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Implicit in the approaches being taken by current efforts to create intelligent

computer-based instruction is the notion that curriculum is almost an epiphenomenon of

knowledge-driven instruction. Early computer-based instruction had little control

structure other than an absolutely rigid curriculum and was insensitive to the subtleties

of different students' partial knowledge.§-As a-result, 'here was a reaction in the

direction of representing the students' knowledge as a subset of the target or goal

knowledge to be taught and simply deciding de novo after each piece of instruction what

piece of missing knowledge to teach the student. A am convinced that goal knowledge is

as important to intelligent machine activity as it is to human activity, and that it also

must be well understood and explicitly represented in an instructional system if that

system is to be successful in fostering learning.1 This report presents an architecture

for representing curriculum or goal knowledge in intelligent tutors and is thus a first step

toward a theory of curriculum that can inform the design of such systems. To-illustrate

one way in which such a theory can sharpen our ideas about learning and instructionlhe

later part of the report focuses on the concept of prerequisite that is the basis for

existing computer-assisted instruction and shows how that concept has been inadequate

in the past. A new approach, in which the prerequisite relationship is always dependent

on the instructional subgoal (curriculum) context, is introduced.

1.0 Current Practice

Programs that preceded the entrance of artificial intelligence into instruction

prespecify the content of lessons. In some cases, the order of the specific lessons to

which a student is exposed is computed as instruction proceeds. However, the content of

a lesson, in terms of knowledge it is trying to teach, tends to be fixed. In currently used

programs, lesson assignment is viewed as a more-or-less knowledge-free subgoaling

problem. We have a list of things to be taught, and we teach each in turn. If instruction

is unsuccessful, we try again. The assignment of lessons can occur in several different
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ways. The frame approach organizes instruction into very microscopic units,

characteristically one screen "frame" each in size. Each frame contains some

instruction, some means for testing the student's performance, and decision rules for

deciding, on the basis of that performance, which frame the student should see next.

The pretest-posttest approach is organized at a higher level, the level of the lesson.

Prior to each lesson, a pretest is given. If the pretest is passed, the lesson is skipped;

otherwise it is presented. After each lesson a posttest is given. If the student passes the

posttest, he goes on to take the pretest for the next lesson.

There is a certain amount of inefficiency in the pretest-posttest approach. In many

cases, the student spends most of his time taking tests, and many testing methods are

not very effective instruction. More important, there usually is not much difference

between the lesson taken initially by a student and the one he receives if he fails the

posttest and is recycled. A number of efforts have been made in specific programs to

assure that novel material is presented, or that the repeated lesson is taught more

slowly, with more examples and more practice. However, in terms of content, it is the

same old lesson, being repeated again. As we shall see, this may be a fundamentally

incorrect approach to teaching.

There are many rationales for the pretest-posttest approach. Of these, perhaps the

strongest is the learning hierarchy theory of Robert Gagn6 (1962). Gagni gave very

clear directions for deciding on the content and sequencing of instruction, and these

directions continue to have strong influence on the design of instruction and training

today. The basic approach is to start with the capability that is the goal of the training

being designed. 2 One is then to ask the question

What kind of capability would an individual have to possess if he

were able to perform this task successfully, were we to give him

only instruction? (Gagn6, 1962, p. 356)
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That is, what does the trainee have to know so that simple verbal advice is

sufficient to get him to apply that prior knowledge to the task at hand? This

methodology can, of course, be applied recursively to further decompose the target

capability into smaller and smaller prerequisite capabilities. It is, after all, nothing but

the generic problem solving method of progressive refinement, splitting a complex goal

into several pieces, splitting the pieces into still smaller pieces, etc. This approach

works as long as we pick as units pieces that are small and coherent enough to cover in

single lessons and as long as there are no dangerous interactions between achieving one

lesson subgoal and achieving another.

These two criteria of subgoal internal coherence and linearity are extremely

important to the success of the method of progressive refinement. By internal

coherence, we mean that the subgoal can be achieved sensibly by itself, without

duplicating effort across subgoals unnecessarily. For example, if we decided to mow the

lawn by dividing it into a checkerboard of square regions, first mowing every other

region, and then mowing the ones in between, our refinement of the lawn task into doing

first the red squares of the board and then the black ones wastes effort. We must move

over the entire lawn twice instead of once. Further, lifting the mower to avoid cutting

certain sections which are being postponed for later is also unnecessary work.

Note that internal coherence is a function of the specifics of subgoal contents and

not a general principle alone. For example, while the checkerboard approach to mowing

the lawn is inefficient, making two passes over the lawn, one to mow and one to remove

weeds, may be quite sensible. This is because the micro-acts of pulling one weed and

mowing a small patch are incompatible, producing extra thinking and physical work if

they must be continually alternated, while the micro-acts of mowing successive small

regions are quite compatible, saving work over doing one patch, then mowing it, doing

the next, etc. It might be argued that the current approach of teaching subtraction of
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two-digit numbers and then waiting as long as a year before taking up subtraction of

three-digit numbers also violates the internal coherence rule.

The linearity criterion is also important. For example, if we want to build a house,

we can split the task into laying a foundation, putting up walls, and putting on a roof.

Only one order of those three steps make sense. The other orders fail. Some orderings

are impossible: one cannot put on a roof if there are no walls to support it yet. Other

orderings involve early steps that interfere with later ones, e.g., putting up the walls

before the foundation. Linearity problems can also arise in learning. For example, if

one requires students to type their essays beginning in fifth grade, and typing is not

taught until seventh grade, then there will be some conflict. Students will acquire, on

their own, patterns of typing that conflict with the behaviors used in efficient typing

methods; there could be negative transfer.

Gagn6 (1971) undertook to prescribe some principles of learning that would help

instructional designers achieve internal coherence and linearity in their development of

hierarchical goal structures (which he called learning hierarchies) for training courses.

He developed a variety of specific learning forms that could be used to constrain the

parceling of pieces of instruction into separate lessons or curriculum subgoals. Implicit

in his work is the principle that, in learning, the whole is more than the sum of its parts.

That is, the lowest-level subgoals in a goal hierarchy do not, as a group, contain all the

knowledge implied by the highest-level goal. The instructions that are given as subgoals

are assembled Into larger units of capability that result in new learning. This new

learning is not part of any subgoal's knowledge. Rather, it is emergent when multiple

subgoals are combined, just as a theorem in geometry is not present in the premises from

which it is derived but is, rather, new knowledge.

Unfortunately, the belief that the whole is simply the sum of its parts has too often

guided the task analyses that have generated training curricula. Rational task analysts
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have tended to look at an instructional subgoal, intuitively decide whether it can be

taught in a single lesson, and, if not, split it into a few subsubgoals each to be treated by

a separate lesson. Gagn4ts criteria, that we should be able to provide the "glue" needed

to tie together the pieces of knowledge from prerequisite lessons using only simple

instructions, and that these instructions should be based upon a theory of learning, are

generally not given adequate consideration. For example, designers of training for

technicians make intuitive decisions that a good technician must know some of the

theory of operation for the devices he maintains and that he must know some specific

rules for fixing those devices. A current technical curriculum therefore may cover

primarily decontextualized theory and device-specific operating algorithms. No effort

appears to have gone into determining the cognitive glue that allows concepts learned in

one context to be applied in another, such as finding a fault in a nonworking device,

which may require problem solving heuristics rather than specific algorithms.

Intelligent computer-assisted instruction attempts to represent all the knowledge

that constitutes the expertise that is to be taught. Interestingly, though, it generally

does not possess an explicit curriculum based upon a theory of learning and instruction,

either. Where conventional instruction has an explicit curriculum but fails to have an

explicit and complete representation of the knowledge that is to be taught, intelligent

instructional sy.tems have tended to represent the target knowledge explicitly but not

to represent explicitly that body of knowledge that specifies the goal structure for

instruction, the curriculum. For example, the WEST tutor (Burton & Brown, 1982)

contains a method for determining how close to optimal a player's performance is and a

set of issues to be considered. These issues constitute part of a curriculum knowledge

structure but fail to have any relational structure tying them to each other or to a

representation of target knowledge. In other cases, such as the geometry and lisp tutors

being developed by John Anderson (Anderson, Boyle, Farrell, & Reiser, 1984), there are

5
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problem sequences which are preset, but again there is no explicit representation of

curriculum knowledge.

