 80 182 -26 V

V 26 16 81 66 74 66 71 78 180 -23 V

3s

Iq -3.2 -3.2 -37 -27 -32 -27 -31 -35 -126 5.7 nC

{ql0  -5.5 -5.5 -65 -47 -56 -47 -54 -61 -219 10 nC Lm

q 2.8 2.8 32 24 28 24 27 31 110 -5.1 nC

q30 -.047 -.047 -.30 -.11 -.081 -.20 +.20 -.24 -1.3 -.045 nC

V 3  -30 -30 -249 -137 -142 -175 -19 -217 -960 -.15 V

Vpp 1  4.8 .76 -65 -42 -54 -42 -52 -60 -290 2.3 V

V 4.4 .47 -66 -43 -55 -42 -51 -61 -293 2.3 V
pp

3vm .67 .67 11 9.7 12 8.3 16 11 35 -3.0 nA

130 (.018) (.049) .22 .18 .20 .18 .20 .22 .49 -16 nA

13M (12) (31) 1200 530 610 670 78 990 9900 -67 nA

,3M1
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4.8 Probe-Position Potential

If q3 = 0, then V3 is the potential of the position of the probe with the

probe removed, V P. If q3 x 0, Vpp may be calculated. A simple and fairly

accurate method is to subtract from V3 the part of the potential due to q3:

Vp1 = V 3 - P3 3 q 3 . (74)

Values of this are shown in Table 5. The proper way is to argue that, if 3 were

not there, the charges would be

Q, = (P 2 - Ps2 ) V, (75)

where q.', V. have i,j = 1,2, and P and Ps2 are P Rnd P with the third row
1 2 s

and column deleted. Then

Vpp = (P 1 3 - P3s)qll + (P23 - P3s)q2" (76)

Values of this are also shown in Table 5. They are seen to be close to Vpp 1

but are seen to differ greatly from V3 . This shows that q3 was large enough

to affect V3 greatly. Except for lb = 1 vA, there exists a value of conductance

between Sections 1 and 3 (less for the ion beams, more for the electron beam

than l/Z 3 1 ) for which q3 = 0 so that V3 = V . This may be seen by noting~PP
that V is between the actual V3 (Z3 1 ) and V3 (Z31 = c) ~ - kT/e for ions

pp
except for Ib = I iA) and V3 (7., = 0) 1 ,or electrr.ns. The value of V

pp N i .
for the Ib = 1 pA case should be 0 or slightly negative; - 5 V is unphysical.3
Perhaps this indicates that Ib > 1 1A. If Katz and Mandell, Section 4.1, meant

that Vpp is 40% of V1 , then this disagrees with the above, since Vpp = 10 to 15%

of V 1 , except for the Ib = 1 wA and -10 ma cases.

4.9 Probe Current

In the absence of a theory for a probe in the sheath of another conductor,

some limiting values of the streaming ion or electron current to 3, 13' are

calculated. Assuming no other conductance, this current is balanced by the

voltmeter current

I = 3 Z . (77)
3vm 31 31'

24

%4e

A. - '__0. r 'W O %" %.P '• - ',',,*. .•' "- ---.- , ,•" ,% % % % % ' % % " -" .



Z31= 3 x 1010 2. Values of 13vm are shown in Table 5. If 3 were at the poten-

tial Vpp, it would collect approximately a fraction of 11 equal to the fraction of

the equipotential surface area through it that it occupies. Assuming this equipo-

tential surface to be a cylinder concentric with the forward section, this area is

Ac = 2id 2 + 21d2B = 70.9 m 2  (78)

B is given by Eq. (62), where a a1 , b = b1 , Rsc = d, which are given in

Table 1. If, instead, the surface were assumed to be a sphere concentric with 1,

the area would be

A s = 41[d 2 + (b 1 - s)2 = 49.6 m2  (79)

The mean, A = 60 m 2, will be used. The approximate current collected if V
3 a

V then should be
pp

2 i05 O

130 3 11 = 1.9 x 1
A (80)

Use of this equation yields the values in Table 5. 13vm is seen to be appreciably

