-A183 772 SPECIFICHTIOI AND DESIGN HETMODOLOGIES FOR HIGH-SPEED 1
FAULT-TOLERANT ARRA.. C(U) C LI ORNIA UNIV LOS RANGELES
DE T OF COMPUTER SCIENCE M D ERCEGOVAC ET AL. JUN 87
UNCLASSIFIED NO@@14-83-K-0493 F/G 9/1




4

.7 -

EEE
EEEF

u EEENEPPRY

=

——
—
—
———
—

18

E——]
1

i
l

==

16

e
—
—_—
———

14

=y

L




U UV W Ow Ve DR Tw Uw

© OTE FILE Copy o >

s ::
FINAL REPORT :':
b
SPECIFICATION AND DESIGN METHODOLOGIES FOR Z
HIGH-SPEED FAULT-TOLERANT ARRAY ALGORITHMS AND STRUCTURES '
FOR VLSI "
"
Office of Naval Research ::
Contract No. N00014-83-K-0493 N
s
U
Principal Investigator DT ’ C . t
)
Milog D. Ercegovac ELECTE V“ R
. >
AUB 04 1gg7ff B
Q Co-Principal Ivestigator "
s %5
N Algirdas Avizienis —~<D 3
™ 3
g Faculty Associate: '
< Tomas Lang -
| -
0 UCLA Computer Science Department .
< University of California, Los Angeles X
Los Angeles, California 90024 ks
(213) 825-2660 0
\
June 1987 N\
W
\J
a
o
2
I’ x
TN N A i L i




)
Table of Contents :f
A

1. Summary of the Project Objectives
2. Summary of Contributions: Task 1
2.1 Introduction
2.2 Specification of Hardware Functions M
and Algorithms in vFP .
2.3 Obtaining Layouts from FP
2.4 Evaluation of Designs
2.5 Interfacing vFP Design System with
Existing VLSI CAD Tools
2.6 Compiler Research and Developments
2.7 Algorithms for VLSI Implementation
2.8 Future Research

N s bW
A A

00 00 N~

PR AAE

3. Summary of Contributions: Task 2 10 N
4. Publications Resulting from This Project 12
Appendices: Selected Publications

1. D.R. Patel, M. Schlag, and M.D. Ercegovac,
"vFP: An Environment for the Multi-Level
Specification, Analysis, and Synthesis 4
of Hardware Algorithms"

2. F. Meshkinpour and M.D. Ercegovac,
"A Functional Language for Description and
Design of Digital Systems:Sequential Constructs”

7

,f.l"-

3. A. AviZienis, "Arithmetic Algorithms for
Operands Encoded in Two-Dimensional Low-Cost
Arithmetic Error Codes”

Ay

4. M.D.F. Schlag, "Layout from a Topological Description”
(Abstract)*

YL XN,

5. J. Moreno, "A Proposal for the Systematic Design
of Arrays for Matrix Computations”

S

(Abstract)*

*Reports will be submitted upon request

.
2
s
l.-
D
%




1. SUMMARY OF THE PROJECT OBJECTIVES

* For convenience we summarize here the project objectives as stated in the research
proposal. This research in the methodologies for the specification and design of high-speed,
fault-tolerant VLSI array structures has two related objectives (1) a high-level language
approach to the specification and simulation of VLSI algorithms and networks using a
functional-style (LISP-like) language (Task 1), and (2) cost-effective methods to introduce
fault-tolerance (error detection, fault location, retry, and reconfiguration) into VLSI-
implemented systolic systems and similar computing arrays (Task 2).

Task 1: Functional Language Approach to VLSI CAD+
Principal Investigator: Milos D. Ercegovac

The major goals are the development and implementation of a functional-style language
for specification of VLSI structures which allows multilevel simulation, performance analysis,
algebraic transformation techniques, and layout planning, The proposed high-level functional-
style language approach provides a clean separation of functional and structural specifications,
and supports strongly the multi-level, hierarchical design; the language is executable at any level
of abstraction to allow for early evaluation and checking of designs; it has an efficient and
comprehensive built-in performance evaluation mechanism which allows a selective
performance observation; and it supports a semi-automatic design methodology under
implementation constraints and system requirements.

