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Self - Consistent Modification of a Fast Tail Distribution by

Resonant Fields in Nonuniform Plasmas

G. J. Morales, Merit M. Shoucri, and J. E. Maggs

Physics Department, University of California at Los Angeles
Los Angeles, California 90024-1547

Abstract

An analytic study is made of the second order modifications produced on

the fast tail electron distribution function of a nonuniform plasma subjected

to resonant excitation by wave sources. The source models considered can

represent excitation by external electromagnetic waves propagating obliquely

to the plasma density gradient, mode-conversion of electrostatic whistlers,

beat of two transparent electromagnetic waves, and direct conversion from

ripples in the density profile. The calculation treats the Landau damping

provided by fast tail electrons self-consistently and is applicable to plasmas

having a long density scale length L, i.e., (kDL)J'/>> I, where kJ' is the

Debye wave number of the warm background electrons. A threshold condition is

found for the formation of a positive slope in the tail distribution by the

vari-us excitation mechanisms.

PACS - 52.25 Fi, 52.35 Nx, 52.40W
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I. Introduction

The modification of the zero order electron velocity distribution

function by resonantly excited waves is a central problem encountered in

various plasma physics applications, e.g., ionospheric modification, laser

fusion, and RF heating. In some cases it is possible, because of certain

parameter orderings, to decouple the calculation of the modified distribution

function from the determination of the spatial shape of the driven electric

field causing the modification. Such an approach is physically meaningful if

the density of resonant particles is small enough that their contribution to

the total energy and momentum balance, due to Landau damping, can be consid-

ered to be a small perturbation, i.e., the resonant particles behave as test

particles. An example of this type of non-self-consistent calculation has

been recently reported1 by the authors in a study of resonant absorption of

radio waves in an ionosphere in which a small photoelectron population is

present. In that earlier study the shape of the modulus of the resonant

electric field (and hence the wave spectrum) is predominantly determined by

collisions of the background (slow) electrons because, for typical ionospheric

conditions, the effective phase velocity at the resonance layer (where the

external frequency w matches the local electron plasma frequency "p(z)) is

quite large compared to the thermal velocity of the background electrons.

Hence, the modifications in the distribution function can be calculated, for

large velocities, by using the collisionally limited spectrum, as described in

detail in Ref. 1.

In the present study we report a self-consistent calculation, accurate to

second order in the electric field amplitude, of the time-averaged modifica-

tion produced on a pre-existing fast electron tail distribution by resonantly

excited electric fields in a nonuniform plasma. Two different methods of
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excitation covering a wide range of physically realizable configurations

are considered: one is a capacitor-like pump field (wave number k. = 0), and

the other is a unidirectional beat-type exciter having finite wave number

(ko * 0). The ko = 0 source models the external excitation by electromagnetic

waves propagating obliquely to a density gradient, as well as the internal

excitation by obliquely propagating electrostatic whistler waves 2, as may

occur naturally in the topside polar ionosphere, or may result from a signal

launched from a spacecraft. The ko * 0 source models the external pumping

that can be produced by the beat of two transparent electromagnetic waves

having frequencies wj, W2 such that wl, W2 >> sp, but w2 - Wl - Wp, as is

presently being considered in laser accelerator schemes 3. This type of source

can also model the beat pumping resulting naturally when an external electro-

magnetic wave interacts with a pre-existing low frequency ripple in the

density profile, i.e., the process known as direct conversion4, 5. The finite

ko exciter can also be related to interactions stimulated by modulated beams,

to truncated velocity distribution functions, and to single particle Cerenkov

emission.

A consequence of the results reported here is that the study of Ref. 1

can be generalized to conditions in which a sizeable fast electron population

(e.g., large photoelectron flux) is present. In addition, it is hoped that

the present study may be useful for undertaking more general studies (both

theoretical and experimental) of wave-particle interactions in nonuniform

plasmas since a wide class of excitation mechanisms is treated self-

consistently.

It is worth emphasizing that an extensive literature 6 -1 1 exists on the

topic of hot electron production in laser fusion experiments. Numerous

studies have demonstated that in such experiments fast electron tail
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distributions are generated by intense electrostatic oscillations driven at

plasma resonance. A related issue which is presently being debated by

experts in this field is whether or not some spectral features observed in the

backscattered laser light are attributable 12 to distortions in the fast tail

distribution. Although the present study does not consider the extreme short

density scale length environment appropriate for laser experiments, we report

here on the amplitude threshold condition required (according to second order

perturbation theory) to create a positive slope on the velocity distribution

function of a long density scale length plasma in which a zero order energetic

electron component is present. We note further that various aspects of this

problem, akin to some issues discussed here, have been recently examined by

Colunga, et al. 1 3, for the laser relevant case of short scale length.

The physical model examined in the present study consists of a one-

dimensional, warm fluid background plasma having a zero order density profile

no(z), which can be well approximated in the neighborhood of the plasma

resonance by a linear function of position, i.e., dIn no(z)/dz - L- 1 for

Wp(z) w w. The plasma is subjected to external pumping by an effective

electric field of the form Eo exp[i(koz - wt)] and three physically difterent

situations (ko = 0, ko > 0, ko < 0) are investigated. A spatially unitorm

population of energetic electrons is assumed to be present with density n
t

small compared to that of the background plasma, i.e., nt/no << 1. The

separation of the background scale length L trom that ot the tail electrons

(i.e., Lt * m) is physically meaningful because of the large disparity

between the collision lengths of the background and tail particles. Also, the

fast particle collision length is much larger than the scale length of the

resonant field structures generated at p(z) - w. Such ordering ot scale
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lengths is naturally achieved in a wide range of plasma environments, e.g.,

laboratory discharge plasmas and the ionosphere.