(generally - 60 times) higher than 130 in qualitative agreement with V3 being

appreciably less (more negative) than V pp. An upper bound, I 1 is obtained

the same way but substituting the maximum impact parameter

p = a T - k (81)

in place of a3 . Values of I also shown in Table 5, are seen to have far too

large a magnitude. Except for the Ib : -104 A case, this is mainly because

Eq. (81) gives values many times the Debye length, whereas only particles with

an impact parameter less than a few Debye lengths reach the l)robe. Also, this

assumes that all field lines are radially inward to 3. Since this is incorrect,

many ions with impact parameter less than the value from Eq. (81) will miss the ..

probe. The values of 1 3 0 and 3M I = 1 A have no meaning unless the

probe is inside the forward section sheath. Assuming the probe to be outside of

the sheath for this case, spherical Lam theory and Eqs. (38)-(46) give i. , x + 1
for V -30 V. This is incorrect; Lam theory must be invalid since < 1. A

fairly accurate value, however. may he obtained from a carefu] extrapolation of

Laframboise's results for a .)herical probe, as follows:

25 J,
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k I 1+ .481E - .108&2 (82)

k2 = .0331 + .078E2 (83)

-x = k(i - 1) - 1 Infl + k 2( - )]. (47)

The four numbers in Eqs. (82) and (83) are chosen so that Eq. (47) agrees with

Laframboise for E = .2 and .3 at X = 25, and for E = .5 at X = 20 and 25. As-

suming that Laframboise's numbers are correct, for 0 < < .5 and 0 < X 25,

these equations yield X correctly probably within .2%. For 0 < x s 25, the error

is certainly less than .8% for E = .2, 1.9% for E = .3, and .4% for = .5. As-
9 -3

suming no = 10 m -
, = .372 and these equations give I = 16 nA. Assuming

no = 5 x 108 m 3 (at the sheath edge), they give 13 = 8.4 nA. This is still an

order of magnitude larger than I The contribution to I of secondary and . "
3vm 3

scattered electrons from the forward section is negligible. Perhaps this dis- 0 %

crepancy is due to neglecting the effect of the magnetic field that decreases the

return current. Alternatively, perhaps it indicates that the probe was inside the

sheath where these probe theories are invalid. This would favor the larger value

of II, for which the probe would more likely be inside the sheath. Although

unlikely, it is possible that the extrapolation yields much too high a value of

current. ,_.

As I Il b is increased up to the minimum value for saturation, 'V3 1 increases.

As 1 bI is increased further, IV3 decreases and V3 asymptotically approaches

- SkT/e as .l , where S = 1 for an ion beam, and -1 for an electron beam.
The reason for IV3 decreasing is that, above minimum saturation as I b! in-

creases, if V3 remained constant, I3vm and the fraction of return current col-

lected by the probe would remain constant, so the amount collected would increase

and the two currents would not balance. Thus, V must change to decrease the3
fraction collected, and to increase 13vm to maintain balance. So, for a 2 keV ion

beam, IV31 would be maximum at lb = 26 pA; for a 90 eV electron beam, V3

would be maximum at Ib = -853 pA. Since the electron-beam case has V3 = 0, it

is seen to be much more highly saturated than the I = 374 uA case.
b

4.10 Charging Time Constant

Now the charging time due to current and capacitance is calculated. Lower-

case letters are used for instantaneous values of variables, and upper-case letters

for steady-state values. The effect of the probe is neglected. Differentiating -,
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the first two rows of Eq. (2) with respect to time, and equating to the current:

l= cllfr1 + cl 2 V,, - (ell + c1 2 )x'1  = i1 - I b + z2  (4
c2 0 V~ - (1 9 +V - v

c 2 +1  = 11

41 '1 'c2 _ ('1' 1) is IZ21r
21 (84)

el = C 2{ 1 + c o {,. (c 1 + c ~o{l = 2  2 1
.. . .. 112 2 i 22 (85)

The assumptions arc made that:

q asq +

is Q is qV l  + Q2 
V Is (86) -.

