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19, TRACT

The problem of estimating a rigid body motion from two noisy images of
an object taken at two different times is studied.

The available data consist of the unordered locations of some of the
prominent points of the object. Because these points are not individually
recognized and some of them may be missed in one or both of the images, it
is not obvious which points of the two images correspond to one another.
Moreover the observed locations are subject to error.

A computational procedure, capitalizing on the rigidity of the object,
is proposed for estimating ;Egﬁ_got}on‘ parameters of the object in the
presence of Gaussian noise(Zéélgélzy‘igazfendently added to the positions in
the images of the points observed.

In principle, one might apply maximum likelihood to the estimation
problem, but the difficulty in formulating and calculating the likelihood

function under the above mentioned assumptions if formidable., However one

ought to expect to do better when the observed points are rec ized and the
fication. Hence
maximum 1likelihood,

error in our estimates for the

common points among them are matched without error in ide
this latter situation, which is readily treated

should provide us with lower bounds

,/"

original problem.-  _..-—

Asymg:g;ic’ﬁa;;ality and consistency of the maximum likelihood estimate

as 0 = are derived for this favorable situation. Similar results hold
even n 0 is incorrectly assumed to be 0, = ko for positive k « 1.

simulation study has been carried out to compare the efficiency of

the proposed estimator for the more complex problem with that of the maximum

likelihood estimate in the favorable situation and to test the robustness of

the proposed estimator under the misspecification of the value of @y— S:‘fjxuf\
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ABSTRACT

The problem of estimating a rigid body motion from two noisy images of an
object taken at two different times is studied.

The available data consist of the unordered locations of some of the prominent
points of the object. Because these points are not individually recognized and some
of them may be missed in one or both of the images, it is not obvious which points
of the two images correspond to one another. Moreover the observed locations are
subject to error.

A computational procedure, capitalizing on the rigidity of the object, is proposed
for estimating the motion parameters of the object in the presence of Gaussian
ngise }ﬁo, 0*1;) independently added to the positions in the images of the points
observed.

In principle, one might apply maximum likelihood to the estimation problem,
but the difficulty in formulating and calculating the likelihood function under the
above mentioned assumptions is formidable. However one ought to expect to do
better when the observed points are recognized and the common points among them
are matched without error in identification. Hence this latter situation, which is
readily treated by maximum likelihood, should provide us with lower bounds for
the error in our estimates for the original problem.

Asymptotic normality and consistency of thre maximum likelihood estimate as
o — 0 are derived for this favorable situation. Similar results hold even when ¢ is
incorrectly assumed to be o, = ko for positive k # 1.

A simulation study has been carried out to compare the efficiency of the pro-
posed estimator for the more complex problem with that of the maximum likelihood
estimate in the favorable situation and to test the robustness of the proposed esti-
mator under the misspecification of the value of o.

Key Words: 1Image Processing, Motion Estimation
AMS: 1980 Subject Classification: Primary-8699; Secondary-62N99




Sg  Qp o Bt LT Y e N YL AL AT IO MU AN Sl AN M e

ACKNOWLEDGEMENTS

First of all, I would like to express my deepest thanks to my advisor, Herman
Chernoff, who, from the very beginning of my study at M.L.T., has been a consistent
source of encouragement and support. He has been literally a father-like figure to
me with his thoughtfulness and direction.

I am also very grateful to Richard Dudley, who has given many important sug-
gestions and careful corrections toward the final version of this thesis. Greta Ljung
has served as the third member of my thesis committee and deserves my word of
thanks. I should also mention Bill DuMouchel for his help and concern while he
was here at M.I.T.

Among my colleagues, past and present, at the Statistics Center, I would espe-
cially like to thank Tom Lane, Guy Manuel, Irvin Schick, Dong Kim, Lisa Newton
and Alan Zaslavsky, most of whom I have bothered so many times with non-trivial
questions. Nick Lange also has suffered many times for the same reason and I am
grateful to him.

Outside the Statistics Center, I must thank all my friends, especially Soonchul
Lee, for the good times and laughs we shared. I wish him the best luck in his future.

I also would like to acknowledge the financial support from M.L.T. as a research
assistant to Herman Chernoff and Richard Dudley during my stay at M.L.T.

All these years, my parents, parents-in-laws, brothers, sister, and their families
have shown me their never-ending support both in the United States and back in
Korea. In particular, without the sacrificing support from my parents and parents-
in-laws during the critical period last year, I could never have finished my thesis.

Finally, but not least, I would like to thank my wife Hye Kyung and my son
Sukhyun for their love, encouragement, endurance, and everything during the last

five difficult years. I hope I can become a better husband and father from now on.

3

i RIEP Y ® x TN AT 57 ™) . AV AT S > ) N
“!I“.u ..I'n FUAS A A .;‘l'..l I"'I“ '|l AN LA MO M N M AP AT N N KA T V [N A



Contents

Abstract

Acknowledgements

Table of Contents

List of Tables

List of Figures

1 Introduction
1.1 Introductionand Summary .............c..00. .
1.2 Definitionsand Notation . . . . . ¢ ¢« ¢ ¢ ¢ttt v et v v v v o v v v v

2 Related Literature

3 Method of Estimation in the Presence of Noise

3.1 ProblemStatement . . . .. ... ... ... i 21

3.2 Basicldeaand Motivation. . . . .. ... ........... ..., 21
3.2.1 The Number of Common Observed Points mog . . . . . .. .. 21
3.2.2 Heuristics of the Method of Estimation .. .......... 24

3.3 Methodof Estimation . ................... ...,
331 Assumptions . . ... ... ...t

O OO0 OGO OO T g S I0A A



3.3.2 The Length Difference and Angle Difference

3.3.3 Approximations

3.3.4 Estimation Procedure

4 Maximum Likelihood Estimate in the Recognized Points Problem
4.1 Simplified Assumptions and the Maximum Likelihood Estimate . . .
4.2 Asymptotic Normality and Consistency of the Maximum Likelihood

4.3 Fisher’s Information Matrix J and Its Inverse— Asymptotic Covari-

ance Matrix

--------------------------------

Simulation Study
5.1 Method of Simulation

--------------------------

5.2 Results of the Simulation

6 Conclusions

Appendix A
A.1 The Almost Sure Uniqueness of By (X)

----------------

Bibliography

"n"‘-‘!‘-"‘x‘.'-”‘»"kl'l‘»".-“‘-‘ho'.‘o'.kn“ "‘-t“c‘"-"‘.’".‘! L ‘ w'... AN

44
45

48

59

65

70

o1

04

102




List of Tables

3.1

3.2

5.1
5.2

5.3

5.4
5.5
5.6
5.7

5.8

The probability distribution of (M;, M;) and conditional moments

3 B 25
The notational correspondence. . . . ... ............... 31
Summary from the normal ¢g-plots of finCasel. .......... 84
Summary from the normal gq-plots of f inCasel .......... 85
Summary from the normal ¢g-plots of f, inCasel........... 86
Summary from the normal gg-plots of dinCasell. .......... 87
Summary from the normal gg-plots of T, in CaseII. . . ....... 88
Summary from the normal gg-plots of f, inCaselIl. ......... 89
The ratios §/dyy, in Case I, 1000 trialseach. . . . . . ......... 90
The ratios 8/, in Case II, 1000 trialseach. .. ........... 90
6




List of Figures

X R

3.1 An example of simulateddata. ... .................. 22

- e T Y 2

. T -

o R ‘ X |||
GO NONOR N » 3% Oy,

Graphs of the functions h(u), ;a(r) and pa(r) . . ... ... ... .. 38

Examples of the two simulated image frames for each value of ¢ in

CaseIl. . .. ... .. i i ittt ittt et tiieenenn, 69
Histograms of d for each Situation in CaseI. ............. 71
Histograms of T, for each SituationinCasel. .. ........... 72
Histograms of T, for each Situationin Casel. .. ... ........ 73
Histograms of § for each SituationinCase II. . ............ 74
Histograms of T, for each SituationinCase II. . ........... 75
Histograms of T, for each Situation in CaseIL. . ........... 76
Normal qq-plots of § for each Situationin Case L. . ... ....... 78
Normal qq-plots of T; for each Situation in Casel. . ......... 79
Normal qq-plots of f, for each SituationinCasel. . ... ...... 80
Normal qqg-plots of § for each Situation in CaseII. . ......... 81
Normal qq-plots of T, for each Situation in Case IL.. . . . ... ... 82
Normal qq-plots of T, for each SituationinCaseII.. . .. ... ... 83
7




Chapter 1

Introduction

v e
.I e

. N A

PR _’- ~ S,

N

L
LAV -
-----------

~

A A I o A N I I I Rl oY i i TR T

.

PREX NI

“

"



1.1 Introduction and Summary

The problem of estimating a rigid body motion from two consscutive image frames
of an object taken at two different times is an important issue in image sequence
analysis. For example, motion estimation cannot be separated from the problem of
image matching and image registration, which in turn, have a wide range of direct
applications. Consequently, there is a sizable amount of literature dealing with the
subject, especially for three dimensional rigid body motion.

A large number of the existing methods for the three-dimensional problem ba-
sically depend on solving simultaneous non-linear equations that one gets from the
known matched points in the two image frames. In the event of noisy images,
least squares methods are applied by simply requiring a greater number of matched
points than that of the parameters to be estimated. However, they all produce
rather unsatisfactory results when the angle of rotation of the motion is not small,
or when they are applied to reai images (s.e., noisy images).

In this thesis, an estimation method for two dimensional motion, capitalizing on
the rigidity of the object involved with the assumption that the images are noisy,
is proposed. It is assumed that the data consist of the unordered locations of some
of the prominent points of the object. Because it is assumed here that these points
are not individually recognized and some of them may be missed in one or both of
the image frames, it is not obvious which observed points in the two image frames
correspond to one another. Moreover it is also assumed that N(0,0%I;) Gaussian
noise is independently added to the locations of the points observed in the two image
frames. Methods for this two dimensional problem should prove to be helpful in
attacking the more practical three dimensional problem where some points may
become occluded.

In Chapter 2, a survey of the existing literature on motion estimation and the

9

g
E
A
o
o

P " " "-‘,.
bﬂ\f d\.f"fb"}":ﬂ'.{g.u N .).h.wu-_ -_-\.f..hf' oy ’ MM s



AN RGN EN LYWL XY °% 4% 2° RN NN O O T N T N I E O I LN N R OO W R R W RO AN RTINS

related matching problems is presented. In Chapter 3, the details of the proposed
estimation procedure and the logic behind it are given. Then, in Chapter 4, the
maximum likelihood estimate in a more favorable situation, where the observed
points are recognized and the common points among them are matched without
error in identification, is studied. Asymptotic normality and consistency of the
maximum likelihood estimate as ¢ — O for this latter situation are derived. Also
similar results are derived even when o is incorrectly assumed to be o, = ko for
positive k # 1. These provide us with lower bounds for the error in our estimates for
the original problem. Chapter 5 shows some simulation results. Finally Chapter 6
has conclusions and suggestions for further work.

In the next section, we list some definitions and notation used throughout.

1.2 Definitions and Notation

Let X be an m-dimensional real vector valued random variable. We denote the law
(distribution) of X by L£[X]. Sometimes we use the notation £[X|f] instead of L[X]
to emphasize the fact that the distribution of X is dependent on the parameter .
We write E[X], and Cov[X] to denote the mean vector, and covariance matrix of X
respectively. In case X is a 1-dimensional real random variable, Cov[X] is reduced
to the variance Var[X)].

A Gaussian (normal) distribution with mean vector g and covariance matrix &
is denoted by N(p, ).

We interpret any vector to be a column vector when it is referred to only by its
name in equations or formulae unless otherwise specified.

We denote by R™, the m-dimensional Euclidean real vector space, and use
(—m,x] to denote the set {u € R! | —r < u < 7}.

The notation “:=" is to be read “by definition is equal to”.

10
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The m by m identity matrix is denoted by L,:

1 0 --- 0
L,.:= (.) 'l (1.1)

: . . 0
0 --- 0 1
We denote by 1,,, the m-dimesional vector with m 1’s as its components:

1
ln:=]: | €ER™ (1.2)
1
For any matrix A, we use AT to denote the transpose of A.
For any p; by ¢ matrix A and p; by ¢ matrix B, we define the direct product
or Kronecker product of A and B, denoted by A ® B, to be the p;p; by ¢;¢; matrix

C where
Abll Ablg o Ablql

Ab21 Abzz M Abqu

C:= . (1.3)

Abpy Abyz - Abyy,
where b;; is the (¢, j)-th element of B, fors =1,...,p;, 5= 1,...,4q;.
For any vector X := (Z1,...,Zm)” € R™, we use |x|| to denote the Euclidean

norm (length) of x:

Ixl] = |32 = VRTx. (1.4)

=1

We denote the unit circle by S':

' :={(z,y) e R? | ||(z,¥)ll = 1},
and define the function v : R? \ {0} — S! by

u(z’y) = (z, y)

[l(z, vl
for each (z,y) € R?\ {0}.

