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Abstract

Empirical evidence shows that the rate of zero-crossings of many

stochastic processes tends to increase by repeated differencing. This

motivates the definition of a class of processes whose expected oscilla-

tion increases monotonically by repeated differencing. The class of

strictly stationary processes is a subclass of this class. It is shown

that there is a limit to oscillation by proving that the point processes

of zero-crossings obtained by repeated differencing converge.
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STRICTLY OSCILLATORY PROCESSES

by

B. Kedem and D. Martin

1. Introduction

In this paper we introduce a class of random processes to which we

refer as strictly oscillatory and suggest a method to monitor the oscilla-

tion observed in such processes. When a process is second-order sta-

tionary, the oscillation observed in the process is described very

effectively by the spectrum. When the process is nonstationary, various

attempts have been made to extend the notion of the spectrum to model

the time varying spectral content of the process. However, a process

need not possess moments at all and still appear to be oscillatory.

What is needed then is a way to describe oscillation in random phenome-

na removed from stationarity assumptions and independent of any moment

conditions.

In many respects the simplest way to describe the oscillation ou-

served in a stochastic process, stationary or nonstationary, is through

the point processes obtained from higher order crossings. The advan-

tages offered by such zero-crossing counts are as follows:

1. The pattern of oscillation changes can be detected and described

directly by zero-crossing counts without recourse to any Fourier

analysis. Thus we gain simplicity.

2. The zero-crossing counts observed in finite series in discrete time

possess all moments regardless of whether the original process has

moments or not. Thus we relax the requirement of finite moments.
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3. In scientific and engineering applications the amounts of data can

be very large and at times forbidding. Zero-crossing counts of

filtered series provide effective data reduction.

4. As we shall see, it is possible to construct useful graphical plots

from the rates of higher order crossings to monitor spectral changes.

In this regard the monotonicity of higher order crossings plays a

crucial role.

We shall show that the class of strictly oscillatory processes is

quite large, and prove a certain weak convergence associated with such

processes. This convergence means that in some sense there is a limit

to oscillation.

Sections 2 and 3 motivate our definition of strictly oscillatory

processes given in section 4. In section 5 we prove the convergence of

point processes defined by higher order crossings, while section 6 dis-

cusses briefly the Gaussian case.
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2. Evolutionary Spectra Approach to Oscillatory Processes

An attempt to model oscillatory processes has been made in Priestley

(1981, ch. 11). It is important to make a distinction between the two

approaches and to point to the difficulties one encounters in trying to

extend the theory of second-order stationary processes to the nonsta-

tionary case. It should be borne in mind that our approach is completely

different and is graphical combinatorial in nature.

In classical spectral analysis of time series, it is generally

assumed that time series are generated by second-order stationary pro-

cesses where the autocovariance function and the spectrum form a Fourier

pair. When stationarity breaks down, this Fourier relation is no longer

true since the autocovariance is time dependent. There were several

attempts to define time-varying spectra of nonstationary processes.

Perhaps the most complete approach is that of "evolutionary spectra"

developed by Priestley (1981). The basic motivation underlying the

evolutionary spectra approach stems from the need to model the local

behavior of nonstationary processes. Whereas the spectrum of a sta-

tionary process describes the power-frequency distribution for the

whole process, the evolutionary spectrum is time dependent and de-

scribes the local power-frequency distribution at each time instant.

A stationary process {Zt} with spectral distribution function F((,)

admits the spectral representation

i itw

Zt = e dF(w), t = 0,±l,..., (1)

where jw() is a process of orthogonal increments and satisfies

2
E d (j) 2  dF(w).

.-.. . ., *- .. '- - ,.-.- . ..-.-.. -. -.** . L . .. - ,-* . , . .. .-- *.. . ', . -. .- *.--%." ...- . .- . . ,..*
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This representation allows us to identify the component in Zt which has

frequency w and to determine the contribution of this component to the

total power of the process. A way to define a class of nonstationary

processes is to replace the exponential function in (1) by a more

general class of functions. Priestley (1981, ch. 11) defines an oscil-

latory process to be a process which admits the representation

Zt  etw At(w)d (w),  t O,±l,... (2)

where for each w, At(w) has a generalized Fourier transform whose modu-

lus has an absolute maximum at the origin, and ,(w) is as in (1). The

evolutionary spectrum at time t is defined as

2dHt(w) = IAt(w)M dF(w), -7 < w < n (3)

and it represents the spectral content of the process at time t. From

(2) and (3) it is possible to construct a theory of prediction and fil-

tering for nonstationary processes which parallels that for stationary

processes.

