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1. SUMMARY OF THE PROJECT OBJECTIVES

For convenience we summarize here the project objectives as stated in the research
proposal. This research in the methodologies for the specification and design of high-speed,
fault-tolerant VLSI array structures has two related objectives (1) a high-level language
approach to the specification and simulation of VLSI algorithms and networks using a
functional-style (LISP-like) language (Task 1), and (2) cost-effective methods to introduce
fault-tolerance (error detection, fault location, retry, and reconfiguration) into VLSI-
implemented systolic systems and similar computing arrays (Task 2).

Task 1: Functional Language Approach to VLSI CAD+

Principal Investigator: Milos D. Ercegovac

The major goals are the development and implementation of a functional-style language
for specification of VLSI structures which allows multilevel simulation, performance analysis,
algebraic transformation techniques, and layout planning, The proposed high-level functional-
style language approach provides a clean separation of functional and structural specifications,
and supports strongly the multi-level, hierarchical design; the language is executable at any level
of abstraction to allow for early evaluation and checking of designs; it has an efficient and
comprehensive built-in performance evaluation mechanism which allows a selective
performance observation; and it supports a semi-automatic design methodology under
implementation constraints and system requirements.

Task 2: Fault-Tolerance in VLSI Systolic Arrays,

Principal Investigator: Algirdas Avilienis

A systolic VLSI system consists of a set of interconnected cells, and information
between the cells flows in a pipelined fashion. To provide fault-tolerance for a systolic system,
the most fundamental requirement is to provide an effective and low-cost method for the
immediate detection of errors that occur in the numerical information that is generated by the
cells and forwarded to other cells or to I/O ports. The occurrence of transient malfunctions and
the complexity of structure of a VLSI systolic system rules out periodically applied diagnostic
tests as an effective fault detection method. The remaining approach is to provide concurrent
error detection that takes place side-by-side with regular computation whenever the systolic
system is carrying out its activity.

+ This research was also supproted in part by the State of California MICRO Program
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2. SUMMARY OF CONTRIBUTIONS: Task 1

This task deals with a study and development of a high-level language approach in
specification, simulation, performance evaluation and chip layout planning for VLSI digital
systems. A high-level applicative (functional) language, implemented at UCLA, allows
combining of top-down techniques of functional and structural specification of systems with
bottom-up specification of implementation constraints such as the size of circuit layout and
wiring patterns. It also provides highly modular algebraic specification of digitnl systems
suitable for formal transformations, simulation, and a powerful method of , ,tological
interpretation which generates diagrams at any level of abstraction. Several versions of the
language, the simulation and performance evaluation tools and a graphics interface have been
developed and implemented on the DEC VAX 11/750 under the UNIX operating system.

2.1 Introduction

The complexity of VLSI requires the application of CAD tools at all levels of the design
process. In order to be effective, these tools must be adaptive to the specific design. In this
project we studied a design method based on the use of applicative languages [Bac78] for the
specification, evaluation and synthesis of hardware algorithms. A functional language for
specification of hardware systems is attractive because it provides both a behavioral and
structural information about a circuit implementing the system [Lah8l, Joh84, Mes84, Pat85,
She84, Sch86, Wor86]. As a consequence, a behavioral specification implies a topology of the
circuit which allows generation of "abstract" layouts. These layouts are refined by introducing
geometrical constraints to produce physical layouts.

Our methodology is supported by a set of tools developed at UCLA. The goal of the
system is to provide designers with an environment in which they can rapidly explore various
alternative designs. Thus it is possible to specify the algorithm at any level of abstraction and
have the system rapidly evaluate certain parameters (e.g., delays) and provide feedback in the
form of automatically generated floorplans. The advantage of using an applicative language is
that it ties together the specification of the algorithm, the synthesis of the circuit, and the
evaluation of the implementation. The algebraic basis of FP allows formal transformations of
the specification to improve the layout without changing its function.

2.2 Specification of Hardware Functions and Algorithms in vFP

A program in a functional language is a function that maps objects into objects. Objects
are either atoms (numbers or strings) or sequences of objects. There is a special atom ? denoting
an undefined value. Any sequence that contains ? is undefined. The language includes primitive
functions, functional (combining) forms, and means of defining functions. A computation is
invoked by applying the function to an object. There are no variables and all FP programs are
generic, i.e., independent of the size of their arguments.

4



The FP language we use is based on Backus' FP (Bac78] with the following additions:
parameters to function definitions are allowed; both the infix and prefix modes for the
arithmetic, logical, and predicate functions can be used; there are additional primitives and
functional forms; and extensions for the specification of sequential systems are introduced
[Mes84, Mes85, Pat85, Sch86, Wor86]. The primitive functions map objects to objects. They
include

arithmetic +:<l 5> -+ 6 *:<2 5> -+ 10
logical andg:<l 0> -+ 0 org:<0 0> -- 0
predicate atom:<a b c> - F =:<12 12> -- T
selector 2:<1 a 3 5 b> -a last:<4 3 2 1> -+1

and structure modifying functions such as

transpose trans: <<1 2 3><4 5 6>> -+ <<1 4><2 5><3 6>>
appendleft apndl: <a <b c d>> -- <a b c d>
distribute right distr: <<1 2 3>4> -+<< 1 4><2 4><3 4>>

Functional forms map functions or objects to functions. For example,

compose f@g:x -+ f:<g:x>
construct [fg,h]:x --+ <fdx g:x h:x>
apply to all &f:<a b c> -. <f:a f:b f:c>
constant %k:x -+ k if x is not ?
right insert !f:.<a b c d> -- f:<a !f:<b c d>>

A computation in a digital system consists of moving and transforming data according to
some precedence relation. The language provides explicit means for specifying precedences and
concurrency (@ and [] functional forms, for example), computational functions (e.g., logical
primitives), and routing functions (e.g., selectors). Since a unit of information represented by an
atom depends on the level of abstraction, hierarchical specifications are natural. Therefore, FP is
suited for describing hardware functions and algorithms.

For example, FP specifications for the following primitive functions used in the design
of a carry-save array multiplier are

/* FA*:<<a b><y x> -<<c x>s> where 2c+s=a+b+yx */
defun FA*

[[org@ [1,1@ 21,31,2@ 21

@ [ 1@ 1,HADD@ [2@ 1,21,31
@IHADD@ l,andg@2,2@21

enddef

/* HA*:<<a><y x>> <<c x>s> where 2c+s=a+yx */
defun HA*

5 4

27,-



[[1@1,21,2@1]@[HADD@[I@I ,andg@2],2@21
enddef

/* FA**:<<a b><x y>> -+ <c s> where 2c+s=a+b+yx */
defun FA**

[org@[1,1@21,2@2]
@[1@1, HADD@[2@1,2]]
@[HADD@ l,andg@2]

enddef

/* FA:<<a b.c. -+<c s> where 2c+s=a+b+c */
defun FA

[org@[1,1@21,2@21
@[ 1@I,HADD@[2@1,2]]
@[HADD@1,2]

enddef

/* HADD:<a b> - <c s> where 2c+s=a+b */
defun HADD

[andg,org]
enddefi

By executing symbolically these specifications, it is possible to extract the corresponding
topological structure and produce the sketches of functions FA*, HA* and FA** as shown in
Figure 1. Obtaining layouts from FP expressions is discussed in Section 2.4.

There is no concept of state in an FP program and, consequently, there is no history of
execution. All information needed by a computation must be specified as the input to the
corresponding function. A sequential system could be described by a function which passes its
state as an argument back to itself. This, however, makes symbolic execution of such a FP
specification and extraction of its topological structure difficult [Sch86]. Our approach is to
describe sequential circuits using the space-time duality. That is, a sequential ciruit is described
as the folding of a combinational circuit so that the same structure performs a computation in
time rather than space [Pat85].

2.3 Obtaining layouts from vFP

As mentioned in the introduction, a key idea of our design methodology is to deduce the
geometry of the layout from a behavioral specification of the circuit rather than to specify the
geometry as a part of the behavioral specification. This is possible since an FP program as a
behavioral specification of a circuit implies the topology of its organization, i.e., relative
positions of the components and their connections in the plane. Schlag [Sch861 has developed a
methodology for obtaining layouts from FP expressions. This methodology is based on a formal
notion of the planar topology of a circuit, a mapping from FP expressions to planar circuits, and
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Figure 1. The functions FA*, HA* and FA**
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a technique for transforming the planar topology of a circuit described in FP into a physical
layout.

The following example of a carry-save array multiplier, developed by Schlag [Sch86],
illustrates the layout obtained by applying our design methodology. Figure 2 shows a sketch of
the function Mult with the functions HA*, FA*, and FA** represented as components. Figure 3
shows the same function with those components expanded. Finally, the completed layout is
given in Figure 4. Power and ground wiring has been added to the layout using a graphics
editor. Since the specification is generic, multipliers of different precision can be obtained by
applying Mult function to operands of a desired precision.

2.4 Evaluation of Designs

Sausville has implemented a package that allows timing analysis of circuits represented
by FP programs [Sausville 1986]. His work is restricted to uniform delays. Currently a work is
under way to extend this package to deal with arbitrary (user-defined) delays.

2.5 Interfacing FP Design System and Existing VLSI CAD

A VLSI design system has been developed using UCLA FP as the specification language
by J. Worley [Wor861 and BDL (Block Design Language) [Slu841 as the input language for
VLSI CAD tools available at Hewlett-Packard. The circuit synthesis proceeds in three steps: (1)
the functional (executable) specification of a digital system is developed and tested, (2) a
specific implementation and its net list is obtained by tracing the symbolic execution of the
specification, and (3) and the trace is processed by trace filters to obtain various design
information. For example, there are trace filters to print net lists, count modules and
connections, and translate into other design languages. At present, there are translators for esim,
a switch-level simulator, the circuit level simulator SPICE, and the BDL block description
language [Siu841. A BDL description is then used to drive an actual circuit layout generator. In
this case, the user control of the topological features in the layout was traded for utilities
provided by an available tool.

2.6 Compiler Research and Developments

A compiler de el pment [Ara86] offers a performance enhancement for execution
environment of our FP language. Several important techniques to reduce the run-time load have
been introduced and implemented. An efficient and fast threaded FP interpreter/compiler has
been implemented [Pun861. Alkalaj has introduced a very efficient scheme for garbage
collection for FP programs executed on a uniprocessor [Alk86, Alk871. These language
processing schemes and tools are essential in building an efficient design environment.

7



An UMOW" UTAMR r~~r~mr~urr~ w

Fiue .Th kec f th fuAi n L at a hihlee

Anda

An An An



Figure~~ 3.9T MULTr withwv HAFAan A xpne

'S..~F FS F" -U -a A.. .. .. And... ..



Figure~~11if 4.TeLyu fML

7c



2.7 Algorithms for VLSI Implementation

In the area of algorithms for systolic arrays the research focused on analysis of design
alternatives and development of algorithms for linear algebra processors. A comprehensive
study of alternatives for a singular value decomposition processor has been done [Mor85]. This
work has been recently extended into a proposal for the systematic design of arrays for matrix
computations [Mor87]. An efficient division algorithm, based on the work Ercegovac and Lang
[Erc851, has been developed [Tu86]. In order to provide a flexible and powerfull simulation
environment for this type of research, a two-step simulator has been developed. In the first step,
an FP specification of the algorithm to be simulated, is symbolically interpreted to produce a
corresponding network at the level of given primitives. In the second step this network is used to
execute the algorithm and collect statistics.

2.8 Future Research

We are continuing work on two aspects of our FP-based VLSI design system. To utilize
well-developed tools available at the lower levels of VLSI circuit design, we are developing an
interface between UCLA FP and such tools. VIVID, an integrated VLSI design system,
developed at the MCNC, is selected as the target. A translator from UCLA FP into ABCD, a
specification language of VIVID, is under development [Wu871. The second aspect of our
continuing research deals with refinment and formalization of the proposed treatment of
sequential circuits in UCLA FP [Pat86].
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3. SUMMARY OF CONTRIBUTIONS: Task 2

The research in this task has focused on the application of low-cost arithmetic error
codes [AVIZ711,[AVIZ 81,[AVIZ 831 to the concurrent detection of errors (due to both
transient and permanent faults) originating in systolic systems. A new generalization has been
developed that extends the application of low-cost inverse residue codes into two dimensions:
row (byte) and column (line) residues. [AVIZ 83]. This extension improves the detection of
errors, especially of those due to indeterminate faults, and provides certain error-correction
capabilities. Previous research investigated the advantages offered by two-dimensional inverse
residue codes in the detection and correction of errors that affect byte-wide communication
paths and systolic processing elements. Such paths are widely used in high-performance
systolic arrays and for inter-processor communication in large multi-array systems.