11
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The covering map on S, ¢’ : S! — (—x, x|, assigns to each x € S, a ¢*(z) €
(—=, x| where

(cosc*(x),sinc’(x)) = x. (1.7)

We will also define the covering map on R!, ¢ : R! — (-, 7], by
¢(z) := ¢*(cos z,sin z), (1.8)
for each z € R!. Note that for any z € R!, we have
¢(z) =z (mod 2r). (1.9)
The function arctan : R? \ {0} — (-, x| is defined by
arctan(z,y) := c’u(z,y) (1.10)

for each (z,y) € R?\ {0}. We call arctan(z,y), the angle of the vector (z,y). Note
that for any (z,y) € R?\ {0}, we have that

tan(arctan(z,y)) =

8|

(1.11)

and

arctan(z,y) # arctan(-z, —y). (1.12)

For any two vectors vy, v; € R?, the difference vector of v, and v, denoted by
D(v,,9;) is defined by

D(V;, 92) =y — %Y. (1.13)

For a function t : R™ — R¢, where

ti(v)
tv):=| : |, (1.14)
td(v)

12
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we define the Jacobian matriz or dersvative of t with respect to v, when it exists, to

be the d by m matrix 9t(v)/0v whose (1, j)-th element is given by

[at(l)) ._ 8t.-(v‘, .es
- av,-

m) fori=1,....d, j=1,...,m, (1.15)

where v = (vy,...,vm).
The 2 by 2 orthogonal matrix representing the rotation by # radians about the

origin in a plane is denoted by U(f):

u(e) = [ cos8 —sind ] . (1.16)

We use T to denote the vector of translation by T, T} in the z- and y-coordinates

- [ f,y ] . (1.17)

A rigid body motion of an object in a plane is a transformation of the object that

respectively, s.e.,

can be obtained through a rotation and a translation only. Thus a general rigid
body motion can be uniquely characterized in terms of a rotation about the origin

.ollowed by a translation in the plane. In other words, a rigid body motion is a map

(z,9) — ()

for any point (z,y) on the object, where

[ :: ] := U(6) [ ; ] +T (1.18)

for some uniquely defined U(4) and T.
An smage frame is a two-dimensional plane that contains an image of the object
in which we are interested, where some globally fixed (for different image frames)

Euclidean coordinates, which we call the smage frame coordinates, are superim-

posed.




)
(]

A location (position) of a point in an image frame is the image frame coordinate
vector of the point.

We will treat an object as represented by a finite set of points on it, called
prominent points. In the simulations in Chapter 5, we will assume that there are
10 prominent points. A prominent point is said to be observed if we see the point in
an image frame but cannot necessarily distinguish which of the several prominent
points it is. Also a prominent point is said to be recognized if we see the point and
can identify which of the several prominent points it is. The noisy locations of the

observed points on the object form the data in our problem.
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There are two separate approaches in motion estimation problems. One of them,

the so called “low level” or “signal processing” approach, is the one where you have

LY
grey level images as your data and you try to estimate the motion by operating on N
the raw data. One of the methods in that approach is the Fourier method for the v
two-dimensional motion problem, where you take advantage of the fact that sharp R
straight edges give rise to line spectra in the frequency domain, and hence allow ':'.
you to estimate the angle of rotation. Another low level method is the matching or ‘
correlation method that sets up a cost function depending on the grey level functions ..
of pixels in each image frame and tries to find the value of the motion parameters ¥
which minimizes the cost function. There is another method called the method of 3
differentials in the low level approach which uses the idea of relating time differences ;_
to spatial differences. All of the three methods mentioned above are described in '
[Huang 81]. .
The other approach is the “high level” or “feature based” approach, where we 4
assume that some features, e.g., points, lines, contours, etc., in the images have :\
already been extracted by some other means and the data consist of the locations -
of the features. Normally it is assumed that the correspondence between the features k
has already been established in the feature extraction process. In this sense, the E:
estimation method to be proposed in this thesis is somewhere between the two :
approaches but closer to the feature based approach because we have as data the X
unordered observed locations of some of the prominent points in two image frames "
but they are not recognized and may be missing in one of the two image frames. ’
The high level methods may then be further classified into two classes, namely :
the “equation solvers” and the “merit score or weight mazimizers”. The equation ‘
solvers basically assume that the correspondence between features in each image _ '
frame are known and hence derive sets of simultaneous equations, usually non-linear, ‘]
.
16 -\,




with motion parameters as unknowns. Researchers in this line of approach include
Ullman [Ullman 79}, Roach and Aggarwal [Roach 79,Roach 80|, Nagel [Nagel 81a),
Nagel and Neumann [Nagel 81b], Tsai and Huang [Tsai 81,Tsai 84), Tsai, Huang

and Zhu [Tsai 82|, Fang and Huang [Fang 83a,Fang 83b]. Methods for solving such

equations are generally iterative and require good initial guesses of unknowns. How-
ever, sensitivity to noise is shown in the experiments reported by Fang and Huang
[Fang 83a,Fang 83b].

The merit score maximizers often bear the names of “point pattern matching”
or “image matching” instead of motion estimation. They generally deal with two-
dimensional motion only. Even though they usually assume that the first image
frame contains the prototype or model pattern with which the observed point pat-
tern in the second is to be matched, they essentially attack the same estimation
problem as mentioned in Section 1.1. In these settings, as the name “matching”
says, the individual correspondence between features in different image frames are
not assumed. They implicitly or explicitly assign merit scores or weights to possi-
ble matches of features according to their compatibility with the candidate value
of motion parameters, and then try to maximize the total merit scores to get the
maximizing value of motion parameters. Our method to be proposed in this thesis
belongs to this class but is not concerned with explicit matching. We list some of
the existing methods that fall into this class below.

Simon, Checroun and Roche [Simon 72} compute all interpoint distances in each
point pattern and then use a comparison of the sorted list of these with some
relaxation rule to match the point patterns. Their method is applicable only to
patterns that contain equal numbers of points, i.e., there are no missing prominent
points.

Seidl [Seidl 74] measures similarity of point patterns, without seeking an ex-
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plicit matching, using nearest neighbor relations. Again the method is restricted to
patterns that contain equal numbers of points in application.

Zahn [Zahn 74] compares the minimal spanning trees of point patterns, but this
method is also sensitive to missing and extra points.

Kahl, Rosenfeld and Danker [Kahl 80] only consider small (< 10°) angles of
rotation. Even though their method is sensitive to noise exceeding a preset level, it
is insensitive to missing or extra points.

Ranade and Rosenfeld [Ranade 80| consider the situation where only translation
is allowed. Each individual point matching is rated by its effect on other points,
and through relaxation, an overall matching is converged to. Experimental results
are given showing a tolerance to some noise.

Lavine, Lambird and Kanal [Lavine 81| try to recognize point patterns without
finding an explicit matching using sequences of interpoint distances and show the
“correctness” of their method under a plausible noise model.

Bolles [Bolles 79] and Ogawa [Ogawa 86] apply maximal clique techniques to the
point pattern matching problems, and the latter uses the Delaunay triangulation
to partition a point pattern into a set of triangles reducing the computational cost
of matching.

Baird [Baird 84] proposes a method for the situation where there are no miss-
ing or extra points, allowing noise whose bounds are specified as arbitrary convex
polygons about each model point location. He also gives the comparisons of various
methods in terms of the asymptotic order of computational runtime as the number
of feature points increases.

In summary, only a few researchers have provided methods to attack the motion

estimation problem which allows an arbitrary rigid body motion, when there are

missing and extra points, and at the same time the locations of points are observed

% NNV~
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with moderate noise. It is exactly this situation that we want to deal with in this

thesis.
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Chapter 3

Method of Estimation in the
Presence of Noise
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3.1 Problem Statement

Suppose that we have two consecutive noisy image frames, taken at times ¢; and ¢,
(t1 < t3), of an object in two dimensional space and that the object was subjected
to a rigid body motion in the time between the two image frames. Assume that
all points of the object lie on a plane called the object plane parallel to the image
frames.

The case we consider is where we observe some of the prominent points but do
not recognize them individually and some of the observed points may be missed in
one or the other of the two image frames. Thus it is not obvious which subsets of
the observed points in the two image frames correspond to one another. Moreover
the observed locations are assumed to be noisy with Gaussian noise N(0,0°I;)
independently added to each. The assumption of equal variance o* for both image
frames corresponds, in one interpretation, to an assumption that both image frames
are at the same distance from the observer.

Now the problem is to estimate the motion parameters, namely the angle 4
of rotation about the origin and the translation vector T, given the data of the
locations of the observed points on the object in the two image frames.

In Figure 3.1, we have an example of simulated data, namely, two image frames
showing the noisy locations of the observed points at two different times t; and
t2, when there has been a rotation by 90° (= 7/2 radians) followed by a slight

translation.

3.2 Basic Idea and Motivation

3.2.1 The Number of Common Observed Points m,

Let us assume that there are n distinct prominent points on the object in which

21
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Figure 3.1: An example of simulated data.

we are interested. Let m;, m; be the numbers of the observed points in image
frames 1, 2 respectively. Also let my be the number of common observed points in
the two image frames. For example, in the simulated data illustrated in Figure 3.1,
we have

n=10, m; =7, my =8, myg=35.

If we assume that each of the n prominent points on the object has independent
probability p of being observed in any image frame, then the above mentioned m,,
m3, and mq become random variables which we call M;, M;, and M, respectively.
The probability P(m,,m;) of getting m, observed points in image frame 1, and m,

in image frame 2 is given by

P(ml, mz) = P{Ml =m,, Mg = mz}
= P{M, = m}P{M; = m,} \

= ( ,:1 )p""(l -p™ ( ,::2 ) p™ (1 —-p)" ™

m ms

which is just the product of two binomial densities, each with parameters (n,p).
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The conditional probability of getting exactly m, common observed points given
that we have m,; observed points in image frame 1, and m; in image frame 2 is given

by

(o) (e ) (e )
P{My=mo | My =m;,M; = m,} = mo m; —mg ms — myg

(m) ()

_ my!ma!(n — m;)!(n — m,)!
" nlme!(m; — mo)!(mz — mg)!(n — my — my + my)!

which is the hypergeometric density with parameters (n, m,;,m;). A hypergeometric

(3.2)

random variable X with parameters (N, r,k) has the following interpretation:

Consider a population of N items, of which k are of type I and N -k
are of type II. Assume that a random sample of size r is drawn without
replacement from the population. Then X can be defined as the number

of items of type I in the sample drawn.

From this interpretation, it is easy to see that

rk

E[X] = F (3.3)
and
VarX] = %(1 - 5 - =1 (3.4)

Therefore in our case, we get the conditional mean and standard deviation of

M, given {M; = m;, M; = m,} as

mym

p(mo | my,ms) := E[My | My = my,M; =m,| = 12 (3.5)
and

U(mo | ml,mz) = VV&I‘[MQ I Ml =m,, Mg = m2]

_ 1 [mms(n—m)(n— m,). (3.6)
n n-1
23
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For example, if n = 10, p = .8, m; = 7, my; = 8, then we have

P(1,8) ~ .0608
u(mo|7,8) = 5.6

o(mo | 7,8) = .6110.

For the tabulation of P(my,m2), u(me | m1,mz), o(mo | my,mz) for my, my; > 3
when n = 10, p = .8, see Table 3.1. For the cases where m;, m; < 3, we have
P(my,m;) <1074,

In the simulation study in Chapter 5, we will evaluate the characteristics of the
estimation procedure to be proposed for two examples, in each of which my, m; and
m, attain certain values. Thus our evaluations may be considered to be, in part,

conditional on those values of mgy, m; and m,.

3.2.2 Heuristics of the Method of Estimation

In order to understand the main idea which is employed in the estimation method
to be proposed in the next section, let us first consider the situation where no noise
is present in the locations of the points observed in the two image frames.

Because of the rigidity of the object involved, the difference vector of any two
locations of the my common observed points should not change its length from one
image frame to the other. In addition, the change in angle should be 8(mod 27)
where 8 € (—n, 7] is the amount of the angle of rotation involved. Therefore, if we
were to look at all the possible pairs of difference vectors (of the locations), one
from each image frame with the lengths of the two being the same, then a clear
majority of them would show 6 as the exact difference in angles of the two in each
pair.

