CONPUTER MDED SOFTIIRRE ENGINEERING (CRSE) ENV!RONNEIT
xssusgég)Jszng POSTGRADUATE SCHOOL MONTEREY CA

—- o~y

EEEE

1.6
==

wu"_m“.”.__ 2 _
EEF
= = .

] FILE_CQpy

AD-A183 787

WAVAL POSTERADUATE SCHOOL

Monterey, Galifornia

THESIS

COMPUTER AIDED SOFTWARE ENGINEERING
ENVIRONMENT ISSUES

by
Wavne K. Frey

June 1987

Thesis Advisor: Daniel L.

(CASE)

Davis

Arproved for public release; Jdistribution is unlimited

R L P N T AP 17 A N AT ALY A

unclassified //4) NIRRT
on r T - ’ -

SECR Ty CLAasSS S CATION

REPORT DOCUMENTATION PAGE

'a REPOR' SEC_RITY CLASSFICATION to RESTRICTIVE MARKINGS
unclassified
0 SECLRTY (ASSHICATION AUTHOATY) OISTRIBUTION/ AVAILABILITY OF REPORT

Approved for public release,

co JEL.a%Y FCAT ON DOWNGRADING SCmEDULE distribution is unlimited

3 SERFQRMING ORGANZATION REPORT A MBER(S) 5 MONITORING ORGANIZATION REPQRT NUVBER(S)

£4 NAME OF PERFORMING ORGANIZATION 60 OFE.CE S"MBOL | 'a NAME OF MONITOR NG ORGANZAT ON

. (1! spoircadie) ,

Naval Postgraduate School 5> Naval Postgraduate School

6 ADDAESS C.fy State and 2P Code) > aDODRESS (Cify State and 1P Code)

Monterev, California 93933-5000 Monterey, California 93945-53"00

32 NAME OF FUNDING. SPONSORING 8b OFFCE SYMBOL | 9 PROCUREMENT NSTRUMENT 1DEN" 5 CATION % MBER

ZRGaNIAT ON (f appircabdle)

3 adDDEESS . Cify State and 2iP Code) 10 SOURCE OF FUNDING NUMBERS
PROGRAM PRO.ECT Tas« AR T
ELEMENT NO NO NO ACCESS Cr N

I oreivae Security Classibication)

COMPUTCR AIDED SOFTWARE ENGINEERING (CASE) ENVIRONMEMN™ ISSUCS

o FERYCNAL AUTRORS

Frev, Wayne K.

iy TrSe TEOREBQRT . "1z T ME (OVERED ‘e EOF REPCRT (vear Month Day) |'S Pace D.N°
Master's Thesis Y 2 1395 °une 69

d SoFS NN TARY NOTAT ON

€osa" (20&% 18 SUB.ECT "ER'AS Continue on reverse :f necesary and dent.fy Dy DICR AumDer)
3909 5.8 GROLP Computer Aided Software Enginecering (CASNI) In-
vironment; Software Engineering Invironment:

{144

Environment Development Principles

¥ 28373A07 Continue on reverse if necessary and .gdentify by block number)

The rising percentage of system costs attributed to software develupment
and maintenance have resulted in the research by industry and acadenia
inte wavs to ilmprove the productivity of software professionals in all
nhases of the software lifecycle. Computer Aided Software fnuincering
tCASE) environments are one solution beirg pursued. This thesis attempts
to coalesce, from various efforts to date, some general principles for
such envircnments in order to assist decision makers who must procure
them. This work is in support of the Missile Software Branch, Naval
seapon Center China Lake, California (MSB), and their investigati n otf
CASC environments to improve productivity. Problems of CASLE devel 'prment
and use are discussed in this context. A g¢general problem solvins arpr ach
throruch ubstraction of resources is proposed with a focus on an individ:-
ual prosrammer productivity subset ot a CASE environment.

TLT 5 3_.7CN AvaiLABLTY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION
@ casssiounemiten O same as @8 [ortic _seRs unclassified
ced AR DE RESPONS BLE SO VIDLAL - 120 TELEPMONE (Include Ared COoe) | c2¢ CFb (2 57 M3
Prot, Daniel L. Davis (408) 6d6-3091 Code 520
0D FORM 1473, 8a man 8)1APRegtcn ™oy be Lred unt @TPaLiIted SECLRTv CLASS (At Iy i a2)

Allotrer @3 L.ONs gre CDIO'eTe

unclassitied

T

Approvec for public rclease; distribution is unlimited.

Computer Aided Software Engineering (CASE) Environment Issues

by

' Wavne K. Frey
Lieutenant Commander, United States Navy
B.>.(Business Administraton), University of Minnesota, 1974

Submitted in partial fulfillment of the
requircments for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE
from the

NAVAL POSTGRADUATE SCHOOL
June 1987

o —
Author: 4/&%/ -

Approved by:

/4—?"‘ g@"//

Vincent Y. Lum, Chairman, -
Departnieqt of Computer Science

| TS N waw

Knecale T. Marshall, :
Dean of Intormation and Policy SCIOACES S

2

] RSy

Py

[t A 8

)

\ ABSTRACT

The nising percentage of svstem costs attributed to software Jevelopment and
maintenance have resulted in the research by industry and academia into wavs 10
improve the productivity of software prolessionals in all phases of the scitware life-

wole. Computer Aided Software Engincering (CASE) environments are one sciution

<
beng pursued. This thesis attempts to coalesce, from various efforts to Jute. some
ganeral principles {or such environments in order to assist dec:sion makers who must
procure them. This work is in support of the Missile Software Branch, Navul Weapeon
Center, China Lake, California MSB), and their investigation of CASE environments
to improve productivity. Preblems of CASE development and use are discussed in tiis
context. A general problem solving approach through abstraction of resources 1s
proposed with a focus on an individual programmer productivity subset of & CASE

envireament. T/ or S)
S s adaad . (—rn*B."J}’

"

1

pccasxon For

; NTIS CRA&I

U oarour ord]
J.othcaton) e

r..._., - mm e e e e e —]

| By . S
it IL‘.?IU ’

el S

| /\../ 1':“ y [N i

[e e

I

9 i#.i..'

THESIS DISCLAIMER

The following tradcmarks are used throughout this thesis:

o Adad i1s a Registered Trademark of the U.S. Government (Ada Joint
Program O'Tice)

® Apple® 1s a Registered Trademark of Apple Computer Incorporated

e GEM® is a Registered Trademark of Digital Research

* [BM® 1s a Reaistered Trademark of International Business Machines
Corporation

¢ Macintosh 1s a Trademark ot .Apple Computer Incorporated

e Muacintosh 11 is a Trademark of Apple Computer Incorporated

¢ microVAX I i1s a Trademark of Digital Equipment Corporation
e UNIX® 1s a Registered Trademark of AT&T Bell L
e VAX 1s @ Trademark of Digital Equipment Cogboration

I NI P RS PR R
RO O S S S AT W S, P

TABLE OF CONTENTS

. INTROD U CTION o e e e e 8
) [BACKGROUND OF SOFTWARE ENGINEERING AND
ENVIRONMENTS o 10
A, THE SOFTWARE ENGINEERINGPROCESS 10
B. THE SOFTWARE ENGINEERING PROBLEM 13
Lo Quality oo 13
2 QUANULY e I3
500 Mamtenance 17
4. Management 17
C. DEVELOPMENT ENVIRONMENT A SOLUTION 18
1. Structured Methodology 18
~ 2 AUTOMALION ottt e e e 19
3. The EnvironmentJungle 20
188 CASE DEVELOPMENT ISSUES FOR MISSILE SOFTWARE
BRANCH (MSB), CHINA LAKE 29
A MSBBACKGROUNDo 29
Lo MISSION « o 29
2. Problem ... 30
300 OrganizZation . ..o vt 0
4. Current Environment 231
5. CASE aDesired Solution%22
B. CASE ENVIRONMENT PROCUREMENT ISSUES35
1. Short Term Off-the-shelf Buy Approach23}
2. Lecng Term Off-the-shelf Buy Approach 153
3. Make Approach ... 36
C. WHICH WAY FROM HERE o L. 6
. o
?.2
4
5 y

- e I NS R
R WA USRS, DI Py SE AT NI NN

Iv. CASE ENVIRONMENT DEVELOPMENTIISSUES 37
A. SCOPEOF CASEPROBLEMS 37
l. Evolutionary Development Politically Necessarv 37
2. Requirement Tradeoffs Contributing to Risk 38
B. FUNDAMENTAL PRINCIPLES FOR CASE
ENVIRONMENTS .. e 38
1. Portable Reusable CASE Resources 39
2. Integrated CASE Resources 40
3. OpenEnvironment.............. i 41
4. UserFriendly i 41
C. FUNCTIONAL ABSTRACTION AN APPROACH TO
SOLVING PROBLEMS 42
1. Definition of Abstractioncooniu... 42
2. Formal Specification 42
3. Abstraction of Phyvsical Resources 43
4. Abstraction of Environment Resources 43
S Lavers . 34
6. Standards Enforcement vs. Encouragement 43
7. TopDownorBottomUp 47
V. FUNCTIONAL REQUIREMENTS ANALYSISISSUES <9
A, SCOPEOF THISEFFORT 49
B. INDIVIDUAL PROGRAMMER PRODUCTIVITY (IPP)
RESOURCES 30
1. Phyvsical Resources 50
2. CASEResources 2
C. WHATABOUT THE REAL WORLD 37
VI CONCLUSIONS o e 58
A. INVITATION FOR REVOLUTION 38
B. FUTURE WORK Y
C. RECOMMENDATIONS FORMSB 60
Lo NearTerm 60
2. The Future 63
LIST OF REFERENCES e 63
INITIAL DISTRIBUTION LIST ... 63

LIST OF FIGURES

21 The Waterfall Model of the Software Life Cycie 11
. 22 The ISTAR Integrated Project Support Environment (IPSE). 24
235 The Ada Pregramming Support Environment (APSE) 20

I. INTRODUCTION

Since its infancy, the software industry has worked to improve the environment
in which people work to create software. In general, thes: efforts were paced by
kardware deveiopments and by the way programmers thought about programmirg.
The develecpment of assembly and then higher level programming languages was an
environmental improvement ({(over machine Janguage) because thev aiiowed
pregrammers to think in more abstract, logical terms about the problems their
prcgrams were solving. Svstem operators and operating svstems reicved the
programmer from tie burden of managing hardware resources. The move from offline
batch interaction to online real time interaction was another major improvement in the
environment of programmers. As more and more software resources to improve the
programmers environment have been introduced, the hardware designers have provided
the speed and computing power recessarv to support all of these features. and real
work. without bringing svstems to their knees.

The hardware advances resuiting from VLS! and other technologies have aliowed
the prcliferation of low cost ccmputers throughout modern society, resuiting in an
explosion in the demand for software. The drastic improvements already being muade
in software engineering metiaods have not kept up with this demand.

For the past decade and more. the software industry has expended much eticrt
on the ssues of scitware engineering as 4 methodology analogous to other engincering
fie.ds. and to the development of automated tools and environments to suppor: :his
metihodciogy and enhance the productvity of software developers and maintainers,

This thesis attempts to coalesce. from various software development environment

efforts 10 Jate, scme general principles for such environments to aid the decien

makers who must procure them. We begin by discussing the soffware eng veorn?
rrocess, the software engineering probicom and the issue of environments. \We hen
cotimider a particular research and deveiopment software group., Missile Sonvare
Branch. Navai Weapon Center, China Lake. Ca. (MSB), their mussion, therr need tor a
Computer Ailded Software Engineering Environment i CASE). and some of the e

thev Lo in procuring a CASE.

|
a
!
i

r.lr.r‘.'._r(fff‘ff

o o

o
“

. - o C L N re
¥ V)".p".a*)t\x'l}}:'t'(.ﬂ RSP N, AL

The concept of an integrated CASE has developed to include the cradle 1 gru.e
life cvcle of software. We discuss the general state of technclogy of softwere
development tools and environments to date and some of their problems. We discuss
abstracticn of environment resources and standardization of interiaces as potental
solutions to problems. To limit the scope of this effort we focus on one of the bertter
deveioped and understood subsets of a CASE environment, the aspect of indnviduai
programmer producivity (IPP), in terms cf abstract resources applicable to anv CASE.
Future areas of study are suggested. Recommerndations. for Missile Software Branch
procuremicnt etforts, are discussed in terms of general CASE principles 1 the PP
context.

9

I1. BACKGROUND OF SOFTWARE ENGINEERING AND
ENVIRONMENTS

A. THE SOFTWARE ENGINEERING PROCESS

Scitware eng:neering has been defined in many wavs. Boehm (1981, p. 16y culled
it "the application of science and mathematics by which the capabilities of comipurer
cquipment are made useful to man via computer programs, procedures, and associatad
docuntentation.” The focus of such definitions 1s that software engineening i<
engineening in the same sense as the traditional enginecring fields.

[t should be clear that we are not talking about one person progranumung fer i
sole ndividual use. We are talking about the case where more than one person is
amvolved in deveioping and or using the software products. In general terms thers are
at a nunimum: a customer {an individual or organization(s) who want something usefui
Jone bv 1 computer). a developer (an individual or organization(s) who must cagineer
ti.e software 1o meet the customer’s need). a user (who mayv or may not pe the same oS .
the customer) and a mantainer «vho may or mav not be the same as the deseloper:.

An applicable definition of process when referring to the sofrware engoecrag
process is. oo o a series of actions or operations ccnducing to an end: ol .
ccninucus gperation or reaunent esp. in manufacture . .7 (Hebsier's, 1966, po o7y
We take tite "end” in the scliware engineening process to be an operationa: rersion ¢l
@ softrvare preduct incuding the object code and all attendant deocumentation b
histenea and Jeinverable) equired to recreate it

The common watertall medel of the software Life cvele. Figure 2.1 1Boehn 19N
po Yee WTa nunar vanauons, 1s olten used to capture the major «top ictely Uaeries ot
aduonsy or cperatons” :n the software engineering process. [lus madiond wiow
“ppean in the literature as far back as a 1936 paper written by Herhert D Bennngion

-~

Jdesentme work ¢n the SAGE i detence sistem seltware (Benninzton, O8NS e

The IEEE Ninth International Conf2rence on Sofiware Engineering, « 30 Maron -
2 A 5D DIYT Menterey, Caittornia, USAY met with the theme of "[ormalising and
Adzomaung the Sottwere Process.” During the opening Plerary Seswion, 'ro o
Comurtree Co-zhurman Rorert Balrzer stuted that e traditional waterrall moder
rlooscfteare engimeening afe cdde Ty dead” Our purpose hiere 1s 0ot 1) detote o

scvde Memtevers thiv wora i hased vna eliet that the watertnl meded pravides .

- - matEm = o m A A_".c.dR LRSS

T T R T F PR P TS A A0 N A N N P

]

Svstem
! feas s ity

Vatidation

Sottware pians and
roQuirements
!
) Vaudetion '
i
| ,
. ToduCt ORLIgn
' Verifiprion
)
' Dew.iog dengn
1 verdgation
|
Cooge
Unit test
Inteqgation
|
Product
vorihication

Implementstion

Svetem test

Overat.ons end
¢ maintenance

Reval.det on

Frigure 21 The MWoateriall Model of the Software Life Cacle.

ca R -~ I I
Loa_‘ew.v.v.‘mq'dd‘..-’\-’ Tl AT A

known terminologv and common framework around which much cf <oftware
engineering 10 date can be discussed. We believe that the waterfall modei reprecents
ton level view of the software cngineening process wnen the process is viewed <taticaly.
Such 1 stauc view is ctten atteripted, and mav be appropriate, 1in dealing with sysiems

where the problem arnd solution methods are well known and defined.