Though useful in some respect, this theory has its drawbacks when

viewed from the point of view of applications. First, the representa-

tion (2) is not unique and one is faced with the proble-i of choosing

At(w). A possible remedy is suggested in Priestley (1981) when At(w)

is a slowly varying function of t for each fixed w, but is too techni--

cal to be described here. Second, it is difficult to prove that a

process encountered in practice can in fact be represented by (2).

Third, there are processes which appear to be very oscillatory but

possess no moments or just first order moments but for which (2) is

k" '-, .,. . , , .- ..- ,. .- . y . .? .. .- ... - . . .- .. , ,. .. ., -'- -"" "'"z" -"- ' ' "'" 
-
p
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clearly unsuitable. Fourth, when using the evolutionary spectrum (3)

to detect spectral changes in nonstationary time series, we need to

consider and compare many different pictures or graphs, one for each

time point t. Thus graphical detection of spectral changes can be

quite cumbersome using evolutionary spectra. Also, the estimation of

numerous spectra can be very time consuming. A less stringent approach,

but one which still characterizes the local character of nonstationary

processes, can alleviate these difficulties. Such an approach can be

developed by higher order crossings of nonstationary processes and is

evidently not tied to any moments assumption.
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3. Zero-crossing Rate Processes

Let {Zt}, t = 0,±I,..., be a stochastic process defined on some

probability space (Q,A,P). It is assumed the process is not a constant

with probability one but that it may be stationary or nonstationary and

it may or may not possess moments of any order. Let V be the backward

difference operator, VZt = Zt - Z , VjZ = v(vJ-1zt), and define

a sequence of binary processes {X j )} by

, V j-1Z 0

0, otherwise, t = O,_l.....

The symbol changes in {X J)} correspond to zero-crossings in discrete
t

time in {VJ- ZI}. We are interested in the number of such zero-

crossings in finite time series. Define

d~j = l[X J )  X ], t =0,_±l,...,.]
t t t-1,

where I[-] is the indicator function. When d j ) = 1 we say that a

t

zero-crossing occurs at time t in VJ-1zt1. The number of zero-

crossings in

Vj-1 Zt t =

is denoted by DjN and is therefore given by

Dj,N t-'

DN Y d), j 1,2 ,..
t= 1

The DjN are called the (number of) higher order crossings in VJz t ,

t = 1,2,...,N, or HOC for short. Higher order crossings were intro-

duced by Kedem and Slud (1981, 1982) for the purpose of discrimination,

li"
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while their applications in spectrum analysis are discussed in Kedem

(1986a, 1986b, 1987). A review of the theory and application of HOC

can be found in Kedem (1986c). This work demonstrates that when it

comes to stationary Gaussian processes, HOC possess a surprising amount

of spectral information. In fact, in this case the sequence of expected

HOC determines uniquely the correlation function 'pk1 and the normalized

spectral distribution function F(w) and we write

{EDj, N} <> { <=> F(w). (4)

Relation (4) emboldens us to believe that higher order crossings may be

helpful in tracing spectral changes in nonstationary processes as well.

Observe that in the stationary case the zero-crossing rate Dj,N/N

converges to a constant in some sense for fixed j as N - . On the

other hand for a nonstationary process no such convergence is expected

since the spectral content or oscillatory pattern of such a process

may be time-varying. This motivates our definition of rate processes

for monitoring spectral changes and changes in oscillation patterns.

Definition 1. A (HOC) rate process of order j is defined for each

fixed j by the process
D.