However, this does not give a complete answer to this rather easy-looking prob-

lem. For example, if, in considering the prominent points, there are two difference
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| ms
my |10 9 8 7 6 5 4 3

| OIS | 0288|0324 | 0216 | 005 | 0028 | 0006 | 0001
10 {| 10.0000 | 9.0000 | 8.0000 | 7.0000 | 6.0000 | 5.0000 | 4.0000 | 3.0000
.0000 | .0000 | .0000 [ .0000 | .0006 [ .0000 | .0000 | .0000
0288 | .0721 | .0811 | .0540 | .0236 | .0071 | .0015 | .0002
9 | 9.0000 | 8.1000 | 7.2000 | 6.3000 ; 5.4000 | 4.5000 | 3.6000 | 2.7000
.0000 | .3000 | .4000 | .4583 | .4809 | .5000 | .4899 | .4583
' 10324 | .0811 | .0012 | .0608 | .0266 | .0080 | .0017 | .0002
| 50000 | 7.2000 | 6.4000 | 5.6000 | 4.8000 | 4.0000 | 32000 | 2.4000
.0000 | .4000 | .5333 | .6110| .6532 | .6666 | .6532 | .6110
0216 | .0540 | .0608 | .0405 | .0177 | .0053 | .0011 | .0002
7 || 7.0000 | 6.3000 | 5.6000 | 4.9000 | 4.2000 | 3.5000 | 2.8000 | 2.1000
.0000 | .4583 | .6110| .7000 | .7483 [ .7638 | .7483 | .7000
.0005 | .0236 | .0266 | .0177 | .0078 | .0023 | .0005 | .000I
6 | 6.0000 | 5.4000 | 4.8000 | 4.2000 | 3.6000 | 3.0000 | 2.4000 | 1.8000
.0000 | .4809 | .6532 | .7483 | .8000 | .8165 | .8000 | .7483
| 00287 0071 | .0080 | .0053 | .0023 | .0007 | .0001 | .0000
5 | 5.0000 | 4.5000 | 4.0000 | 3.5000 | 3.0000 | 2.5000 | 2.0000 | 1.5000
.0000 | .5000 | .6667 | .7638 | .8165 | .8333 | .8165 | .7638
.0006 | .0015 | .0017 | .0011 | .0005 | .0001 | .0000 | .0000
4 || 4.0000 | 3.6000 | 3.2000 | 2.8000 | 2.4000 | 2.0000 | 1.6000 | 1.2000
.0000 | .4899 | .6532 | .7483 | .8000 | .8165 | .8000 | .7483
.0001 | .0002 | .0002 | .0002 | .0001 | .0000 | .0000 | .0000
3 || 3.0000 | 2.7000 | 2.4000 | 2.1000 | 1.8000 | 1.5000 | 1.2000 | .9000
.0000 | .4583 | .6110| .7000 | .7483 | .7638 | .7483 | .7000

8

Table 3.1: The probability distribution of (M;, M;) and conditional moments of
M,. Each cell shows [P(my, m;), u(mo | my, ma),0(mo | my, m3)|T when n = 10.
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vectors of the same length, in either one of the two image frames, then they may
contribute to incorrectly estimating the value of § when there are missing points in
the image frames. Even if these difference vectors were parallel and contributed to
estimating the value of @ correctly, they could still give confusing and misleading
information about the translation vector T. In order to alleviate this problem to a
certain extent, we need to find additional evidence that a pair of difference vectors,
one in each image frame, is a truly corresponding pair with respect to the value of
6 which it seems to support.

We propose that being one of the three corresponding pairs of edges of two
triangles, each triangle formed by three observed points, say A;, B;, C; in each image
frame ¢, 1 = 1,2, so that all three pairs of difference vectors (D(A,, By), D(Aa, B:)),
(D(By,Ch), D(B3,Ca)), (D(Ch1, A1), D(C3, A;)) have contributed in supporting the
same value of 8, constitutes that evidence. We call such a pair of triangles an
admaissible match of triangles for that particular value of §. So by maximizing the
number of admissible matches of triangles over the possible values of 8, we are likely
to get a quite reliable estimate of 4.

Once we have an estimate of 8, it is easy to get an estimate of T'. After rotating
the points in the first image frame by an angle of 8 about the origin, the differences
in location of matching points will provide an estimate of T. What constitutes
matching points can be determined from the vertices of triangles that have been
admissibly matched.

It should be noted that it is still possible that a triangle may form admissible
matches with several triangles even for a common value of §.

Now let us return to the problem where we have Gaussian noise N(0,0?l;) in-
dependently added to each location of the points observed in the two image frames.

Here we may expect neither the lengths of the two truly corresponding difference
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vectors, one from each image frame to be exactly the same, nor the angles of them »
to differ by exactly §(mod 27) as in the noise-free case discussed above. Neverthe-
less, we would expect them to hold to a reasonable extent if we assume a noise of !
moderate size. The method we propose, which is presented in detail in the next '
section, is based primarily on this consideration.

In order to estimate § and T, we first consider a fixed candidate angle of rotation,

0o, and try to find approximate matches of the difference vectors, one from each '
image frame, by two criteria, one for the lengths and the other for the angles, that

are similar to the ones used in the noise-free case above except that these are more .
flexible depending on the size of the noise involved. Any candidate pair of difference

vectors, one from each image frame, is removed from further consideration unless it

satifies the criteria to a prespecified extent that is set in advance according to the

knowledge of the size of the noise.

To each of the surviving matches of difference vectors, we then assign a non-zero ;
wetght according to the angle compatibility with respect to 8;. We now go further \
by considering all matches of two triangles, each one formed by three observed
points in each image frame, that satisfy the following admissibility condition with

respect to Oo: -

A match of two triangles, each one formed by three observed points, b

say A, B, C; in each image frame 1, ¢+ = 1, 2, is admisstble if all the three

- e .

pairs of difference vectors (D(A,, B,), D(Az, Bs)), (D(B,C:), D(B;, Cs)),

(D(Ch, A1), D(Cs2, A;)) are surviving matches of difference vectors.

Then we assign to each admissible match of triangles, a weight which is the geomet-

ric mean of the three weights associated with the constituent surviving matches of

difference vectors. Now by summing all such weights over all the admissible matches

of triangles, we get a total weight for the fixed candidate angle 6,.

*p "5 S 70 n MR
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Again it should be noted that a triangle may form admissible matches with
several triangles even for a common value of 8,.

Now we first maximize the number of admissible matches of triangles over the
possible values of 6y, and then over the set of all such maximizing values of ,, we
select the value , of 8, that ﬁa:dmiza the total weight. Our final estimate 8 of
0 will be a weighted average of the differences in two angles of surviving matches
of the difference vectors forming the admissible matches of triangles for 8o, weights
being the ones with respect to fo. The final step is to get an estimate Tof Tin
exactly the same way as we did in the noise-free case before. Note that if there is
no admissible match of triangles, we simply return the answer “Two image frames
do not seem to show the same object”.

It should be noted that if the prominent points on the object form the vertices
of a regular polygon, we may have lack of identifiability, i.e., there may be several

possible estimates consistent with the data.

3.3 Method of Estimation

In the last section, we claimed heuristically that the differences in lengths and
angles of each pair of difference vectors may play a major role in establishing the
admissible matches of observed points in two notsy image frames taken at times
t;, and t; respectively. Now to support that claim, we will discuss in detail the

approximate behavior of the differences in lengths and angles.

3.3.1 Assumptions

Suppose that the physical points Py,..., P, are the n distinct prominent points
on the object in which we are interested. For simplicity, but without any loss of

generality, let us assume that the first m, of these points are observed in both image
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frames, the next m; —my points only in image frame 1, and the next m; — m, points
only in image frame 2. Since our data consist of the noisy locations of the points
observed in the two image frames, again without loss of generality, we will assume

that there are only i (< n) prominent points to begin with, where
fi 1= mo + (my — mo) + (ma2 — mo) = my + my — m,. (3.7)
After making these assumptions, let

x0 = ((1—'1, yl), cany (zr'n yﬁ)) (38)

be the true location of the n observed points P,,..., P; in the image frame coordi-

nates at time ¢, in that order. Also let
X1 := ((X11, Y11)s - - - s (Ximy s Yim,)) (3.9)

be the observed locations of the m, points Py,..., P,, in image frame 1, and

XQ = ((le, y'zl),...,(sza,Yzm)) (310)

be the observed locations of the m; points Py,...,Pn,y Pm,+1,-..,Pn in image
frame 2 in their respective orders. However, remember that what we have as actual
data are two unordered sets of observed locations, one from each image frame.

Our independent Gaussian noise assumption can be expressed in the following
matrix notation:

All components of X; and X, are independently distributed with

L ( §“ ) = N(“livo'le)) t = 1,...,m,, (311)
1
and
X 1) 2 _
£ Y, = N(“z,‘,a Iz), J = 1’-"!m2’ (312)
25 |
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where

By = [:‘], t=1,...,m, (3.13)
and R
U(0) ;’_']+-r ifj=1,...,mo
L ¥
By 1= _ . (3.14)
U(g) | Fitm™-me | 4T ifj=mo+1,...,m,
L Yi+my—mo

The notational correspondence is described again in Table 3.2.

3.3.2 The Length Difference and Angle Difference

Let us consider any two prominent points P;, P, with 1 < k < ! < my, so that they
are among the common observed points. Let us fix k and ! for the time being.

We first look at their true locations g, #; in each image frame ¢, s = 1,2. We

have
D(pyss4y) == Bu—bu
Zy— T
= . 3.15
[ L/ B /] ] (3-15)
and

D(pay, y1) = Py — By

U(8) [ :: _ ;: ] : (3.16)

Clearly we know
1D (Bans bi2e) | = 1| D (g 1)l » (3.17)

namely, the true difference vectors corresponding to the same prominent points P,
P, in the two image frames have the same lengths. Moreover if we consider their
angles,

@i = arctan(D(p,u, py)), + = 1,2, (3.18)
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True True
Locations Locations
Physical in Image in Image
Points Frame 1 X, Frame 2 X,
z) Xu z, X2
= =U(8 T
P H =] nJ o+t |
E X T X
P, Tmo = Tmo Imo =Ul(8 Mo T 2mo
mo [ym Prmo _ym.,] Y| | Pamo (6) ym] + [Ym
) 2 Tmo+1 " = .:!:,,.04.1 Ximo+1 NA NA
mot Ymo+1 mo+l Ymo+1 Yimo+1
X
P, Fmy = [Fm 1my NA NA
| [ym;] “1"‘1 ['Iml] [},lml ]
Pmr [[Em NA NA  |Bymeer =U(B)Z™ | 4T | [ Xomors
! Ymi+1 mo+1 Ym,+1 },2mo+l
. Th _ Th Xgm
P; [y;.] NA NA By, = U(G)[ '_‘] +T Yzm]

Table 3.2: The notational correspondence. Image frames 1 and 2 taken at times
t; and t;, respectively. “NA” represents the nonavailability of the information.
n= my + mas — mo.
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then we have

P2 = ¢(p1 + 6),

or equivalently,

0= C(P; - pl) (3.19)

if we add the restriction that 8§ € (—,x]. In other words, the angle 6 of rotation
can be recovered from the difference 3 — ¢, of the two angles, one from each image
frame, of the true difference vectors corresponding to the same prominent points
P, P,

Now we look at the observed locations (X, Yir), (Xu, Yu) of Pi, P in each image
frame 1, and denote them by P;;, Py respectively, for 1 = 1,2. Then it is easy to see
that

L[D(Py, Py)] = N(D (s ), 20%13), fori=1,2, (3.20)

and hence we get

. . 2 : 1 2
p [uvuz.;zm)u ]=x§ (ML#ZU_:*_)I_I) fori=12,  (321)

where x3 (6%) is the non-central Chi-square distribution with g degrees of freedom
and non-centrality parameter 62. Since a x; (6?) random variable has mean ¢ + 62

and variance 2q + 462 (see [Johnson 70, pp. 130-135] for derivation), we get for

1=1,2,
E [IID(P;:zPa)II’] —24 HD(né-:zua)ll” (3.22)
and
Var [unw,mu’] = oy 2D I 5.23)
202 o?
It follows that for 1+ = 1,2,
E [||D(Pu, Pa)[I*] = 40® + || D(ms, ) 1%, (3.24)
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and

Var [ D(Pa, Pa)|] = 160* + 80° || D(ps, )" (3.25)

In the next subsection, we will derive approximation formulae for E [|| D(Py, Py)]|],
Var || D(Pix, Pu)||), E [arctan (D(Pi, Pa))|, and Var[arctan (D(Pi, Py))], for suffi-
ciently small ¢ > 0. To do that, let us first simplify the notation by taking

D; = D(Pu,Pu) (3.26) ‘
Doi = D(pix, i) (3.27)
d; = |\Di (3.28)
doi := | Dol (3.29)
for i = 1,2. Then (3.20)—(3.25) become
¢
LDy = N(Do,20%L,), (3.30) 1
[ d? 2 [ 9% §
L 37| = X3 (ﬁ) ) (3.31)
K4 %
E 27| = 2+ 2%, (3.32)
[ d} 2d%
Var Ed_z = 44+ 7, (3.33)
E[dl] = 40’ +d}, (3.34)
Var[d}] = 160* +80%d}, (3.35)
fort:=1,2.
3.3.3 Approximations .
We begin this subsection with a statement without proof of the following theorem ‘
which justifies a method called the “6-metlod” for finding the approximate mean )

and covariance of a function of a random variable. For a slight variation and a

discussion, see [Bishop 75, pp. 492-494].
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Theorem 3.1 (6-method) Let V, be an m-dimensional real vector valued random

variable, vo € R™, and let
t1(v)
t(v) :=
ta(v)
be a d-dimensional real vector valued function defined on some nesghborhood N of

vo in R™ such that the Jacobian matriz 9t(v)/0v ezists and s continuous on N.

Suppose also that

T

L [V' — "°] — L{W] ast—0, (3.36)

for some random varsable W.