Sv1 V1 0 [ v -V
i1 V VI b 1 (87)

1 101'2

_ ____ V2 -V 1 %2  - 20 2  1 VI J%"

i22 -V 2 0  "21 (88)

Approximate values of the conductor potentials before the beam is turned on,

Vi need to be known. For them, Eqs. (38) to (46) are used with I = 0 (or

(V2 0 - V 0 )/Z 2 1 ). Interpolating numbers in Laframboise6 Table 6c, VI 0 = .214 A,

V is obtained. Using Eqs. (47) to (49), V2 0 = -. 196 V is obtained. The beam

is assumed to be turned on at t = 0 and to be a step function; that is, to have

a rise time much shorter than the charging times. The solution is found to be

qi = Qi + Aie- t 'l + Bie-t . (89)

The algebra is lengthy, and the expression for r (functions of the constants in

Eqs. (84) to (88), the solution of a quadratic equation) is long. One time con- '
stant is 10% (1 or 2% for Ib = 1 wA and 20% for 1b = -4 iA) of the other.

b b 3 -3Values of the larger time constant are shown in Table 6. For n = 10 cm - , the
0

ion and electron plasma periods are .76 ms and 3.5 js, respectively. The ,- .
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Table 6. Charging Time Constant and Initial Ion Transit Time Through the Sheath

Ib  1 1 8 8b  8 9 10.9 12 374 -104 ;A

8.0 2.6 6.0 5.4 5.7 5.4 5.6 5.9 8.8 .040 ms

tts(T) .90 2.2 2.4 (9.4) (.5) ms

tts(tts) (13.8) (1.4) ms

tt(T) .93 1.7 2.1 2.4 .19 ms

tt (tt) .32 ms

charging time constant is seen to be much larger. A simple, approximate way of

calculating T is given in Reference 2. Except for Ib = 374 and -104 uA, it gives
4 -

values within 10% of those in Table 6. For Ib = 374 and -104 pA, the values in
bqb

Reference 2 are not values of t, which should have been 7.6 and .0078 ms,

respectively, but are close to the values, .65 (assuming 6 = .18) and .0012 ms,

respectively, (from the simple way) of t 1 , the time for the potential of the

forward section first to reach V1 = Eb. (v 1 then overshoots V 1 before finally

settling at V 1 .) Values of t1 also could be calculated easily by the above more

accurate method. At least with the simple way, T is inversely proportional to

(1 + 6)I 1 , so it has this dependence for such saturated cases; however, since

(1 + 6)I 1 = Ib - 12 for unsaturated cases, T is then independent of 6, given Ib"

Actually, dll/d(-V1 ) for ion beams decreases with increasing (-V 1 ); similarly,

diI/d(-v 1 ) probably decreases with increasing (-v). Taking this into account .

would lead to the charging being nonexpotential. The treatment here, however,

should give approximately the correct behavior.
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4.11 Sheath Ion Initial Transit Time:

The approximate traverse time, t t , is calculated for the first ions after the

beam is turned on to travel radially between Rs and R1 , the assumed forward sec-

tion radius. In Reference 2, the sheath was assumed spherical, and of radius

equal to the value tabulated. It was concentric to a spherical conductor of

.5 m radius representing the forward section. The values obtained of t t = tts

for t' = T or tts are shown in Table 6. Those for Ib = 374 and -104 pA should

be discounted. They are much too large because the values of Rs are too large.

Now the sheath is assumed cylindrical and concentric with the actual forward

section, Figure 2. For the ion-beam cases, the ion is at R = Rse with R = -vti

at t = 0. Eq. (A28), Appendix C, is integrated numerically to t = tt (-') where R

= a1 . For the electron-beam case, the ion is at R = a I and R = 0 at t = 0; Eq.