In general, it has been shown that the remaining undetectable errors in the message X are
those that are missed by both checks: modulo 2B- I over the bytes (not including the check line
bits), and modulo 2k+I- 1 over the lines, with the check byte bits included in each line. Most
unidirectional errors are detectable; furthermore, the detection of bidirectional errors is
significantly improved. A single-line correcting, double-line detecting property was also
demonstrated for unidirectional errors.

The research has led to the development of the fundamental byte-serial arithmetic
algorithms for operands encoded in two-dimensional low-cost inverse residue codes. The
algorithms are:

(a) the line-residue checking algorithm;

(b) the additive inverse (complementation) algorithm;

(c) the addition algorithm.

The details of the algorithms have been presented in [AVIZ 851. It has been shown that byte-
serial arithmetic can be carried out with operands which are encoded in two-dimensional residue
and inverse residue codes. Two-dimensional encodings provide a very powerful error-detecting
and a substantial error-correcting capability for byte-serial arithmetic. Promising application
areas are systolic arrays, multiple-precision arithmetic, and high-speed array computing.
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vFP: An Environment for the Multi-level
SpeciRcstion. Analysis, and Synthesis

of Hardware Algoriihms t

Dorab Patel. Martrne Schlag and Miloi Ermegovac
Computer Science Departnent

University of California. Los Angeles
Los Angeles. CA 90024. USA

Abstract

This paper describes a method based on applicacive languages for the specification. evaluation
and synthesis of hardware algorithms. The goal of the researh effort is to provide designers with an
environment in which they can rapidly explore alternative designs for their algorithms throughout the
synthesis process. It is possible to specify the algorithm at arbitrazy levels of abstraction and have the
system rapidly evaluate certain parameters (e.g. speed, area. etc.) so that designers can make informed
decisions during the synthesis process. Layouts which ame suitable as floor plans are extracted from
high-level algorithms.

I Introduction

The complexity of VLSI design can only be managed by the applicauon of CAD tools at all lev-
els of the design process. In order to be effective, these tools must be flexible enough to be tailored to
any specific design. Generally, VL"I CAD tools may be distinguished as being of either or both of two
types: bottom-up compositon tools or top-down synthesis tools. For bottom-up composition tools, the
user either exactly specifies the placement of modules and the interconnections between ther- or relin-
quishes control over the layout to the tool's algondtm. Examples of composition tools are graphic lay-
out editors (e.g. Caesar. Magic) (Ousterhout8l. Ousterhout84) and placement and routing tools
('R.ivest821. Top-down synthesis tools are capable of generating layouts from high-level specifications.
Examples would include various register-ansfer silicon compdlers that have been proposed and butlt
[SiskindS2. DirectorgI. Johannsen791. Generally. these tools do not provide any estimate of the area or
delays of the circuit during the synthesis process. That is. designers do not know the effects of their
decisions on the performance until the design is complete.

Many of the current design approaches were largely deve~oped for SSI/MSI technologies and are
limited because of:

Lack of paradigms to deal with topological and geometmcal aspects of algorithm design in a

hierarchical. multi-level fashion.

Lack of adequate methods to deal with communication requirements of VLSI implementations

during a multi-level algorithm design process.

- Lack of an adequate interface to lower-level VLSI CAD tools: most systems require a logic

t Appeared in the Proceedings of the 1985 Functional Programming Languages and Computer
Architecture Conference. Nancy, France, J.P. Jouannaud (Ed.) Lecture Notes in Computer Science 201,
Springer-Verlag, 1985. pp. 238-255.

..
-I-



diagram at the entry level, thus forcing designers to cbpe with details which are apt to be

changed later in the implementation process.

Lack of visual feedback. graphical representations, generated automatically from a high-level
algorithm, showing details selected by the designer ae highly desirable.

This paper describes a method based on appLicative languages [Backus7g1 for the specification.
evaluation and synthesis of hardware algoriduts. This method is supported by a set of tools that is
being developed at UCLA. The goal of this effort is to provide designers with an environment in which
they can rapidly explore various alternative designs for their algorithms. Thus, it is possible to specify
the algorithm at any arbit ry level of abstraction and have the system rapidly evaluate performance
parameters (e.g. speed. area. etc.) so that designers can make informed decisions during the synthesis
process. The advantage of using an applicative language is that it ties together the specification of the
algorithm, the synthesis of the circit and the evaluation of the implementation.

Others have explored incorporating applicative languages in VLS design and have shown them
to be viable. Lahti [Lahlihl used an appLicative language to describe various combinational hardware
structures. Johnson [Johnson84) utilized a demand-driven applicative language to describe and syn-
thesize sequential digital circuits. CArdeLLi and Plodn (CardelLiS1 take a formal approach to describ-
ing sequential circuits with an emphasis on verification. Meshkinpour fMeshkinpour8S5 and Sheeran
(Sheeran84] extended Backus' Fl? language with operators to handle sequential circuits.

2 Brief Introduction to vFP

vFP extends the language FP proposed by Backus fBackus781 with additional functional forms
and primiuves. In contrast to pzFP (Sheeran84], which extends FP's semantics to operate on stream.
the semauntics of vFP are the same as those of FP when it is used to specify algorithms. A program in
vFP (as in FT) is a function that maps objects into objects. Objects are either atomic (numbers or
strings) or sequences of objects. The distinguished atom denotes an undefined value. By definition.
any sequence which contains as an element is itself undefined and thus equal to The primitive func-
tions of vFP consist of

arithmetic functions, .: (.5) -. 6 * (3.2) -- 6
logical functions. andg (1.0) .- * 0 org: (0.0) -. 0
predicates, atom: (1.2) - F - (33) -- T
selector functions, 3 : (2.(4.5),6,(8(9.0)) -- 6 last: (1.4.6) - 6

and structure modifying functions.
mrans : ((1A3),(4.5.6)) - ((1.4)(2.5).(3.6)) apndl :(.(2.3,4)) - (1.2.3.4)
disl : (x. (ab.c)) -o ((x.a),(x~b),(xc)) disr : ((ab.c).x) - ((ax).(b.x).(cz))

Functional forms are used to combine primitive functions into more complex functions.
compo (f @ g) : x -4 f: (S : x)
construct (t.g.hl : x - (f:x. g:x. h:x)
apply to all &f: (p.qar) - (f:p, f:q, f:r)
constant %k: x -.* ki f x is not
right insert 'f: (Xz,...xa) - f:(x. f:(x 2 ,,.x ))
tree insert f: (xI,... ) f:( f:(x ... w. 1), f(X rv t.11.. A,))



A major syntactic difference between vFP and Backus' P is that parameters to functions may

be named and then referred to in the function body with the same restrictions as described in

(Backussll. In addition, the arithmetic. logical. and predicate functions may be used either in a prefix

or an infix manner. This improves the redabtlity of hardware specifications. For example. the follow-

ing definition of a FudlAdr in Backus' FP.

FullAdder -
(org(@(org@(andg@( 1.2|]andg@(2.3]].andg@( 1.311. xorg@(I .xorg@(2.3111

could alternatively be written in vFP as

defun FullAdder(ab.Cin)
(((a andg b) org (b andg Cin)) or% (a andg Cin). a xorg (b xorg Cin)_

enddef

Owing to the natural specificaton of parallelism in FP-like languages, they are suited to describ-

in% parallel hardware a lorithms. These specificatons are executable. Since such programs are
ref',emially rtsperent. it is possible to have ,- algebra of programs which may be used to reason

about their behavior. These methods may be sed in conjuncton with each other to convince the

designer that the program implements the envisioned algorithm. Specifications can also be executed

symbolically usig a symbolic input during which it is possible to ext-act the topological strucrure of

the algorithm. Th'erefore, there is a direct relationship between the str-ucture of an algorithm written in

vFP and the planar topology of its hayouL

3 Algorithm Synthesis in vFP

The designer irst specifies the algorithm in vFP The algebra of vFP' programs may be used to
reason about the algonthm. In addition, the specification may be executed with sample data to validate

the program.

vFP can be used to describe circuits at various levels of abstraction. Designers are free to

choose whichever level is "best" for their current purposes. At some higher level of abs"acton. the

structure of the FulAdder may not be relevant, and thus the definitions given earlier would suffice to

describe its behavior. At a lower level of abstraction, where the structure of a function is to be con-

sidered. an alternative definition which has a different structure may be subsututed. For example. the
FullAdder could be defined in terms of HalfAdders.

defun FuilAdder(ab,Cin)

(I or 2. 31 @ apndl @ 11. Ha lAdder@12311 @ apndr @ [HalfAdder@(a,b, Ciil,
enddef

defun Hal'Adder(a.b) [a andg b. a xorg bi enddef

Transformations may be used to refine the program to whatever level of detail is required. In

this way it is possible to first specify the algorthm at a level of abstraction that is high enough to aid
validation and then refine it to the level at which it can be easily implemented.

~ .- -- -'*-..- V .' -- -



4 The Evaluation of vFP Algorithus

It is possible to tag selected user-dedned functions so that when a vFP specification is executed

an estnwtte of the performance of the algorithm can be provided. Tagging a function tells the system

that this is a function of interest at the current level of absraion. As the execution proceeds, the inter-

preter keeps orack of the level at which a tagged function is executed.

The level of a tagged function is defined as one plus the maximum of the leveLs associated with

the atoms in its input object. The level of each atom is initially zero. Each time a tagged function is

encountered, its level is determined and is assigned to the atoms in its output object. However. there is

a problem when a tagged function occurs within another tagged function. In this case the level of the

inner function is determined with respect to the outer function resulting in a hierarchy of levels. This is

accomplished by assigning the level zero to each atom of the outer function's input object, and comput-
ing the level of tagged functions as before until the computation of the outer function has been com-

pleted. The level of the outer function and the atoms in its output object is determined as before and

hence is independent of whether or not any tagged function occurs within the outer function. Levels are

used to predict the speed at which the circuit would perform. to obtain an idea of where the parallelism
in the algorithm is. and to get an esdnrate of the area that would be occupied by the circuit. A better

estimate of the area is obtained by methods mentioned in the next section.

This capability of having the system estimate performance parameters is useful in tadeoff ana-
lyses. For example, consider the following function:

I if a-(b- i ) mod,

z 2 if amb

otherwise

schem.A and schemeB, below, are two algorithms for implementing the function. If the boolean func-
tions (wdg, org, norg, and xorg) are tagged, the results shown in Figure I are obtained.

* scheme A inputs : ((a) (b)) outputs : (zI zO)

defun schemeA

&(org@&andg@u'ansX distl@( l,(id.rool@21 @&decoder
enddef

0 scheme 8 inputs : ((a) (b)) outputs : (zL zO)

defun schemeB(ab)
&compare @ disti @ ( ( b. U @ adder (b. (Te. %l. %T]]]J

enddef

defun compare notgC~org@&xorg@rrans enddef

defun adder

apndl@fxorg@(xorg@ 1, l@21.tI@21

@(l.!add@apndr@(r .- alfAdder(lastl@,lI @ -ns
enddef

defun add(ab) concat@(FuAdder@apndr@(a.l@bl,a@bI enddef

.-.--...,-..'-...
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V statistics for schemeA I statistics for schemeB

level Andg Org Notg level Andg Xorg Org Notg

2 6 1 2 6
2 10 2 2 1

3 14 3 1 2
4 14 4 1 1
5 8 5 1

'6 4 6 1
7 2 7 1

8 1

Totals 40 14 6 Totals 3 11 5 2

Figure 1: A comparison of two implementations

The results in Figure I show that sche"Ma uses a total of 60 gates, while schemeB uses a total at 21
gates. However. it is to be noted that 11 of the 21 gates are xor gates which would normally occupy a
larger area. Given an estimate of the area occupied for each of the gates. it is possible to have an esti-
mate of the area occupied by each implementation. Since schemeA has 7 levels while schemeB has S.
schemeA would be faster than sc/enmeB under the assumption that all the tagged functions had the same
delay.