Then t(V,) admits the first order Taylor Ezpansion

ot
t(V,) =t(vo) + (v) (V, =) +0,(r) as7—0. (3.37)
v |y-v,
Also
V, — vy in probability as r — 0, (3.38)
t(V,) — t(vy) sn probability as — 0, (3.39)
and

) [t(v,) = t(vo) J L [ %(Tﬂ_

WJ ast — 0. (3.40)
V=9,
The conclusion of Theorem 3.1 is especially useful, when we have

L(W]= X(0,X), (3.41)

where it follows that

at(v) N dt(v) at(v)|T
L [ £ v=v.,w] =N (o, 5 vt = S5 v=v.,) . (3.42)

We can interpret this as saying that for small 7 > 0,

T
Lt(Vy)] = N (t(vo),r2 a_“aﬁ':ﬂ . > Q:S(T") _v ) , (3.43)
34
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and hence ¢t(V,) behaves like a Gaussian random variable t* for which

E[t’] = t(vo), (3.44)
and ,
Covt*] = 13 a“%ﬂ LLE % i (3.45)

First we apply Theorem 3.1 with V, = d?, vy = d%, t(v) = /v and 7 = 0. To

do so we must find the limiting distribution of (d? — d%;)/0. We have

B-dy _ b -d o B
o o 20?

= ?[(zl+s)’+z;—6’] where E([g: ]) = N(0,L;)

= 20(2621+ (2] + 2})] = 2V2dw 21 + O(o).

Hence
c [.11;_43,] o £{W] = N(0,8dL).

Therefore from (3.43), we get for small ¢ > 0,
2
L[d] =~ N (do.-,a’(z—;;) (8d3,.)) = N (doir20%). (3.46)

Again we apply Theorem 3.1 with V, = D;, vo = Dy, t(v) = arctan(v) and

T = o. In this case, it is obvious that
D; - Dy;
L [-0_0‘] = N(0,2I;) — N(0,21;).

Now we have

at(v) (@ arctan(vy,v;) darctan(vy,v,)
dv | avl ’ avz
= |- zcos (arctan(vy,vs)), v—cos2 (arctan(vy, vs))
1 1

"
] U1

- - ’ [

| v} + v’ vf + ol
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and hence from (3.43), we get for small o > 0,
L[arctan(D;)] = N (arcta.n(Do.-), %‘2—) . (3.47)

It should be noted that except for the case where arctan(Dy;) = 7, the approxi-
mating normal distribution in (3.47) assigns positive probability outside the interval
(—m, 7], but that this probability approaches zero as ¢ — 0, while the actual distri-
bution is confined to (=, x], s.e., a distribution on the circle. The exceptional case
may be treated by translating the probability in the approximating distribution
over (m,27) to (—,0). However the need for this peculiar distribution on the line
will disappear below, when we consider the distribution of a difference of angles
which centers about 0.

Since D; and D; are independent, and so are d, and d,, we see from (3.46) and

(3.47) that for small o > 0,
L[dy — dy] = N (doz — don, 40%) = X (0, 40°) (3.48)

since

doz =dyn

from (3.17). Also

202 207
Llarctan(D;) — arctan(D,)] =~ N (arctan(D;) — arctan(Dy),

—_ —
dy  df

2
= N (arctan(Dog) — arctan(Dy,), Z—:-) y  (3.49)
0

1

or
40?
Llc(arctan(D,) — arctan(D,) — 6)] = N {0, N (3.50)
01
since
¢(arctan(Dy;) — arctan(Do;) — 8) = 0 (3.51)
from (3.18) and (3.19).
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Therefore, we may conclude from (3.48) and (3.50) that for small ¢ > 0,

d; —d
£[ 20

] =~ N(0,1) (3.£2)

and

L c(arctan(D;) — arctan(D,) — 8)dn,
20
We may go one step further by replacing do; in (3.53) by the estimate (d, + d,)/2

] ~ N(0,1). (3.53)

in view of (3.46) and get
) [c(arctan(Dg) — arctan(D,) — 0) dy + d;

=~ N(0,1). .
The approximation results (3.52) and (3.54) will play the key roles in the esti-

mation procedure presented in the next subsection.

3.3.4 Estimation Procedure

The two approximate distributional results (3.52) and (3.54) provide us with valid
statistics with which we can measure the significance of the correspondence between
any pair of difference vectors, say D(P;;, P,;), D(Pas, Py), of the observed locations
Py, Py in image frame 1, and P, Py in image frame 2, and thus enable us to
assign a weight to each correspondence. To do that let us first define functions

h(u), p1(r) and py(r) that are needed in our weighting scheme, by

h(u) := max(2.5-u?0) forue R, (3.55)
p(r) == V2472 forr>0, (3.56)
p2(r) = —4119(r +1)exp{—(r+1)} +1.915 forr > 0. (3.57)

The roles of these functions are to be explained later after we indicate how they are

used in our weighting scheme (see Figure 3.2 for their graphs).

In the following steps, let us describe the estimation procedure, where we take
the value of o to be 0, = ko for k > 0. The effect of this misspecification of ¢ when

k # 1 will be discussed in the next two chapters.

. @ "
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Figure 3.2: Graphs of the functions (a) h(u), (b) p1(r) and (a) p2(r).
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To make the procedure feasible on a computer, we fix a finite grid I' C (—=, 7]

of candidate angles 6, of rotation. Specifically, in the simulations in Chapter 5,
T = {(.0)n | n=0,1,...,+314} (3.58)

STEP 1 Assign an arbitrary order to the observed locations in smage frame 1, and
label them by that order, Pyy,...,Py;y,. Similarly label the observed locations in

smage frame 2 by Py,..., P2,

STEP 2 For each pair of observed locations (Py;, P,;), 1 <t < j < my, in image
frame 1 and each pair of observed locations (Pay, Pyi), 1 < k # | < m, in ymage

frame 2, form the difference vectors D(Pi;, P,;) and D(Pz, Py), and then compute

Ry; = ||D(Pu, Pyj)ll (3.59)
R := ||D(Pz, Pl (3.60)
s = arctan(D(Pu, Pyj)) (3.61)
wau = arctan(D(Pa, Py)). (3.62)

STEP 3 Foreacht, 5,1<1<j<my,andk,l,1<k#Il<m;, consider the pair
of difference vectors [D(Py;, Py;), D(Pay, Pyi)]. Call (i, kl] := [D(Py;, Py;), D(Pax, Pay)]

to be a candidate match of difference vectors if

R — Rn‘j)
h ( ) >o. (3.63)

Then denote by C, the set of all candidate matches of difference vectors, [ij,kl].

STEP 4 Denote the ordered triple (1192, 172, [$183, J1Js), [$2¢s, J2Js]) € C3 by [1, 7] :=

[#182¢3, J1727s], and call it a candidate match of triangles. Let

¢ ={jec’} (3.64)

be the set of all candidate matches of triangles.
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STEP 5 Fiz a candidate angle of rotation, 8, € I'.

STEP 6 Denote the set {(1,2),(1,3),(2,3)} by (123). For each [+, 7] € C* and each
(s,t) € (123), compute the weight of [1,3¢, 7,5 for 8o by

R""‘+R'o. c JoJe ‘0‘1—0 Rl'gi't+R.c.
a0 = o (S M)h( - 0. L o (S8 ”))

(3.65)
If Wi i.50(80) > O, then call (1,34, 3,5 @ surviving match of difference vectors for

0o, and let
5(0o) == {[isis, u5e] € C | [, 7] € C*, (s,2) € (123), i 5is}(60) > 0} (3.66)
be the set of all surviving matches of difference vectors for 8.

We digress here to elaborate on the roles of the functions k, p;, and p;. As can
be seen from Figure 3.2 (a), h(u) is a non-negative even function which serves the
following two purposes.

First, h serves as an “aperture” through which the argument u has to pass in
order to att>in a non-zero h value at all. Specifically, it sets +/2.5 ~ 1.5811 as the
upper limit by which |u| is bounded to attain a non-zero h value. In particular, if
we have a real random variable Z, with E[Z] = 0 and Var[Z] = 1, in place of v,
then we can interpret this as saying that only the observations Z within +1.5811
standard deviations from the expected value will get the non-zero kA values. Note

that the probability of such an event,
P{h(Z) > 0} = P{|Z| < 1.5811}

is approximately .886 if £|Z] =~ N(0,1). Remember that, from (3.52) and (3.54), if

[¢7,kl] is a true match and o, = o, then we have

Ry — Rm‘] .
. [T" ~ N(0,1),
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and

L [c (Pan — p1ij = o) Rui; + Ram | _ N(0,1).

20, 2
Secondly, A, by itself can be used as a weight of a special kind assigned to the
argument value u. The resulting weights will have the property that as |u| decreases
from 1.5811, the weight increases sharply and reaches a smooth maximum, namely
2.5, at u = 0. This property insures that, once a value of u passes through the
non-zero aperture, it will get a weight which is not too close to zero, and at the
same time, the values of u which are close to 0 will get almost the same weights as
v = 0 does.
The functions p; and p; are used to adjust the basic weighting scheme provided
by h in order to incorporate the following idea. Suppose that we have defined, in
STEP 6, the weight of [1,3, 5,5] for 6, by

L '0 't - '..'.t - 0 R "o'.l + R 'o 't
Wisicgoi)(00) := R (c(m’ : 2:': o) By 5 2 ) . (3.67)

This weight fails to take into account that matching long difference vectors provide
more accurate information about § than do short ones. So by defining the weight
by (3.65) instead in STEP 6, we enlarge the non-zero aperture for the pairs of large
difference vectors using p,, and at the same time, we get a weight roughly of the
order of the average length of the two difference vectors using p;. The reason that
we use /.2 + rZ for p,(r) instead of r is to bound the function away from O in the

neighborhood of r = 0. For pa(r), functions of the form
—a(r+1)exp{—(r+1)} +b

were first considered in order to get a point of inflection at r = 1, and then the

coefficients a, b were determined to satisfy the conditions

p2(0) = .4 and p,(1) = .8.
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The choice of these functions is somewhat arbitrary.

We now describe the next estimation step.

STEP 7 For each [1,7] € C*, if [:,7] € $(80)®, then call it an admissible match of
triangles for 6o, and let

Abo) := {71 € C* | [ 7] € $(80)%} = C* N §(60)° (3.68)
be the set of all admissible matches of triangles for 8,.

STEP 8 For each [t, 7] € A(6o), define its wesght for 8o by

1/s

win(o) :=( II Wieiil(9)) (3.69)
(a,8)€(123)
and let
w(lo) := > wyz(bo)- (3.70)
[R71€A(%)
STEP 9 Let
N (6o) = | A(6o)] (3.71)
be the number of the admissible matches of triangles for 85. Define
Omax :={o €T | N(do) = max N (8) > 0}. (3.72)
[+]

If Omax = 0, then return the answer “Two image frames do not seem to show the

same object.”

STEP 10 Let 8y € Omax be the smallest value in T of 8, such that

w(fy) = ,max w(bo). (3.73)

0EO@max

Remark: Usually, there will be only one d, satisfying (3.73).
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STEP 11 For cach [T, 7] € A(fo) and each (s,t) € (123), define
Vis(s,t) = e(0sii = P1ivie — bo).

Then define the final estimate 8 of the angle of rotation 8 by

~

E[r. HeA(do) W (50) Zienezsy V(s t)

0 := d. + x
° 3w (o)

Note that

W(io) = E Wis 51 (io).
[.7leA()

STEP 12 Define the estimate T' of the translation vector T by

. s s
TI: — > (ZPziu—U@Z__:le)-

3N(00) [r'ﬂel(";) k=1
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Chapter 4

Maximum Likelihood Estimate in
the Recognized Points Problem
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In the estimation method we proposed in the previous chapter, we have assumed
that the observed points in the two image frames are not individually recognized.
In principle one might apply maximum likelihood to the estimation problem, but
the difficulty in formulating and calculating the likelihood function under the above
assumption is formidable. However, one ought to expect to do better when all the
observed points are recognized so that the m; common points among them in the
two image frames are matched without error in identification. Hence, this latter
situation, which is readily treated by maximum likelihood as will be seen in this
chapter, should provide us with lower bounds for the error in our estimates for the
original problem. We refer to the two problems by the labels, “Unrecognized Points”
and “Recognized Points” problems, respectively.

In this chapter, we will prove the existence of the maximum likelihood estimate,
and derive its asymptotic normality and consistency as ¢ — 0, for the Recognized
Points problem. Similar results are derived even when ¢ is incorrectly assumed to
be o, = ko for positive k # 1 in constructing the likelihood function.

We continue to use the same notation as in Section 3.3, and assume that my > 2

throughout this chapter.

4.1 Simplified Assumptions and the Maximum
Likelihood Estimate

For the Recognized Points problem, where we recognize all the observed points, we

can assume without loss of generality that
mo =m; = me = (> 2), (4.1)

since the m; — my unmatched observed points in each image frame 1, 1 = 1,2, do

not provide us with any additional information about the motion parameters 8 and
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T. Accordingly, let us assume that the three vectors

xo = ((21, y;),...,(z,..,,y.,.o)) € Rzﬂo (42)
Xy = (X, Yu)s- s (Ximes Yimo)) € R*™ (4.3)
x2 = ((lea },21)) ceey (szo: 1,hllo)) € RZmo (4‘4)

are the true locations at time ¢,, the observed locations in image frame 1 (at time
t1), the observed locations in image frame 2 (at time ?;), respectively, of the my
distinct prominent points P,,..., P, in that order. For notational simplicity, let

us define the vector of observations X by

X:= §; ] € R'™, (4.5)
Similarly, let us define the vectors u;, p,, g by

oy ]

b= : | e R¥™ (4.6)
L Pim, .