When {aced with uncertainty in the definttion of the problem or metheds of

solution. understanding evoives throughout the software engineering process and 4
static view of the whole lile cvee 1s inappropriate. We believe that, in such a case. 2
watertall model is sull useful, but not as the top level of the process. [nsicad. mujor

portions of 1t exist at a lower leve! cf a process which may be categorized as

cvolutionary prototvping. In other words, a waterfall model applies at many levels of

the cverall software engineering life cvcle process. In our view of suck a Jiranuc
process. a waterfaii-itke sequence of transformations may be executed repeatediv o
“conduce” prograssively more functional versions of the “end” product. S:nce the
waterfall model imposes no temporai constraints on its phases, an initial vers,.on mas
se proronped rapidly by manipulating not only the functionaiuty of the protctipe
version, tut the complexity and detail of some phases of that version's Liv o e A
rasuit can oe top down Jdesign. with a combination of top down and heient up
umriameniation, of a fumuiy of evolutionary versions. Each new version s evoived =
avtension of the coilective analvsis. design. implementation and tesung, ¢tc.. ol ~onwe
prior version. This approach can deal dvnanucally with problem solution uncoriant
2ariv in a preject deveicpment life cyvcle, as well as with continued evcluticn of the
nroject over ume and in the context of technological advance. Lehman Hss,

\

discusers, in detad, the dvnarucs of software evoluticn with respect to his noyw fanuiar

S. P und E pregram classes. He also discusses the process of iterative transtoiniion
tnrough watersall like phases rom topmost (1.e.. requirements) speciication ¢ lind

:miplenentaton (in this case a proiotype cr subsequent versions). Lehiman s iteratie
transtormation is based on a single canonical design step wherebr the software engineer
creatrn el chooses a formal lower level lnguistic system in which 0 rediod the nigney
evel mcde! with which he begins each step. Permalism s :ntended 1o supnort o
rmaroing from the hizher level model 10 the subsequent lower jevel model taciitatn:
caluickic vs empiricaly vertfication. hacktracking and change propeganen aonvines

winen lead 2 verasion of the design ster and support evolution. Such lormain v ot

-

1 eommen nracteal use in mdustry teday. Such a process s intended 10 heip onoond

— oot .

WA 4

S

.
e o U R T e e TN e
PP I PR P POREILPRIY. I PPPCI. P PP PR AT N TEPTUPE FETEY L. 7S TP

throwing out large portions of prior development work and having o start over !rom
scratch.

Speaking at the IEEE \inth !nternauonal Conference on Software Eng.neering.
tlerbert Benningten commented tha: the successtul SAGE development efloris were
a0 Ceniven” by othe waterfaid-itke model cllustrated in his 198 paper. Botl thet o
protoitpang process, pased un these activities, was empioved to deal drnanwaaly wath
TheouncerianIy Lnsovved n tne preredts ambinons and possible soiutions S, these
wecun are turarem new They have been studied and zained premunence 1 the wontent
S east suceesses and falures. Given these vicws of the softwiare engineeriig frocess,
we can Jiscuss brienyv cur view of the soitware eng.neering problem.

B. THE SOFTOWARE ENGINEERING PROBLEM

The s trnare engmeering pronced O crisis t0 use a popular cliche, has maniesad

el o promiems nclading guantiny, quality, maintenance and management
I Quality
Selvware quanty is a :undamental issue. Muany products simply don @ 2o what
the wser owants The causes for tns generadiv reduce o the anherent difficuner wooh

viddation, vendicanion und testng
a. balidacion
Viidanon s the process of deternunung the itness of a solrvare oroluds
Srrotvoonerauond. minson The developer interacts with the custemer. 10 the ot
The N ITULUIC eRLInCnnE Process, 1o trancate the cusiomer s aced into 4 reg.renment

Coineanion. Vapdaten at thes stage ries o Jaternune that the rmght prodac o~ neag

cngonedrad. The wustomier € desenpuion, o0 s the product must o, & i
recise bocawse 1t as expressed noa semanuically miprecice natural angudee v
Fooisho, Wohin his own organization, the develeper translates the regunomanss
Jeser mitnomto 2 regquirements spectication. Tios has tradionaily been the reoeerp

£4an rom onatural language toward a more precise representation. Vaudat.onolotis

trersatoon s often clrapleated Decsase the customer thinks nolus natand, DLl
Coorne developers representation schivme News thie derecoper transates the Lor o
seo Lrenents speachicaucn ono denizn seatications. Design speciies o e

re. crenienis aval Reomet The hugh level roguirenients speaiication ot o G

SOOTONT LOntan 20 e Gelal ragtares T Mmaae enpodt design Jdeasione Ll

IVOGRESTIONN LGNS0 CINNGCUY CLOT toled e made to oreraindate the raoaaren ooy

oo o T TIE CUATOTIRT SO TRl e rrguaemienis spealicalion s
i

questions. Often this does not happen. Sometimes it is not even clear to the designer
that his decision cannot be validated from the requirements. Additionallv, design
representation is gencrally so far removed from the customer's view and understanding
that an inherently :morzcise reverse translation 1s required in order to get anv feedback
{rom the customer at this peint. After impiementation, validation must determune i
the right product was actually built. As we'll discuss later, this last phase. tesung, i1s an
INRCrentiy imprecise process.
b. Verification

Ver:fication assumes that the requirements specification is valid and tries to
ensure that the product is bwilt correctly. The developer must transiute design
specifications in%o an implemertation in obhject code for the target machine. Since
cesign specifications are a more precise representation, this translation is much more
crrect. In fact. svstems have been implemented in which specifications are
auomaucally translated from design languages to source code languages which are
then translated into object code by compilers. However, these programs themselves
Can NIt as et be proven correct. so empirical verification is essertial to insure the
:ntent of the design s met by the oblect code. For two decades, constderab.e ¢:Tort has
been Jeveted to proving the correctness of programs (verification). However, tesung
connnucs to be the best available tool for venfication and validation.

¢. Testing

It 1s generallv accepted that exhausuve testing (instrumented executicn ¢! a
program, an its precise operational environnent. over every possibie combinanan of
puter is not feastdie for other than wnivial programs. It is also acceprted that nothung

~uert of exhaustive testing wall inter program correctness. As Dijxstra said. “program

T,

testing can He used to show the presence of bugs. but never the:r absence™ . Dahl
1972, p». 6 So. the prnimary chjective of tesung becomes Jemonstraticn o! the
nrogruris cperationai readiness. Individual tests must be mapped frem the design
speaiiications for verification and from requirements specifications tor vauddaton. Since
exiniusiive testing cannot reahisticaliv be periormed. @ reasonable subset of ail pesehie

tests must be chosen. With knowiedge oi tite Jdesign and code. iny net wimipls trecung

nodlies and pregrams as Ublack boxes™ tests can be chosen {or boundr conditions,

ega and aegal inputs, volume. etc. and logicul assumpuons can be made about

e
7

S teemne

f
{
c
:
73
:
o
3
o
[
G
"~
[¢
A
oy
<
[
o
A
.
G
3
c.
=
o
5
bl
m
v
5
=,
>
(o]
-
3
o
[0}
-1
[%)
5
[4%
7~
[#%
‘
-
.-
Ve
5
o
.

.

tesis wizhout errers, and the logic i uniiwwved, operaticnal readiness s Cruv shown i

PR WEALY

L

FENCRY BRI NNy

TP P P W L WG 3%, TR TRy

the specific environment tested. Was some unforseen combination of inputs onutted?
Is the targe: machine and its firmware and svstem software idenucal to the tes:
rmachine’?
2. Quantity
Proiiferation of computers throughout modern socicty has caused an explosion
in dernand {or sofware. This demand is a double edged sword. The more «oftware

here is, the more software there is to be maintained. A {ixed number of software

~

erginecrs, with fixed productvity, will eventually reach a point where ail of ther effort
1s consunied by mamtenance. No new software can be developed until some software :n
ma.ntenance 1s retred.

While the number of software engineers :s not fixed, several industry stud:es
conciude that the number 15 increasing toc slowlv to keep pace with increasing
sc:tware demands. To compilicate matters. the !fespan of existing software citen
exceeds expectations. This 1s particularly true in the United States Department of
Decfease (DoDi where capital investment in nuiitarized hardware. logistics systems,
training of technicians and operators, et¢. 1il add up to practica. and politica, nertid 10
xzep 1 working svstem in place tand :n maintenance) iong after techriclogy nasses it
by Improving the productivity ol soitware engincers appears not only cesirabe. dut
2ssental, to sterm the quarnuty problem.

a. Reuse

The reuse issue is actually a ccmponen: c! the overall issue o imiproving
~rodtetivity of software enginecrs. [t is mentuoned separately nere because 1t has 22
Recn thougnt to b2 the keyv to making an order of magnitude iraprovment in sofiware
~roduction capability. Since the earliest davs software engineers have redesigned wnd
cmented things which had been ouilt betore. The problems of reuse oo wield
anown and g6 far hevond any "not inven'ed lLere” egomania. Reusabie code Linranies
tehachved seme eariv success for discrete funcueons (ke mathematical lormulas) fuwas
toped that higher order languages would make scurce code reuse a reality [or miudd
more corapheated functions and programs. However, a general lack of discpiine in
cvatisiing and adhening to wnguage standards resulited n opreliferation of sl
supersets and generally inconsistant wrpiementatons of compiiers (or vaning machines
CLTan denvinng portabiay of such codes Additionady, at the larger scope o e
Unenons end procedures, the code 8 too detanied e datd res, il

ructures, etear 1or Qasy oredse. As o result, ot generaliy the abstraiton s

—_—
a2

oo Wl ol & L Py Ly Loy P o,

domain specific model), and not the concrete implementation, that is reutilized.
(Standish. 1984, p. 465) In genciual, even the reuse of the abstraction has been informal
at best. Documentation of requirements and design specifications generallv lacks
standards outside a parucular organization (and sometimes within). The wh, of
paricuiar Sesign and implementation choices is often unclear in documentation. The
level of eficrt required to understand what an existing design is doing and what, if
anvthing, must be done to adapt it to a new applicaticn or new env:ronment, is often
scen as niore difficult than starting fresh. So. reuse of the abstraction, without
mz2thcds and tools to reduce the understanding overhead. is usually informai
Individuals use their own pricr work (things thev understand and retain 1a therr
personai tooibox), but theyv reject organized library resources as tco hard to use. This
situation 15 changing as such methods and tools supporting reuse become more
availeohle, but formal reuse is still absent in manyv crganizations.
b. Productivity

In classical terms productivity can be defined as units of product delivered
divided by cest. Herain lies one of many problems associated with measuring the
productivity of software developers. There ar2 no basic units of software. However,
various measures have been developed and attempts to instrument ard study
productivity have been made. In gereral, we believe productivity in software
engineering acuvity has been worse than it is now. We believe that various eilorts ¢
imnrove the software engineering methodology and environment have :mproved
preductvity to uts current level. And. we behieve further improvements are possible.
“We don tbelieve precise measurments of preductivity are possible.

Such measurements industry wide are complicazed by the lack of
meaningiul measurement standards and the proprietary nature of statistics. Senwething
as seemungly simple as lines of code per programmer per dav cannot de compared
unless cne Jefines precisely what a line of code is. Is it assemblyv code or 2 ourth
zencrat.on language? [s their more than one statement per line? Bevond the < the
~see 3 program complexity. [lighly modularized code is likely to have more lines
e unstructured monolithic unmedularized code. Yet a poor design can wield qust as
many or more Lnes of modulanzed code as a geod design. Which represents mcre
~roducuviny?

The most believabple claims {or measuring software engineering productivin,

\
-

1

and praductivity increases, oonie {rent studies thin individual organizatons, At least

»

..
e, -
A

A

.

., CaTa W e, A 4
. .'.'.' J - .'".' ."-'A.-'. [y

.-
. Y

et te e e
’ .l'-.j:;".-.i..“ .l':-l' Lk a K akondinka

P S S R A I L R A A T P i AT A A AP A AP VY A P,

thev measure acuvity in a relatively consistant environment (source svstem hardware
and software, source language. methodology, etc.). with cons:stant measurement units
(what is 2 line of code?) and with a relatively consistant group of individuals over the
course ol the studv., With such a semblance of a controlled environment, the impact of
introducing new tools or methods becomes more measuradle. One consistant source of
such repor:s, for a number of vears, has been Boehm at TRW. {Boehm. 1981 and 1983)
One can argue that the resuit of such studies can be generaiized for other
crganiczatons. One cannot argue that such a generalization offers any precision. But,
it1s evidence to cflsct the risk in a decision 0 nvest in simular tools and methods fer
producuvity improvement.
3. Maintenance

Software mainterance is commonlyv defined as anv work on a software svstem
after operational rclease. It is often subdivided into maintenance to ccrrect errors
(corrective maintenance) or maintenance to improve or modify capahility (someumes
called perfective maintenance). In either case. maintenance involves changing the
program. Without a complete understanding of how the program works and why the
Jesigners chose to make it work that wav, a maintainer can often iatroduce totuliv
uncxpecied errors. Such a change can invalidate all prior tesung. Maimntaners are
otten not the origina! developers, and they must rely on the documentation ¢! the
davelopnient process for the understanding required to change a software ststem.
Thev need to be able to repeat testing and compare resuiis to original tests (n order (¢
Jeternune the cperational readiness of the new (maintained) version. Ther muust
¢onduct and document new tests 1o demonstrate readiness of new capabilities. Much

~

¢’ deselcpment and maintenance documentation for existing software has bteszn

inadequate to support efficient maintenance efforts. Often. much of the deveizpment
2Tor: must pe repeated to do maintenance well. In realiity, driven by pressure ¢ e
eperationai deadlines, much maintenance results from etforts closer to trial and error
Neodiess 1o sav, documentation of such efforts. 1 anyv, is seldom beneticial 1o rohiow-on
misnidnance.
~. Management
“Managerient probiems have heen 2 major Jdriving factor towards soltware

engineering methedologies and tools Problems such as; late deiverv, over nudget

e
3
-

2hiable prodect, fatlure cf product to meet specifications and product ditlicat and

axpennlLe 1o mamntain: are cenunon. Thev are attribhutable 1in part o e guabts,

quantity and maintenance issues a.ready discussed. The fanuliar phrase, “You can't
manage what vou can't measure.”, sums up part of management's woes. Another
Nt o1 contributor to management problems is the chaos inflicted on static rlans when
he well detfined probiem or solution unecxpectecly evolves into something else. Such
atempts 13 manage, based on measurement of the wrong things, are further
corapucated by the phase in the life cycle when the change 1s discovered. Changes or
rrors invoiving the requirements and design, which are not discovered untl iate :n the
uevelopment process. are ofien much more expensive to correct. They can oiten result
in discarding much cf the werk already done.
[a the last decade software engineering methodologies, tocls and environmen's
Co

hase expleded cn the market offering and delivering partial solutions to the sefltware

problem. Work and controversy surrourding deveiopment environments continues.

C. DEVELOPMENT ENVIRONMENT A SOLUTION

A soltware development environment 15, in gencral terms, the domain in which

the software system is developed. From the view of software engineers this domain
conusts of methods, tools (computer hardware and software) and other scitware
enginedrs (the managers, analyvsts, designers. programmers, et¢. who make up the
engineering team). In other words, all of the resources necessary to engineer soitware.
l. Structured Methodology

Since the early 1970's, structured methods for managing and Jdeveloring
software have been written about, taugiit and implemented. The structured methcds
support the mejor activities of the waterfall model (Figure 2.1).

By structured methods we mean a ccllection of procedures and concepts to
increase the productivity and effectiveness of the software engineering organ. . tion.
Elements of the structured methods include:

e siructured analysis, guidelines and graphical tools that allow replac:ng the
traditional representations of the requirements specification with one tha: can
e more easilyv understood by the custemer;

e (op-down design and implementation;

e structured design, guidelines and methods to help the designer Jistinguanh
between good and bad designs;

e structured programmuig. ccmposition of program logic from sequernce, :f-rhen-
else and de-while censtructs with uttle or no use of the go-to.

Associated with these methods are aids to implementation such as:

- P IV N A R L Lo g
e w Y o s A8 e e T A

¢ program libranians, to relieve programmers of clerical tasks and manage version
control and archival;

e structured walkthroughs, peer group review of design and implemcntations to
assist in error reduction and schedule pacing between formal inspections

(Ycurdon, 1956, pp. 2-3).

