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9) 7  TRACT

The problem of estimating a rigid body motion from two noisy images of

an object taken at two different times is studied.

The available data consist of the unordered locations of some of the

prominent points of the object. Because these points are not individually

recognized and some of them may be missed in one or both of the images, it

is not obvious which points of the two images correspond to one another.

Moreover the observed locations are subject to error.

A computational procedure, capitalizing on the rigidity of the object,

is proposed for estimating the motion parameters of the object in the

presence of Gaussian noiseC o,o21 ependently added to the positions in

the images of the points observed.

In principle, one might apply maximum likelihood to the estimation

problem, but the difficulty in formulating and calculating the likelihood

function under the above mentioned assumptions if formidable. However one
ought to expect to do better when the observed points are rec ized and the

common points among them are matched without error in ide fication. Hence

this latter situation, which is readily treated maximum likelihood,

should provide us with lower bounds error in our estimates for the

original problem.-

Asympto normality and consistency of the maximum likelihood estimate

as a -* are derived for this favorable situation. Similar results hold

even jmn o is incorrectly assumed to be oa - ko for positive k 0 1.

Asimulation study has been carried out to compare the efficiency of

the proposed estimator for the more complex problem with that of the maximum

likelihood estimate in the favorable situation and to test the robustness of

the proposed estimator under the misspecification of the value of SI

... ... Cs ..

I ,-' '".' 1 -,

ED 1,

D:;.;i,1q L



HARVARD UNIVERSITY
DzPAILTMNT OP STATIMCS

THE ESTIMATION OF A RIGID BODY MOTION

IN THE PRESENCE OF NOISE

BY

CHANG HOON PARK

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Technical Report No. ONR-C-1

September, 1987

Reproduction in whole of in part is permitted for
any purpose of the United States Government.

This document has been approved for public release
and sale, its distribution is unlimited.



THE ESTIMATION OF A RIGID BODY MOTION

IN THE PRESENCE OF NOISE

by

CHANG HOON PARK

Submitted to the Department of Mathematics on July 31, 1987
in partial fulfillment of the requirements for the Degree of

Doctor of Philosophy in Mathematics

ABSTRACT

The problem of estimating a rigid body motion from two noisy images of an
object taken at two different times is studied.

The available data consist of the unordered locations of some of the prominent
points of the object. Because these points are not individually recognized and some
of them may be missed in one or both of the images, it is not obvious which points
of the two images correspond to one another. Moreover the observed locations are
subject to error.

A computational procedure, capitalizing on the rigidity of the object, is proposed
for estimating the motion parameters of the object in the presence of Gaussian
noise X0, 7212) independently added to the positions in the images of the points

In principle, one might apply maximum likelihood to the estimation problem,
but the difficulty in formulating and calculating the likelihood function under the
above mentioned assumptions is formidable. However one ought to expect to do
better when the observed points are recognized and the common points among them
are matched without error in identification. Hence this latter situation, which is
readily treated by maximum likelihood, should provide us with lower bounds for
the error in our estimates for the original problem.

Asymptotic normality and consistency 4 the maximum likelihood estimate as
a --. 0 are derived for this favorable situation. Similar results hold even when a is
incorrectly assumed to be a. = ka for positive k : 1.

A simulation study has been carried out to compare the efficiency of the pro-
posed estimator for the more complex problem with that of the maximum likelihood
estimate in the favorable situation and to test the robustness of the proposed esti-
mator under the misspecification of the value of a.
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Chapter 1

Introduction



1.1 Introduction and Summary

The problem of estimating a rigid body motion from two consecutive image frames

of an object taken at two different times is an important issue in image sequence

analysis. For example, motion estimation cannot be separated from the problem of

image matching and image registration, which in turn, have a wide range of direct

applications. Consequently, there is a sizable amount of literature dealing with the

subject, especially for three dimensional rigid body motion.

A large number of the existing methods for the three-dimensional problem ba-

sically depend on solving simultaneous non-linear equations that one gets from the

known matched points in the two image frames. In the event of noisy images,

least squares methods are applied by simply requiring a greater number of matched

points than that of the parameters to be estimated. However, they all produce

rather unsatisfactory results when the angle of rotation of the motion is not small,

or when they are applied to real images (i.e., noisy images).

In this thesis, an estimation method for two dimensional motion, capitalizing on

the rigidity of the object involved with the assumption that the images are noisy,

is proposed. It is assumed that the data consist of the unordered locations of some

of the prominent points of the object. Because it is assumed here that these points

are not individually recognized and some of them may be missed in one or both of

the image frames, it is not obvious which observed points in the two image frames

correspond to one another. Moreover it is also assumed that XA(,0,2 12) Gaussian

noise is independently added to the locations of the points observed in the two image

frames. Methods for this two dimensional problem should prove to be helpful in

attacking the more practical three dimensional problem where some points may

become occluded.

In Chapter 2, a survey of the existing literature on motion estimation and the
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related matching problems is presented. In Chapter 3, the details of the proposed

estimation procedure and the logic behind it are given. Then, in Chapter 4, the

maximum likelihood estimate in a more favorable situation, where the observed

points are recognized and the common points among them are matched without

error in identification, is studied. Asymptotic normality and consistency of the

maximum likelihood estimate as u - 0 for this latter situation are derived. Also

similar results are derived even when a is incorrectly assumed to be o, = ko for

positive k : 1. These provide us with lower bounds for the error in our estimates for

the original problem. Chapter 5 shows some simulation results. Finally Chapter 6

has conclusions and suggestions for further work.

In the next section, we list some definitions and notation used throughout.

1.2 Definitions and Notation

Let X be an m-dimensional real vector valued random variable. We denote the law

(distribution) of X by Z [X]. Sometimes we use the notation C [XI0] instead of C [XI

to emphasize the fact that the distribution of X is dependent on the parameterO.

We write E[X], and Cov[X] to denote the mean vector, and covariance matrix of X

respectively. In case X is a 1-dimensional real random variable, Cov[X] is reduced

to the variance Var[X].

A Gaussian (normal) distribution with mean vector 1 and covariance matrix E

.s denoted by M (, E).

We interpret any vector to be a column vector when it is referred to only by its

name in equations or formulae unless otherwise specified.

We denote by R', the rn-dimensional Euclidean real vector space, and use

(-7r,7r] to denote the set {u E R' I -7r < u < 7r}.

The notation ":-" is to be read "by definition is equal to".

10
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The m by m identity matrix is denoted by I.:

1 0 .- 0'
0 1

Ira:= "(1.1)

0 ... 0 1

We denote by 1m, the m-dimesional vector with m l's as its components:

1m [ ] E R'. (1.2)

For any matrix A, we use AT to denote the transpose of A.

For any p2 by q2 matrix A and p1 by q, matrix B, we define the direct product

or Kronecker product of A and B, denoted by A 0 B, to be the Pip2 by qjq2 matrix

C where
Ab 1  Abj2 ... Abqj
Ab21  Ab22 ... Ab2q1  (1.3)
Abp, Ab12  Ab... I

where bi is the (i,j)-th element of B, for i = 1,... ,Pi, j = 1, .

For any vector x := (zX,.. . ,Zm)T E R", we use lxii to denote the Euclidean

norm (length) of x:
m

IlxIl :=X- 1 = v x. (1.4)

We denote the unit circle by SI:

S' := {(, y) ER2 I II(zy)il- 1}, (1.5)

and define the function u : R 2 \ {0} -+ SI by

u(z, y) :-(z,y) (1.6)II(X,y)ll

for each (X, Y) E RI \ {0}.

11



The covering map on S', c" : S' --- + (-w, r], assigns to each x E S1, a c'(z) E

(-r,r] where

(cosc(x),sinc(x)) = x. (1.7)

We will also define the covering map on R 1, c ------ (-x-, r], by

c(z) := c*(cosz, sinz), (1.8)

for each z E R'. Note that for any z E R', we have

c(z) = z (mod 2r). (1.9)

The function arctan : R' \ {O} - (-r, 7r] is defined by

arctan(z,y) := C*u(z,y) (1.10)

for each (x,y) E R2 \ fO}. We call arctan(z, y), the angle of the vector (z,y). Note

that for any (z, y) E R 2 \ {0}, we have that

tan(arctan(z, Y)) = y  (I.I1)

and

arctan(z,Y) $ arctan(-z, -y). (1.12)

For any two vectors wl, V2 E R2 , the difference vector of v1 and V2 denoted by

D(vl,9 2 ) is defined by

D(v1 ,v 2) :=V - VI. (1.13)

For a function t R' - Rd, where

t1 (v)
tv) (1.14)

12t

12

.w .~ .. ..



we define the Jacobian matrix or derivative of t with respect to v, when it exists, to

be the d by m matrix Bt(v)/ov whose (i,j)-th element is given by

[.t() _ 8t-(vi,... ) for i d, 1 ,
fo=i=1,.,d =1 .m (1.15)

where Y= (v,.. .

The 2 by 2 orthogonal matrix representing the rotation by 0 radians about the

origin in a plane is denoted by U(9):

[ cos0 -sin0 1(1.16)
(9) := sine cosO (

We use T to denote the vector of translation by T., T. in the z- and y-coordinates

respectively, i.e.,

T:= (1.17)

A rigid body motion of an object in a plane is a transformation of the object that

can be obtained through a rotation and a translation only. Thus a general rigid

body motion can be uniquely characterized in terms of a rotation about the origin

.ollowed by a translation in the plane. In other words, a rigid body motion is a map

(x,y) '-4 (z',y')

for any point (z, y) on the object, where

[y:] :=U(8) [x] +T (1.18)

for some uniquely defined U(O) and T.

An image frame is a two-dimensional plane that contains an image of the object

in which we are interested, where some globally fixed (for different image frames)

Euclidean coordinates, which we call the image frame coordinates, are superim-

posed.

13



A location (position) of a point in an image frame is the image frame coordinate

vector of the point.

We will treat an object as represented by a finite set of points on it, called

prominent points. In the simulations in Chapter 5, we will assume that there are

10 prominent points. A prominent point is said to be observed if we see the point in

an image frame but cannot necessarily distinguish which of the several prominent

points it is. Also a prominent point is said to be recognized if we see the point and

can identify which of the several prominent points it is. The noisy locations of the

observed points on the object form the data in our problem.

14

Z4;fz .



Chapter 2

Related Literature

15

- w .q .'Y



There are two separate approaches in motion estimation problems. One of them,

the so called "low level" or "signal processing" approach, is the one where you have

grey level images as your data and you try to estimate the motion by operating on

the raw data. One of the methods in that approach is the Fourier method for the

two-dimensional motion problem, where you take advantage of the fact that sharp

straight edges give rise to line spectra in the frequency domain, and hence allow

you to estimate the angle of rotation. Another low level method is the matching or

correlation method that sets up a cost function depending on the grey level functions

of pixels in each image frame and tries to find the value of the motion parameters

which minimizes the cost function. There is another method called the method of

differentials in the low level approach which uses the idea of relating time differences

to spatial differences. All of the three methods mentioned above are described in

[Huang 81].

The other approach is the "high level" or "feature based" approach, where we

assume that some features, e.g., points, lines, contours, etc., in the images have

already been extracted by some other means and the data consist of the locations

of the features. Normally it is assumed that the correspondence between the features

has already been established in the feature extraction process. In this sense, the

estimation method to be proposed in this thesis is somewhere between the two

approaches but closer to the feature based approach because we have as data the

unordered observed locations of some of the prominent points in two image frames

but they are not recognized and may be missing in one of the two image frames.