For illustrative purposes, in the discussion of the effects produced by a

spatially uniform source (ko - 0) we emphasize two extreme limits of the

resonantly excited electric fields. One is the collisionally dominated

Lorentzian shape, anjd the other is the convectively limited driven-Airy

waveform. Of course, we also consider the general problem that includes

collisions, convection, and Landau damping by fast electrons. To obtain a

physical understanding of the relevant parameter scalings entering in the

various cases considered here, we recall that the collisionally dominated

plasma resonance exhibits a peak electric field given by (w/v) 6o, a

characteristic spatial width, (v/w) L, and an effective resonant velocity

v L= (v/w)L, where v is the collision frequency of the background plasmaL

electrons. In contrast with this ordering the convectively limited resonance

(for k. = 0) has peak electric field amplitude (kAL) Eo, characteristic scale

length at plasma resonance kA - , and effective particle resonant velocity at

plasma resonance vA a w/kA, where kA E (kDL//3)2' 3 L-', and kD = u/v is the

Debye wave number of the background plasma whose thermal velocity is v.

It then follows that the collisionally dominated resonance is

operative if (kDL 2/3 >> /v, in which case the velocity of those fast

electrons that can be significantly modified by the resonance must be

comparable to v and satisfies v /v >> (kDL//3)''3 . Convective limitation
L L

of the plasma resonance begins to appear for (kDL/'3)2 /3 _ w/v, and implies

that the resonant electron population that can be affected must have velocities

v /A / (kDL/3)1/3 . Thus, for the two extreme limits of resonant amplitude
A

limitation the strong wave-particle interactions are anticipated to arise from

electrons having velocities on the order of (kDLI/3)1/3 v, which can be large
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for systems with large kDL, as is the case for ionospheric and space plasmas.

It is this population in velocity space that we refer to as the fast tail. It

is the goal of the present study to calculate the moditications produced in

this velocity interval to second order in the amplitude of the sel-consistent

resonant electric fields.

The manuscript is organized as follows. Section II describes the

self-consistent calculation of the resonant electric fields. The second order

modification of the tail distribution and the threshold for positive slope

development are considered in Sec. III. A summary of results and conclusions

are presented in Sec. IV.

II. Self - Consistent Fields

The geometry of the one-dimensional problem being considered is sketched

in Fig 1. The location z = 0 corresponds to the resonant layer Wp = w and the

density scale length of the background plasma is introduced through

I- Wp 2(Z)/W 2 = z/L, where z is the independent variable. In configuration

space the complex amplitude E(z) of the self-consistent electric field

driven by an effective source field EO S(z) exp(-iwt) (with S(z) representing

the various pumping schemes) is determined from Poisson's equation, whose

exact form is an integral equation of the type

' dz' K(z',z,w) E(z') = Eo  S(z) , (1)

in which K(z', z, w) is a kernel derived by integrating the Boltzmann

equation, but whose detailed structure need not be analysed here. by

expanding the kernel in terms of the ratio of the background thermal velocity

v to the effective phase velocity of the field (i.e., the quantity v
A

discussed earlier), Eq. (1) is approximated in the lowest order by



-6-

e(z,w)E(z) = E0 S(z) (2)

in which the local dielectric operator takes the form

C(z,w) = 2 2 d 2 +z + i (3)
kD dz L

where r = v/w. Equation (3) does not contain the Landau damping contribution

of the background electrons because for the case of interest here, namely

(kDL)11 3 >> 1, it is negligible since it scales as exp[- (kDL/,13) 21 3/2].

However, we are interested in describing effects resulting from wave-particle

resonances with a spatially uniform tail population whose density is small

enough that the location of the cold plasma resonance due to the background

electrons is not affected. To include the Landau damping caused by the tail

population we return to the general form of Eq. (2) and express it in Fourier

space, namely

+ if- 3k 2 + i4w Im Xt] E(k) = Eo S(k) , (4)

where

O -ikz
E(k) = dz e E(z) , (5)

and with a similar definition for S(k).

In Eq. (4) the Fourier transform of the dielectric operator now contains

the important imaginary part arising from the susceptibility of the tail

electrons X (k). For a model Maxwellian tail distribution having the form
t

nt2 2

f (v) =x(v2 2 (6)fot (v) -P2 t2)1/2 exp(-v2/ 2 vt)
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- 2 1/2k 1/ 2 2 2
4vIm xt(k) exp(-w /2k vt (7)

where kDt = kD (v/v )/VA is the tail Debye wave number and A n /no(O). A
t t

useful feature of Eq. (7) is that

d

4wIm -t (k) UT g(k)

1/2
g(k) = A(-t) k D ( /exp( 2/2k 22 (8)

Vt 2) ep-/kvt)

hence, Eq. (4) becomes

id - d 3k2

LdE(k) + i r- [k + g(k)) - kD}E(k) = Eo S(k) , (9)

which is solved by defining E(k) E exp[F(k)]a(k) , with

k--- i - [rk + g(k)IL (1u)
k 2

D

to obtain

d
dka(k) = -iEoLS(k)exp[-F(k)] (11)

The three different excitation schemes of interest here are contained in the

choice S(k) = 2wS(k - ko), with ko = 0, ko > 0, ko < 0. Hence, Eq. (11) can

be integrated to yield

E(k) = - 2wiEoLB(k - ko)exp[F(k)-F(ko)] (12)

in which 8(k - ko) refers to the Heaviside unit step function. In Eq. (12)

the boundary condition a(-i) = 0 has been chosen because, due to evanescence,

no waves propagate to z - .