In addition to the time and space estimates provided by the level mechanism, the system can be
extended to allow the specification and calculation of user-specified parameters for each agged function
and for the algorithm as a whole.

5 Space Domain Implementations of vFP Algorithn

A vFP algorithm can be mapped into a structure corresponding to a combinational network by
passing symbolic inputs to functions which in turn generate symbolic outputs. The unit of information
repr-sented by a symbolic atom can be anything corresponding to the level of abstraction. Thus. a sym-
bolic atom may represent a wire, a set of wires, a bit vector, or an integer, as required. An acyclic com-
putation graph with vFP primitives as nodes is obtained by tracing the application of a function to a
symbolic inpuL This computation graph can be tssformed into a layout using techniques described
later. By tagging the appopriate functions, the layout may be generated at any desired hierarchical
level. For example, Figure 2 shows a layout of a FullAdder using and, or. and zor gates: whereas Fig-
ure 3 shows the same Ful~dder as being composed of HalfAddecr.

The mapping from a vFP algorithm to a combinational network is allowed under the following
restrctions. Functions Like iota, whose output strucnw'e depends on an input value, cannot be laid out.
In addition. dunng symbolic evaluation, the predicate part of a conditional must be evaluable to a
boolean.

......... "."...........



a b Cin a b Cin

I HAj

OR XORHA

OR

Cout s Cout s

Figure 2: The structure of a FuLlAdder Figuue 3: A FujiAdder using HalfAdders

As in pi.FP (Sheer=z84. strucural iteranons over the input of the circuit can be handled by the
insert and apply.o-all functional forms. Other types of strucural recursions are anllowed in vFP since
the condinonal functional form is treated as a sn'ucral form for the purposes of 1ayOUL Depending on
the value of the predicate of the conditional, either the consequent or the alternate part will be evaluated
symbolically for its structure but no structure will be generated for the predicate part. A new primitive
called sw (for switch) is provided in vFP which corresponds to the conditional form in J.FP. This prim-
itive takes three arguments. If the int is I then the output is the second argument: if it is 0 then the
output is the third argument; else it is. In addition, it is required that the itrucrures of the second and
thud arguments be the same.

A vFP description of a circuit can be generic in the sense that the description is independent of
the input dimensions .of the circuit. For example, there needs to be only one description of a decoder.
This same description works for a decoder independent of the number of inputs. The 3-to-8 decoder
shown in Figure 4 is obtained by evaluating the description of the generic decoder with a symboUc
argument of size 3. Figure 4 shows how the generic iterative decoder is formed by first applying l-to-Z
decoden (Decl) to the inputs and then inserting the function DecStge. DecStage takes an n-to-20
decoder and a new input to make a (n.,)-to-2" decoder.

defun Decoder !DecStage @ &Decl enddef

defun DecStage &an~g @ concat @ &distl @ dist" enddef

defun Dec I tnotjdj enddef
As before, these implementations may be evaluated to get speed/area estimates, but now, since routing
is taken into account, a better estimate of area can be provided.

Cell iterative networks are combinational circuits which are formed by interconnecting a partcu-
lar cel in a regular pattern. Although combinational curcuits without feedback can be described in vFP
using the forms iherited from FP, some additional functional forms are provided to give designers
more control over exactly how cell tteratve networks are to be laid out. These networks are thus

N



Dci Dci Dci

DecStageAN 
AD AD

DecStage AND AND AND AND AND AND AN ND

4d~d~ddd.dld~d, d, d, d, d, d, d, d, dy

Figure 4: A 3-to.8 Decoder at different leveLs of abstraction

XCIS Xg X2x X,,

Fl Yly

Yo Yt Yl Ye-I y

Figure 5: The seq functional Figure 6: The seqxy functional
f'rit applied to F form applied to F

readiy described in vFP by involding the form (corresponding to the interconnection pattern) on the
function (correponding to the cell). For example. Figure 5 shows the seq functional form pictonally.
Sometimes it is necessary to have two inputs to the function F at each stage and to have one of those
inputs come in from the x direction and the other from the y direction. This is accomplished by the
ieqry functional forms shown in Figure 6. Though both forms result in the same computation graph.
their layout is different.
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system in vFP D-1 is a phantom element that corresponds to an inverse time delay. It is used to keep
track of the number of clock pulses the output is going to be delayed by. This information is needed by
the construcr functional form to synchronzze its components since the semantics of the construct require
that the outputs of its elements appear together. Genera.ly the D-1 elements are moved, via transforma-
tions, to the outputs of the circuit where they serve to denote the delay.

When elements of a sequence are available serially in time along the same wie(s), it is neces-
sary to know when each element is valid. This is accomplished, during symbolic simulation, by having
each symbolic item carry the name of a clock with it. It is assumed that its value will be stable before
every tick of the named clock. The system wal automatically widen the intervals between clock ticks to
ensure that this is true. Lntially, all the inputs are associated with the same clock. Each combinational
element will assign to its output the clock associated with its input. If there are n elements to the input
sequence of a SOPI. then each of its output elements will be clocked by the clock n Ct; and conversely
for a POS1. A clock named nCt denotes a clock which has n clock ticks in between consecutive ticks
of the clock named Ck. Though the description of a SOP! or POSI is geneic. the value of n (the
number of elements in the sequence) must be known at layout time.

As an example, consider a time-domain implementation of an inner-product algorithm
(!. @ &0), The straighdorward implementation of the algorithm, using the equations given above,
would result in the layout shown in Figure 7. Since thee are two D- 1 elements in the layout. the output
will be delayed by two clock ticks from the input.

SOP!

.POSI

D-4 SOP'

SOPI O

* R

Figure 7: Initial Implementation Figure 8: Optimized Implementauon
of the Inner Prtuct of the Inner Product

However. using the identities

D-' @ POSI @f@ SOP! uapndr ) [D- @ POSI @ &rf@ SOPI (5) dlr~ , lastj

' V - V V - . ' % - .. ... . ~ ,. . A - - --& - "- - -.-
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POSI @ D-' @ SOPI a SOP! @ D-' @ POSI u id

(@ D-' D-' @ f

(dr, last @ apndr u apndr @ (tr, lastl a id

the program may be transformed into the following

D-' @ !r . @ apndr @ (&Te @ SOPT @ dr. • @ last]

whose layout is shown in Figure 8. The single D- 1 element denotes that the output is delayed only one

clock tick from the input

This implementation accepts all its inputs simultaneously and eventually gives its reSulL It will
only work for input sequences of one particular length, since only fixed size SOP~s can be laid out
However, if each element of the input sequence was input serially to the implementation, a correspond-
ing POS could be introduced at the input and then used to transform out the SOP that exists in the
current implementation. This would make the implementation generic in the sense that it would be able
to handle arbitrary lenph sequences as its inputs.

7 Layouts from vFP Specifications

In this section the mapping from vFP algorithms to layouts is briefly described. A more detailed
exposition and a description of its irnplementauon can be found in (Schlag84!. The intent of this sys-
tem is to provide the vFP designer with an interactive environment in which the design can be viewed
as it is constructed. The mapping from vFP is actually the composition of two mappings. An vFP func-
tion is t nt mapped to an intermediate form (IF) which reflects the planar topology of the function and
then this [IF is mapped to fixed geometry by s.lecting and resolving relative positon constraints (com-
paction).

The rationale for dividing the mapping in two steps is the observaticn that a certain portion of
the mapping from vFP should be functional even though the entire map cannot be. That is. a particular
vFP function applied to a particular symbolic object should define an CF uniquely, while the geometry of
the function should depend on its environment- Fixing the geometry of a sub-function may create wiring
and shape incompatibilities with other sub-functions which would require additional area to resolve.
Functionality has two advantages.

I. The mapping can be implemented as an appication of an vFP function to an object

2. Algebraic transformations on the vFP function have predictable effects on the [F.

The extraction of the topology (IF) of an vFP expression is implemented as an interpreter. A function
applied to an object generates an [F and each combiung form dictates a topological organization of the
T s of ito sub-functions. The routing is the direct result of the routing pnrrutives and the combining
forms of the function. This implementation generates a sketch of the vFP specification in ,erms of
"boxes" and '".i'-s" by symbolically tracing the vFP function and representing e'ch atom as a wire.
The level of abst-action of the sketch can be cont-olled by selecting which functions to represent as

I.
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boxes and what objects each atom represents. The TF consists of a list of horizontal cross-sections each
of which is a left to right ordering of the "boxes" and "wires" which intersect the cross-section. Any

cross-overs are represented explicitly: each cross-section corresponds to a horizontal track. The IF gen-
erated by the interpreter is fed to a program which resolves the cross-sections using horizontal compac-
tion and displays the sketch on a graphics terminal.

An example is presented to illustrate how vFP facilitates the transition from algorithm to imple-
mentation taking into account the layout. The vFP specifcation of a carry chain adder tBrentgOl is
considered. The specificaton is generic in that it adds two bit vectors of length 2" for n >0. The input
consists of the 2" pairs of bits to be added with the leftmost pair, containing the least significant bits.
((a .b 1).(a ,b 2),(a 3.b 3). (a-,b 7.)).

For Isi Sj:<-,

I if a carry into column i would I if adding columns i throughj

propagate as a carry out of column j and Gi =  causes a carry out of columnj
0oterwnse 0otherwise

The computation is performed by computing the carries for each column. G I. and then obtaining the
sum bit using.

t for [<iiW. s 1=P., , and2,.l:=Gt.7.

P 1, and G ., are computed for each i by using the following identities, implemented by the function
PG.

For i~j<h. P,. =P~ P, 1 j and (7.2]

The inital P, and G., are computed by the function PGI.
P, a, b; , G =., ibi [7.3]1'

The computation of P 1 and G 1 is achieved in two steps by the function getcrries. The following is
the specification of getcarries.

I input - ((aObO),(al.bl),(a2.b2)...,(a2n - lb2"*n - I))
defun getcarries secondhalf@spLit@ @fixsthalf@&PG I enddef

defun flirsthaif ifeq@[length.%lI then id else firsthalf@&stagel@patrfi enddef

defun stagel concat@[&D@ .&D@tlr@2.[PG@[last@ 1.last@2]]] enddef

defun secondhalf ifeq@(lenth.%l]@l hen done eLte secondhalf@concat@
(split@&D@ l.sage2@tl]@apndr@[concat@&(id.ast @dtr. ast] ,,

enddef

defun stage2 concat@
&([apndr@(&.D@tlr@ I @2JG@( I .last@ I @211,&D@2@21@( I .split@21)(@pair

enddef

defun D id enddef

V . % .. ... ....
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defun done id enddef

First getcarrne computes (P, ,G, ) by applying PGI to the two bits in each column and then it applies

flrsthalf. fOrsthalf computes , for each column i (2m+l)24 where m is an integer.

Ths is accomplished by arringung each column (i.e. its pair (P.G)) in a group of its own and then

recursively applying the functoon slugel to pairs of groups until only a single group reraitns. stagel

combines a pair of groups computing a new (P .G) for the last column of the second group by applying

PG to the last columns of the two groups: the pair of groups is then concatenated to form one group. All

other columns are unchanged: the funcuon D which is given the definition id is applied to them. When

ali columns are in a single group getcarries applies the function scondhalf to compute the final

(P.G)'s. secondhalf is also recursive. terminating when each column is in a group by itself. At each
step the final (P .G)'s of decreasing multiples of powers of 2 are computed. Assume that in the previous
step P 1, and G 1, have been computed for each column i mm 24 . In the next step to compute the

(P.G)'s of columns which are multiples of 21-1. it is necessary only to compute new (P.G)'s for
columns i=%m+l)2" i sm2k .- , the odd multiples of 2 k-i The current (P.G) in column i is
( (P,,G,,) can be obtained by applying PG to the current (P.C) and

(P l,., .G ,r). Initially the columns are divided into two groups and sunce flrsthalf computed the

final (P.G)'s for powers of 2, the last column (a multiple of 24-1) has its final value. At each step
secondhalf duplicates the last column from each group and then applies stage2 after removing the first

group. stage2 takes each group, splits it into rwo and computes new (P.G )'s for he last column in the
left group of each new pair using the duplicated column immediately to the left of the group. The first

group is then appended to the result of stage2.