Controversy about the value of these and other methods often centers around
hew much thev improve producuvity and effectiveness. As indicated earlier, how much
ts a Jdifficult thing to measure and compare with any precision. Yourden savs “In
general . . . thev double the productivity of the average programumer, increase the
reliability of his code by an order of magnitude, and dJecrease the dithiculty ot
ma:ntenance by a factor of two to ten.” (Yourdon, 1986. p. 3) Well just sav that
common seasc indicates these methods shouid improve productivity and eflectiveness,
and our general sense of reports [rom industry, regarding such methods, 1s that they do
work with supstantial benefit.

One o! the serious problems encountered tryving to use these methods :s tha" a
tremendous amount of cross referencirg of data and <ata structures from one phase of
the lfe ¢veie 1o another 1s required. Also. many tasks are cvclic in nature and requirc 2
Iot cfrepetitive activity. For instance, validation of a data tlow dragram represenung a
segulrenient specification nught require reiterating the diagram several tmes with
nunor changes as the customer and developer narrow down exactlv what the custemer
wanis. Each named piece of data on the diagram is a unique entty recerded in a dula
Jiczionarv. Each new change to the diagram must be checked against the duia
dicionary to ensure all items are uniquely recorded. Such repetitive or purelt
mechanical tasks tend to be error prone and slow when done by humuns. Tier are
eveilent candidates for automation using a computer. (MacLennan, 583 p.

2. Automation

There are generallv three fcrms of automation supporting scttware
engineenng.

a. Tools

Tools are programs that perform a single tvpe of function. .\ compier.
that zenerates object code for a target machine from source code in a specific iunguage,

is a4 tocl, as are assemblers, hinkers, editors. graphic tool boxes. spread sheet pregrams,

eiC..

b. Programming Support Environments
Programming support environments are collections of tools to provide

support for procgramming (rnormally considered the implementation phase of the !ife
cvcie). They generally only directly support programmers. Thev may be a cooperatne,
intereperadie set of tools (what we will call a toolset) specifically designed to work
together with & ccmmon user interface and common data exchange formats. Or, they
mav be a set of disjoint tools which are separately executed, each with its own user
interface. each performing its task on its own internal data structures, generaiis with a
sequental file of characters as the only external data interface with each other.

c. Computer Aided Software Engineering (CASE) Environments

CASE environments are a relatively new concept. They are an extension of
programming support environments to the entire software engineering life cvcle. Theyv
are in.ended to provide suppor: to the entire engineering team (i.€., managers. analysts,
designers. programmers, maintainers. ete.) for overall product development.
5. The Environment Jungle

We have been autcmating aspects of the environments in which we engineer
software for a long ume. At first there were simply collections of whatever software
tocls were avalable for the hardware and languages we wanted to use. In general.
nartly due to the large number of languages being developed. only the most basic tools
were available (assembiers. linkers, loaders. compilers) to support production of cbhject
code. These environments were based in batch processing techniques. As hardware
advances produced teletype termunals for on-line real-time processing, environments
zave the illusion fin the user interface) of being interactive with the compuzer. This
was still sequential batch processing (for that user). onlv the batches were niuch
smaller and turnaround time much faster. Video terminals evolved Jirectly from

aicty pe termunals, still processing lines of characters. The natural data struciure to

s

evoive lor external interfaces in such environments were files of sequential characters.
These are sull the most common “standard”™ data exchange format industry wide. Since
there are more than one “standard™ character code (e.g., ASCII and EBCDC\. fiter
programs are emploved for portability of files.

As hardware provided inexpensive speed and raw coimputing power, assisied
by operating svstems offering virtual memory support. a few languages began
comuuanding a large market share. As software engincers came to grnips with the

sortware prodlem. more compiex intercperable toolsets appeared. These interonerable

20

RN IO WM AT A W N W P M ARk

tools often rely on common data structures (other than simple sequential character
files) representing objecrs which can be viewed and manipulated by various functions
within each tool. These objects are normally stored in a database accessible bv all of
the intcroperable tools. The database objects are generally only meaningful in the
contaxt of their tool or tool set which often must eventually produce a sequenual
character file tor manipulation by tools not iategrated with the set. Tlie advent of but
mapped graphic objects has added further complexity to portability of data among
tocls. Due to storage overhead, and the compiexity of handling bit images insteaé of
the objects thev represent. oit mapped graphic objects arc generaliv compacted into
unique, compiex, proprietary storage code which constitutes a recording of the
sequence cf resource (tool) cails used to construct the object. These recordings are
rerlaved and edited in order to reconstruct or manipulate the objects. The siorage
format cf such objec:s is therefore meaningless outside the context of the environment
required to replay it
a. Integrated vs. Disjoint Environments
We use the term iwegrared to describe environments with the fcliowing

features:

e all resources conform to a consistant user interface;

e ull resources are as highly interoperable as possible;

e objects and their interreiationships are in a persistent common Jdata fermat
which 1s meaningful to all environment resources:

We use the term aisjnins 1o describe environments which lack integration:

® inconsistent user interface among resources requiring user to shift modes when
nioving :rcm one resource to another.

e irncompatable data formats among resources
b. Environment Development Efforts
The software crisis and technological advances (hardware, operating
svsienis, languages. user interfaces, databases, etc.) have resuited in a bocnung new
rarkat in environments. We easiiv collected a tull file drawer of documentation in the
‘erm 0! books, papers, technical reviews. promotional materials. and conitrence

proceedings Jescribing myriad emvronments under research, or in production or

coerasion. What is generally most common about these environments is thai rie; adve !
So vany L an copurien, y
. Vs v

(v General Stare of Technology. Developing a CASE environment s itsel! ¢

a selvware engineering probieny of mammoth proportions. No standard requircments ;3
L)

K

21 »

»

¢

L]

N T T P " T R e e N B Pt " S "o,

for a CASE cnvironment have been adopted. Since the software engineering precess
itself is less than mature or stable, top down specification and design of an
environment to model it has been deficient. For tiie most part a bottom up approach
ras prevailed. While many CASE labels have been hung on projects, at best it 1s
:mited integrated toolsets that are being made. The CASE customer who cun Jefine
sis particular seftware enginecring process is unlikely to find a toolset which 1s a
complete CASE environment for his process. Since data portabuity between
ndependent tools and toolsets is generally limuted to sequential character :les,
assembiing a ccmplete CASE environment [rom off-the shelf products can at best vield
a dJisjoint environment. The majority of what are being called CASE environments
today include:
e gcraphic tools supporting various structured analysis and design methods:

e program design language (PDL) tools supporting prototyping through
executakle specifications;

e programming support environments supporting specific language
implementations, debugging, documentation, version c¢ontrol, and archival.

® project management svstems supporting a varielv of management .
methodologies and economic models:

e office automation toolsets:
e hardware and software supporting muitiple view window interfaces an
multitasking.
A prevailing point of view seems to be tirat it is uniikely that any single organ:zatien
ccuid, or should. define canonical requirements for some CASE environment and :hea

implement all of the integrated resources to :nstantiate it. !

‘This may not do justice to a few large software developers who have invested in
leng term top down cevelopment of environments for their own use based on their own
sofiware engineering process and methods of operaticn. However these svitens are
cither generally not availabie off the shelf, or represent an exorbitant invesimient, and
cempiete integration within them is dubicus. A possible exception . the Rinnog Ady
Dcvclopment Svstem from Rational (Mcuntain View, Californiay, has been develened
or the market place and is toutc.d in the iterature to epitomuze . . . the .l
ntegrated CASE environment.” (Suvdam. 1987, p. 38) However, most would clasais
the R1000 Jedicated hardware architecture and software as an excrbitant ins sz,
Aiso, we siiouid note that European CASE cnvironment etforts seem more adsanced
than our own domestic endeavers. [STAR, from Imperial Software Tec‘ma'.:;;:
cLondeon. £nglandy, is an example. ISTAR's top down Jesign provides jor a fleni -
open anc exiernsible environment.

-

1

N
I3
T

hlal

-

Ry S5 AN Al L o g

It is generally agreed that integration of tools toolsets ‘resources) s
desirable within an environment for:

e coherence, whereby all the tools behave in a uniform and consistant wav ie 2. a
common user interface stvley;

¢ control. whereby toois behave in a disciplined wav (eg. not uliswing
unintegrated tocls to bypass and subvert a configuration management too!

¢ sharing, whereby tools work together by sharing data (data s structured
ndependentiv of the tools which ¢reate and use i)

(Hall. 1987, p. 289;. There is a basic conflict between the desire for integration and the
desire and need {ecocnomic and evoiutionary) for environments 10 accept 100.s from
various sources. We feel the riost promising of the current approaches to resoiving
this contlict is to build around a kernel structure of resources which provide services o
the tools fer accessing and manipulating objects in a standardized envirenment
Jatabase. Once the interfaces to these kernel resources are defined. tool develspers
who achere to thc interfaces wili develop integratable toois. Two such etforts currentiv
underway are the Portable Common Too!l Environment (PCTE) which is the Ruse @7 a
numbder ol European environment and tool projects (including ISTAR. see [igure 22
vifendersen. 1987, p. 39y and the Common ApsetAda Programming Su-por:
Environment) Intertace Set ¢CAIS) sponsored by the DoD.

12y LUwnted States Department of Defense (DoD)y Initiatices. Earlv inothe
DoD commen high-order language preject which spawned Ada, developers receznnreld
that the language alone would be insurlicient 1o combat the probiems assocraed «on
DoD soitw.are projecis. DoD spersored development of requirements, dolinis the
Ada Programnung Support Environment (APSE,, with the stated objectne 0 o
support the development and maintenance of Ada applications software throusnous s
wte ¢ncle, with particular emphasis on software for embedded computer appiiiains’
iSooaemen, 1980, po 1) Fundamental concepts of the APSE included:

® host target cnvironment, where the APSE 1s hosted on a develepment nulbine
while the target machine of the scitware, to be developed utlizing the APSI.

. - . S .‘

mayv be a different machine: * -

® program daabase. to include aii project information i¢.g, SCurle and o oot o
code, documentation, specifications, ew. ;':

e extensibility, with all tools written in Ada.

4

e s 0 e
.-')'1'.'_.“

»

o
n

Sl €

-

In embedded systems the target hardware mayv be so Limuted in resources sneed,
memery, etc.) that it cannot practically support the development ensironme:n:

; 'I._\ Y

s

AR}

" '- ."\.

N
S

men - s
P I A TR A DA A

ISTAR FRAMEWORK ISTARTOOLSET

A

o TP e X =)
T <é oy ": : N ___ZI....., t
Q S

Migure 22 The ISTAR Integrated Preject Support Fnvirenment (I0S1

PRI TR R RS FUN SN N,

The original Stoneman representation of the APSE is illustrated in Figure 2.3 (Booch
1987, p. <09, The host machine resources are provided through the Kerne! APSC
{KAPSE, which provides the .ogical to phvsical mapping. The Minimai APSE
t MAPSE) contains some minimal tooiset for program deveiopment, and the APSE
overail represents a (fe Gycle environment.

While earhy Sroneman developers may have thought in terms of a sinwie
crganizat;on developing an APSE or MAPSE under DoD sponsorship. thi« opnrcach
Juickiv ran :nto the integration versus independent develcpers cenflic: mientioned
carier. ? Commercal developers are compeuuveiv pushung the edge of technolozr in
rrograrunung suprport and CASE environment resources. Any standardized nvvegrates
toolet from a wingle develcper faces <uil competition in fields (e.g., editers, debugyer.,
User interiwces, etco where few widely accepted standards exist and several perlentiai
delucto standards might emerge. To enccurage the compeuive advance cf

environmient technoicgy i u direction supporting ntegrated environmen:s, Do
sponscred the development of the Commion APSE Interface Set (CAIS).

The CAIS prevides interraces for data storage and retrieval, data transmissicn to
ard trom eniernal devices. and activation of programs and control of their
cvecuton. Ia crder 1o achieve unttormuty i the inter{aces, a single model s used
o oonaintent!v deserihe general data storage. devices and executing programs
elerrad e as the node medel. (Miiary Standurd Cormmon APSE [nicstace Sei
CLS D W8s U

.

The devecopment of CAIS has bheen a lengthy and methodical process ¢f beurled

seepe The versien of tie specificaton s heduled for release in the Spning ot 1987

arenLed 12 support some transportability interfaces often required by cocmmen
corvtare desciopment teois. ncluding:
o hencue miden

e ~rocesses (over.ng program invocation and control;
o ooutoutpuloeovenng foe and donviee | O and interprocess communication.
O LURS. D Ipe aliOns DOr ranipulition o parameters and atirnhute aides.

S OALS insues and deasaons dererred tor tater verseons of the CALS includ

e ATy Navy A la Language S‘ stem ALS) was such a venture from which

. the AL nas now o gthdrown n:_:‘r‘c.'t‘ e Navy has continued with ALS-N witn tae
vaesfic purpese of diredty o supner same maior umidae Navy o eminaddod

[ECEETINN
[REORIN

crehanretures. [t has been antiipaied '.31“1 e support Wil not be spentanecus

.
}
A}
-
(23
5N
n
r
¢
r..
P
il
(9
.
s
iy
~
[
-
.
1
‘.
M
~

- P .
Ltod sertieal marker

Ul JICIR St SR

Po et o NN N T
e, . .r/-'.'f R R LRI . N . .
R Al o A AN D R U s S o W, VA VSV,

\ User-supphed ;

tools

e A T ek A
.
.

Commuand
mnterpreter

e NS
fata >
r’\\A

T hier =

AN - Ada \
\\//

Apst

Figure 2.3 The Ada Prograrvming Support Environment (APST

7R AT AT I AP AT A

T

o configuration management. CAIS supports resources f{or configuraucn
management but no specific methodology:

e Jlovices, supporis scroll. page and form termunals and magnetic tape drives
rother devices and possitly other ANSI or ISO intertaces ie.g., ISO DIS 7942
Graphical Kernel System tGKS») are under considerunion);

e nter-tool interfaces, are not defined:

o atereperad:iity, only a primutve text-oriented file transfer capablity is previded
between a CAIS unplementation and its host. CAIS does not dcﬁ'xc enerna;
Jata fermats for transfer between environments or detween a host and target:

e uarchiving. a Jdecision on the Jorm that archiving interfaces shouid tuke has been
ceterred
(M Standard Common APSE Interface Set 1CAIS). 1985, pp. 1-2).

The Software Technology for Adaptabie Reiiable Syvstems (STARS)
~rogram cstablished bv the DoD in late 1983 included the STARS Scftware
[Lagineening Environment (STARS-SEE) task. The carly objectives of STARS-SEEL
were (0 spec!V the requirements for a complete life cyvcle environment which was fulls
integrated and :nteroperabie. mululingual. utilized state of the art techrology and wvas

wwon Jesigned to evelve with technelogy. Eariv STARS leadershup felt that the DeD
sl was mest capable of analvess and definiuon of requiremments for such an
aavirsnnient. A coint serviges tearm compesed of unitormed and DoD civiiian sarvvare
~roiessacnais, augriented by DoD contractors, anaivzed the software enginecr nig
~rocess, regarerments tor the STARS-SEE. and the state of technology. This resuited
£ ootfive velume ccilection of thirtv-tive preliminany reporis. Dy [sNe, o,

n ifor Jefiming the STARS-SEE software architecture Navar A\ir

Develcpment Center, 1956, po fvieaf) Changes in project managzement rosuted
swentale,in distanding the STARS-SEE task etfort watliin DoD activities 2and «hiang
crumiass 1o cncouragement and support of private secter software enpinecning
erivirinnent Seve.opment efforts.
[n addition to such high levei DeD environment nmitiatines as
ADPST CAIS and STARS. severai lower evel efforts et DeD field acuvinios enziged
ceotware engineenny already have anoanvesiment an ther own unigue indinvdea.
civrraments which have evonved bottem up ovith the esclution of hardware and
sooviare technologvy as tues have done ther jobe over the veuars Thev arean warnivae
eoes oloevcduen from barch crented and tinteracine” tme shared oontra
miauniranie nun complexes, 10 netwsraed Tpersent” nuorocomputers Wit Trernunal’

. . T L. e N ! .'
GaelCss I &C.".!.'J! Lomr" ("’ rasCuUrees l..u.ouAA nitiatines 10 Uplriee aoed,

e AL IH L._;.A(L J-’('.;.‘(

.)
et A_LA.JL.AL ala et a e alad

A SO TN

environments with relativelv inexpensive ‘“personal™ computers and ofl-the-shelfl
software engineering tools in such a bottom up fashion are often seen as both biesung
and curse. Blessing for their contribution to improving an often otherwise extremelv
unproductive working environment. and curse because of the lack of intercperabiiitt.
transportability, consistancy, etc. which they represent. Y DoD Ada implementation
policy (essentially that Ada 1s the only authonzed programmung language fcr new
embedced svstems and exisuung svstems entering major revision) has been crne point of
focus for manyv of these independent efforts in DoD as well as [or the tool and

environment developers.

