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An O(n3L) Primal-Dual Interior Point
Algorithm for Linear Programming

R. C. Monteiro and I. Adler

Department of Industrial Engineering and Operations Research
University of California

Berkeley, CA 94720

(May 1987
/.. . 0 r.

Abstract - I describe a primal-dual interior int algorithm for linear pro-
gramming problems which requires a total of O(n L) arithmetic operations. Each
iteration updates a penalty parameter and finds an approximate ewton's direc-
tion associated with the Kuhn-Tucker system of equations whi characterizes a
solution of the logarithm barrier function problem. This direcon is then used to
find the next iterate. The algorithm is based on the path lowing idea. The

total number of iterations is shown to be of the order of L " C'r''i 4_

Key Wo S- Interior-point methods, Linear Programming, Karmarkar's LP
algorithm, Polynomial-time algorithms. Barrier function, Path following,

j 3 Accossion For

NTIS GRA&I

DTIC TAB
r- Unannoanced

1. Introduction Justificat ion-__

Consider the linear programming problem By
Distributton/

T Availability Codes
Avail and/or

Dist Specilr.
s.r. Ax = b

x >0

where A c R "x. This paper presents an algorithm for Linear Programming (LP) problems

based on the logarithmic barrier function approach. The logarithmic barrier function

method was first used for LP problems by Frisch [1]. The introduction of the new interior

point algorithm by Karmarkar [4] led researchers to reconsider the application of the loga-

rithmic barrier function method to LP problems. Recently, this method was first considered

by Gill et al. [21 to develop a projected Newton barrier method for solving LP problems.



-2-

Meggido [6] provides a theoretical analysis for the logarithmic barrier method and proposes

a primal-dual framework based on a consideration of a pair of primal and dual LP prob-

lems. Kojima et al. [5], using this framework, present an algorithm that works simultane-

ously with a pair of primal and dual LP problems. Their algorithm is shown to converge in

at most 0(nL) iterations with a computational effort of O(n 3) arithmetic operations per

iteration, resulting in a total of O(n 4L) arithmetic operations.

In this paper, we build on the ideas in [5] and obtain a faster algorithm. The primal-

dual framework presented in [6] is used. The directions generated by our algorithm are

essentially the same as the directions generated by the algorithm of Kojima et al. [5]. How-

ever, working closer to the "path of solutions" (c.f. [5]), we are able to obtain convergence

in at most 0( 4 nL) iterations. Each iteration involves the inversion of a n x n matrix

which can be done in at most O(n 3) arithmetic operations. Based on ideas presented by

Gonzaga [3], we are able to exploit the special structure of the matrix to be inverted so that

it can be done in an average of 0(n 2"5) arithmetic operations per iteration. Thus overall our

algorithm requires O(n 3L) arithmetic operations. It should be noted that Renegar [7] was

the first to introduce an interior point algorithm requiring 0( 4VnL) iterations and O(n3"5L)

arithmetic operations. Subsequently, Vaidya [8] improved it so that the total complexity is

O(n 3L) arithmetic operations. Equivalent complexity was also obtained by an algorithm

which was presented by Gonzaga [3]. Both Vaidya's and Gonzaga's algorithms are primal

algorithms. It should be noted that in order to simplify the complexity analysis presenta-

tion, we assume throughout the paper that m = O(n).

Our paper is organized as follows. In section 2, we present some theoretical back-

ground. In section 3, we present the algorithm. In section 4, we prove results related to the

convergence properties of the algorithm. In section 5, we present the updating scheme that

leads to a reduction in the average number of arithmetic operations per step. In section 6,

we discuss how to initialize the algorithm. Finally, we discuss in section 7 some
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extensions, and in particular how to extend our algorithm to solve convex quadratic pro-

gramming in O(ln;L) iterations.

2. Theoretical Background

In order to facilitate the reading of this paper, we use a notation roughly similar to the

one in [51. A discussion of the main results necessary for the development of our algorithm

is presented in this section. These results are adapted from [5]. A detailed discussion of

these results can be found in [6].

We consider the pair of the standard form linear program and its dual

(P) min cTx

s.a. Ax = b

x>O

(D) max bTy

S.t. ATy + z = C

where A e R"' ", c e R" and b E R. We impose the following assumptions:

Assumptions 2.1:

(a) TbesetS m x v R";Ax= b,x>O isnon-empty.