To summarize, traditional computer-based instruction, whether organized into

frames or into larger lesson units, tends to have an explicit representation of curricular

structure, though often a shallow one, and, at best, only an implicit representation of the

knowledge being taught, while intelligent instructional systems developed to date have

explicit representation of the target knowledge but at best only implicit representations

of the curriculum knowledge, the scope and sequencing of lessons.

2.0 Weaknesses in Current Approach

We can now restate and elaborate two problems inherent in current approaches to

instructional design. First, there is no clear method for differentiating how to present

material to remediate a problem discovered after a lesson has been taught from how it

should be presented when taught initially. Second, the knowledge that represents the

"glue" connecting the contents of related lessons is not clearly specified, nor is it

assigned to be part of the content of any specific lesson. I consider each of these

problems in turn.

2.1 Redo is the Only Strategy It Supports

In current training systems, the curriculum is at least implicitly a goal structure.

One proceeds to teach the prerequisites (or subgoals) for a given lesson before teaching

that lesson itself. The student should always be able to infer the missing knowledge that

integrates those pieces of prerequisite knowledge into a broader skill. However, this

doesn't always work. Lesgold's Two Fundamental Laws of Instruction (shown in Table 1)

often apply, resulting in incorrect decisions about whether or not a trainee has mastered

a given lesson. A lesson can appear to be mastered although the knowledge that has been

acquired is too specific and cannot transfer from the context of the prerequisite training
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to the context in which it must be used (missing "glue"), resulting in the circumstance

described by the First Law. On the other hand, a lesson can appear to be unlearned

because the context of testing does not match the context of instruction, even if the

learned knowledge is adequate to the contexts for which the lesson is prerequisite. The

result is the circumstance described by the Second Law. For example, there are

mechanics whose formal knowledge of electrical principles is not sufficiently developed

to pass tests but who know more about what goes on in a car's electrical system than

many people who have studied physics.

Table I

Lesgold's Two Fundamental Laws of Instruction

First Law: Not everyone who passes a test on a topic knows what appears to have been tested.

Second Law: Not everyone who fails a test on a topic lacks the knowledge that appears to have been

tested.

Because we are never able to establish with certainty that a lesson has been learned,

and because excessively high criteria for posttesting can be very wasteful of

instructional time (since the student could fail but still have adequate knowledge), it is

inevitable that occasions will arise in which it was assumed that a student has mastered

a prerequisite when in fact he has not. It is important to note that this will occur

whether the criteria for passing out of a lesson are prespecified or determined through

some inferential process as the lesson is being taught, whether they are superficial (a

cutoff score on a test) or deep (based upon a detailed student model fitted to all of the

student's performance in the relevant recent past).
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When the student does have to be given remediation because the assumptions of

prerequisite knowledge have proven wrong, current systems generally replay the same

instruction that did not work the first time. Sometimes different problems are assigned

as examples or for practice, but they are generally of the same type as were used before.

Sometimes the lesson proceeds more slowly, taking smaller steps and providing more

practice at each step. In a few of the most recent intelligent computer assisted

instructional systems (e.g., Burton & Brown, 1982; Bonar, 1985), it is possible to estimate

which specific pieces of knowledge targeted by the lesson are most likely not to have

been learned and to concentrate on those. However, in every case, the goals of the

lesson can and should be adapted to specific needs that arise only during remediation.

It should be noted that a number of theorists have proposed the view that learning in

a domain is a process of successively replacing primitive conceptions, or personal

theories, of the domain with more advanced constructions of it. This view subsumes the

important insight that the knowledge structure of the student, rather than simply being

incomplete, may actually be wrong, that he may hold a misconception, a different and

conflicting theory of the task domain from the one the trainer would like him to have

(for example, see Carey, in press; Glaser, 1984; Shaughnessy, 1977; Young & O'Shea,

1981). The approach I am taking in this report is complementary to this view,

concentrating on a somewhat more microscopic level of analysis.

2.2 No One Is Responsible for the Likeliest Failures of Instruction

A second problem with current approaches to remediation is that they

fundamentally ignore the nonlinearities between lessons, the "glue" that holds lessons

together. This is a problem particularly when responsibility for different parts of a

training regimen is divided among multiple instructors. There is always a tendency for

the content of a lesson to be abstracted to its core, both in teaching it and in deciding

how to test it. Consequently, the amount of between-lesson "glue" for which none of the
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course instructors takes responsibility can be substantial. Even worse, such division of

responsibility is most common in technical training courses, where the trainees are often

less likely to be facile at inferring the missing content. However, it occurs between

grades in school and between courses in college curricula as well.

The loss of the fringe content between lessons, the "glue," produces a variety of

pathologies that we see every day. The teacher in third grade feels that the only reason

students do poorly in her class is that the second grade teacher failed to teach what was

required. The second grade teacher points to high test scores and disclaims

responsibility. The trainer providing on-the-job practice to technicians claims that they

do poorly only because they were not taught fundamental principles of electricity, while

the instructor for the course on fundamentals of electricity has lots of test data to show

". that they learned everything in the curriculum. Of course, what they were likely to

forget after testing is exactly the fringes of the knowledge they were taught, the

relations that "glue" it to the content of other lessons.

Overall, both of the above-cited problems seem to arise because there is a lack of

distinction between the content of training and the curriculum or goal structure for

training. Merely checking off subgoals as they are taught fails to take account of the

tendency of declarative knowledge to suffer high forgetting at its fringes, to shrink to a

coherent, highly-interconnected core. Simply reteaching prerequisite lessons when

problems arise later fails to take account of what has already been learned and what has

just been shown specifically to be weak.

In the next section, I introduce a knowledge architecture for intelligent tutoring

systems that has driven considerable current work on intelligent instructional systems

that Jeffrey Bonar, Robert Glaser, and I (cf. Bonar, 1985; Glaser, Lesgold, & Lajoie, in

press) have been conducting. The architecture's components are still being shaped by
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various projects each of us is conducting, but the basic ideas are well enough evolved to

help supply what is missing from current instructional systems.

3.0 The Structure of Knowledge in an Intelligent Tutor.

As discussed above, a fundamental problem with existing architectures for

instructional and training systems is that they fail to explicitly represent either the

knowledge that they are designed to teach or the curriculum (goal structure) for teaching

it. In setting out to develop an architecture that represents both content and

curriculum, one quickly discovers that there are other issues that must be considered.

First, there is other knowledge that a good teacher looks for in the student, knowledge

we might call aptitude or metacognitive skill. That is, some students are more able to

learn with facility from particular forms of instruction than others, and awareness of a

student's learning capabilities can well shape the instructional approach a good teacher

takes. Second, there are more domain-specific capabilities that represent both the broad

outcomes desired from the training and some specific capabilities for learning. For

example, in a course on troubleshooting, general knowledge of electrical principles is

both a useful prerequisite and something that should be enhanced by practice in finding

faults in circuits.

These needs suggest that the knowledge in an intelligent tutor must be of three

different types: (a) curriculum knowledge, a subgoal lattice of lessons connected by the

prerequisite relation; (b) a representation of the knowledge to be taught, from which

explanations and student models can be generated; and (c) a representation of the more

enduring characteristics (metaissues) to which the instruction should be sensitive. Figure

1 shows the architecture symbolically.

10
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Metaissues

Goal Lattice

Knowledge
Layer

Figure I
The Three Layers of an Intelligent Tutor

3.1 The Knowledge Layer

The knowledge layer, highlighted in Figure 2, should contain a representation of the

knowledge the system is trying to teach. One way to think about that knowledge is that

"a" wa



it is a model of expert capability in the domain. Such knowledge includes both

procedures and concepts (i.e., both procedural and declarative knowledge). Some

constraints on its structure can be inferred from several things we know about human

expertise. For example, we know that experts, in contrast to novices, tend to represent

problems according to the underlying situations they involve, according to their deep

structure, whereas novices tend to have more superficial representations (Chi, Feltovich,

& Glaser, 1981; Larkin, McDermott, Simon, & Simon, 1980). We also know that, in

contrast to intermediate-level performers, experts tend to know exactly what to do in a

given situation rather than being dependent on inference from first principles (Chase &

Simon, 1973; de Groot, 1965). That is, they are able to represent the situation more

completely and richly and then to invoke the precisely appropriate method for dealing

with it. In order to do this, experts' knowledge must be richly interconnected and, to

t- some extent, redundant.