Task 2: Fault-Tolerance in VLSI Systolic Arrays,
Principal Investigator: Algirdas AviZienis

A systolic VLSI system consists of a set of interconnected cells, and information
between the cells flows in a pipelined fashion. To provide fault-tolerance for a systolic system,
the most fundamental requirement is to provide an effective and low-cost method for the
immediate detection of errors that occur in the numerical information that is generated by the
cells and forwarded to other cells or to I/O ports. The occurrence of transient malfunctions and
the complexity of structure of a VLSI systolic system rules out periodically applied diagnostic
tests as an effective fault detection method. The remaining approach is to provide concurrent
error detection that takes place side-by-side with regular computation whenever the systolic
system is carrying out its activity.

+ This research was also supproted in part by the State of California MICRO Program : ' m/‘w} .
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2. SUMMARY OF CONTRIBUTIONS: Task 1

This task deals with a study and development of a high-level language approach in
specification, simulation, performance evaluation and chip layout planning for VLSI digital
systems. A high-level applicative (functional) language, implemented at UCLA, allows
combining of top-down techniques of functional and structural specification of systems with
bottom-up specification of implementation constraints such as the size of circuit layout and
wiring patterns. It also provides highly modular algebraic specification of digital systems
suitable for formal transformations, simulation, and a powerful method of ..pological
interpretation which generates diagrams at any level of abstraction. Several versions of the
language, the simulation and performance evaluation tools and a graphics interface have been
developed and implemented on the DEC VAX 11/750 under the UNIX operating system.

2.1 Introduction

The complexity of VLSI requires the application of CAD tools at all levels of the design
process. In order to be effective, these tools must be adaptive to the specific design. In this
project we studied a design method based on the use of applicative languages [Bac78] for the
specification, evaluation and synthesis of hardware algorithms. A functional language for
specification of hardware systems is attractive because it provides both a behavioral and
structural information about a circuit implementing the system [Lah81, Joh84, Mes84, Pat85,
She84, Sch86, Wor86]. As a consequence, a behavioral specification implies a topology of the
circuit which allows generation of "abstract” layouts. These layouts are refined by introducing
geometrical constraints to produce physical layouts.

Our methodology is supported by a set of tools developed at UCLA. The goal of the
system is to provide designers with an environment in which they can rapidly explore various
alternative designs. Thus it is possible to specify the algorithm at any level of abstraction and
have the system rapidly evaluate certain parameters (e.g., delays) and provide feedback in the
form of automatically generated floorplans. The advantage of using an applicative language is
that it ties together the specification of the algorithm, the synthesis of the circuit, and the
evaluation of the implementation. The algebraic basis of FP allows formal transformations of
the specification to improve the layout without changing its function.

2.2 Specification of Hardware Functions and Algorithms in vFP

A program in a functional language is a function that maps objects into objects. Objects
are either atoms (numbers or strings) or sequences of objects. There is a special atom ? denoting
an undefined value. Any sequence that contains ? is undefined. The language includes primitive
functions, functional (combining) forms, and means of defining functions. A computation is
invoked by applying the function to an object. There are no variables and all FP programs are
generic, i.e., independent of the size of their arguments.