, -. , r; <'." '-'-, ; "-.;-; - "-', "-" " " ".'."- "y ; ,.' "- :? ' -- --. "i ---- ,.* " .. , : . '", "-. -
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A. Uniform Pump

Inserting the value ko = 0 in Eq. (12) yields the electric field spectrum

excited by a capacitor - like pump tield. The spectrum is unidirectional

(i.e., k > 0) because the waves are excited at cut-otf. In discussing this

pumping scheme it is useful to isolate two extreme limits: in one the

amplitude is limited by collisions and results in a Lorentzian shape in

configuration space, while in the other the resonance is limited by convection

and exhibits a driven - Airy pattern. The corresponding spectra are:

iT k 2 2
EL(k) = 2WE 0 8(k) exp[-i - - a exp(-kt /k (13)

k3  7r k 22

EA(k) = 2wEoe(k) exp[-i 7 -i - --- exp(-kt /k2)] , (14)
AF~ 2 k

where k = (rL) - l is the characteristic wave number of the Lorentzian
L

resonance, k = (k L//3) L- , a =(w/2) I12 A k L (v/v) is the scaled tailA D D t

density, and k = w/(vC v ) is the characteristic wave number of the tail
t t

particles. Note that Eq. (13) follows from Eq. (14) in the limit (k /k )3 <<
L A

3w/2.

An interesting feature of Eqs. (13) and (14) is that IEL(k)1 2 = ILA(k)I 2

hence second order phase-independent effects caused by these two fields are

identical although their spatial patterns can be quite different. In partic-

ular the time - averaged modification of the tail distribution function,

2
accurate to order 1E01 , is the same for the collisionally and the

convectively limited resonances.

Figure 2 exhibits two complementary dependences of the scaled modulus of

the spectrum for a collisionally dominated resonance (i.e., kL/kA small).

The broken curves correspond to the dependence of If(k)l on scaled wave number

(top scale) while the solid curves (more useful in understanding wave - particle

N.-

* .( ~ .. *.
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interactions) show the dependence on resonant particle velocity (i.e., v =

w/k) scaled to the tail velocity vt for kL/kA = 0.25 and kt/kA = 6. We remark

parenthetically that in plotting the modulus of E(k), kA does not appear

explicitly but we scale to this variable for convenience in the latter

analysis. The curves labelled a = 0 are determined by collisional damping

alone, and the rest contain the effect of self-consistent Landau damping. The

sequence of solid curves illustrates the role of increasing tail density trom.

a = 0 to 50 for fixed kL/kA (for instance if kDL - 104, v/v t _ I0-1, a = 5U

corresponds to a tail density ratio of .04). It is seen from Fig. 2 that the

principal effect of self-consistency is to prevent the acceleration of slower

tail electrons due to the quenching of the large k components of the spectrum.

This quenching results also in a steepening of the spectrum as a function or

velocity, i.e., 3IE(k = w/v)1/3v increases. Such an effect can result in a

strong distortion of the distribution function over a limited velocity range,

as is shown in Sec. III.

The spatial dependence of the self-consistent fields is obtained from the

inverse Fourier transform

-ikzE(z) = 4- f dk E(k)e (5-27, (15)

which is evaluated numerically for the spectra of Eqs. (13) and (14) to yield

the results of Figs 3 and 4, respectively.

Figure 3 displays the spatial pattern associated with a collisionally

limited resonance (i.e., systems with (k L//7)2 / 3 >> w/v). The a = U curve
D

corresponds to E(z)/(EoL) = (z + irL)-
, which is the cold plasma resonance,

while the curve labelled a 10 shows the effect of self-consistency for

kL/kt = /3. It is seen that Landau damping by the fast tail decreases the

peak amplitude of the collisional resonance, i.e., an increased effective
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dissipation rate results whose magnitude can be approximately estimated from

Eq. (13) by setting k = kL to yield r + r jI + a exp(-(rktL) 2 1. Another

effect is the appearance of oscillatory features in the wings of the electric

field modulus.

The spatial pattern of the convectively limited resonance is exhibited in

Fig. 4, where the scaled modulus of the electric field JEA(z)I/kALEo is

plotted versus the scaled spatial coordinate = kAz = (k DL//3) 21 3 z/L. The

curve labelled r' = 0, a = 0, corresponds to the undamped mode conversion

result1 4 wjGi(-C) + i Ai(-C)I, while the curve labelled r' = 0.25, a = 0,

exhibits the effect of collisional damping and is given by wj1Ii(-c+ir')j +

i Ai(-c+ir') where Gi, Ai represent the appropriate Airy-type functions1 5 , and

r' = kA/kL = (k DL// )2/3(v/w) is the scaled damping. The bottom curve in

Fig. 4 contains the combined effects of collisions and tail Landau damping tor

r, = 0.25, a = 10, and (kt/kA)2 = 40. It is seen from this curve that at this

relatively low tail particle density the peak amplitude of the resonance is

not affected by Landau damping, but that a reduction due to collisional

dissipation occurs. For the conditions chosen in Fig. 4, tail Landau damping

begins to overwhelm collisional damping of the mode-converted Langmuir wave

beyond the third oscillation of the Airy pattern. It is expected that at this

spatial location the distortions in the distribution function calculated in

Sec. III begin to appear.