2t PCIF'G I IP FPIG1~ PGI PGI

sile wire. Thi-s is accomphshed by directing the interpreter to draw PCI. PG and D as boxes and by
givnD P and PC symbolic D PefiniGons.

define.$ymbolic PCi input-(a bI output - (C)
rdeflne-symbolic PD nputa b output - c P

. . . . . . . . ... '".""." ' ' " . " " "." " "." ' ."" " ". . .' -? + " ' -'+:

D D D D D D D PIG, i ,IiI



AJFPJWIW~XZ yw w MaSWI WW W

(drawbox PGI label.Pot ht-2)
(drawbox PG label-PG ht-2)
(drawbox D label-D ht-2)

o401  a2 b2  a3 b3 0, b4  as bS aG b6  0.? b7 as bs
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Figure 11: An inefficient design

defun add

concat([ I .&.xorg@pair~(t@t~r (lastli

enddef

defun PG
apndI@"D1@2. if nuU@d@tl@2 th~en oldPG else oldPG@(1I.t@21 Ai I

@ if null@d@l@ I then~ id eie [d@ 1.21 f
enddef

defun oldPG (andg@( I@1 ,I@21,org@fandg@(2@1I.1@21.2@21J enddef

defui done id enddef

(drawbox D labei-D ht-2)
The function add appiies geteurries and then handles the columns according to (7,.1) to obtain the final
sum bits. Figure 12 is the sketch of add.

Figure 13 is the sketch obtained of a carry save arry multiplier. This example is presented to
Wuscaw the geometric flexibilty of fixing only the planar topology in the specification. T'he functions
HA*. FA*, FA, and HalfAdder ame represented as prmitives. The specifications of the functions
HAA FA, and FA are

It FA* op2 :((a b) (y x)) -> ((c x) s) where 2c * s - (a b - yx)
defun opl (:orgi@(f.1@21.31,2@e21@

(I @1 IJlalfAdder@(2@ 1 .21.31@(HLfAdder@ I andg@2,2@21
enddef

S A* opi ((a) (y 0)) -- > ((c x) s) where Zc .. s . (a - Yx)

defun opI I[nd.21,2@ 1@fHalfAdder@ang( 2 @ Indg@21.2@21 enddef
su-bts igx 12i te kec ofa-

AX. SAzdFA"ae"
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* FAO" lop2 : ((a b) (y x)) -- > (c s) where 2c - s - (a - b - yx)

defun lop2
(org@( 1.1@21.2@21@f l@ .HalfAdder@[ 2@ 91.21]@(Half Adder@ 1 .andg@2]

enddef

defun opO ( l.andg enddef
Figure 14 contains the sketches of these functions, while in Figure 15 the same carry save array multi-
plier is represented in terms of lower level primitives. Note that the geometry of the functions HA".
FA" and FA*" vanes: each instance has some flexibdiity in adapting to the particular geometric con-
sta-aMnts it encounters.

A8 Y X A Y X A8 YX

HA AIND HA AN~

HAAN

OR O

C XS C XS CS

Figure 14: FAO, HAI and FA04

All of the figures in the paper with the exception of Figures 5 and 6 were generated by tis sys-
tem. It is limited in that the data Bow is vertical with a function's inputs and outputs on the top or bot-
tom. More sophisticated layout techniques which would not suffer from this limitation are being exam-
Lned. However this system is useful in that it provides visual feedback quickly allowing the designer to
see the planar Lmplications of the specification.

8 Concluding Remarks

The objective of this research is to develop a formal high-level language approact' !o
specification. simulation, performance evaluation, and chip layout pianning for VTSI systems. Our
approach takes a high-level appUcative language (vFP) and proglmrrung style as its basis. The
muatonales for using vFP and and its potential in dealing with several specification and implementation
aspects are the subject of this paper. SpecificaLly, a few examples have illustmted how vFP can be used
to specify combinational. iteraive, and sequential circuits. User-specifiable performance parameters
may be used at any abstraction level to provide a basis for making design decisions during the synthesis
process. Layouts which are suitable as loor plans are extracted from high-level algorithms. Currently.
an automated attribute system is under development. More sophisticated layout techniques and topolog-
ical opiuzations are being exanined, as are techniques to handle other classes of sequential circuits.
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A Functioa Langnag for Descrlption and Design
d Digtal SYstBms: Sequential Constructs

F. Meshkinpouro and M.D. Ercegovac

Computer Scien Department
University of Califoania at Los Angeles
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Abstract mentation at a topological/geometrical level. Use of vari-

A functional (applicative) hardware description ables and the possibility of side-effects make the analysis
langag functn (apalcae) dealingwith u ththe of algorithms and their implementations very difficult.

language (FHIDL), capable of dealing with both the Tecifavnaeo ovninlH~ sacmo

sequential and combinational systems is discussed. The The chief advantage of conventional HDLs is a common

language supports multi-level executable specifications familiarity and wide-spread use of conventional

and interpretation of functional specifications as imple- languages.

mentations at a given level of primitives. That is, the Recognizing the potential benefits of languages

FHDL specifications are symbolically interpreted to pro- with formal foundations, simple and precise semantics,

duce structural representations (implementations) of and inherent power to deal with concurrency and multi-

hardware algorithms. The symbolic interpreter presently level abstractions, several researchers have considered

implements the specification of hardware algorithms at nonconventional language approaches for specification

the gate level. The FHDL allows definition of function and design of digital systems. Functional (applicative)

attributes, such as delay and number of logic level so programming languages [1,21 satisfy these properties

that the performance characteristics of implementations (13.6,17,111. The basis of functional programming (FP)
style is the representation of computations by functions
that map objects into objects, and functional forms that
combine functions. Objects are atoms (e.g., numbers and

1. iutroductla strinp) or sequences of objects. Since an FP program is -

a function, it provides a generic specification of a compu-

Background: High-level hardware description tation: it applies to any size of the input object. An FP

languages (HDL) are used in various phases of design in language allows hierarchical description of computations.
order to reduce the design time and errors, and simplify Since the language does not have side-effects, the compo- .

checking, debugging and modification of specifications sition and analysis of programs are straightforward.

and the corresponding implementations (191. The high. 11,6,171 A possibly the most significant property is the

level HDLa are also used in simulation at various levels mathematical basis of FP languages which provides

in the design hierarchy. Multi-level simulation is a very means for systematic program transformations and for-
important aspect of VLM design because of the lengthy rel design verification.
manufacturing process. The FP hardware description languages provide an

integrated framework for the following phases of design:
The HDLs have been following the evolution of (i) Specification: capturing proper behavior, (ii) Imple-

programming languages in the sense that both the im- mentation: obtaining a suitable structure (implementa-
perative (procedural) and applicative (functional, non- tion), and (iii) Optimization: '-finement of the imple-
procedural) languages have been considered as models. mentation to satisfy realization constraints.
The HDL& based on conventional, imperative languages
have several serious deffiaencies: they have no rigorous The differences between functional programming
basis, their syntax and semanti are complicated, her languages (FP) and imperative languages as general pro-

constructs are ad hoc, and they reflect closely the gramming languages have been discussed n depth in.
sequential model of computation. Consequently, the 11,31 The previous work on the use of functional

HDL programs tend to be complex and error-prone, dif- languages as HDLs by (13,9,8,4,10,11,16,151
ficut to compose out of other programs, provide no in- discusses key ideas and the tradeoffs of this class of pro-

herent basis for checking and verification, and do not gramming languages compared to imperative HDLs.

support concurrency. Moreover, there is no direct ore- A functional program, being an expression, is clearly

lation between a high-level specification and its imple- suitable for describing combinational networks. Most of
the previous work on functional languages as HDLA dealt

Currently with Percwpro.am IW., 6271 Vriei Ave., Woodand with the combinational systems only. Recently ap-
HUs, CA 91367. .

22nd Design Automation Conference
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proaches to deal with sequential networks have been dis- each atom must contain a symbol and a value. In order
cussed in [15,201 to obtain design characteristics, the value., of various at-

Overview oldur ardcl: The principal contributions tributes are passed along with each object so that each
discussed here are: (i) FP language extensions to deal function can update these values depending on its charac-
with sequential networks, and (ii) an attribute system to teristis.
deal in a general way with the evaluation of characteris- In general, an atom in the symbolic domain has
tics of designs. Section 2 discusses the FP language the following form:
(FHDL), its sequential constructs, and the handling of
attributes. The main features that support transforma- (symbol-or-name value opfonal-list-o-alribie-vaues)
tions from the algorithmic level into the logic design level
are emphasized. Several functional forms have been ad- Currently the symbolic interpreter supports only two
ded to support the specification of sequential systems. types of attributes: the propagation delay(D), and the
We illustrate these forms in both the behavioral and number of logic levels(L). For example, atom "(MUX-
structural domains. IN1 1 25 3)" can be interpreted as a wire or connection

To aid the designer in estimating the performance called "MUXINI" with value of 1. The delay of the
parameters at various levels of abstraction of the designs corresponding signal is 25 units of time, and the signal
obtained from FHDL specifications, FHDL provides has passed through 3 levels of logic. It should be noted
means of defining and evaluating the system characteris- that a predicate like atom returns true token "(DUMMY
tics using attributes such as propagation delay and the 1 0 0)" when applied to an object like "(MUXINI 1 10
number of logic levels. The paper concludes with a more 2)", since this object is an atom in the structural domain.
complex example in Section 3 illustrating the main capa F
bilities of FHDL. Function In the structural domain, functions operate on

symbols, values and attributes. For example, or function
2. The Language (FHDL), Sequential Constructs and applied to ((IN1 1 5 1)(IN2 0 9 2)) will produce an atom
Symbolic Interpretation (WIRE.01 1 18 3). Three categories of functions that

appear in FHDL must be considered. First, there are the
The language FHDL is an enhancement of the FP functions that perform basic boolean operations such as

language defined in [17]. FHDL can be used to specify and, or, zor, nand, nor, and not. These functions are
synchronous sequential networks. A sequence that is mapped directly to the corresponding logic gates. Second
produced sequentially by a synchronous sequential category contains basic interconnection functions such as
machine can also be produced spatially by a combination. "select" and "distribute left". These functions never
al iterative network [12,7,51. Thus, a synchronous create new atoms and their effect is independent of the
sequential system can be specified in FHDL using its spa- value of their input atoms. They merely rearrange the
tial equivalent - combinational iterative network. atoms within an FP object, possibly leaving some out and

In order to transform the FHDL expressions from replicating others [181. Third, there are functions that
the behavioral domain to its structural domain, a symbol- are introduced for ease of describing algorithms. Exam-
ic interpreter is used. In this interpretation the functions pies are length, atom, huil, and predicates. Predicates
operate on objects which are values or symbols to pro. usually have dual purpose. They are used sometimes to
duce the logic diagram or a net-list. To provide informa- manage the flow of control and ease the description of
tion on the performance parameters, the symbolic inter- algorithms, while in other instances a predicate is
preter evaluates a number of attributes associated with mapped directly to low-level implementation. In FHDL
each primitive function. These attributes represent imple- symbolic interpreter, conditional constructs and predi-
mentation characteristics such as propagation delay and cates are used to control the flow of data and ease of al-
number of logic levels. gorithm description solely. For functions like length

The transformation of FHDL expressions from the there exists no mapping to a lower level.
behavioral domain to the structural domain requires an The boolean functions include time delay and logic
instantiation of the specification with an object of given level attributes. Each time a boolean operator is applied,
dimensions. For example, the description of a multi- the corresponding delay and logic level attributes are up-
plexer can be used for any size multiplexer. That is, a dated as follows:
4-input or a 32-input multiplexer have the same descrip- D, = map(D,Dz) + D
tion, and for the actual structural realization the size of L., = maz(L,L) + I
the input object must be known. where D and D, denote the time delay of the inputs, L