Before discussing how to deal with this problem, let me pause and give an example

or two to illustrate the importance of the bridging connections between coherent bodies

of knowledge. Consider the field of medicine. It is driven by several sciences:

physiology, biochemistry, pharmacology, and even physics and chemistry. The relative

roles of different portions of its scientific backing will differ for different disease

problems. For this reason, medicine is organized into specialties, each of which is

internally very coherent. The ties between these specialties are much more complex

and, relatively speaking, ad hoc.

12
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Metaissues

Goal Lattice

Knowledge__ e . l...Layer

Figure 2
The Knowledge Layer

A friend who is an attorney is handling a malpractice case involving a man who

arrived at a hospital with severe back pain and several other symptoms. A very

inexperienced intern was in the emergency room. He sent the patient to the orthopedics

department. The specialists there found no skeletal problems and, after a lengthy

examination, sent him back to the emergency room again. It then occurred to the intern

that the man might have a tumor producing the pain. So, he was sent to oncology. While

waiting for his turn there, he collapsed and died of a renal artery aneurysm. In essence,

the diagnosis process, decentralized according to the primary joints in the body of

13



medical knowledge, failed to make adequate use of the linking knowledge that might

have led from the symptoms, which seemed to involve the back or the organs near the

painful spot, to knowledge of various sorts of vascular problems. What was missing from

the process was exactly the ad hoe interconnections between the conventional units of

knowledge. Part of the specialty of emergency medicine is knowledge of the limits of

the diagnostic processes which different specialties use, i.e., knowledge of what happens

at the "fringes" between specialized diagnostic approaches.

One can find other less-dramatic examples throughout the curriculum. For example,

in teaching elementary arithmetic, we teach children about place value, concentrating

on the ones, tens, and hundreds places in numbers. We also teach them algorithms for

addition and subtraction of multicolumn numbers. Not all of the ties between these two

4 related pieces of knowledge are explicitly taught, and not all seem to be universally

learned (as demonstrated by the BUGGY line of research; Brown & Burton, 1978; Brown

& Van Lehn, 1980; Van Lehn, 1983). Some of what is not universally learned also has the

character of being in the gap between the two pieces of instruction.

How do we deal with such gaps? One approach is a small extension of the original

Gagn6 learning hierarchy ideas. The lowest levels of lessons in such a hierarchy

correspond to the regions of the knowledge layer into which the total body of expert

knowledge has been split. Higher levels of lessons are more than just the sum of what

was taught in the lower-level lessons. They have the specific task of assuring that the

conceptual glue between the lower-level pieces is acquired. It is in this sense that

teaching the whole of a body of material is more than just teaching its parts; the goal for

the whole includes not only the parts but also a specific focus on the ties between those

parts.
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3.2 The Curriculum Goal Lattice Layer

The curriculum goal lattice layer is the central layer of the proposed architecture.

As the goal structure for the instructional system, it is, more or less, in control of the

system. Ordinarily, goal structures are trees, representing the progressive

decomposition of each layer of subgoals into still smaller subsubgoals. An example tree

is shown in Figure 3. It shows the decomposition of a basic course in resistor network

concepts into two main goals, knowledge of Ohm's Law and Knowledge of Kirchhoff's

Law. Those goals are then broken into subgoals, which are then decomposed further.

The diagram becomes rather complex visually, but its underlying structure is still

straightforward: each subgoal is either a lesson that can be taught completely as a unit

or it is further decomposable into subsubgoals.

This kind of goal structure is exactly the sort of concept that Gagn6 was introducing

in his discussions (see above) of learning hierarchies. Further, he felt that psychological

laws of learning would determine when subgoals had to be further subdivided and when

they could be taught as single lessons. His analyses were in terms of the verbal

association theory prominent at the time. More recently, Van Lehn has advanced at

least one different sort of criterion for deciding on such a subdivision, namely that a

single lesson should not require the student to learn a rule with disjunctive conditions

(Van Lehn, 1983). Clearly, if the structure of curriculum is simply a subgoal tree, we are

well on the way to understanding how to develop such a tree and how detailed its

arborization must be.

However, in the first efforts, by Jeffrey Bonar, his students Cynthia Cosic and

Leslie Wheeler, and I, to employ a curriculum goal hierarchy in an intelligent tutor,

things were not as simple as we had hoped. For example, while one valid way to think of

the resistor networks course is in terms of scientific laws presented, which leads to the

decomposition shown in Figure 3, there are other equally valid ways. For example, one
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might start with the basic measurable properties of such networks: current,

electromotive force (voltage), and resistance. This leads to a goal lattice such as that

shown in Figure 4. What is noteworthy is that the lowest level units in the tree, the

simple lessons, are the same as in Figure 3, but the organization into higher-order goals

is entirely different, and the apparent purpose of the course may be different.

ElecConcepts

Current Voltage Resistance

Ohm's Law

i. arlle \ OhmQual O hmQuant

I Series V +Series \R--l V--I

V Pa IQU
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Figure 4
Goal Hierarchy for Basic Resistor Network Measures



So far, in our own work, we have found four different viewpoints on the instruction

that we want to present, each of which gives rise to a hierarchy that projects onto the

same simple lessons. Figure 5 shows these viewpoints. We can partition our lessons into

those that deal with series circuits and those that deal with parallel circuits, quite

reasonable given that students often have different conceptual problems with parallel

circuits. Or, we can partition our lessons according to the type of problem we present to

the student: qualitative problems, quantitative problems, and problems that involve

making a relative judgment about the one circuit relative to another. There are, of

course, also the two viewpoints discussed above, laws and measurable properties.

Viewpoint

CircuitTypes Laws ElecConcept ProblemType

I \,

ParCirc SerCirc / Qua rob ReiProb

Resis nce 'Voltage QuantProb

Kirchoff'sL w 0 Im'sLaw Current

Figure S
Viewpoints on Resistor Network Instruction

This leads us to a new view of the structure of curriculum knowledge in the

knowledge base of an intelligent tutor. The curriculum knowledge has the structure of a

goal lattice. There are a number of viewpoints on the goals of the instruction. With

respect to each viewpoint, one can identify a subset of the curriculum lattice that is a

true subgoal tree structure. So, from any specific point of view, there are clear

pathways that determine the sequencing of instruction, though of course there are

alternate approaches to such sequencing. For example, one can proceed depth-first. In
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the case of Figure 4's viewpoint, this would mean perhaps doing all the lessons relating to

current, then all those relating to voltage, and finally all those relating to resistance.

Or, one might proceed breadth-first, going through all the lowest-level lessons, then the

next level, and so on. There may be individual differences in aptitude or preference for

these two approaches.

Of course, when all of the viewpoints are considered at once, there is much more

complexity to the task of deciding what the appropriate sequencing for the lessons of the

curriculum should be. To some extent, the decision can be made on the basis of rational

task analysis, but our experience has been that empirical work driven by cognitive theory

is often necessary (Lesgold et al., 1986). Some of the lessons will tend to be difficult and

others easy. By taking the various viewpoints, it should be possible to organize

knowledge about lesson difficulty sufficiently to use it in deciding on appropriate

orderings through the curriculum. Another approach may be to tell the student which

lessons he is "eligible" to take next, based on prerequisites completed, and let him decide

for himself. As we shall see in section 4 of this report, there are even more

sophisticated possibilities to consider in deciding how to handle sequencing.

To summarize, the goal lattice layer is a lattice structure in which are embedded a

number of goal hierarchies, each corresponding to a fundamental viewpoint on the task

of teaching the course content. Figure 6 shows the goal lattice for the resistor networks

course we are implementing. This multiple viewpoints approach, incidentally, has

implications for what constitutes an appropriate course, in terms of the completeness,

coherence, and consistency of its curriculum lattice. Presumably, the resistor networks

*course as shown in Figure 6 is a reasonably sensible selection of content for a course.

The course is coherent, in that each simple lesson is relevant to all of the viewpoints we

have taken. It is locally complete, in that each viewpoint seems to be completely

teachable with the set of simple lessons we currently have implemented. It is globally
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complete to the extent that the viewpoints represented include all of the viewpoints

routinely held by experts and any others that are important to learning the domain

content. Finally, it is relatively consistent, in that the prerequisite relationships all run

in the same direction. There are no cases where Lesson X is prerequisite to Lesson Y

from one point of view while Lesson Y is prerequisite to Lesson X from another.
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It is not inevitable that courses will have these three properties. For example,

consider the sort of introductory psychology course suggested by most current textbooks.