(A28) is integrated numerically to tt( ') where R = R sc. Some results for t t =

ttc and T' = T or ttc are shown in Table 6. The values of Ib = 8b and 9 ijA are
expected to be nearly identical. The results for the two models are seen to be

about the same. The values for t for a spherical sheath around the cylindrical

forward section, Figure 3, would be a little larger since Rss - a1 is larger than

Rsc - a 1 . t t is seen to be smaller than - except for the Ib = -10 ma case. So, Ix

T is the minimum time in the ion-beam cases, and .32 ms in the electron-beam ,

case, for steady state to be reached.

"o.'I

5. CONCLUSIONS

The charging data are analyzed for eight positive ion cases, and one dec-

tron-beam emission case, from a three-conductor rocket in the lower F-region at

night. Calculation of sheath radii show that the spherical emissive probe was in %-€

the sheath of the forward section, in agreement with Katz and Mandell's interpre-
3tation,3 although the I = 1 pA beam current case is a possible, but unlikely,

bexception. How potential coefficients for any number of conductors can be mea-

sured is indicated. Since the coefficients were not measured for the rocket, and

the geometry was sufficiently simple, values of them and of sheath potential

coefficients, both dependent only on the geometry, are calculated fairly accur-

ately. An empirical formula found for the potential due to a charged conducting

cylinder, Smythe's charge distribution on a conducting cylinder, his empirical

formula for the capacitance, and three gedanken experiments are used to deter-

mine these coefficients.
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By using these coefficients, understanding was gained; this included the charge

on the conductors and in the sheath, the potential at the position of the probe

without the probe, V and the charging time constant.

An empirical formula accurate to .2 to 4% in different ranges of probe radius

to Debye length ratio, E, up to 5 is found for Laframboise's spherical probe re-

sults. Empirical formulae accurate to 1'" over the whole range are found for F
2.and G. F is useful in Lam's theory, and in lieu of (- a) in Langmuir-Blodgett's

spherical probe theory. G is useful in Lam's theory, and in lieu of (-6) 2 in

Langmuir-Blodgett's cylindrical probe theory.

The spherical probe theories of Laframboise and Lam, and 12' the rear sec-

tion voltmeter current, lead to the potential, V2 , of the rear section. The values •

are negative and, since thie contributions from the various charges nearly cancel,

are of small magnitude in qualitative agreement with a relevant calculated value by

Katz and Mandell. In general, however, the magnitudes are appreciably larger due

to voltmeter conductance. These and measurements of il' give absolute values of

potential of the forward section, V1 . and probe, V3 . For ion-beam cases, the front ,'

part of the rear section is concluded to have a positive surface charge density,

and the rear part a negative surface charge density. The latter disagrees with

Katz and Mandell. Values of return current are calculated from V1 by using Lam's J

probe theory for a cylinder. Except for the two high-beam current (374 and -10

jA) cases, they agree roughly with I - I So, probe theory accounts for theb 2'
high value of IV, for these unsaturated cases (e V, Eb, the particle energy
of the beam). It also shows that the two high-beam current cases, especially the

electron case, are highly saturated (Ib much greater than necessary for eIV 1 =

Eb); most of the beam current is reflected near the sheath edge back to the for-

ward section.

For the ion-beam cases, although all secondary electrons from the forward

section escape, it appears that they have a negligible effect, other than de-

creasing the return current and sheath radius slightly. For the electron-beam

case, many secondary and scattered electrons come from the forward section sur-

face, but they cannot escape, and have very little effect, even on the sheath

charge density. The effect of ionization by ions is negligible, that by electrons

is expected to be small to moderate, and the effect of magnetic field on electrons

is expected to be quite appreciable.

. %
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Values of charge on the rocket conductors and in the sheath are calculated.