We now consider the use of objects, functions and and L, represent the logic level of the inputs, and 1) is
functional forms of FHDL in the structural domain, the propagation delay of the operator. The equations are

interpreted in the worst-case sense: the time delay attri-
Objects In the symbolic domain, objects are associated bute of the output signal is equal to maximum time delay
with both symbols and values; functions operate on ob- of the inputs plus D1 the time delay of the function
jects to generate new symbols, except in the case of (gate). The logic level attribute of the output signal is
predicates. Since predicates are used to control the flow equal to maximum logic level attributes of the inputs plus
of data, they operate only on values. Thus, in general one. The following is the output of the symbolic inter-
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preter for applying the function HALFADDER to the in- 1 2 X3 U X9

put "((AO 1 0 0)(BI 1 0 0))" which illustrates how the
boolean functions operate on attributes._ I r

> I HALFADDEP-841
> I ((AO 1 00) (BI 1 00))

> 2AND.842 ]
> 2 (AO 10)01 10 0) _,
> 2 (WIRE.843 19 1)
> 2 XOR.844 r7:,
> 2 (AD 10 0)(31 10 0) Figure 3. Interpretation of Right-Insert
> 2 (WIRE.84S 0 16 1) ,
> 2 (WERE.430 16 1) ( 06)e) Left-insert Functional Form> I ( ( w n . & 3 1 9 ) ( W i . 4 5 0 6 ) ) f x w e e 1 ( 1 1 s 1 5

The number following ">" is the level of nested function \ f : where a = (z; '2 x1 4 s)
calls. Each function occupies three lines. The first line I 14 -,
has the function name with a number appended at the r
end, to make a unique function name. The second line
lists the inputs, and the third line has the list of outputs.
The function HALFADDER.841 has a worst case propa-
gation delay of 16 units of time and has one logic level
(as shown by atom WIRE.845). The gate delay of and
primitive is 9 units of time and the gate delay of zor gate
is 16 units (Mead and Conway [141 timing model is con-.t an L s
sidered). Figure 4. Interpretation of Left-Insert

Functional Forms We now discuss the implementation of f) Tree-Inserv Functional Form
functional forms of FHDL in the structural domain. The :• where x = (z, x2 x) j4 is 4 1,14)
structure shown for each functional form is generated by X X 1- U is 1 x,
the symbolic interpreter and a graphic interpreter [18J.

f@g:x "
I r

Figure 5. Interpretation of Tree-Insert

F+<,I Apply-to-All Functional Forms
Figure 1. Interpretation of Composition

Two types of apply-to-all functional forms are pro-
b) Construction Functional Form vided for interfacing the sequential functions to the com-

(f1j, 2J,3.f4 1 binational ones and for specifying algorithms in general.
These forms are equivalent at the behavioral level, while
they differ in the structural domain. This distinction is
caused by modeling the sequential systems by iterative

, 3networks in the behavioral domain.

a) Space-Apply-to-AUl Funtional Form(&)

Figure 2 Interpretao of &f : = = (fn 1,f:x,. .fx),
Figure 2. Interpretation of Construction where x is a spatial sequence of elements.

c) Constant Functional Form Space-apply-to-all functional form at the structural level
%c:• == (namez000) will be mapped to n copies of function f. The function

fFunctional Form f operates on all elements of the input object con-
d) Rig-Insert F o Fcurrently and produces the results simultaneously. This

If : where X = (1 1 12 , X4 15) form is equivalent to apply-to-all functional form defined
by Backus 111.

&f -a where x = (' 12 z3 x 10
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Figure 6. Interpretation of a
LI

b) TheApply-t-AlU FACtSonal Forn(S) Figure 8. Structural Interpretation of

Sf:x = (fzx,fzi....f, Sequence Functional Form

where x is a time sequence of elements. The following example of a bit-serial adder illustrates the

At the structural level time-apply-to-all is mapped to one

copy of function f. Input x is a time object because the # Bit-seia a u the sequen functonal fom
implementation of Sf implies that the elements of the in.
put are appied to fone at atime. In other words, ,, is dsm 0 4 ~rr (,S)..(,-
the input at time tl, za is the input at time t2, and so on. nq(SO. SO) C_ ;S_ =

In the structural domain, the time-apply-t-a functional nqftm fulladder @
form only operates on one element of the input at a time s @ 11@1,2)
(the symbolic interpreter uses the first element of the in-
put objects). Time-apply-to-all consumes an input gen- * # VqNUr ((AO BO)...(A-,,-))
erated by a sequential system and produces an output to
be used by a sequential system. * P r 0 o rTPM ((So S ... sH_ ) C._)

Sf : z where z = (x, za so x., xd) *S2 • select Sums
1 l@luti @ 0 select C._

adder i NPUVr ((A. H@ .(A,)-

Note that in FP programs functions are applied from

Figure 7. Interpretation of s right to left.

We now discuss bow these functional forms are b) Mealy Functional Form
used to describe sequential systems. (mealy int meout A menezt g meend) : = =

Sequential Functional Fo (h:(int:x,z1 ),h:(g:(ini::xx.),'2),

The abstract model of a synchronous sequential
system is a finite state machine where x is the input and where x is a time object.

z is the output, while y is the present state and Y is the The keywords mealy, meout, menext, and meend are
next state. The following three functional forms are pro- FHDL delimiters. The functions ilt, A, and g are the ini-
vided as the implementation of finite state machines. tialization, output, and state-transition functions, respec.
The previous argument used to distinguish between the tively. In a Mealy machine, the output depends on both
time and space domain implementations applies directly the present state and the input. Function nit provides an
to these functional forms. All of the following functional initial value of the state register.
forms are implemented in time domain and appUed to 'U

time objects.

a) Sequence Functional Form G

(seq in seqfnc g neqnd):x = =

where z is a time object. - F

Keywords seq, .eqfuac, and seqend act as delimiters. 7UP1

The functions Ji and g are the initialization and state- Figure 9. Structural Interpretation of

transition functions. Sequence functional form describes Mealy Functional Form

ted stae 
aie, 

whr 
thed optvct 

s 
the

same as the present state y. In the following example a bit-serial adder is specified

using the mealy functional form.
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• Bit-si adde usin Mealy functiona form 3. Example

dea mealyadde 0 OUTi'r((COSO)...(C,,_1 S_)) We now illustrate the use of apply-to-all and
a* SO.%01 * C.I = 0; S-I . 0 sequential functional forms by considering the specifica-

mWt I # po Carry and Sum tion and implementation of a multi-operand carry-save
et fudder @ adder' Multi-operand carry-save adder uses a carry-save

W" @ 11@1.21 logic with feedback in order to perform additions. The
- final partial-sum and the carries are passed to a carry-

idda # ((AO Be)(A B1) ... (A.-i I propagate adder to generate the final result. A high-
level logic schematic of the adder is shown in Figure 11.

defl cpa3 0 *OFU((SSI ... _,)C._,) The following is an FHDL description of the multi-
152, s eect Suns operand carry-save adder.

@l'ast] @ elect C._1
mealyadder detn fulladder 0 • (C1. S1)

eaddd MIf I " ((A PO) ...(A-, -1)) [(I o 2).31 @
eipndl @ Il.halfaddeC@l2,3U @
apndr @ [halfadder@ C 21,2J,3

c) Moore Functional Form enddd • (A., CO

(moore inif moot h monext g moend)x = = defun halfadder 0 # (C1 . 1 S)
landioari

:(g:(g:(inis:x,xj),xd)) .... ),oddd • (A, A)
where xis atime objwc. defun irdtosa0 initial value of state

[(& 1%0,%OD,%Ol @ I
The keywords moore, moot, monext, and moend are euddet
FHDL delimiters. The functions viut. A, and S are the in- %
itialization, the output and the state-transition functions, defus addall 0 # ((Xo Sr._ 0)...(X._ S_,_ ID- 1 ))
respectively. In Moore machine the output depends on &apndr @ tram @ II@tlr@1,2
the present state only. nMdd • (((SOu1 0)...(S,-l 1 - i,_ 1 _1  _

Ku # NX ... X _))-

G I defn rearrangeoutput 0 .

"TATI-BEG• ((0 S)(Ca SO ...(C,,- S,-)
pair @ apncfl @ I %Ojd1 @ oncat

@ & reverse
9enddef # ((q So(q SO.. (C .,)

, 7defincs 0 • ((0sob)...(k,_d V_!) C.)
Figure 10. Structural Interpretatiov of [tr,lalastl @

Moore Functional Form rearrangeoutput @
&fuDadder

The bit-serial adder is now specified using the @ addal
moore functional form. ead"e I 0 O S% (RIi,1 S,,. 1 ) C , 1 )
St-saial adder using Moore fuctional form (xO ... X,, 1 ))

j r 0 OUTPt ((C. SO)...(Cl_ S,_,)) defun multiopca 0 • (((o S) ... (R _kl S -1)) C(l)
mow1%0,%0] • C_1 - 0; S_1 = 0 # ...

wodid • Pn Cy an Sum ((0 S%.. ( , S_,) C,,))

mwom fufladd.r @ eq ivtca swqfke oa weqend
arn @ emddd # ((Avj ...,A%- ,j0...,%..-)..

1l@1,21
mmead deflu muinuopadder 0 • ((P,_Il... P, CG).

awid # ((AO Bc(A B1)...(A.- I,- 1)) # T . r")
(apndr r lcpa@1,2j) @ last

duefln cp2 0 0 ouu ((so s ... sVO C,_0 $ s([pndfl @ [l%o, Ofl,2j)
152, # select Sums @ muiopcsa
ll@mtl @ # Wecd C,,_ rodef 0 ((Ao ...AkI,)... (A(,, .. _)

m( .eadA The function multiopcsa specifies the carry-save adder.
dd •INT ( ( Ac I)..( A_ )The function muldopadder connects the carry-save adder
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FIHDL specification. Second, the symbolic interpreter is
used to transform the specification from the behavioral
domain to the structural domain. The following is a
sample of the functional simulation of mudtopadr and
muktopcsa functions.

mltioPosa:((0 0 0)(0 0 0 1)(0 1 1 1)(0 0 1 0))

((((o 0) (0 0) (0 0) (0 0)) 0) (((o 0) (0 0) (0 0) (0 1)) 0)
,.,~W ((o0) (o 1) (0 1) (o 0)) 0) (1(o 0) 01 1) (o 1) (o 0)) 0))

Figure 11. A Multi-operand Carry-save Adder

(the sequential system) to the carry propagation adder multiopedr:((0 0 0)(0 0 0 1)(0 11 1)(0 0 1 0))

(the combinational circuit). The important aspect of this
example is the use of the sequential functional form in (0100)
cia function and the use of ime-apply-to-all functional The simulation of muliopadder in the structural domain
form in function multiopadder to interface between the using the symbolic interpreter is given below. Only the
sequential part and the combinational one. high-level modules are shown below.