For completeness we would like to add that the connection between the

amplitude Eo  entering into the ko = 0 model discussed here and the power per

unit area Po carried by an electromagnetic wave approaching plasma resonance

from the low density side at an asymptotic angle e is

8nPo 1/2I o = ( -- -) ,1 )
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where n is the mode conversion absorption efficiency determined by Kelly and

Banos 1 6 , and by Fordslund, et al.1 /, and which for small q values behaves 18 as

- a(q-2aq/3) , with a=2.6 , and where q S (wL/c) 2 1 3 sin 2 0 , with c the

speed of light.

The corresponding connection between Eo and the asymptotic amplitude Ew

of an obliquely propagating electrostatic whistler wave with frequency w

smaller than the electron gyrofrequency S1 , and approaching plasma resonance

along B from the high density side of a magnetized plasma with Vno x Bo = U

is

Ew P/2 e
Eo  [cosh(wBo)i e 0 (17)

where So = (klL)y2/[2(y2-I)1'1 , with Y = Q/w and kj is the constant

wave number perpendicular to the confining field o •

B. Beat Excitation

We proceed to examine the resonant excitation of plasma waves by ko * 0

sources, as may arise from various beat processes. For example, beat excita-

tion by two transparent electromagnetic waves propagating along the density

gradient in an unmagnetized plasma and having frequencies wi, w2 , with t l [ 2

I wp(O), causes a beat-ponderomotive force on the background electrons. The

value of the effective field Eo entering in Eq.(13) is then given bv

E e (Ap(O) IEo IEolexpLi(0 2-81 ))0 MC W 1 W2 0E2 6-0

where e, m are the electron charge and mass, Eoj represents the amplitude ot

the jth electromagnetic wave, and Oj is the corresponding phase. If the

excitation results from the beat ot a long wavelength electromagnetic wave ot

frequency w - wp(O) and amplitude El , with a static distortion of the
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density profile having the form 6n = n exp(ikoz ), the equivalent value of Eo

Eo M non E . (19)

The magnitude of the scaled wave spectrum generated by beat excitation in

the direction of decreasing density (ko > 0) is illustrated in Fig. 5. This

figure shows the dependence of IE(k)I on both scaled wave number k/kA (dashed

curve) and on scaled resonant velocity v/v (solid curve) for ko/k A = 3,
tA

r, - 0.25, a 1 10, k /k = 6. In this case the fastest phase velocity
t A

present in the spectrum is w/ko (i.e., that of the beat source) since as the

wave propagates down the density gradient the WKB wave number increases as

k(z) - / . A consequence of this dependence is that the modifications in

the distribution function are localized in velocity space because no

velocities larger than w/k o are present and as in the k o = 0 case the spectrum

is quenched for large k (slower velocities) by Landau damping. In comparing

Fig. 5 with Fig. 2, it should be noted that Fig. 2 corresponds to a

collisionally dominated plasma in which r' = 4.

The spatial dependence of the electric field modulus IEI/(kALEo) associ-

ated with the spectrum of Fig. 5 is displayed in Fig. 6, with the correspond-

ing real part also shown. In comparing Fig. 6 with Fig. 4 it is evident that

beat excitation down the density gradient causes a peak enhancement in the

resonantly excited wave which is about a factor of 3 smaller than that

produced by a ko - 0 exciter having equal value of Eo . This reduction has

two different physical origins: one is a larger group velocity at the

resonance location, and the other is larger Landau damping. The resonance

location in this case occurs away from the cold plasma resonance layer (i.e.,

Op(o) = w) because the beat exciter attains resonance in the neighborhood of

~ J ,~ -I ~ *'%~ %~V *i
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the point where the W'KB wave number k(z) of the finite temperature Langmuir

wave matches the beat ko, which for the present case corresponds to C = 9,

as indicated by the dashed vertical line in Fig. 6. As is seen from this

figure, the peak amplitude is shifted down the gradient from the resonance

point, a feature which is also present in the ko = 0 case.

The scaled magnitude of the spectrum excited by a beat source propagating

in the direction of increasing density (ko < 0) is shown in Fig. 7. The

parameters used are the same as those of Fig. 5, except for the sign of ko,

i.e., now ko/kA = -3. It is seen from Fig. 7 that for this excitation scheme

it is possible to cause modifications in the distribution function of

particles moving up (v ( 0) as well as down (v > 0) the density gradient

because the resonantly excited wave, initially propagating up the gradient, is

reflected at the cut-off point at z = 0, and proceeds to propagate down the

density gradient in a manner similar to that resulting from a k. = 0 exciter.

