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Abstract -76 describe a primal-dual interior ppint algorithm for lnear pro-
gramming problems which requires a total of O(n’L) arithmetic operations. Each
iteration updates a penalty parameter and finds an approximate Newton’s direc-
tion associated with the Kuhn-Tucker system of equations whigh characterizes a
solution of the logarithm barrier function problem. This direcyion is then used to
find the next iterate. The algorithm is based on the path

total number of iterations is shown to be of the order of

U

Key Words - Interior-point methods, Linear Programming, Karmarkar’s LP
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algorithm, Polynomial-time algorithms, Barrier function, Path following,
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1. Introduction Justification_ ;
Consider the linear programming problem By.
Distribution/
(P) min cTx Availnbllity COdeS,
Avail und/or

Dist
st.Ax=b)

x20 ﬂ-/

Specinl

where A € R™™". This paper presents an algorithm for Linear Programming (LP) problems
based on the logarithmic barrier function approach. The logarithmic barrier function
method was first used for LP problems by Frisch [1]. The introduction of the new interior
point algorithm by Karmarkar [4] led researchers to reconsider the application of the loga-
rithmic barrier function method to LP problems. Recently, this method was first considered

by Gill et al. [2] to develop a projected Newton barrier method for solving LP problems.
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Meggido [6] provides a theoretical analysis for the logarithmic barrier method and proposes
a primal-dual framework based on a consideration of a pair of primal and dual LP prob-
lems. Kojima et al. [S], using this framework, present an algorithm that works simultane-
ously with a pair of primal and dual LP problems. Their algorithm is shown to converge in
at most O(nL) iterations with a computational effort of O (n?) arithmetic operations per

iteration, resulting in a total of O(n*L) arithmetic operations.

In this paper, we build on the ideas in [S] and obtain a faster algorithm. The primal-
dual framework presented in [6] is used. The directions generated by our algorithm are
essentially the same as the directions generated by the algorithm of Kojima et al. [S]. How-
ever, working closer to the "path of solutions" (c.f. [5]), we are able to obtain convergence
in at most O(Jn-L) iterations. Each iteration involves the inversion of a n X n matrix
which can be done in at most O(n>) arithmetic operations. Based on ideas presented by
Gonzaga [3], we are able to exploit the special structure of the matrix to be inverted so that
it can be done in an average of O(n?>) arithmetic operations per iteration. Thus overall our
algorithm requires O (n>L) arithmetic operations. It should be noted that Renegar (7] was
the first 1o introduce an interior point algorithm requiring O(nL) iterations and O (n*3L)
arithmetic operations. Subsequently, Vaidya [8] improved it so that the total complexity is
O(n’L) arithmetic operations. Equivalent complexity was also obtained by an algorithm
which was presented by Gonzaga [3]. Both Vaidya's and Gonzaga's algorithms are primal
algorithms. It should be noted that in order to simplify the complexity analysis presenta-
tion, we assume throughout the paper that m = O(n).

Our paper is organized as follows. In section 2, we present some theoretical back-
ground. In section 3, we present the algorithm. In section 4, we prove results related to the
convergence properties of the algorithm. In section 5, we present the updating scheme that
leads to a reduction in the average number of arithmetic operations per step. In section 6,

we discuss how to initialize the algorithm. Finally, we discuss in section 7 some

s AT TR ATO R T T NI AT O ATA TSP T |
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extensions, and in particular how to extend our algorithm to solve convex quadratic pro-

gramming in O('J;L) iterations.

’ 2. Theoretical Background

In order to facilitate the reading of this paper, we use a notation roughly similar 1o the
one in [5). A discussion of the main results necessary for the development of our algorithm
is presented in this section. These results are adapled from [5). A detailed discussion of

these results can be found in [6].
We consider the pair of the standard form linear program and its dual

(P) min cTx

st Ax=b

x20

(D) max bTy
st. ATy+z=¢

220

where A€ R™" ce R" and be R™. We impose the following assumptions:

Assumptions 2.1:

(a) Theset S = [xe R";Ax=b.x>0]isnon-cmpty.

(b)Theset T m {(y. z)e R™" ATy +z=c, 2> 0} is non-empty.

(¢) rank (A) = m.