Dj(N) - 9,ND.N N ' N = 1,2,.
N

It is seen that for each fixedj, D(N) traces the zero-crossing rate

of {VJ- Zt}, t = 1,...,N, as a function of N. Evidently

0D (N) < 1

and so, any rate process possesses all moments. It is helpful to look

at the graphs of rate processes obtained from different time series.
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The figures below feature rate processes corresponding to sta-

tionary and nonstationary processes. Each figure displays the first

eight rate processes D,(-),...,D8 (.), where Dl(.) is the lowest

curve while D8 (.) is the highest. It is seen that changes in the

spectral content and in the oscillatory pattern in each case are well

captured by the rate processes. Also, the rate processes display a

monotone convergence towards a limiting rate process which can be in-

terpreted to mean that there is a limit to the oscillation displayed

by a process stationary or not. It is this monotone behavior observed

in numerous phenomena which prompted this investigation and conse-

quently our definition of strictly oscillatory processes.

We close this section by noting a useful feature of the figures.

As mentioned earlier, if one tries to plot evolutionary spectra on a

single coordinate system the graphs may overlap heavily so that separate

plots, up to one graph for each time point, are necessary in general.

On the other hand our figures provide a compact way to trace the

oscillatory history of a process on a single frame and overlapping is

prevented due to the displayed monotonicity of rate processes. Now,

if one tries to imitate the idea of plotting other quantities as func-

tions of time, overlapping graphs may occur. For example, Figure 12

shows the autocorrelations of the differences Viz t as functions of

time where the time series comes from the utterance of "six". It is

seen that both, the rate processes and the autocorrelation processes,

trace the spectral changes in the time series but in the rate processes

no overlapping occurs.

: ? .i ... i . "'. '" - ''- /-- "- -.- '." . -" , i ;- -.i - : :
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Figure 2. A time series from the utterance of "one" and the corre-
sponding first eight rate processes.
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4. Definition of Strictly Oscillatory Processes

The monotone behavior of rate processes observed in the figures is

quite a general phenomenon and can be attributed to the difference opera-

tion. For example, in the second-order stationary case, a difference

operation acts as a high pass filter which gives more power to higher

frequencies. This amplification causes the process to be more and more

oscillatory with each application of V. In general, differencing causes

values at neighboring points to be negatively correlated and thus in-

crease the number of symbol changes in xJ)}. It seems therefore that

the requirement that EDj(N) increases as j for each fixed N is

quite reasonable due to this observed generality. This leads to our

definition of strictly oscillatory processes.

To define the class of strictly oscillatory processes, and at the

same time describe the monotone convergence observed in the figures we

appeal to the theory of point processes as developed by Kallenberg (1976).

Recall that {Zt}, t = O,±l,..., is a process defined on the proba-

bility space (S,A,P) and let S = [O,-) be equipped with the Borel

field G. Further let B be the class consisting of all bounded sets in G.

The set of all locally finite measures v' that are nonnegative and integer

valued is denoted by N. Thus ji c N if for B E S

J(B) E Z'7 {0,,2,...}.

In N we introduce the a-algebra F generated by the mappings p - (B),

B c B. This is the smallest a-algebra that makes these mappings measur-

able. By a point process on S we mean any measurable mapping of (6,A,P)

into (N,F).

F'.: ' " " " , " i - , , ' ,, 
'

. ',' -, ''''-, ". .. .'''
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With an obvious extension of the previous notation, let D.(B),

B c B, be the number of zero-crossings generated by Vj  in B. Then

for each realization of {Zt}, Dj(.) defines a measure in N and so for

each fixed j, D.(.) is a point process. In other words, the values of

Dj(-) when ranging over 0 are measures in N. The sequence {Dj(.)} can

now be used in defining the class of oscillatory processes.

The following definition reflects our experience that by differencing

any finite section of a process the corresponding higher order crossings

tend to increase. Note that since t is defined over all the integers,

theoretically we do not have any problem with repeated differencing ap-

plied to finite sections. On the other hand, in practice only finite

records are available and we lose one observation with each difference.

However this does not pose any serious problem since the amount of dif-

ferencing needed in practice is very small as is well indicated by the

above figures.

Definition 2. A stochastic process {Zt}, t = 0,-I,..., is called

strictly oscillatory if and only if

EDj(B) EDj+I(B)

for every B c 6 and j = 1,2,...

The class of strictly oscillatory processes is quite large.