The spatial dependence of the scaled electric field corresponding to the

spectrum of Fig. 7 is displayed in Fig. 8, and is to be compared with the

behavior shown in Fig. 6.
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III. Modification of Tail Distribution

We proceed to calculate the modification produced in the pre-existing,

spatially uniform, fast tail electron distribution by the various self-

consistent fields investigated in Sec. II. The quantity of interest here is

the time-averaged, spatially asymptotic change in the distribution function,

accurate to second order in Eo. The meaning of the time average refers to

time samples long compared to the period of the coherent oscillation, i.e.,

At >> 2w/wo. Spatially asymptotic implies that the region of interest is far

from the spatial point where the wave particle resonance is encountered for a

given velocity, i.e., where k(z) = w/v . The restriction to second order

perturbation theory implies that strong nonlinear wave-particle interactions,

such as particle trapping, are not included.

It is useful to express the time-averaged tail distribution function in

the form

± +
< f (z = t-,v) > = f (v) + < Sf_ (z = t-,v) > , (20)

t t t

where the ± label refers to v > 0 and v < 0 particles, respectively, and the

> represents the time-averaging operation.

The modification in the distribution function is obtained by integrating

the time-averaged Vlasov equation in configuration space using appropriate
+

boundary conditions for v > 0 and v < 0, namely <6ft (z = - ,v)> =

<6 ft (z--,v)> - 0. The relevant expression for v > 0 is

< 6f+ (z-,v)> . e f dz'E(z') [f (z',v)]* } + c.c. (21)

where, f+ (z',v) is the first order modified distribution function oscillating

as exp(-iwt) and given by

• -•• w • . 4 ., .oQ O, p ° - ..- ••- . •. °. ... " -. "O. . .. ." " ° °%.-"'
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+ (Z',I

fl m- I -v fot(v) f dz" exp i 2 (z'-z")] E(z"). (22)

Inserting Eq. (22) into Eq. (21) and representing the spatially dependent

electric fields in terms of the Fourier transform defined by bq. (15) yields

the familiar expression

+ e23L)21
(Sft (z-M,v)> =(;) ,(IE(k -) -7 ~ot, (23)

in which it has been consistently assumed in all intermediate integrations

that w has an infinitesimally small imaginary part that causes the oscillatory

contribution at z = -a to vanish. A similar procedure using the appropriate

boundary conditions for v < 0 particles yields an identical expression, thus

permitting the generalization

+ ( 2 1 a CA) 2 1
<aft (z=±Gv)> = 2 ((k = - I - -ot }. (24)

It should be mentioned that the expression in Eq. (24) is often referred to as

the quasilinear result, but in the present context it should be properly

interpreted as the spatially asymptotic, second order, time-averaged modifica-

tion produced by a temporally coherent exciter.

A. Uniform Pump

The spectrum excited by a ko = 0 source in a nonuniform plasma is strictly

unidirectional, as shown in Eqs. (13) and (14). Consequently, the modifica-

tions in the tail distribution function are restricted to those particles that

propagate in the direction of decreasing density, which implies that <6f-> - 0

or

<f (z=-a,v)> for(v) (25)t

'~. %~ ~ N ~ %VN ~ %N .~.~N.'. 4 '~N* 
1 ~* ,

." , OOV,, '. ' > ' ." ".° '- '-" -" i. .' . .,, " .-
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and

+ 2 (2)

<f (ZMD,)> fo~v I +(Lo) h (v)]1(6

where
2

h+(v) = (1-2f t + a exp(--v2 /2v 2 )]} x
V3 t

exp{-2[-!± + ax exp(-v2/2v2)]} (27)

and in which the quantity Es S mv 2 /(enL) represents the natural scaling for
t

the strength of the pump field Eo  that can cause significant tail modifica-

tions. In the manipulations leading to Eqs. (2b) and (27) the explicit torm

of ft (v) given by Eq. (6) has been used and we note that v Lf= rwL -=/k L.ot L L

It should be emphasized that Eqs. (26) and (27) apply to both extreme

limits of resonant exicitation by a ko = 0 pump, i.e., to the Lorentzian and

to the driven Airy pattern. In spite of the important role played by the

characteristic wave number kA in determining the spatial pattern seen in the

curves of Fig. 4, it plays no role in Eqs. (26) and (27), i.e., the modifica-

tions in the distribution function are independent of kt/kA . The relevant

scaled parameters that determine second order modifications of the tail

distribution by a k. = 0 exciter are: Eo/Es, v L/v t, and a.

In the large velocity limit, i.e., v >> v and v >> ,r/1 v,L t

<ft + (z=-,v)> + fot(v) [I + 0 ) (28)g s

which implies an enhancement of the density of extremely energetic electrons

with no change in the shape of their velocity distribution. This behavior

occurs because the derivative of the modulus of the spectrum with respect to

velocity goes to zero at large velocities and the velocity derivative ot a

Maxwellian tail distribution goes as 3f /v * -vf /v 2 so that the spatially
ot ot t
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asymptotic, time-averaged change has the form