A S e e A TR R N T I P A o RPN R S L
AN N S T N Nt N A A T TN T e et e SR g e A
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Throughout this paper, we will denote a point in R"xX R™x R" by the lower case

letter w, ie.,
wa(x,y, z) € R"< R"x R"

The logarithmic barrier function technique, usually employed in non-linear constrained
optimization, will be applied to the problem (P). The method consists of a consideration of
the family of problems
(Pp) min ¢Tx-p i In x;
j=t

st Ax=b

x>0

where u > O is the penalty parameter. As u — 0, we would expect the optimal solutions of
(Pu) to converge to an optimal solution of (P). This method, usually attributed to Frisch
(1], recently came up in [2] where an analogy with Karmarkar's algorithm is presented. In
[6]). a comprehensive analysis of this approach is presented, where the problems (P) and (D)
interplay together.

From now on, a capital letter corresponding to a lower case letter which denotes a
vector, say x = (x,, ... ,x,,)r € R", will denote the diagonal matrix with the components of
the vector on the diagonal, i.e., X = diag(x,, ... ,x,). Observe that the objective function of
the problem (Pu) is a strictly convex function. This implies that the problem (Pu) has at
most one global minimum, and that this global minimum, if it exists, is completely charac-

terized by the Kuhn-Tucker stationary condition:
(i) ZXe — ue =0

(i) Ax=b=0,x>0 @.n

(iii) Ary+z-c-0
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where ¢ € R" denotes the vector of ones. In fact, we have the following result:

Proposition 2.2 : Under the assumptions (a) and (b), problem (Pu) (and consequently the

system (2.1)) has a unique global solution x(u), for all u > 0.

Observe that in the system (2.1), x uniquely determines z from the first equation and y
from the third equation, since the matrix A has full rank. For each u > 0, we denote the
triple of solutions of (2.1) by w(u) = (x(u), y(u). z(u)). Obviously w(u) € S x T. Given
apoint w=(x,y, z) € S xT, we define the duality gap at w to be

glw) = cTx-bTy
Using the two last equations in (2.1), we can easily verify that

gw)= xTz , we ST 2.2)

In particular, using the first equation in (2.1), we obtain g(w(u)) = nu, for all u and there-

fore g(w(u)) converges to zero as u goes to zero. This implies that ¢7x(u) and b7 y(u)
converges to the optimal value of the problems (P) and (D) respectively. In fact, we have

the following stronger result:

Proposition 2.3 : Under assumption 2.1, as p — 0, x(u) ( (y(u). z(u)) ) converges to an

optimal solution of problem (P) ((D)).

The following notation will be useful later. Let w € S x T. We denote by

fw) = (f1(W). ....f(w))T € R" the n-vector defined by

fi=xz ,i=1,..,n
With this notation, the first equation of (2.1) written coordinate-wise becomes :
filw(p)) @ x, () z(u)=p, i=1..,n 23)

We denote by I' the path of solutions w(u) , u > 0, i.e.,

= [ w(u) ® (x(u), y(u), z(u)) i u > 0]-

innnnicqagninlnvnrt1c¢:~‘;:1:r." ‘,‘-\ ----------------------------------- \...
F AN ) .rm.b.m -A'AA .A‘Ai_t.u(k- ..‘.i.i.."‘j’-fu TN I J.KLA'JJ.A'A.- O R A
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The algorithm which will be presented in the next section, will "follow™ this path T
with the objective of approaching the desired solutions of the original problems (P) and (D).

The path following procedure is described in the next sections.

3. The Algorithm

As in the previous section, we denote a triple (x, y, z) € R"X R"x R" by the lower
case letter w, ie.,, w= (x,y, z). The algorithm will generate a sequence of points
wt € § xT ,k =0,12,.. where the initial point w° is provided as input to the algo-
rithin. In this section, we require that w® € S x T be a point satisfying some criterion of
closeness with respect to the path of solutions I'. Given an LP problem in standard form, in

section 6 ' e show how to construct an equivalent LP problem so that assumption 2.1 is

satisfied. As a consequence of this construction, we also show how to obtain an initial point
w? € § x T satisfying the criterion of closeness.

Given a current iterate (x,y,z)€ SxT , a triple of directions
(Ax, Ay, Az) € R"x R™x R" needs to be generated for the determination of the mext
iterate. Throughout this paper, a triple of directions (Ax, Ay, Az) € R"X R"x R" is

denoted by the symbol Aw. Let (X, ¥, Z) denote the next iterate. We obtain (X, y, 2) by

iI=mx-Ax
y=y-Ay
zmz-A:

or in more compact notation
wew-Aw

According to [5], the direction Aw chosen to generate the next iterate w, is defined as

the Newton's direction associated with the Kuhn-Tucker system of equations (2.1).