They are not greatly changed by the sheath charge. The charge on the rear sec-

tion must always have the opposite sign and a smaller magnitude than that on the

forward section. The presence of the rrar section is found to increase the

charge on the forward section by about 89%. The potential of a conductor is con-

cluded to be determined mainly by the current from it, and the charge on it to be

determined by potentials and induction (coupling). Both a simple and an accurate

way are used to calculate V . It is much higher (less negative) than V This

is due to q3 ' the charge on the probe (that is related to the equilibrium probe

current). Vpp is 10% to 15% of V l rather than 40% as apparently interpreted by

Katz and Mandell. For each ion-beam case, except 1 viA, a value of probe voltmeter

resistance exists for which q 3 would equal 0, and V would equal V3  Upper andpp Ile
lower limits of probe current from the plasma are calculated that bracket the bal-
ancing probe voltmeter current, 1 3vm' For I 1 jA, the value of return current

to the probe calculated by probe theory is an order of magnitude larger than 1 3m

This is probably due to neglecting the effect of the magnetic field, but may also-

be due to plasma current to the forward section, and electric field from the for-

ward section, i.e., to the probe being inside of the forward section sheath. As

3thle beam current increases beyond minimum saturation, V3 approaches zero and, . .

then, at extreme values, kT/e beyond zero. The electron-beam case is in accord-

ance with this; further verification would be desirable.

Tile charging time constant due to capacitance is an order of magnitude larger-

than the plasma period, and, except for the electron-beam case, is larger than the

initial ion transit time through the steady-state sheath. So, the minimum time to

reach steady state is determined by the charging time due to capacitance for an

ion beam, and by the ion transit time, a third of a ms, for the electron-beam '
4

case. The time for the 374 or -10 vA case to become saturated was less than a

plasma period.

In spite of many approxiniatiols, this analvsis is believeI to be (lualitativelv

and approximately quantitatively correct, at least for the ion-beam cases. Since

10 for the (c;Ises here. a better p~robe theory than lam's, perhaps that of'

Bernstein anid Rabinowitz, 13 should be usled for potentials out of range of' those

of Lafrawlr(oise .

13. Bernstein . I. B., :111d Iahiriowitz, I. (1959) Theory of electrostatic probes ,\. S*'

ir ;i low densitv V plasma,. Phys. Fluids 2:112-121. v.
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For the electron-beam case, a treatment is needed that includes the effect
of magnetic field, and probably ionization, for reliable results. An accurate

(numerical) solution of Poisson's equation would make an interesting and perhaps

valuable comparison with the results in this report. The analysis techniques used
here, applied to a greater variety of data, should produce much more understanding.

From the results in this report, and those of Lam-Jaycor, 12one may induce
the following general steady-state properties of vehicles in the ionosphere at

potentials small enough not to cause breakdown or appreciable ionization of back-
ground neutrals. For a given beam current and shape of vehicle with an all-

conducting surface, as the size increases, the sheath thickness, vehicle potential,

and charge decrease. For sheaths that are thick compared to vehicle size, the

charge decreases very little. For a given beam current and vehicle, as the frac-

tion of the surface that is covered with dielectric is increased, the potential and

charge on the conducting part increase.
It is hoped that this report will provide useful considerations and techniques,

and/or stimulate ideas leading to better ones for experiments and analyses of

object-charging in laboratory and space plasmas.

.0
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Appendix A

Potential Due to a Charged Conducting Cylinder

The following is an empirical formula for the potential of a point R, z (see

Figure 2) due to a conducting right, circular, cylinder of radius a with a charge

q, b > a, R > a:

a

V b _ _+_ b_- , (AI)
V a

R I + z2
2b' +

a in meter, q in Coulomb, V in Volt.

When b << Iz and b2 < R iz,

V = g (A2)

R 1+
2b R+ R z

When (b - IzI and b < R) or b < R,
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V =g -2- - (A3

R 2b

When z = 0, R = a, k = 1.777, and a/2 s b 5 8a, then q/V is within 1.25% of the Z-
correct capacitance.

P1 0 3 - is q/V obtained from Eq. (Al) with a = .19 m, k = 1.777, b = 1.27 m,

R = 1.71 m, z = 1.01 m giving

P1 0 3 -1= .2605 nf. (AM) N

P2 1is q/V obtained from Eq. (Al) with a =.19 m, k =1.777, b =1.475 m,
R =1.71 m, Izi .805 m, giving

-1
P1 2 3 - =2616 nf. (A6)

I
36~ %.