(b) 7%e set T w (y, z) a Rx " ; ATy + - c. z > 0 is non-empty.

(c) rank (A) - m.

.... .... ....
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Throughout this paper, we will denote a point in Rx Rx R" by the lower case

letter w, i.e.,

w M (x, y, z) E Rx Rx R"

The logarithmic barrier function technique, usually employed in non-linear constrained

optimization, will be applied to the problem (P). The method consists of a consideration of

the family of problems

(Pr) in cx- ln xi
j-!

s.t. Ax = b

x>0

where j > 0 is the penalty parameter. As p -4 0, we would expect the optimal solutions of

(Pu) to converge to an optimal solution of (P). This method, usually attributed to Frisch

[1], recently came up in [2] where an analogy with Karmarkar's algorithm is presented. In

[6]. a comprehensive analysis of this approach is presented, where the problems (P) and (D)

interplay together.

From now on, a capital letter corresponding to a lower case letter which denotes a

vector, say x = (xi ... x.)T c= R". will denote the diagonal matrix with the components of

the vector on the diagonal, i.e., X = diag(xi ... x,). Observe that the objective function of

the problem (Pp) is a strictly convex function. This implies that the problem (Pu) has at

most one global minimum, and that this global minimum, if it exists, is completely charac-

terized by the Kuhn-Tucker stationary condition:

(i) ZXe-pe=0

(ii) Ax- b =0, x >0 (2.1)

(ii) A Ty + Z- c - 0
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where e 4E R' denotes the vector of ones. In fact, we have the following result:

Propslition 2.2 : Under the assumptions (a) and (b), problem (Py) (and consequently the

system (2.1)) has a unique global solution x(pj), for all p > 0.

Observe that in the system (2.1), x uniquely determines z from the first equation and y

from the third equation, since the matrix A has full rank. For each p > 0, we denote the

triple of solutions of (2.1) by w(u) m (x(j), y(ju), z(p)). Obviously w(p) e S x T. Given

a point w = (x, y, z) e S x T, we define the duality gap at w to be

g(w) = cTx - bTy

Using the two last equations in (2.1), we can easily verify that

g(w)=xTz , w e S xT (2.2)

In particular, using the first equation in (2.1). we obtain g(w(p)) = njp, for all P and there-

fore g(w(jp)) converges to zero as p goes to zero. This implies that c Tx(p) and bTy()J)

converges to the optimal value of the problems (P) and (D) respectively. In fact, we have

!he following stronger result:

Proposition 2.3 : Under assumption 2.1, as p - 0, x(u) ((y(p), z(p)) ) converges to an

optimal solution of problem (P) ((D)).

The following notation will be useful later. Let w e S x T. We denote by

f(w) = (f 1 (w) ... f.(w))T E R" the n-vector defined by

fji xz 1  , =. . n

With this notation, the first equation of (2.1) written coordinate-wise becomes

f,(w(p)) a x,(p) z,(pu) = p , i = 1...n (2.3)

We denote by r the path of solutions w(p) , u > 0, i.e.,

r - { w(P) . (x(p), y(). z(p)) " P > 0 ).
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The algorithm which will be presented in the next section, will "follow" this path r

with the objective of approaching the desired solutions of the original problems (P) and (D).

The path following procedure is described in the next sections.

3. The Algorithm

As in the previous section, we denote a triple (x, y, z) 4E, Rx Rmx R" by the lower

case letter w, i.e., w a (x, y, z). The algorithm will generate a sequence of points

w k S x T , k = 0,1,2 ..... where the initial point w0 is provided as input to the algo-

rithm. In this section, we require that w0 c S x T be a point satisfying some criterion of

closeness with respect to the path of solutions r. Given an LP problem in standard form, in

section 6 , e show how to construct an equivalent LP problem so that assumption 2.1 is

satisfied. As a consequence of this construction, we also show how to obtain an initial point

wE e S x T satisfying the criterion of closeness.

Given a current iterate (x, y, z) e S x T , a triple of directions

(Ax, Ay, Az) e Rx Rx R n needs to be generated for the determination of the next

iterate. Throughout this paper, a triple of directions (Ax, Ay, A:) c Rx R"x R" is

denoted by the symbol Aw. Let (1, 9, 1) denote the next iterate. We obtain (x, y, ^-) by

i a x - Ax

a y - Ay

a z - A:

or in more compact notation

IW-AW

According to [5], the direction Aw chosen to generate the next iterate 4,. is defined as

the Newton's direction associated with the Kuhn-Tucker system of equations (2.1).

