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STRICTLY OSCILLATORY PROCESSES ’
by

Benjamin Kedem and Donald Martin
Department of Mathematics, University of Maryland, College Park

Abstract .
JlEmpirical evidence shows that the rate of zero-crossings of many
stochastic processes tends to increase by repeated differencing. This 3
motivates the definition of a class of processes whose expected oscilla- D
tion increases monotonically by repeated differencing. The class of
strictly stationary processes is a subclass of this class. It is shown

that there is a 1imit to oscillation by proving that the voint processes :
1Y

of zero-crossings obtained by repeated differencing converge.
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STRICTLY OSCILLATORY PROCESSES

by
B. Kedem and D. Martin

1. Introduction

In this paper we introduce a class of random processes to which we
refer as strictly oscillatory and suggest a method to monitor the oscilla-
tion observed in such processes. When a process is second-order sta-
tionary, the oscillation observed in the process is described very
effectively by the spectrum. When the process is nonstationary, various
attempts have been made to extend the notion of the spectrum to model
the time varying spectral content of the process. However, a process
need not possess moments at all and still appear to be oscillatory.

What is needed then is a way to describe oscillation in random phenome-

na removed from stationarity assumptions and independent of any moment

conditions.

In many respects the simplest way to describe the oscillation ou-
served in a stochastic process, stationary or nonstationary, is through
the point processes obtained from higher order crossings. The advan-
tages offered by such zero-crossing counts are as follows:

1. The pattern of oscillation changes can be detected and described
directly by zero-crossing counts without recourse to any Fourier .
analysis. Thus we gain simplicity.

2. The zero-crossing counts observed in finite series in discrete time
possess all moments regardless of whether the original process has b

moments or not. Thus we relax the requirement of finite moments.
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3. In scientific and engineering applications the amounts of data can

DA R o eR B =

be very large and at times forbidding. Zero-crossing counts of

filtered series provide effective data reduction. by
4, As we shall see, it is possible to construct useful graphical plots .

from the rates of higher order crossings to monitor spectral changes.

In this regard the monotonicity of higher order crossings plays a

crucial role.

We shall show that the class of strictly oscillatory processes is -
quite large, and prove a certain weak convergence associated with such
processes. This convergence means that in some sense there is a limit

to oscillation.

Sections 2 and 3 motivate our definition of strictly oscillatory .
. . . . n
processes given in section 4. In section 5 we prove the convergence of ”
A
point processes defined by higher order crossings, while section 6 dis-
cusses briefly the Gaussian case. .
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2. Evolutionary Spectra Approach to Oscillatory Processes

An attempt to model oscillatory processes has been made in Priestley
(1981, ch. 11). It is important to make a distinction between the two
approaches and to point to the difficulties one encounters in trying to
extend the theory of second-order stationary processes to the nonsta-
tionary case. It should be borne in mind that our approach is completely
different and is graphical combinatorial in nature.

In classical spectral analysis of time series, it is generally d
assumed that time series are generated by second-order stationary pro-

cesses where the autocovariance function and the spectrum form a Fourier

pair. When stationarity breaks down, this Fourier relation is no longer
true since the autocovariance is time dependent. There were several !
attempts to define time-varying spectra of nonstationary processes.
Perhaps the most complete approach is that of "evolutionary spectra"
developed by Priestley (1981). The basic motivation underlying the
evolutionary spectra approach stems from the need to model the local 1
behavior of nonstationary processes. Whereas the spectrum of a sta-
tionary process describes the power-frequency distribution for the
whole process, the evolutionary spectrum is time dependent and de- ,
scribes the local power-frequency distribution at each time instant.

A stationary process {Zt} with spectral distribution function F(w)

admits the spectral representation

m jtw
zt=J Wi (w),  t=0,0,..., (1)
=T
where £(w) is a process of orthogonal increments and satisfies .