" A Y Ry Rl S S GV I SPCE T L RS TR N O IR P
R O A N N NN N AN RN A R A S ™ AR AP AT TN e NSt a et
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However, with the objective of improving the worst-case complexity on the number of
arithmetic operations, we consider a slight variation of the direction used in [S]. If we
denote the left uand side of the system of equations (2.1) by H(w) = H(x, y, z), the

Newton’s direction Aw at w € S x T is defined by the system of linear equations
D H(w) Aw = H(w)
where Aw = (Ax, Ay, Az) € R"x R"x R"” and D H(w) denotes the Jacobian of H at

we= (x,y, z). We observe that D, H(x, y, z) does not depend on the argument y € R”.

Indeed, the Jacobian of H at w = (x, y, 2) is given by

0
J(x,z)= D H(w)= 0

S » N

X
0
AT 1
The direction Aw that we are going to consider is defined by the following system of
linear equations

J(X,Z)Aw=H(x,y,2)

where the points ¥ € R" and 7 € R" will be chosen to approximate x € R" and
z € R" respectively in a manner which will be specified latter. More specifically,

Aw = (Ax, Ay, Az) is defined by the following system of linear equations

'Z'Ax+)?Az=XZe—ﬁe (3.1.a)
AAx =0 (3.1.b)
ATAy + A2 =0 (3.1.0)

where 4 > O is some prespecified penalty parameter. Observe that the right hand sides of
(3.1.b) and (3.1.c) are zero since w is assumed to be in the set S x T. However the right
hand side of (3.1.a) is not necessarily zero and equals zero only when the point w lies on

the path I'. Throughout this paper, the lower case letter s will denote a pair

v e > P P e T R R A AT AL T A T S O T I P TS L S T IR N Y
h X { T R G N A o O B N A A N P A A A AN NN
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(x, 2) € R"X R". Note that the solution Aw = (Ax, Ay, Az) of the system of equations
q

(3.1) clearly depends on the current iterate w = (x, y, =), on the Jacobian of H at the
"approximation” § = (¥, ) of s = (x, z) , and on the penalty parameter i > 0. In order to
indicate this dependence, we denote the solution (Ax, Ay, Az) of the system (3.1) by

Aw(w, 3, 1)

By simple calculation, we obtain the following expressions for Ax, Ay, Az
Ax = [Z" -Z'XAT(AZ XA T)"AZ"] (XZe - fie)
Ay = - [(AZ "EA’)"AZ"] (XZe - fie)

' Az = [AT (AZ'XA T)“AZ"] (XZe - fie)

Therefore, t0 calculate the direction Aw = (Ax, Ay, A:z), the inverse of the matrix
(AZ"'XAT) needs to be calculated. This is the main motivation to consider just an approxi-
mation § = (X, ) of s = (x, 2) so that we do not need to invert this matrix from scratch at
every iteration. If the current diagonal matrix Z~'X differs from the previous one by
exactly / diagonal elements then, by performing / rank-one updates, we are able to compute
the inverse of the matrix (AZ ~'XAT) in O(n?l) arithmetic operations. Observe that all the

other operations involved in the computation of Aw = Aw(w, ¥, j1) is of the order of O( n®)

arithmetic operations.
We are now ready to describe the algorithm. At the beginning of the algorithm, we

assume that an initial point w’ = (x°, y°, z°) € § x T is available such that the following

criterion of closeness with respect to the path I' is satisfied:

Il f(W°) — u®e|| S 6u° (3.2)
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where || . || denotes the Euclidean norm, u° is a positive constant and 6 = 0.1.
We now state the algorithm. .

Algorithm 3.1 :

Step 0) Lerw® € S x T and u° > 0 sartisfy (3.2). Let € be a tolerance for the dualiry

gap. Let
‘ 6 :=0.1
8 :=0.1 (3.3)
y:=0.1 q
Set k:=0. )
Step 1) If cTx* - bTy* < ¢, stop. ]
Step 2) Chooses = (%, 7) in R; x R}. satisfying:
| xt-%, 1
T Sy,i=1..,n :
I zb =7, 1 ) .
A Sy.,.i=1,..,n ;
Step 3) Serp**!:= ut(1 - & ivn).
Calculate Aw* = Aw(wt, 5, u**"). :
Step 4) Serwt*! = wt - Awt. :
Setk :=k + 1 and go 10 step 1.
In the following sections, we prove that the algorithm above is a valid one in the |
sense that it generates at every iteration a point w® in the set S x T. We also show that it :
terminates in at most O(J; max( loge". logn. logu®) ) iterations. Finally, we present a E
K
AAL AN IAZ N S AN A NI R VNN N A N NN AR % SN TS T S e
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suitable choice for the approximation point § = (¥, 7) (see step 2 of the algorithm) that

will enable us to show that algorithm 3.1 solves the pair of problems (P) and (D) in no

more than O (n® max( loge™', logn, logu®) ) arithmetic operations.