There is little sense of completeness; lessons are included simple because of marketing

needs and current fashion. There is no sense in which the simple lessons at the bottom of

the hierarchy represent the simple foundations of concepts. Similarly, there is little

coherence; the differing viewpoints, social, behavioral, cognitive, clinical, do not cover

the same set of underlying basic concepts. Finally, there may not even be consistency.

From one viewpoint, it may be best to teach sensory physiology before teaching about

mental imagery; from another point of view a reverse ordering may seem obvious.

It seems appropriate to advance, as a hypothesis for future research, that

knowledge-driven instructional systems will work best and be most implementable for

those courses which have more or less coherent, consistent, and complete goal

structures.

3.3 The Metaisime Layer

The third layer of the proposed architecture for instructional knowledge is the

metaissue layer. Once again, it is useful to recount some of our reasoning in deciding on

the need for such a iaer and on what should be in it. Initially, we were motivated by a

single issue: the conflict between the sorts of data used by very good teachers to decide

on how to proceed with a given student and the data and reasoning used by the few

expert instructional systems that have been built. In giving students assignments,

teachers tend to rely on very broad representation of aptitude combined with a detailed

knowledge of the curriculum. A child is "a good student," "a fast learner," "good in

math," and/or "on page 93 in the book." In contrast, intelligent instructional systems, as

envisioned by artificial intelligence researchers (e.g., Burton & Brown, 1982; Goldstein &

Carr, 1977) construct a detailed student model which represents the best guess about
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exactly what a student does and does not know of the specific material targeted by the

course, e.g., "borrowing across zero," "adding single-digit integers," etc.

There is at least modest evidence (Burton & Brown, 1982) that teachers cannot

determine microscopic representations of student knowledge status nearly as well as

intelligent computer systems can, so the first hope for an approach that would be

sensitive to the detailed specifics of changing student knowledge is probably an

intelligent instructional computer system. This prompted us to think about how to

represent aptitude data. We were, in this thinking, heavily influenced by the

object-oriented approach we were taking (this approach will be discussed in Section 3.4

below). Basically, we were led to the following point of view.

a Metaissues

Goal Lattice

Knowledge. - ]Layer

Figure 7
The Metaissue Layer



Attending to a specific aptitude or some other metaissue in shaping the activities

presented for the trainee in any lesson is simply a special case of shaping a lesson

according to a specific viewpoint. That is, just as we might attend to differences

between series and parallel circuits in our resistor network tutor and expect some

students to have trouble with parallel circuits even after they have mastered series

circuits, we could attend to differences among students in, say, reading ability or verbal

facility of the student, and thus tailor our teaching to each student's capabilities seen

from the verbal-facility point of view. This has led us to the architecture shown in

Figure 7, in which the metaissue layer is simply the collection of goal nodes that are the

origins of various viewpoint hierarchies embedded within the curriculum lattice.

3.4 Lesson Objects

So far, we have rather mysteriously presented descriptions of various structures of

knowledge, implying that it is organized into lessons that can be considered from a

variety of different viewpoints. Also, we have suggested that, somehow, the lessons or

subgoals of the curriculum are connected with a representation of the knowledge they

are trying to teach. Nowhere have we said just what a lesson is, just what the structure

within one of these graphs might be like. To this I now turn.

Our fundamental approach to designing architectures for intelligent instructional

*systems is object oriented. That is, we see the design task as one of specifying a set of

intelligent fragments of computer program and then orchestrating the interactions

among these fragments. This approach originated with Smalltalk (Goldberg & Robson,

1983), a language developed in the course of trying to determine ways in which powerful

personal workstations could change education. In conventional computer programs, the

primary means of controlling the order in which computations take place, the task

discipline, is by the sequencing of instructions. In object-oriented programming, control

is passed when objects, "entities that combine the properties of procedures and data
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since they perform computations and save local state" (Stefik & Bobrow, 1986), send

messages to other objects.

So, for example, the way in which our resistor network tutor might be started is for

the student to point to a box on the screen that says Start. That box would actually be a

menu operated by an object. The object would perhaps respond to the student's action by

telling one of the metaissue nodes in the tutor to teach the student. For example, if the

approach favored by the designer were to teach primarily the relevant laws of electrical

circuits, the menu object might send the Laws object (see Figure 3) a message to teach

everything for which it is responsible. The Laws object would, in turn, ask its first

prerequisite object, Kirchhoff'sLaw, to act, and that object might in turn tell the I + Parallel

object, which teaches that current sums across the branches of a parallel circuit, to act.

The I + Parallel object would then send messages in turn to its two prerequisites, dealing

with current summing over branches and with the notion that the current in a branch of a

parallel network is always less than the current passing through the network as a whole,

to teach their stuff. At each level, when one subgoal of a goal was satisfied, the next

would be sent a message to act, and so on.

This requires that each object contain all the data and all of the methods needed to

completely achieve the goal to which it corresponds. This is not as cumbersome as it

may sound; it is not necessary for each object to be a complete instructional computer

program. Rather, objects can "inherit" some of their methods from higher-level objects.

*So, for example, if there are many objects that should teach their content via an

exploratory electrical circuits simulation environment, they can all have a pointer to a

single higher-level object that includes the program for such a simulation. Each object

using the simulation might specialize it either by setting the values of variables to which

the simulation program refers or by including specializing information in a message it

sends to the simulator when it invokes that approach. The object-oriented approach is
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valuable largely because it provides for a clear, understandable, and flexible means of

assuring that the goals an instructional program has to achieve are clearly delineated and

clearly "tasked" by relevant pieces of program code, even if the content to be taught

under various circumstances must be determined dynamically.

Table 2 lists the contents that each goal lattice object must have in the kinds of

instructional systems we are currently building. The list is split into two parts.

Declarative knowledge is the data that an object must have (or be prepared to

accumulate during interactions with the student), what it is able to know. Procedural

knowledge is the set of methods or programs that the object must have, what it is able to

do. Each entry represents a specific kind of knowledge that must be present either

explicitly, by being included in the object, or implicitly, via a pointer to the knowledge

as part of a "parent" object.

Table 2
The Contents of a Lesson Object

Declarative Knowledge

Variables that identify how a given lessons' goals relate to the goals of other lessons (i e.. which

lessons are prerequisite to the current one).

Variables that identify how the knowledge a lesson istrying to teach relates to the knowledge

other lessons are trying to teach (pointers to the knowledge layer).

Variables that represent the student's mastery of the knowledge the lesson intends to teach (the

student model).

Procedural Knowledge

Functions (methods) that generate instructional interventions based upon the student model

held by the given object, including both manipulations of the interactive learning environment

* .(perhaps a simulated laboratory or a problem generator) and various forms of coaching or advising.

Functions that decide if the given object is to blame for problems that arise while other lesson

objects for which it is prerequisite are in control.
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The declarative knowledge must include knowledge that places the object in the

curriculum lattice, showing what its prerequisites are and also which objects assume it as

a prerequisite. It must also include a specification of the specific parts of the knowledge

layer (the representation of the target knowledge to be taught by the course) it is

responsible for teaching. From this representation, it can provide explanations to the

student. Finally, there must be a student model, a representation of which pieces of the

target knowledge for the lesson the student appears to know and of the certainty of that

diagnostic information.

The procedural knowledge each object must have is of two primary types. First, an

object must (again, either explicitly or implicitly) be able to teach its target knowledge.

Second, it must be able to decide whether a student's failure to perform adequately in

learning a lesson for which it is prerequisite might be due to inadequate learning of its

target knowledge. We call this blame-taking capability. The idea is that if things are

going poorly in a lesson, the object teaching that lesson might ask each of its

prerequisite objects to find out whether what it was supposed to teach is what the

student is missing. With the curriculum structures discussed so far, that would seem to

imply something like readministering pieces of the lesson posttest. However, there are

more interesting possibilities to consider.

The goal object lattice structure, as discussed so far, bears striking resemblance to

current practice. If one looks at a current elementary or high school textbook, one finds

that each topic, and the exercises associated with it, is treated only once. One problem

with curricula that actually follow such books (and most teachers do) is that the

conditions of applicability for pieces of fact and process that students are taught are

never reliably delineated. Students too often form rules for carrying out problem solving

that are perfect for passing a unit test but maladaptive in the long run. For example, a

student in elementary school given a set of arithmetic word problems might learn that it
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isn't really necessary to read or understand the problem. If one finds words like

altogether, one adds the numbers stated in the problem; if one finds words like less, one

subtracts the smaller number from the larger; etc. Scanlon and O'Shea (in press) found

similarly superficial strategies for use of specific equations that had recently been

taught.