The FP language we use is based on Backus’ FP (Bac78] with the following additions:
parameters to function definitions are allowed; both the infix and prefix modes for the
arithmetic, logical, and predicate functions can be used; there are additional primitives and
functional forms; and extensions for the specification of sequential systems are introduced
[Mes84, Mes85, Pat85, Sch86, Wor86]. The primitive functions map objects to objects. They
include

arithmetic +<15>—-56 *<25>-510
logical andg:<10> -0 org:<00> -0
predicate atom:<abe>—-F =<1212>-5T
selector 2<la3Sb>—>a last:i<d321>-51

and structure modifying functions such as
transpose trans: <<123><456>> 9 <<l 4><2 5><3 6>>
append left apndl: <a<bcd>>—<abcd>
distribute right distr: <<12 3>4> <<l 45<2 4><3 4>>

Functional forms map functions or objects to functions. For example,

compose f@g:x - ficg:x>
construct (f.g,h]:x — <f:x g:x h:x>
apply toall &f:<abc> — <fraf:bfic>
constant %k:x — k if x is not ?

rightinsert !fi<abcd> — fi<a !ficb c d>>

A computation in a digital system consists of moving and transforming data according to
some precedence relation. The language provides explicit means for specifying precedences and
concurrency (@ and [] functional forms, for example), computational functions (e.g., logical
primitives), and routing functions (e.g., selectors). Since a unit of information represented by an
atom depends on the level of abstraction, hierarchical specifications are natural. Therefore, FP is
suited for describing hardware functions and algorithms.

For example, FP specifications for the following primitive functions used in the design
of a carry-save array multiplier are

/* FA*:<<a b><y x> —<<c x>s> where 2c+s=a+b+yx */

defun FA®*
[[org@(1,1@2],3],2@2]
@({1@1,HADD@[2@1,2],3]
@[HADD@1,andg@2,2@2]
enddef

/* HA*:<<a><y x>> — <<c x>s> where 2c+s=a+yx */
defun HA*

o - v o - -

]

S e s Ay



{(1@1,2],2@1]@[HADD@[1@1,andg@2],2@2]
enddef .

/* FA®**:<<a b><x y>> — <c s> where 2c+s=a+b+yx */
defun FA**
[org@(1,1@2],2@2])
@(1@1, HADD@(2@1,2]]
@[HADD@1,andg@2]
enddef

/* FA:<<a b.c. &<c s> where 2c+s=a+b+c */

defun FA
[org@(1,1@21,2@2]
@(1@1,HADD@[2@1,2]]
@[HADD@1,2)

enddef

/* HADD:<a b> = <c s> where 2c+s=a+b */
defun HADD

[andg,org]
enddef

By executing symbolically these specifications, it is possible to extract the corresponding
topological structure and produce the sketches of functions FA®, HA* and FA** as shown in
Figure 1. Obtaining layouts from FP expressions is discussed in Section 2.4.

There is no concept of state in an FP program and, consequently, there is no history of
execution. All information needed by a computation must be specified as the input to the
corresponding function. A sequential system could be described by a function which passes its
state as an argument back to itself. This, however, makes symbolic execution of such a FP
specification and extraction of its topological structure difficult [Sch86]). Our approach is to
describe sequential circuits using the space-time duality. That is, a sequential circuit is described
as the folding of a combinational circuit so that the same structure performs a computation in
time rather than space [Pat85].

2.3 Obtaining layouts from vFP

As mentioned in the introduction, a key idea of our design methodology is to deduce the
geometry of the layout from a behavioral specification of the circuit rather than to specify the
geometry as a part of the behavioral specification. This is possible since an FP program as a
behavioral specification of a circuit implies the topology of its organization, i.e., relative
positions of the components and their connections in the plane. Schlag [Sch86] has developed a
methodology for obtaining layouts from FP expressions. This methodology is based on a formal
notion of the planar topology of a circuit, a mapping from FP expressions to planar circuits, and
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a technique for transforming the planar topology of a circuit described in FP into a physical
layout.

The following example of a carry-save array multiplier, developed by Schlag [Sch86],
illustrates the layout obtained by applying our design methodology. Figure 2 shows a sketch of
the function Mult with the functions HA*, FA*, and FA** represented as components. Figure 3
shows the same function with those components expanded. Finally, the completed layout is
given in Figure 4. Power and ground wiring has been added to the layout using a graphics
editor. Since the specification is generic, multipliers of different precision can be obtained by
applying Mult function to operands of a desired precision.