, ."'
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However, with the objective of improving the worst-case complexity on the number of

arithmetic operations, we consider a slight variation of the direction used in [5]. If we

denote the left -and side of the system of equations (2.1) by H(w) E H(x, y, z), the

Newton's direction Aw at w e S x T is defined by the system of linear equations

DwH(w) Aw = H(w)

where Aw = (Ax, Ay, Az) e= R'x R"x R n and DwH(w) denotes the Jacobian of H at

w a (x, y, z ). We observe that D,,H(x, y, z) does not depend on the argument y e R' .

Indeed, the Jacobian of H at w w (x, y, z) is given by

Z 0 X

J(x,z)•DwH(w)= A 0 0
OA T I

The direction Aw that we are going to consider is defined by the following system of

linear equations

J(Z, "F) Aw = H(x, y, z)

where the points X e R" and 2' E R" will be chosen to approximate x e R" and

z E R" respectively in a manner which will be specified latter. More specifically,

Aw = (Ax, Ay, Az) is defined by the following system of linear equations

ZAx + XAz = XZe - jAe (3.1.a)

AAx = 0 (3. l.b)

A T AY + Az =0 (3.1.c)

where A3 > 0 is some prespecified penalty parameter. Observe that the right hand sides of

(3.1.b) and (3.1.c) are zero since w is assumed to be in the set S x T. However the right

hand side of (3.1.a) is not necessarily zero and equals zero only when the point w lies on

the path r. Throughout this paper, the lower case letter s will denote a pair



(x, z) e Rx R. Note that the solution Aw = (Ax, Ay, Az) of the system of equations

(3.1) clearly depends on the current iterate w = (x, y, z), on the Jacobian of H at the

"approximation" 7 = (., 7) of s = (x, z) , and on the penalty parameter f > 0. In order to

indicate this dependence, we denote the solution (Ax, Ay, Az) of the system (3.1) by

Aw(w, Y, A)

By simple calculation, we obtain the following expressions for Ax, Ay, A:

-X = [z - Z-IXA T(AZ-I.XA T)- 14Z-1] (XZe - e)

Ay = - [(A.-XA T)-tA2-1] (XZe - fe)

Az = [AT (A2-IXA T)-IA-I] (XZe - fie)

Therefore, to calculate the direction Aw a (Ax, Ay, A:), the inverse of the matrix

(AZ -'XA T) needs to be calculated. This is the main motivation to consider just an approxi-

mation 7 = (X, .) of s = (x, z) so that we do not need to invert this matrix from scratch at

every iteration. If the current diagonal matrix ZZ- ' differs from the previous one by

exactly I diagonal elements then, by performing I rank-one updates, we are able to compute

the inverse of the matrix (AZ.-XAT) in 0(n21) arithmetic operations. Observe that all the

other operations involved in the computation of Aw a Aw(w, T, Ai) is of the order of 0(n 2)

arithmetic operations.

We are now ready to describe the algorithm. At the beginning of the algorithm, we

assume that an initial point w' = (x', y', :0) = S x T is available such that the following

criterion of closeness with respect to the path r is satisfied:

II f(w ° ) - MoeII Op0 (3.2)
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where 1 1 fl denotes the Euclidean norm. u" is a positive constant and 8 = 0.1.

We now state the algorithm.

Algorithm 3.1

Step 0) Let w' E S x T and y*° > 0 satisfy (3.2). Let r be a tolerance for the duali

gap. Let

e :=0.1

6 0.1 (3.3)

y:= 0.1

Set k:=O.

Step 1) If cTxk - bTyk < E, stop.

Step 2) Choose 3 = (7, F-) in R. x R". satisfying:

I x- i, I
<y,~I~ =1 .... n

I 4- I

T :5 y i =1 n

Step 3) Set P k +1 :=- pk(l - 6 in).

Calculate Awk a Aw(wk, , p A+).

Step 4) Set wk+I :ffi k- Awk.

Set k := k + I and go to step ).