B

B = : € R™ (4.7)

[ Hamo
( [ 4
= € R'™e, 4.8
b [2] (4.4)

Also define the true parameter B representing the true locations of the distinct

prominent points Py,..., Py, at time t;, the angle of rotation 4, and the translation

vector T by
B,
B:=] 0 | € R*™o+S3, (4.9)
T
Then we can write
u, = g(B) (4.10)

where g(B) is defined by

9(8) = (U(6) ®@Lno); + T ® 1,
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0 I{(o) B+ T € R*™, (4.11)
o - o Ul
Hence we have
B=G(8), (4.12)
where G(f) is defined by
G(B) := [ g'(‘;,) ] € Ri™, (4.13)

The independent Gaussian noise assumption that we made in Subsection 3.3.1

can now be written as

L[X] = L[X|B] = N(G(B), 0’ Limy), (4.14)

and hence the probability density function f(x;8) of X is given by

1
f(x; B) =='(Ta,)mexp 2 p

Therefore the log-likelihood function L(ﬁ) of X is given by

L(B) = L(X;B):=logf(X;B)
1(X-G(8) (X -G(B)

= —2mqlog(270®) - 3 ~

(4.16)

for any B € R¥mo+3,
The maximum likelihood estimate of 8 is defined to be the value 3ML := Byi. (X)
of B which maximizes f (X; B), or equivalently, L(ﬁ) Note that ;9ML is a solution of

the likelthood equation

aL—(). =0 (4.17)

a8
where aL(ﬁ) /B is the row gradient vector of L(B). Also By satisfies

Au.(G(B) = B (4.18)

47

- T S S N U N L T P R -
...... ' O R A A A B A N N A N A T A AT AL AT AL AL OB N SO

'1
.\i’it\{'\mj



since we have from (4.16), for any 3 #B,

- T -
L(G(B); B) - L(G(B); B) = %(G(ﬁ) - G(ﬂ))az(G(ﬁ) ~G(@)

where the strict inequality follows from Lemma 4.2 to be proved in the next section.
In the next section, we will derive the existence of ﬁm_, and its asymptotic
properties as 0 — 0.
The proof of a strengthened result to the effect that f’m is unique with proba-
bility 1 will be deferred to Appendix A.1.

4.2 Asymptotic Normality and Consistency of the
Maximum Likelihood Estimate

In this section, we assume that the true ¢ is known unless otherwise stated.

First note that, from (4.16), we have by differentiation,

oL(B)" _106(8)" . ..
o5~ g5 X-GB). (4.19)

We begin with the following lemma.

Lemma 4.1 Let X be an m-dimenssonal Gaussian random vector whose true dss-
tribution 15 given by

L[X] = N(K(B),Z) (4.20)

for some B € RS, some m by m positive definite matriz £, and some function
K:R¢— R™. Let .
[ KB
K(B) = :
Kn(B)
Jor any 3 € R?. Suppose each K.-(k) 18 twice differentiable with respect to ﬁ

;o\ LTS PR R T AN D R S i e S St s e T R U
o U4 O VS A T A o R i ¢ S S T R A A R AT R

AR A _AYESS

L
L

R AL ¢ |



IR RKERR

N i L) Al 4 (u y ¥ v, Alg af 0 1 0] 0 DRV TS TR OO A -atocad at ol tall Sal ve¥ Sl top sl Vb - af 1, O =

Then the log-likelshood function L(X; B) of X satisfies the following.

- 1T - -

dL(X; B) dL(X; B) 3*L(X; B)
E i, LA ——— = —E —— 4.21
[ % lg=p 9 lp=p [ oB ﬁ=n] )
- ?—2—1-'-(35;—@ .(4.22)

98 |x.B) = (K(B),B)
(4.23)
The matriz o or )
7= | 2LCX:B) OL(X; ) (4.24)
% lp=p 9 lp=p

15 Fisher’s information matrix.

Remark: The first relationship (4.21) in the conclusion above, holds under more
general regularity conditions on L(X;8) which allow the change of the order of
differentiation and integration. Also, it is known that the second one, (4.22), holds
under somewhat more general circumstances. For details, see [Kendall 77b, pp.
56-58] and [Huzurbazar 49).

Nevertheless, we will write out the proof of Lemma 4.1 under the assumptions
given, for the later use.

Proof : Since L[X] = N(K(B),X), we have
L(X;B) = ~Hog(2m)™[B)) - ¥X - K(B) T (X - K(B)  (425)

and hence r

=YX - K(B)). (4.26)

aL(X;B)" _ oK ()
EY) ap

Differentiating one more time with respect to ﬁ gives us

PLXiB) _ 3 [0K(B) ¢oin _ wys
—Tﬁr— 3 | op ( (8))

K@) K@) , PKE)

=X - K(B), (4.27)

F): aB B




e -2 T
where we used the notation (32K (8)/ 6ﬂ2) to denote the row “vector” with matrix

components,

TN s
aﬁz aﬁz ’ ’ aBZ ?

with the understanding that it be treated just like an ordinary m-dimensional row

vector. By substitution, we get

~ 1T -~
7 = &8 z“(X—K(ﬂ))(x—K(p))’z-l-‘?i‘—@),
op B=5 o8 B=p8
-~ 1T -~
_ 9K(B) TE[(X - K(B))(X - K Tz-IMI
% |55 (x - KX - K@) =7 — 5es
-~ 1T -
_ 9K(B) E“Cov[X]E'l—FaK(ﬂ)‘
_ a_K@T 2-121_{@ , (4.29)
% lg=p 9 lp=p
and
E 3’L(§;ﬂ)
% lg=p
- 1T - -
_ _ML z-l"iﬁﬂ‘ + 2K o - k()
%8 p=p 9P lp=p 9B lp=p
_ B gak@®] KB i e
_ k@ .ox@) (430)
8 |p=p B |g-p
and
a*L(x;Is)'
LX)
98" |x.B) = (K(8),)
- T - ~ 1T
3K (B) " 3K(ﬂ)t 3*K(B) -
- KB g 9K(A) + 2= TYK(B) - K(B)
o8 lp=p 9B lp=p OB lg=p ( )
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_ k@ .ok (4.31)
% lg=p 9P lp=p

This completes the proof.
Applying Equation (4.29) in the proof of Lemma 4.1 to our case, namely, when

the log-likelihood function is given by (4.16), we get

_1 3G(ﬂ)l aG@B)|
@ B lg_p P l_p

We will now derive the existence of the maximum likelihood estimate ﬁML and

(4.32)

its consistency as o — O for the Recognized Points problem. To do that, first let
N := R* x (—m, 7] x R? ¢ R™*3, (4.33)

Then the space {1, with the topology on (—, 7| being the tdentification topology
with respect to the covering map ¢* : 8! — (-m,n]|, (i.e., 2 set V C (—m,7] is
open if and only if ¢*~1(V') is open in S!), is the space of parameters B over which
we want to maximize the likelihood function f(X; B), or the log-likelihood function
L(B).

We need the following lemma to proceed. This lemma states that G (/-9) is one-
to-one on that subset of N1 corresponding to at least two distinct prominent points.
It essentially follows from the fact that the identity is the only rotation about 0 in

R?, which has a non-zero fixed point. (See, for example, [Choquet 69, pp. 59-66].)

Lemma 4.2 If

1]

By .. | B
p:=| 06, and B:= 0" €N,
T T

and ji, represents at least two distinct prominent points, then G(B) = G(B) implies
that B = ﬁ'.
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Proof : Suppose G(B) = G(F). Then from (4.13) we have

b = iz’ls (4.34)
and
9(B) = 9(B). (4.35)

Then from (4.11), (4.34) and (4.35), we get
(UB) @ L)y + T @ Ly = (U(F) @ I )iy + T ® Lom,.. (4.36)

Without loss of generality, we can and will assume that f,, and /i, are distinct

points. Then looking at the first four components of the vectors in (4.36), we get

~

UB)jy, +F=0(@)i, + T, (4.37)
and
U(0)f, + T = U@, + T. (4.38)

Subtracting (4.38) from (4.37) gives

or
1 ~.

U(a")- U(0) (ﬁu - ﬁlz) = fyy — Bbys,

and hence

U(ﬁ“ 0')(2’&1, - ﬁu) = ﬁ'u - ﬁxz'

Since j,, # j4,,, we must have

and thus

-------------------------
.......
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Then from (4.37) and (4.39), we get

~ f

T=T (4.40)

Therefore from (4.34), (4.39) and (4.40), we can conclude that
B=8.
This completes the proof.

We will state without proof, the following theorem which proves the existence of
the maximum likelihood estimate based on n 1.1.d. observations, and its consistency
as the sample size n — oo, under certain conditions. Then after that, we will show
how the theorem applies to the maximum likelihood estimate ﬁML in the Recognized

Points problem. For a proof see [Chernoff 79, pp. 52-54].

Theorem 4.1 Suppose that st is possible to extend the space of parameters, 0, to
a compact set 1° such that

(i) for every B €N, Pb 15 a subdistribution with density f(x; ﬁ), (i.e., f(x; ﬁ) >

0 and [ f(x; 3) dx < 1), which is continuous with respect to ﬁ,

(ii) for every Be 1*, there is a neighborhood Nﬁ ofﬁ such that

. f(X;ﬁ)]
E £ o1 & —oo,
g /?énNB og[ <Al ~ %

and

(iii) for every B € O\ {B}, Py # Pg.
Then, for every neighborhood Nﬁ of B, B,,, the value ofﬁ € N° which mazimizes

the likelihood based on the first n observations, ezists and satisfies

P ﬂ{ﬁ,, €N B infinitely often} = 0
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and
Pp{ﬁ,‘ & Np} —+0 as n— oo. (4.41)

First note that, in the Gaussian case, Theorem 4.1, which deals with the maxi-
mum likelihood estimate when the sample size n — co, can also be applied to the
situation where we have a fixed sample size but 0 — 0, for the following reason, as
mentioned in [Johansen 84, p. 77. If XM, ..., X are independently identically
distributed with

LX) = N(,Z), i=1,...,n,

then
X:= 1 > X
L

is a sufficient statistic for s and

L[X] = N(u,0"E)

where

Pi=L_0 asn—ooo. (4.42)
n

Thus if we interpret the role of n to be that of 02, the Gaussian model makes the
two maximum likelihood problems equivalent.

Now we will show that our model, defined by the log-likelihood function L(B) in
(4.16) with the parameter space ) in (4.33), satisfies the condtions of Theorem 4.1,
and as a result, that ﬁML exists and is consistent. To do this, let us first note that
N is locally compact and Hausdorff so that we can add a new point, oo, to it and get
a new space {1° that is compact ([Royden 68, p. 168]). In 01*, a subset is open if it
is either an open subset of {1 or the complement of a compact subset of 1. Define

the subdistribution at co € 1° by taking

f(x;00) := 0 for any x € R'™. (4.43)
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Then condition (i) of Theorem 4.1 follows from the fact that
_lim f(x;ﬁ) =0 = f(x;00).

: poo

Note that for any ﬁ €en,

log L5:8)

i f(x B) = _‘2% [(x -GB)T(x-G(B)) - (x— G(B))T(x - G(ﬁ))]

1
> -5 [x—~G(B)(x - G(B))].

For 3 = 00, the above log is intrerpreted to be +co and the inequality still holds.

thus

1
—mE a’xim] = —2my > —o0, (4.44)

1 E|_inf (X b)
ﬂe n‘ f(X B)

and condition (ii) follows. Finally condition (iii) is satisfied if # corresponds to at

least two distinct prominent points, since it is obvious that P, # Pp, and for every
Ben \ {8}, the mean G(ﬁ) uniquely determines P, and thus by Lemma 4.2, if

B

ﬁ # B, G(B) # G(B) and Pﬁ # Pﬂ' Therefore all the conditions of Theorem 4.1 are

satisfied and hence we have the existence and consistency of the maximum likelihood

estimate ﬁm.: namely,

Theorem 4.2 If B corresponds to at least two distinet prominent points (mo > 2),

then ﬁm, ezists, and
3ML — B in probability as o — 0. (4.45)
Note that f’ML cannot be oo, since

£(X;B) > 0 = f(X; o0)

o B SR, S W dincalin

for any ﬁ €.

Now we need the following theorem to derive the asymptotic normality of ﬁML.

For a proof, again see [Chernoff 79, pp. 19-21].
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Theorem 4.3 Suppose that the following assumptions hold.