2.4 Evaluation of Designs

Sausville has implemented a package that allows timing analysis of circuits represented
by FP programs [Sausville 1986]. His work is restricted to uniform delays. Currently a work is
under way to extend this package to deal with arbitrary (user-defined) delays.

2.5 Interfacing FP Design System and Existing VLSI CAD

A VLSI design system has been developed using UCLA FP as the specification language
by J. Worley [Wor86] and BDL (Block Design Language) [Slu84] as the input language for
VLSI CAD tools available at Hewlett-Packard. The circuit synthesis proceeds in three steps: (1)
the functional (executable) specification of a digital system is developed and tested, (2) a
specific implementation and its net list is obtained by tracing the symbolic execution of the
specification, and (3) and the trace is processed by trace filters to obtain various design
information. For example, there are trace filters to print net lists, count modules and
connections, and translate into other design languages. At present, there are translators for esim,
a switch-level simulator, the circuit level simulator SPICE, and the BDL block description
language [Slu84]. A BDL description is then used to drive an actual circuit layout generator. In
this case, the user control of the topological features in the layout was traded for utilities
provided by an available tool.

2.6 Compiler Research and Developments

A compiler de el pment [Ara86] offers a performance enhancement for execution
environment of our FP language. Several important techniques to reduce the run-time load have
been introduced and implemented. An efficient and fast threaded FP interpreter/compiler has
been implemented [Pun86]. Alkalaj has introduced a very efficient scheme for garbage
collection for FP programs executed on a uniprocessor [Alk86, Alk87]. These language
processing schemes and tools are essential in building an efficient design environment.
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2.7 Algorithms for VLSI Implementation

In the area of algorithms for systolic arrays the research focused on analysis of design
alternatives and development of algorithms for linear algebra processors. A comprehensive
study of alternatives for a singular value decomposition processor has been done [Mor85]. This
work has been recently extended into a proposal for the systematic design of arrays for matrix
computations {[Mor87]. An efficient division algorithm, based on the work Ercegovac and Lang
[Erc85], has been developed [Tu86). In order to provide a flexible and powerfull simulation
environment for this type of research, a two-step simulator has been developed. In the first step,
an FP specification of the algorithm to be simulated, is symbolically interpreted to produce a
corresponding network at the level of given primitives. In the second step this network 1s used to
execute the algorithm and collect statistics.

2.8 Future Research

We are continuing work on two aspects of our FP-based VLSI design system. To utilize
well-developed tools available at the lower levels of VLSI circuit design, we are developing an
interface between UCLA FP and such tools. VIVID, an integrated VLSI design system,
developed at the MCNC, is selected as the target. A translator from UCLA FP into ABCD, a
specification language of VIVID, is under development [Wu87]. The second aspect of our
continuing research deals with refinment and formalization of the proposed treatment of
sequential circuits in UCLA FP [Pat86].
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3. SUMMARY OF CONTRIBUTIONS: Task 2

The research in this task has focused on the application of low-cost arithmetic error
codes [AVIZ 71],{AVIZ 81],[AVIZ 83] to the concurrent detection of errors (due to both
transient and permanent faults) originating in systolic systems. A new generalization has been
developed that extends the application of low-cost inverse residue codes into two dimensions:
row (byte) and column (line) residues. [AVIZ 83]. This extension improves the detection of
errors, especially of those due to indeterminate faults, and provides certain error-correction
capabilities. Previous research investigated the advantages offered by two-dimensional inverse
residue codes in the detection and correction of errors that affect byte-wide communication
paths and systolic processing elements. Such paths are widely used in high-performance
systolic arrays and for inter-processor communication in large multi-array systems.

In general, it has been shown that the remaining undetectable errors in thc message X are h
those that are missed by both checks: modulo 28 -1 over the bytes (not including the check line !
bits), and modulo 2*'~1 over the lines, with the check byte bits included in each line. Most
unidirectional errors are detectable; furthermore, the detection of bidirectional errors is K
significantly improved. A single-line correcting, double-line detecting property was also ‘
demonstrated for unidirectional errors.