The way to avoid, or at least eventually remediate, such superficial learning is to

combine different types of problems, to assure that problems occur in a variety of

superficial contexts, so that the successful cues for various actions are cues based upon

deep understanding of the problem. Jeffrey Bonar has been working on an extension of

the architecture I describe here that tries to do this. In essence, higher-level curriculum

objects keep a list of lower level objects that have recently been taught. Occasionally, a

few problems are created that require various unpredictable combinations of this

knowledge for their solution. This forces the student to look more deeply at the problem

situation and work, like an expert, from deep understanding rather than from surface

appearances.

However, the blame-taking problem becomes somewhat different in such cases.

Rather than giving individual lesson posttests, testing for prerequisite knowledge in the

original limited context used to present it, one wants to determine which pieces of

knowledge that appear to have been mastered do not generalize to new situations. This

appears to require a strategy of responding to a student's failure to handle a complex,

*, V multi-lesson problem either by giving hints or by giving a simpler problem, so that some

of the candidate knowledge generalization failures can be ruled out. Work on how to do

this is still proceeding- I mention it only because it may help give a sense of the

character of blame-taking processes that we envision.
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4.0 Context-Specifie Prerequisite Content

I turn now to the final issue I wish to address, the complex nature of the prerequisite

relationship. In particular, I want to show that the domain knowledge for which a lesson

object is responsible is specific to the curricular context in which the lesson is invoked.

That is, the knowledge that should be presented by a lesson depends upon the context in

which that lesson is taught. To do this, I must compare the core content of a lesson

being taught for the first time with its remedial content.

4.1 The Core Content of a Lesson

The target knowledge of a lesson object can be thought of as a set of pointers from

that object to nodes in the knowledge layer. The subset of the domain (or expert)

knowledge layer defined by those nodes and their relations to other nodes will generally

not have a sharp boundary, because expert knowledge is highly interconnected. As can

be seen in Figure 8, some of the nodes in a lesson's target knowledge will be connected to

each other, while others will be outlying orphans, whose operational meaning, that is, the

set of connections from a concept to node to other concept nodes, is defined primarily

outside of the target subset. I use the term core content to refer to the subset of a

lesson's target knowledge that is coherent, in the sense that its nodes are interconnected,

with relatively few connections from a node to others outside that subset.

When a lesson is taught initially, its core content should be presented. That is, a
coherent subset of the knowledge subsumed under the lesson should be taught. The

density of detail in that coherent subset can vary with the aptitudes of the learner.

Some learners should be taught all of the core content explicitly, while others can be

expected to make at least the most direct and obvious inferences. In either case, it is

impossible to teach explicitly the fringes of the target knowledge without also

introducing knowledge outside the target subset, so it can be assumed that these fringe
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pieces of knowledge have not been taught during the lesson's initial presentation. If a

course, whether presented by human or by machine, is well taught, then the fringe

knowledge for one lesson will be covered in another overlapping lesson or will be so

immediately inferable from what is taught that it is optimal to assume that the student

will learn it. Part of the artistry of curriculum design is to split the knowledge to be

taught into pieces that cover the total set of target knowledge with no more overlap

than the usual student will require.

Goal Lattice

Knowledge

Layer

Figure 8
A Curriculum Object Subsumes a Region of the Knowledge Layer Including More than Core Content
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Further, there must be some mechanism for verifying how well the student is doing

at learning what he is taught explicitly and completely and at inferring what it was

hoped he would infer. In the design my colleagues and I have been evolving, blame taking

provides this mechanism. When a lesson is proceeding poorly, an effort is made to

determine which prerequisite material was not well presented, and that material is then

retaught. Further, arbitrary objects can be created dynamically from time to time

whose task it is to compose problems that require synthesis of several different pieces of

already-taught knowledge and to test the student with them. When such problems fail

one or more of the lessons they were based on should be reconsidered (i.e., the

instructor/machine should consider reteaching them).

4.2 The Content of a Remedial Lesson

When a lesson is retaught remedially, there will generally be information to guide

the selection of content that should be emphasized. In contrast to the emphasis placed

on core content when a lesson is originally taught, it is crucial to teach the knowledge

that links the core content of the to-be-remediated lesson with the core content of the

lesson whose failure produced the need for remediation. We can make this point clearer

by resorting to a graphical representation.

Look at Figure 9, which represents the interface between the goal lattice layer and the

domain knowledge layer. Its point is that prerequisites are usually only partially

overlapped by their superordinate lessons' domain knowledge. For example, the

projection in the knowledge layer of Lesson A (Region a), is only partly contained in the

projection of Lesson C (Region c), for which it is prerequisite. It has a different overlap

with the projection of Lesson B (Region b), for which it is also prerequisite.
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Higher-Level Objects' Projections Do Not Necessarily Cover the Projections of their Children

We can now proceed to define what content of a lesson should be taught when it is

remediated. Basically, the emphasis should be on the nodes in the overlap between the

projection of the superordinate lesson that failed and the projection of the prerequisite

lesson that has taken blame. Figure 10 illustates the area of Goal A's content that

should be taught when A has taken blame for the failure of superordinate Goal B.

Further, this overlap region should not be trimmed completely to produce a coherent

core. Rather, its connections into the prerequisite lesson should also be pursued during

remediation, and perhaps also its connections into the superordinate lesson that failed.

This gives us a clear distinction between the lesson as originally taught, which

emphasized core content, and the lesson as remediated, which involves contextually

relevant context.

I conclude by noting that this specification of what should be taught in remedial

instruction is probably not foreign to the master teacher, who undoubtedly makes such

determinations intuitively. However, instructional machines must have principles to
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Figure 10

The Appropriate Content of a Lesson when First Taught Is Not the Same as When Remediated

guide their performance, and the principles just stated seem reasonable candidates for

inclusion in the teaching knowledge of such machines. In implementing this approach, I

am sure that other candidates will also emerge. Finally, I suspect that the concerns we

have had will be worth bringing to the attention of new teachers, who may not have a

good idea of what the differences are between good remediation and simple repetition of

instruction that failed the first time.

I also note that I have not considered another principle that seems worthy, namely

that instruction should build from strength. This is not because I disagree with that

principle but rather because I have nothing new ready to say yet. A good instructional

system, especially when remediating, will want to order the knowledge that is presented

so that it builds from knowledge the student is known t - have already. I hope that my

colleagues and I will have something to say soon about how this should be done.

32



References

Anderson, J. A., Boyle, C. F., Farrell, R., & Reiser, B. (1984). Cognitive principles in the

design of tutors. In Proceedings of the Sixth Annual Conference of the

Cognitive Science Society. Boulder,CO: The Institute of Cognitive Science and

the University of Colorado.

Bonar, J. (1985). Bite-sized intelligent tutoring. Technical Report. Pittsburgh, PA:

University of Pittsburgh, Learning Research and Development Center.

University of Pittsburgh.

Brown, J. S., & Burton, R. R. (1978). Diagnostic models for procedural bugs in basic

mathematical skills. Cognitive Science, 2, 155-192.

Brown, J. S., & Van Lehn, K. (1980). Repair theory: A generative theory of bugs in

* procedural skills. Cognitive Science, 4, 379-426.

Burton, R. R., & Brown, J. S. (1982). An investigation of computer coaching for informal

learning activities. In D. Sleeman & J. S. Brown (Eds.), Intelligent tutoring

systems (pp. 79-98). New York: Academic Press.

Carey, S. (In press). Are children fundamentally different kinds of thinkers and learners

than adults? In S. F. Chipman, J. W. Segal, & R Glaser (Eds.), Thinking and

learning skills: Vol. 2. Research and open questions. Hillsdale, NJ: Erlbaum.

Chase, W. G., & Simon, H. A. (1973). Perception in chess. Cognitive Psychology, 4,

55-81.

Chi, M.T.H., Feltovich, P., & Glaser, R. (1981). Categorization and representation of

physics problems by experts and novices. Cognitive Science, 5, 121-152.

Gagni, R. M. (1962). The acquisition of knowledge. Psychological Review, 69, 355-365.