Of4 (z.nv)> 1 3 [. otj (29)

av v

with D E (e/2m)2 JE(k-w/v)1 2 nearly constant, hence

<Sf+ (z-',v)> +--- , (30)
vt 4  ot(v)

which indicates an energetic tail density enhancement ot n D/v 4, independent
t t

of v and a .
L

Figure 9 illustrates various properties of the second order modifications

produced by a ko - 0 exciter; it displays logarithmic plots of the spatially

asymptotic, time-averaged distribution function versus scaled velocity

v/f2 v for different conditions. The curve labelled Eo - 0 is the zero
t

order tail distribution and the solid curve marked a - U provides an example

of a non-self-consistent calculation (spectrum determined entirely by colli-

sions) for v L v - 3, (Eo/Es) 2 = 35. The dashed curve is a self-consistentL t

result for a scaled tail density a = 30. It is seen from Fig. 9 that tor large

velocities the self-consistent and non-self-consistent results are identical

and cause a direct enhancement in the energetic tail density, as explained

by Eq. (30). The modification produced by the non-self-consistent spectrum is

gentler in slope and extends to lower velocities than that caused by the

self-consistent spectrum, as anticipated from the behavior displayed in Fig.

2. The increased value of /3E(k-w/v)l2/v due to self-consistent depletion

of the large k components of the spectrum by Landau damping gives rise to a

strong modification of the velocity distribution over a narrow velocity

interval. In particular, as the value of the parameter a is increased, for

fixed Eo/Es, it is possible for the tail distribution to develop a positive

-- SV-
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slope over a restricted velocity range, as is illustrated in Fig. 10 for

(Eo/Es) 2 - 60, v /L2 vt - 3. It is seen from Fig. 10 that the non-self-

consistent calculation (solid curve labelled a - 0) predicts a monotonic

distribution function, while the self-consistent analysis yields a bump-on-

tail distortion for a - 50. For reference, the unperturbed distribution is

indicated by the dashed curve (Eo = 0).

Since the requirements for slope reversal with a ko = 0 exciter have been

discussed in our earlier1 non-self-consistent study in which the modulus of

the spectrum is determined entirely by collisions, we want to emphasize that,

for a self-consistent field in a collisionless plasma slope reversal can also

result within second order theory, as is illustrated in Fig. 11 for r = 0,

- 10, and a relatively small pump amplitude Eo/E s = i'5.

The threshold condition on the pump amplitude Eo required to develop

slope reversal is obtained in the general case by setting

-v <ft (z=-,v)> = 0 , (31)

and using Eq. (26) to solve for (Eo/Es) 2

) v v h+(v) h+(v)] , (32)

vt2

which using Eq. (27) takes the form

( O)2 _ l
b exp[(2vL/V t ) + 2a exp(-v2/2vt2)J (33)

where

S- . . -' . . . . ~ . . . .- -
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b = (6vt 4v L/v 5 ) + 2a exp(-v 2 /2vt 2 ) -

2
[i - (2vt 2 v L/v 3 ) - 2a exp(-v 2 /2vt 2 ), (34)

Since the left-hand side as well as the right-hand exponential factor in Eq.

(33) are positive definite, it follows that slope reversal within second order

perturbation theory can occur only for that restricted velocity interval in

the distribution function over which the quantity b given by Eq. (34) is

positive. In general this range in v depends on the parameters v /v and a
L t

through a transcendental equation that must be solved numerically. However,

in the non-self-consistent limit (a = 0), the range satisfies the inequality

2VL 6vL 1/2 2 2vL 6v L 1/2 (35)--- v I- -I < (2 -) < - (- ),(5
v vv v

t

while in the collisionless limit (v L0) b is positive in the range,
L

- 2-
In [4a/(3 + /5)] < (- v) < in [4a/(3- V5)1 (36)

/2 vt

Because the inequality of Eq. (36) exhibits a logarithmic dependence on a the

range over which slope reversal can develop in the collisionless limit is

narrower than in the non-self-consistent (a = 0) limit. Thus a threshold

field exists for producing slope reversal but only over a limited range in

velocity space.

B. Beat Excitation

For a beat source having ko > 0 the resulting electric field spectrum

given by Eq. (12) is unidirectional, as is the case for a ko = 0 exciter, but

the fastest Fourier component present has phase velocity vo =/k o .

Consequently, the modifications in the fast electron distribution function

' ' ' ' '............... ''""£ $ ' ' ' ' ' '
- - -

' ' ' ' : I ' .
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caused by this excitation process are restricted to electrons moving in the

direction of decreasing density within the interval 0 < v < vo , i.e.,

<it (z=-,v)> = fot(v) , (39)

and

+ E+ 2
= fot(v) + f h(v)B(vo - v)] , (40)

where h+(v) is given by Eq.(28), 8 is the Heaviside step function, and now

from Eq. (12) the tactor exp[-F(ko)] enters and the role of the pump strength

Eo in the ko = 0 case is replaced by

v
= Eo exp[ + a exp(-vo2 /2vt 2 )1 (41)E+o

A significant difference from the effect caused by a k. = 0 pump is that

the enhancement in the density of extremely energetic electrons, given by

Eq. (28), is not present. In addition, the formation of a positive slope in

the distribution function requires the phase velocity of the beat source to be

larger than the smallest velocity for which the factor b of Eq. (34) vanishes,

e.g., in the collisionless limit it requires that

vo )2 , In [4a/(3+,/3)] (42)

/2 vt

For beat sources satisfying this condition the threshold electric field for

bump formation is given by the expression in Eq. (33), but with Eo replaced by

E+. The characteristic features of modifications produced by a ko > 0 beat

source are summarized in Fig. 12 for v//2 v = 3.5 , v //2 v = 4 , a = 10,
t L t

and (Eo/Es) 2 - 30.