The research has led to the development of the fundamental byte-serial arithmetic
algorithms for operands encoded in two-dimensional low-cost inverse residue codes. The
algorithms are:

(a) the line-residue checking algorithm;
(b) the additive inverse (complementation) algorithm;

(c) the addition algorithm.

The details of the algorithms have been presented in [AVIZ 85]. It has been shown that byte-
serial arithmetic can be carried out with operands which are encoded in two-dimensional residue
and inverse residue codes. Two-dimensional encodings provide a very powerful error-detecting
and a substantial error-correcting capability for byte-serial arithmetic. Promising application
areas are systolic arrays, multiple-precision arithmetic, and high-speed array computing.

PRI AN
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vFP: An Environment for the Muiti-level
Specification, Analysis, and Synthesis
of Hardware Algorithms

Dorad Patel, Martine Schlag and Milod Ercegovac
Computer Science Deparunent )
University of California, Los Angeles
Los Angeles, CA 90024, USA

Abstract ]

This paper describes a2 method based on applicatve languages for the specification. evaluaton
and synthesis of hardware algorithms. The goal of the research effort is to provide designers with an g
environment in which they can rapidly expiore altemadve designs for their aigorithms throughout the
synthesis process. [t is possible to specify the algorithm at arbitrary levels of abstraction and have the
system rapidly evaluate ceruin parameters (e.g. speed, area, ete.) so that designers can make informed

decisions during the synthesis process. Layouws which are suitable as floor plans are extracted from .
high-level algorithms.

{1 Introduction

The complexsty of VLSI design can only be managed by the applicauon of CAD tools at all lev-
els of the design process. [n order to be effective, these tools must be fiexible enough to be tijored to
any specific design. Generally, VLSI CAD tools may be distinguished as being of either or both of two
types: bottom-up composition tools or top-down synthesis tools. For bottom-up compositon tools, the .
user either exacdy specifies the placement of modules and the interconnections berween them, or relin-
quishes control over the layout to the tool's algonthm. Examples of compositon tools are graphic lay-
out editors (e.g. Caesar, Magic) (Ousterhout81, Ousterhout84] and placement and routing tools
(Rivest82]. Top~down synthesis tools are capable of generating layouts (rom high-level specifications.
Examples would include various register-ransfer silicon compilers that have been proposed and buut :
[Siskind82, Director81, Johannsen79]. Generally, these tools do not provide any estimate of the area or !
delays of the circuit during the synthesis process. That is, designers do not know the effects of their
decisions on the performance undl the design is complete.

Many of the current design approaches were largely deveioped for SS/MSI technologies and are
limited because of:

Lack of paradigms to deal with topological and geomemical aspects of algorithm design in 2
hierarchical, muid-level fashion.

- Lack of adequate methods to deal with communication requirements of VLSI implementanons .

during a mult-level algondun design process. )

- Lack of an adequate interface to lower-level VLSI CAD toois: most systems requure 2 logic o

t Appeared in the Proceedings of the 1985 Functional Programming Languages and Computer o
Architecture Conference, Nancy, France, J.P. Jouannaud (Ed.) Lecture Notes in Computer Science 201, y
Springer-Verlag, 1985, pp. 238-255. )
.
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diagram at the enuy level, thus forcing designers to cope with details which are apt to be
changed later in the implementation process.

- Lack of visual feedback: graphical representations, generated automatically from a high-level
algorithm, showing details selected by the designer are highly desirable.

This paper describes 2 method based on applicative languages (Backus78] for the specification,
evajuation and synthesis of hardware aigorithms. This method is supported by a set of tools that is
being developed at UCLA. The goal of this effort is to provide designers with an environment in which
they can rapidly explore various altemative designs for their algorithms. Thus, it is possible to specify
the algorithm at any arbitrary level of abstraction and have the system rapidly evaluate performance
parameters (e.g. speed, area, etc.) so that designers can make informed decisions during the synthesis
process. The advantage of using an applicative language is that it ties together the specification of the
algonthm, the synthesis of the circuit and the evaluation of the implementagon.