Gagni, R. M. (1971). Conditions of learning. New York: Holt Rinehart & Winston.

Glaser, R. (1984). Education and thinking: The role of knowledge. American

Psychologist, 39, 93-104.

Glaser, R., Lesgold, A., & Lajoie, S. (in press). Toward a Cognitive Theory for the

Measurement of Achievement. In R. R. Ronning, J. Glover, J. C. Conley, &

Witt, J. C. The influence of cognitive psychology on testing. Hillsdale, NJ:

Erlbaum.

Goldberg, A., & Robson, D. (1983). Smalltalk-80: The language and its implementation.

Reading, MA: Addison-Wesley.

Goldstein, I., & Carr, B. (1977, October). The computer as coach: An athletic paradigm

for intellectual education. Proceedings of the 1977 Annual Conference,

Association for Computing Machinery, Seattle, WA, 227-233.

de Groot, A. D. (1965). Thought and choice in chess. The Hague: Mouton.

Larkin, J. H., McDermott, J., Simon, D. P., & Simon, H. A. (1980). Expert and novice

performance in solving physics problems. Science, 208, 1335-1342.

Lesgold, A. M., Lajoie, S., Eastman, R., Eggan, G., Gitomer, D., Glaser, R., Greenberg,

L., Logan, D., Magone, M., Weiner, A., Wolf, R., & Yengo, L. (1986, April).

Cognitive task analysis to enhance technical skills training and assessment.

Technical Report. Pittsburgh, PA: University of Pittsburgh, Learning Research

and Development Center.

Scanlon, E., & O'Shea, T. (In press). Cognitive economy in physics reasoning: Implications

for designing instructional materials. In H. Mandl & A. M. Lesgold (Eds.),

Learning isses for intelligent tutoring systems. NY: Springer.

- f \ J I. ~. ~j.~*.~ ('



Shaughnessy, M. (1977). Errors and expectations. New York: Oxford.

Stefik, M., & Bobrow, D. (1986). Object-oriented programming: Themes and variations.

Al Magazine, 6, 40-62.

Van Lehn, K. (1983). On the representation of procedures in repair theory. In H. P.

Ginsburg (Ed.), The development of mathematical thinking. (pp. 197-252). New

York: Academic Press.

Young, R. M. & O'Shea, T. (1981). Errors in children's subtraction. Cognitive Science, 5,

152-177.

Footnotes

1I thank David Merrill for making this clear to me in his comments after a

"-. presentation I made at an AERA meeting in 1983.

21 mean to address both school instruction and technical training needs with the

ideas presented in this essay. For ease of exposition, I shall use the term training to

refer to both of these activities.
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3300 S. Federal Street Washington, DC 20375
Chicago. IL 60616-3793 Mr. Raymond E. Christal

Dr. John S. Brown AFHRL/MOE
XEROX Palo Alto Research Brooks AFB, TX 78235

Center
3333 Coyote Road Assistant Chief of Staff
Palo Alto. CA 94304 for Research. Development,

Test, and Evaluation
Maj. Hugh Burns Naval Education and
AFHRL/IDE Training Command (N-5)
Lowry AFB, CO 80230-5000 NAS Pensacola, FL 32508

Dr. Jaime Carbonell Dr. Allan M. Collins
Carnegie-Mellon University Bolt Beranek & Newman, Inc.
Department of Psychology 50 Moulton Street
Pittsburgh, PA 15213 Cambridge, MA 02138

Dr. Pat Carpenter Dr. Stanley Collyer
Carnegie-Mellon University Office of Naval Technology
Department of Psychology Code 222
Pittsburgh. PA 15213 800 N. Quincy Street

Arlington, VA 22217-5000

W.r Brian Dallman
3400 TTW/TTGXS
Lowry AFB, CO 80230-5000
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Dr. Diane Damos ERIC Facility-Acquisitions
Arizona State University 4833 Rugby Avenue
Department of Psychology Bethesda, MD 20014
Tempe, AZ 85287

Dr. K. Anders Ericsson
Dr. Denise Dellarosa University of Colorado
Department of Psychology Department of Psychology
Yale University Boulder, CO 80309
Box 11A, Yale Station
New Haven, CT 06520 Dr. Martha Farah

Department of Psychology
Dr. R. K. Dismukes Carnegie-Mellon University
Associate Director for Life Sciences Schenley Park
AFOSR Pittsburgh, PA 15213
Boiling AFB
Washington, DC 20332 Dr. Beatrice J. Farr

Army Research Institute
Dr. Stephanie Doan 5001 Eisenhower Avenue
Code 6021 Alexandria, VA 22333
Naval Air Development Center
Warminster, PA 18974-5000 Dr. Marshall J. Farr

Farr-Sight Co.

Dr. Emanuel Donchin 2520 North Vernon Street
University of Illinois Arlington, VA 22207
Department of Psychology
Champaign, IL 61820 Dr. Paul Feltovich

Southern Illinois University
Defense Technical School of Medicine

Information Center Medical Education Department
Cameron Station, Bldg 5 P.O. Box 3926
Alexandria, VA 22314 Springfield, IL 62708
Attn: TC
(12 Copies) Dr. Craig I. Fields

ARPA
Dr. Susan Embretson 1400 Wilson Blvd.
University of Kansas Arlington, VA 22209
Psychology Department
426 Fraser J. D. Fletcher
Lawrence, KS 66045 9931 Corsica Street

Vienna VA 22180
Dr. Randy Engle
Department of Psychology Dr. Kenneth 0. Forbus
University of South Carolina University of Illinois
Columbia, SC 29208 Department of Computer Science

1304 West Springfield Avenue
Dr. William Epstein Urbana, IL 61801
University of Wisconsin
W. J. Brogden Psychology Bldg. Dr. John R. Frederiksen
1202 W. Johnson Street Bolt Beranek & Newman
Madison, WI 53706 50 Moulton Street

Cambridge, MA 02138
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Dr. Alfred R. Fregly Dr. Daniel Gopher
AFOSR/NL Industrial Engineering
Bolling AFB, OC 20332 & Management

TECHNION
Dr. Michael Friendly Haifa 32000
Psychology Department ISRAEL
York University
Toronto ONT Dr. Sherrie Gott
CANADA M3J 1P3 AFHRL/MODJ

Brooks AFB. TX 78235
Julie A. Gadsden
Information Technology Dr. T. Govindaraj

Applications Division Georgia Institute of Technology
Admiralty Research Establishment School of Industrial & Systems
Portsdown. Portsmouth P06 4AA Engineering
UNITED KINGDOM Atlanta, GA 30332

Dr. Michael Genesereth Dr. Richard H. Granger
Stanford University Department of Computer Science
Computer Science Department University of California, Irvine
Stanford, CA 94305 Irvine. CA 92717

Dr. Dedre Gentner Dr. James G. Greeno
University of Illinois University of California
Department of Psychology Berkeley. CA 94720
603 E. Daniel St.
Champaign. IL 61820 Dr. Henry M. Halff

Halff Resources, Inc.
Dr. Lee Giles 4918 33rd Road, North
AFOSR Arlington. VA 22207
Bolling AFB
Washington, DC 20332 Dr. Bruce Hamill

The Johns Hopkins University
Dr. Robert Glascr Applied Physics Laboratory
Learning Research Laurel. MD 20707

& Development Ce.)ter
University of Pittsburgh Dr. John M. Hammer
3939 O'Hara Street Center for Man-Machine
Pittsburgh, PA 15260 Systems Research

Georgia Institute of Technology
Dr. Marvin D. Glock Atlanta. GA 30332
13 Stone Hall
Cornell University Dr. Ray Hannapel
Ithaca, NY 14853 Scientific and Engineering

Personnel and Education
Dr. Sam Glucksberg National Science Foundation
Department of Psychology Washington. OC 20550
Princeton University
Princeton, NJ 08540 Dr. Harold Hawkins

Office of Naval Research
Code 1142CS
800 N. Quincy Street
Arlington, VA 22217-5000
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Dr. Barbara Hayes-Roth Dr. Earl Hunt
Department of Computer Science Department of Psychology
Stanford University University of Washington
Stanford, CA 95305 Seattle, WA 98105

Dr. Frederick Hayes-Roth Dr. Ed Hutchins
Teknowledge Intelligent Systems Group
525 University Ave. Institute for
Palo Alto, CA 94301 Cognitive Science (C-015)