The high level methods may then be further classified into two classes, namely

the "equation solvers" and the "merit score or weight maximizers". The equation

solvers basically assume that the correspondence between features in each image

frame are known and hence derive sets of simultaneous equations, usually non-linear,

,I
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with motion parameters as unknowns. Researchers in this line of approach include

Ullman [Ullman 79], Roach and Aggarwal [Roach 79,Roach 80], Nagel [Nagel 81a],

Nagel and Neumann [Nagel Sib], Tsai and Huang [Tsai 81,Tsai 84], Tsai, Huang

and Zhu [Tsai 82], Fang and Huang [Fang 83a,Fang 83b]. Methods for solving such

equations are generally iterative and require good initial guesses of unknowns. How-

ever, sensitivity to noise is shown in the experiments reported by Fang and Huang

[Fang 83aFang 83b].

The merit score maximizers often bear the names of "point pattern matching"

or "image matching" instead of motion estimation. They generally deal with two-

dimensional motion only. Even though they usually assume that the first image

frame contains the prototype or model pattern with which the observed point pat-

tern in the second is to be matched, they essentially attack the same estimation

problem as mentioned in Section 1.1. In these settings, as the name "matching"

says, the individual correspondence between features in different image frames are

not assumed. They implicitly or explicitly assign merit scores or weights to possi-

ble matches of features according to their compatibility with the candidate value

of motion parameters, and then try to maximize the total merit scores to get the

maximizing value of motion parameters. Our method to be proposed in this thesis

belongs to this class but is not concerned with explicit matching. We list some of

the existing methods that fall into this class below.

Simon, Checroun and Roche [Simon 72] compute all interpoint distances in each

point pattern and then use a comparison of the sorted list of these with some

relaxation rule to match the point patterns. Their method is applicable only to

patterns that contain equal numbers of points, i.e., there are no missing prominent

points.

Seidl [Seidl 74] measures similarity of point patterns, without seeking an ex-

17



plicit matching, using nearest neighbor relations. Again the method is restricted to

patterns that contain equal numbers of points in application.

Zahn [Zahn 74] compares the minimal spanning trees of point patterns, but this

method is also sensitive to missing and extra points.

Kahl, Rosenfeld and Danker [Kahl 80] only consider small (:5 100) angles of

rotation. Even though their method is sensitive to noise exceeding a preset level, it

is insensitive to missing or extra points.

Ranade and Rosenfeld [Ranade 80] consider the situation where only translation

is allowed. Each individual point matching is rated by its effect on other points,

and through relaxation, an overall matching is converged to. Experimental results

are given showing a tolerance to some noise.

Lavine, Lambird and Kanal [Lavine 81] try to recognize point patterns without

finding an explicit matching using sequences of interpoint distances and show the

"correctness" of their method under a plausible noise model.

Bolles [Bolles 79] and Ogawa [Ogawa 86] apply maximal clique techniques to the

point pattern matching problems, and the latter uses the Delaunay triangulation

to partition a point pattern into a set of triangles reducing the computational cost

of matching.

Baird [Baird 84] proposes a method for the situation where there are no miss-

ing or extra points, allowing noise whose bounds are specified as arbitrary convex

polygons about each model point location. He also gives the comparisons of various

methods in terms of the asymptotic order of computational runtime as the number

of feature points increases.

In summary, only a few researchers have provided methods to attack the motion

estimation problem which allows an arbitrary rigid body motion, when there are

missing and extra points, and at the same time the locations of points are observed

18 I.
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with moderate noise. It in exactly this situation that we want to deal with in this

thesis.



Chapter 3

Method of Estimation in the
Presence of Noise

20



3.1 Problem Statement

Suppose that we have two consecutive noisy image frames, taken at times t, and t 2,

(th < t), of an object in two dimensional space and that the object was subjected

to a rigid body motion in the time between the two image frames. Assume that

all points of the object lie on a plane called the object plane parallel to the image

frames.

The case we consider is where we observe some of the prominent points but do

not recognize them individually and some of the observed points may be missed in

one or the other of the two image frames. Thus it is not obvious which subsets of

the observed points in the two image frames correspond to one another. Moreover

the observed locations are assumed to be noisy with Gaussian noise R (0, a2 12)

independently added to each. The assumption of equal variance a' for both image

frames corresponds, in one interpretation, to an assumption that both image frames

are at the same distance from the observer.

Now the problem is to estimate the motion parameters, namely the angle 0

of rotation about the origin and the translation vector T, given the data of the

locations of the observed points on the object in the two image frames.

In Figure 3.1, we have an example of simulated data, namely, two image frames

showing the noisy locations of the observed points at two different times t, and

t2 , when there has been a rotation by 900 (- r/2 radians) followed by a slight

translation.

3.2 Basic Idea and Motivation

3.2.1 The Number of Common Observed Points m0

Let us assume that there are n distinct prominent points on the object in which

21
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O a
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9 9

.1is -1.0 -O.S 0.0 0.5 1.0 1.5 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

Image Frame 1 Image Frame 2

Figure 3.1: An example of simulated data.

we are interested. Let i, M2 be the numbers of the observed points in image

frames 1, 2 respectively. Also let mo be the number of common observed points in

the two image frames. For example, in the simulated data illustrated in Figure 3.1,

we have

n = 10, m, = 7, M 2 = 8, in0 = 5.

If we assume that each of the n prominent points on the object has independent

probability p of being observed in any image frame, then the above mentioned inl,

in2 , and mo become random variables which we call M1, M2, and MO respectively.

The probability P(mi, Mn2 ) of getting m, observed points in image frame 1, and M2

in image frame 2 is given by

P(M 1, M2) :=P(MI = M1,M 2 = M2 }

=P{M 1 = MI}P{M2 = M 2 }

n (-,)(1 7:)n- m rnl( P-,(~~m, (3.1)- m

which is just the product of two binomial densities, each with parameters (n, p)

22
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The conditional probability of getting exactly m 0 common observed points given

that we have m, observed points in image frame 1, and m 2 in image frame 2 is given

by

P{Mo = MO I M, = =.,M2 = 2) - MI - MO Mm - M0

(s n (n )
ml!m2 !(n - mln- in2 )!(32

n!mo!(m, - ,-o)!(m 2 - mo)!(n - ,- - m2 + ino)! (3.2)

which is the hypergeometric density with parameters (n i, mi 2 ). A hypergeometric

random variable X with parameters (N, r, k) has the following interpretation:

Consider a population of N items, of which k are of type I and N - k

are of type II. Assume that a random sample of size r is drawn without

replacement from the population. Then X can be defined as the number

of items of type I in the sample drawn.

From this interpretation, it is easy to see that

E[X] = r- (3.3)

and
Var[X] = rk (I-k) _ r-1 (34

T T Nr- 1-I )1 .- )" (3.4)

Therefore in our case, we get the conditional mean and standard deviation of

M0 given {M = mI, M 2 = m 2} as

1U(mo I m1,M 2 ):= E[Mo I MI = mI,M 2 = M 2] = M1m 2  (3.5)
n

and

Cr(mo I MI,M 2 ) vVar[Mo IM 1 = MI,M = M 2]

1 1 , ,2(-r,)(n-m,)_(3.6)
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For example, if n = 10, p = .8, m, = 7, m 2 = 8, then we have

P(7,8) .0608

S&(mo 7,8) = 5.6

o(mo 7,8) .6110.

For the tabulation of P(mi, m2), A(m0 I m 1,m2), u(Mo I mI,m2) for M1 , m 2 _! 3

when n = 10, p = .8, see Table 3.1. For the cases where mi, m 2 < 3, we have

P(m 1 ,m 2) < 10-'.

In the simulation study in Chapter 5, we will evaluate the characteristics of the

estimation procedure to be proposed for two examples, in each of which m0 , m, and

m 2 attain certain values. Thus our evaluations may be considered to be, in part,

conditional on those values of m0 , m, and M 2.

3.2.2 Heuristics of the Method of Estimation

In order to understand the main idea which is employed in the estimation method

to be proposed in the next section, let us first consider the situation where no noise

is present in the locations of the points observed in the two image frames.

Because of the rigidity of the object involved, the difference vector of any two

locations of the m 0 common observed points should not change its length from one

image frame to the other. In addition, the change in angle should be e(mod 27r)

where e E (-7r, 7r] is the amount of the angle of rotation involved. Therefore, if we

were to look at all the possible pairs of difference vectors (of the locations), one

from each image frame with the lengths of the two being the same, then a clear

majority of them would show e as the exact difference in angles of the two in each

pair.

However, this does not give a complete answer to this rather easy-looking prob-

lem. For example, if, in considering the prominent points, there are two difference

24



m2

m_ 10 9 8 7 6 5 4 3
.0115 .0288 .0324 .0216 .0095 .0028 .0006 .0001

10 10.0000 9.0000 8.0000 7.0000 6.0000 5.0000 4.0000 3.0000
.0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
.0288 .0721 .0811 .0540 .0236 .0071 .0015 .0002

9 9.0000 8.1000 7.2000 6.3000 5.4000 4.5000 3.6000 2.7000
.0000 .3000 .4000 .4583 .4899 .5000 .4899 .4583
.0324 .0811 .0912 .0608 .0266 .0080 .0017 .0002

8 8.0000 7.2000 6.4000 5.6000 4.8000 4.0000 3.2000 2.4000
.0000 .4000 .5333 .6110 .6532 .6666 .6532 .6110
.0216 .0540 .0608 .0405 .0177 .0053 .0011 .0002

7 7.0000 6.3000 5.6000 4.9000 4.2000 3.5000 2.8000 2.1000
.0000 .4583 .6110 .7000 .7483 .7638 .7483 .7000
.0095 .0236 .0266 .0177 .0078 .0023 .0005 .0001

6 6.0000 5.4000 4.8000 4.2000 3.6000 3.0000 2.4000 1.8000
.0000 .4899 .6532 .7483 .8000 .8165 .8000 .7483
.0028 .0071 .0080 .0053 .0023 .0007 .0001 .0000

5 5.0000 4.5000 4.0000 3.5000 3.0000 2.5000 2.0000 1.5000
.0000 .5000 .6667 .7638 .8165 .8333 .8165 .7638
.0006 .0015 .0017 .0011 .0005 .0001 .0000 .0000

4 4.0000 3.6000 3.2000 2.8000 2.4000 2.0000 1.6000 1.2000
.0000 .4899 .6532 .7483 .8000 .8165 .8000 .7483
.0001 .0002 .0002 .0002 .0001 .0000 .0000 .0000

3 3.0000 2.7000 2.4000 2.1000 1.8000 1.5000 1.2000 .9000
.0000 .4583 .6110 .7000 .7483 .7638 .7483 .7000

Table 3.1: The probability distribution of (MI, M2) and conditional moments of
Mo. Each cell shows [P(Mm 2 ),p(MO I mI, m2 ), O(Mo I ,M2) when n = 10.

25



vectors of the same length, in either one of the two image frames, then they may

contribute to incorrectly estimating the value of 9 when there are missing points in

the image frames. Even if these difference vectors were parallel and contributed to

estimating the value of 9 correctly, they could still give confusing and misleading

information about the translation vector T. In order to alleviate this problem to a

certain extent, we need to find additional evidence that a pair of difference vectors,

one in each image frame, is a truly corresponding pair with respect to the value of

9 which it seems to support.

We propose that being one of the three corresponding pairs of edges of two

triangles, each triangle formed by three observed points, say Aj, B,, Cj in each image

frame i, i = 1, 2, so that all three pairs of difference vectors (D(Al, BI), D(A2 , B2 )),

(D(B1 , CI), D(B2 , C2 )), (D(C1 , A,), D(C2 , A2)) have contributed in supporting the

same value of 9, constitutes that evidence. We call such a pair of triangles an

admissible match of triangles for that particular value of 9. So by maximizing the

number of admissible matches of triangles over the possible values of 9, we are likely

to get a quite reliable estimate of 0.