4. Convergence Results
We begin this section by stating the main result and its consequences. Given two vec-
tors x € R” and ¥ € R”", we denote the Euclidean norm of the vector X '( ¥ = 1) by

I % - xll, .ie.

5 [7]
! il - Xl -
hx-al,=| Y f ] (4.1)

ll\ X,

The main result is:

Theorem 4.1: Lerw = (x. y. 2) € S x T and u > 0 sansfy

N fiw) — e |l S 6u 4.2)
Lets =(X,7) € R] x R} sansfy

Sy .i=1 .. .n (4.3)

Sy.i1=1,...,n (44)

Let i > 0 be defined as
i =pu(l -8 /Vn) (4.5)

Consider the point w = (1, 5y, ) € R"x R"x R" defined by

wEw-Aw 4.6)
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e =

where Aw = Aw(w, §, fi). Then the following holds:
(a) The point w is in S X T and satisfies

% - x||, < 0.28 4.7

=
3

3 - z|l, < 0.28 (4.8)

P ar-n -

(®) If (W) = fiell < 62

© gw)=cTx - b7y < 1.1ni

The proof of theorem 4.1 will be given at the end of this section. Suppose )
w(u) = (x(u), y(u), z(u)) is the point in the path T corresponding to the penalty parameter t

u. The criterion of closeness (4.2) is then equivalent to
Hfw) = flw)) || < Ou (4.9) >

since f(w(u)) = ue by relation (2.3). By theorem 4.1, relation (4.9) will hold for the new
point w defined by (4.6) and the penalty parameter j > 0 given by (4.5). ¢
As a consequence of theorem 4.1, we have the following result: ',

Corollary 4.2: All points w* generated by algorithm 3.1 satisfy

(@ wtisin S x T, for all k = 1,2, ... and

B xtt = x* . <0.28

P

It 24 = 2% 1,» £ 0.28

®) || f(wF) - pre |l s 6u*  forall k =12, ..

() gw*) m cTx* = bTy* < 1.1np* forall k = 1,2, ... '

where

pt=po(1-6/dn) for k=12, ..

R R B N B O R G AT AL AT T AT W A
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Proof: This result follows trivially by arguing inductively and using theorem 4.1. O

By (b) of corollary 4.2, all iterates w® generated by algorithm 3.1 will satisfy the cri-

terion of closeness

Il W) = Fowu*)) || s 6pt

Therefore we can view algorithm 3.1 as a path-following procedure, i.c., the iterates w*

tries to trace the path I' so that it eventually converges to an optimal solution
w® = (x*, y*, 2°) for the pair of LP problems {P) and (D).

We now derive an upper bound on the total number of iterations performed by algo-

rithm 3.1.

Proposition 4.3: The total number of iterations performed by algorithm 3.1 is no greater
than k" = [ log(1.1ne~" u®) Jnis 1 where € > 0 denotes the tolerance for the duality
gap and u° is the initial penalty parameter.

Proof: From (c) of corollary 4.2, we can terminate the algorithm as soon as
l.lnp" SE€

It is enough to show that k° satisfies the inequality above. By the definition of k°, we have

k'8
loge2 - + log(1.1nu°)
g 4/; g H

2 k°log [l - —j—=] + log (1.1nu°)
n

= log [l.lnp” 1- %ﬂ] k.}

= log 1.1nu*

Second inequality is due to the fact that log (1 — x) S —x for all x > -1 and the last equal-

ity follows from the definition of u*'. Therefore k° satisfies

)

DA OsUOND D " U s ¥ v ) M TR T R T S AT L
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and this completes the proof of the proposition. [ .E
Let L denote the number of bits to represent the data of the primal LP problem (P), :;:.

i.e., L is the size of the problem (P). It is a well-known fact that if, at some iteration k, the
Yy

duality gap satisfies ¢7x* — bTy* <27, then we may obtain optimal solutions for prob- :-
lems (P) and (D) in O(mn?) arithmetic operations. 'E
Using this observation, we obtain

\

Corollary 4.4: If the initial penalty parameter u° satisfies log u° = O(L) then algorithm .
v

3.1 solves the LP problem (P) in at most O(Jr_rL) iterations. gt
Proof: Follows directly from the previous proposition, [ "::.
O3

In section 6, we will see that the initial penalty parameter u° can be chosen to satisfy ::;