E[dE(w)]C = dF(w). k
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This representation allows us to identify the component in Zt which has
frequency w and to determine the contribution of this component to the
total power of the process. A way to define a class of nonstationary
processes is to replace the exponential function in (1) by a more

general class of functions. Priestley (1981, ch. 11) defines an oscil-

latory process to be a process which admits the representation :'
T . '

z, - fﬂ e B (w)dew),  t =041, (2) 1

where for each w, At(m) has a generalized Fourier transform whose modu- h
Tus has an absolute maximum at the origin, and £(w) is as in (1). The ﬁ
evolutionary spectrum at time t is defined as S
.

dH () = A ()| %dF(w), -7 < w s (3) :

and it represents the spectral content of the process at time t. From 4
(2) and (3) it is possible to construct a theory of prediction and fil- i
tering for nonstationary processes which parallels that for stationary E;
processes. -4
Though useful in some respect, this theory has its drawbacks when E
viewed from the point of view of applications. First, the representa- ‘
tion (2) is not unique and one is faced with the proble of choosing .;
At(w). A possible remedy is suggested in Priestley (1981) when At(m) ?
is a slowly varying function of t for each fixed w, but is too techni- $
cal to be described here. Second, it is difficult to prove that a -
process encountered in practice can in fact be represented by (2). jg
Third, there are processes which appear to be very oscillatory but ZE

possess no moments or just first order moments but for which (2) is




clearly unsuitable. Fourth, when using the evolutionary spectrum (3)

" oty

to detect spectral changes in nonstationary time series, we need to

consider and compare many different pictures or graphs, one for each E
time point t. Thus graphical detection of spectral changes can be i
quite cumbersome using evolutionary spectra. Also, the estimation of
numerous spectra can be very time consuming. A less stringent approach, E
but one which still characterizes the local character of nonstationary E
processes, can alleviate these difficulties. Such an approach can be p
developed by higher order crossings of nonstationary processes and is 5
evidently not tied to any moments assumption. i
ﬁi
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3. Zero-crossing Rate Processes :
f
Let {Zt}, t = 0,#1,..., be a stochastic process defined on some .
probability space (Q,A,P). It is assumed the process is not a constant -
with probability one but that it may be stationary or nonstationary and R
it may or may not possess moments of any order. Let V be the backward :
difference operator, VZt = Zt - Zt-l’ VJZt = V(VJ-]Zt), and define
a sequence of binary processes {X£J)} by
1, vz 50
(3) t :
X = ‘
t )
0, otherwise, t =0,+1,... . N
~
The symbol changes in {Xﬁj)} correspond to zero-crossings in discrete by
time in {VJ']Zt}. We are interested in the number of such zero- by
crossings in finite time series. Define ﬁ
(3) = ;(y(d) (J) -
dt = I[Xt # Xt-ll’ t = 0,+1, s
where I[+] is the indicator function. When dﬁJ) = 1 we say that a
zero-crossing occurs at time t in {VJ']Zt}. The number of zero- .
crossings in
Pz, =2, N R
.
is denoted by Dj N and is therefore given by >
N 3
R :
o0 _
The Dj N are called the (number of) higher order crossings in VJ_]Zt,
t =1,2,...,N, or HOC for short. Hiqgher order crossings were intro-
duced by Kedem and Slud (1981, 1982) for the purpose of discrimination, :j
v

~



while their applications in spectrum analysis are discussed in Kedem

(1986a, 1986b, 1987). A review of the theory and application of HOC
can be found in Kedem (1986c). This work demonstrates that when it
comes to stationary Gaussian processes, HOC possess a surprising amount
of spectral information. In fact, in this case the sequence of expected
HOC determines uniquely the correlation function {pk} and the normalized

spectral distribution function F(w) and we write

(ED; W} <= {p} = Flw). (4)

Relation (4) emboldens us to believe that higher order crossings may be

helpful in tracing spectral changes in nonstationary processes as well.
Observe that in the stationary case the zero-crossing rate Dj,N/N

converges to a constant in some sense for fixed j as N » », On the

other hand for a nonstationary process no such convergence is expected

since the spectral content or oscillatory pattern of such a process

may be time-varying. This motivates our definition of rate processes

for monitoring spectral changes and changes in oscillation patterns.

Definition 1. A (HOC) rate process of order j is defined for each

fixed j by the process

It is seen that for each fixedj, ﬁj(N) traces the zero-crossing rate

of {VJ']Zt}, t=1,...,N, as a function of N. Evidently

0 <D, 1
< DJ(N).<

and so, any rate process possesses all moments., It is helpful to look

at the graphs of rate processes obtained from different time series.