Once we have an estimate of 0, it is easy to get an estimate of T. After rotating

the points in the first image frame by an angle of 9 about the origin, the differences

in location of matching points will provide an estimate of T. What constitutes

matching points can be determined from the vertices of triangles that have been

admissibly matched.

It should be noted that it is still possible that a triangle may form admissible

matches with several triangles even for a common value of 9.

Now let us return to the problem where we have Gaussian noise /(0, o212) in-

dependently added to each location of the points observed in the two image frames.

Here we may expect neither the lengths of the two truly corresponding difference

26



vectors, one from each image frame to be exactly the same, nor the angles of them

to differ by exactly $(mod 27r) as in the noise-free case discussed above. Neverthe-

less, we would expect them to hold to a reasonable extent if we assume a noise of

moderate size. The method we propose, which is presented in detail in the next

section, is based primarily on this consideration.

In order to estimate 9 and T, we first consider a fixed candidate angle of rotation,

90, and try to find approximate matches of the difference vectors, one from each

image frame, by two criteria, one for the lengths and the other for the angles, that

are similar to the ones used in the noise-free case above except that these are more

flexible depending on the size of the noise involved. Any candidate pair of difference

vectors, one from each image frame, is removed from further consideration unless it

satifles the criteria to a prespecifled extent that is set in advance according to the

knowledge of the size of the noise.

To each of the 8urtvirng matches of difference vectors, we then assign a non-zero

weight according to the angle compatibility with respect to 00. We now go further

by considering all matches of two triangles, each one formed by three observed

points in each image frame, that satisfy the following admissibilityi condition with

respect to 00:

A match of two triangles, each one formed by three observed points,

say A,, B,, C, in each image frame i, i = 1, 2, is admissible if all the three

pairs of difference vectors (D(A 1 , BI), D(A 2 1 B 2 )), (D(B1 , CI), D(B2, C 2 )),

(D(C1 , A,), D(C 2 , A 2 )) are surviving matches of difference vectors.

Then we assign to each admissible match of triangles, a weight which is the geomet-

ric mean of the three weights associated with the constituent surviving matches of

differenc e vectors. Now by summing all such weights over all the admissible matches

of triangles, we get a total weight for the fixed candidate angle 00.
2

I.
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Again it should be noted that a triangle may form admissible matches with

several triangles even for a common value of 00.

Now we first maximize the number of admissible matches of triangles over the

possible values of 0, and then over the set of all such maximizing values of go, we

select the value 0 of do that maximizes the total weight. Our final estimate OF of

0 will be a weighted average of the differences in two angles of surviving matches

of the difference vectors forming the admissible matches of triangles for 0, weights

being the ones with respect to 0. The final step is to get an estimate T of T in

exactly the same way as we did in the noise-free case before. Note that if there is

no admissible match of triangles, we simply return the answer "Two image frames

do not seem to show the same object".

It should be noted that if the prominent points on the object form the vertices

of a regular polygon, we may have lack of identifiability, i.e., there may be several

possible estimates consistent with the data.

3.3 Method of Estimation

In the last section, we claimed heuristically that the differences in lengths and

angles of each pair of difference vectors may play a major role in establishing the

admissible matches of observed points in two noisy image frames taken at times

t1 , and t2 respectively. Now to support that claim, we will discuss in detail the

approximate behavior of the differences in lengths and angles.

3.3.1 Assumptions

Suppose that the physical points Pl,... ,P are the n distinct prominent points

on the object in which we are interested. For simplicity, but without any loss of

generality, let us assume that the first m0 of these points are observed in both image
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frames, the next m1 - mo points only in image frame 1, and the next m2 - mo points

only in image frame 2. Since our data consist of the noisy locations of the points

observed in the two image frames, again without loss of generality, we will assume

that there are only fi (_5 n) prominent points to begin with, where

:= M + (i 1 - Mo) + (M 2 - Mo) = mI + m2 - iO. (3.7)

After making these assumptions, let

X0 := ((X',yI),...-, (xa, ya)) (3.8)

be the true location of the fi observed points PF,..., Pi in the image frame coordi-

nates at time tj in that order. Also let

XI := ((X 1 , Y11),...,(X, 1,,Ymj)) (3.9)

be the observed locations of the rn1 points PI,..., P,,.i in image frame 1, and

X2 := ((X2, Y21),... , (X2,,, Y2,)) (3.10)

be the observed locations of the M 2 points P,...,P,,o,P,,m,+,...,PF, in image

frame 2 in their respective orders. However, remember that what we have as actual

data are two unordered sets of observed locations, one from each image frame.

Our independent Gaussian noise assumption can be expressed in the following

matrix notation:

All components of X, and X 2 are independently distributed with

'C ([yi Vpi'r,1) = 1... sM, (.1

and

Z ([ X ]) = )(p2, o'I2 ), j=1 ,...,m 2, (3.12)
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where

Si1, .. mI, (3.13)

and J Up) +T ifj-1,...,mo

P2:= (3.14)

U(p) 1+ +T ifj=m0 +1,...,m 2

The notational correspondence is described again in Table 3.2.

3.3.2 The Length Difference and Angle Difference

Let us consider any two prominent points Pk, P with 1 <k < I < mo, so that they

are among the common observed points. Let us fix k and I for the time being.

We first look at their true locations Ak, pil in each image frame i, i = 1, 2. We

have

D(Pk, ft) p - hk
= I [ -Zky_/ ' (3.15)

and

D(phk, 21) fti - p2k;

= U(O) [X , - 1t (3.16)
1 Il1 - Ilkj

Clearly we know

iID(pk,p2j)II = JID(P2A, / ) 11 , (3.17)

namely, the true difference vectors corresponding to the same prominent points Pk,

P in the two image frames have the same lengths. Moreover if we consider their

angles,

pj := arctan(D(p,k,pJ)), i = 1,2, (3.18)
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True True
Locations Locations

Physical in Image in Image
Points X 0  Frame 1 X, Frame 2 X2

ry [X ;i= =,, y =U(8) ] + T21

Pm4+i Zmoz+1 Ximo+ij
Y 1+ + Y NA NA

P.m [Y:] Plin[ rni] [I'zP'] ,, NA NA

.YY, m 1I

p, Alin, X1. NA NA

PR [ NA NA Pz 2 =U(O) - +T

Table 3.2: The notational correspondence. Image frames 1 and 2 taken at times
t1 and t2 , respectively. "NA" represents the nonavailability of the information.

MI + M2 - inO.
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then we have

P2= c( + ),

or equivalently,

0 = c(P2 - ipo) (3.19)

if we add the restriction that 9 E (-r, r]. In other words, the angle 0 of rotation

can be recovered from the difference jp2 - 0ip of the two angles, one from each image

frame, of the true difference vectors corresponding to the same prominent points

Ph, P.

Now we look at the observed locations (Xih, Y), (X 1, Yia) of Pk, P in each image

frame i, and denote them by P ,, Pa respectively, for i = 1, 2. Then it is easy to see

that

L[D(Pii, Pa)] =A(D(/&ik,ps),2a 2I2), for i =1,2, (3.20)

and hence we get

o [22D(P -,;a)j'. _ X2 11D(;Si- )&ij) , for i =1,2, (3.21)

where X2 (62) is the non-central Chi-square distribution with q degrees of freedom

and non-centrality parameter 62. Since a X2 (62) random variable has mean q + 62

and variance 2q + 462 (see [Johnson 70, pp. 130-135] for derivation), we get for

i = 1, 2,

E [_ID(- P  
_ 

)
__

]
_2_ + IID( 1 ',)II'2 , i  , (3.22)

and

Var 22D(P --PP )j2] 4 + 21ID(/ "', A) 11 2 (3.23)

It follows that for i = 1, 2,

E [11D(Pik,P i) 11] = 4.2 + JID( it,,) 11 , (3.24)

32

p~~h&-. .. *, le &,S



and

Var [aID(Pi,,PI)II2] = 16& + 8oIJD(psh,I)IJI. (3.25)

In the next subsection, we will derive approximation formulae for E [IID(P , P)II]

Var [EID(Pk, Pit)II], E[arctan(D(Ph,P,))], and Var[arctan(D(Pt,P I))], for suffi-

ciently small a > 0. To do that, let us first simplify the notation by taking

Di D(Pit,Pit) (3.26)

Doi:= D(Ak,/il) (3.27)

d. IID,II (3.28)

:= IIDoil (3.29)

for i= 1,2. Then (3.20)-(3.25) become

Z [Di] = )"(Doi,20r2 I 2 ), (3.30)

" = 1 (3.31)
= 2+ - ,(

v'C[!i]- = 4 _) , (3.33)

E [L] = 4o2 + d , (3.34)

Var [ d] = 1o' + 8oad, (3.35)

for i= 1,2.

3.3.3 Approximations

We begin this subsection with a statement without proof of the following theorem

which justifies a method called the "6-met/od" for finding the approximate mean

and covariance of a function of a random variable. For a slight variation and a

discussion, see [Bishop 75, pp. 492-494].
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Theorem 3.1 (6-method) Let V, be an rn-dimensional real vector valued random

variable, o E RM, and let

t(g) :=

be a d-dimensional real vector valued function defined on some neighborhood N of

go in R such that the Jacobian matrix 8t(v)lv exists and is continuous on N.

Suppose also that
[V. °]- [W ] asr--O, (3.36)

for some random variable W.

Then t(V,) admits the first order Taylor Expansion

=t( )+ (V, - Vo) + op(r) as r -0 0. (3.37)

t(v) = t(o) + -- ,

Also

V, -- go in probability as r -. 0, (3.38)

t(V,) -- t(vo) in probability as r -. 0, (3.39)

and

£[t(Vr) -t(tio)] -- ' [8t(V) ,~W] as r -+0. (3.40)r LIoau iL=O

The conclusion of Theorem 3.1 is especially useful, when we have

z[W]= /(O, E), (3.41)

where it follows that

'V(0 at(v) M at (V) T .(3.42)

We can interpret this as saying that for small r > 0,

M tVo'2atV Iv M atv T (3.43)
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and hence t(V,) behaves like a Gaussian random variable t' for which

Eli*] %t t(vo), (3.44)

and

Cov[t °1 ;t 2 at(v) M at(v)"T (3.45)
oaw ffVio CV IV=Vo

First we apply Theorem 3.1 with V. = d, v0 = d10, t(v) = vy and r = a. To

do so we must find the limiting distribution of (dii - d2a)/c. We have

Hence

Therefore from (3.43), we get for small a'> 0,(i i (do ,2r). (3.46)

d[d~l -1 dd1aa o.(do) 2 2 do d.

Again we apply Theorem 3.1 with V = D1, to = D0 o, t(v) = arctan(t) and

r = a. In this case, it is obvious that

Now we have _ _______________

8t(v) - F'acarctan(vi'v2) 8garctan~lv) ' (

=[- !4c+sb)rctanZ'2 where ZLos ([ctan=v 1, )2))

2a 126 + (Z'"2 + 2) ='N2djj po)
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and hence from (3.43), we get for small a > 0,

£[arctan(D,)] ; .M (arctan(Doi), . . (3.47)

It should be noted that except for the case where arctan(Doi) = 7r, the approxi-

mating normal distribution in (3.47) assigns positive probability outside the interval

(- , r], but that this probability approaches zero as a --. 0, while the actual distri-

bution is confined to (-7r, 7r], i.e., a distribution on the circle. The exceptional case

may be treated by translating the probability in the approximating distribution

over (7r, 27r) to (-7r, 0). However the need for this peculiar distribution on the line

will disappear below, when we consider the distribution of a difference of angles

which centers about 0.