Strictly stationary processes are members of this class and second-order ,

stationary processes become strictly oscillatory by undergoing a sufficient

amount of differencing. However, oscillatory processes in the sense of

Priestley (1981) need not be strictly oscillatory. Our first example con-

cerns stationary Gaussian processes.

a-- .. .. . . . . . . ... - - .- --- .-. '-- . --- - ----.--.--. - - .-
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Theorem 1. A zero mean stationary Gaussian process is strictly oscilla-

tory.

Proof. Let Pis PV(1) be the first autocorrelations in Z and VZ respec-

tively. Then from Kedem (1984) pV(1) < pl. By stationarity, it is

sufficient to consider the sequence of higher order crossings. Consider

Dl,N and D2, N. Then the Gaussian assumption entails

= 1 1 .-1 1 1 1EDN N(2- -sin p,) _ N(-- sin- I)) = ED2

But since the differences {VJZ t} are again stationary and Gaussian with

mean zero we also have ED2,N _ ED3 ,N, and ED3,N _ ED4 ,N, etc. There-

fore

EDj,N EDj+,N all j = 1,2,....

Since the distributions in {Zt ) are unaffected by time shifts due to

stationarity, the proof is complete. 0

We can actually prove a stronger result of which Theorem 1 is only

a special case. This pertains to strictly stationary processes in

general. In this case no moments assumption is needed at all.

Theorem 2. Every strictly stationary process {Zt} is strictly oscillatory.

Proof. Again, by stationarity it is sufficient to consider the HOC D

Define

I t t_ 1 ) t

Then

ED. = 2 N p(J (l _ x(J))
1-I

'.P ~~~~~~" |4'. -P __P .- A .
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Now, in general we have (See Lemma I below)

Dj,N < Dj+I,N + 1

surely. Therefore ED j,N - EDj+IN + 1 and so

2Np(J)(l- XlJ) )  2Np(i+l)(l-X0 +1)N

1 1 +
N - N N

As N + we obtain the inequality

(j (al) -

2p(J)(l- X J)) < 2 p(j+')(l - X1  ). ..
1 I

Therefore

EDjN 2pi)(1- AM) _ 2Np(j+l)(l-XVj+l)) EDj+lN "

Since by stationarity every stretch of data of fixed length is endowed

with the same distribution, it follows that the process is strictly

oscillatory. u

Corollary 1. A sequence of independent and identically distributed ran-

dom variables is strictly oscillatory.

Observe that the original sequence may be completely random but

that the higher order differences become highly dependent and by the

corollary also more and more oscillatory.

Our next example concerns weakly stationary processes. Here we

appeal to the spectral properties of such processes as expressed by

their spectral measures. But first we prove a basic lemma which builds

on the i,.ceresting relation between {X I} and {X )).t t

~1~.~ .......................................................
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Lemma 1. For any process {Zt} there exists a to, 1 to  N and to

depends on j, j = 1,2,..., such that for every N

N (j) NI d d X l)  (5)

t=l t=l

t~to t~tot0  t~ 0

with probability one.

Proof. Fix j. Suppose D. = 0; then we are done. So suppose

Dj,N > O. Then there is at least one symbol change in {Xi 1, t= 1,...,N.

Note that in general we have the implication

{x(J) X j ) } c {X j+l) = X j ) } "  (6)

It follows that there exists tI such that X(j+) = X(j ). But (6) implies

that each symbol change in {X~ j )} produces at least one symbol change in

{x~j+l)} for tI < t 5 N. On the other hand, again by (6) and due to an

end effect, the number of symbol changes in {X~ j+ l)} always exceeds that
t

in {X j )} minus one for 1 < t < tI. It follows that there exists a to

which depends on j such that (5) holds.

The lemma says that in {xiJ+l)}, 1 < t N, there are N-1 loca-

tions which give at least as many symbol changes as the corresponding

locations in {x J)}, while no information is available about the re-

maining location which we denote by to. Clearly to may change with j.

Note that at to we may lose a symbol change with each difference as is

the case with polynomials in t. For by differencing a polynomial of

degree n we obtain another polynomial of degree n-l.

X--,
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Theorem 3. Let {X.Y be a weakly stationary process with spectral dis-

tribution function F. Assume that 7r is in the spectral support. Then

{VJZ t} becomes strictly oscillatory as j - -.