! c.g. the Interactive Ada Workstation being developed under coniract by
General Llectric for the Avionies Lab, AFWAL AAAF-2, WPAFB, OH .. and e
Softwure Lie Cycle Support Environnent (SLCSE) being developed by Generudl
Researcn Corporation under sponsorsitp of the U.S. A [Force Reme N
Development Center, GAFB, N.Y .

23

TR PR N A
T A Y AN NN A

I11. CASE DEVELOPMENT ISSUES FOR MISSILE SOFTWARE
BRANCH (MSB), CHINA LAKE

A. MSB BACKGROUND
MSB is a small software research and development group. They are a branch of
the Weapons Development Division, Micheison Laboratory, Naval Weapons Center.
Chira Lake. California. Software engineers in the group are domain speciaiists in
onboard. embedded mussile software. Prior to current efforts to use Ada. vrtualis ull
of therr work involved assembiv language programs for umque processcrs with
extremelv limited resources (e.g., speed, memory) in onboard. mussion critical, reai-ime,
embedded mussile systems. Working around constraints like hmited memory often
requires methods (e.g.. unstructured design) which subsequently make the sof:ware
extrermely difficult to understand and maintain. Reuse of such hardware specific and
anstructuyed scttware is virtually impossible. Knowledge of the weapen Jomain ‘a
major factor itself’ is often the only reusable resource in this software engineenny
process. Hardware advances with the potential to improve the resource :speed.
memcry, etc.) avaiabuiy cf potential target processors, and the increasing avaiahiy
ot Ada ccmpiiers for target processors. have opened the door for MSB to exnloit Acdy's
inherent support for structured methods, obiect oriented sottware engineeninyg and ccle
pertatiity. -
i. Mission
The basic mussion of MSB is to establish and maintain a Navy in-house
capaolity for deveicping state of the art missile software. As with anv research
cricnied organ:zation, they are considered a resource for exploning new technologies

whicr. would likely remain unexplered in the profit oriented private sector. As 4

C..

evclopment rescurce they may be tasked to perform some or all o1 the development cf

so:vwure for specific mussile projects.

“Ondoard embedded sofiware operates in a unique environment. Size, weizht,
power. and neat dissipation continte to te 4 maicr concern, and even odayv e
nieptory-s-ckeap scenano riav not apply. Etliciency of ohject code generated v taroot

maciine Ada compilers is a.so o maor coneern. Muers, 1957, pp. T1-T2)

29

YWY

a1 "

. . . - . PR P ey LI I L g
R IC AL AL AEN I AN PC IR, P8, PGPS,

2. Problem
Hardware advances (e.g., VLSI) have proliferated embedded processors into
weapons svstems projects at an ever increasing rate. The impact of new technologies

on the operauonal environment of the wezpons (e.g., operauonal deception, eiectron:c .

warlare. etc.) demands increasing capabilities for mission tulfillment. New technoiogies
’ make new nussion capabilities possible and or essential. As a result, mussion critical.

embedded svstem software demand (both upgrade of existing systems and new sistems

Jevelopment) is increasing rapidiy.

Current federal policy on personnel funding effectively limits anv increase in
MSB personnel resources in the foreseeable future. Projects rejected (due to
iasulficient capacity) by MSB must either be done somewhere eise (generally private
sector contracts) or be abandoned or postporned. For many projects, especialiv
research, the nussile software domain expertisc of MSB makes them the best eguipped
for the ;ob. Other ccnsiderations, such as securitv of operational envircnment
intelligerce and hardware advances, can make in-house research and development
easier. more desirable and less expensive. Our purpose here is not to atiempt to
quantify capacity shortfali at MSB. or its cost in terms of private sector contracts cr
unexplored avenues of research. But, to report MSB's own assessment that theyv are
unable tc keep pace with demands for their services.

Organization

The larzest organizational subgroup within MSB is known as the Software
Teciinciogy (ST) grcup. This group, currently seven software engineers, is engaged in
varicus prejecis often involving only one or two people per project. These projects are
primariiv research oriented (e.g.. rapid protoivping for feasibility demonstrationy. The
cusiooner sponscring such projects is generally the preject manager (not par: of MSB.

for the particular weapon system mnvoived. Also. independent research of a less s sicnt

specic nature (e.g., developing and benchmarking Ada library packages) mav be

sponsored by the branch. department or some cther activity. Besides the ST zrour. a

ream of three software engineers and a program librarian are currently engaged in o

Jevelopment project for the Sidewinder mussile. There are three software enginecrs 1n

¢ Sparrow mussiie development group. There is a Software Acauisition Contracung

\Iam;c gzroup, of two, who are Jedicated to configuration and docunicntation

- manazement for the branch. Finaily, there are a Branch Head and a secretary onnging

the towal te 18 personnel. Development teams arce formed from ST group pervonnel

4 . L4 . .
an’a” o -(A" '- "0, s '.' e m e e, DA

assets, and return to the ST group when development projects end. This is a general
description of the MSB organization and the degree of fiexibility in their sofiware
ergineering process required 0 meat their committments.

4. Current Environment

MSB has been actively improving the environment within which they work.
Management tailors the software engineering process to the tasx at hand. Rescarch
projects mayv proceed emploving structured methods and top down design for rapid
prototyping withcut pushing the entire bow wave of static sequenual lfe cycle
constraints required (e.g., bv DoD Standard 2167) when a project enters develcpment.
MSB empiovs structured methodologies espoused by Yourdon and others. MSB s
actively engaged in research to demonstrate Ada [easibility for missile soitware. This
werk includes performance analvsis of object code generated for potenual "ofT the
sheif” target processors. Thev are developing expertise in object oriented design with
Ada. Theyv are activelv researching missile software domain Ada library packages and
working towards reuse of design and code. Theyv have sponsored develepment of an
Ada code analvsis metric (Halstead metric) tool, Adaleasure, (Fairbanks, 19¢7) at the
Navai Postgraduate School (NPS). Thev have encouraged other NPS elforts b
including this one. which focus on aspects of CASE resources and development.

To the extant possible with available funding, MSB has upgraded the
hardware and software of their host develcpment svstem. The result te date s a
disjoint environment of personal mucrocomputer workstations with locai arex network
rernunal access to their own super-microcomputer and the central site processors. The
MSB nucroVAX I runs the UNIX operating svstem and hosts various Ada compiiers
and their run time support tools (e.g., debuggers). Similar resources are availabic on
the central site VAX. The perscnal computer werkstat.ons gencrans hasve
individualized coilections of disjoint tools for word processing, text editing, schedaling,

spreadsnieess, graphic drawing. etc..

“Under development concurrently with this work. these efforts wiil also result in
June ivsT theses. While titles are not vet tirm. the works are 1dentified by subrect and
. .

e An Ada Ternunal Interface Packege. by Anthony Keough:
e Improved AdaMeasure Jlenmy Kidur metniey, ov Paul Herzige
e Interacuve Graphics in a CASE Environment User Interface, by Gregg Singer.

RN

. - o " ow e, T I A P g
VT P N U STty 35, USRI A AL Py P (X, (A

Recognizing not only a need, but an obligation, to remain a viable research
and development resource, by remaining competitive in terms of deveiopment cost,
productvity, and availabiiity, MSB is actively investigating CASE environments.

5. CASE a Desired Solution

In the Fall of 1986, MSB began to actively explore CASE solutions to

improve productivity, reduce developmen: costs and :mprove product quality. Ther
1 Ligh level requirements included automated resources supporting the following:

¢ CASE environment database containing code, documentation, specifications,
) requirements, transformations, design histories, project summaries and cost
projectior.s integrated with graphic design tools;

¢ library, supporting reusability of source code. documentation, tests and test
data and object code;

e documentation generation, supporting their research prototvpe process and the
Jevelopmert process (DoD Standard 2167 and other requirements).

) » graphical analvsis and design. supporting Yourdon structured

{ analysis structured design methodclogies and Ada object criented design.

e programmung support including sivle guidelines, static and dyvnamuc anaivsas and
source and ovject code generation;

e oflice zutomation, supporting project management.

In addition, they dentified hardware resource constraints inciuding suppert for:
s networked software librarv (database);
e modern graphics oriented methodologies and tools:

e team approach to software development.

They refined these hardware constraints further to:

e auullitasking., supporung parallel simultaneous interaction with environment
resources;

e mega-pixel graphics resolution, supporting multiple virtual termunals for paraiiel
simultaneous interaction with concurrent tasks;

¢ mega-instructions per second, supporting resource-intensive features ¢! the
svstem,

¢ mega-bvtes of main memory, supporting resource-intensive features of the
svstem.

(Missile Software Branch, 1986, np. 6-8)

T T TR T e e o AT AN

B. CASE ENVIRONMENT PROCUREMENT ISSUES

Within DoD. procurement of any large. expensive, complex svstem of hardware
anc software (like a CASE environment) is governed by policies and standards which
require such things as demonstration of economic feasibilitv and documentation of the
development hfe cvcle in a systematic way for management as the procurement
progresses ve.g., DoD Standard 2167 requirements). Our purpose here is not to study
the process, but to discuss some general issues which would arise during such a
procurement. A fundamental issue is a consideration of make versus buv. By make we
mean 1o make or nave made (e.g.. under contract) a svstem which is designed topdown
for the unique organization and software engineering processes of MSB. By buv we
mean a svtem cemposed of existing (off-the-sheif) products which are purchased to
assemble a CASE cnvironment. We will discuss briefly two fundamental aspects of the
buv option. In the first case one buvs a collection of tools or toolsets from a varietv of
sources, choosing each for the particular functional resource it provides. Because of
the general current state of the marketplace in tools (ie: lack of consistent user
interfaces. lack cf interoperability. etc.) the best result of this approach is a disjoint
environment assembled in a bottom up fashion. We cali this a short term appoach. In
the cther case, one buvs a complete environment (in todavs marketplace there are few
chcices) which has been designed top down as an integrated environment. We caii “his
alcng term appreaci

l. Short Term Off-the-shelf Buy Approach

a. Addvantages

ily Irmemediate Resu'ts. Compared to an environment as a whole. a tcol
with Lmuted functions s relatively inexpensive. This will often allow funding (rom
wower levels within a bureaucracy with less justification and shorter nrecurement
deiavs. The tool can be in the working environment much sooner.

(2, Euse of Extensioility as User Experience and Technology Fvoce
Ruguirements. The relatively small 1avestment in anyv partcular todi 1in the
envirenment, allews easier justification and funding tc enhance tiie environment by
adding a rool which fulfills new requirements better than existing tools, or adds toryiiy
new tuncions.

i3y Pick Best of Availabie Tools. As discussed previously with regard 1o
tne dilemnia of integration versus a variety of sources, this approach encourages access

1o the hest technolegy availabie now or in the future.

v,
vad

o T i g G a0 T T SR AT D

b. Disadvantages

The advantages listed above lead directly to some major disadvantages.

(1) Short Term Solutions Create Long Term Probiems (e.g., Creeping
Evoiution of the Environment). Within a software engineering environment. the issue at
hand 1s production of a software product. The product is more than just the object
code. Change (maintenance in the traditional view, or evolution in the
transformational prototype development view) of software is generally accepted as
wmevitable. To be able to change object code in an efficient and responsive manner
{without starting over from scratch), is a major (if not the major) purpose for the
development environment. At a minimum, the environment should fuacilitate the
archival of the product in some durable storage media from which the development
process can be recreated exactly and then evolved. Since the product is a direct result
of the specific tools used to create it (and the tools themselves are programs which are
not provably correct or identical), the only guaranty that a recreation from the archives
1s precisely the same product is if precisely the environment used in the software
engineering process is also recorded in the archival process. If the environment is
subjec: to creeping evclution the task of archiving becomes very complex as mulupie
versions of a tool. or even totallv different tools. mayv have been used in developing the
same or ditferent parts of the product at the same or different times.

(2) Disjoint Environment. While each tool may add to overall productivity
i 2 spectfic way, the additional overhead involved in using a disjoint environment will
resu.s in the overall productivity gain being less than the sum of its parts. In contrast,
svpergistic gains in productivity and quality should be expected {rom integrated tools
ve.g., a debugger which works with an vbjecr created by an editor. as source code, and
s capuble of changing the object without forcing the user to shift modes (leave the
debugger and re-enter the editor to make the change)).

(3) Inconsistant User interface. With rare exceptions. the user interfaces
fvom cne vendor of software to the next vary considerably. While many argue that
shus 18 onlv of concern with novice users who must learn a large number of interfaces at
the same uime, we feel it 1s a major consideration for expert users as well. The expert

user mav make fewer mistakes than the novice becuuse he xnows which krobs operate

the svstem in each of the modes of operation imposed by the various dis;oint :oois.
But. there is a cognitive investment. in navigating this modal hierarchy, which must

Jetruct from the creative work the user is tryving to accomplish in the process. \iso,

Y
o8

i f e —.a A a A

.. ta" - .« , IR e P '."I'/'d'."_'q' -
L VN T LVl S LY h\l.“j-.‘yfl - e D .‘{:(-_,&(L(J-'_\I_& A" e

- R & o, e A e
S N N o A N A T oy Y

the training overhead required to create expert users (including acceptance of the new
environment -by existing users in the first place) will be much higher than with a
consistant user interface.
2. Long Term Off-the-shelf Buy Approach
a. Advanrages

(1y Long Term. Since this approach involves a complete environment. we
are talking about a major investment in both hardware and software. Once such a
svstem has been procured it is likely to remain quite stable for relatively long periods of
time. Because of its large mass as an investment it will tend to have a great deal of
resting inertia. The developers’ changes will be consistant with the overall design to
protect the users investment. Creeping evolution is unlikely. and any evolution is more
easilv traceable due to reduced complexity in the number of vendors involved.

(2) [Integrated Resources (within this CASE environment). One should
expect synergistic gains in producuvity and product quality.

{3) Consistent User [Interface. A consistent user interface is not
guaranteed just because the environment is the product of a single developer. N\either
1s it prevented if more than one developer is involved. Since there are a variety of
possibilities. and no one well accepted standard, it takes a committment, by the lead
developer, to a consistent interface philosophy. One relatively successful approach to
this is the Apple Maciniosh interface. While -ipple themselves fcllowed a consisten:
intertace , theyv also invested in the future dbv providing the tocibox of resources, in
svstem firmware, which make it easier tor application developers to simpiv conform
with the Muacimtosh interface than to invent something new and different.

b. Disadvantages

(1) High Cost. This apprcach requires an up-front committment to a
major hardware software svstem representing a major investment of funds rclative to
that involved for individual tools. Lccal approval and funding are less lixely.
Jusuification of the svstem to a higher level of a bureaucracy is gencrally more formal
and cazes longer.