Since D 1 and D2 are independent, and so are d, and d2, we see from (3.46) and

(3.47) that for small a > 0,

- dl I (d02 - do,, 40,2) (0,4a2) (3.48)

since

do2 = do,

from (3.17). Also

£[arctan(D2 ) - arctan(Di)] g (arctan(D 2 ) - arctan(Doi), 2 a + 2a2

= .w (arctan(D02 ) - arctan(Do), 4a2 (3.49)

or

£[c(arctan(D2 ) - arctan(D) - 0)] ;t M 0, (3.50)
d21

since

c(arctan(Do2 ) - arctan(Do) - 0) = 0 (3.51)

from (3.18) and (3.19).
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Therefore, we may conclude from (3.48) and (3.50) that for small o > 0,
Z [d: -d, W /(0, 1)  (3.1"2)

and
. [c(arctan(D2 ) - arctan(D) - )doi] (0,1). (3.53)

We may go one step further by replacing do, in (3.53) by the estimate (d, + d2)/2

in view of (3.46) and get

f [c(arctan(D2) - arctan(D) - 0) d, + d 2  V (0 , 1). (3.54)
I 2o' 2 J '

The approximation results (3.52) and (3.54) will play the key roles in the esti-

mation procedure presented in the next subsection.

3.3.4 Estimation Procedure

The two approximate distributional results (3.52) and (3.54) provide us with valid

statistics with which we can measure the significance of the correspondence between

any pair of difference vectors, say D(P 1 , PFj), D(P2k, P21), of the observed locations

Pi, P1j in image frame 1, and P1 , P21 in image frame 2, and thus enable us to

assign a weight to each correspondence. To do that let us first define functions

h(u), P (r) and p2(r) that are needed in our weighting scheme, by

h(u) max(2.5 - u2 ,O) for u E R1 , (3.55)

PI(r) -V2t r2 for r > 0, (3.56)

p2(7) -4.119(r+ 1)exp{-(r +1)} + 1.915 for 7>O. (3.57)

The roles of these functions are to be explained later after we indicate how they are

used in our weighting scheme (see Figure 3.2 for their graphs).

In the following steps, let us describe the estimation procedure, where we taKe

the value of o to be a, = kor for k > 0. The effect of this misspecification of a when

k $ 1 will be discussed in the next two chapters.
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Figure 31.2: Graphs of the functions (a) h(u), (b) pl(r) and (a) p2(r).
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To make the procedure feasible on a computer, we fix a finite grid r C (- r, 7r]

of candidate angles 0 of rotation. Specifically, in the simulations in Chapter 5,

r = {(.O1)n I n = 0,-1,..., ±314} (3.58)

STEP 1 Assign an arbitrary order to the observed locations in image frame 1, and

label them by that order, Puj,...,Pm . Similarly label the observed locations in

image frame 2 by P21,..., P,,,.

STEP 2 For each pair of observed locations (Pi, P 1), 1 < i < j in ml, in image

frame 1 and each pair of observed locations (P2k, P2 1), 1 < k 0 1 < M 2 in image

frame 2, form the difference vectors D(P,, P) and D(Pk, P21), and then compute

Rq =IID(Pj,P) II (3.59)

R, = IID(P2k,P21)II (3.60)

pi : arctan(D(P, Pj)) (3.61)

4o2a: arctan(D(P2 ,,P 2 )). (3.62)

STEP 3 For each i, j,< i < j i ml, and k,1, 1 < k - 1 < m 2 , consider the pair

of difference vectors [D(P 1 , P), D(P2kt, P2 1)]. Call [ij, kI] := [D(P 1 , P), D(P2kt, P21)]

to be a candidate match of difference vectors if

h (R2k 2 a R1i) > o. (3.63)

Then denote by C, the set of all candidate matches of difference vectors, [ij, kl].

STEP 4 Denote the ordered triple ([ili 2,jzj 2 ], [ili3 , j1j3], [i2 i3 , j2 j3 ]) E C by [i, :=

[iui2is,jj2 j3 J, and call it a candidate match of triangles. Let

C" := {[i, 31 E C3 } (3.64)

be the set of all candidate matches of triangles.
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STEP 5 Fiz a candidate angle of rotation, eo E r.

STEP 6 Denote the act {(1, 2), (1,3), (2,3)} by (123). For eachr [i,.1 E C" and each

(a, t) E (123), compute the weight of [i., i.,] for o by

Rj~,+ R 21*j6 ) h (c (EP2is - V"'- 90) P2 (Ruj.j + Rjj

r~~~~~j6): I 2 2a. 2 1
(3.65)

If w[ .j.j.j,](8o) > 0, then call [i.i,,jj,] a surviving match of difference vectors for

00, and let

S(0 o) := {[fli.ijt] E C I [ji,] E C, (a,t) E (123),w .. 0,,.o,](0o) > O} (3.66)

be the aet of all surviving matches of difference vectors for o.

We digress here to elaborate on the roles of the functions h, Pi, and p2. As can

be seen from Figure 3.2 (a), h(u) is a non-negative even function which serves the

following two purposes.

First, h serves as an "aperture" through which the argument u has to pass in

order to att'in a non-zero h value at all. Specifically, it sets V2.5 f 1.5811 as the

upper limit by which lul is bounded to attain a non-zero h value. In particular, if

we have a real random variable Z, with E[Z] = 0 and Var[Z] = 1, in place of u,

then we can interpret this as saying that only the observations Z within ±1.5811

standard deviations from the expected value will get the non-zero h values. Note

that the probability of such an event,

P{h(Z) > 0} P{IZI < 1.5811}

is approximately .886 if C [ZI M )(0, 1). Remember that, from (3.52) and (3.54), if

[ij, kl] is a true match and a. a , then we have

£ [R 2 k .Ri] m V(0, 1),
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an [ (so2k, - Pij - Oo) Rq + R2,] M ( 0 ' 1 ) .

~ [ 2a. 2 R&]~)(,)

Secondly, h, by itself can be used as a weight of a special kind assigned to the

argument value u. The resulting weights will have the property that as Juj decreases

from 1.5811, the weight increases sharply and reaches a smooth maximum, namely

2.5, at u = 0. This property insures that, once a value of u passes through the

non-zero aperture, it will get a weight which is not too close to zero, and at the

same time, the values of u which are close to 0 will get almost the same weights as

u = 0 does.

The functions p, and p2 are used to adjust the basic weighting scheme provided

by h in order to incorporate the following idea. Suppose that we have defined, in

STEP 6, the weight of [i.it, j.jt] for do by

h (C (V° 2fj, - (P'i.. - o) Rli' i' + R23
j , (3.67)

2a. 2 /

This weight falls to take into account that matching long difference vectors provide

more accurate information about 0 than do short ones. So by defining the weight

by (3.65) instead in STEP 6, we enlarge the non-zero aperture for the pairs of large

difference vectors using P2, and at the same time, we get a weight roughly of the

order of the average length of the two difference vectors using Pi. The reason that

we use ,/7Wr for Pi (r) instead of r is to bound the function away from 0 in the

neighborhood of r = 0. For p2(r), functions of the form

-a(r + 1) exp {-(r + 1)} + b

were first considered in order to get a point of inflection at r = 1, and then the

coefficients a, b were determined to satisfy the conditions

P2(O) = .4 and P2(1) = .8.
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The choice of these functions is somewhat arbitrary.

We now describe the next estimation step.

STEP 7 For each [i,1 E C, if [C,.1 E S(Oo)3 , then call it an admissible match of

triangles for 0o, and let

A(0o) E{[, C* I [i, E S(9o)s ) = Cs n S(00)3  (3.68)

be the set of all admissible matches of triangles for 00.

STEP 8 For each [S',.1 E A (0o), define its weight for do by

w~r."(0o) : = ( 1I w[i.',ij.j-](8o)) ' / 3 (3.69)

(a,t)E(123)

and let

,,(80) := ,[C.(O (3.70)
[rJEA(Oo)

STEP 9 Let

N( Io) := 1A(9 0)1 (3.71)

be the number of the admissible matches of triangles for 0o. Define

e. := {#o E r I N(#o) = maxN(Oo) > o}. (3.72)

If gin= = 0, then return the answer 'Two image frames do not seem to show the

same object.'

STEP 10 Let do E 9,. be the smallest value in r of 80 such that

w(9o) = max W(4o). (3.73)
10ee...,

Remark: Usually, there will be only one 0 0 satisfying (3.73).
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STEP 11 For each [,31 E A(0"o) and each (.,t) E (123), define

VL~rj(8, t) := c( p 2 ., - pi, - )(3.74)

Then define the final estimate 0 of the angle of rotation 0 by

-':= -o+ 3wr)EA-0 WrI(WO) st)(2 V/Ij s,)3 00 3 ) (3.75)

Note that

[r.JIEA(0e0)

STEP 12 Define the estimate !f of the translation vector T by

1 .S
S':=-x- - (P2jU, - ( Pli). (3.76)

3N(0o) [r.3J1A(70) =1 k1
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Chapter 4

Maximum Likelihood Estimate in
the Recognized Points Problem
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In the estimation method we proposed in the previous chapter, we have assumed

that the observed points in the two image frames are not individually recognized.

In principle one might apply maximum likelihood to the estimation problem, but

the difficulty in formulating and calculating the likelihood function under the above

assumption is formidable. However, one ought to expect to do better when all the

observed points are recognized so that the m0 common points among them in the

two image frames are matched without error in identification. Hence, this latter

situation, which is readily treated by maximum likelihood as will be seen in this

chapter, should provide us with lower bounds for the error in our estimates for the

original problem. We refer to the two problems by the labels, "Unrecognized Points"

and "Recognized Points" problems, respectively.

In this chapter, we will prove the existence of the maximum likelihood estimate,

and derive its asymptotic normality and consistency as a --+ 0, for the Recognized

Points problem. Similar results are derived even when a is incorrectly assumed to

be a. = ka for positive k $ 1 in constructing the likelihood function.

We continue to use the same notation as in Section 3.3, and assume that m0 _ 2

throughout this chapter.

4.1 Simplified Assumptions and the Maximum
Likelihood Estimate

For the Recognized Points problem, where we recognize all the observed points, we

can assume without loss of generality that

mO = mI = mI = h(2! 2), (4.1)

since the mi - mo unmatched observed points in each image frame i, i = 1, 2, do

not provide us with any additional information about the motion parameters e and

45

NNO



T. Accordingly, let us assume that the three vectors

Xo "=) R" (4.2)

X, ---- ((X,Y),...,(X,,,Y,,)) E '  (4.3)

X2 - ((xz ,Y, ),...,(x,,, ,Y,, ))ER2-0 (4.4)

are the true locations at time tj, the observed locations in image frame 1 (at time

ti), the observed locations in image frame 2 (at time t2), respectively, of the m0

distinct prominent points P,...,P,, in that order. For notational simplicity, let

us define the vector of observations X by

X:= X, E R 4 -0.  (4.5)

Similarly, let us define the vectors 1h, p, p by

E R (4.6)

2 E R2 0 (4.7)

KI0 2m p

Alodfiete]e []ER . (4.8)

Also define the true parameter 6 representing the true locations of the distinct

prominent points P1,..., P,,, at time t1 , the angle of rotation 0, and the translation

vector T by

1 E R2 ?O. (4.9)

Then we can write

P2 = A (4.10)

where g(P) is defined by

g(P) := (U( 0) p2)+T
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0 ) U(P) ]P + : E ]&2f .  (4.11)

10 ... 0 U(s)
Hence we have

= O(), (4.12)

where 0(P) is defined by

G(P g/p ]ER 4 .  (4.13)

The independent Gaussian noise assumption that we made in Subsection 3.3.1

can now be written as

L[X] = [XIP] = )V(G(P), 2I=o), (4.14)

and hence the probability density function f(x; 0) of X is given by

1 rl(x -G()) T (x -G())1
f(x; P) := (2r(x)(,6) exp(x o2 (4.15)

(27o,2)2"l 12] 1

Therefore the log-likelihood function L( ) of X is given by

L( ) := (x; ):= logf(X; )

= -2m log(27ro 2) -(X G( )) G( (6

for any E R 2, o+s.