In the following sections. we prove that the algorithm above is a valid one in the

sense that it generates at every iteration a point wk in the set S x T. We also show that it

terminates in at most O(Zn max( loge - ' , logn, logp') ) iterations. Finally, we present a

OP", " . " ,",% "" '." "" "" " " ' , " " ", ..-" .,' .' ,' . "-"- - "-'- .. % ". ', ", ",



- 10-

suitable choice for the approximation point 7 = (.7. ) (see step 2 of the algorithm) that

will enable us to show that algorithm 3.1 solves the pair of problems (P) and (D) in no

more than O(n 3 max( logE- 1, logn, logp') ) arithmetic operations.

4. Convergence Results

We begin this section by stating the main result and its consequences. Given two vec-

tors x c R" and x c- R', we denote the Euclidean norm of the vector X-I( i - x ) b)

11 X - Jj, , (4.1, -X,

The main result is:

Theorem 4.1: Letw=(xy. :) e S x T andp >0 safeshi

11 f(w) - jue II 5 Op (4.2)

Let " = (7, F) Rx R sansfy

y. n (4.3)

1 :;1 d I .Y. n (4.4)

Let A > 0 be defined as

= ( - 6 /r) (4.5)

Consider the point im (i, e ) R"x R'x R" defined by

AVW-- , (4.6)



where Aw n Aw(w, "', A). Then the following holds:

(a) The point 4, is in S x T and satisfies

III - xfll 0.28 (4.7)

I1^ - :11. -< 0.28 (4.8)

(b) IV (4') - Aell :5 9A

(c) g(4) r- C"r - bT5 - 1.1nj

The proof of theorem 4.1 will be given at the end of this section. Suppose

w(pu) a (x(p), y(p), z(/)) is the point in the path r corresponding to the penalty parameter

pu. The criterion of closeness (4.2) is then equivalent to

11 f(w) - f(w(u)) II -< op (4.9)

since f(w(pu)) = pe by relation (2.3). By theorem 4.1, relation (4.9) will hold for the new

point i' defined by (4.6) and the penalty parameter /3 > 0 given by (4.5).

As a consequence of theorem 4.1, we have the following result:

Corollary 4.2: All points w k generated by algorithm 3.1 satisfy

(a) wk is in S x T, for all k = 1,2 ... and

II xk +1 - xk 11', 50.28

II zk + 1 - z k I. < 0.28

(b) II f(w k) _ Pke II5 < Ou , for all k = 1,2,...

(c) g(w k) a cTx k -bTyk < 1.1nplk , for all k = 1,2,...

where

A k/4n )k for k = 1,2,
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Proof: This result follows trivially by arguing inductively and using theorem 4. 1.

By (b) of corollary 4.2, all iterates wk generated by algorithm 3.1 will satisfy the cri-

terion of closeness

II f(w ) - f(w(k))II 

Therefore we can view algorithm 3.1 as a path-following procedure, i.e., the iterates wk

tries to trace the path r so that it eventually converges to an optimal solution

w* = (x*, y*, z*) for the pair of LP problems kP) and (D).

We now derive an upper bound on the total number of iterations performed by algo-

rithm 3.1.

Proposition 4.3: The total number of iterations performed by algorithm 3.1 is no greater

than k* a r log(l.lne - ' Jp") n / 6 1 where e > 0 denotes the tolerance for the duality

gap and 1t 
0 is the initial penalty parameter.

Proof: From (c) of corollary 4.2, we can terminate the algorithm as soon as

l.lnp k E

It is enough to show that k* satisfies the inequality above. By the definition of ko, we have

-k 
8

log e 2 - - + log(1.1nnp ° )

2! k log I - j + log (l.lnp0 )

= log l.lnp0" 1 - ]

= log l.lnp.k'

Second inequality is due to the fact that log (I - x) < -x for all x > -I and the last equal-

ity follows from the definition of k*'. Therefore k * satisfies
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and this completes the proof of the proposition. 0

Let L denote the number of bits to represent the data of the primal LP problem (P),

i.e., L is the size of the problem (P). It is a well-known fact that if, at some iteration k, the

duality gap satisfies cTxk - bTyk S 2
-L, then we may obtain optimal solutions for prob-

lems (P) and (D) in O(mn2) arithmetic operations.

Using this observation, we obtain

Corollary 4.4: If the initial penalty parameter p* satisfies log p0 = 0(L) then algorithm

3.1 solves the LP problem (P) in at most 0 (4 nL) iterations.