Figure 12, 13, and 14 show the logic diagram of
functions muldiopadder, mnotiopcsa, and csa respectively. > i IOPAD:M406

Ab AJ 23 > I(((lN11 100)(1N12 100)(IN13 100)(IN14 100))((MJ,21 100)

L- I (D22 1 00)(MN23 1 0o)(n24 100 )))

I lI I I I 1 °>°2 °'
> 2 ((([NII 10 0)(012 10 0)(UJ)3 10 0)(Th14 10 0))((h12 10 0)

F'CP (DM10 0)(D1210 0)(M14 10 0)))

> 3 CA.419

, n Pt PO CAW >3 (((((CONST410000)(CONST411000))((ONST412000)

Figure 12. Logic Diagram of Multi-Operand-Adder (CNST .413 00 0))((COST 414 0 0 0)(O ST 415 0 0 0))

a 90 I 31 R 3 i 3 CA"A$ U 43 AJ ((CONST.416000)(CONST417000)))(M ST418000))

I I I I I I I I I >3(((h! 100(N12 1 00)(1 N3 1 32N14 10 0)))

CIA > 3 ((((CC'NST 474 00 0)(WIRE 4311 32 2))WIRE 433 0 34 3)
(WIRE 444 1 32 2))((ARE 446 0 34 3)(WIRE.457 1 32 2))

((W E.4S9 0 34 3)(V'IRE.47 132 2)))(%WP.47n 0 3 3))
UTATZ.EZ

> 3 STATE 473

> 3 (UOST 474 00 0)(NVIRE431 1 32 2))UWAIRE 433 034 3)
I U 3I 31 32 32 33 33 Ce" (WIRE444 1 32 2))((WIRE.46 0 34 3)(WIRE.457 132 2))

Figure 13. Logic Diagram of Sequential CSA ((WIRE 459 034 3)(%%IRE 470 132 2)))(%%IRE 472 0 34 3)

S0 U 1 21 3ISC- Al A3 > >3 ((((C4ST 410 0 0 0)(CONST 41 110 0))((Ca'JST 412 0 0 0)
(COCST413 10 0))((CONST 414 0 0 0)(C STm 415 1 00))

((CCIST 416 0 0 0)(CNST 417 1 0 0)))(CJST 418 0 0 0))

> 2 ((((CCST 410 00 0)(CaJST 411 10 0))((COJST 412 0 00)

(CC'JS.413 10 0))((CONST 414 00 0)(CON~ST 413 I 0))
FA FA FA A ((CCINST 416 00 0)(CONST 417 1 0 0)))(~CONST.418 00 0))

> 2 CPA.478

, A' ii !,T> 2 ((((C'ONST 476 0 0 0)(COINIST 477 0 0 0)))((C)NST 410 0 0 0)

(CCST 4)1 10 0))((C~t 412 00 0)(CONST 413 10 0))A

((CCNST 414 00 0)(COJST 415 10 0))((CONST 416 0 0 0)

1 0 S u U Iu "C- (CCONST 417 100)))

Figure 14. Logic Diagram of a CSA > 2 ((WIRE 490 1 32 2)( WIRE 54 50 )(0 WIRE 518 16 6)
(WIRE.532 1 86 8))

For carry propagate adder(CPA), function cpa, any of
the specification in Section 5.2 can be used. A more de- > I (W E 490 1 32 2)(wI 504 I 0 4)(w E 518 1686)

tailed discussion is given in 1151. As mentioned earlier, (AIRE532 1 88)(Ca4ST418000))

two different tools are used in this work. Frst, the func-
tional interpreter provides a functional simulation of the The symbolic interpreter does not provide the full simu-
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lation of the FHDL specification. The interpreter simu- [5] Davio. M., J. P Deschamps, and & Th"y. in Digital Systm,
lates the specification only to the level necessary to with Algoriunh Imlewmnatio, John Wiley & Som. 1983.
transform the specification to the structural domain. As
illustrated above, the function multiopadder was applied 16] Ecegovac, M.D. and T. Lang. "A igh-Leve Language Ap
to the input consisting of two numbers represented with proach to Custom Chip Layout Design," University of Ca4fom.s
bit-vectors 1111 and 1111. The output of symbolic inter- MICRO Project Reports 198243. April 1984.
preter was 1111, because the interpreter executes the
multiopcsa function only once. That is, it adds the first (7] Ercegovac, M. D. and T. Lang, in Digiaa System.
input with the initial value of state register w. The inita HardwareIFur, are Algorith . New York, J. Wiley & Som,
value of state register is provided by function iucsa 1985.
which is zero.

The maximum clock rate of multiopadder is 34 [8- [] Frankel, P. E. aid S. W. Smoiar. "Beyond Register Tramaes:
its of time plus the time delay of the state register (i.e., An Algebraic pproach For Arcditectural Deswption," Proc. of
8 units of time). The delay of cpa function is 86 units of 4th International Coif on Conmaer Hardwe Dscripti
time. Thus, for adding 20 numbers about Languages, Oct. 1979, pp. 1-5.
20"(34+8)+86 = 926 units of time are required.

As illustrated above, FHDL can be used to specify [9] Frankel, . E. and S. W. SmoSar, "Digital Syntems .
digital systems, to map the specification into a gate level Mathe al Espreusons. Proc of COM44CON, Spring 191
implementation, and to simulate its functional behavior. pp 414-416.
The use of attributes provides a systematic method for [101 Gordon, K., "A Model of Register Transfer System with Appb-
gathering performance characteristics of the design. cations to Microcode and VLSI Correctness," Tedh. Rep. Urn-

4. Conclusion published, 1981.

A functional programming hardware description [II] Johnson, S.D., Synthesis of Digital Desigu from Recwusio Equm.

language (FHDL), based on the Backus's FP, was n0w, Cambridge, MM.: The MT Press, 1984.

described. FHDL supports the specification of both com-
binational and sequential systems. The sequential sys- 1 , .
tems are modeled by equivalent iterative networks at the -1, 1978.
behavioral level. Then, a symbolic interpreter is used to [131 Lahti. D. 0., "Application of a Functional Programming
interpret the specifications automatically at the structural
level, which presently consists of gates, registers and in- Riep. UCLA Dept. of C puter Sdeme, LA, CA. Tedh. "
terconnections. Characteristic attributes are introduced Rep. Ro No. CSD-10403, 1981.
in a general manner so that the information about system [141 Mea, c. and L. Conwa, Introduction to VLS Systems, Reed-
performance and design parameters can be extracted. in, Massaihuem: Addson-Weslcy, 1990.
The two implemented attributes are the delay and the
number of levels. 1151 Meshkinpour, F., "On Specification and Design of Digital Sys-
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Abstract This extension improves the detection of errors, espe-

Acally of those due to indeterminate fauits. and provides
A generalization of low-cst residue codes into two- certain erfor-correction capabilities. Of special interest
dimensional encodinp was presented and error detect- to current VLM implementations of arithmec are the
ing and error correcting properties of two dimensional advantages offered by two-dimensional inverse residue
inverse residue codes were discussed previously. This codes in the detection and correction of errors that d-
paper presents byte-serial checking, additive inverse feet byte-wide communication paths and processing ele-
(complementation), and addition algorithms for ments. Such paths are widely used in high-performance
operands encoded in two-dimensional residue and in- array processors, systolic arrays, and for inter-processor
verse residue codes. communication in large multi-processor systems. Byte-

wide processing elements are very suitable for the im-
plementation of large processing arrays [AVIZ 701,

I. Introdnctlon [TUNG 701 and variable-predsion siped-digit arithmet-
ic [AVIZ 621.

A general approach to the cost and effectiveness study
of low-cost arithmetic error codes has been presented in This paper presents the fundamental byte-serial arith-
[AVIZ 7laj. This paper introduced the concepts of in- metic algorithms for operands encoded in two-
verse residue codes and of multiple arithmetic error dimensional low-cost inverse residue codes. The algo-
codes. The concept of repeated use fauls was presented rithms are:
and the effectiveness of various arithmetic codes with
respect to both determinate and indeterminate repeated- (a) the line-residue checking algorithm;

use faults was established. An important result was the (b) the additive inverse (complementation) algo-
proof that inverse residue codes can detect the "com- rithm;
pensating" determinate repeated-use faults that are not
detected by ordinary residue codes. The modulo 15 in- (c) the addition algorithm.
verse residue code was applied in the JPL-STAR experi-
mental computer [AVIZ 71b]. Further results on deter- A brief review of the error-detecting and error-
minate faults were presented in [PARH 731 and [PARH correcting properties of 2-D inverse residue codes fol-
781 An extension to signed-digit arithmetic is found in tows the description of arithmetic algorithms.
[AVIZ 811. J. F. Wakerly has analyzed the detectabili-
ty of unidirectional multiple errors IWAKE 751. and 2. Model oft the Byte-Serial Communicatien and
A.M. Usas has demonstrated the advantages of inverse Computation Path
residue codes for multiple unidirectional error detection,
when compared to inverse checksum codes (USAS 781. We consider a communiation and computation path con-
Bose and Rao have considered unidirectional one-line sisting of b bit lines (X",X' .... Xb- ). The binary
error correcting codes using a combination of byte par- operand X consists of kb bits, processed as k bytes
ty and residue (not low-cost) encoding (BOSE 801. (X0 . . X.... Xk-,) of b bits length each. Figure

A new generalization presented in [AVIZ 831 extended I shows the notation used in this paper.

the application of low-cost inverse residue codes into Two types of low-coat residue encoding are applicable to
two dimensions: row (byte) and column (line) residues. the operand X:

* Ti resewcsh has been supported by O1NJR contrc N00014-83- (a) Residue Code: the k bytes carry an error-
K.4193.
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detecting code check tyte XA that represents the
modulo 2/-1 residue X' of the operand X: 3. A Byte-Serial Line-Residue Checking Algorthum

X'=(2 - 1)IX; and the operand is now k+ 1 bytes Given a "wo-Dimenional Inverse Residue encoded
Iong. Usually the residue value X'=O Is

represented by a string of b oe. If the all-zero operanzd X (as shown in Figure 1), the line-residue
operand can exist. ift residue will be b zeros, un- checking algorithm requires the computing of the im
los explic y disallowedu check result R(L):

IxpRo di~wd(L) -(:e + ) Z LX; where X) 7 LX12'

(b) Inverse Residue Coda: the inverse residue byte X& 1-0 1-0
represents the value r that is the (2b- l)'s com-
plement of X'. It is obtained as An "all-ones" R(L) indicates a valid encoding; all other
r- (2h-I)-X = (2 -l)-(2hl)1 X; and the values of R(L) indicate an error.
operand is again k+ 1 bytes long. The residue
value X'=O is represented by b ones, and the in- In the byte-serial implementation, one byte of Z be-
verse residue r in this case is represented by b comes available at a time, with the least significant byteb

zeros. The all-zero operand X has an inverse X0 arriving first. The "line sum" JX designated by
residue code r represented by b ones. 1-0

X(L), is computed as the weighted sum of the oount of
To form a two-dimensional residue encoding, one more ones" in each byte:
check line Xb is added to the communication and com- , b

putation path (Figure 1). The lines X0,X ... X a .(L) - .r jX". (3,X) 2'

summed modulo 2k+l-I to get the line-residue of X. 1-0 1-0 J-0

Two classes of 2-D low-cost residue codes can be em- In order to get R(L), the modulo (2k+I-l) residue of
ployed: X(L) must be computed. Thbat requires an "end-

around-carry" addition of the "overflow bits"
(c) Two-dimensional Residue Coda: the check bits X' (Sk+,, ...... Skl) of 7,(L) that are in the positions

of the check line Xb represent the modulo k+ 1,...,k+m of X(L). Since a full-length addition de-

2 +l - 1 line-residue XL: lay is inaceeptable in high-speed byte-organized comput-
b-I

Xj - (21+l) 1 X ;whereX1 = X 2' ing (e.g., systolic arrays), a fan line-residue checking
- 1algorithm is developed here that requires only a short,

(d) Two-dimensional Inverse Residue Code: the m-bit (with 2'0 z b+1) addition after 7(L) has been

check bits XI on the check line Xh represent the byte-scrially computed.
modulo 2 k+ - I inverse line-residue XL:

X' (2 + 1
- ) _X1 The speed-up is accomplished by the simultaneous ocrm-

- puting of two tentaive line sums X(L) and
it is important to note that the bits (Xk-I ..... ,X) of the .(L)' = j(L)+2'. The value of m is determined by
check byte Xk are treated as the most significant bits of the maximum value of the line sum X(L). An upper
the lines Xb - I ..... ,X° when the line-residue of X is bound for X(L) is obtained by assuming all digits
determined. The line-residue encoding is superimposed X1 (01:5k; OjJsb) to have the value "1". (7bis situa-
on the already encoded operand. tion cannot occur for a valid encoding, but could be

caused by an error.) In this case,

mekn ... line line lie X(L). = (b+ 1)(2 t+ 1- l) = b2k +1 + (2'l+1 - 1)-b

and the "overflow bits" represent the value b with

X1 xe-' x4 ... x1 x4 X, respect to the position k+l of the line sum X(L). The
value of m is the smallest integer that satisfies the con-
dition:

i 4 m-2"-1 zb or 2' >b+l

For example, S-bit bytes (b=8) will need m=4, regard-

xi, X-1 .. x-, xi, 4-1 less of operand length k (in bytes).
Xf 4t-1 xl ..- chwkd

--hx& After X(L) and 7(L)' = X(L)+2r have been comput-
ed, the m "overflow bits" (Sk+.....-,Sk l) of X(L) are
added to the m least significant bits (S,-I ..... 0) of

Figure 1. Model of the Path and the Operand X X(L). The resulting carry-out C. determines the
choice of the bits (S .. -,S,):

2
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(a) If C*=O ,(S,... ,S.) come from X(L) S. The Byte-Serial Addition Algorithm

(b) U C, i , (Sh. .... ,) o e ffro1 '(L)' We cohsider the byte-serial addition of two operand$ X
and Y, each kb bits lonj. to get the sum Z -x+ . The

The "all ones" line check result (S=1 ;Olslk) indi- addition is modulo 2 -1 ("one's" complement), or
cates the absence of errort; any other line check result is modulo 2" ('two's" complement).
an error indication. The determination whether
(Se,...,S,) are "all ones" is done while these bits are The check byte Zk is obtained by adding the check bytes
computed. The final step is to test whether the bits Xk and Y& modulo 2b-1. If "two's" complement is

.. o) also are "all ones" after the "end-around" used, a "orrection signal" input needs to be used, as
addition of the "overflow bits'. defined in IAVIZ 731.