The maximum likelihood estimate of is defined to be the value ML -ML(X)

of which maximizes f(X; ), or equivalently, L(i). Note that ML is a solution of

the likelihood equation
L(P) = 0 (4.17)

where 8L( )/8a is the row gradient vector of L(P). Also PML satisfies

ML(G(P)) = P (4.18)
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since we have from (4.16), for any #,
_.,((); P) - L(G(P); 5) = 1(G(,) - ())(G(f) -T(,)) > 0,

2 2  0,

where the strict inequality follows from Lemma 4.2 to be proved in the next section.

In the next section, we will derive the existence of &L, and its asymptotic

properties as 0, --+ 0.

The proof of a strengthened result to the effect that Ajm is unique with proba-

bility 1 will be deferred to Appendix A.1.

4.2 Asymptotic Normality and Consistency of the
Maximum Likelihood Estimate

In this section, we assume that the true a is known unless otherwise stated.

First note that, from (4.16), we have by differentiation,

--__ = 1 - (X -G(6)). (4.19)

We begin with the following lemma.

Lemma 4.1 Let X be an m-dimensional Gaussian random vector whose true dis-

tribution is given by

Z [XI = Y (K(f), E) (4.20)

for some P E Rd, some m by m positive definite matrix E, and some function

K :Rd--* R ' . Let

for any 6 E Rd. Suppose each Kg(P) is twice differentiable with respect to P.
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Then the log-likelihood function L(X; P) of X eatisfies the following.

L(X;- L(X; .(4.21)
5# 5# - fir L = 81

a2 L(X; )

C1 (X,)=

(4.23)

The matrix

is Fisher's information matrix.

Remark: The first relationship (4.21) in the conclusion above, holds under more

general regularity conditions on L(X; ) which allow the change of the order of

differentiation and integration. Also, it is known that the second one, (4.22), holds

under somewhat more general circumstances. For details, see [Kendall 77b, pp.

56-58] and [Huzurbazar 49].

Nevertheless, we will write out the proof of Lemma 4.1 under the assumptions

given, for the later use.

Proof : Since C [X] = M(K(P), E), we have

L(X;6) := -j log((27r)-JEj) - 1(X - K( )) T Z-(X - K( )) (4.25)

and hence aL(X; )r aK( ) r
- K()E -'(X- ()) (4.26)

490 a

Differentiating one more time with respect to gives us

C12 L(X;P) a a ()M a # '-'(X - K( ))]

W T8K( ,,-laK(,) a2K(P) T

. .-..... ) + E--'(X - ()) (4.27)
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-2 T
where we used the notation (a'K(,)/aP ) to denote the row "vector" with matrix

components,
2 K(:) [alKd) a2'" K( ') (4.28)

with the understanding that it be treated just like an ordinary m-dimensional row

vector. By substitution, we get

F T
-a- E) -r [(X - K(0))(X - K(p))rE- .K(:)

aA 5A

-K()T 1  x- K5)( - IG)T  ~ 8~

- K(P) T (4.29)

and

aK(A -1 aK(#) + a ()- (

5# A=, o) + j6-E[X - g(fi)

- aK() T -,aK() ,(4.20)

- 5 #- o ='

and

oL(; )

a# E (x. ( K(),P)

K( A)) T E2K (K)- t
_+ 5# A g+
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Ta 1 (4.31)

This completes the proof.

Applying Equation (4.29) in the proof of Lemma 4.1 to our case, namely, when

the log-likelihood function is given by (4.16), we get

T
1 aG( ) aG(P) (.2

We will now derive the existence of the maximum likelihood estimate ML and

its consistency as a --- 0 for the Recognized Points problem. To do that, first let

n := R2", x (- r, 7r) x R' C R2lI+s. (4.33)

Then the space f), with the topology on (-?r, 7r] being the identification topology

with respect to the covering map c* : S' -- (-7r,7r], (i.e., a set V C (-7r,7r] is

open if and only if c*-1 (V) is open in S'), is the space of parameters , over which

we want to maximize the likelihood function f(X; ), or the log-likelihood function

We need the following lemma to proceed. This lemma states that G(O) is one-

to-one on that subset of [I corresponding to at least two distinct prominent points.

It essentially follows from the fact that the identity is the only rotation about 0 in

R2 , which has a non-zero fixed point. (See, for example, [Choquet 69, pp. 59-66].)

Lemma 4.2 If

and E ,

and jTh represents at least two distinct prominent points, then G( ) = G(1 ') implies

that 6=,5.
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Proof: Suppose G() = GeO'). Then from (4.13) we have

1 = ,(4.34)

and

g() g 0(b'). (4.35)

Then from (4.11), (4.34) and (4.35), we get

(U( ) ® I,)A + t & I = (U(") & ®,,,)A + T' L,. (4.36)

Without loss of generality, we can and will assume that All and 4 12 are distinct

points. Then looking at the first four components of the vectors in (4.36), we get

U(W)A11 +!f = U(")A1 + I", (4.37)

and

U(412 + T = U(")Al2 + (4.38)

Subtracting (4.38) from (4.37) gives

u(W)(Al - A12) = u )(All - A),

or

uO) -'u()(All - A) = A - A12,

and hence

U(' - P)(All - A12) = A - A1.

Since A,, # A, we must have

U(g-") 12

and thus

(4.39)
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Then from (4.37) and (4.39), we get

_. .(4.40)

Therefore from (4.34), (4.39) and (4.40), we can conclude that

This completes the proof.

We will state without proof, the following theorem which proves the existence of

the maximum likelihood estimate based on n i.i.d, observations, and its consistency

as the sample size n --+ oo, under certain conditions. Then after that, we will show

how the theorem applies to the maximum likelihood estimate OML in the Recognized

Points problem. For a proof see [Chernoff 79, pp. 52-541.

Theorem 4.1 Suppose that it is possible to extend the space of parameters, fl, to

a compact set fl ° such that

(i) for every 6 E 11% P- is a subdistribution with density f(x; ), (i.e., f(x;4) _

0 and f f (x; P) dx < 1), which is continuous with respect to 8,

(ii) for every E fl, there is a neighborhood N- of j6 such that

E inf log [ f(x; P) >-0EN .f(x;46)JJ -

and

(iii) for every 46 E 11* \ {P6}, P- :A pp.

Then, for every neighborhood N 6 of P, 4,, the value of 4 E f" which maximizes

the likelihood based on the first n observations, exists and satisfies

PP{P, J N 6 infinitely often} = 0
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and

Pp{A. ol Np} -. 0 as n -- oo. (4.41)

First note that, in the Gaussian case, Theorem 4.1, which deals with the ma.xi-

mum likelihood estimate when the sample size n -- o, can also be applied to the

situation where we have a fixed sample size but a -- 0, for the following reason, as

mentioned in [Johansen 84, p. 77]. If X(1),...,X(") are independently identically

distributed with

L[X(,)] = 1(p, E), i= 1,...,n,

then
X:=1..x )"

is a sufficient statistic for # and

where

u2 :=-- 0 as n --+ oo. (4.42)
n

Thus if we interpret the role of n to be that of o -2, the Gaussian model makes the

two maximum likelihood problems equivalent.

Now we will show that our model, defined by the log-likelihood function L( ) in

(4.16) with the parameter space (1 in (4.33), satisfies the condtions of Theorem 4.1,

and as a result, that AML exists and is consistent. To do this, let us first note that

fl is locally compact and Hausdorff so that we can add a new point, 00, to it and get

a new space W1 that is compact ([Royden 68, p. 168]). In fl, a subset is open if it

is either an open subset of fl or the complement of a compact subset of fl. Define

the subdistribution at 0o E fl by taking

f(x; oo) := 0 for any x E R4 O. (4.43)
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Then condition (i) of Theorem 4.1 follows from the fact that

lim f(x;) - 0 = f(x;oo).
-+0

Note that for any 4E fA,

logLL"( x!,) 1 ~ [~-
lgf (X; 0) 1G [(x - G(ft))(x - G(P6)) - (x - G(pjj Tx - ()J

_> - (x - G(c46)) T" - G(46))].

For 46 = o, the above log is intrerpreted to be +oo and the inequality still holds.

thus[ 
2XE[ifl ff(X;) -FE I = -2m° > -oo, (4.44)

and condition (ii) follows. Finally condition (iii) is satisfied if P6 corresponds to at

least two distinct prominent points, since it is obvious that P0 : P, and for every

E f] \ {4}, the mean G() uniquely determines P-, and thus by Lemma 4.2, if

S 0, G() 0 G(,O) and P- 96 Pp. Therefore all the conditions of Theorem 4.1 are

satisfied and hence we have the existence and consistency of the maximum likelihood

estimate AML, namely,

Theorem 4.2 If corresponds to at least two distinct prominent points (mo > 2),

then &L exists, and

AML "* 4 in probability as a -- 0. (4.45)

Note that AML cannot be oo, since

f(X; ) > 0 = f(X; 00)

for any E 0.

Now we need the following theorem to derive the asymptotic normality of 4 ML.

For a proof, again see [Chernoff 79, pp. 19-21].
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Theorem 4.3 Suppose that the following assumptions hold.

(i) A. -+ P in probability as n - 00,

(ii) E# Cl, l f A, ] = , o

(iii) Ep [-f(X; A) -] = 0,

(iv) J(P) is positive definite,

and

(v) Ep[W(6)]-+0 as 6--0,

where -

I'1og fI(X; (7 log f(X;') (4.46)

W(6) sup a2 log f (x; a)_ 2 log f (X; (4.47

and I-I 1.up represents the largest component of the matrix.

Then we have

.C [4i( - X (0,J1 '(P)) as n -+ 00. (4.48)

Again by the same argument as in the paragraph immediately following Theo-

rem 4.1, we can apply Theorem 4.3 to our small a situation. The only exception is

that the conclusion (4.48) should be translated into

as a-- 0, (4.49)

since J(8) is Fisher's information matrix corresponding to the likelihood function

of a sample X of size 1, and for a sample of size n, the corresponding information

matrix J.(P) becomes J.(P) = nJ (0) so that JT'(P) = nJ;1 (P), which corresponds

to a - J 5.
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Now we will show that the conditions of Theorem 4.3 are satisfied by if

corresponds to at least two distinct prominent points (ino 2). First, condition (i)

follows from Theorem 4.2. Condition (ii) follows from (4.19) and the fact that

E#[X] = G(P). To show that condition (iii) is satisfied, let us first note the following

identity:
-fCX; () fCX; ) alog f X;) (4.50)a ap "

By differentiating both sides of (4.50) with respect to , we get

a2f(x; )

f (x; P[ log f (X; ) alog f(X; )

+ 82 log f(X; ] (4.51)

Thus by dividing both sides of (4.51) by f(X; 8) and then by taking expectations

under f, we get

E [f-1(X;])OL(a = ]

= EP °(log;fx; ) log f (X;) ]

a2 log f(X; )
+E4 - W

However the first term on the right is J and the second is -J from (4.21) and (4.24)

in Lemma 4.1. Therefore condition (iii) is satisfied.

The proof that condition (iv) is satisfied, i.e., that J is positive definite, will be

given in Lemma 4.3 in the next section.