(2) Seole Source. Unless his prcduct has a well established marxet <harc
and the vendor is clearly a healthy business concern. there is a great risk in a major
investent in his product. (No one waats to be the first, and possibly only, customer.!

his nisk 1s even greater if the product invo!ves a unique hardware architecture required

to host the environment. The user mav be effecuvely limited to the vendors

e e

technological and proprietary vision both for what is included in the environment
today and how it will evolve in the future. The resting inertia which makes this a
stable long term asset may inhibit extensibility in stride with the advancing state of the
art. Also, an off-the-shelf complete environment may include resources which are not
applicable or useful for the MSB software engineering process. The customer naturally
resists paving for something he will not use.
(3) Incompatible Data Formats (with other development environments). It is
a natural extension of the idea of interoperability within an environment, to also
cnsider interoperability between different environments. If for example MSB is tasked
to prototype a proposed change to an embedded software product developed for a
project by some contractor, the process would be significantly enhanced if the MSB
CASE environment could accept and operate on the model of the svstem and all of the
objects developed in the contractors original software engineering process and
environment.
3. Make Approach
The make approach shares many of the disadvantages of the long term buyv
approach. In general terms it appears to far exceed existing MSB resources. In
Chapter 1V, we will discuss some of the inherent risk for anv sole development of a
CASE environment.

C. WHICH WAY FROM HERE

In order to effectively make decisions which commit scarce resources to
developing a CASE environment for MSB. managers in the MSB chain of command
must understand. the software engineering problem and how it relates to the
productivity of MSB, as well as what a CASE environment is intended to be, and do.
to improve productivity. An understanding of general CASE environment development

1ssues. and principles for a good CASE environment will also help.

\
36

ERN AV N IR g

pd

/R B R R W e 3 h R e M LN g T g

IV. CASE ENVIRONMENT DEVELOPMENT ISSUES

A. SCOPE OF CASE PROBLEMS
As previously mentioned there are a number of products on the market which
use the term CASE in their descriptions but only amount to tools. or tocisets. iunied
1o a portion of a full Life cvcle software engineering environment. A hfe cyvcle view of
CASE entails some major development probiems which are reflected in the generai
state of this technology today.
1. Evolutionary Development Politically Necessary
High risk 1s the driving force behind evolutionary development of CASE
environments. Because of the size and complexity of a CASE environment, and the
immuturity, instability or rapid evolution of the fundamental components involved (1.e..
languages, database techpologv. management techniques, software engineering
methods, economic models, hardware engineering. graphics, netwerking. e€rgononucs.
artificial intelligence. etc.). the classic problems of software engineering uppiv 1o CASE
envirorment development. Delinition of the problem (the software enginecring
process) is generally incomplete. or inconsistent. and likely to remain so for semeatine
‘or the software industrv as a whole. As a result, no clear industry wide et o
requirements to be satisfied by the environment has emerged. Likewive, no Jleur
agreement on fundamental issues regarding Jdata models und comporent nteriaces
within environments or among environments have emerged. Most of domeetc ndusirs
seem 0 lack the resources and mouvation to undertake a iuil ite olic CASE
environment development project under such high risk coaditions (uncertain ¢! the
Jirection each of these technologies wiil take). As u result. most etTrts have contnued
10 ¢hip away at the problem from the pottom up. " The risk of chanoing tecins.os i
not Lxely to suddenlv go awayv. The softiwvare engineering process . be el delned
‘or 2 particular organization in which the majority of projects foliow vimuar sle o e
[However, 1t is likely that several d:stinct environment inarkets exist. and comiutinend

tc a single lifs cvcle model would constitute 4 comnutiment 10 a singie vertici. murse’

Curopean dJdevelopers scem to be wav ahead in top Jdown Jeveicpment o
integrated fuil ite evcle CASE environments,

o~
.

IR

ST PR P PR L E A

2. Requirement Tradeoffs Contributing to Risk
Among the manv tradeoffs invoived in CASE requirements analysis are:
o loweg. UNIX) vs. ugh integration;
¢ llosed Vs open envircnment sextensibuity):

e angzuage dependence vs. independence:

e moncungua! vs. multiingual
e purtial vs full life cvele support:

~
¢ MO

ie vs. multiple methodolozy:

W

® <ng.e user vs. multiple uscr;

e urdware dependant vs. independent;

® el vs. grariucs,

e susiem coniigurabie vs. user configurable:
® non-secure Vs, secure.

o CcostelTective s, cost exorbitant

sHenderson, 1987, p. 48). What 1s needed 1s a commuttment to a CASE environmen
Jevelopment philosophy which will allow evolutionary development o!f gocd
entircaments, wiiie muninuzing rnisks from changing software engineering process
requirements and continued technological advances. First, let’'s consider what

constitutes o good automated environment for software engineering.

B. FUNDAMENTAL PRINCIPLES FOR CASE ENVIRONMENTS

The bockground Jdiscussion of the preceding chapters inciuded several issues
tiich have afluenced the cveiution of CASE environment etforts. We did not
discoser any crear cut study or statistics proving one side of certain issudes 1o e
Loendr 1o the cther. One can get a feei for the trend of developmients. user

ac.epiance and the direction of ongoing research, by exanuning past and conunuing

work Vi environments. A streng dose of common sense can then be appiied to the

Ssues, and dhcices can be made which appear to pe fundamentally betier than the

e

crnattes. An objective study 1o demonstrute that these choices are supeniar o thar
sternoiines s centainiy a Jdirection for further research. but far exceeds the scope ot
e S

“Iroseems that few sucn studies are ever cenducted. Such a study miust of
pocossey ncliow implementation of che prninaples anvoived. Then ealn o7
coeriatves need to e applied n oparaiel to the same prebiem inoan envranmiont
wiere other vaniahlow osoftware, hurdware, pecple. cte roare centroiled ino Jount

I
catictand enrensver Al Las clten teen the case with past deveiopmients, it a foour

9~
.

v

r

‘sd
o

P A A A N AN WL AP A A P Y A

W

Leon Osterwei] (1981, pp. 36-37) wrote that,

The essence of a software environment 1s the synergistic integration of toois in
order to provide strong. close support for a software job. This environment must
have at lcast these five charactenistics: breadth of scope and applicability. user

) rriendliness, reusability of internal components, tight integration of capabilities.
arnd use of a central informaton repository. /A support svstem must possess
these chiaracteristes if it is to merit the name environment.

This «ix vear old view of what should characterize an environment has not generaily
been attacked or disproved. seems to represent the consensus of todavs staied goals for
envircnnients, and is the essence of what we cail fundamental principles for CASE
environments.
1. Portable/Reusable CASE Resources
We view environments as a collection of resources. The collection includes:

® phvsicai resources, consisting of computer hardware and svstem software and
armware;

e CASE resources, consisting of software tools implemented on the phvsical
resources;

e muanual resources, consisting of the methods and procedures necessary to the
software engineering process but not implemented as CASE
resources,

e human resources, consisting of the people who use and fucilitate utilization nin
the case of manuai resource: - of the envircnment.

Our ~romary Scus s on CASE resources. Naturallv, the CASE resources imply the
runimam pavseal resources required for their execution. Thev also define the
cutmat s Roundanes for a software engineering process in a given ernvironment
Terent ceermuning the nature of manual and human resources.

CAST resources should provide the software engineering team (human

sesoureeseowith a problem solving interface between the real worid probiem (for wiich
thet st Jevelop a software solution) and the manual and physical resources. A

mread, snailow, functional hierarchy of resources, s required to support wser ricnals

Lae producuvity fwhich is inherently difficult to quantty with precision) is ncticeatly
imrroted by the change, the industry tendency seems to be to accept and expioir the
chunge. If the advantage of the change is not clear, it is resisted and either Lhmps along
with o miner mdarket share or dies out by naturar seiection. In etther case there seem
t¢ have been lew attempts to obiectively quantfv the relative advantage of the
aternatives invoivad. At best. emnirical order of magnritude comparisons of sinular
aasu2s are conducrad.

R

- . I PP LA Wl Wi v
[P e a e Ca?n rrr---v‘{\'!.' R S .
\.{ﬁf_\':&f?-t‘-,.ﬁfh"'ni""\'.n',\":‘.l““.cz'.n?l %

!
R
J
o
.
1
«
[
.
\

v
.
{

-
-

goals (discussed iater). By shallow, we mean a hierarchyv with very few iavers. This
tacilitates responsiveness by reducing the calling overhead required to descend through
the hierarchy in order to use phvsical resources. Subordinate lavers in such a shaliow
hicrarchy will be bread in the sense that thev will of necessity contain manyv resources
(if miodular design principles of coupling and cohesion are observed). In such an

archutecture, kernel utuity resources (with unigque, independent functionality) directiy

access the hardware resources or the environment data mcdel (the kev CASE resourcey, :
on cehell of teool resources which provide CASE environment services o the user
nterface. Such an architecture enhances portability and reusability cof software
components and extensibility of software svstems.

The issues of portability and reusability of CASE resources and extensibiiity of
CASE environments are fundamental to risk management. CASE
environnienr resource user sk will be reduced if their investment is sccured well :nte
the futare (inspite of hardware, methodology, and other technological advancest.
CASE environment resource developer risk is reduced if their products reach a hroader

market cvanosus haréware and methodologies) with greater iongevity. Unforiunates,

g
E
i_

the same coempentive market dvnamics which encourage technological innovation tend .
o discouragze reusadility and portability. Hardware and software developers whe reir
heaviy cn the Jdirect linkage of their respective products, to control their share o e .
markes, tend 1o rasist (often in subtle wavsy industry standardization efforis anwen
muzhtundernune therr market leverage.
2. Integrated CASE Resources

A orthe CASE resources in an environment should be integrated to fuciitate
conerenee. control and sharing (see Chapter [l in order to vield a synergistic eilect
wheremy e ity cf the environmen: as a whole s niore than just the sum it
rarts. Recall that with respect to autcmated environment tools. in this wstance CASE
rasources, we defined integrated as:

e ali rescurces conform to a consistant user intertace;

e 1l resources are as highly interoperable us possidle:
¢ ts and their interrelationships are n a persistent commen data Darnial,

ks meaningfui to ali entironment resources.

:")

1

-
¥y

e
LG
The comsntent user interface and interoperahility allow for intuitive access ¢ CASL
resources reliesing the user of much of the cognitive overncad of navigatng ameong

LATIoUs o0, wl.th various operaung controls. The user can devote more o o

-

TRTIATII AT N SNIRNIAN

Pala?n oo Pl s L al e T :

attention to the software enginecring task at hand. Interoperability, based on
manipulation of the comnion data model by all CASE resources, should allow the user
to create or change an object by mampuiating any of its displaved forms,
Macleanan, 1987, p. 1-3)
Open Environment
To enjov the benefits ol new techrology and compeuuve endeavor. and
enceurage evolutionary development for multiple environment markets, env:ronments
snould be cpen to extensibility. To support reusatility of resources, functicnaity cf
existing CASE resources should not pe dimunished by new resources. To recencile
extenstpility with the seemungly cenflicung principie ol integration requires agreement
on and standardi.zation of.
e Jata medel used to represent objects and their interrelationships:
o interfaces of CASE resources with the data model;
e rrertaces of CASE resources with physicai resources;
e ntertaces 0l CASE resourcas with the user.
User Friendly
User friendiv is 2 much overvorked term. but we've chosen to use it !or
conssteney with Ostervell. Commuitment to an ntegrated CASE environment
composed ¢f CASL resources as described above can faalitate an event-driven user
iterface phigsophy. Such 2 philoscphy is charactenized oy:

-

2apanaaness, user’'s actions have Jiract results, are inturtive and spontanecus
f1.e. no modesy

e ~ermussiveness, the user can Jo andlang reasonable at any tne. the user Jeaides
what to do next, not the wmdividual CASE resource e, 2o
modes);

® Lonsisiency, regardless of what CASE resource 1s in enecuticn, the users
control options and the apparent response 10 them are wonsistent
with the tipe of iuncuon being performed re.g.. anvthing that
seems like text editing should use rdentical controis regardioss ot
whether 1t mvoives lubeling a grapnices diagram or generaing 4
textual docurents

" The database provides an :r'cv'atimz and unithing medium for interfacing woois
WIIROUT {orainyg them anto a complen structure obinterrelationshins. Tociv obtun thar
nrrrmaon troms the Jatabase and return their results 1o it widhioul paving 1o .aeris
direent with orner to0ls. ... I order o nuwmntain flexthiiity it is ampertant to L old
building ridges petween purs of toce rather than brnidges into the Juty

tlowdeon. 1us2. n. 320

<41

- (]
G
'I
(@]
r
.
BT AL TRRRAN | T P AANS |

-
[W .

PR IR AT e N

- et AR A P s By e la e (AT €
AL AP A I A I N PPN S g N AR Nl

The feel of such an interface should be that the environment is waiting to serve the
user as opposed to the other way around. This is done by emploving an event-driven
control structure where user actions are events and the svstem is alwavs readv to
hande them (e.g.. as priority interrupts, or by polling for them). The broad shallow
architecture, of the CASE resources in the environment, facilitates event handling

without modalisy.

C. FUNCTIONAL ABSTRACTION AN APPROACH TO SOLVING
PROBLEMS

The principles may not have changed significantly in six yvears. but CASE
environments embodying these principles are not generally available. Without
beiaboring the point, we attribute this to the high risk of building on questionable
standards in rapidly changing and relativelv immature technologies. We propose a
strategy, to avert some of said risk, allowing progress towards these principles.

1. Definition of Abstraction

An abstraction is a description of some object which separates the defining
properes of the object from the unnecessary details about it. A software engineer is
concerned with soiving scme problem. The tools (CASE resources) in his software
engineering environment form a probiem solving absiraction. The hardware (and some
of the software). on which the problem soiving abstraction (the CASE resources: are
impiemented. ferm a physical resource abstraction (Yurchak, 1984, p. 5).

2. Formal Specification

It is generally recognized that the cperating svstem is an abstraction of the
hardware svstem cf primary and secondary memnory resources, processor resources. and
mmput output resources. Additional abstractions (¢.g.. video displav resourcest have
2iso become commonplace. Such abstractions generally exhibit [a. - of {ormaiism or
consistency. a semantic gap, similar to the problems faced by linguists trying to specify
the semantics of ianguage constructs. “The vital property of a speciticaticn which
guarantees that a correct program corresponding to it may be constructed. 1s its
cosisiency.” (Lehman, 1984, p. 393 The practical problem to be soived nvoives e
rertanmhity of software. One must be able to specify resources, in an :mpement:icn
independent manner, 1n terms of abstract funcuonal properties they provide. Davis
t19341. using concepts developed to specifv the semantics of lhugh level lunguage
constructs (partcuiarly abstract data types), deveioped a method for algetraic

tpeciticauon to solve some of these problems. Using such a formuai speciiication as an

external frame of reference, correctness of a pregram developed (rom the specification
can be viewed as a calculable, instead of empirical. notion (Lehman, 1984, p.39). The
unplication is that a correct tmiplementation of a problem solving resource, lavered on
tcp ot correcr implementation ot physical resources, will aiwavs behave functionally the
sama regardless of the implementatior or hardware details. The way is then ciear for
development of portable. reusable, functional resources.

3. Abstraction of Physical Resources

Yurchak (1984) used Davis's algebraic formalism to specify AM, an abstract
machine phvsical resource) from functional requirements. Multiple instances of AM
have been successfully implemented. from Yurchak's specification, on different physical
hardware at Naval Postgraduate School. Implementation efforts proceed quickly and
mechanicaily without the semantic ambiguity of less formal specifications. Work s
continuing testing portability of applications running on AM when hosted by different
phavsical hardwars.

Grant (1986) functionally abstracted resources to support graphic user
intertaces. He hosted his abstract resources on the Apple Macintosh and Digital
Rcsecarch's GEM 7on the IBM PC). Applications, using only his abstract resources,
are pertacie between the two host implementations inspite of significantly JdiTerent
hardware and svstem softwure (e.g., differences between color and monochrome are
Fandicd by the abstraction by placing colors within a grav scale. from light t¢ dark,
causing them o be cisplaved in logical shades of grav when hosted on monochrome
tardware). There ts no noticeable (from a Auman interaction perspective; degradation
1n the response time of appiications using Grant's abstract resources vs. sinu:ar nauve
custem resources (e.g., mouse tracking) on either host. This is attributed to Grants
aunerence to the broad shallow architecture principle (or portable reusacie resources
supporting user friendliness. At most two levels of calling overhead are added between
an appucation resource call and the native svstem resources.