Proof: Follows directly from the previous proposition. 0

In section 6. we will see that the initial penalty parameter po can be chosen to satisfy

log pj0 = O(L). One possible choice for the approximation Y w (7, F) on step 2 of the

algorithm is to use exact data, that is, to set T, on the kh iteration, equal to sk. With this

choice of the "approximation" Y , we have the following result:

Corollary 4.5: Algorithm 3.1 solves the pair of LP problems (P) and (D) in no more than

0 (n 3"L) iterations.

Proof: At every iteration, we need to calculate the inverse of the matrix [A(Zk)-XkAT

and this requires 0(n 3 ) arithmetic operations. By corollary 4.4, algorithm 3.1 terminates in

at most 0 ( 4 nL) iterations. These two observations immediately concludes the proof of the

corollary. 0

In the next section, we present an updating scheme for the approximation Y that will

reduce the worst-case complexity of algorithm 3.1 to 0(n 3L) arithmetic operations.

We now concentrate our effort towards proving theorem 4.1. We should point out that

some of the arguments below become simpler when we use exact data for the
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approximation Y.

Let w =(x, y,z)EF S xT, Y =(7 ) e R"x R and i>0. Let

Aw = (Ax, Ay, Az) be the direction Aw(w, 37, A). Consider the point 4, defined as in rela-

tion (4.6). The next result provides expressions for the product of complementary variables

f,( v) , i = 1, ... , n and the duality gap g(i') a - b Ti.

Proposition 4.6: Let w T~ and v be as above. Then the following expressions hold:

pjV + AxAz1  + (7i - xa)Azj + (-.- - z)Axj (4.10)

(Ax9'(AZ) = 0 (4.11)

=Xfi(i') = nfi+( )Ax+( )~ (4.12)

Proof: By definition, we have for all i 1,.,

fi( ) a iA^.

= (xi - Ax 1)(z, - Az,)

= xizi - (x1Az8 + zAx,) + AxA:j

= xiz, - (xAz, + z5Axi) + AxjA:j + (Xi - xi)Az, + (.z,' - z)Ax1  (4.13)

Writing (3.1.a) coordinate-wise, we obtain for all i =1,.n

(ZAz, + TjAxj) = xii- A(4.14)

Relations (4.13) and (4.14) immediately imply (4.10). Now we prove (4.11). Multiplying

expression (3.1.c) on the left by (Ax)T, we obtain

(AAx)TAy + (Ax)T Az = 0 (4.15)

Relations (3.1Lb) and (4.15) immediately imply (4.11). Note that the first equality in (4.12)

follows immediately ftum expression (2.2) and the definition of fi,(,). Summing expres-
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sion (4.10) over all indices i - 1,...,n and noting (4.11), we immediately obtain the second

equality in (4.12). This completes the proof of the proposition. 0

Observe that if X - x and 7' = z, that is, the approximation is exact, then the duality

gap at iv becomes g(iv) = njA. In this case, (c) of theorem 4.1 follows trivially.

We now state and prove some preliminary results that will be useful in the proof of

Theorem 4.1.

Let w = (x, y, z) E S x T, " = (7, Y) E Rnx R" and A > 0. Let

Aw = (Ax, Ay, Az) be the direction Aw(w, 3', A). We denote by Af m (Af &f,)T the

n-vector defined as

Af = (Ax1Az I, ... ,Ax A_ )T (4.16)

where Ax i and Azi denotes the i th coordinate of the vectors Ax and Az respectively. The

next results provides an upper bound on the Euclidean norm of the vector Af.

Lemma 4.7: Let Af be defined as in (4.16). Then, we have

II Af 1I iLf(w) - ie II (4.17)
2 fmin

where

f *in a min I Xi'Z I ; i = 1,... n (4.18)

Furthermore, we have

:2 < '(w) - Ae 1!2  (4.19)

f min

I -1'AxI1 2 < (w) - fe 112  
(4.20)

Smin
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where D is the diagonal matrix defined by

= (') (4.21)

Proof: By equation (3.1.a), we have

D -Ax + DAz = (X2)(XZ - Ae) (4.22)

From (4.11) it follows that

(f -Ax)r(D)AZ) = 0 (4.23)