=

log u° = O(L). One possible choice for the approximation § = (¥, Z) on step 2 of the ‘,
algorithm is to use exact data, that is, to set 5, on the k™ iteration, equal to s*. With this
choice of the "approximation” ¥ , we have the following result: t

Corollary 4.5: Algorithm 3.1 solves the pair of LP problems (P) and (D) in no more than ..:.
O(n33L) iterations. i
X

Proof: At every iteration, we need to calculate the inverse of the matrix [A(Z*)"'X*AT} .
{

and this requires 0(n3) arithmetic operations. By corollary 4.4, algorithm 3.1 terminates in .
at most O(J;L) iterations. These two observations immediately concludes the proof of the A

corollary. O n;

In the next section, we present an updating scheme for the approximation § that will :“
reduce the worst-case complexity of algorithm 3.1 to 0(n3L) arithmetic operations. ;

We now concentrate our effort towards proving theorem 4.1. We should point out that :
some of the arguments below become simpler when we use exact data for the r

;,

O T Tt AN i L 0 W
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approximation §.

Let w=(x,y,2) € SXT, §F=(%,7) € R"xR" and a>0. Let
Aw = (Ax, Ay, Az) be the direction Aw(w, ¥, fi1). Consider the point w defined as in rela-
tion (4.8). The next result provides expressions for the product of complementary variables

fi{w),i=1,..,n and the duality gap g(W) = c"% - b73.

Proposition 4.6: Ler w ,§ and w be as above. Then the following expressions hold:

f,(ﬁ’) = ﬁ + Ax,'AZ,‘ + (E, - X,')AZ" + (3'" - Z,')AX,' (410)
ATz =0 4.11)
g(w) = i fiW)y=ni +(Z - TAx + (% - 0)A: 4.12)

Proof: By definition, we have for alli = 1,...,n
fiw) = &5
= (x; = Ax;)z; — Az)
= x;2; = (x;Az; + z;Ax;) + Ax;Az;
= x;7; — (X;Az; + T,Ax) + Ax;Az; + (X; — x;)Az; + (2, — 2)Ax; 4.13)
Writing (3.1.a) coordinate-wise, we obtain for alli = 1,....n
(X;0z; + T,Ax,) = x;2; — (4.14)

Relations (4.13) and (4.14) immediately imply (4.10). Now we prove (4.11). Multiplying

expression (3.1.c) on the left by (Ax)T, we obtain
(AAX)T Ay + (Ax)TAz =0 (4.15)

Relations (3.1.b) and (4.15) immediately imply (4.11). Note that the first equality in (4.12)

follows immediately from expression (2.2) and the definition of f;(w). Summing expres-

") MY R R N RN e N
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sion (4.10) over all indices i = 1,...,n and noting (4.11), we immediately obtain the second
equality in (4.12). This completes the proof of the proposition. O

Observe that if ¥ = x and 7 = z, that is, the approximation is exact, then the duality
gap al w becomes g(w) = nj. In this case, (c) of theorem 4.1 follows trivially.

We now state and prove some preliminary results that will be useful in the proof of

Theorem 4.1.

Let w=(xy 20€ SxT, $=(%7)e R'XR" and f>0. Let

Aw = (Ax, Ay, Az) be the direction Aw(w, ¥, ji). We denote by Af = (Af, ... Af)T the

n-vector defined as
Af = (Ax,Azy, ... ,Ax,Az,)T (4.16)

where Ax; and Az; denotes the i coordinate of the vectors Ax and Az respectively. The

next results provides an upper bound on the Euclidean norm of the vector Af.

Lemma 4.7: Let Af be defined as in (4.16). Then, we have

" w2
IAf IS M“é’;&“— @.17)

f min ® min [ I X210 . i=1,.. .n} 4.18)

Furthermore, we have

PYRNTY
Wb Az s W)= He 4.19)

s 2
WD ~'ax|? s w (4.20)




where D is the diagonal matrix defined by
D=2k (4.21)
Proof: By equation (3.1.a), we have
D™'Ax + DAz = (XZ)A(XZ - fie) (4.22)
From (4.11) it follows that
(O'ax)'(Daz =0 (4.23)

Using the Pythagorean theorem, relations (4.22), (4.23) and the definition of the Euclidean

norm, we obtain

1 57'ax I + 1| Baz I = 1| R2)"XZe - fie) If

A2
< Wfw) = pe i (4.24)

Inequalities (4.19) and (4.20) follow immediately from (4.24). Also (4.24) implies that

- h 2
WB'Ax | || Daz | s WO = el (4.25)
2fmin

On the other hand, using the Cauchy-Schwarz inequality, we obtain

i | Ax;Az; | = i | D;'ax; 11 DAz

i=] i=

SWD'Ax ||l DAz | (4.26)

”n
Since | Af |l S Z| Ax;Az; |, relations (4.25) and (4.26) imply the inequality (4.17). This

completes the proof of the lemma. O

) 0 L
+ x5 ) 3\".".".' i,

.........................
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The next lemma provides important relations that will be useful in the proof of

theorem 4.1. We observe that the specialization of the results below to the case when the

approximation becomes exact simply involves substitution of ¥ by x, ¥ by = and y by 0.