.4-,_'.'."," N
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| . The figures below feature rate processes corresponding to sta-
tionary and nonstationary processes. Each figure displays the first
eight rate processes 5},(-),...,Bé(c), where —i(-) is the lowest
curve while ﬁé(-) is the highest, It is seen that changes in the
spectral content and in the oscillatory pattern in each case are well
captured by the rate processes. Also, the rate processes display a
monotone convergence towards a limiting rate process which can be in-
terpreted to mean that there is a limit to the oscillation displayed
by a process stationary or not. It is this monotone behavior observed
in numerous phenomena which prompted this investigation and conse-
quently our definition of strictly oscillatory processes.

We close this section by noting a useful feature of the figures.
As mentioned earlier, if one tries to plot evolutionary spectra on a
single coordinate system the graphs may overlap heavily so that separate
plots, up to one graph for each time point, are necessary in general,
On the other hand our figures provide a compact way to trace the
oscillatory history of a process on a single frame and overlapping is
prevented due to the displayed monotonicity of rate processes. Now,
if one tries to imitate the idea of plotting other quantities as func-
tions of time, overlapping graphs may occur. For example, Figure 12
shows the autocorrelations of the differences ijt as functions of
time where the time series comes from the utterance of "six". It is
seen that both, the rate processes and the autocorrelation processes,
trace the spectral changes in the time series but in the rate processes

no overlapping occurs.
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4. Definition of Strictly Oscillatory Processes

The monotone behavior of rate processes observed in the figures is
quite a general phenomenon and can be attributed to the difference opera-
tion. For example, in the second-order stationary case, a difference
operation acts as a high pass filter which gives more power to higher
frequencies. This amplification causes the process to be more and more
oscillatory with each application of V. In general, differencing causes
values at neighboring points to be negatively correlated and thus in-
crease the number of symbol changes in {Xﬁj)}. It seems therefore that
the requirement that Eﬁs(N) increases as j » = for each fixed N is
quite reasonable due to this observed generality. This leads to our
definition of strictly oscillatory processes.

To define the class of strictly oscillatory processes, and at the
same time describe the monotone convergence observed in the figures we
appeal to the theory of point processes as developed by Kallenverg (1976).

Recall that {Zt}, t = 0,+1,..., 1is a process defined on the proba-
bility space (R,A,P) and let S = {0,») be equipped with the Borel
field G. Further let B be the class consisting of all bounded sets in G.
The set of all locally finite measures pu that are nonnegative and integer

valued is denoted by N. Thus wc N if for B e b
+
u(B) e 2 = {0,1,2,...}.

In N we introduce the g-algebra F generated by the mappings u » u(B),
B € B. This is the smallest o-algebra that makes these mappings measur-

able. By a point process on S we mean any measurable mapping of (,A,P)

into (N,F).
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With an obvious extension of the previous notation, let Dj(B),

B € B, be the number of zero-crossings generated by VJ']Zt in B. Then
for each realization of {Zt}, Dj(-) defines a measure in N and so for
each fixed j, Dj(-) is a point process. In other words, the values of

Dj(-) when ranging over Q are measures in N. The sequence {Dj(o)} can
| now be used in defining the class of oscillatory processes.

| The following definition reflects our experience that by differencing
any finite section of a process the corresponding higher order c¢rossings
tend to increase. Note that since t is defined over all the integers,
theoretically we do not have any problem with repeated differencing ap-
plied to finite sections. On the other hand, in practice only finite
records are available and we lose one observation with each difference.
However this does not pose any serious problem since the amount of dif-

ferencing needed in practice is very small as is well indicated by the

above figures.

Definition 2. A stochastic process {Zt}, t = 0,+1,..., 1is called

strictly oscillatory if and only if

; !

]

EDj(B) < EDj+](B) “

for every Be B and j = 1,2,... :

The class of strictly oscillatory processes is quite large. :

Strictly stationary processes are members of this class and second-order -

stationary processes become strictly oscillatory by undergoing a sufficient p

amount of differencing. However, oscillatory processes in the sense of

Priestley (1981) need not be strictly oscillatory. Our first example con-

cerns stationary Gaussian processes. ;

N

®
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Theorem 1. A zero mean stationary Gaussian process is strictly oscilla-
tory.