A beat source having ko < 0 gives rise to a bi-directional electric

field spectrum, but its effect on the tail distribution function is asymmetric
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with respect to particles moving up or down the density profile. For

particles with v > 0 the modification is similar to that caused by a ko = 0

exciter, i.e.,

+E 2
<ft (z--"v)> = fot(V)[1 + L h+(v)] (41)

with the pump strength Eo  now replaced by

VITvL 22

E_ = E0 exp[- l + a exp(-vo2/2vt) ]  (42)

For v < 0 particles the modification is restricted to velocities having

magnitude larger than 1Vol , because the resonantly excited wave initially

having phase velocity -w/lkoj = vo approaches cut-off and the phase velocity

increases, i.e, in the WKB sense w/k(z) * -- as z + 0+. The modified distrib-

ution function in the range v < 0 is

E_ 2
.f (z=- ,v)> fot(v) [I + (-E--) h+(v)6(Ivl - IVo)] (43)

In this excitation scheme there is an identical energetic electron density

enhancement n [1 + (E/Es)2] produced up and down the density profile. For
t

v > 0 particles the condition for bump formation is similar to that of the

ko - 0 pump except for the replacement of Eo by E_ in Eq.(33). An example of

a distribution modified by a ko < 0 exciter is given in Fig. 13 for vo//2 vt =

-3, v /F v - 10- 3 , a 1 10, (Eo/Es) 2 = /6. Note that in Fig. 13 the
L t ±

distribution functions <ft > are presented for illustrative purposes as a

single function of velocity, but it should be understood that the domain v < U

is found spatially at z + - , while v > 0 corresponds to z * .

- ... . ~ .V ..'v ..g . %. * y .~.j .* .J ..- & .
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IV. Conclusions

An analytic study has been made of the self-consistent modifications

produced on a pre-existing fast electron distribution function in a nonuniform

plasma which is subjected to resonant excitation by external wave sources.

Since the wave-particle interaction analyzed here is restricted to a fast tail

distribution which is initially spatially uniform while the nonuniform warm

background plasma undergoes collisional heating, the results are applicable to

experiments in which the plasma has a long density scale length, i.e.,

(kDL)1'3 >> I . Such a parameter ordering is realizable in the laboratory,

and is naturally achieved in ionospheric and space plasmas.

Although the time-averaged modification in the distribution function

has been determined self-consistently, the calculation has been performed

only to second order accuracy in the strength of the electric fields. This

implies that strongly nonlinear effects such as particle trapping and

nonlinear shifts in the wave-particle resonance condition v = w/k(z) are not

included.

One of the interesting results of the present analysis is that a positive

slope can be formed in the distribution function by self-consistent second

order nonlinearities in a nonuniform plasma. [he cause of this eftect can be

traced to the competition between the negative slope of the zero order

distribution function f (v) and the positive slope of the self-consistent
ot

spectrum, i.e., aiE(k=w/v)1 2 /3v > 0 . Physically, these opposing tendencies

result in the existence of a restricted velocity interval within which more

particles are accelerated out of the interval toward larger velocities than

enter into it from lower velocities, provided the pump field amplitude E.

is above a threshold value. It is found here that self-consistency increases

the value of aIE(k=w/v)I 2/av and hence lowers the threshold tor bump forma-

. " - - -. - - - - •- - .-. .. - - *. . , . . .. ...-. *. ..- -.-.- ..- .. -.- - - -- :. .,, -
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tion from the value predicted by a non-self-consistent analysis. This feature

is worth emphasizing because on first thought one might expect the opposite

behavior, i.e., self-consistency reduces the amplitude of the spectrum and

hence the modifications should be weaker. That is not the case because the

quantity of relevance is the slope of the spectrum, which is found to

increase as the scaled tail density parameter a = (nt/no)(w/2)i/ 2(v/vt) kDL

increases.

A significant experimental consequence of slope reversal in the fast tail

distribution function is the spontaneous growth of waves (or sidebands) having

frequencies different from that of the monochromatic external signal driving

the linear plasma resonance. It is important to assess the role of such an

effect when interpreting experimental observations of extraneous frequencies

in resonant absorption experiments in plasmas since its presence can be

confused with parametric instabilities. While in numerous cases parametric

instabilities are indeed present, it is possible that some of the observed

spectral features actually arise from wave induced distortions in the distrib-

ution function. As suggested by the present study this is a topic that

deserves closer scrutiny in the context of specific experiments. In fact,

experiments19,20 performed in uniform plasmas excited with grid antennas have

been found to exhibit an analogous effect.

In the study of the self-consistent resonant electric fields two possible

excitation models have been considered which describe a broad class of

experimentally interesting scenarios. For instance, the ko = 0 exciter can

model the irradiation of an unmagnetized plasma with an electromagnetic wave

propagating obliquely to the density gradient. This same model also describes

the fields prodticed during mode conversion of an oblique electrostatic

whistler into a Langmuir wave in a magnetized plasma. The other excitation

a
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mechanisms considered (ko > 0, ko < 0) model sources which experimentally can

arise from the beat of two transparent electromagnetic waves, as is presently

being considered in the context of laser accelerators, or may result from the

beat of an external electromagnetic wave with low frequency distortions of the

density profile. For completeness, in the present work we have also indicated

how the effective pump strength Eo is related to the various physical

parameters for these different resonant excitation schemes.