Lemma 48: Let w=(x,y,2) € SXxT ,5§=(X.7)e R xR] ,u>0and i >0 be
as in the statement of theorem 4.1. Let Aw = (Ax, Ay, Az) be the direction Aw(w, S, ).

Let p and q be defined by
p=(-06)1+p72 4.27)
g=(1+6)1-972 (4.28)

Then the following relations hold:

PHSXZ, Squ ,i=1,..n 4.29)
NAf S L‘;:—’zfi (4.30)
| B-'ax | s L":—)z& 4.31)
| Daz | < i‘-’—if—)zﬂ (4.32)

where D is defined by (4.21).

Proof: From (4.3) and (4.4) it follows that

X;
O<l-ys—<Sl+y,i=1l..n 4.33)
0<1—7S—;—Sl+y,i=l.....n (4.34)

which implies,

X2
A-y2PSs—sA+p? ,i=1l..n
X%,

[l ]




or equivalently, for all i=1....n

A+ s57, s(1 -9, (4.35)
Using (4.2), we obtain

A-0)usx:;s(A+6u ,i=1,..,n (4.36)
Relations (4.35) and (4.36) imply that for all i=1,....n

J+P32Q-0)usTI sO-p 3 +0)u
which is exactly (4.29).
Since [le)| = ¥n, relations (4.2) and (4.5) imply that

W ow = e 7S (I £ w) = e I+ 1l e = ie 1)

2

s (0w + 1w~ @t el
< (6u + 8u)?
S (0 + 8)%u? 4.37)

Using lemma 4.7, relations (4.29) and (4.37) , we immediately obtain (4.30), (4.31) and

(4.32). This completes the proof of the lemma. O
We are now ready to prove theorem 4.1.

Proof of theorem 4.1:

(a) From (3.1.b), (3.1.c) and the fact that w € S x T, it follows that w = (x, y, ?) satisfies
Ax=)b
ATy +2=¢

We have just to show that ¥ and Z are strictly positive to conclude that w € S x T. We

note that (4.7) and (4.8) immediately imply that x > 0 and Z > 0 since x > 0 and : > 0 by




assumption. We will now show that (4.7) and (4.8) hold.

By the definition of X, we obtain

where D = diag(5”, ....D,,) is given by (4.21), i.e.,

The last inequality together with (4.38) implies

Nk - x| < [

Inequality (4.31) of lemma 4.8 and (4.41) then imply

2]
] (6 +9)
p

x - <
Nx - xil, [(1 _

(4.38)

(4.39)

(4.40)

(4.41)

(4.42)
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Substituting in (4.42) the values of 6, §, 7, and p from (3.3), (4.27) and (4.28) we obtain

(4.7). In a similar way, one can prove (4.8). This completes the proof of (a).

(b) Writing expression (4.10) in vector notation and noting (4.16), we obtain
f(&) - jie= Af + (X = X)Az + (Z - 2)Ax
By the properties of norms, we obtain
W FO) ~ e I SHASN+I1 (X - X)Az Il + 11 (Z - 2)Ax | (4.43)

Using the definition of the Euclidean norm, we obtain

X -8z 17 =Y & - x)%Az)

i=]

= i (D;'x; - X.')]-(ﬁiiAZ.')z (4.44)

=~ _| 2 —~ :f" - X;
Di (X, -x)] =(XZ)|——=
X
Squy ., i=1,..,n (4.45)
In a similar way, one can prove that
(DiZi~z)PSqur . i=1,..,n (4.46)

Relation (4.32) of lemma 4.8 and relations (4.44) and (4.45) imply that

- , 2,2
& -X)Az P s —‘l@”— (4.47)

In a similar way, one can prove that

0 + 8)*u?

NZ -2)ax|?