Proof. Let o, py(1) be the first autocorrelations in Z and vZ respec-
tively. Then from Kedem (1984) pv(]) < Py By stationarity, it is
sufficient to consider the sequence of higher order crossings. Consider

D] N and 02 N Then the Gaussian assumption entails

1 -1

1 1 ;- T 1 .
EDy = N(z - 7 sin ‘py) < N(z - ¢ sin” py(1)) = ED, -

But since the differences {VJZt} are again stationary and Gaussian with
mean zero we also have EDZ,N < ED3,N’ and EDB,N < ED4,N’ etc. There-

fore

ED < ED

3N all j =1,2,... .

J+1,N?

Since the distributions in {Zt] are unaffected by time shifts due to

stationarity, the proof is complete. a

We can actually prove a stronger result of which Theorem 1 is only
a special case. This pertains to strictly stationary processes in

general. In this case no moments assumption is needed at all.

Theorem 2. Every strictly stationary process {Zt} is strictly oscillatory.
Proof. Again, by stationarity it is sufficient to consider the HOC DJ N

Define

Then

s -
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Now, in general we have (See Lemma 1 below)

D D 1

NS Ya Nt

surely. Therefore EDj,N < EDj+1,N + 1 and so

2Np(j)(] _ A%j)) 2Np(j+1)(1 _ A%j+])) :
N : N "N

As N » o we obtain the inequality

Therefore

ey = 2t (1 -ald)y a3 (34T < g

J,N 1 JH1,N°
Since by stationarity every stretch of data of fixed length is endowed
with the same distribution, it follows that the process is strictly

oscillatory. 0

Corollary 1. A sequence of independent and identically distributed ran-

dom variables is strictly oscillatory.

Observe that the original sequence may be completely random but
that the higher order differences become highly dependent and by the
corollary also more and more oscillatory.

Our next example concerns weakly stationary processes. Here we
appeal to the spectral properties of such processes as expressed by

their spectral measures. But first we prove a basic lemma which builds

on the interesting relation between {XgJ)} and {X§J+])}.

WEXSTIEIR



LI LN W U U S A TS UM U (AP LAY AT P L W LAY U UL LA LA L U LI UNY L LW U L P.a0 "al, gl ‘et ‘pal 9,48, "t \ T\ O a8 at Vel Tl tat ol cab tar "af el ‘el “¢b

25

Lemma 1. For any process {Zt} there exists a tys 1<tys N and to

depends on j, j =1,2,..., such that for every N L
N . N ) .

(J) (j+1) 3

tzl R tZ1 R (5) b

tfto t#to ;

with probability one.

Proof. Fix j. Suppose Dj,N = 0; then we are done. So suppose

Dj,N > 0. Then there is at least one symbol change in {Xij)}, t=1,...,N. ;
Note that in general we have the implication

U

9.
£ Iy (6)

) (J) (3+1) _ g
X e X Xt -
It follows that there exists t, such that X(J™1) = x{3). But (6) impiies
. ] 1
that each symbol change in {X(J)} produces at least one symbol change in
t

{X§J+])} for t, <t < N. On the other hand, again by (6) and due to an

1

end effect, the number of symbol changes in {X£J+])} always exceeds that }C

3 P L
in {XﬁJ)} minus one for 1 < t < tl‘ It follows that there exists a t0 .
which depends on j such that (5) holds. 8] 2

The lemma says that in {Xéj+])}, 1 <tg< N, there are N-1 Jloca-

tions which give at least as many symbol changes as the corresponding

)

Tocations in {X§J }, while no information is available about the re- é
maining location which we denote by ty- Clearly ty may change with j. ;:
Note that at t, we may Jose a symbol change with each difference as is :}

A )

the case with polynomials in t. For by differencing a polynomial of

degree n we obtain another polynomial of degree n-1,




‘ Theorem 3. Let {Xt} be a weakly stationary process with spectral dis-
tribution function F, Assume that w is in the spectral support, Then
{Vth} becomes strictly oscillatory as Jj + «,

Proof. Again by stationarity, it is sufficient to consider the higher

order crossings. The normalized spectral measure of {VJZt} is given by

(sin;—w)Zde(w)

Nl = 112
[ (sinzA) JdF(2)
-
and from Kedem and Siud (1982) we know that v converges weakly to a
measure supported at *w. That is,
Vi ™ 2%t 20

where du denotes the point mass at u. Therefore as j + «

Corr(ij

. m
J - + -
t-10 Y Zt) = Lﬂ_cos(w)vj(dw) 1.