4, e. e-



Appendix B
Potential Due to the Sheathm

B. 1. Cylindrical Sheath

The potential ait R on the median plane z = 0 due to a cylindrical sheath

(Figure 2) is calculated. From Eq. (Al), the potential due to an infinitesimal

cylindrical shell at RI ! R and z' is

d < = k d q ~ j R ' Ii 1( 7

where

b JI a]J. WA)

In this section, a = aand b =b.

The potential due to a shell at RI z R is assumed to be

kdq8  1'
1+ 9 (M9)
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This implies that the charge distribution is that for a conducting shell. The

sheath volume is

Vol = wR2 2B - a2 2b, (A10)

where B is given by Eq. (62).

bdVo, _31[ d 1
dqs 8 -q = 2io [3 + (2 - R2dR ,  (All)

where

2,p[R2B - a2b] =qs (A12)
d.

This assumes that the average charge density, p, is the same in each shell

volume. Errors due to this assumption are believed to be small since Lafram-

boise, 6 Figure 33, shows p to be nearly constant in the sheath for E = 2

(- 13% to 4 XD) and 5 (±9% to 8 XD from the probe surface) and since ql and q

are not greatly changed by neglecting the plasma charge entirely. The potential

due to each shell is of the form

dV< = 27rgkpu(R',R)dR' (A13)

dV> = 21rgkPw(R')dR'. (A14)

Empirical formulae are found for u and w:

,-"1'

u(R',l.71)= .008 + .47R' + .648R 2  (A15)

w(R') = .247 + 1.427R'. (A16)

Eq. (AlS) is correct within 1% for .19 !< R' <_ 1.71 m. Eq. (A16) is correct

within 9% for .19 5 R' ! .3 m and within 2% for .3 m s R'.

The potential per unit sheath charge at the side of the rocket due only to

sheath charge is taken to be
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R
se

Plsc=f dV> /qs (A17)
a

The potential per unit sheath charge at the probe due only to sheath charge is

taken to be

1.71 R

fS71 dVqV/q (A18); .jV/
sc a 1.71

for the probe inside of the sheath and

R
= sC dV /q (A19)P3sc s

a

for the probe outside of the sheath (only used for Ib = Im IA).

B.2. Spherical Sheath"

As R increases, the sheath boundary becomes less cylindrical and more
S

spherical. For R s >> b, this boundary (Figure 3) is nearly spherical, so is A

assumed spherical. The potential per unit sheath charge at the side of the

rocket due only to sheath charge is taken to be

Piss = V ss(a)/q (A20)

and that at the probe is taken to be

P3ss = V ss (1.71)/q s (A21)

where Vs(R) is derived on pp. 34 and 35 of Reference 2 and given in Eqs.

(A35)-(A37) there.

%
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Appendix C
lifitial lou 'Iraiisit Time Throwgh the Siteathi

First, the potential, V(R), is calculated in the sheath at a radius R, along a

radial line passing through the center of the forward section (z = 0). It is the

sum of the potential at R due to q5  qj, and q(the effect of q3 i small and is

ignored): -

%I

R R
V(R) =21rgkof u(R',R)dR' + fS-w(R')dRtI

a R

a a
kqj b bkq 2 ( b2  ~2 -1Il

gJ- (A22)

from Eqs. (Al), (AM.) and (AM4, where

4 2 2

2b+(b + b A32 2 R 1 b 2 )

The electric field Is assumed to increase everywhere exponentially with time, t,

after beam turn on with a time constant T'. So -

41
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E(R,t) = ~ - -t'r

=g -27nk-. I(R) + q+ q
Vol I8

[~~~~~4~ + 2b 'l+2 4 (b+b
R'2 +1 bl) 2 1 11 2 2A24 + 2,

2b 4 + R ( + b ) 2 3 -(b b

Where

R

a R '

and

u(R,R) - w(R) = 0. (A26)

The empirical formula

I(R) = -A(R -a) - Bin E + C(I-(A7

A = .4347, B =.02784, C = .02093

is accurate to .3%. The equation of motion is

R e E(R,t), (A28) V.M%

where e and M are the magnitude of charge and the mass respectively of the ion,

assumed to be NO+
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