Using the Pythagorean theorem, relations (4.22), (4.23) and the definition of the Euclidean

norm, we obtain

II -'Ax 112 + I11 A: 112 = 11 (XZ)"(XZe - Ae) 12

± (fi(w) - A)2

J If(w)- fie 112 (4.24)

Inequalities (4.19) and (4.20) follow immediately from (4.24). Also (4.24) implies that

II -'Ax II II Az II <  27miw - _ (4.25)

On the other hand, using the Cauchy-Schwarz inequality, we obtain

I AxjA:j I = I D t-Ax, I I D11A, I
ial 5=1

< II )-'Ax I IA: i (4.26)

Since I Af 11 < j I AxA:5 I, relations (4.25) and (4.26) imply the inequality (4.17). This

completes the proof of the lemma. C
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The next lemma provides important relations that will be useful in the proof of

theorem 4.1. We observe that the specialization of the results below to the case when the

approximation becomes exact simply involves substitution of Z by x. F. by : and y by 0.

Lemma 4.8: Let w = (x. y. z) E S x T . " = (T. F) E R"x R , p > 0 and > 0 be

as in the statement of theorem 4.1. Let Aw m (Ax, Ay, A:) be the direction Aw(w, r, P).

Let p and q be defined by

p = (1 - 9)(1 + y)- 2  (4.27)

q = (I + &)(1 - y)-2  (4.28)

Then the following relations hold:

PP S T ' ! qpU , i = l,..... (4.29)

1I AfII (a + S) 2p (4.30)
2p

IID-1Ax II2 g (o + 6)2p (4.31)P

11 B :112:2 (O + 8)p (4.32)

P

where D is defined by (4.21).

Proof: From (4.3) and (4.4) it follows that

0x< 1- Y< !5 1 + i = (4.33)

0 < I - y5Z' < 1+ , i = .... n (4.34)

which implies,

(I- y)< + (1+y)2 ,i =1.n
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or equivalently, for all i-l,...,n

(I + y)-2Xz.- < (1 - y)-2x,, (4.35)

Using (4.2), we obtain

(l-O)p <x,:, 5(1 +O)u ,i = 1. n (4.36)

Relations (4.35) and (4.36) imply that for all i=l,...,n

(1 + Y)-2( - o)p < T,, <S (1 - Y)-2(l + 0),U

which is exactly (4.29).

Since Ilell = V., relations (4.2) and (4.5) imply that

a (op + I )2

<(9 + .5)2 p2  (4.37)

Using lemma 4.7, relations (4.29) and (4.37) , we immediately obtain (4.30), (4.31) and

(4.32). This completes the proof of the lemma. 0

We are now ready to prove theorem 4. 1.

Proof of theorem 4.1:

(a) From (3.l.b), (3.l.c) and the fact that w, r S x T, it follows that 4, m (i, 5, .) satisfies

A i =b

A T9 + 1 _ C

We have just to show that i and . are strictly positive to conclude that 4, E S x T. We

note that (4.7) and (4.8) immediately imply that i > 0 and I > 0 since x > 0 and : > 0 by
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assumption. We will now show that (4.7) and (4.8) hold. By the definition of 1, we obtain

(58j 2 (b~i;'AX) 2 (4.38)

where F)= diag(D11 .I,,) is given by (4.2 1), i.e.,

TDi 1 (4.39)

Using (4.2). (4.3), (4.4) and the expression for D.. above, we obtain for all i 1, 1 n

Ik - 7 (1X - 8)p (+6 (4.40)

The astineqaliy tgethr wth 4.38 imlie
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Substituting in (4.42) the values of 0, 6, 'y. and p from (3.3), (4.27) and (4.28) we obtain

(4.7). In a similar way, one can prove (4.8). This completes the proof of (a).

(b) Writing expression (4.10) in vector notation and noting (4.16). we obtain

f (4) - fe= Af + (X - X)A: + (2 - Z)Ax

By the properties of norms, we obtain

11 f (40 - fie 11 :511 Af 11 + 11 (1 - X)Az 11 + 11 (2 - Z)Ax 11 (4.43)

Using the definition of the Euclidean norm, we obtain

11 (XC _ X)A&z 112 = X ( _ X1)2(Az 1.)
2

II 2

= bi I IJ(Xi - x1)] (DaAA) 2  (4.44)

where D~j is as in (4.39). Using (4.3), (4.29) and (4.39), we obtain

2 1

:5 qpyj, = 1, *n (4.45)