4. Abstraction of Environment Resources

By defiring abstractly the basic iuncticnality of CASE resources hased ¢n a
useiul standard data model, and impiemented on abstract hardware resources, soitaare
developers may be able to drive CASE development with mumimal sk from the
uncertainties of hurdware evolution, language evolution. and even evolution oi the
sortware engincering process. One key is agreement on a standard data mede! capudle

of representing all ot the objects (ie., real like people. programs and decuments, or }

(
[
«
1
1
!

i i L T R A R A N A

imaginary like yvet undeveloped programs or unhired people) and their inter-
relationships which compose the software engineering environment. CASE resources
must assume basic hardware and svstem capabilitv as specified for the abstrac:
hardware resources. Once a CASE resource is operational on the abstract hardware, 1t
would be portable to anv physical hardware capable of hosting the abstract hardware.
Given an abstract hardware host, fully integrated environments could be assembled
from abstract CASE resources. An environment builder could design and implement
his own preferred consistent user interface which interacts with the abstract CASE and
physical resources. But, ideaily he would find it easier to adhere to user interface
guidelines making use of CASE resource utilities which directly and efliciently use the
abstract physical resources to provide a responsive, permissive, consistent, human
engineered user interface. New resources could be abstracted, as technolcgy advances,
by adhering to the specified data modei and interfaces.

Such an aproach is cirectly pointed to by efforts such as CAIS and PCTE.
We beiieve efforis in this direction hold some promise for bringing order to the current
environment chaos.

5. Lavers

The question of efficiency often ccmes up in connection with our advocacy ot
layering abstract problem soiving resources on top of abstract phvsical resources on .
tcp of acmal physical resources. This is certainly an area of concern since
responsiveness is one of our user friendlv requisites, and many CASE resources mav be
physical resource intensive (e.g., manipulation of many interrelated objects in a large
oroject database). A Kev to this issue is our advocacy of a broad skallow hierarchy of
CASE resources facilitating responsiveness of event driven user interfaces and resource
intensive teois, and providing rapid access to physical resources by avoiding a deep
mecal hierarcny. Grant's experience indicates that this can be a viable approach for
supporung user f{riendliness in zn interactive graphic user interface. The speed of

phvsica: resources has been continuously increased bv hardware advances, and more
10

recentiv threugh multi-processor archiiectures, '~ so it seems reasonabie to argue that

oo S

075 an example, the Mulu Buckend Database System (MBDS) at the Navai
Postgracuate School provides for distributing a database evenlv among muit:pic oil-
the-sne.d backend micrecompurers. Database size can be doubled, with no mmpact on
transaction time, 1t the numoer of backends is doubled. Or, the response time can be
haived by Joubling the numoer of backends while maintaining database size. [he
number of backends is transparent o the users who deal with MBDS as an abstiuct

44

|

W

IRRAAF" I L3

PR PR 2 D
L NN N PN G S S T T i e W I T T I

f’

small efficiency gains in CASE resource implementation, at the cost cf portabiity and
reusability, are likely to be wasted in the long run (i.e., if vou must scrap non-portable
resources in order to take advantage of more significant performance gains offered by
technological advances).

In addition to cfficiency considerations, a major consideration, in constructing
abstract rescurces s identifving the individual functions to be provided. As Osterveu
(1981, p. 37) observed. different application areas will inevitably lead to differences in
environments to support them. The bettom laver of problem solving resources should
be atormuc functicns which directly support multiple top laver resources. As an
exampie, an atomic resource nmught be a parser which is called by pretty printers, error
checkers. static analvzers and compilers. etc.. The philosophy for developing
envirenments should use information hiding to protect the integrity of these basic
lavers. In other words, the users of top level resources onlv interact with those
resources. For instance, the compiler user should only use the compiler. The fact that
the parser even exists should be hidden from him. Those abstracting top level
resources, know the parser exists, but onlv access the parser in terms of its abstract
tunctional interface. 1! the necd arises to jump around a iaver of abstract resources 0
get at some lower function, then a function which should have been abstracted has
been nussed. This is one reason why high order languages like Ada or Pascal dent
produce portable applications. Abstraction in these languages 1s at an extremelv hgh
ievel (the pregramnung logic level), and hardware or operating svetem cails are sften
required 10 handie externai interfaces (e.g., input output devicesi. In the case cf good
program dJesign these may be collected into abstract interface packages and
Jocumented as requiring change befcre porting. By abstracting at a lower level, und

Heing committed to a philosophy preserving the integrity of lavers cof resource

abstractions, portaoiiity and reusability of environment resources may be achieved.
6. Standards Enforcement vs. Encouragement
One thing the software industrv has is plenty of standards. As par o! the
criginal STARS-SEE efYort. [Instituie for Defense Analises conducted o studv of
information intertace related standards. Thev identfied 772 existing standards and <22
ti

emerging standards from 77. iaternational, U.S. government, cr ndustrial,

organizaticns. The study focused on stundards, in 23 categories (e.g.. Jata interchange.

1 - . . \

"'The categorv of emerging standards included both standards orented
develepmernt projects and commercial ventures becoming detacto standards oy virtue of
marKet share.

a0

cu , Lo, T Y LA AL R A AT ALy
k..‘f_'c‘_'~ g ‘)'.".(.(:fl.{&{h(.lnt {fﬁm"; » 5O W »

projec: management, graphics. programming languages, etc.), considered of possible
relevance in defining integration requirements for the STARS-SEE (Nash, 1985, p.

I

223,

The fact that so many standards exist, and so many more are developing
suggests that standards are anvthing hut standard. Many standards are the result of
noble ofiort by standards organizations. But, adhcrence to such standards, by
develcpers, can be a high risk proposition. 1f the standard is something new and
different, there is no easiy predictable market for a product conformung with it
Success cf such a product (its market capture) is determined by a multitude of factors.
If the product is measurably or noticably superior to some existing successful product,
or provides some enurely new and highly demanded function, and is targeted fcr
pavsical resources commanding a significant portion of the likely user group. it will
prooablv be successful. This is risky business, and many standards on paper never
become standards in ract. Some standards of necessity (e.g., hardware interconnection,
extzrnal communication protocols, etc.), many of which began as defacto standards,
are broadly accepted as mutually beneficial to industry as a whole. Other stundards.
such as those promoting soltware portability (in this case CASE resources). mav be
viewed favorably by users. and developers without a vested interest in particular real
pnvsical resources. However, much market selection of hardware currentyv involves -
issues concerning the breadth and depth of software applications avaiiable for that
hardware. [If sottware were more readily portable and rcusable a major hardware
marxeung iever would be altered significantly.

As stated earlier, hardware and software developers, who rely heavily on the
direct iinkage cf their respective products to control their share of the market. tend ‘o
resist (otten in subtle wavs) industry standardization efforts. If their market share o
arge enouzh. they collect strap hangers seeking some of that market. [t 1sin this wav
that deiacio standards arise. Of course. at this point the authors of the defacto
standard. wno have already profitted. mayv change directions radically in a tid to ~hake
ofl strap hangers who have not vet recouped their investment. And so. oficn with

Zitferent lesser plavers, the cvcle segins aguin.

In a few cases. such as the DcD Ada initiatives, a particuiar standard. or sct
of standurds, have been implemented and enforced by management dictate. "~ [n the

case of Ada, cempetition for DoD doilars has been the primary industry invenive to

3 y . . . - . . N
*Ore mav argue that Ada is :ur from being fullv implemented. and that
nunagenien: resolve 1s not pericely clear.

6

4
b
q
]
]
!
(

P N N O R VLT G I 15 R W TS, P T gy

actuallv develop the resources required to support the dictated standard. One obvious
drawback 0 tnis sort of approach to standardization is the fact that few interest
groups have the tfinancial c/vur required to pull something like this off. A more subtic.
and i1 the long run possibly detrimental, drawback (to standards by edict) i< the
possihilitv that the standard may not be a very good one, but gains momentum by
Jirective, and consumes resources which might otherwise contribute to evoiuton.
through natura!l selection, of something better. And, once in place, inertia will tend to
Keep it there. Of course, if the standard is good, or at least acceptable, the advantages
ct focusing resources and effort should be significant.

The dilema of standards enforcement vs. encouragement is not likelv to be
resoived. We favor standards encouragement for CASE resource functionai
avstracticn, interfaces, and data models. Kevs to standards encouragement are:

e cood Jesign, so there is little incentive to repeat the effort:

¢ availability, if possible make all forseeable low level resources sufficiently
eificient and readily availavle so there is little incentive 10 violat:
laver integrity (bv jumping around it), and little incenuive to
remzent the wheel

e guiselines, well publicised and justified philosophy of why it is the way it s
and ew to keep it that way.

¢ social change, growing recogniticn that standards promoting plug compatib:iir; of
CASE resources with eachother, users. and physical resources. are

also standards of necessity.

~. Fop Down or Bottom Up
One cf our mujor criticisms of the current state of most CASE environment
Jevelopment has been the bottom up path being followed. We've recognized some cf
the mictvation for this. Commercial CASE developers are avoiding risk and plaving te
the dis;oint oif-the-shelf tools market. In order to survive, software developers (CASE
rosource users customers) in the competitive rrenches often require immed:ae suppor:
isonme of which is available in disjoint off-the-sheif tools). One significan: bi-preduct
(Yrom the long term view) of this activity has been the generation cf experience. Wil 2
varieny of capabilities, as a base for identiving problem solving resource {unctiens tor
Ansgraction.

The top down activity in our CASE environment development strategy begins
with the anaivsis of a basic software engineening process to abstracuy speauy the datu
rmcdel and iaterface requirements (which are the infrastructure of the envircnment,

and the funcuons fat lower lavers, and their aggregate (at successive higher anerse

1"

which together with the tvpe of data thev manipulate, define the resources of the
environment. Design then proceeds hierarchically with more complex resources
specified in terms of more primitive resources in the adjacent lower laver. Algebraic
formalism associates meaning to the specification of each resource, with a rigor which

can be used to calculably verifv implementations of the resources defined in the
specifications {Davis. 1987, pp. 30-2 - 30-7).

V. FUNCTIONAL REQUIREMENTS ANALYSIS ISSUES

A. SCOPE OF THIS EFFORT

In Chapter 1V, we discussed CASE environment development issues and their
contribution to the existing chaos of disjoint tools, toolsets. and environments. We
discussed general principles for good environments and how abstraction of resources
and a formal method of algebraic specification may help to achieve those principles
and alleviate continuing chaos. We believe that this approach should be developed
turther to make good CASE environment resources which become the foundation
building blocks of portable. reusable. interoperable CASE environments.

In virtually all conceivable software engineering processes, starting from the top
means analysis of the real world problem to be solved. It is clearly bevond the scope
of this work to conduct an in depth anaiysis of the process required by MSB. and the
fur.cuional hierarchy of CASE environment resources required to support the process.
What we've done so far. falls more in the category of general famuliarization. [t is
potentiaily useful as a starting point for more directed efforts.

In Chapter III. we outlined three basic aliernatives for MSB CASE environment
procurement:

® make;

e short term oil-the-shelf buy:

e long term off-the-shelf buy.
We also indicated that the make alternative very likelv exceeds MSB resources and is
therefore inftasible. However, we would like to carry the make ideas. discussed in
Chapter IV, a little further to illustrate some of the top level considerations involved.

We are going to skirt the really difficult 1ssues of a standard data model (based on th

sotvvare engineering process whose definition we've also bypassed) and a Jata
ex.hanze interface (at a higher level than sequential character based text filesy. We will
ook at some functicnal design issues tor a relatively well understood subset of CASE

. . C ey . 3
environment resources supporung individal programmer productivity (IPP). H

“*This is not intended to appear like the tvpe of bottom up effort we have
crizicised. W proceed in this fashion because of tme constraints, the expleratory
scope of this effort, and the extremely oroad scope, complexity, and uncertainty ¢: e
environment engineering task (which has contributed to the current chaotic state of
environraent automauon in general). Our intended purpose is to advance understanding

<49

' .- ‘ LS W
B R A R A L S N S I P, Y

YO T TET s Sy T N0y T A7 1T SO R A %)

[t is noteworthy that, with the layered approach we've advocated, most of the
low level resdurces, required to support a subset like [PP, are also required support for
other high level tools. As an exampie, all of the user interface resources. below the
CASE :ools resource laver, must be in place (as do the user interface guidelines). [PP
tool resources will use the user interface physical. CASE. and manuai (i.e..the user
interface guidelines) resources, just as all subsequent tool resources should use them. as
the basis for the consistent. usecr friendly interface which is one fundamental atiribute
of an integrated environment. This sort of idea should help one to visualize the
potential contribution of our approach towards open extensible environments without

compremising integration.

B. INDIVIDUAL PROGRAMMER PRODUCTIVITY (IPP) RESOURCES

What roilows is a verv broad brush treatment of a few of the concerns associated
with functional abstraction of CASE resources for a small part of a CASE
environment.

1. Physical Resources

One might ask why (given the difficuty of bringing new standards into tie

marketpiace) even attempt to abstractly specify physical resources. Fer instance.
abstracting operaiing svstem level resources i1s tantamount to defiming a standard
operating svstem (which has already been done on paper, but has not succeeded 1n
displacing detacto standards such as UNIX). Why not just adopt an existing Jetucto
standard and buiid on top of it? This is what is generally being done todav to achieve
some portabuity and reusabuity. Problems inciude:

e lack of formalism in specification of these defacto standards. resulting in less
than functionaily equivalent instantiations and inherent portability problenis:

e Kknowiedge of the underlving operating system laver. encouraging, cr at !euast
enabiing, undisciplined users to bail-our to the operating system, violuting the
.avered funcuonal information hiding structure to produce applications with
inaerent portability and reuse probiems:

e Juni functionalitv (ie.. more than one wav to accomplish the same thingw
especiaily if more than one existing standard (e.g., an operating svsteii and 4
seperate graphics kerne!l) must be combined to get at the hardware, wiich can

of the problem. and the potental of our problem solving approach. at several levels,
Other. more specific, work to Jemcnstrate technical feasibility of funcuonad
components of this problem solving approach (some specifically cited in this work and
ciners just commencing or being encouraged) are in progress at Naval Postgraduate
School. We heoe that our work will provide sufficent background to stumuiate
centinued eftorss in an organized top down marner.

S0

lead to implementations of higher resource lavers which are affected in different
wayvs, by changes in the components of the physical resource laver, uepending

ca how that particular impiementation accomphshed something 1viclaton cr

our unique atemic function interface principle for [avers).

e critical functions required but not extendible to existing defacto standards e g..
If the environment must be a trusted secure svstem, the verv presence of in
existing operating system 1s Lkeiv to prevent realizing secunty which must be
designed 10 {rom the coginning).

Phavsical resource functions to be abstracted should be fanubar. Thev inciude e
nardware tvpically managed by the operating svstem, grapnics interface and Jatabase
management svstem.
a. Abstract Hurdware Resource Layer
The abstract hardware resource laver represents the hardwure viriual

b . - . I
hardware !* that will host other phyacal resources (operating svetem level resources:.

-
o
5
(¢
o,
3

auQ

wilenge at this level is to aostract needed hardware iunctuionality (which can e
met with existing hardware technology) in a way that allows extension (eg.

.

parameterizing the interfuce 10 the next high~: level in a wayv that should alistv occess
to future hardware. %) without compionusing the integrity of the laver. [nciuded
sheu.d de fumiliar things ike:

® processorsk

® primary and secondary memory stores;

e archival storage deviee;

* bit mapned display;

s printer plotter,

e n~cinung device,

s xevhoard:

® network communications (not strictiv required for [PP, but certirln a

hinderance o extensibility if not available).

“The formal algebraic specificaticn of abstract hardware mayv be implemeniod as
wirtuat hardware hosted on somie exisung hardware, camular o Pecolded
amplementations) or it may be implemented as new phvsical hardware.