4. The Byte-Serial AddlUve lnver". Algorithm An algorithm to generate the invere line-residue for Z
from the inverse line-residues of X and Y is developedThe additive inverse of an operand X is formed by oh- here. As first developed by Garner IGARN 581. the

taining the complement of X. Either "one's" or "two's' carries generated during the addition of X and Y need
complements can be employed; the specifics are dis- to be employed in the calculation of the inverse line-
cussed in [AVIZ 71el and [AVIZ 731. residue for Z.

The purpose of this section is to develop the correspond- The "count of ones" (designated by a(Z,)) in each byte
ing omplementation algorithm for the invrcne line-
residue Xb. When the "one's" complemnnt X of X is Z, (5isk - 1) of Z Is:
formed, the countofones'ineachbyteX, of Xis: b. z= (x(+y'h(ZC)-21 + c1;b-- b-1 J-0 J-0 J-1

21ij b - bx1
J-0 J-0- or: a(Z,) = a(X,)+a(Y,)-u(iner,,al C,)-2Ct + Co ;

This leads to the relationship for O(X): where C1 is the carry bnt the j -th position of the sum
byte Z1. and C,+1 = Cb for Oi:0-2. For "one's"

b-1 2complement addition of X and Y, we also have
X) ( C I = C 0.i-0 J-0

Taking the line-residue modulo (2' + 1- 1), we get: The above leads to an expression for 7X(Z) when
(2'+'-l) IY"(X) = .(Z) = Z a(ZI)2' + a(Z&)2 ;

=(2k+'- 1) i (0 [(2 + - 1) 1 Y,(x))_ -o
or

- (2 k+-i) I .(X) .(Z)= .(X)+ j(Y)-.(iwrnal C)-21CA_ +

The relationship demonstrtes that the line-residue of +CO+2* a(X)+a(y)_a(Ct)
the "one's" complement X is obtained by taking the 0
one's complement (2 k+1-l)-[( 2&+-l) I (X)j of the The count a(C is the tota count of carries Cj for
line-residue (2ke 1- 1) i .(X) that was computed for the lsj-b, since Ck = Cb in the modulo 2h - 1 addition of
operand X. The same argument follows for the inverse the check bytes X& and Y& ; i.e.,:
line-residue. h

a(Ck) - C1 = ac -" CA)+ C
If the "two's" complement X* of X is to be formed, it is J-1
considered to be: Two cases need to be discussed separately:

Si+20  (a) "One's" complement (modulo 2k - 1) addition of
In order to get the line-residue of XO, the line-residue of X and Y;0 must be added modulo 2+' -I to the line-residue of
X. For inverse line-residue encoding, this means the (b) "Two's" complement (modulo 2kb) addition of X
addition of C() = 1, as described in the next section. and Y.

For "one's" Complement, C_ 1=CO is the "end-around-
carry", and the expression for I(Z) is :

A3
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(Z)=X'(X) X- '(Y)-X'( C) -2C t.- C-!- 6. DeacI€lon of Unldirectional and Bdlrectlonal Error'

+2*a(Xa)+ ea(Y)-2a(hI Ck)-2tCkb  In this and the following sections 7 and 8, the error-

The expression reduces to: detecting and error-correcting properties of the two-
dimensional codes that were first presented in (AVEZ

(z)=.(x)+1(Y)-{ ..( C)+2(C+Ckbi)-Ct.- 831 are reviewed, illustrated, and extended to two and

Taking the line-residue modulo A =2k+tI of 7(Z), we three adjacent lines.

get: Given a modulo 2 b - I inverse residue code, the un-
Al 71(Z)=Al (Al (X) + detectable unidirectional errors are those that have error

+AI Z() -Al [ 1.(iis. C)+2(Cb+Ctbi)-CbI] values E congruent to zero modulo 2
b 1, where

This relationship shows that the line-residue of Z can be E = E J 2/

predicted from the line-residues of X and Y, as well as a J 0

line-residue computed from the internal carries formed All other unidirectional errors will be detected; howev-
during the summation of X and Y. The two "end- er, there are no error correction properties.
around" carries CtI and C1 also need to be included in
the calculation. One bit-line determinate ("stuck line") faults that cause

unidirectional errors will always be detected as long as
Common-mode errors can occur if the carries are in- the condition:
correctly determined. To avoid such errors, separate (k+l) < (2

b - 
1 )

and independent carry-forming circuits need to be em-
ployed to form the carries for line-residue determina- is satisfied. For two adjacent "stuck lines." the condi-

tion. tion is:
3(k+ 1) < (26b-1)

For two's complement, the "correction signal" C3)-)
must be added (modulo 2b

- I to the modulo 2 - I sum For m adjacent "stuck lines," the condition is:

of inverse residue check bytes Xk and Y [AVIZ 731.
(2" -1)(*+ 1) < (211- 1)

The ex~ression for 1(Z) is now: For the purpose of this discussion, lines 0 and b- I are

(Z)=(X)+ ()-y.,. C)-2kCt_1 +C0"+ considered adjacent.

+2c(Xk)+2'-m(Yk)-2a(uU C)-2*C+2*C-t The PM (pattern miss) [AVIZ 811 percentages for

The expression is reduced to: "stuck line" faults remain very low ater the left side of
the inequalities above exceeds the limit that guarantees

1(Z)=.(X)+X.(f)-[ X(i, C)+2ktC1- PM percentage of 0%. For example, for one "stuck

where Coo= 1 only exists if one of the two operands is line," when k + 1 =2b- 1 is reached, we have:

being complemented (in "two's" complement) simultane- PM(nv. Residue) = 10/(2k+')

ously with the addition. Once again, we take the line- since only one of the 2k+ f possible error patterns on the
residue modulo A = 2k+ - I of J(Z) as follows: "stuck line" (all zeros - all ones, or vice versa) goes un-

A 11(Z) = detected. The situation is not as favorable with "stuck
byte" faults, as discussed next.=A I{(A I J.(X)+AI J,(Y)-A l{7.,in. C)+2*Cb-Co0l}
There is one undetectable one-byte unidirectional error;

The difference between "two's" and "one's" complement it results when an all-zero byte X, is changed to an all-
cases is quite small with respect to computing the line-resdue(2t1-1 J Z).ones byte, or vice versa. The PPM percentage for this
residue (2k 1-1) 1 a(Z). "stuck byte" fault is (lO(Y 2 h)%. Introduction of byte

parity bits will detect only one of the two (stuck-on-one
In practical implementation of byte-serial arithmetic the and stuck-on-zero) "stuck bytes"; the other one remains
"two's" complement addition (and subtraction) is strong- undetectable.
ly preferable because there is no "end-around-carry"
that requires either a second addition or the generation The "stuck byte" detection problem is fully solved by
of two "tentative" sums - with and without the end- the use of two-dimensional inverse residue encoding.
around-carry. There is one additional check bit XIb for each byte Xj

(i=0..., k). The check bits (X ,... X) represent

4
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the modulo 2*'-1 inverse line-residue r of the 7. Correction of Single-Bit and UnIdIrectiomal
operand X that is now interpreted as b lines XJ Single-Line Errors
(j=0 ... b-1) of k+ I bits length each. It is evident
that every "stuck byte" now will be detected by the use The introduction of the inverse line-residue r also
of r" as long as the condition: makes single-bit error correction possible. As shown in

(b+ 1) < (2*t.l 1) [AVIZ 71al, the low-cost inverse residue codes have the
"partial error location" property. Therefore a single-bit

is satisfied. For two adjacent "stuck bytes," the condi error value E=:+l (OsJsb-l; Oik) wili produce a
ion is: unique indication for line J in the modulo 2b

- 1 check
3(b+l) < (2 k+'- 1 ); and for the byte I in the modulo 21+1-1 check, making

adjant "stuck bytes" it i: a correction of El possible in the operand X. The
forp single-bit error E6= 1 that occurs in the check line b

(2P'- l)(b+1) < (2k+I-1) will produce the indication for byte I (01itk) in the

The bytes X0 and Xk are considered adjacent in this modulo 2A+1 -I check, but no error indication at all in
analysis, the modulo 2b

- 
1 check, since it does not include the

bits of the check Line. Correction of Eb is therefore pos.

The two-dimensional inverse residue is clearly superior sible.
to the byte-parity encoding, since the "stuck byte" con-
dition subsumes all other possible error patterns (dou- The correction property can be extended to most uni.
ble, quadruple, etc.) in the byte, while all "even error* directional single-line errors as follows. If we assume a
patterns go undetected when byte parity is the only determinate single-line fault on line J, the error values
form of encoding. E(j) will fall into the range:

In general, the remaining undetectable errors in the -2JXE s E(J) s 2J El
operand X are those that are missed by both checks: 10 1-0

modulo 2b- 1 over the bytes (not including the check The positive values will be due to a stuck-on-one (s-o-l)
line bits X), and modulo 2t t-1 over the lines, with and negative values - due to a stuck-on-zero (s-o-0).
the check byte bits XJ included in each line J. Most uni- The actual byte check results will assume the values

directional errors are detectable; furthermore, the detec- C(j)=(2 b- 1)1 EU), and as long as (k+l)<( 2b-l )
tion of bidirectional errors is significantly improved, as holds, all error values due to a s-o-1 fault will be detect-
discussed below. able and have a unique byte check result Cj) in the

It has been noted that low-cost inverse residue codes are range))

considerably less effective in detecing bidirectional er- 0 N C (2b-1) 1 (k l)2-
rots due to indeterminate repeated-use faults [AVIZ Similarly, the error values due to a s-o-O fault will have
71a]. The addition of the line-residue (i.e., the second the byte check result in the range:
dimension of encoding) allows the detection of all bi- b-1
directional errors that affect a single line, as well as all 0 s C0 (j) - (2 -1) (-2))(k+l) "

bidirectional double errors affecting any two bits of the However, many other error patterns (on two or more
operand X. The double, quadruple, and other even lines) can produce the same values of check results, and
"half-and-half" bidirectional errors on one line that were error correction is not possible with the byte residue en-
undetected by the byte check are now detected by the coding alone.
line check, while those in one byte are detected by the
byte check. To obtain single-line unidirectional error correction, we

use the additional information provided by the line
The remaining undetectable bidirectional errors are check result obtained from the inverse line-residue en-
those that are simultaneously undetectable by the byte coding. Given a byte check result Cf(j) discussed
check and the line check. An illustration is the quadru- above, we find its value to be N, represented by b bits
pie error that changes Z to Z* as shown below: (Nb_,. N0 )."

Z 01 => Ze = 10
=10 01 First we form the hypothesis that N is due to a single-

Here an even number of opposite-direction changes oc- line stuck-on-one determinate fault on line J
curs simultaneously in the bytes and lines of the (Oj:b-l). If the fault is rn line j=0, then N(0) N

operand X. In general, all quadruple errors of this type error bits EP = I in line 0 will produce the byte check

(at four corners of a rectangle of bits within the operand result N. We determine the numbers N(j) of error bits
X) are undetectable. E(=I on lines =1, . b-I respectively that would

be needed to produce the byte check result N by end-

-I-.
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around shifting N to the right b-I times. The shifts St

will produce the numbers N( I) . N(b- I) in succes- N(0) - 1001 - 9 15-N(O) - 6
sion. N(I) - 1100 - 12 15-N(1) = 3

N(2) - 0110 - 6 15-N(2) - 9
The number of error bits El=I (due to a stuck-on-zero N(3) - 0011 - 3 15-N(3) - 12
line) that would be needed to produce N(j) for any
Osjrb-I is given by (2k- I)-N(j), that is, the "one's The values greater than k+l=8 ae discarded, and the
complement" of N(j). All values of N(j) and remaining possibilities ate line 2 (6 errors) or line 3 (3
(2b-1)-N(J) that are greater than A+I are discarded errors) stuck-o-one, and lne 0 (6errors) or line 1 (3 er-
as impossible solutions. rn) stuck-on-ero.