(4.48)
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From (4.43), (4.30), (4.47) and (4.48) it follows that 4
£ 0P - de || S &;’7‘”—2 + 270 + 6)(—2)% " ]
1
‘
From the expression of j in (4.5), we obtain '
which implies s
1O = helis 1 5 (6 ;p‘s)z +270 + 5)(;1)% i 1
Substituting the values of 8, 8, y, p, and g from (3.3), (4.27) and (4.28) we obtain
I £ (%) = fae I S O (4.49) '.
and this completes the proof of (b).
(c) The first equality of expression (4.12) says that
gw) = el f(W) |
Using the Cauchy-Schwarz inequality and expression (4.49), we obtain '
20%) S llell I (W) :
< {IF (9 ~ faell + lell ) 3
< Vn (6 + Ynji) !
<+ 0)ni
= 1l.1n4
since 8 = 0.1. This completes the proof of (c). O “
3
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S. A Good Choice for ¥ and ?

In this section, we show how to choose the approximation ¥ = (¥, Z) € R"x R" of

st = (x*, z%) in step 2 of algorithm 3.1 so that its worst-case complexity reduces 1o the

order of O(n’L) arithmetic operations.

The choice of the approximation § is made by an updating scheme as follows (In the

procedure below, k stands for the iteration count):

Updating scheme 5.1:

Fork :=0,setX :=x° and % = 2°

For k >0 do
Fori=1,..,ndo

If one of the following holds

k

.

then set X, := xXand 7, := :

In section 3, we saw that the main effort in each iteration was in computing the

inverse of the the matrix (Af"iA LAY () only / diagonal elements of the matrix (Z7'X)

change, this computation can be carried out in O(n?l) arithmetic operations by means of /

rank-one updates. If we use the updating scheme 5.1 then the i™ diagonal element of the

matrix (Z'X) changes only when inequality (a) or (b) of scheme 5.1 is satisfied. Next, we

provide an upper bound on the total number of diagonal element changes that occurs on the

matrix (Z ~'X) during K iterations of algorithm 3.1. Consider the following two sets:

¥y, 4 ) LYy
H.*"?"‘,C LX) .,l" l“,.",.'. 1‘0 “‘ » 0'|'|..'|,.‘.,.‘._. .‘l -‘\‘.“ ..( .‘. u.l. » " ‘

v.‘u

[) [)

L A A A L S L A I T SR T S . S L L Y
N e B [ ) . . N [ A oY N N L } 2 A

N
(Y




vy APAF RPN RAPRPEIN L - S, gt 0 v A% gt V.oay. ai. a, Al L) oy T at t - T @) e ab

X b xb-%, 0 -
S'=Yk;, —————>y. 1<k <K

TX={k, ——— >y, 1gsk<K} N

where K is the number of iterations performed. Notc that by corollary 4.2, the iterates

wk = (x*, ¥, z*) generated by algorithm 3.1 satisfy .
.

! = 2. < 0.28 ’

N=4*" = 4[| € 0.28 3

for all integers k 2 0. N

The following resull can be proved by slightly modifying the arguments in section § s

of (3].

Proposition 5.2: Let S and T be defined as

Then, we have
S < a.5vnk
T < 4.5Vnk -

As a consequence of this result, we have :
Corollary 5.3: Algorithm 3.1 coupled with the updating scheme 5.1 solves problems (P .

and (D) in no more than O(n’L) arithmetic operations. :

»
b
...... RS,
LI P T R WA R A L AP SRR R P O ~p o 7 -
O s N NV g A i A A A RN A S A N R 8 O N N O O T




Proof: From corollary 4.4, we know that algorithm 3.1 finds an optimal solution in O(J;L)

iterations. Proposition 5.2 implies that the total number of rank-one updates is then of the

order of O(nL). Since each rank-one update involves O(n°} arithmetic operations, the total

number of arithmetic operations is then of the order of O (n’L). This completes the proof of

the corollary. C

6. Initialization of the Algorithm

Given an LP in standard form and its dual, we have assumed in section 2 that condi-
tions (a) and (b) of assumption 2.1 were vahd. In general, this is not the case. In this sec-

tion, we show how to transform an LP problem in standard form

(P) min g7y
st Av=b , A full row rank
v20

to an equvalent LP problem in standard form so that the new problem and its dual satisfy
the assumption 2.1. As a result of the process to be described below, we will also obtain an
minal point satisfying the criterion of closeness (3.2). The algorithm can then start from this
initial point.