Others have expiored incorporating applicative languages in VLSI design and have shown them
to be viable. Lahd (Laha81] used an applicative language to describe various combinadonal hardware
structures. Johnson [Johnson84) utilized a demand-driven applicative language to describe and syn-
thesize sequential digiwl cireuits. Cardelli and Plodkin [Cardelli8 1] take 2 formai approach to describ-
ing sequendal circuits with an emphasis on verification. Meshkinpour (Meshkinpour8S] and Sheeran
(Sheeran84] extended Backus’ FP language with operators 1o handle sequenual circuits.

2 Brief Introduction to vFP

vFP extends the language FP proposed by Backus [Backus78) with additional funcnonal forms
and prumauves. In conrast to uFP (Sheeran84), which extends FP’s semantics to operate on sgeams,
the semantcs of vFP are the same as those of FP when it is used to specify algorithms. A program in
vFP (as in FP) is a function that maps objects into objects. Objects are either atomic (numbers or
stngs) or sequences of objects. The disunguished atom denotes an undefined value. By definition,

any sequence which contains as an element is irself undefined and thus equal to . The primitive func-
aons of vFP consist of

arithmenc functions, +: (15 =6 * AN =6
logical functions, andg : (1.0) = 0 org : (0,0) =0
predicates, atom: (1.2) = F - 3N =T
selector functions, 3:(2.(4.5).6.(8.(9.100)) =6 last:(1,46) =6

and storucture modifying functions.
trans : ((1.2.3),(4.5.6)) = ((1.4),(2.5),(3.6))  apndl : (1,(2.3.4)) = (1,2.3.4)
disd : (x, (a.b.c)) = ((x.2),(x,b).(x.c)) diser : ((a,b.c),x) = ({a.x),(bx).(c.x))

Functional forms are used to combine primitive functions into more complex functions.
compose (@g):x=f:(g:x)
construct (f.g.h] : x = (f:x, g:x, h:x)
applytoail  &f: (p.q.n) = (f:p, f1q, f1)

constant %k : x ~» &k tf x is not
right insert ' f:(xy,...xq) = (:(X), ! f:(Xq,...%,))
tree insert £ (R0 Xg) = ECLAR X 1), PR Ty210te.Xy)
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A major syntactic difference between vFP and Backus' FP is that parameters to funcuons may
be named and then referred to in the function body with the same restrictions as descnbed in
(Backus81]. In addition, the arithmetic, logical, and predicate functons may be used either in a prefix
or an infix manner. This improves the readability of hardware specificadons. For example, the follow-
ing definidon of a Fullddder in Backus' FP,

FullAdder =

{org@(org@(andg@(1.2].andg@(2.31].andg@(1.31], xorg@(1.x0rg@{2.31]]
could alternatively be wnten in vFP as

defun FullAdder(a,b.Cin)

(((a andg b) org (b andg Cin)) org (a andg Cin), a xorg (b xorg Cin)]
enddef

Owing 1o the natural specification of parailelism in FP-like languages, they are suited to deserib-
ing parallel hardware algorithms. These specifications are execumable. Since such programs are
referennially ransparess, it is possible o have an algebra of programs which may be used to reason
about their behavior. These methods may be used in conjunction with each other to convince the
designer that the program impiements the envisioned algorithm. Specifications can also be executed
symbolically using a symbolic input duning which it is possible to exaract the topological saructure of
the algonithm. Therefore, there is a direct reladionship between the sructure of an algorithm written in
vFP and the planar topology of its layout.