(i) 3,, — f in probability as n — oo,

oo [aloe £(X; 79)‘ ] _
(i) Eg [ ap 55 o,

(iii) E g {£~2(X; ) "—’ﬂl‘zﬂ‘ =0,
% =8

(iv) J1(B) #s positive definite,
and
(v) Ep[W(&)] —0 as 60,

where -

- IT -

5(f) = Eg|2efXif) ] dlog f(X; B) ) ’ (4.46)
% lp=p 9 lp=p
W) = sup |LEXiB) T log/(Xih) ,_ (4.47)
plel el
' and || - ||,,, represents the largest component of the matriz.
Then we have ‘

L[va(B.-B)] - ¥ (0,J7}(B)) as n— oco. (4.48)

Again by the same argument as in the paragraph immediately following Theo-
rem 4.1, we can apply Theorem 4.3 to our small o situation. The only exception is

that the conclusion (4.48) should be translated into

L [ﬂm‘——p] - N (0,0".1‘1) as 0 — 0, (4.49)

(4

since J;(B) is Fisher’s information matrix corresponding to the likelihood function
of a sample X of size 1, and for a sample of size n, the corresponding information
matrix J,(8) becomes J,(8) = nJ,(B) so that J;7*(B) = nJ;!(B), which corresponds

to o~2J1,
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Now we will show that the conditions of Theorem 4.3 are satisfied by ﬁm if B
corresponds to at least two distinct prominent points (mg > 2). First, condition (i)
follows from Theorem 4.2. Condition (ii) follows from (4.19) and the fact that
E p[X] = G(B). To show that condition (iii) is satisfied, let us first note the following
identity: )

af(X; - (X; '2
B ap
By differentiating both sides of (4.50) with respect to B, we get
9*f(X;B)
% lp=p
-~ |T -
dlog f(X; ) dlog f(X; B)
% lg=p 9 Ip=8

= f(X;8) [

8 log f(X; B)
+ ﬂ_ . -
%  IB=8p
Thus by dividing both sides of (4.51) by f(X;8) and then by taking expectations

(4.51)

under B, we get

Bg |5 2LK:A) 3‘;7’\
g (X8 oF o

~ T -
dlog £ (X; B) 3 log £(X;B) ‘
% p=p 9P Ip=8
8% log f(X; A
+Eg og f(X; B) ~- .
% lp=p
However the first term on the right is J and the second is —J from (4.21) and (4.24)
in Lemma 4.1. Therefore condition (iii) is satisfied.
The proof that condition (iv) is satisfied, i.e., that J is positive definite, will be
given in Lemma 4.3 in the next section.

Now it only remains to show that condition (v) is satisfied. To do so, it suffices
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to show that the third derivatives

8% log f(X; B)
28,96,08, '

are uniformly bounded in the region “ﬁ - ﬂ“ < é by a function H(X) whose ex-
pectation under B is finite. Indeed, from Equation (4.27) with K := G, T := o%,

Q(X; B;4,5, k) := i, k=1,...,2mo+3 (4.52)

it is easy to see that Q(X; ﬂ, {,7,k) in (4.52) is a polynomial in the components
of X, G(B), 8G(B)/3B;, dG(B)/3B;, 3G(B)/B,, 3*G(B)/88:3B;, 3*G(B) /3B,3B,,
9G(8)/ ais,.ab,,, and asG(ﬁ) / ab..afs,.a[a,, of degree two, and hence uniformly bounded
in the region "/.9 - ﬂ" <$é,foralls,j,k=1,...,2mp+ 3, by a function H(X) of the
form

H(X) := [[a(8) ]| IX]| + [[b(&)]

for some a(§) and b(6) € R4™. Then

EglH(X)] < |a(8)l| (IG(B)| + 4mooE(jel]) + ||b(8)|| where Lle] = N(0,1)

la()ll (lG(B)] + “\—,?w) + b < co.

Therefore all the conditions of Theorem 4.3 are satisfied and we have, except for
Lemma 4.3, proved the asymptotic normality of the maximum likelihood estimate
Bue-

Summarizing all these, we have proved the following theorem.

Theorem 4.4 Let L(X;B) be the log-likelihood function defined by (4.16) on N

m .
which is given by (4.33). Let B := | 0 | be the true value of B € NI where p,
T

represents at least two distinct prominent points (mq > 2).
Then the mazimum likelihood estimate By (X) which mazimizes L(X; ;9) ezists

and satisfies

;9ML(X) — B in probability as o — 0. (4.53)
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L [ﬁ&(f_)—_ﬂ] - N (0,0"’.!") as 0 — 0. (4.54)

Remark: Note that from Equation (4.32)

- 1T - -1
% lp=p % lp=p
and is independent of o.

It is easy to see that with probability — 1, the second derivative of the log-
likelihood function L(I’) is continuous and negative definite in a neighborhood of
B and hence with probability — 1, the likelihood equation (4.17) has a unique
solution in this neighborhood as o — 0. (See, for example, [Foutz 77].) However,
as mentioned earlier, in the last section, a stronger result, to the effect that the
maximum likelihood estimate is unique wth probability 1 can be proved. That
proof will be deferred to Appendix A.1.

Now Theorem 4.4 allows us the approxmation
L [Buw(X) - 8] ~ N (0,77) (4.55)

for a sufficently small o > 0, and this provides us with J~! as a measure of perfor-

mance with which our estimators § and T can be compared.

4.3 Fisher’s Information Matrix J and Its Inverse—
Asymptotic Covariance Matrix

In this section, explicit formulae for Fisher’s information matrix J and its inverse
J~! will be derived. The resuls will be used to estimate the approximate standard
deviations of the maximum likelihood estimate discussed so far, and then we will be
able to compare them with the ones from the sample distributions of the proposed

estimator obtained by simulation. That task will be done in the next chapter.




First, let us recall from Equation (4.16) that

.. T -
L(X;B) = —2mqlog(2n0?) ~ %(x - G(8)) ‘?}x - G(B))

where
. [ #
B = | 8 | encR™*, (4.56)
| F
o ) B
o® = [ wierhsFor
[ iy ]
u@ o --- 0 7
= (? ue) - 0 B+ e R*™.  (4.57)
i 0 - 0 u(d) T
By differentiating both sides of Equation (4.57), we have
3G(B) _ I2mo O2mox1 021m,x2
o8 —[U(5)®L..., (U(E+6) @ Ln,) iy 1:@1,,.,] (4.58)
and hence from Equation (4.32) we have
_186(3) 8B
“ 9% lp=p % lp=p
[ Izmo U(a)r ® Ivno
1 I, 02m,x1 02mox2
= H01x2m, w7 (U(Z+0)T [ mo . o "‘°]
o ACEAT ol g
L[ Lme+(U(O)TU(0)®Im,  ((U(O)"U(5+6))8Ln,) iy U(0)" @1m,
= ST (U(G+0)7U(0) @ L) 6] (U(5+0)"U(5+6))®Lno)t s (U(5+0)7@1n,)]| -
U(6)e1y, (U(3+0)@17, ) L®(17,1m,)

By simplifying the last matrix above, we get

1 2L:m, (U@ e Imo) 4y U(o)T ®1lm,
J=—| u(U(5)" @In,) wm W (U(5+6)" ®1m,)
U@9)®1%,  (U(F+0)®17 )a mol;

(4.59)

|

(4.60)
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and by expanding the submatrices out, we get

J (4.61)

_1[A B
_03 BTD9

where A, B, and D are 2mg by 2mg, 2my by 3, and 3 by 3 matrices respectively,

given by
2 0
A=|0 2 (4.62)
L O P ¢
0 --- 0 2
[ —y;  cos® sind |
z; —sinf cosé
B:= : : s (4.63)
—Yme cos® sinb
| Zm, —sind cosd |
and
=z +u?) —XZisin 0 -2 y; cos 8 372z cos -3 yi sin 6
D=3 2 zisin -3 2y, cos § mo 0
zicos -y y;sinf 0 mg
(4.64)

This relatively simple partitioned structure of the matrix will allow us to compute
the inverse without much difficulty. Before we try to invert the information matrix
J, let us first prove that it is positive definite and hence invertible (non-singular).

We prove it in the following lemma.

Lemma 4.3 If B corresponds to at least two distinct prominent points (mo > 2),
then Fisher’s information matriz defined by (4.24) is positive definite, i.e., for any
z € R¥mot3,

2TJz>0

and

£TJz=0 ifand onlyif z=0.
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Proof : First note that for any z € R*™e+3,

£TJz = 2T —1— 8G@) ' 8G(.3) z
o* 38 |g=p 9 lp=p
- 1T -
_ 1fee@| [60(5) ,]
| 9 lg=p] | % l5=s
. 2
_ 1jecH)
| % la=p
>
Now assume that
zTJz=0
Then from (4.65), we have ;
a_Ggp_) 2=20
% lp=p
where
3G(B) _ I2m, 02mox1 02mox2 ]
B |g_pg LUOCIn (U +6)®Lng) y L® L,

from Equation (4.58). Let
z:= [21,...,23m,a,b,C]T.

Then it follows that

0= Famo
(VO ®In) | i |+ (UG +0)@IngJia+ (12 @ 1my) [ ; ]

Clearly [2y,...,22m,] = 0, and if a # 0, then we get
™ -1 b
(U(E +0) @ Lng)ty = (11 ® 1) | © |
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and hence
by = —a—l(U(g + o)T ® 1m,) [ : ] (4.69)

which implies that, forallt =1,...,my,

[ zi ] = - UG+ 8" [ ’ ] . (4.70)

Yi

i.e., all the (z;,y:)’s are the the same and this is a contradiction. So @ = 0 and it

PR R R e

follows from Equation (4.67) that [b,¢] = 0. Therefore z = 0. This completes the
proof.

Now we will use the easily verified fact that, since J is non-singular,

. Jl=g [ A"_;Ef,}ll’r e } : (4.71)
; where

E := D-BTA™'B, (4.72)
E F := A™'B. (4.73)
/ Since we are only interested in the 3 by 3 portion J~(6,T) of the asymptotic

covariance matrix J~! corresponding to the parameters § and T, we only have to
compute 0?E~! where E is defined in (4.72).
By a long but routine calculation, we get the following symmetric matrix, of

which only the upper diagonal elements are shown.

J71(6,T) := a*E™!

20 1 Kz Sin 0+ p, cos \ —(pz cos § — p,, sin 9)
= ot Tl (03+02)+(us 8in0+py cos ) —(u, sin 8+ pu, cos 8)(u, cos 6—p, sin )
o\%z Ty (02 +02)+ (12 cos 8 — p, sin 6)
(4.74)
¥
where
1 Mo
= — ; 4.7

M2 - ; zi (4.75)
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[,
)

?l'l. ) I...O... .|'0

>

PN R LY RN RO RN R O R RO R e 4y Bia fta 4y d’'s §-ad 0 Rb Aot

— f: Vi (4.76)

By = me &

1 Mo
o} = m—ogg(:r:.-—u,)2 (4.77)
o = ml_og(y.-- )2 (4.78)

In particular, when # = 0, as will be the case in our simulation study, the matrix
(4.74) becomes
20 1 by e

py (0340 +uy  —pany . (4.79)
- — ity (0': + 0:) + ll:

J-18,T) =

mo(o? + o3)

We will refer to the diagonal entries of this matrix by &3 for use in the next
chapter.

Now we will discuss the case when o is incorrectly assumed to be o, = ko for
positive k # 1 in constructing the likelihood function. We will distinguish this case
from the one discussed so far by attaching a subscript “a” to the notation that has

been in use. Hence the log-likelihood function of this case will be denoted by L,{8)
instead of L(B), where

~ T -
La(ﬁ) ;= —2my log(27o?) — %(X - G(ﬂ))oz(x - G(8)) )

Then it is clear that, for both L(ﬁ) and L,,(B), maximizing them is equivalent to
minimizing (X — G(ﬁ))T(X -G (ﬁ)) Hence

Bura = Buws (4.80)

and all the results derived so far for f!ML are also valid for 3ML¢. In particular, BMLG
will have the same asymptotic distribution as BML, as the true value of 0 — 0, and

J~1 will be the asymptotic covariance of it regardless of the value of k > 0.
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Chapter 5

Simulation Study
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To compare the performance of the proposed estimator empirically with that of the
maximum likelihood estimate discussed in the last chapter, simulations of two sepa-
rate cases have been carried out by generating random prominent points, Gaussian
noise, and observed locations of points in two image frames.

As the pseudo-random number generator, we used the one developed by Wich-
mann and Hill [Wichmann 82], and as the Gaussian random number generator, we

used the one by Box and Muller [Box 58].

5.1 Method of Simulation

Without loss of generality, we assumed that the true locations of the prominent

points are within the open unit dise,
{(z.y) eR*|2* +¢* <1},

and also that there was no motion involved, s.e., 8 = 0, T = 0, for in view of the
invariance of the method we are employing, the problem of estimating no motion is
the same as the one of estimating a non-trivial motion.

In each of the two cases, we generated n = 10 independent random points

(ziy¥i), $=1,...,10, uniformly distributed on the unit disc, by taking

(Z.', y.-) = (V Uil COS(27I’U,'2), V U.'l Sin(27l'U,‘z)), (5.1)
where U, U; are independent uniform random variables on (0,1). This is legitimate
because the density function of the point (z;,y:) is then, by change of variables,

Iu ys)

the density function of (Ui, Uiz / l )
uly |2

W—cos (27Uy) 27T sin(27U;,
—Jv-sm (27U;;) 27Uy cos(27U;;)

= ;lr- on the unit disc. (5.2)
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We fixed these generated points {{z;,¥;) |t = 1,...,10} to serve as our prominent
points in the entire simulation.

Then we took p = .8 as the probability for each prominent point to be observed
in an image frame, and accordingly selected the observed points that were to be
fixed throughout the entire simulation yielding (mo, m;, m2) = (6,8, 8) for one case
which we call Case I, and (mq, m;, m;) = (5,7, 8) for the other which we call Case II.

Three values of the true scale of Gaussian noise o were chosen representing the
ranges of “low” (o = .02), “moderate” (0 = .05), and “high” (o = .10) noise images
respectively. See Figure 5.1 for examples of the two simulated image frames for

each value of o in Case I, and Figure 5.2 in Case II.