But this means that for every t

0
eald) = pald) =y s, e,
0 0
or
E(d(‘]+]) - dg‘”) + 0, j > o,
0 0
and apply the lemma. U

To prove that a process is not strictly oscillatory it is sufficient

to show that Edij) does not increase with j for some t.

e ".-_"l,,“.\'-\‘-\'.\“\- - .

AR
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Example 1. Let ¢ be a zero mean continuous random variable. Define

{Z,} by
Z] =€
22 =g :
Zt =0, t#1,2.

Then the differences yield

eer -1 0 1 2 3 4 5 6 7 8 e

z 0 e e 0 0 0 0 0 0
vz 0 e 0 - 0 0 0 0 0 -
v2z 0 0 ¢ -€ef- €] 0 0 0 0
v3z 0 0 € -2 |0 2|-¢ 0 o0 0
vtz 0 0 e -3 2 [2¢ -3¢] ¢ 0 0
VSZ . 0 0 € -4 5e 0 -5 4 -¢ O
We see that :
Ed§3) =1 but Edz(14) = P(e<0) < 1

and

eal®) =1 but  Ea{®) = pe0) < 1.
Therefore {Zt} is not strictly oscillatory.

Example 2. The above example can be generalized in various ways. Let

{et} be a sequence of continuous random variables each with mean zero.

Define
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€4 s t<0
Zt = €5 t=1,2
0 , otherwise.
Then
Z cee €9 € € 0 0 0 .-
vz €1-€g 0 -€q 0 0 o
2
vz €971 -€ € 0 .o
3 .
v Z -EO 26] -E-I
and so
1= ed{3) 5> eal®) - p

(so and €1 have the same sign)

4 4

and the process is not strictly oscillatory.

The last two examples show that we can alter a sequence of random
variables and even a strictly oscillatory sequence and render it non-
oscillatory in our sense. This leads to the observation that an
oscillatory process in the sense of Priestley (1981) need not be strictly

oscillatory,

Theorem 4., Suppose a process {Zt} is an oscillatory process with the

representation (2). Then it need not be strictly oscillatory.

Proof. It is sufficient to construct an example. Let {et} be a second

order Gaussian stationary process with mean zero and correlation func-

tion Py Let {ct} be a sequence of nonnegative constants. Define

z t = 0,+1,..., .

t © CtEeo

R e e RO

&
o»
A
>
«

4
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Then Z, is oscillatory with respect to {cteiwt}. Assume P, = 0 and

consider the time points 7, 8, say. Then

Corr(Z7,Z8) = P
while

Corr(VZ7,V28) + 0, as c; + 0.

Thus, when Py > -1 and 3 e 0 we have

8

It should be noted that by a proper choice of Ces Z, may still be

t
strictly oscillatory. For example, we can choose Ct to be a slowly time

varying sequence.

Ed(]) > Edéz)' a

R T IR




5. Convergence of Rate Processes

Consider the rate processes in the above figures. It is seen em-

pirically that from a certain point, say NO’ we have

D, (N) < Dp(N) < D3(N) < ..o s 1, ¥N > Ny,

where N0 is quite small, e.q. N0 = 100. This is rather expected since

by Lemma 1, for all N

= = 1
N) < Dj+1(N) * N surely.

Now fix Ny and consider BS(N), N > Ng. Then by (7), as Ny, D;(N)

for N > NO will tend to increase with j. More precisely, (7) entails

that

¢ z 11ﬂ+iup Dj(N)

converges monotonically with probability one as j -~ to a limit, c,
say, such that 0 < ¢ < 1. This convergence, though useful in spectrum
analysis as is shown in the next section, ignores the oscillatory be-
havior of the process for low and moderate N. We therefore take a
different route.

Inspired by the figures, we shall assume that a limiting rate
process exists and let D(-) be the corresponding point process.

A convenient way to describe the monotone convergence of the rate
processes, is to prove the convergence of the corresponding point
processes D](-), DZ(-), ..., obtained from strictly oscillatory pro-

cesses, to D(*). To do so, we follow the work of Kallenberg (1976).