UCSD
Dr. Joan I. Heller La Jolla, CA 92093
505 Haddon Road
Oakland, CA 94606 Dr. Janet Jackson

Rijksuniversiteit Groningen
Dr. Geoffrey Hinton Biologisch Centrum. Vleugel 0
Carnegie-Mellon University Kerklaan 30, 9751 NN Haren (Gn.)
Computer Science Department NETHERLANDS
Pittsburgh, PA 15213

Dr. R. J. K. Jacob
Dr. James D. Hollan Computer Science and Systems
MCC, Code: 7590

Human Interface Program Information Technology Division
3500 West Balcones Center Dr. Naval Research Laboratory
Austin, TX 78759 Washington, DC 20375

Dr. John Holland Dr. Zachary Jacobson
University of Michigan Bureau of Management Consulting
2313 East Engineering 365 Laurier Avenue West
Ann Arbor, MI 48109 Ottawa, Ontario KIA OS5

CANADA
Dr. Melissa Holland
Army Research Institute for the Pharm.-Chim. en Chef Jean Jacq

Behavioral and Social Sciences Division de Psychologie
5001 Eisenhower Avenue Centre de Recherches du
Alexandria, VA 22333 Service de Sante des Armees

108 Boulevard Pinel
Dr. Robert W. Holt 69272 Lyon Cedex 03, FRANCE
Department of Psychology
George Mason University Dr. Robert Jannarone
4400 University Drive Department of Psychology
Fairfax, VA 22030 University of South Carolina

Columbia, SC 29208
Ms. Julia S. Hough
Lawrence Erlbaum Associates Dr. Claude Janvier
6012 Greene Street Directeur, CIRADE
Philadelphia, PA 19144 Universite' du Quebec a Montreal

P.O. Box 8888, St. 'A'
Dr. James Howard Montreal, Quebec H3C 3P8
Dept. of Psychology CANADA
Human Performance Laboratory
Catholic University of

America
Washington, DC 20064
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COL Dennis W. Jarvi Dr. Walter Kintsch
Commander Department of Psychology
AFHRL University of Colorado
Brooks AFB, TX 78235-5601 Campus Box 345

Boulder, CO 80302
Dr. Robin Jeffries
Hewlett-Packard Laboratories Dr. David Klahr
P.O. Box 10490 Carnegie-Mellon University
Palo Alto, CA 94303-0971 Department of Psychology

Schenley Park
Dr. Douglas H. Jones Pittsburgh, PA 15213
Thatcher Jones Associates
P.O. Box 6640 Mr. Al Kleider
10 Trafalgar Court Army Research Office
Lawrenceville, NJ 08648 P.O. Box 12211

Research Triangle Park
Dr. Marcel Just North Carolina 27709-2211
Carnegie-Mellon University
Department of Psychology Dr. Ronald Knoll
Schenley Park Bell Laboratories
Pittsburgh, PA 15213 Murray Hill, NJ 07974

Dr. Daniel Kahneman Dr. Stephen Kosslyn
Department of Psychology Harvard University
University of California 1236 William James Hall
Berkeley, CA 94720 33 Kirkland St.

Cambridge, MA 02138
Or. Milton S. Katz
Army Research Institute Dr. Kenneth Kotovsky
5001 Eisenhower Avenue Department of Psychology
Alexandria. VA 22333 Community College of

Allegheny County
Dr. Steven W. Keele 800 Allegheny Avenue
Department of Psychology Pittsburgh, PA 15233
University of Oregon
Eugene, OR 97403 Dr. David H. Krantz

2 Washington Square Village
Dr. Wendy Kellogg Apt. # 15J
IBM T. J. Watson Research Ctr. New York, NY 10012
P.O. Box 218
Yorktown Heights, NY 10598 Dr. Patrick Kyllonen

325 Aderhold
Dr. David Kieras Department of Educational
University of Michigan Psychology
Technical Communication University of Georgia
College of Engineering Athens, GA 30602
1223 E. Engineering Building
Ann Arbor, MI 48109 Dr. David R. Lambert

Naval Ocean Systems Center
Code 441T
271 Catalina Boulevard
San Diego, CA 92152-6800
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Dr. Jill Larkin Library,
Carnegie-Mellon University Naval Training Systems
Department of Psychology Center
Pittsburgh, PA 15213 Orlando. FL 32813

Dr. R. W. Lawler Science and Technology Division.
ARI 6 S 10 Library of Congress
5001 Eisenhower Avenue Washington. DC 20540
Alexandria, VA 22333-5600

Dr. Jane Malin
Dr. Alan M. Lesgold Mail Code SR 111
Learning Research and NASA Johnson Space Center

Development Center Houston, TX 77058
University of Pittsburgh
Pittsburgh, PA 15260 Dr. Sandra P. Marshall

Dept. of Psychology
Dr. Alan Leshner San Diego State University
Deputy Division Director San Diego, CA 92182
Behavioral and Neural Sciences
National Science Foundation Dr. Humberto Maturana
1800 G Street University of Chile
Washington, DC 20550 Santiago

CHILE
Dr. Jim Levin
Department of Dr. Richard E. Mayer

Educational Psychology Department of Psychology
210 Education Building University of California
1310 South Sixth Street Santa Barbara, CA 93106
Champaign, IL 61820-6990

Dr. James McBride
Dr. John Levine Psychological Corporation
Learning R&D Center c/o Harcourt, Brace,
University of Pittsburgh Javanovich Inc.
Pittsburgh, PA 15260 1250 West 6th Street

San Diego, CA 92101
Dr. Clayton Lewis
University of Colorado Dr. James L. McGaugh
Department of Computer Science Center for the Neurobiology
Campus Box 430 of Learning and Memory
Boulder, CO 80309 University of California, Irvine

Irvine, CA 92717
Matt Lewis
Department of Psychology Dr. Gail McKoon
Carnegie-Mellon University CAS/Psychology
Pittsburgh, PA 15213 Northwestern University

1859 Sheridan Road
Library, Kresge #230

Naval War College Evanston, IL 60201
Newport, RI 02940

Dr. Joe McLachlan
Navy Personnel R&D Center
San Diego, CA 92152-6800
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Dr. James S. McMichael Chair. Department of
Navy Personnel Research Computer Science

and Development Center U.S. Naval Academy
Code 05 Annapolis. MD 21402
San Diego, CA 92152

Chair. Department of
Dr. Barbara Means Systems Engineering
Human Resources U.S. Naval Academy

Research Organization Annapolis, MD 21402
1100 South Washington
Alexandria, VA 22314 Technical Director,

Navy Health Research Center
Or. Douglas L. Medin P.O. Box 85122
Department of Psychology San Diego. CA 92138
University of Illinois
603 E. Daniel Street Dr. Allen Newell

Champaign. IL 61820 Department of Psychology
Carnegie-Mellon University

Dr. George A. Miller Schenley Park
Department of Psychology Pittsburgh. PA 15213
Green Hall
Princeton University Dr. Mary Jo Nissen
Princeton, NJ 08540 University of Minnesota

N218 Elliott Hall
Dr. Andrew R. Molnar Minneapolis, MN 55455
Scientific and Engineering

Personnel and Education Dr. A. F. Norcio
National Science Foundation Computer Science and Systems
Washington. DC 20550 Code: 7590

Information Technology Division
Dr. William Montague Naval Research Laboratory
NPRDC Code 13 Washington. DC 20375

San Diego. CA 92152-6800
Dr. Donald A. Norman

Dr. Nancy Morris Institute for Cognitive
Search Technology, Inc. Science C-015
5550-A Peachtree Parkway University of California. San Diego
Technology Park/Summit La Jolla, California 92093
Norcross, GA 30092

Deputy Technical Director.
Dr. Randy Mumaw NPRDC Code OIA
Program Manager San Diego, CA 92152-6800
Training Research Division

HumRRO Director, Training Laboratory,
1100 S. Washington NPRDC (Code 05)
Alexandria, VA 22314 San Diego, CA 92152-6800

Dr. Allen Munro Director, Manpower and Personnel
Behavioral Technology Laboratory,

Laboratories - USC NPRDC (Code 06)
1845 S. Elena Ave., 4th Floor San Diego, CA 92152-6800
Redondo Beach, CA 90277
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Director, Human Factors Office of Naval Research.
& Organizational Systems Lab, Code 1142PS
NPRDC (Code 07) 800 N. Quincy Street

San Diego, CA 92152-6800 Arlington, VA 22211-5000

Fleet Support Office, Office of Naval Research,
NPRDC (Code 301) Code 1142CS

San Diego, CA 92152-6800 800 N. Quincy Street
Arlington, VA 22217-5000

Library, NPRDC (8 Copies)
Code P201L
San Diego. CA 92152-6800 Psychologist.