In a similar way, one can prove that

- 1j , i = 1, ,n (4.46)

Relation (4.32) of lemma 4.8 and relations (4.44) and (4.45) imply that

11 (Xk _ X)A&Z 112 :g gy2(0 + 6)2,u' (4.47)

In a similar way, one can prove that

11 Z)A&X 112 :g g (O + 5)2p~2 (4.48)
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From (4.43), (4.30), (4.47) and (4.48) it follows that

11f(;)- Ae1 5( 5,+ 2y(0 + 6)(1)q
2p p

From the expression of A in (4.5), we obtain

S(j - 8)

which implies

I f( ) - Ae II (l- + 2) + 2v(0 + )(-,p v'

Substituting the values of 0. 6, y, p, and q from (3.3), (4.27) and (4.28) we obtain

II f (') - ie II ! 0 (4.49)

and this completes the proof of (b).

(c) The first equality of expression (4.12) says that

g(4.) = eTf( .,)

Using the Cauchy-Schwarz inequality and expression (4.49), we obtain

g I((') < Hell l+f( I')ll

<n(OA +4A)

< (1 + O)nP

since 0 = 0.1. This completes the proof of (c). 0

if . 0.
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5. A Good Choice for 7 and 7

In this section, we show how to choose the approximation 7 a (7, 2) r= Rx R" of

sk = (X k
.A ) in step 2 of algorithm 3.1 so that its worst-case complexity reduces to the

order of O (n 3L) arithmetic operations.

The choice of the approximation 7 is made by an updating scheme as follows (In the

procedure below, k stands for the iteration count):

Updating scheme 5.1:

Fork := 0, set 7 := x ° and z'

For k > 0 do

For i = 1 .. n do

If one of the following holds

( a ) X I

I :i- ' ..  I

(b) I>Y

then set ", := xf and Y, - .

In section 3, we saw that the main effort in each iteration was in computing the

inverse of the the matrix (AZIXAT). If only I diagonal elements of the matrix (Z- X )

change, this computation can be carried out in O(n 2 1) arithmetic operations by means of I

rank-one updates. If we use the updating scheme 5.1 then the i t
A diagonal element of the

matrix (Z.- 1) changes only when inequality (a) or (b) of scheme 5.1 is satisfied. Next, we

provide an upper bound on the total number of diagonal element changes that occurs on the

matrix (Z-X) during K iterations of algorithm 3. 1. Consider the following two sets:

%1%
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S C k , ;7 1 ' A- 5 Kg

TS ={ k > y, 1<k < K

I "€ I

where K is the number of iterations performed. Note that by corollary 4.2, the iterates

14 = (x kYV, z ) generated by algorithm 3.1 satisfy

IIx* +
- xkly 0.28

I1:* + - :lI:, 5 0.28

for all integers k > 0.

The following result can be proved by slightly modifying the arguments in section 5

of 131.

Proposition 5.2: Let S and T be defined as

S =

T I XTKI

Then, we have

S < 4.5nK

T < 4.5 -nK

As a consequence of this result, we have

Corollary 5.3: Algorithm 3.1 coupled with the updating scheme 5.1 solves problem.% (PI

and (D) in no more than O(n 3L) arithmetic operations.

Ai
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Proof: From corollary 4.4, we know that algorithm 3.1 finds an optimal solution in 0( nL)

iterations. Proposition 5.2 implies that the total number of rank-one updates is then of the

order of O(nL). Since each rank-one update involves O(n 2 ) arithmetic operations, the total

number of arithmetic operations is then of the order of O(n 3 L). This completes the proof of

the corollary. C

6. Initialization of the Algorithm

Given an LP in standard form and its dual, we have assumed in section 2 that condi-

tions (a) and (b) of assumption 2.1 were valid. In general, this is not the case. In this sec-

tion, we show how to transform an LP problem in standard form

(P) min ?v,

s.t. Ai' = b , A full row rank

, , ? 0

to an eqwvalent LP problem in standard form so that the new problem and its dual satisfy

the assumption 2. 1. As a result of the process to be described below, we will also obtain an

initial point satisfying the criterion of closeness (3.2). The algorithm can then start from this

initial point.