For u e N we write uf for the integral

[ £(s)ulds).
S

For each fixed f, this integral is a mapping from N into R, Let f be
an arbitrary continuous function f: S + [0,») with compact support.

The class of all finite intersections of N-sets of the form
{u: s < uf < t}

where s and t are real numbers, form a base for a topology on N to which
we refer as the vague topology. Then Mo tends to u in this topology iff
Haf = uf  for all continuous functions f from S to [0,~) with compact
support. Then N becomes a metric space and we can think of the Dj(-)
as random elements in (N,F). By definition Dj(-) 2 D(-) if
Eg(Dj) -~ Eg(D) for all bounded continuous functions g: N - R.

Observe that for any B ¢ B we can have at most a finite number

of integer points and thus also a finite number of zero-crossings.

Therefore

T1im lim sup P(D.(B)>r) = 0.
r— Joe J

Next, by definition of strictly oscillatory processes, for any I = (a,b],

a,b finite, we have by monotonicity
EDJ(I) -+ ED(I).

Third consider, without loss of generality, the higher order crossings

Dj,N and D Then by Lemma 1, there exists tO’ Dj and Dj+], such

that

J*+1,N°

P N Y Y AU PR
WAL I RN
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- n' (J)
(i
= ! (j+])

P50 7 Ogny A 2

Y

and D% < D! 1 t
j € Djyy  surely. :

¢

By strict oscillation :
pald) 2 1) < Pl 5 ) K

0 0 2

“

Therefore, by Lemma 1, .
- (J) ' (3+1) X

p(DJ. + dto >1) < P(Dsyy + d > 1) .

0 .

or -
.L

POj,n = 0) 2 P54y = O) :

Re

and so the sequence P(Dj N 0) converges monotonically as j + « for ;'
any N. By appealing to Theorem 4.7 in Kallenberg (1976) it follows that .
Dj(-) converges in distribution to the point process D(:) corresponding "
“

to the limiting rate process. .
~

Theorem 5. Let {Zt} be strictly oscillatory and let D{:) be the point o
process corresponding to the limiting rate procsss. Then Dj(-) 2 D(-) :
with respect to the vague topology on N. ~
4

-

*

7



6. The Stationary Gaussian Case.

Theorem 6. Let {Zt}:=] be a zero mean stationary Gaussian process, and
suppose w® < T is the highest frequency in the spectral support. If

lim D.(N) < w*/m with probability one, j = 1,2,..., then
Noo I

— *
Tim 1im D.(N) = %;- a.s.

Jroo N

Proof. Let vj be as in Theorem 3. Then from Kedem and Slud (1982)

1 1 . . . . .
vj =>-§6_w* + fdw* , J > o, But the Gaussian assumption implies that

_ ki1
cos (€D (N)) = f cos (w)vy(dw) » cos(u®),  § .
-Tr
Therefore Eﬁ&(N) > w/m, j -+, uniformly in N.
By strict stationarity we can define the a.s. limit
c. = 1im D.(N).
17 e 9

. *
a.s., and so limc. = ¢ < w /7 a.s. Thus

Then by Lemma 1 ¢, < ¢
J oo J

J+l
by bounded convergence E(cj) + E(c), J » =. Strict stationarity and

Fatou's Lemma yield

E(c;) 2 Tim sup EB&(N).

N-»co

Since Ecj + Ec  and EDJ(N) > Wi/,

E(c) > w*/ﬂ.

But ¢ ¢ w*/n. Therefore ¢ = w*/ﬁ a.s.

e 0A %




Corollary 2. If w" =m, then

Tim Tim D.(N) = 1
jowo Nowo J

Proof. In this case 0 < Bs(N) <1  surely. 0
Let o89)(1) be the first correlation in iz, ).

Theorem 7. Let {Zt}T be an ergodic zero mean stationary Gaussian process.

Then

Tim ES(N) = —-cos'](p(j+])(1)) a.s.

Proof. The proof follows from the fact that

p(O)(]) = cos(nED](N)). o

Theorem 7 shows that in some cases we can expect the rate processes
to converge into straight lines, a fact that can be used in classifica-

tion and discrimination of stationary processes.
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