Proof. Again by stationarity, it is sufficient to consider the higher

order crossings. The normalized spectral measure of {VJz t} is given by
1 "j

(sin -W) 2jdF(w)
v (dw) -T f_ (sin X)2JdF(X)

and from Kedem and Slud (1982) we know that vj converges weakly to a

measure supported at ±7. That is,

1 - 1
=> T+ 

6 7T

where 6 denotes the point mass at u. Therefore as j -o
u

Corr(vzt_1 ,VJZt) = cos(W)vj(dw) -1.

But this means that for every tO

(J) = P(d(j )  = 1) - 1, j - ,
t t0 0

or

E(d(j+ ] )  - d(j )) - 0, 0o
to  to

and apply the lemma. U

To prove that a process is not strictly oscillatory it is sufficient

to show that Ed j) does not increase with j for some t.
,t
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Example 1. Let c be a zero mean continuous random variable. Define

{Zt } by

Z1 =

Z2 = E

Z t = 0, t 1,2.

Then the differences yield

• " -1 0 1 2 3 4 5 6 7 8

Z ... 0 0 C E 0 0 0 0 0 0 ...

VZ ... 0 0 C 0 - 0 0 0 0 0 ...

V2Z ... 0 0 C - E -C 0 0 0 0 .•

V3Z •" 0 0 6 -26 0 2c - e 0 0 0 ..

V4Z •'• 0 0 s -3c 2c 2s -3 E 0 0 ...

V5Z ... 0 0 c -4 5c 0 -5 4c -e 0

. . . . . .. . .

We see that
Ed (3) 1 but Ed (4) :P(C<0) < 144 (e0<

and

5) but Ed(6) p (>0) < 1.
E d 5 1 u d 5

Therefore {Zt} is not strictly oscillatory.

Example 2. The above example can be generalized in various ways. Let

{Ft Ibe a sequence of continuous random variables each with mean zero.

Define

C. *~t ~ *V~ . . . . . . . .
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S!Ct' t<O0

Zt El t 1,2

0 , otherwise.

Then

Z ... EO 0 11 0 0 0 ""

VZ Ci-C0 0 -6I 0 0 -"

V2Z C 0-C E - C E 0 ...

V3Z -C0 2C1  - 1

and so

1= Ed(3) > Ed(4) = P(CO and Fi have the same sign)

and the process is not strictly oscillatory.

The last two examples show that we can alter a sequence of random

variables and even a strictly oscillatory sequence and render it non-

oscillatory in our sense. This leads to the observation that an

oscillatory process in the sense of Priestley (1981) need not be strictly

oscillatory.
,

Theorem 4. Suppose a process {Z t} is an oscillatory process with the

representation (2). Then it need not be strictly oscillatory.

Proof. It is sufficient to construct an example. Let {ct} be a second

order Gaussian stationary process with mean zero and correlation func-

tion Pk. Let {ct} be a sequence of nonnegative constants. Define

Zt =cCt, t 0,±l,....t t
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Then Zt is oscillatory with respect to {cte it}. Assume p2 = 0 and

consider the time points 7, 8, say. Then

Corr(Z 7 1Z8) = P1

while

Corr(VZ7,VZ8 ) - 0, as c7 - 0.

Thus, when p1 -* -1 and c7 - 0 we have

Ed(l) >E(2). C
8 8

It should be noted that by a proper choice of ct. Zt may still be

strictly oscillatory. For example, we can choose ct to be a slowly time

varying sequence.

W

,9
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5. Convergence of Rate Processes

Consider the rate processes in the above figures. It is seen em-

pirically that from a certain point, say No, we have

D1(N) D 2 (N) D3(N) 5 ... 1, VN > No ,

where N0 is quite small, e.g. N0 = 100. This is rather expected since

by Lemma 1, for all N

Dj(N) 5 Dj+(N) + surely. (7)

Now fix N0 and consider Dj(N), N > N0. Then by (7), as N0  CO, Dj(N)

for N > N0 will tend to increase with j. More precisely, (7) entails

that

c. E lim sup Dj(N)

converges monotonically with probability one as j - to a limit, c,

say, such that 0 < c < 1. This convergence, though useful in spectrum

analysis as is shown in the next section, ignores the oscillatory be-

havior of the process for low and moderate N. We therefore take a

different route.