Now it only remains to show that condition (v) is satisfied. To do so, it suffices
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to show that the third derivatives

Q(M ; , j,k) := ogf(X;6 ) ,j,k =1,...,2m,0 +3 (4.52)

are uniformly bounded in the region llP -,1 < 6 by a function H(X) whose ex-

pectation under j is finite. Indeed, from Equation (4.27) with K := G, E o2,

it is easy to see that Q(X; ; i, j, k) in (4.52) is a polynomial in the components

of X, G( ), aG( )/a, G(P)/8 ,, aG(/)/a5, aG( )/8~,8 ,, aG(P)IaPak,
82G(P)/a 8P, and 8a3G()/a,5a8  Pk of degree two, and hence uniformly bounded

in the region [B - fi < 6, for all i,j, k = 1,...,2m0 + 3, by a function H(X) of the

form

H(X) :-IIC)a()l IXIl + IIb(6)ll

for some a(6) and b(6) E R"l' . Then

Ep[H(X)] ( Ila(b)ii (IIG(#)II + 4mooE[lJc]) + IIb(6)1 where £[c] -j=X(o,1)
4V ,

= I1a(6)11 (IIG(P)Il + .moo) + IIb(6)l <oo.

Therefore all the conditions of Theorem 4.3 are satisfied and we have, except for

Lemma 4.3, proved the asymptotic normality of the maximum likelihood estimate

OML.

Summarizing all these, we have proved the following theorem.

Theorem 4.4 Let L(X; A) be the log-likelihood function defined by (4.16) on fl

which is given by (4.33). Let P [I ] be the true value ofEfl wherea

represents at least two distinct prominent points (mo > 2).

Then the maximum likelihood estimate AML(X) which maximizes L(X; ) reists

and satisfies

ML(X) -+ P in probability as o -- 0. (4.53)
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and

1[C ML(X)- W- (,O,-S2- ) as o-0. (4.54)

Remark: Note that from Equation (4.32)

SaG(P) I T aT -G( )

and is independent of a.

It is easy to see that with probability -. 1, the second derivative of the log-

likelihood function L(f) is continuous and negative definite in a neighborhood of

0 and hence with probability --+ 1, the likelihood equation (4.17) has a unique

solution in this neighborhood as a -- 0. (See, for example, [Foutz 77].) However,

as mentioned earlier, in the last section, a stronger result, to the effect that the

maximum likelihood estimate is unique wth probability 1 can be proved. That

proof will be deferred to Appendix A.1.

Now Theorem 4.4 allows us the approxmation

£C [AL(X) - ] AV (o, J-1) (4.55)

for a sufficently small a > 0, and this provides us with J 1 as a measure of perfor-

mance with which our estimators 0 and f can be compared.

4.3 Fisher's Information Matrix J and Its Inverse-
Asymptotic Covariance Matrix

In this section, explicit formulae for Fisher's information matrix J and its inverse

J- 1 will be derived. The results will be used to estimate the approximate standard

deviations of the maximum likelihood estimate discussed so far, and then we will be

able to compare them with the ones from the sample distributions of the proposed

estimator obtained by simulation. That task will be done in the next chapter.
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First, let us recall from Equation (4.16) that

L(X;) -2motlog(2ro 2) - 1 -( G( ))T(X - ()

where

~:E n~ fC R2 -o+S, (4.56)

G(P)

0 ... 0 UX

By differentiating both sides of Equation (4.57), we have

aG(fl) [ 12 , 02u,,OX1 02 1 4.58

= U()Ill. (U(i + 11Imc) A2 12 ( Lmo(.58

and hence from Equation (4.32) we have

1 -G T aG(A)

2 a' a

1 ± 12'. U (a)T 1'c 1'.' 02mox1 02vox21
;2 Ox2mo , u(+) T @&I., )[U~e®m U~9®m~i 2l

j I~ +(u~) TU(8))O®'m' ((U(8) TU(M±) '~' US T ®,~

= 1 2m +((U(8e 2~)®I,0 p(u±)(+ 8))®I, 4 )s ,4()T®, 1 )I

I u~e)®12 (( +9)®10) i(U~ m q2

1 21 2mc ~(U(!:)@TUs UOT!m
J=P1 [M~fTU(9T ®1w4) 4TU(+S T ®m 0

U() ® ~ (U + ) 9 n')p m1 2  n
(4.50)

By impifingthelat mtri aove w60e
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and by expanding the submatrices out, we get

I [A B] (4.61)
J=:- BT D

where A, B, and D are 2mo by 2mo, 2mo by 3, and 3 by 3 matrices respectively,

given by
2 0 -- 0

A:= 0 2 (4.62)

0 .- 0 2

-YI cos 0 sin 0
z -sinf cos9

B:= : (4.63)

-Y"10 cos 0 sinG
z,. -sin0 cosG

and

[; j(+ ) -E' xi sinE y c e :x c e - sinG
D.- x= sin 0- -', xy cos m 0.

L,=zi cos 4-E,= y, sin 8 0 Mo
(4.64)

This relatively simple partitioned structure of the matrix will allow us to compute

the inverse without much difficulty. Before we try to invert the information matrix

J, let us first prove that it is positive definite and hence invertible (non-singular).

We prove it in the following lemma.

Lemma 4.3 If P corresponds to at least two distinct prominent points (ino _ 2),

then Fisher's information matriz defined by (4.24) is positive definite, i.e., for any

z E R m+s,

z TjZ > 0

and

zTjz=O if and only if z=O.
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Proof: First note that for any z E R 2]E*+s,

STjZ = T V8G(P) =0

ij a(p) =PI T (z)
;7 - 1-w

i18 G ~ B 
( 4 .6 5 )

> 0. (4.66)

Now assume that

ZTJZ = 0

Then from (4.65), we have aC(5) z "= 0

z 0

where

aG( ) = 12,% 021noxI 02m4x2]I = = U(8) 0I". (U(1:+ )0) p~ 12~ ,

from Equation (4.58). Let

z := :-[zl, ... ,Izs,,o 9a, b, CIT .

Then it follows that

Z1

0 ] z2"1 (4.67)

(U(0) (9 I.) + (u(: + 0) (9 1.0)pl + (12 (9 1.w)

Clearly [zI, ... i , ] = 0, and if a 0 0, then we get

(U( + ) 0 I.)/ = -a-'(12(®l.°)6 b2 (4.68)
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and hence

/ -a-(U ( + 0) ,,) [] (4.69)

which implies that, for all i - 1,... , no,

i.e., all the (z,,y,)'s are the the same and this is a contradiction. So a = 0 and it

follows from Equation (4.67) that [b, c] = 0. Therefore z = 0. This completes the

proof.

Now we will use the easily verified fact that, since J is non-singular,

SA-' + FE-FT -FE- 1

j-z= 1 -E-'F T E-1 , 4.1

where

E := D-BTA-B, (4.72)

F := A~B. (4.73)

Since we are only interested in the 3 by 3 portion J-I(O,T) of the asymptotic

covariance matrix J corresponding to the parameters 0 and T, we only have to

compute a 2E-1 where E is defined in (4.72).

By a long but routine calculation, we get the following symmetric matrix, of

which only the upper diagonal elements are shown.

j- 1 (e,T) := a2E-'

2 22 1 it. sin 0 +u, cos 0 - (A. cos 0- i, sin 0)
- (o(oa +oa2 ( ' +u' )+(u. sin 0 +,, cos) 2 -(0) sin 0+p. cos 0) (p. cos 0-1,, sin 0)1

(o_ + o') + (IA cos 0 -,,p sin 0) 2
(4.74)

where

1no
Az -- z, (4.75)
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E Yi (4.76)
MnO i=w1

1 M
: , - E(i )2 (4.77)

MO i---1

02 = - E ( i-,,,)- (4.78)Mr/O i=1

In particular, when 0 = 0, as will be the case in our simulation study, the matrix

(4.74) becomes

J- 1 1,T) 2 (4.79)MO(-. ( ++ ) + A,,2 I (479

We will refer to the diagonal entries of this matrix by & L for use in the next

chapter.

Now we will discuss the case when o is incorrectly assumed to be a. = ka for

positive k 0 1 in constructing the likelihood function. We will distinguish this case

from the one discussed so far by attaching a subscript "a" to the notation that has

been in use. Hence the log-likelihood function of this case will be denoted by L.(8)

instead of L( ), where

1 (X - G(0)) (X - G(f))L.(#) := 2m0log(27r! 
.

Then it is clear that, for both L( ) and L.( ), maximizing them is equivalent to

minimizing (X - G( )) T(X - G( )). Hence

PML. = L (4.80)

and all the results derived so far for AML are also valid for MLa* In particular, ML

will have the same asymptotic distribution as ML, as the true value of a --* 0, and

J- will be the asymptotic covariance of it regardless of the value of k > 0.
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Chapter 5

Simulation Study
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To compare the performance of the proposed estimator empirically with that of the

maximum likelihood estimate discussed in the last chapter, simulations of two sepa-

rate cases have been carried out by generating random prominent points, Gaussian

noise, and observed locations of points in two image frames.

As the pseudo-random number generator, we used the one developed by Wich-

mann and Hill [Wichmann 82], and as the Gaussian random number generator, we

used the one by Box and Muller [Box 58].

5.1 Method of Simulation

Without loss of generality, we assumed that the true locations of the prominent

points are within the open unit disc,

{(X,Y) ER 2 1 X2 + y2 < },

and also that there was no motion involved, i.e., B = 0, T = 0, for in view of the

invariance of the method we are employing, the problem of estimating no motion is

the same as the one of estimating a non-trivial motion.

In each of the two cases, we generated n = 10 independent random points

(zi, y), i = 1,... , 10, uniformly distributed on the unit disc, by taking

(z,,y,) :-(v-U= cos(27rUi), \'U sin(2rUi2 )), (5.1)

where Uil, Ui2 are independent uniform random variables on (0, 1). This is legitimate

because the density function of the point (zi, yi) is then, by change of variables,

the density function of (U, Ui2 ) / a i, ,)

- 1 ~~ cos(2ff U,2) -2rVUj~sin(2rU 2)
=1..sin(27rUi2 ) 2UrVU=cos(2rUi 2)

1
S- on the unit disc. (5.2)

7r
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We fixed these generated points {(X,, v.) I i = 1,...0, 1} to serve as our prominent

points in the entire simulation.

Then we took p = .8 as the probability for each prominent point to be observed

in an image frame, and accordingly selected the observed points that were to be

fixed throughout the entire simulation yielding (M 0 , I1 , M2 ) = (6, 8, 8) for one case

which we call Case I, and (mo, im, m2 ) = (5,7,8) for the other which we call Case H.

Three values of the true scale of Gaussian noise o, were chosen representing the

ranges of "low" (a = .02), ",moderate" (a = .05), and "high" (o = .10) noise images

respectively. See Figure 5.1 for examples of the two simulated image frames for

each value of a in Case I, and Figure 5.2 in Case I.

Also the same three values {.02, .05,.10} were chosen for a. in the estimation

procedure so that there were total of 9 choices of (,a, a.), namely {.02, .05, .10}.

From now on throughout the entire chapter we will refer to the situation where

we have a particular choice of (a, a.) among the ones given above by Situation(, a,),

or just Situation if there will be no confusion.

In each Case, and for each Situation(a, aI), we ran 1000 trials. Each trial con-

sisted of generating the observed locations in the two image frames by adding the

independent error vectors according to the Gaussian noise .M(0, o.212) to the true

locations, and producing i and t as the estimates of e and T by the steps de-

scribed in Subsection 3.3.4 with the following exception. In STEP 9, if e., = o,

then we assigned the values alternately between i = 4, !f. = t, = 3, and e = -4,

!f = fy = -3 for the purpose of tabulation. Remember that in the actual estima-

tion, i E (-7r,7r] always, and seldom will we get I:PI > 2 or lfl > 2 in practice

because all the true locations are within the unit disc.