To test the hypothesis that a given byte check result N is The new [Une check result Is

due to a single-line determinate fault, we use the line R - (R7 ..... R0 ) = 01111110
check result The six ones in R indicate that the "line 2 stuck-on-one"

(2*+ll) IXhypothesis is valid, and the corresponding six positions in
W + ( ,'j fline 2re conrrected by setting them to zero.

This result will contain N(j) digits R,=I (0slk+1) if
there is a single-line determinate (stuck-on-one) fault in The single-line, unidirectional error correction algorithm
the line). The presence of each R, = 1 indicates that the can not be compl:ted only in the cases in which two
digits X should be corrected by the 1-.0 change. conditions occur simultaneously: .-

The line check result R will contain ( 2 
- 1)-N(j) digits (a) More than one line is indicated by the occurrence

R,=0 (Osisk+l) if there is a single-line determinate of identical values of N(J) or of 15-N(j) for two
(stuck-on-zero) fault in the line/. The presence of each or more lines j of X.
R, =0 indicates that the digit X, should be corrected by (b) The orrection pattern indicated by the line checkthe 0-1 change.(b Thcortinptenidctd ytelnehek?

result R is actually applicable to more than one

line j of the operand X, i.e., the lines have all
zeros (or all ones) in the positions to be ixrrect-

Example 1: Line Correction ed.

Example 2 below illustrated condition (2); the subsc.

Consider an operand X with seven bytes (k =7) of 4 tits quent discussion deals with condition (b).
each (b =4). Inveme-reside coding is used for the bytes
(modulo 2b - 1 = 15) and for the lines (modulo Example 2: Correction Ambiguity
2t'1=255). The encoded operand (folowing Figure
I) is shown below:

Now assume that line I is stuck-on-zem. The byte check
check line line line line result is N=0101, and the possibilities am-
line 3 2 1 0

Sn2ck-on-One Snwk-on.Zero
1 0 1 0 0 byte 0"'.
0 0 0 1 1 byte I N(0) - 0101 - 5 15-N() - 10
0 1 0 0 1 byte 2 N(I) - 1010 - 10 15-N(l) - 5
0 0 0 0 0 byte 3 N(2) = 010 5 15-N(2) - 10
0 1 0 1 1 byte 4 N(3) - 1010 = 10 15-N(3) -5

1 0 0 1 0 byte 5 The remaining pssibilities aU point to five errors. The
0 1 0 1 0 byte 6 modulo 255 line check result is
0 0 1 1 0 check byte7 R(J 1101

The byte check result (modulo 15) is N-1ll1. and the The five zerns In R (postions 7,6.5,4,1) Indicate a
line check result (modulo 255) is R = 1II11 . No cr- sntck-on-rnm on line I or line 3. To resolve the ambi-
ron ar indicated. guity, we find that line 3 already has "I" digits in pos-

tions 6 and 4, and ,nnot be corrected ther; therefore
Now assume a stuck-on-one line 2 and set all digits In the stuck line must be line 1.
line 2 to one. The new byte chek result is N= 100 1.

The single-line determinate fault posibilities are:
It is possible that both potential corrections could be
carried out in Example 2 above; that is, both line I and

6n



line 3 could have zeros in positions 7,6,5,4,1. In such a Example 3: Conditions for Mis- Correction
case, the error has been detected, but a correction is not
possible, i=c both conditions (a) and (b) occur imul. Consider the encoded operand below (same format as in

tanecusly.Example 1). Without changes, both N-1111 and
R- 11111111 ame obtained.

3. Two-Line and Three-Line Errors check line line line line
line 3 2 1 0

A more critical case than the ambiguity discussed above
would be that of a mis-orrection, in which the restored 1 0 1 0 0 byte 0
pattern would differ from the original one, such as in I 1 0 1 0 0 bytelI

the case of triple effort encountered by the Hamming I1 1 0 1 byte32

SEC/DED code. 01 1 1 0 1 0 byte 3
I 0 1 0 1 1 byte 4

A mis-correction for two-dimensional inverse residue 0 0 1 0 1 0 byte 6

codes wiloccur if the bit pattern of the operand X 0 1 1 0 1 0 hebyte7

changes in more than one line, but both the byte check 0 1 1 0 0 cekbt

result value N and the line check result value R remain The unidimetional (0 -1) ern-r affect three adjaent
the same as for a single-tine error. This will happen lines (3.2,1) as shown. and impose exactly As changes.
when: Now we get N- 1001 and R=0111110. This is ealy

b ~the same condition as in Example 1, and 'line 2 stuck on
(a) the byte check result is altered by ±c(2b.1) one* hypothesis is valndated, since byte 1 rough 6 con-

tain ones in line 2. Setting tho six bits to rem witl
(b) the line check result is altered by ±c(2h+) -1) cause a mis-correction.

(c) both (a) and (b) occur simultaneously.

In cases (a) and (b) the other check result remains un- 9. Conclusions
changed.

It is concluded that the two-dimensional codes are very

it is readily shown that a mis-correction cannot ocu if nearly 100% (except ink the cases of ambiguity as illus-

only swo adjacent lines (or bytes) are affected by the trated in Example 2) single-line correcting, and full

fault; the detection is guaranteed in all cases. When 100% dou ble- adjacent- line detecting codes with respect

three adjacent lines (or bytes) are affected, a is to unidirectional errors. The probability of mis-

correction can occur. The byte check result will be al- correction in the case of three- adjacent -line unidirection-

tered by ±(2 b.) when the following changes are im- al errors remains very low, since a very specific error

posed on a correctable unidirectional single-Hine error pattern and original pattern of X must coincide to cause

pattern:a i-oecon

(a) two error bits from line j are moved one line to It has been shown that t~te-serial arithmetic can be car-

the right, causing a net change in N of tied out with operands which are encoded in two-
22-) 2 2b-2 ; dimensional residue and inverse-residue codes. Two-

dimensional encodings provide a very powerful error-

(b) one error bit from line j is moved one line to the detecting and a substantial error-correcting capability
left, causing a net change in N of 2-1 = 1. for byte-serial arithmetic. Promising application areas

are systolic arrays, mulItiple -precision arithmetic, and

The total change in N is then (2b -2) + I 2~ bI, and it will high-speed arr ay computing.
lead to a mis-correction if the following two conditions
are satisfied:

(1) there are no further error changes, and RFRNE

(2) the positions in line j that would be mis-corrected [AVIZ 621 Avlienis, A. "On a Flexible Implement&-
actually do contain correctable bit values. tion of Digital Computer Arithmetic," In-

formation Proxesang 19652. C.M. Pop-

An example of the conditions under which a mis- plewell. ed., North Holland Publishing

correction will occur is shown in Example 3 below. Co. Amtrdm 1963, pp. 664-670.
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[AVIZ 701 Avijienis, A., Tung, C., "A Universal (TUNG 701 Tung. C., Avijienis, A., "Combinational
Arithmetic Building Element (ABE) and Arithmetic Systems for the Approximation
Design Methods for Arithmetic Proces- of Functions," AFIPS Conf. Proc. (1970
son," IEEE Trans. on Computers. C-19: Spring Joint Computer Conference), 36:
733-745. August 1970. 95-107, 1970.

[AVIZ71aI Aviiienis, A. "Arithmetic Error Codes: [USAS 781 Usas, A.M., "Checksum Versus Residue
Cost and Effectiveness Studies for Appli- Codes for Multiple Error Detection," Dig-
cation in Digital System Design," IEEE est of the 8th Annual International CopV. on
Trans. on Compauers, C-20: 1322-1331, Faut-Tolerant Computing, p. 224, 1978.
November 1971.

[WAKE 751 Wakerly, J. F., "Detection of Unidirec.
[AVIZ71b] Aviienis, A., et al., "The STAR (Self- tional Multiple Errors Using Low-Cost

Testing and Repairing) Computer: An In- Arithmetic Codes", IEEE Transactions on
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Fault-Tolerant Computer Design," IEEE
Trans. on Computers. C-20: 1312-1321,
November 1971. Reprinted in Best Com-
puter Papers of 1971, L. Petrocelli, ed., APPENDIX
Auerbach Publishers, 1972, pp. 165-185.

Example 4: Line-Residue Checking
[AVIZ 731 Avajienis, A. "Arithmetic Algorithms for

Error-Coded Operands", IEEE Trans. on The byte-serial line-residue checking algorithm of Section
Computers. C-22: 567-572, June 1973. 3 is Ulustrated below. The operand X is from Example 1,

with the 'line 2 stuck-on-one" error. Fiere m-3 and
&=8.

[AVIZ 811 Aviiienis. A., "Low-Cost Residue and In-
verse Residue Error-detecting Codes for check
Signed-Digit Arithmetic," Proc. 5th IEEE line 0 0 1 0 0 0 0 1
Symposium on Computer Arithmetic. 1981,
pp. 165-168. line3 0 1 0 1 0 1 0 0

[AVIZ 831 Avijienis, A. and C. S. Raghavendra, Une 2 1 1 1 1 1 1 1 1
"Applications for Arithmetic Error Codes
in Large, Ilgh-Performance Computers," line I 1 1 1 1 0 0 1 0
Proceedings, 6th IEEE Symposium on Com- " 0 0 0 0 1 1 1 0
puter Arithmetic. 1983, pp. 169-173.

[BOSE 801 Bose, B., Rao, T.R.N., "Unidirectional 0 1 0]
Error Codes for Shift Register Memories', J.
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1980, pp. 26-28. 111109 c3 --. 0 1 1 0

[GARN 581 Garner, H. "Generalized Parity Check. X(L)'=0 1 0 1 0 0 0 0 s2 ' t0
ing', IRE Trans. El. Computers, EC-7:207-213, September 1958. J(L)'= X(L) +21 , since ,,3

Since C3 =0, 7,(L) is selected as ft check result, with

(PARH 731 Parhami, B., Avijienis, A., "Application t2,1t,0' 1 10
of Arithmetic Error Codes for Checking
of Mass Memories," Digest of the 1973 Int.
Symposium on Fault-Tolerant Computing.
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Layout from a Topological Description
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The interconnection topology of a circuit does not, in general, correspond to

a planar graph. However by encompassing the routing of a circuit in the

specification, it is possible to obtain a planar characterization of the topology of a

circuit. The planar topology of a circuit is formally defined and the use of

specifications with planar topology for the layout of integrated circuits is examined.

An applicative language(FP) is used to obtain circuit specifications with planar to-

pology. The planar topology arises naturally out of the constructs used to specify the

behavior of the circuit. An efficient mapping from planar topology to geometry is

implemented. The problem of transforming the planar topology to minimize the in-

terconnection complexity is addressed by exploiting the structural information of the

specification as opposed to using only the planar topology.
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Abstract

We propose to develop a general and systematic methodology for the design of
matrix solvers, based on the dependence graph of the algorithms. A fully-parallel graph
is transformed to incorporate issues such as data broadcasting and synchronization,
interconnection structure, 1/0 bandwidth, number and utilization of PEs, throughput,
delay, and the capability to solve problems larger than the size of the array. The
objective is to devise a methodology which handles and relates features of the algorithm
and the implementation, in a unified manner. This methodology assists a designer in
selecting transformations to an algorithm from a set of feasible ones, and in evaluating
the resulting implementations.

This research is motivated by the lack of an adequate design methodology for matrix
computations. Standard structures (systolic arrays) have been used for these implemen-
tations, but they might be non-optimal for a particular algorithm. Reported systems
have used ad-hoc design approaches. Some design methodologies have been proposed,
but they do not address many important issues.

A preliminary version of the proposed methodology has been applied to algorithms
for matrix multiplication and LU-decomposition. The approach produces structures
which correspond to proposed systolic arrays for these computations, as well as strmc-
tures which exhibit better efficiency than those arrays. The results show that different
transformations on a graph may lead to entirely different computing structures. The
selection of an adequate transformation is thus directed by the specific restrictions and
performance objectives imposed on the implementation. The designer can identify and
manipulate the parameters that are more relevant to a given application.
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