*Some crvstal pall gazing should be benelicial, but even :f the result coes ot
aicw the most eflicient use of al future hardware developments, rehosting virtudl
. Jevices to new hardware should still capitalize on features such as added speed winie
{ etfectively porung the entre environment ~uilt above it. We see tins sort o any
a generaliy smalier scaier 1in upwardiv mooile hardware fanmulies where, U
ation. the nstruction ~eor of on older muachine, runs on the newer mollane,
wiawing porting of object ccde for the old machine to the new machune.

‘N

|

PO W G P TIPS A R W W A IR

« b0
R

S

'). o ." -‘.‘/ .

& .

r]

The abstract hardware resource laver represents the interface between rcal host
hardware and an open, extensible, portable and reusable environment cf CASE
resources. Of course, this nucleus can be broadened by addition of other devives which
nest then be reflected back up through the resource hierarchy to (and down through
tae hierarchy from) the tool resources which can use them.

It 1s cbvicus that the phvsical resources constrain higher level resources,
and that higher level resources drive the demand for lower level resources. One shculd
act work independently with either set wwhen defining the functional resource hicrarchy.
In<tead ore must begin in one piace ‘either the top or the bottom) and modei the
desired furctionality. Since high level resources generally require an aggregate of lower
leve: funcuons, one saould analvze the situation in a combined top down and bottom
up fashion working both ends (required nigh level problem solving rescurces vs.
avauatie phvsical resources) towards a meeung point in the nuddle. The goal is a
broad shallow hterarchv with atomic functional resources at the base which are called
tarough the interfacz to higher lavers by resources providing compound (or aggregate)
Juncticnality (the combination of atonuc funcuons from below) to the interface with
he laver of even more capable resources above them. Working in such a fashion cne
nght continue populaung a CASE environment [PP subset resource hierarchy as
Jolows.

b. Abstruct Operuting System Resource Layer

The name of this laver is virtuaily self explanatorv. However, the iaver is
evpanded, bevornd more conventional operating svstem functions. to handle dutabase
managemeni and graphics functions. The resource categories include:

e ~rocess management (including multitasking which we consider cnitical 1o
productivityy

¢ roriory management
e 1l sv<lem management;

e Juiabase systern management (the database system 1s essential to tae
interoperabuity aspect of integration in environmentsi;

® .put odtpul device managzement.

L)
-

aphics Kernel

As heicre. additionai resources mav be added (driven by the balance of reguirements
fronn above coainst capabilities from below). s an examiple, a security Aernel night
me Ldded cwoth hooks 1o secunty resources added to the abstract hardware iaver, and
coen trom sosecunty manager (n othe CASE environment services resource (aner)

cLrportng secunity requirements of the CASE tool resource laver.

<Y

2. CASE Resources
These are the problem solving resources. They are intended to interface
directly, and only, with the abstract operating svstem resource laver below. and the
user above. There are onlv two hierarchical lavers envisioned (to remain broad and
shallow).
a. CASE Environment Services Resource Layer
Resources at this level are the basis for integration standards within the
CASE teo] resources. These rescurces are the result of the philosopit goveraing such
things as the user interface design. Data interface standards are also resolved at this
level, and utility service resources (which have broad applicability among too!l resources

and provide a cohesive lunctional aggregate of operating svstem level resources) wouid

-
=

aiso be included.

(1) User Interface Service Resources. These resources provide services
which directly support the user interface guidelines. 1 Their presence s intended to
promete voluniary compliance with the user interface by doing much cf the “vork in
advance and giving 1t to ool resource deveiopers. Included would be:

- . ¢ evenr munager, the neart of a responsive user friendlv interface, reports events
ce.g.. pointing device movements. kevboard or pointing device eV presses) 1o
te user interface and ail other consistant CASE tool resources, to which thev
can respond by forking to event handlers, whereby tool ievel resources nunigite
the svstem resource hierarchy instead of the user who remains free o alter the
centrol fiew with new events (whether an event gueue is polied, or events are

nandled as priority interrupts. will be key efficiency considerations {or desizn:

® window moenager services create and manipulate windows as objects dispiated ¢
convey information to the user, classes of windows include svstenm windows
«created by the system user interface tool), and tool windows (¢reuted ov ctiwr
tool resources), either of which mayv include dialog or alert windows:

® ewomarager allows tool resourcss 1o create and display menus consistent with
tne user interface guidelines, and reperts menu selecuons back 1o the tei
fmenus aiow users to chose options at any time, menu oplions are imperatves
used analogously to corumands in more conventional svsiems fe.g., Prial open
>r alternatnvely they may be selections te.g.. font size tvpe), user interiuce
Zuidelines should provide for menu selectizn via pointing Jevice or conundnd
xevs, menus should not be hierarchical (aveidance of modesi:

“"Singer (1987) provides an in depth discussion of the user interface philosophs
and the resources and guidelines required to achieve it. He also covers some
implententaion issues and a discussicn of the potenual of tuch a user mrerfuce .
signiieant productivity improvement when tully exploited by advanced CASE (ooi N
sasourees such as visual programnung tools.

-

n
.

-
J

NSNS Y

Y &

LY
S

WL, F, e T
Y A N

® diaing manager used to create and control dialog windows when a tool resource

mus: have more information {rom the user in order to continue a task (Jialogs

are modal 1f the user must respond betore doing anyvthing else, or modeless if the

user ¢an sul]l do other things, dialogs may make use of conrrols stancardized by

the user interface guidelines and provided by a controls manager, or text entrnes
) ie.2., naming a fie)), the dialog manager can also generate alert windows -
‘) raotes, cauuons, warnings) when a potentially dangerous situation anses
1

[RVERN

v medalyy:

o grapnos Jacdwies which manage the drawing plane in terms of commcen
rarameters, objects. and iunctions (e.g., two dimensional coordinate svstem and
convzntions for defining points. objects, rectangles. regions. bit images, bt
niaps, patterns. cursors, graphics pens, icons, transter modes, drawing
environments idefining how and where graphics operations wiil take piace.
ete.

o exr jucilities 1o perform basic text entry and editing, and handle different text
characteristics (e.g.. text font, face. mode. size, leading, etc.)

I

!

»

; -~

N Deatron. 1986, po. 4-37).
5

E

sMiale

iy Dara Mode! Manager. The data model manager would provide for
manpuaton of the chosen eavironment process data models. The technology exists
1y arevide sophisucated fiiters for converuing to and from models supporting sarious
processes both mternal and external to this environment.

<3 Uniay Manager. In the interest of efficiency and responsiveness. the
erironment service resources should be resident in memory as are the operating
costent ravcurees and the userinterfuce too. resource. Lulity service resources iharcied
mother utihty mwanagers and tocl resources in general wouild most Lkev be n seconcar
storage b rirst cad to sudh resources should bring them into memery untu they are
2iborosent back 2 the user cr. the end of the user session. It should be a characiensue
sotwoensronment data model that obrects ¢reated in the environiment are tagged bl

e oioontoh o 3ran envirenment resources used in thewr creation. The utiitnt manager

Colas mroesied Avoa resource recorder checker function ez of the datdbase
Calne22re 1o lseate needed resources and bring them into miemers swhen an oot s
woewns2d When a reguired resource cannst te found the user should be 1214 i g

TIoossone Qdnoeitaer LRI Uie nusang orescurce, or proceed anoweme cirer

crootoon Lt tes0Uraes WO LI Liade

. ey
b . X fers, LaTidus fLtersy on RO
SOUQTILAL QL TIaman oo 2Ly

N

1.

LY, L S S G T R A NS P A O AT AR s, B N SR

® hinding transformers, to allow glueing together parameterized objects with
differsnt native contexts (e.g., moving a language dependent code package {rom
a nexwork librarv into the abstract, language independent representauon of the
environment data model):

e anv of a number of other possible utilities which have broad appiicability
among tee! resources and provide a cohesive functional aggregate of svstem
fevel resources (e.2.. a parser or parsers. for the programmung languages and

Jata model supported by the environment, which could be used by a comp:ler.
Jebugger. pretty printer. eIc., Or an unparser to reverse the process).

b. CASE Tool Resource Layer

This laver consist of tools which are integrated by their use of the
underlving resource lavers with adherence to user interfuce guideiines, the environment
Jdata modelis), and the manual and human resources of the environment. It 1s be.ond
the scepe of this work to complete any particular portion of the abstract function
tvping for an environrient. At this point our purpose s just to indicate the direction
cfsuch an effort.

(1) Environment User Interrace. One mught appropriatelv view the entire
CASE environment resource nierarchv as a super operating svstem, with rhis resource

providing functicnaiity simudr to the comnand shell or command line interpreter of a

r.cre conventional operating svstem. However. this resource s the user .nterfuce

(i)

utdelines incarnate, and it expioits interactive graphic user interface pnincipics
Achiene aser friendliness and enhance productivity. It is the example for other ool

Jevelopers wwho wifl use the environment service resources and user terface guidelines

10 achuieve tie common user nterface aspect for integration of their too! o the

2y Progect Management Suppor:. This category of resources tor the [PP
crnvironment mugnt include resources to help an individual manage his ume. budger, or

gther resources. Objects generated nere re.g.. schedules reports) should be dew:

O

ned

“2

e

acihtaze aggregation by the proiect management support resources of a1 Preec

VMuragers environment which s created by extending oy adding resources ¢ P

v

PP erronment. [PP to0is in this category mught include:

® o et schedulcr,
e CUCe QU oo,
'_! NI N Lo "J ' Al) s Qe Yrt resAUTCES l ~t o less d\ P IR
. < V2SO AT lHviuol c»UAAL} resourees ! nct Lairgca A rrL et o
CINITTL o0 ass mnviedoes 1o resSurees cheeuts

AR Y2 rIYYrN. -

[P]

—WTW W W W epem— — =

L an g an b SF 2R 4

(3) System Generation and Management. This should be a {amuliar
categorv of tools commonly found in precgramming support environments. These tools
must assist the programmer in a verifiable transformation of the model of a <oftware
svstem, created in the Designers environment, into an executable model which must be
validated against the model created in the .4nalysts environment. Some of these
resources should have broad enough applicaoiity to be useful in the Managers.
Analysts, Designers and Maintainers environment. For example, the following are
aecessary to effectiveiv manage ail of the various models (re., analvsis. Jesign.
implementation. etc.) within a software project:

® Jocumentation generator,

® yorsion mainrainer,

* arcniver,

® hackup.
Other tocis, in the svstem generation and management category, would include
programming language specific resources directlv supporting transformation of the
Jesignn model into the executable model. One consideration is expleitation of the
avaiabie interactive graphics of the user interface (Singer, 1987) and the power of
al models of cbjects iz.g.. construction of objects by selecting templatcs and sciting
controls or filling our cadices in dialogs, manipulation of objects through their dispiaved
iorms. rwultpie simultaneous wews, animation, etc.) Wwith tools [ike sintay
knowledgeudle edizers, and :nterpreting cr incremental compiling debuggers. to
improve productvity. In cther words, use of visual programmung technigues. Another
consideration ix exploration of automated transtormation technology to take advantage
ct formal spec:fication technology and culculable verification techniques in order to
dear direetlv (with some degree of automation) with the svstem medel generated in tne
Des:grers envirenment. For the [PP subset we would begin with the more traditional

-

prozrainaung suppert environmnt resources and exploit the user iaterfuce for

-3

reduetnity gans. Tools wouid include:
o surax Xaowledgeable ediors),
& compier o nrerpreter(sy, 18
o ustemblerts).

o uor Lerarian,

“"We prefer the use of an incremental compiler for debugging since it makes

26

-

y
)

L}

.I
AN
LAY

' I T I L T L R T N S R A A SN N S A SV T T N
B R R R AR P AP ISP AP AP S AN I NI N VA A IO N A N I N
e e AP

o debuggers,
o analizers melrics.

(4) S:stem Integration and Testing. The [PP user must deal with
integration of various system modules for which he is responsible. [n addituon to
debugging and verification, he 1s also concerned with vaidation of cohesive functional
anits. Resources 1o assist him in test set generation, regression testing, ¢t¢. are
requirad and also form a logical base for extension to overall svstem integration and

testing.

C. WHAT ABOUT THE REAL WORLD

The foregoing discussion presented an extremely high level view of CASE
resource functional abstraction issues in a very limited scope. Hopelully, the benefit cf
such a discussion (in the context of the current chaotic proliferation of disjoint
environments and environment resource options) will be the stimulation of well
Jirected top down efforts to bring order to the deviopment of CASE environments
throughr such techniques. We will conclude with a brief discussion of the mujor
cbetacies to the success of such efforts, directions for continuing this work, and

recommiendations tor MSB.

» % VY ¥

.

0

>
e

V1. CONCLUSIONS

A. INVITATION FOR REVOLUTION

“Welcome to the CASE revolution,” proclaimed the ebullient kevnote speaker at ’
a recent svmposium covering computer-aided software engineening (CASE).

White well meant, those words mav not have been well chiosen for a technicul

aud:ence ever watchiul of marketing hype and sull reeling from the past
revojutions’ of fourth generauon languages. relational data bases. siructured
nrogramming and real-time svsiems. . . .the thought of going through vet ancther

revolution is less than appeaiing to most. . . .appealing about CASE. . .is that its

too0!s. . .do not reailv represent revolution but rather evolution of tools and

concerts. . .alreads embraced in the svstems development lifecycie. (Huling. 1987,

oNENRY!

-

iVebsier's (1966, ».737) defines revolution as

. .

. radical and complete change. . . .
We wouid agree that the CASE concepr 1s evolutionary, not revolutionary. [a this
thesis we've acknotwledged the soffware probiem, and studied the evclution cf software
engineering towards solving it. We have little doub: that CASE environnmienis are a
r.ziurdi and needed stage in this evolution. Probably the most compelling evidence cof
this is the huge demand {or. and resuitant proliferation of, disjoint CASE tcois und
frugmentary environments.

We've coalesced, frem a variety of sources, spanning several vears. a conscnsus
of fundamental principles for good environments. We've reported on. the gencra; state
oi technology which faiis to adhere to these principles. and the technolegy and murkat

‘acters which have encouraged such unprincipled bottom up developments.

S

We've reported on promising research. at the Naval Postgraduate Scheol,

inveoiving formal specification of functional {physical and problem solving) rescurces

fadbstruct funcuon tvping). We've proposed a top down strategy for developing
‘ntegrated CASE eavironments in an open, extensible, evolutionary manner which
coud achieve standardization through {unctional interfaces allowing integration ' coth

commen user interface and interoperanility) without cenflict over advances 1 hardvare

— e ——— -

and soitwuare technolegy, and supporting multipie processes, mcdels, programnung
\anguages, e, through its extensibiity. ‘

We've discussed the major obstacles to such a strategy. The task is Jillicuc

hecause the imperatives include words uke agree and the descriptors are words hixe

AN

-

N AT AT T AT IT S AT RSP AT A RS

standard. And. agreement on standards implies a required shift in marketing strategies,
especially for those hardware and software houses whose svmbiotic relat:onship s the
basis for their competitive edge in controlling their market sharc. Our strategy
provides for competition in hardware and software technologies directed not cnly
. towards iraplementing standard functional resources, but also towards defining ard
implementing new functional resource abstractions which will be integrated with eariier
resources. While this would stll allow for substantial competitive arenas, thev would
be di:Terent than the current arenas. This wouli/ be a “radical and complete change™
‘ So, it mav be argued that our strategyv is an invitation for revolution.

Revolutions tend to begin with a small group of protagonists who mus: gather a
following convinced that their cause is just and that revoiution is necessary. One goal
of :his particular revolution is relief from the current environment chaos and the dawn
cf a new age of open, extensible, integrated environments built from portable, reusahle
functional resources. Another goal is focusing competitive innovation on advancing
the state of technology without getting bogged down just trving to cope with the chaos
spawned along the way. 19

We believe the only practical means of winning such a revolution 1s to make it
seem like evolution. In our discussion of standards enforcement vs. encouragement, we
favored encouragement of standards through good design, availabiiity, and socicl ciinge
realization that the standard is a standard of necessiry). Social change concerning this
issue is already aloot with more and more work focusing on abstraction, rigorous
formalism, user interface design and object oriented software engincering. This 1s 4
relativelv slow process, but it mav be accelerated with a catalvst in the form of

avcidabdlity of well designed resources. Future work shouid be directed towards that end.