Also the same three values {.02,.05,.10} were chosen for o, in the estimation
procedure so that there were total of 9 choices of (o,0,), namely {.02,.05,.10}2.

From now on throughout the entire chapter we will refer to the situation where
we have a particular choice of (0,0,) among the ones given above by Situation(o,a,),
or just Situation if there will be no confusion.

In each Case, and for each Situation(o,0,), we ran 1000 trials. Each trial con-
sisted of generating the observed locations in the two image frames by adding the
independent error vectors according to the Gaussian noise N(0,0%I,) to the true
locations, and producing 6 and T as the estimates of § and T by the steps de-
scribed in Subsection 3.3.4 with the following exception. In STEP 9, if Omax = 0,
then we assigned the values alternately between § = 4, T, = f’, =3,and § = —4,
T. = T, = —3 for the purpose of tabulation. Remember that in the actual estima-
tion, 8 € (—=, 7] always, and seldom will we get |f‘,| > 2or |f,,| > 2 in practice
because all the true locations are within the unit disc.

For a given Case and trial number, the observed locations for different Situations
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Figure 5.1: Examples of the two simulated image frames for each value of o, (a)(b)
o = .02 (low noise), (c)(d) ¢ = .05 (moderate noise), (e)(f) ¢ = .10 (high noise) in
Case I, (mo, m1,m;) = (6,8,8).
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Figure 5.2: Examples of the two simulated image frames for each value of o, (a)(b)
o = .02 (low noise), (c)(d) o = .05 (moderate noise), ()(f) ¢ = .10 (high noise) in
Case II, (mo, m, m,) = (5,7,8).
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were related. Thus, in image frame 3,1 = 1,2,
an observed location = the corresponding true location + o«;,

where ¢; depends on the Case and trial number, but does not change with either o

Or 0.

5.2 Results of the Simulation

For simplicity we use 4 to represent any one of the estimates é , T., or f’,,, and also
use §,, to denote the i-th order statistic of the 1000 4’s that were produced in each
Situation(o, 0,).

In each Case, we produced the histograms of the estimates 5, f., and T‘, for each

Situation(o,0,). See Figures 5.3 - 5.8.

Then we compared the sample distribution of 4 with the normal distributions by
costructing the normal qq-plot. With a normal qq-plot one can conveniently get the
estimates M, § of the mean and the standard deviation of the normal distribution
N (m, s?) by which the sample distribution of 4 is approximated, by fitting a straight
line to them and finding the y-intercept and the slope. We fitted the straight
line by using Krasker and Welsch’s robust regression technique {Krasker 79] to the
points on the plot that belong to the [40, 60]-percentiles interval, or equivalently the
[—.253, .253]-normal scores interval in order to capture the behaviour of the ones in
the middle. After fitting the straight line, we estimated the standard deviation of
4., by the formula [Chambers 83,Kendall 77a},

i i [ali-p)
*W) = g 000 o)

where p; = (i — .5)/1000 for ¢ = 1,...,1000 and ¢, $ are the probability density

function, and the cumulative distribution function of the standard normal distri-

bution, respectively. Then we showed, for each plotted point, i4§2("7(..)) bounds

® 32 wa' 4 $a- b2t
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Figure 5.3: Histograms of § for each Situation in Case I, 1000 trials each. The two
numbers in parentheses represent o and o, respectively.




Sy v

40 60 80 100 120 140 160

3 A e T
o SR ol ok
08 04 02 00 02 04 05 0.3 01 00
Xtranslation Xtransiation
(.02,.10)
& 4 & W 3 1
8 ; 3
8 g
8 1 Q 4
< 1 8 - 8 -
g1 e 4
g o
8 o e J
° 5 L] L L3 ° -v ° ly e Ry v v L L] L g .
15 -10 05 00 08 06 04 02 00 02
Xtranslation Xtransiation Xtranslation
(.05,.10)
8 1 3 1 R
8 - 2
8 1 2 4 2
R 1 2 4
g o
w 8 1
g 1 21 8 1
7] 1 o 4
3 2 1 0 1 15 10 05 00 08 04 00 02
Xtranslation Xtranstation Xtranslation
(.10,.10)

Figure 5.4: Histograms of T, for each Situation in Case I, 1000 trials each. The two
numbers in parentheses represent ¢ and o, respectively.




| 1

r r

10 05 00 05 10 115 <0.10 <0.06 -0.02 0.02 0.25 -0.15 -0.05 0.05

Ytransiation Ytranslation Ytranslation
(.02,.02) (.02,.05) (.02,.10)

v nl

OO R Y e R e e o i R
80 100
40 50
25 0

g -
8 - 8
w
Q 1 & o
g e -
° ‘r L L) LS T L s L g 1 ° 'r L) Ll T L al ° -' Ll LA L) v v Ll
-18 05 05 10 15 20 04 02 00 02 0.4 0.6 0.30 020 0.10 0.0
Ytranslation Ytranslation Ytranslation
(.05,.02) (.05,.05) (.05,.10)
§ - 3 9 3
g o
-3
8 h g
3 4
e v
o 2 4
g e
[,
3 2 -1 0 1 2 3 & 10 905 00 0S 1.0 04 02 00 02 O0a
Ytranstation Ytranslation Ytransiation
(.10,.02) (.10,.05) (.10,.10)

Figure 5.5: Histograms of f‘,, for each Situation in Case I, 1000 trials each. The two
numbers in parentheses represent ¢ and o, respectively.
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75

N AT AT

e NIRRT T
X A.ﬁ.{n_‘f;fk‘(;.‘(;{t\‘\

020 <0.10 0.0

Xtranslation
(.02,.10)
9 .
8 o
0 .
g g
_°_ .
7. 3
° "7 Ll v L Lg 1
05 03 0.1 01 02
Xtranslation
(.05,.10)
3 -
8 o
g o
° ~ v
08 04
Xtranslation
(.10,.10)

1000 trials each. The




w 4

--------

-
T —— a T —— T ]
-1 0 1 2 4 -o1o 006 -0.02 002 o.os
Ytransiation Ytransiation
(.02,.02) (.02,.05)
g - 8,
§ 4
§ -
8
8 -
jl
2 04 02 00 02 04 06
Ytranslanon Ytranslation
(.05,.02) (.05,.05)
- < 1
2 8 1
-4 g 1
& e 4
a2 4 0 1 + o8 02 o02 o8 10
Ytranslation Ytransiation
(.10,.02) (.10,.05)

-----------

50 60

40

10

20 20

-0.04 0.0

008
Ytranslation
(.02,.10)

02 0.0 ot1 02 o'a 01.4
Ytransiation
(.05,.10)

04 02 00 02 04 06

Ytransiation
(.10,.10)

Figure 5.8: Histograms of f, for each Situation in Case II, 1000 trials each. The
two numbers in parentheses represent o and o, respectively.




PR LN UL LN U * W U U ‘ad < gd ‘at g v PYTRA U A AR Aol Kol £ o YaB 0 8 ool Vut it an® ‘'l S8 0t e R 920" §24' Lg® VERRM TR

around the line fitted to the plot. This may give us some sense of how well the
sample distribution of 4 is approximated by the normal distributon N (1, §?).

We have presented the normal qq-plots of 5, 7., and f, with the bounds in
Figures 5.9 - 5.11, for each Situation in Case I, and in Figures 5.12 - 5.14, for each
Situation in Case II.

As expected, every Situation(.02,0,) gave us a satisfactory result except that
when o, = .10, 6 and T, seem to have long left tailed distributions in both Cases.

For Situations(.05,0,), all but when 0, = .10 in Case II, 6 and T, show long left
tailed distributions while T, consistently shows satisfactory results.

For Situations(.10,0,) every thing seems to fall apart. When o, = .10 our
approach seems to confuse nearby points. When o, = .05 or .02, the standard for
matching difference vectors is difficult to meet, and our method frequently fails to
find satisfactory matches.

We have summarized the information obtained from the normal qq-plots in
Tables 5.1 — 5.6. They show m, § of 4 and corresponding &My, the ratio §/6ur
along with the number of points outside the bounds of +4 standard deviations from
the fitted line for each situation.

In Table 5.7, we have collected all the ratios §/6mL in Case I, and in Table 5.8,
the same thing in Case II. From them you can easily see that the ratios §/dyy are
the smallest when o = o, and the largest occur when ¢ = .10 and o, = .02, namely

when we assumed too low a value for the standard deviation.
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two numbers in parentheses represent o and o, respectively.
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The two numbers in parentheses represent ¢ and o, respectively.
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Figure 5.13: Normal qq-plots of T, for each Situation in Case II, 1000 trials each.
The two numbers in parentheses represent o and o, respectively.
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Figure 5.14: Normal qq-plots of f‘,, for each Situation in Case II, 1000 trials each.
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P




Summary Oa
o Statistics .02 .05 .10
m .0007 | .0340 | .0146
3 0224 | 0232 .0411
.02 N 0182 | .0182 [ .0182
3/6mL 1.2308 | 1.2747 | 2.2582
# Outside
+4 5d Bounds 32 79| 320
™ —.0016 | .0331 | .0211
3 .1567 | .0612 | .0895
.05 oML 0456 | .0456 | .0456
3/omL 3.4364 | 1.3421 | 1.9247
# Outside
+4 sd Bounds 605 | 312 135
™ —.0861 | .0063 | .0027
F 7240 | 2741 | .1694
.10 L 0912 | .0912 | .0012
8/omL 7.9386 | 3.0055 | 1.8575
# Outside
+4 5d Bounds || (25) 650 [ 453 | 295

Table 5.1: Summary from the normal gg-plots of d in Case I, 1000 trials each.
The numbers in the parentheses represent the numbers of trials with “No Matches”
if there are any.
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Summary O,
o Statistics .02 .05 .10
™ .0016 | .0276 | .0346
F] 0152 | .0149 | .0138
.02 oML 0135 [ .0135 | .0135
8/ 1.1259 | 1.1037 | 1.0222
I # Outside
|| £4 5d Bounds 23 0| 181
™ —.0161 | .0210| .0279
s 1294 | .0404 | .0431
.05 oML .0337 | .0337 | .0337
3/omL 3.8398 | 1.1988 | 1.2789
# Outside
I +4 sd Bounds 423 144 | 312
m —.1367 | —.0198 | .0078
3 4112 | .1663 | .0906
.10 oML 0673 | .0673 | .0673
/oML 6.1100 | 2.4710 | 1.3462
# Outside
" +4 3d Bounds || (25) 255 523 | 420

Table 5.2: Summary from the normal gg-plots of T, in Case I, 1000 trials each.
The numbers in the parentheses represent the numbers of trials with “No Matches”
if there are any.




Summary || o,
o Statistics || .02 .05 .10
m I —.0012 | —.0293 | —.1132
8 ’ 0143 | .0188 | .0255
.02 dmL 0126 | .0126 | .0126
" 8/6w, 1.1349 | 1.4921 | 2.0238
# Outside
| +4 5d Bounds 137 0| 365
m —.0256 | —.0429 | —.1064
" E 0997 | .0467 | .0463
.05 oML .0314 | .0314 | .0314
§/omL 3.1752 | 1.4873 | 1.4745
# Outside
+4 5d Bounds 501 103 0
m ~.0407 | —.0719 | —.1025
E 2560 | .1276 | .0838
10 oML 0628 | .0628 | .0628
8/omL “ 4.0764 | 2.0318 | 1.3344
# Outside
“ +4 3d Bounds “ (25) 239 | 138 38

Table 5.3: Summary from the normal gg-plots of f‘,, in Case I, 1000 trials each.
The numbers in the parentheses represent the numbers of trials with “No Matches”
if there are any.
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§ummary
Statistics

Oa

.02

.05

-
m
8

oML
8/on

.0040
.0304
.0250
1.2160

.0409
0421
.0250
1.6840

# Outside
+4 sd Bounds

(1) 163

209

m

8

~

OML
8/6mL

.0070
.2494
.0625
3.9904

0189
1222
0625
1.9552

# Outside
+4 sd Bounds

(34) 684

301

9

m

oML
8 / oML

~-.0381
1.1089
1250
8.8712

—.0350
5037
1250

4.0296

—-.0976
3121
1250

2.4968

# Outside
+4 sd Bounds

(100) 668

442

273

Table 5.4: Summary from the normal gg-plots of d in Case II, 1000 trials each.
The numbers in the parentheses represent the numbers of trials with “No Matches”

if there are any.