Let m and n be integers such that A e R= mi x - -). First we scale the problem (P)

by introducing a change of variables v = XT where A > 0 is a scaling factor and

1 c=R"-2 ' . The scaling factor X is chosen large enough so that any basic feasible solu-

tion v of (P) satisfies eT, ! (n-2),.. We then obtain the following equivalent problem
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min (AF T) T

s.t. (0i ) 7 = b

e T + Xn-I = n-I

x ;> 0 , 7,-I > 0

where T.-I is a slack variable.

Now we want the vector of ones to be a feasible solution of the new problem. We

introduce an artificial variable 7, with a large cost M to obtain

min (A. T) 7. + M ,

si. .(A ) T + (b-.Ae) 7, =

e Ty + 7,- + X, = n

7 ?- 0 . : 0 , 7" a 0

Letting B =[.A l b - AAe 1 0) e R(m- )xn, cT (A.ZT,0, M) and

x = (, -,,) e Rn, we can rewrite the previous problem as

(P) min cTx

s.t. Bx = b

eT x = n

x>O

We can recast this problem in the notation of problem (P) of section 2 just by letting

A r Rxn and b e R ' be
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We now show that this problem satisfies assumption 2.1 of section 2. Note that. by the

construction above, the vector of ones e e R" is feasible for problem (P). This shows thai

problem (P) satisfies (a) of assumption 2.1. By assumption, the matrix A has full row rank.

This immediately implies that the matrix B has full row rank. Since Be = 0. it follows that

the matrix A has full row rank. Therefore, problem (P) satisfies (c) CA' assumption 2. 1. To

see that problem (P) also satisfies condition (b) of assumption 2.1, consider its dual

(D) max gbri + nt

s.t. BTrj + er + z = c

z>0

where i c R"m-l), r c R and the slack : e R". Problem (D) has a feasible point with

the corresponding slack z strictly positive. To see this, set r = 0 and choose any r satisfy-

ing

t < min ci

Hence condition (b) of assumption 2.1 is satisfied. We will now obtain an initial point satis-

fying the criterion of closeness (3.2). Let x0 = e, = 0, and r' = - p" where u' satisfies

o CI (6.1)
0

Then - c= + , j=l .I ,n and the criterion for closeness (3.2) becomes

which is satisfied due to (6.1). In summary, we can apply the algorithm of section 3 to

solve the pair of problems (P) and (D) with the initial point w' a (xO, y, :) determined by
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x0 e

y 0 (w0 , to) = (0, _Po)

zo =c + Pe

where po satisfies (6.1).

7. Remarks and Extensions

The following observations are in order:

(1) The purpose of this paper is to present a theoretical result. Thus in order to simplify the

presentation, we constructed ji - p(1 - 6 /4kn). Obviously, one can use Ai which is less

than or equal than the above one, but still satisfying (b) of theorem 4.1 and relations (4.7)

and (4.8). hi this way, one can accelerate the convergence of the algorithm.

(2) Additional improvements in actual implementation, which are possible, such as more

judicious selection of e, 6 and y, together with actual test results, are the subject of a forth-

coming paper.

7.1. Extensions to Convex Quadratic Programming

The same ideas presented here can be applied to the convex quadratic programming as

follows. Let

(Q) min cTx + I xTQx

s.t. Ax = b

x>O

where Q a K" " is positive semidefinite. Using the same approach and following [61 one

can define the following barrier problem

"?-")
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(Q/p) min cx + -xTQx lnxj
2j=1

s.t. Ax = b

x>O

with the Kuhn-Tucker conditions:

(i) ZXe -/ze = 0

(ii) Ax-b =O,x>O

(iii) ATy + z - c- Qx = O

As in the linear case the path of solutions to (Qp) converges to the optimal solution of (Q)

as pu tends to zero (see Meggido [6]). Similarly to algorithm 3.1, given a point

w = (x, y, z), one can construct Aw = (Ax, Ay, Az) by solving the following system of

linear equations

ZAx + XAz = XZe - Ae

AAx = 0

ATAy + A: - QAx = 0

and then proceed to v by

v = w - Aw

It can be shown that convergence properties of this algorithm are the same as the ones

of algorithm 3.1 ( i.e., O(NrnL) iterations, each of which requires at most O(n 3 ) arithmetic

operations). The proofs are slight modifications of the proofs of this paper. The details of

this algorithm together with implementation tests are the subject of a forthcoming paper.
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