8. FUTURE WORK

Functional analysis is prooably the hardest part of the task. We've discussed a

combinution top Jdown bottom up proccess, of balancing high level requirements
against physical resource constraints, in order to arrive at an abstract iuncton

nicrarchy to meet the requirements. The really difficult thing 1s to do thus withou

=

letting nerceived (but not actual) constraints, derived from the wav things are dene
< . <

todayv ‘implementations), jaundice the ftunctional abstractions. To arrive at userul

L

) . - . - . o , "

“"For example, the chaotic prehiferation of programming languages, by the cari |

1570°s, <o saturated development rescurces and hampered devciopment of new :
technology tnat development of anvthing more than rudimentary programnunyg suppoeit

y tocls rcompiiers asseniblers, linkers and icaders) wyas considerably deiaved.

¥

39 v

i

q

|

]

i

{

‘1

]

B I AT ¢ AT AL A IR K DL Mo

abstractions, work should progress in the context of a real world environment (keeping

L: nund the ultimate goal of portable resources). Detailed process and reguirements
analvsis. and understanding. are prerequisites to the high level balancing act required in
functional analyvsis. Working in the real world (e.g., the foundations, say an IPP .
subset. of a CASE environment for an organization like MSB) demands practicul
results vs. esoteric discourse. Practical results are the essence of catalysts for suciul
change.

Once a munimal functional resource hierarchy is available, abstract resources
must be formallv specified. Then, parallel efforts can be applied to implementation.
Completed impiementation of the resources will constitute a prototype version of a
CASE IPP environment. Several prototvpes should be constructed from the same
formal specifications, and testing should be designed to evaluate achievement of the
principles for a good CASE environment. By repeating the process from functional
analivsis through prototvpe. functional evolution should add CASE resources {or direct

support of increasing portions of the software engineering lifecvcle.

C. RECOMDMENDATIONS FOR MSB

Depending cn the resources available for such an undertaking, the rnake process
described above could take several vears (not to mention the time required to win the .
marke: revolution and see commercially available resources {or construcuing worsing
integrated CASE environments). We've also said that MSB iacks the re<ources tc
undertake such a project. Other, more practical solutions are of immediate concern to
vsp. ¢

1. Near Term

Given insufficient resources to make their own CASE environment, and the

inherent disadvantages of the available buy options, we decided to consider semwe <or:
of nvrid, of the available alternatives. as a potential means of means of acguiring

CASE resources while achieving at least some of the advantages embodicd :n the

:”‘Encouragcmem of such development using resources which represent Do)
wurx costs {e.g.. Naval Postgraduate School (NPS) Master's Candidaies) and are
essentiiv free 1o MSB has the potential to contribute to the revoluticnary efiort in the
fong run, but is not likelyv to otfer practicai CASE environment sciutions m the near
term. Botton. up NPS work on specific tool resources (not incorperated 1o Jule unider
a top down CASE environment development plani like AdaMeasure can otfer innted,
mcre unmediate, practicul benetits to MSB (while also contributing to their onistang
Jisraint environment).

- &

™)

WA S ALALA R AL LA S A A Y,

genera. principies for a good envirorment. We've devoted considerable thought o
hybrid make buy schemes, and quitc frankly there aren't many good choices. -}
a. Physical Resources

(1 Hardware. We believe that commuttment to unique architectures and
2 proprictarily constrained source of software is a nustake both now and ior the uture.
Flentbiity now, cnd portability anc reusability in the future. are best served bv a
powerfui gencral purpose hardware suite. MSB has already delined reascnable
minimum phyvsical hardware coanstraints (Missile Software Branch, 1986, p. Si At the
ume these constraints seemed to dictate the use of relatively high priced (S23K - §73K)
32-bit professional workstations. Recent market releases of networkable 32-bit personul
contputer workstations, rival the more expensive machines in capabiiity and are driving
prices into a far more aflordable range (S3K - S23K;. Such an affordable general
purpose hardware base seems to be a reasonable first step to productivity
improvement, with the capability to host CASE resources available today and :into the
future.

(21 Operating System Resources. We've already discussed the problems
imhierent to staadurgizing on top of an existing operating svstem. A traditional
operating svstem choice is likelv to be made based on such considerations as:

¢ \What do we have the most experience with what do we use now? (In the case
of MSB the answer would likelv be UNIX):

e [» our current operating svstem adequate!

e What addinonal capabilities (1.e.. graphics, Jatabase) are required?

¢ Which operaung svstem pronises to support tne broadest selection of oti-the-
sheif tocls e, a defacto standard)?

And sc on. We have little to offer here other than this common sense sort of approach
10 v te ensure the operating svstem will be adequate and supported unul sometiung
agmifieantiv aetter comes along. Obviously if UNIX were kept as a defucto standard
cper:tng svstem, a graphics capability would be required (probably best to stick with
oo 13O GKS standard). Since many of the aisjoint off-the-shell CASE rescurces 1o e
Leosted amplov ther own database muanagemeni, 4 cholce on a database munaenment
Cs

el to augmient the UNIX tile svstem nught either be 4 non-requirement or o¢

Jdtatad Mvone tooi recources chosen.

T One o term opnon. which cte won todiscuss, iy 10 coneentrate Snomndan.a
TANCUTCRS wWnd amiy ar an cetier oriene ooy CASE Jevelopment ethores

e

b. Problem Solving Resources
So far this near term discussion has sounded like straight short rerm off-the-
shelf fuy. Environment service resources are the level at which we can see practical
potential for compromise between the short term off-the-shelf buy and some portions
of the make option. But, look ahead for a moment at the disjoint tools to be bought.
hie tools of the most interest are likely to be the new CASE tools. offering relativeiy
complete, language independent, support to the early software engineering phases of
structured analysis, structured design, and in some cases even generation of source
code. (You supply the compile, debug and test functions.) These tools in general have
unigue internal inicrfaces for interoperability. They generally have primiuve.
unprincipled, inconsistent, and highly modal user interfaces which are also un:que.
These tools generally do not consistentlv adhere to event driven control vs. hierarchical
modality. Theyv generally support a limited set of structured methodologies. The point
we're getting at is that there is littie common ground on which to base environment
service resources. The internal interfaces of these various tools are generally so deepiy
invoived in their design that it is doubtful anv monetary incentive (especiallv something
MSB could offer) would entice a developer to re-engineer his tool to interact only
througihl MSB standard data models of objects. That leaves the user interface.
Would it be possible for MSB to develop standard user interface guicelines
wased on availabiiity of some suitable service package (sav GEM. assuming 1t s
supported by the operating svstem of choice) and then successfully get CASE tool
Jdevelopers (for the tools MSB really wants) to host their tool on the service package
with a user interface conforming to the MSB guidelines? Although probably less
difficuls than the common data mode! problem. the answer is still probably no. The
task would not be trivial. 2 and with a market of at most 18 users, a prohibitive
nricetag should be expected.
One other possibility. which falls somewhere between the long term and
siwort term off-the-shelf buy option, would be to identify a general purpose computing
ssiem meeting the minimum hardware constraints. for which an cperating sistem

supperung a widelyv accepted (defacto standard) well principled. event driven. user

frienciv anteractive graphic user interface. already exists. While the ongmal Apple

Mocizesh feii shert of the munimum hardware constraints, the 68020 pased Muacintosh

--For example, few existing tools are implemented using event driven program
CONITaL 0 maor restructunng would be required to achieve user interfuce guidehines

sased onoevent driven responsivness and permussiveness.

("\

OO 2 20 I O O A A . A A o

[1. scheduled for release this summer, will come much closer. The Macintosh user
interface guidelines and service resources are well principled and accepted. Ongincally
targeted at a market of unsophisticated computer users, the Macintosh stll suflers
from tvpe casting as a fancy tov. However, it is in fact a powerful system in its own
rizht. Over 2 mullion users later, 1t presents a lucrative horizontal market to the
software developers. Off-the-shelf software i1s plentiful and the user interface has
survived to become a defacto standard for Macintosh application developers, while also
influencing the competition. Among the off-the-shelf Macintosh software ure,

sophisticated svntax Knowiedgeable editor visual programnung incremental compile

and Jebug packages. at bargain basement prices (thanks to the horizontal market).
The new Macintosh open architectures promise access to UNIX and MS-DOS. The
nciat here is that, at least to the user interface chaos, there are alternatives. But, it
takes a comnuttment on the part of the customer, to not accept deviation {rom
established user interface guidelines. And, guideline adherence can be a reality it veu
give developers the tools required to make adherence easier than reinventing the wheel.
There 15, of course, alwayvs a bottom line. In this particular discussion it goes iike this.
Are the best functionally, i.e., disregard the kluge user interface) off-the-sheit CASE
tools avallable tor Macintosh? What about Ada support? The answers are generallv
not yer. Can MSB alone get a developer to port his product to Macintosh (adhering 12

th2 user interface)? Probably not, but the incentive ought to be greater due

<
j o)

pctentizhiy larger market.
Sadly. the bottom line of the wheole near term 1ssue would seem 20 be. 1F 18
a matter of survival, join the competition and buy up the disjoint tools of vour cicice.
2. The Future
We are firmly convinced that the future of CASE environment devcicpment
lies ajonz the path we've proposed for functional abstractiog and formal specification
of pivsical and problem solving resources. Kev to this effort are standardization on
user nterfaces. and interoperability based on manipulation of global cohiects

Consisteney checking, validation, verilicaticn, and testing must also be tQunded on e

onjects themselves and their interrclationships. Efforts iike CAIS within the™oD «cem
1o have a start on this path in an extremelv limited and ianguage specific wav, and sans
rizorous formalism. But, they are a sturt. and enjoy direct support from a much higher
level vithin not only the DoD bureaucracy, but (due to clouty within the industry as a

whole. If MSB wants better choices in tne tuture, we recommend they aggrossinenn

=<

. . AT AN
\"\.\\.. _\ ‘.'._, {_\._-.\

lobby the DoD infrastructure to expand work like CAIS
proposed.

in the direction we've

LIST OF REFERENCES

Benningiorn. H.D.. "Production of Large Computer Programs.” Annals 2% the Hostor. r
Comyguing, v. 5. October 1983,

Bochm, B. and others, The TRil" Software Productiaiy Sysiem, TRV, September {387
Boehm, B.. Sofrieare Engineering Econonucs, Prentice Hail, 1951

Booch. G.. Software Erginecring with dda, 2nd ed., Benjanun Cummurgs Purinting
Company lac., 1987,

ahl, O., Dukstra, E.W. and Hoare, C. AR\, Structured Programmung, Acadenuc Press

N -
’

Davis, D.L.. 4 Method for Specifiing Compuicr Rescurces 1 an Irmpiowr rcal o
Indereaacnt Mamer., Naval Postgraduate School. Tech. Report NPS<I son2?
NMonterev, Calitornia, Nevember 1554

avis, DL Iarerfaang and Integrating Hardware and Soitware Desigr S vens
e Desigr Development and Tesunz of Compiex dipones Syaemss NATO N0
Group for Aerespace Reseurch & Development - AGARD v conference premrin: o0 <07
Aprn BINT

DoKstra, EW " The Humble Programmer.” Tunng Award lectire, ¢ e
Lo IO 18 October W72

Faossanks, KOS, and Nieder, J L. daaMeaswre an daaR N oo Voo e s

Fhevis, Navan Postgraduate School, Monterey, Cainorma, Maro by’

T

RoD. traraer Speciticarem foroa Grapne U nceraos Lo Lo

Theas, Naval Pestgraduate Scheon Monteren Caalorooe Decenme o

Horcomson, Poosorsware Developmenr o coommewre tatory, ootes fEEE o

S oo Nt Internanonal s Conderernce o Nerme e bseer ’
{ o LSS SO ardh - 2 A T

P den, Wi CContenpntan Sovtoare Deonpoiens b
Ot concad e o i BN 2SN o N

!
N
~
"
Al
Y
[d
‘

C eMAEr 4 A

- 'l\:‘.':f\;':'f.'!:'{':.{:l"'f YAy """("A ‘-f> A'.-"A-I VAV IS VU VPP | A -

Qg7 o o afa

Lehman. M.M., Stenning. V. and Turski, W.M., “Another Look at Software Design
Methodolegy.” ACM SIGSOFT Software Engineering Notes, v. 9, April 1984,

Lehman, M. M. and Belady, L.A.. Program Evolution: Processes of Softiware Change.
Acadonuc Press, 1983

Maclenran, BJ.. Principles of Programming Languages: Design, Evaluation and
Lopicoensaion, Hotte Rinehart and Winston, 1983.

MacLennan. BJ . Programming Tools and Environments: Implementation of a Proiog; pe
Programeung Envivonment, Part 1, notes for course CS-4150 at the Naval Postgraduate
Schoci. Monterey, California. Winter 1987,

Mdliary Standard Common APSE Interfuce Set (CAIS), draft of proposed standard.
L.S. Depariment of Defense. 31 Januarv 1983.

Misale Software Branch. Weapons Development Division, Naval Wezpons Center,

Ciina Lake. California. 4 Powmnt Paper on the Computer Aided Software Enginecring
vCASES tpproach io Software Enginecring, d-aft, 3 November 1986.

Mruvers, W mAda: First Users - Pleased: Prospective Users - Stili Hesitant.,” Computer,
vo 2o, March 1957

N.si Sl and Redwrine, ST Jr., Information [nterface Related Standards. Guidelviss.
o Recommended Practices SEL-INTO-604, Institute for Defense Anaivas. [DA ~uper
A R SR RN DARY

Natval Air Development Center. five volume coliection of prelimunary reports jor the

Sorvrary Tocknolegy fer Adaptable Reliable Systems Software Engincenng

iranment «STARS-SEE) project. 13 Julv 1986,

el Lo Soitware Environment Research: Directions ror the Nex: Five Yeard”
v 140 A0l 19

Pestrr . D Boune Datatech Pubiications, Mastering tne Maciniosa Tooox, Osbhorne
MLGe R use

Sl G Treracnoe Graphoos on g CANE Envoonmient User Duersace, rougs dralt oo
Novir s Thieas, Novad Postgraduaie Soncel Monterev, Calarnoa, June 1v7

St TN AR Bssav cn Scrtware Reuse,” TEEE Toansacloms o N o
Joooe o SEATe D Serreminer 1ing

, do e TRecwrerents o Ady Procreniminy Support Povironmense 7 TS
Do rens 2 Decse, Forrian D

e e a A A AN hEERAR LT W% MWMERT AL

Suvdam, W., "CASE Makes Strides Towards Automated Software Development,”
Computer Desigr. | January 1987

Webster's Seventh Callegiate Dictionary, G & C Merriam Company, 1966.

Yourdon. E.. Managing the Structured Teciiniques: Strategies for Software Development
i e 1990°s, 3rd ed.. Yourdon Inc.. 1986.

Yurchak, J.NI., The Formal Specification of an Abstract Machine, Master's Thests,
Naval Postgraduate School. Monterey, California. December 1984

\-._:,,_:_-{). A

YL MR S RS L

INITIAL DISTRIBL TTON LIST

No Copies
| Derence Techinoaal Iniormation Center 2
Comnarn N Llon

, . . Sy ..
L PESR Y SPUAINC U W WL PARYE PO I

)
3
<
-~
)
5}
)
]

Jerurment o Computer Saence, Code 32 |

“oer

- Conmer Teonroloz Proyrams, Cole 3]
Mgl PoniETrd e Sekod!
Vomreran OO\ e Tegs

: Do et o0 Conpater Saence, Ceode S2Dy N

i r Cosrer ycence, Code 2By I

U JorN v Ocean Sustems Cermer, Code 427 |
T Oymernd o

- o { \"§:::4§.ull|

(CoLornmLce ane Nanal Worure Shovens Comannand i

o oy - !)(}ﬂ(“._il(..,

P O TR T R] LTI |
D TR RSV S T AENL RN

L R R N AT R T PP IV DI ¥ AT I SN PRGSO 9% ales

et

*