Beat sources that propagate in the direction of decreasing density with

velocity vo > 0 are found to cause distortions in the tail distribution

within the interval vo > v > 0 because the WKB phase velocity of the

resonantly excited wave decreases as it propagates down the density gradient.

Although it is possible to obtain second order slope reversal in this scheme,

the possibility is restricted by the value of vo . The effect of a beat

source propagating in the direction of increasing density vo < 0 is highly

nonlocal. For z + - it causes a modification in the distribution function

for fast particles satisfying v < vo < 0 , while simultaneously modifying the

distribution function over the entire velocity range at z + -.

In summary, various features of self-consistent wave-particle inter-

actions in nonuniform plasmas have been ellucidated by this analytic study.

It is hoped that some of the results will help in the interpretation of

laboratory and ionospheric experiments and stimulate more advanced analysis

of kinetic processes in nonuniform media.

*5 5 .~ V' .~~ ' ~ N 5- .5
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Figure Captions

Fig. I Schematic of geometry considered. The background density profile

no(z) is approximately linear near the plasma resonance located

at z- 0, while the fast electron density profile nt is uniform.

The characteristic velocity of tail electrons scales as

vt - (kDL)1 1 3 v and the various excitation scenarios are

modelled by S(z).

Fig. 2 Modulus of spectrum excited by ko = 0 source. Dashed curves show

wave number dependence (top scale) and solid curves resonant

velocity dependence (bottom scale). a =0 corresponds to colli-

sional damping alone, and finite a indicates effect of self-

consistency for k L/k = 0.25, k /k A 6
LA t A

Fig. 3 Spatial dependence of scaled modulus of collisionally limited

resonant electric field excited by ko - 0 source. Solid curve

shows dependence in the absence of fast electrons and dashed

curve exhibits the self-consistent effect of tail Landau damping

for a scaled tail density a = 10 and kt/kL = /3 . kL : (w/v)L- 1

and a is defined after Eq. (14).

Fig. 4 Spatial dependence of scaled modulus of electric field for a

convectively limited resonance. Top curve is the undamped mode

conversion result wjGi(- ) + i Ai(- )I, and the curve r' = 0.25,

a = 10 shows the effect of collisions. The bottom curve contains

collisional and fast electron tail Landau damping for r' = 0.25,

a = 10, and (kt/kA)2 = 40 - kA E (kDL//3)2 / 3 L-1 , and a is the

scaled tail density defined after Eq. (14).

U.* I
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Fig. 5 Modulus of spectrum excited by a beat source propagating in the

direction of decreasing density with k /k A- 3 • Dashed curveo A

(top scale) shows dependence on scaled wave number and solid

curve (bottom scale) the resonant velocity dependence k = w/v

for r' - 0.25, a - 10, k /k = 6 .
t A

Fig. 6 Spatial dependence of scaled modulus and real part of electric

field excited by a beat source propagating in the direction of

decreasing density with ko/kA = 3 and corresponding to the

spectrum shown in Fig. 5. The dashed vertical line indicates the

WKB wave resonance point, i.e., where k(z) = ko

Fig. 7 Scaled magnitude of spectrum excited by a beat source propagating

in the direction of increasing density, ko/kA = -3 , r' = 0.25

k /k = 6, a = 10 . Dashed curve (top scale) is the wave number
T A

dependence and solid curve (bottom scale) the resonant velocity

dependence k = w/v

Fig. 8 Spatial dependence of scaled modulus and real part (dashed curve)

of electric field excited by a beat source propagating in the

direction of increasing density with ko/kA = -3 and corresponding

to the spectrum shown in Fig. 7. The dashed vertical line indi-

cates the W'KB wave resonance point, i.e., where k(z) = ko

Fig. 9 Distortion in tail velocity distribution function caused by a

ko = 0 exciter. The curve labelled Eo = 0 is the zero order dis-

tribution, while the a = 0 gives the non-self-consistent result.

The dashed curve is a self-consistent calculation for a = 30,

v //2 v 3 (Eo/Es)2  35.
L t
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Fig. 10 Example of localized distortion of distribution function caused

by self-consistency. Dashed curve is zero order distribution,

curve labelled C = 0 is non-self-consistent result for

v L/7 v = 3, (Eo/Es) 2 - 60, and curve labelled a = 50 is
L t

self-consistent calculation.

Fig. 11 Example of collisionless (r = 0) slope reversal caused by

relatively small pump field Eo/E s = V5. Dashed curve is the

zero order tail distribution and solid curve the modified

distribution for a scaled tail density a = 10

Fig. 12 Modification of the tail distribution function produced by a beat

source propagating in the direction of decreasing density with

vo/V2 v = 3.5 for v //2 v 4 , a = 10, (Eo/Es) 2 = 30. Thet L t

dashed curve is the zero order distribution.

Fig. 13 Modifications of the tail distribution function produced by a

beat source propagating in the direction of increasing density

with vo//2 v = -3 for a = 10, v / 2 v = 10 - 3 , (Eo/E s ) = lb.
t L t

Note that the modifications for v < 0 appear as z * -- , while

those for v > 0 correspond to z + -. The dashed curve is the

zero order tail distribution.
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