For a given Case and trial number, the observed locations for different Situations
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(a) Image Frame 1 (b) Image Frame 2
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a a

in 1A'o 0.

-1.5 .1.0 -0.5 0.0 0.5 1.0 1.S -1.s -1.0 -0.5 0.0 0.5 1.0 1.s

(c) Image Frame 1 (d) Image Frame 2
Moderate Noise Moderate Noise
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-1.5 -1.0 .5 0.0 0.5 1.0 1.S -1.5 .1.0 -0.S 0.0 03 1.0 1.s

(e) Image Frame 1 (f) Image Frame 2
High Noise High Noise

Figure 5.1: Examples of the two simulated image frames for each value of a, (a)(b)
a = .02 (low noise), (c) (d) a = .05 (moderate noise), (e) (f) a = .10 (high noise) in
Case I, (m, .MM2 ) = (6,8,8).
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Figure 5.2: Examples of the two simulated image frames for each value of a, (a) (b)
a = .02 (low noise), (c)(d) a = .05 (moderate noise), (e)(f) a = .10 (high noise) in A
Case TT, (mo, mn,,mn) = (5,7,8). ".
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were related. Thus, in image frame i, i = 1, 2,

an observed location = the corresponding true location + o'e,

where r depends on the Case and trial number, but does not change with either a

or a,.

5.2 Results of the Simulation

For simplicity we use j to represent any one of the estimates 9, T , or T,, and also

use %.) to denote the i-th order statistic of the 1000 i's that were produced in each

Situation(o, a,).

In each Case, we produced the histograms of the estimates 0, T., and T. for each

Situation(o, a,). See Figures 5.3 - 5.8.

Then we compared the sample distribution of j with the normal distributions by

costructing the normal qq-plot. With a normal qq-plot one can conveniently get the

estimates MR, i of the mean and the standard deviation of the normal distribution

J(in, .2) by which the sample distribution of j is approximated, by fitting a straight

line to them and finding the y-intercept and the slope. We fitted the straight

line by using Krasker and Welsch's robust regression technique [Krasker 791 to the

points on the plot that belong to the [40, 601-percentiles interval, or equivalently the

[-.253, .253]-normal scores interval in order to capture the behaviour of the ones in

the middle. After fitting the straight line, we estimated the standard deviation of

( by the formula [Chambers 83,Kendall 77a],

ad~j.1) jI -T--(5.3)

where pi = (i - .5)/1000 for i = 1,...,1000 and 0, 0 are the probability density

function, and the cumulative distribution function of the standard normal distri-

bution, respectively. Then we showed, for each plotted point, ±4sd(i(,)) bounds
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-3 -2 -1 0 1 2 3 4 .0,5 0.0 0.05 0.10 0.15 z .1.5 .0.S 0.0 0A
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-4 -3 -2 -1 0 1 4 -3 .2 . 0 1 2 .2. .5 -0.5 0o0o .
Rotation Rotation Rotation
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O O r •*n'I -

4-2.1 0 12 4 6 4 - 0. 01 01 0.1 4 -3 -2 -1 0 1 20

Rotation Rotation Rotation
(.10,.02) (.10,.05) (.10,.10)

Figure 5.3: Histograms of i for each Situation in Case 1, 1000 trials each. The two
numbers in parentheses represent a and a.= respectively.
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Xtranslation Xtranslation Xtranslation
(.10,.02) (.10,.05) (.10,.1 0)

Figure 5.7: Histograms of f. for each Situation in Case 11, 1000 trials each. The
two numbers in parentheses represent and a respectively.
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around the line fitted to the plot. This may give us some sense of how well the

sample distribution of j is approximated by the normal distributon (, i2 ).

We have presented the normal qq-plots of 9, T, and T,, with the bounds in

Figures 5.9 - 5.11, for each Situation in Case I, and in Figures 5.12 - 5.14, for each

Situation in Case I1.

As expected, every Situation(.02,a.) gave us a satisfactory result except that

when oa = .10, i and T seem to have long left tailed distributions in both Cases.

For Situations(.05,a.), all but when a = .10 in Case II, i and T show long left

tailed distributions while f, consistently shows satisfactory results.

For Situations(.10,o) every thing seems to fall apart. When a. = .10 our

approach seems to confuse nearby points. When o, = .05 or .02, the standard for

matching difference vectors is difficult to meet, and our method frequently fails to

find satisfactory matches.

We have summarized the information obtained from the normal qq-plots in

Tables 5.1 - 5.6. They show M, S of j and corresponding &ML, the ratio S/&ML

along with the number of points outside the bounds of ±4 standard deviations from

the fitted line for each situation.

In Table 5.7, we have collected all the ratios S/&ML in Case I, and in Table 5.8,

the same thing in Case II. From them you can easily see that the ratios S/&ML are

the smallest when a = a. and the largest occur when a = .10 and a. = .02, namely

when we assumed too low a value for the standard deviation.
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0- 0 / aA
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.4 ,,I4 1 1 S I 1 3 4 .4 4 -a 1 2 4 , -I 6 1 4

Normal Scores Normal Scores Normal Scores
(.05,.02) (.05,.05) (.05,.10)
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48 4 4 -! 0 I It 8 4 4 4 4 -I * 1 2 S 4 4 "4 4. .' 4 1 3 |

Normal Scores Normal Scores Normal Scores
(.0,.02) (.10,.05) (.0,.10)

Figure 5.9: Normal qq-plot of for each Situation in Case 1, 1000 trials each. The

two numbers in parentheses represent a and a. respectively.
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Figture 5.10: Normal qq-plots of !f, for each Situation in Case 1, 1000 trials each.
The two numbers in parentheses represent a and a. respectively.
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Figure 5.11: Normal qq-plots of f. for each Situation in Case 1, 1000 trials each.

The two numbers in parentheses represent a and a,, respectively.

80

C -C -z-!-



- - F -i
A A

o 0 0
oo 0

a 34 - 4 -1 4

Normal Scores ~ Normal ScoresNomlSre
(.02,02) ~ (.02,.05) (0,0o /

- oa

o -- :0

OF . . . . . . .

444 4 4 - 6 1 4

Normal Scores Normal Scores Normal Scores
(.05,.02) (.05,.05) (.02,10)

M Cr- r /_---

Normal Scores Normal Scores Normal Scores
(.1002) (.1005) (.10,.10)

Figure 5.12: Normal qq-plots of for each Situation in Case 111, 1000 trials each.
The two numbers in parentheses represent .and a respectively.
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Figure 5.13: Normal qq-plots of T. for each Situation in Case 11, 1000 trials each.

The two numbers in parentheses represent a and a. respectively.
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igre 5.14: Normal qq-plots of : for ech Situation in Case T, 1000 trials each.
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S um mary Old_____ __

Statistics .02 .05 .10
M.0007 .0340 .0146

.0224 .0232 .0411
.02 .UL0182 .0182 .0182

q/&Mn 1.2308 1.2747 2.2582
# Outside

__±4 s2 Bounds 32 79 320
-. 0016 .0331 .0211

.1.1567 .0612 .0895
.05 O .0456 .0456 .0456

____&_____ 3.4364 1.3421 1.9247

# Outside
__±4 '9d Bounds 605 312 135

M- .0861 .0063 .0027
.7240 .2741 .1694

.10 aML .0912 .0912 .0912
__________ 7.9386 13.0055 1.8575

# Outside

L_ ±4 Z Bounds (25) 650 453 295

Table 5.1: Surmary from the normal qq-plots of in Case 1, 1000 trials each.
The numbers in the parentheses represent the numbers of trials with "No Matches"
if there are any.
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Summary ____ __

__ Statistics .02 .05 .10
M.0016 .0276 .0346
5.0152 .0149 .0138

.02 G .0135 .0135 .0135
S________ 1.1259 1.1037 1.0222

# Outside
±4 ad Bounds 23 0 181

M- .0161 .0210 .0279
5.1294 .0404 .0431

.05 aML .0337 .0337 .0337
____&_____ 3.8398 1.1988 1.2789
# Outside

±4 ad Bounds 423 144 312
M -. 1367 -. 0198 .0078

a .4112 .1663 .0906
.10 O .0673 .0673 .0673

__________ 6.1100 2.4710 1.3462
#Outside

L ±4 .9d Bounds (25) 255 523 420

Table 5.2: Summary from the normal qq-plots of i~in Case L, 1000 trials each.
The numbers in the parentheses represent the numbers of trials with "No Matches"
if there are any.
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Summary ___

Statistics .02 .05 .10
-. 0012 -. 0293 -. 1132
.0143 .0188 .0255

.02 .0126 .0126 .0126

^/&ML 1.1349 1.4921 2.0238
# Outside

±4 ad Bounds 137 0 365

-.0256 -.0429 -.1064
i .0997 .0467 .0463

.05 &ML .0314 .0314 .0314
_ /&ML 3.1752 1.4873 1.4745

# Outside
±4 dBounds 501 103 0

-.0407 -.0719 -.1025
a .2560 .1276 .0838

.10 &ML .0628 .0628 .0628
8/0'ML 4.0764 2.0318 1.3344

# Outside

±4 ad Bounds (25) 239 138 38

Table 5.3: Summary from the normal qq-plots of Tiv in Case I, 1000 trials each.
The numbers in the parentheses represent the numbers of trials with "No Matches"
if there are any.
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Summary ____ ___ ___

o Statistics .02 .05 .10
.0040 .0409 -.0300
.0304 .0421 .0414

.02 b.0250 .0250 .0250
8_/&ML 1.2160 1.6840 1.6560

# Outside
±4 2 Bounds (1) 163 209 220

.0070 .0189 -. 0794
S .2494 .1222 .1496

.05 & .0625 .0625 .0625
a/ML 3.9904 1.9552 2.3936

# Outside
±4 d Bounds (34) 684 301 9

M -. 0381 -. 0350 -. 0976
1.1089 .5037 .3121

.10 a .1250 .1250 .1250

/UML 8.8712 4.0296 2.4968
# Outside

±4 a2 Bounds (100) 668 442 273

Table 5.4: Summary from the normal qq-plots of e in Case II, 1000 trials each.
The numbers in the parentheses represent the numbers of trials with "No Matches"
if there are any.
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Summary 0__
o Statistics .02 .05 .10

-. 0004 .0105 -. 0686
.0172 .0248 .0247

.02 &.0141 .0141 .0141
C ML 1.2199 1.7589 1.7518

# Outside
±4 2 Bounds (1) 71 250 254

M -.0270 -.0138 -.1011
a .1476 .0763 .1108

.05 'ML .0352 .0352 .0352
S/5ML 4.1932 2.1676 3.1477

# Outside
±4 Zd Bounds (34) 610 239 393

-.1290 -. 1216 -.1472
5 .2998 .2067 .1309

.10 L 0705 .0705 .0705
8/&ML 4.2525 2.9319 1.8567

# Outside

±4 ad Bounds (100) 312 119

Table 5.5: Summary from the normal qq-plots of T, in Case I, 1000 trials each.
The numbers in the parentheses represent the numbers of trials with "No Matches"
if there are any.
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Summary a _

0 Statistics .02 .05 .10
-. 0011 -. 0039 -. 0540

S .0179 .0170 .0161

.02 ,.0144 .0144 .0144

S/GML 1.2431 1.1806 1.1181
# Outside

±4 2 Bounds (1) 61 50 0
.0073 -.0141 -.0454
.0999 .0492 .0410

.05 &ML .0359 .0359 .0359

^/&ML 2.7827 1.3705 1.1421
# Outside

±4 sd Bounds (34) 502 105 105
.0650 .0053 -.0204

i .3237 .1334 .0869
.10 aML .0718 .0718 .0718

S &ML 4.5084 1.8579 1.2103
# Outside

±4 2 Bounds (100) 283 271 227

Table 5.6: Summary from the normal qq-plots of T in Case 11, 1000 trials each.
The numbers in the parentheses represent the numbers of trials with "No Matches"
if there are any.
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,_ o .02 .05 .10
.02 1.2308 1.2747 2.2582

9 .05 3.4364 1.3421 1.9247
.10 7.9386 3.0055 1.8575
.02 1.1259 1.1037 1.0222

22s .05 3.8398 1.1988 1.2789
.10 6.1100 2.4710 1.3462
.02 1.1349 1.4921 2.0238

TV .05 3.1752 1.4873 1.4745
.10 4.0764 2.0318 1.3344

Table 5.7: The ratios S/&. in Case I, 1000 trials each.