Office of Naval Research
Technical Director, Branch Office, London

Navy Personnel R&D Center Box 39
San Diego. CA 92152-6800 FPO New York, NY 09510

Commanding Officer, Special Assistant for Marine
Naval Research Laboratory Corps Matters,

Code 2627 ONR Code OOMC
Washington, DC 20390 800 N. Quincy St.

Arlington, VA 22217-5000
Dr. Harold F. O'Neil, Jr.
School of Education - WPH 801 Psychologist,
Department of Educational Office of Naval Research

Psychology & Technology Liaison Office, Far East
University of Southern California APO San Francisco, CA 96503
Los Angeles, CA 90089-0031

Dr. Judith Orasanu

Dr. Michael Oberlin Army Research Institute
Naval Training Systems Center 5001 Eisenhower Avenue
Code 711 Alexandria, VA 22333
Orlando, FL 32813-7100

Dr. Douglas Pearse
Dr. Stellan Ohlsson DCIEM
Learning R & D Center Box 2000
University of Pittsburgh Downsview, Ontario
3939 O'Hara Street CANADA
Pittsburgh, PA 15213

Dr. James W. Pellegrino
Office of Naval Research, University of California.

Code 114281 Santa Barbara
800 N. Quincy Street Department of Psychology
Arlington, VA 22217-5000 Santa Barbara, CA 93106

Office of Naval Research, Dr. Virginia E. Pendergrass
Code 1142 Code 711

800 N. Quincy St. Naval Training Systems Center
Arlington, VA 22217-5000 Orlando, FL 32813-7100

PUA

Lmm I



(DSK}<LISPFILES>DRIBO310A.;2 10-Mar-87 09:27:48 Page 10

1987/03/09

Distribution List [Pittsburgh/Lesgold] NR 4422539

Dr. Nancy Pennington Dr. James A. Reggia
University of Chicago University of Maryland
Graduate School of Business School of Medicine
1101 E. 58th St. Department of Neurology
Chicago, IL 60637 22 South Greene Street

Baltimore, MO 21201
Military Assistant for Training and

Personnel Technology. Dr. Wesley Regian
OUSO (R & E) AFHRL/MOD

Room 30129. The Pentagon Brooks AFB, TX 78235
Washington. DC 20301-3080

Dr. Fred Reif
Dr. Steven Pinker Physics Department
Department of Psychology University of California
E1O-018 Berkeley, CA 94720
M,I.T.
Cambridge, MA 02139 Dr. Gil Ricard

Mail Stop C04-14
Dr. Martha Polson Grumman Aerospace Corp.
Department of Psychology Bethpage. NY 11714
Campus Box 346
University of Colorado Dr. Linda G. Roberts
Boulder, CO 80309 Science, Education, and

Transportation Program
Dr. Peter Polson Office of Technology Assessment
University of Colorado Congress of the United States
Department of Psychology Washington, DC 20510
Boulder, CO 80309

Dr. Paul R. Rosenbaum
Dr. Michael I. Posner Educational Testing Service
Department of Neurology Princeton, NJ 08541
Washington University

Medical School Dr. William B. Rouse
St. Louis, MO 63110 Search Technology, Inc.

5550-A Peachtree Parkway
Dr. Mary C. Potter Technology Park/Summit
Department of Psychology Norcross, GA 30092
MIT (E-10-032)
Cambridge, MA 02139 Dr. David Rumelhart

Center for Human
Dr. Paul S. Rau Information Processing
Code U-32 Univ. of California
Naval Surface Weapons Center La Jolla. CA 92093
White Oak Laboratory
Silver Spring, MD 20903 Dr. Walter Schneider

Learning R&D Center
Dr. Lynne Reder University of Pittsburgh
Department of Psychology 3939 O'Hara Street
Carnegie-Mellon University Pittsburgh, PA 15260
Schenley Park
Pittsburgh, PA 15213

• ,. . ,- . .. .
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Dr. Miriam Schustack Dr. Richard Sorensen
Code 51 Navy Personnel R&D Center
Navy Personnel R & D Center San Diego, CA 92152-6800
San Diego, CA 92152-6800

Dr. Kathryn T. Spoehr
Dr. Marc Sebrechts Brown University
Department of Psychology Department of Psychology
Wesleyan University Providence, RI 02912
Middletown, CT 06475

Dr. James J. Staszewski
Dr. Colleen M. Seifert Research Associate
Intelligent Systems Group Carnegie-Mellon University
Institute for Department of Psychology

Cognitive Science (C-015) Schenley Park
UCSr Pittsburgh, PA 15213
La Jolla. CA 92093

Dr. Robert Sternberg
Dr. Ben Shneiderman Department of Psychology
Dept. of Computer Science Yale University
University of Maryland Box 11A. Yale Station
College Park, MD 20742 New 'laven, CT 06520

Dr. Robert S. Siegler Dr. Kurt Steuck
Carnegie-Mellon University AFHRL/MOD
Department of Psychology Brooks AFB

4 Schenley Park San Antonio TX 78235
Pittsburgh. PA 15213'" Or. Paul J. Sticha
Dr. Herbert A. Simon Senior Staff Scientist
Department of Psychology Training Research Division
Carnegie-Mellon University HumRRO
Schenley Park 1100 S. Washington
Pittsburgh, PA 15213 Alexandria, VA 22314

LTCOL Robert Simpson Dr. John Tangney
Defense Advanced Research AFOSR/NL

Projects Administration Bolling AFB, DC 20332
1400 Wilson Blvd.
Arlington, VA 22209 Dr. Kikumi Tatsuoka

CERL
Dr. H. Wallace Sinaiko 252 Engineering Research
Manpower Research Laboratory

and Advisory Services Urbana, IL 61801
Smithsonian Institution
801 North Pitt Street Dr. Perry W. Thorndyke
Alexandria, VA 22314 FMC Corporation

Central Engineering Labs
Dr. Richard E. Snow 1185 Coleman Avenue, Box 580
Department of Psychology Santa Clara, CA 95052
Stanford University
Stanford, CA 94306
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Dr. Sharon Tkacz Dr. Heather Wild
Army Research Institute Naval Air Development
5001 Eisenhower Avenue Center
Alexandria, VA 22333 Code 6021

Warminster. PA 18974-5000
Dr. Douglas Towne
Behavioral Technology Labs Dr. Robert A. Wisher
1845 S. Elena Ave. U.S. Army Institute for the
Redondo Beach, CA 90277 Behavioral and Social Sciences

5001 Eisenhower Avenue
Headquarters, U. S. Marine Corps Alexandria. VA 22333
Code MPI-20
Washington, DC 20380 Dr. Martin F. Wiskoff

Navy Personnel R & D Center
Dr. William Uttal San Diego, CA 92152-6800
NOSC, Hawaii Lab
Box 997 Dr. Dan Wolz
Kailua. HI 96734 AFHRL/MOE

Brooks AFB, TX 78235
Dr. Kurt Van Lehn
Department of Psychology Dr. Wallace Wulfeck. III
Carnegie-Mellon University Navy Personnel R&D Center
Schenley Park San Diego, CA 92152-6800
Pittsburgh, PA 15213 Dr. Joe Yasatuke

Dr. Beth Warren AFHRL/LRT
Bolt Beranek & Newman, Inc. Lowry AFB, CO 80230
50 Moulton Street
Cambridge, MA 02138 Dr. Joseph L. Young

Memory & Cognitive
Dr. Keith T. Wescourt Processes
FMC Corporation National Science Foundation
Central Engineering Labs Washington. DC 20550
1185 Coleman Ave., Box 580
Santa Clara, CA 95052

Dr. Douglas Wetzel
Code 12
Navy Personnel R&D Center
San Diego, CA 92152-6800

Dr. Barbara White
Bolt Beranek & Newman, Inc.
10 Moulton Street
Cambridge, MA 02238

Dr. Christopher Wickens
Department of Psychology
University of Illinois
Champaign, IL 61820
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