Let m and n be integers such that A € R'™"*"~' First we scale the problem (P)
by introducing a change of variables v = AY where A >0 is a scaling factor and
¥ € R'""'. The scaling factor A is chosen large enough so that any basic feasible solu-

tion v of (P) satisfies e’ S (n—2)A. We then obtain the following equivalent problem

SIS O N e O NN A N W A S A A R o A A A SO N A R ACR R RTAS N T e |
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min (ATT) ¥

"
a2

s.t. (AA) X
e X +fn-| =n-1
¥20,%,,20

where X,_; is a slack variable.
Now we want the vector of ones to be a feasible solution of the new problem. We

introduce an artificial variable X, with a large cost M to obtain
min A7) T + M %,
st. (AA) X + (b-2Ae) X, = b
eTX + X, +X,=n
¥20,%¥,,20,X%,20
Lening B=[AA | b - 2A4e 1 0] € R™Dxn, T =@’ 0, M) and
x=(¥,X,.1. %,) € R", we can rewrile the previous problem as

(P) min cTx

st. Bx=b
eTx=n
x20

We can recast this problem in the notation of problem (P) of section 2 just by lelting

A e R™and b € R" be

S = e

P\ o ar—ar —ay
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We now show that this problem satisfies assumption 2.1 of section 2. Note that, by the
construction above, the vector of ones ¢ € R" is feasible for problem (P). This shows that
problem (P) satisfies (a) of assumption 2.1. By assumption, the matrix A has full row rank.
This immediately implies that the matrix B has full row rank. Since Be = 0, it follows that
the matrix A has full row rank. Therefore, problem (P) satisfies (c) ¢{ assumption 2.1. To

see that problem (P) also satisfies condition (b) of assumption 2.1, consider its dual

(D) max Ern + nt

b st. BTn+er+:z=c

!

R 220

N where n € R™ 1, t € R and the slack : € R". Problem (D) has a feasible point with

the corresponding slack : strictly positive. To see this, set n = 0 and choose any ¢ satisfy-

% ing
\J
t < min c;
]
‘; Hence condition (b) of assumption 2.1 is satisfied. We will now obtain an initial point satis-
1 fying the criterion of closeness (3.2). Let x° = ¢, n° =0, and 1° = — u° where u? satisfies
U
K
; uez dell 6.1)
6
:: Then xjz7 = ¢; + u°, j=1, ..., n and the criterion for closeness (3.2) becomes

j=

. [ic}]%sow’

N which is satisfied due to (6.1). In summary, we can apply the algorithm of section 3 to

solve the pair of problems (P) and (D) with the initial point w’ = (x°, ¥, =°) determined by

. 9 f y T %) S AT T AT AT AT A T A A R T L Y N LIC N RO I A S N .
s ‘~‘.“¢0.“'l,.‘.!<“a’,..\!'ﬂ,"ﬂt'o'.‘ﬂ!%‘. S, ‘v, ol v M) v (e oM ‘.f’ Lo~ .i W * . it ’ ¢¢ ’ N ’

'y 9% v 3% W9 P,
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yo = (“,o' to) = (00 —”o)
2°=c¢c + u’e

where u° satisfies (6.1).

7. Remarks and Extensions

The following observations are in order:

(1) The purpose of this paper is to present a theoretical result. Thus in order to simplify the

presentation, we constructed i = u(l - & /‘\/;). Obviously, one can use i which is less
than or equal than the above one, but still satisfying (b) of theorem 4.1 and relations (4.7)

and (4.8). In this way, one can accelerate the convergence of the algorithm.

(2) Additional improvements in actual implementation, which are possible, such as more
judicious selection of 8, § and 7, together with actual test results, are the subject of a forth-

coming paper.

7.1. Extensions to Convex Quadratic Programming

The same ideas presented here can be applied to the convex quadratic programming as

follows. Let

’ (@) min ¢’x + % xTQx
5t Ax=b

x20

where Q@ € R"" is positive semidefinite. Using the same approach and following [6) one

can define the following barrier problem
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n
(Qu) min cTx + % xTOx - p 21 In x;
]=

st Ax=b

x>0

with the Kuhn-Tucker conditions:

- -

(i) ZXe - pe =90
0 (i) Ax-b=0,x>0

(iiiy ATy+z-c-Qx=0

N IR

As in the linear case the path of solutions to (Qu) converges to the optimal solution of (Q)

as pu tends to zero (see Meggido [6]). Similarly to algorithm 3.1, given a point

- iy e e T

w = (x, y, 2), one can construct Aw = (Ax, Ay, Az) by solving the following system of

linear equations

“v- -

p ZAx + XAz = XZe -~ jie
AAx =0
ATAy + Az - QAx =0
and then proceed to w by
w=w- Aw

It can be shown that convergence properties of this algorithm are the same as the ones

of algorithm 3.1 ( i.e,, O(&/;L) iterations, each of which requires at most O(n?) arithmetic
operations). The proofs are slight modifications of the proofs of this paper. The details of

this algorithm together with implementation tests are the subject of a forthcoming paper.
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