Inspired by the figures, we shall assume that a limiting rdte

process exists and let D(.) be the corresponding point process.

A convenient way to describe the monotone convergence of the rate

processes, is to prove the convergence of the corresponding point

processes Dl(.), D2(.), ..., obtained from strictly oscillatory pro-

cesses, to D('). To do so, we follow the work of Kallenberg (1976).

.°5
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For Pi c N we write pf for the integral

S f(s)p(ds).

For each fixed f, this integral is a mapping from N into R. Let f be

an arbitrary continuous function f: S - [O,) with compact support.

The class of all finite intersections of N-sets of the form

{P: s < Pif < t}

where s and t are real numbers, form a base for a topology on N to which

we refer as the vague topology. Then Pn tends to P in this topology iff

Pnf - pf for all continuous functions f from S to [0,oo) with compact

support. Then N becomes a metric space and we can think of the D.(-)

d
as random elements in (N,F). By definition Dj(.) d D(.) if

Eg(Dj) Eg(D) for all bounded continuous functions g: N -+ R.

Observe that for any B c B we can have at most a finite number

of integer points and thus also a finite number of zero-crossings.

Therefore

lim lim sup P(D.(B)>r) = 0.

Next, by definition of strictly oscillatory processes, for any I (a,b],

a,b finite, we have by monotonicity

ED (I)- ED(I).

Third consider, without loss of generality, the higher order crossings

Dj and Dj+,N Then by Lemma 1, there exists to, D' and D'., such

that

ii
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. D 0. + d~j

j,N Dj t0

Dj+I,N D +1 + d(J+ )t 0

and D< D surely.

3- j+l '

By strict oscillation

P(d(j )  > 1) < P(d(j+l )  > I). ;
t0 to

Therefore, by Lemma 1,

P(D' + d(j ) > 1) < P(D' + d(J+l) > 1)
.3 to0 j+l t0

or
S.

P(Dj,N = 0) > P(Dj+I,N = 0)

and so the sequence P(Dj,N = 0) converges monotonically as j for

any N. By appealing to Theorem 4.7 in Kallenberg (1976) it follows that

D.) converges in distribution to the point process D(.) corresponding

to the limiting rate process.

Theorem 5. Let {Zt} be strictly oscillatory and let D(.) be the point

d
process corresponding to the limiting rate procsss. Then D() d D(.)"

with respect to the vague topology on N.

.1
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6. The Stationary Gaussian Case.
00=

Theorem 6. Let {Z t}t=l be a zero mean stationary Gaussian process, and

suppose w* < Tr is the highest frequency in the spectral support. If

lim Dj(N) < w/I r with probability one, j = 1,2,..., then

lim lim D.(N) = a.s.j- N- o J T

Proof. Let v. be as in Theorem 3. Then from Kedem and Slud (1982)

I)1V=> 18 * + -6* j - .But the Gaussian assumption implies that

7T

cos (TIED. (N)) T f cos(w)v.(dw) cos(w*), j-

Therefore ED.(N) w-/r, j , uniformly in N.

By strict stationarity we can define the a.s. limit

j -lim Dj(N).

N,

Then by Lemma 1 cj_ cj+ 1  a.s., and so lim c c < W*/Tr a.s. Thus

by bounded convergence E(c.) - E(c), j - . Strict stationarity and

Fatou's Lemma yield

E(c.) > lim sup ED.(N).

Since Ec. - Ec and ED(N) w /Tr

E(c) > w*I.

But c W /. Therefore c - w*/iT a.s. 0

%°.
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Corollary 2. If w* = 7T, then

lim lim Dj(N) = 1

Proof. In this case 0 < D.(N) < 1 surely. 0

Let p(J)(1) be the first correlation in {V zt}.

Theorem 7. Let {Zt} 1 be an ergodic zero mean stationary Gaussian process.

Then

- 1 -1 (p1)lim D.(N) = -cos- (p( l)) a.s.

Proof. The proof follows from the fact that

p(0 (1) = cos(TrED 1 (N)). 0

Theorem 7 shows that in some cases we can expect the rate processes

to converge into straight lines, a fact that can be used in classifica-

tion and discrimination of stationary processes.

.=
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