_a

, o .02 .05 .10
.02 1.2160 1.6840 1.6560
.05 3.9904 1.9552 2.3936
.10 8.8712 4.0296 2.4968
.02 1.2199 1.7589 1.7518

f= .05 4.1932 2.1676 3.1477
.10 4.2525 2.9319 1.8567
.02 1.2431 1.1806 1.1181

Ty .05 2.7827 1.3705 1.1421
.10 4.5084 1.8579 1.2103

Table 5.8: The ratios S/&m. in Case 11, 1000 trials each.
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Chapter 6

Conclusions
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The problem of estimating a rigid body motion from two noisy images of an object

taken at two different times has been studied.

The available data consist of the unordered locations of some of the prominent

points of the object. Because it is assumed here that these points are not individually

recognized and some of them may be missed in one or both of the images, it is not

obvious which points of the two images correspond to one another. Moreover the

observed locations are subject to error.

A computational procedure, capitalizing on the rigidity of the object, has been

proposed for estimating the motion parameters of the object in the presence of

.V(0, 0212) Gaussian noise independently added to the positions in the images of

the points observed.

In principle, one might apply maximum likelihood to the estimation problem,

but the difficulty in formulating and calculating the likelihood function under the

above mentioned assumptions is formidable. However one ought to expect to do

better when the observed points are recognized and the common points among them

are matched without error in identification.

For this favorable situation, where the likelihood function can be easily formu-

lated, the asymptotic normality and consistency of the maximum likelihood estimate

as a --+ 0, have been proved. Also the asymptotic covariance matrix for that has

been derived explicitly. Similar results hold even when a is incorrectly assumed to

be a = ka for positive k 0 1.

Simulation results have shown that in most cases where we either know the

correct a (i.e., a. = a), or assumed a larger value for that (a. > o), the proposed

estimator does reasonably well compared with the maximum likelihood estimate,

considering the fact that the latter is under a favorable situation.

Computationally, there is still much to be desired and it will be an interesting
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problem to produce an algorithm which reduces the cost of computing for this

method.

One important generalization of this method will be to allow a noise structure

where the nearby observed locations are correlated, which is often the case in real

world data.
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A.1 The Almost Sure Uniqueness of j6M,(X)

In the following discussion, we will continue to use the same notation as in Chapter 4,

and assume mo > 2.

From the definition of AML(X) and Equation (4.16), it is clear that AML(X) can

be defined to be the value of A ER which minimizes lX- G(P) 112, or equivalently

lix- G() ll.
First, let us define the subset no of n by

no0 := {P= [ I ERj =ije.- E 1,1E(W (A.1)

that is, no is the subset of consisting of P's which correspond to m0 identical

points. Let G(R) be the range of the function G:

G(n) := {G(P) I E R} C R,-". (A.2)

Similarly let

G(Ro) := {G(A) I A E Ro} C 0(R) c R4, f'. (A.3)

Then we can rephrase Lemma 4.2 as the following lemma.

Lemma A.1 The function G restricted to n \ Ro is one-to-one onto G(n) \ G(flo).

We need the following lemma to proceed.

Lemma A.2 G(R) is a closed subset of R 4"".

Proof : Let y(') :- G(fpi () with P(') E R, i = 1,2,... be a sequece in G(R) that

converges to a point y(0) E R 4"w. For each i - 1, 2,..., let

_) := 0' . p(') E R ct) (-r,7r], 2') p IL2,
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Ir

so that

I( (u(01) ® 0 ) + 21" 0 1.,

Then clearly the o() converges to some o(O) E R2 '.

Since [-x, r] is compact and (-x, r] C [-7r, 7r], by taking a subsequence, we can

assume that the 0('1 converge in [-w, r]. Then the U(O('I) converge to some U(0(0)),

0(a) E (-r, 7r], and it follows that the T' converge to some 2E( ) E R2 . Therefore

y(o) = y(, = G(0O)),

where
(o1 := 14(ol ) 3r (O) 1() E l2(0) .

Hence y(0) E G(fl). So G(fl) is closed. This completes the proof.

Let A be the Lebesgue measure on R" ° . Then the following arguments will

show that hML(X) is unique for A-almost all X r R 4 ,*, and hence almost surely,

because the Gaussian probability measure is absolutely continuous with respect to

A.

For any x E Rm , and any set F C Rm , let

6p(x) = uf{llx - yllI y E F}. (A.4)

Note that if x E F, then 6, (x) = 0. We have the following propositions.

Proposition A.1 For any non-empty cloaed set F C R' and any x E R', x E F

if and only irf b(x) = 0.

Proof : We only need to prove the "if" part. Suppose 6p(x) = 0. Then, for each

n = 1, 2,..., there exists a yn E F such that

IIx - y"11 < bjp(x) + -=-
I~x,~'hIn n

Hence the y. converge to x, and since F is closed, x E F.
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Proposition A.2 For any non-empty closed aet F C R', and any x E R", there

is a y F with Ix -yll = 6p(x).

Proof : Without loss of generality, we can restrict y to the set

& := {y E F Illx-yll -< 28p(x)),

which is compact, and on which the function y '-+ lix - yl is continuous. Thus it

attains its minimum on Bx and therefore on F.

Proposition A.3 For any non-empty aet F C Rm , bp is a Lipschitz function.

Proof : For any xj,x2 E R', and any c > 0, we can find a y, E F such that

I1x2 - y.11 < 6P(x 2) + e.

Then

6P(xI) - 6P(x2) <5 IIx1 - Y.1 l- IJx2 - Y.11l + 6

< Ilxi-x 211+:.

Hence, by letting e -+ 0 and then by symmetry, we have

16P(xI) - 6P(x2)l _ IxI - x211 . (A.5)

This completes the proof.

A function t : Rm --+ RI is called totally (Frichet) differentiable at x0 E Rm

if the (row) gradient vector at(x)/axj... exists and t(x) admits the first order

Taylor Expansion at x = xO:

t(X + ) = t(xo) + t(x) I + o(11,11) as c-. 0. (A.6)

Let A be the Lebesgue measure on Rm . We have the following theorem due to H.

Rademacher ([Rademacher 19]).

97



Theorem A.1 (Rademacher's Theorem) Any real-valued Lipechitz function on

an open set 0 in Rm is totally differentiable at Am-almost all x E 0.

Proof : See, for example, [Federer 69, pp. 216-217.

Federer [Federer 59, 4.8. Theorem] has proved the following theorems.

Theorem A.2 For any non-empty closed set F C R', and y E F, the set

Q(y) := {Z E R I 6,(y + z) = 1Il1} (A.7)

is convex.

Proof By translating the set F by -y, we can assume that y = 0. Then

z E Q(y) if and only if ib - "-II Ilzil for all b E F.

Furthermore

ib - z11' - Ilzll' = bT(b - 2z) for any b, z E R-,

and consequently, if b, Z, w E R 'm, a,_y > 0, a + -y = 1, then

lib - (a. + w)ll -Ilas- + '-ywll2 = bT(b- 2az - 2yw)

= bT [a(b- 2z) + y(b - 2w)]

- abT(b - 2z) + -ybT(b - 2w)

= a(Ilb - z112 - 1-j11) + -I(llb - w1l ' - 11w 1).

It follows that Q(y) is convex.

Theorem A.3 For any non-empty closed set F C R', if x E R" \ F and bp is

totally differentiable at x, then there ezists a unique y E F such that lix - y11 =

6P(x).
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Proof : By Propositions A.1 and A.2, there is a y E F such that lix - y=

4p(x) > 0. Then x - y, 0 E Q(y) by definition of Q(y), and hence by Theorem A.2

(1 - a)(x - y) E Q(y) for 0 < a_ 1. Let

g:= -Q(x - y). (A.8)

Then we have

6p(x+s) = 6P[y+(1-a)(x-y)]

= I(1 -a)(x -yHll

- Sp(x)-a6p(x) for0<a<1.

Thus from the total differentiability of 6p at x, as a 1 0, we must have

6, (x) x- y 8(x) •
ft 6,(x) X 11th

6P(x+s)-6p(x) o(JjrJJ)
IICII + 1I

- + o(rCJ)

and hence by taking the limit as a 1 0, we get

86p(x) x - y
--X 6. CX A .9 )8x 4 ,(x)

Since I6p(x)/axll __ 1 from (A.5), it follows that

84(x) - x-y

Therefore such y must be unique.

Applying Theorems A.l and A.3 with 0 = R 4"o \ G(fl), F = G(fl), along with

the fact that for any x E F, x itself is the unique y E F satisfying lix - ylI = 64(x),

we have proved the following theorem.
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Theorem A.4 There ezist a act N C RI" with A(N) = 0 inch that for any

X E R'* \ N, there ezists a unique y(X) E G(fl) that satiafies

lIX - y(X)ll = Sa(n)(X). (A.11)

A similar theorem has been proved by A. Pizman ([Pizman 841).

Let N be a set in R 4 chosen to satisfy the properties of Theorem A.4. If

X E RW"%\N, y(X) E G(fl) of Theorem A.4 is unique. Suppose that y(X) o G(fl0 ).

Then by Lemma A.1, Ou,(X) is unique. Hence, to show that 0,,(X) is almost

surely unique, it suffices to show that A(M) = 0 where

M := {X E R"' \ N I y(X) E G(no)}. (A.12)

Theorem A.5 A(M) = 0.

Proof : Let

X:= X, E M, X1, X2E R " O.

Then y(X) E G(no).

Foray: ;e En, A1jER 2 -0, 1E(-i,x], tER2,
-T

lix - G()1' = 1XI - A1112 + 1X2 - (U(j) 0 I)AI - T@ ® 112

= 11x 1 - TI2 + Q1(U(I) T 0 I,,.()X 2 _U() Tf ®0 -. ,(.3

since left multiplication by U(")T preserves the norm, and so does the one by

U(9)® 01..

Now let us choose ao:= o o E no, 0 E R"'o, Oo E (-Ir, 7r], To E R2 with

y(X) = G(PO). Then

Iix- G(oP6)m' = mm Ilx-Gll

AEn
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= min X-G II i00

min [lix, - Th + IVx, - gi1'] (A.14)

where

,:= (U(00 )T @ I".)X, - U(90 )TTo0 ®l@ . (A.15)

Now the last minimization problem in (A.14) has a unique solution for jA,

01= 2 (A.16)

which, by Lemma A.1, must be of the form ;ij 0 1®.. for some 'I E R2 because

y(X) E G(flo). Then it follows that

Xi + (U(0o) ® l,.,)Xs = z ® 1.. for some z E R ,

or

X2 = -(U(Oo) ® I.)X + w ® 1,. for some w E R2.

Thus we have
[ "X +] (A.17)

x = -u(00) 11-0,+ I

Therefore

MC {XI x [ _(U(0) ,)+ ] ,X+ E R,nOo E (_ir, 7r],w E R}

and hence M is contained in a smooth manifold of dimension < 2mo + 3 < 4mo. It

then follows that

A(M =0.

In summary, we have

Theorem A.6 The mazimum likelihood estimate AML(X) is almost surely unique.
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