Summary Oq
o Statistics .02 .05 .10
™ —.0004 | .0105 | —.0686
5 0172 | .0248 | .0247
.02 oL 0141 | .0141 | .0141
/oL 1.2199 | 1.7589 | 1.7518
# Outside
+4 sd Bounds 1) 7n 250 254
™ =.0270 | —.0138 | —.1011
F] 1476 | .0763 | .1108
.05 oML .0352 | .0352 | .0352
e 4.1932 | 2.1676 | 3.1477
# Outside
+4 sd Bounds | (34) 610 239 393
™ —.1290 | —.1216 | —.1472
5 2908 | .2067 | .1309
.10 oML .0705 | .0705 | .0705
e 4.2525 | 2.9319 | 1.8567
# Outside
+4 sd Bounds || (100) 312 119 4

Table 5.5: Summary from the normal gg-plots of T, in Case II, 1000 trials each.
The numbers in the parentheses represent the numbers of trials with “No Matches”
if there are any.
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Summary Oq
o Statistics .02 .05 .10
m —.0011 | —.0039 | —.0540
3 0179 [ .0170 | .0161
.02 dmL 0144 | .0144 | .0144
8/émL 1.2431 | 1.1806 | 1.1181
# Outside
+4 sd Bounds (1) 61 50 0
m .0073 | —.0141 | —.0454
3 0009 [ .0492 | .0410
.05 omL .0359 [ .0359 | .0359
/6w 2.7827 | 1.3705 | 1.1421
# Outside
+4 sd Bounds || (34) 502 105 105
m .0650 | .0053 | —.0204
3 3237 | .1334| .0869
.10 dvL 0718 { .07T18 | .0718
3/omL 4.5084 | 1.8579 | 1.2103
# Outside
+4 sd Bounds || (100) 283 271 227

Table 5.6: Summary from the normal gg-plots of f‘u in Case II, 1000 trials each.
The numbers in the parentheses represent the numbers of trials with “No Matches
if there are any.
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Oa
c .02 .05 .10

.02 |} 1.2308 | 1.2747 | 2.2582
.05 | 3.4364 | 1.3421 | 1.9247
.10 || 7.9386 | 3.0055 | 1.8575
.02 {1 1.1259 | 1.1037 | 1.0222
.05 || 3.8398 | 1.1988 | 1.2789
.10 || 6.1100 | 2.4710 | 1.3462
.02 |1 1.1349 | 1.4921 | 2.0238
.05 || 3.1752 | 1.4873 | 1.4745
.10 || 4.0764 | 2.0318 | 1.3344

@

D>

=

<D

Table 5.7: The ratios §/omy in Case I, 1000 trials each.

Oa

ol .02 .05 .10
.02 || 1.2160 | 1.6840 | 1.6560
.05 [ 3.9904 | 1.9552 | 2.3936
.10 || 8.8712 | 4.0296 | 2.4968
.02 [ 1.2199 | 1.7589 | 1.7518
T, || .05 || 4.1932 | 2.1676 | 3.1477
.10 || 4.2525 | 2.9319 | 1.8567
.02 || 1.2431 | 1.1806 | 1.1181
.05 || 2.7827 | 1.3705 | 1.1421
.10 || 4.5084 | 1.8579 | 1.2103

-

D>

o)

Table 5.8: The ratios §/6uy, in Case II, 1000 trials each.
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Chapter 6

Conclusions
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The problem of estimating a rigid body motion from two noisy images of an object
taken at two different times has been studied.

The available data consist of the unordered locations of some of the prominent
points of the object. Because it is assumed here that these points are not individually
recognized and some of them may be missed in one or both of the images, it is not
obvious which points of the two images correspond to one another. Moreover the
observed locations are subject to error.

A computational procedure, capitalizing on the rigidity of the object, has been
proposed for estimating the motion parameters of the object in the presence of
N(0,0%1,) Gaussian noise independently added to the positions in the images of
the points observed.

In principle, one might apply maximum likelihood to the estimation problem,
but the difficulty in formulating and calculating the likelihood function under the
above mentioned assumptions is formidable. However one ought to expect to do
better when the observed points are recognized and the common points among them
are matched without error in identification.

For this favorable situation, where the likelihood function can be easily formu-
lated, the asymptotic normality and consistency of the maximum likelihood estimate
as 0 — 0, have been proved. Also the asymptotic covariance matrix for that has
been derived explicitly. Similar results hold even when ¢ is incorrectly assumed to
be 0, = ko for positive k # 1.

Simulation results have shown that in most cases where we either know the
correct o (i.e., 0, = o), or assumed a larger value for that (o, > o), the proposed
estimator does reasonably well compared with the maximum likelihood estimate,

considering the fact that the latter is under a favorable situation.

Computationally, there is still much to be desired and it will be an interesting

J

TV e




problem to produce an algorithm which reduces the cost of computing for this
method.
One important generalization of this method will be to allow a noise structure

where the nearby observed locations are correlated, which is often the case in real

world data.
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-----------

A.1 The Almost Sure Uniqueness of Byq (X)

In the following discussion, we will continue to use the same notation as in Chapter 4,
and assume mg > 2.

From the definition of 8, (X) and Equation (4.16), it is clear that B (X) can
be defined to be the value of B € 0 which minimizes "X - G(ﬁ) "’, or equivalently
Ix- ]

First, let us define the subset {15 of {1 by

By
i len

ﬂ°:={3=
T

fiy = Py ® 1o, iy € R, G € (—m,7], T € R’} , (A1)

that is, {1, is the subset of 1 consisting of 3’8 which correspond to mg identical

points. Let G(1) be the range of the function G:
G(Q) := {G(B) | B€ O} c Rimo, (A.2)

Similarly let
G(Do) := {G(B) | B € N} C G() C Ré™, (A.3)

Then we can rephrase Lemma 4.2 as the following lemma.

Lemma A.1 The function G restricted to 1\ Qg 15 one-to-one onto G(N1) \ G(No).
We need the following lemma to proceed.

Lemma A.2 G(0) 1s a closed subset of Ri™.

Proof : Let y) := G(ﬁm) with ﬁ(‘) €N, 1 =1,2,... be a sequece in G(1) that
converges to a point y(9 € R*™, For eachi=1,2,..., let

u

B = [ 6t
T

. ”(‘) € Rz"lo, 0(‘) € (_ﬂ-,ﬂ-]’ T(') € Rz’

K
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so that
S0 a9
(U(09) @ L) + TV @ 1, |
Then clearly the (¥ converges to some u(? € R2™.
Since [~x, x| is compact and (—x, x| C [, 7], by taking a subsequence, we can
assume that the 8() converge in [—x,x]. Then the U(6(*)) converge to some U(4(?),
00 € (—,x], and it follows that the T converge to some T® € R?. Therefore

v = lim y9 = G(8),

u©
fO:=100 | en.
T
Hence y(® € G(11). So G() is closed. This completes the proof.
Let A be the Lebesgue measure on R*™. Then the following arguments will

show that ﬁm(X) is unique for A-almost all X € R4, and hence almost surely,

because the Gaussian probability measure is absolutely continuous with respect to
A

For any x € R™, and any set F C R™, let
bp(x) := inf{||lx - y|| |y € F}. (A-4)
Note that if x € F, then 6p(x) = 0. We have the following propositions.

Proposition A.1 For any non-empty closed set F C R™ and anyx € R™, x € F
if and only if 6p(x) = 0.

Proof : We only need to prove the “if” part. Suppose 6¢(x) = 0. Then, for each

n=1,2,..., there exists a y, € F such that

3|~

lIx = yall < ér(x) +

Sir

Q.

Hence the y, converge to X, and since F is closed, x € F.
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Proposition A.2 For any non-empty closed set F C R™, and any x € R™, there
is ay € F with ||x — y|| = 6p(x).

Proof : Without loss of generality, we can restrict y to the set

Bx:={yeF|lx-yll <26r(x)},

which is compact,' and on which the function y — ||x — y/|| is continuous. Thus it

attains its minimum on Bx and therefore on F
Proposition A.3 For any non-empty set F C R™, 6p is a Lipschitz function.
Proof : For any x;,Xx; € R™, and any £ > 0, we can find a y, € F such that

lI%2 — ¥ell < 6p(xa) +e.
Then

bp(x1) = 6p(x2) < [Ix1 = Vell = lIXz — yell + €
< lx = x| +e.
Hence, by letting € — 0 and then by symmetry, we have
167 (x1) — 6(%2)] < [|%1 — x| . (A.5)

This completes the proof.

A function ¢t : R™ —» R! is called totally (Fréchet) differentiable at xo € R™
if the (row) gradient vector d¢(x)/dx|,_, exists and ¢(x) admits the first order
Taylor Expansion at x = x,:

(0 + €) = t(x0) + ‘9§x—") c+ofjel) ase— o. (A.6)
x=Xo

Let A, be the Lebesgue measure on R™. We have the following theorem due to H.

Rademacher ([Rademacher 19)).
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Theorem A.1 (Rademacher’s Theorem) Any real-valued Lipschitz function on
an open set O in R™ s totally differentiable at \,-almost all x € O.

Proof : See, for example, [Federer 69, pp. 216-217).
Federer [Federer 59, 4.8. Theorem| has proved the following theorems.

Theorem A.2 For any non-empty closed set F C R™, andy € F, the set
Q(y) :=={z € R™ | ép(y + 2) = |iz]}} (A.7)
18 convez.
Proof : By translating the set F by —y, we can assume that y = 0. Then
z € Q(y) if and only if ||b—z| > |jz|| for all be F.
Furthermore
b — 2||* = ||z]|* = bT(b - 22) for any b,z € R™,
and consequently, if b, z, we R™, a,y> 0, a + v=1, then

b — (az + YW)||* — [laz + yw|* = bT(b —2az — 2vw)
= b7 [a(b - 2z) + v(b — 2w)]

ab® (b — 2z) + vbT(b — 2w)

a(|b - =l = [|2]1*) + (lIb — w|* — [Iw]).

It follows that Q(y) is convex.

Theorem A.3 For any non-empty closed set F C R™, if x € R™ \ F and éf is

totally differentiable at x, then there exists a unique y € F such that |x —y| =
Jp(x).

98

0, GRS SRR LR 00 RS S ARV AL A AL RC AL



Proof : By Propositions A.1 and A.2, there is a y € F such that ||x~y| =
ép(x) > 0. Then x—y, 0 € Q(y) by definition of @(y), and hence by Theorem A.2
(l-a)(x-y)€Q(y) for0< a<1. Let

€:=—-a(x-Yy). (A.8)
Then we have

Sp(x+6) = Sply+(1-a)(x-Yy)
= [[(1-a)(x-y)
= bp(x) - abp(x) for0<a<l.
Thus from the total differentiability of ép at x, as o | 0, we must have

_Obp(x)x—y _ Obp(x) &

ox &(x)  _ox el
_ brlx+0) = 8p(x) o)
e Ie]
I (L)
el

and hence by taking the limit as a | 0, we get

asp(x) X-y _
Since ||06p(x)/3x|| < 1 from (A.5), it follows that

dp(x) x-y
ax  &p(x)’

(A.10)

Therefore such y must be unique.
Applying Theorems A.1 and A.3 with O = R‘™ \ G(Q), F = G(N), along with
the fact that for any x € F, x itself is the unique y € F satisfying ||x — y|| = ér(x),

we have proved the following theorem.
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Theorem A.4 There exists ¢ act N C R*™ with A(N) = 0 such that for any
X € R\ N, there exists a unique y(X) € G(01) that satisfies

IX = y(X)|| = Sa(a)(X)- (A-11)

A similar theorem has been proved by A. Pdzman ([Pdzman 84]).

Let N be a set in R*™ chosen to satisfy the properties of Theorem A.4. If
X € R*™\ N, y(X) € G(Q1) of Theorem A.4 is unique. Suppose that y(X) ¢ G(1,).
Then by Lemma A.1, B\ (X) is unique. Hence, to show that B, (X) is almost

surely unique, it suffices to show that A(M) = O where
M :={X e R'™\ N |y(X) € G()}. (A.12)

Theorem A.5 A(M) =0.

Proof : Let
X:= §1 ] € M, xhszR””
3
Then y(X) € G(02o).
- ~h~ -~ N
For any 8 := b len, ke R¥™, §¢€(-x,7], TeR?
T

X =GB = 1% = mll® + | X: — (V@) @ Tny)iir — F @ 1my|”
= X2 - &y + ||(U(5)’ @ L.)X; - U(H)F o 1., — ﬁ,lr,(A.13)

since left multiplication by U(i)r preserves the norm, and so does the one by

U(8) @ Ln,.
o

Now let us choose 2 8, := | 6, ] € o, Py € R¥™, 8y € (—n, 7], Ty € R? with

T,

¥(X) = G(,). Then

IX -GN = min [X-G(B)|°
Ben




( : )’
= _min [X-G|]| 6
8, ER?»™e ro
= _min [IXi-&IP+IXi-5)7]  (A24)
B, cR¥™e
where
= (U(f0)™ ® 1ng) X2 — U(00) T @ 1,,. (A.15)

Now the last minimization problem in (A.14) has a unique solution for %,,

ﬁl=xl+x;

=+, (A.16)

which, by Lemma A.1, must be of the form f,, ® 1,, for some j,, € R? because
¥(X) € G(Q). Then it follows that

X; + (U(0))T ® 1., )X =2® 1, for some z € R?,

or

X3z = —(U(8) ® Im) X1 + W ® 1,5, for some w € R?.

Thus we have

X= [ —(U(80) @I....)xl +WR 1, ] (A.17)
Therefore
X, 2mo 2
McC {x X= [-'(U(ao) @I,M)xl +weln ] , X1 €ER™ 6 € (‘-ﬂ‘,X],W €ER }

and hence M is contained in a smooth manifold of dimension < 2mg+ 3 < 4my. It
then follows that

A(M) =o.

In summary, we have

Theorem A.6 The mazimum likelihood estimate A‘L(X) 18 almost surely unique.
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