3 Algorithm Synthesis in vFP

The designer first specifies the algonthm in VFP. The aigebra of vFP programs may be used to
reason about the algorithm. In addition, the specificanon may be executed with sample data to validate
the program.

vFP can be used to describe circuits at various levels of abstraction. Designers are free to
choose whichever level is '*best’’ for their current purposes. At some higher level of abstracuon, the
saructure of the FullAdder may not be relevant, and thus the definitions given earlier would suffice o
describe its behavior. At a lower level of abstraction, where the structure of a function is to be con-
sidered, an alternatve definiton which has a different soucture may be subsututed. For exampie, the
FullAdder could be defined in terms of HaifAdders.

defun FullAdder(a,b.Cin)

(1 or 2, 3] @ 2pndl @ (1, HalfAdder@{2.3]] @ apndr @ [HalfAdder@(a.b], Cin]
enddef

defun HalfAdder(a,b) [a andg b, a xorg b] enddef

Transformations may be used to refine the program to whatever level of detail is required. [n
this way it is possible to first specify the algorithm at a level of abstacnon that is high enough to ad
validaton and then refine 1t to the level at which it can be easily implemented.
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4 The Evaluation of vFP Algorithms

It is possible 10 tag selected user-defined functions so that when a vFP specification is executed
an estimate of the performance of the algorithm can be provided. Tagging a function teils the system
that this is a functon of intarest at the current level of abstraction. As the execution proceeds, the inter-
preter keeps track of the /evel at which a tagged function is executed.

The level of a tagged function is defined as one plus the maximum of the levels associated with
the atoms in its input object. The leve! of each atom is initally zero. Each time 3 tagged function is
encountered., its level 1s determined and is assigned to the atoms in its output object. However, there is
a problem when a ugged function occurs within another tagged funcdon. [n this case the level of the
inner functon is determined with respect to the outer functon resulting in a hierarchy of levels. This is
iccomplished by assigning the level zero to each atom of the outer function’s input object, and comput-
ing the level of tagged functions as before until the computadon of the outer function has been com-
pleted. The level of the outer function and the atoms in its output object is determined as before and
hence is independent of whether or not any tagged function occurs within the outer functon. Levels are
used to predict the speed at which the circuit would perform, to obtain an idea of where the parallelism
in the algorithm is, and to get an estimate of the area that would be occupied by the circuit. A beter
estmate of the area is obuined by methods mentioned in the next section.

Thus capabulity of having the system estimate performance parameters is useful in cadeoff ana-
lyses. For example, consider the following functon:

1 if a=(b~1) mod 8
=12 if a=b
0 otherwise

schemeA and schemeB, below, are two algorithms for implementing the function. [f the boolean func-
dons (andg, org, norg, and xorg) are tagged, the results shown in Figure 1 are obtained.
# scheme A inputs : ((2) (b)) outpuss : (zl z0)
defun schemeA
&(org@&andg@rans )@disd@( 1.{idroar]@2] @ &decoder
enddef

# scheme B inputs : ((a) (b)) outputs : (zi 20)
defun schemeB(a.b)

&compare @ disd @ (a. (b. 4 @ adder @ (b. (%1, %1, %1]]]}
enddef

defun compare notg@org@&xorg@trans enddef

defun adder
apndl@(xorg@(xorg@1,1@2),u@12}
@(1.'1add@apndr@(tr Half Adder@last} @] @ trans
enddef

defun add(a.b) concat@(FullAdder@apndr@(a.1@b|,u@b] enddef
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# staasucs for schemeA # stansdcs for schemeB

level Andg Org Notg level Andg Xorg Org Notg
{ 2 6 1 2 6
2 10 2 1 2 1
3 14 3 ! 2
) 14 4 1 1
5 8 s 1
L) 4 6 t
7 2 7 1
8 1
Touls 40 14 6 Touls 3 11 5 2

Figure 1: A comparison of two implementations

The results in Figure | show that schemeA uses a towl of 60 gates, while scheme8 uses a total of 21
gates. However, it is to be noted that 11 of the 21 gates are xor gates which would normally occupy 2
larger area. Given an estimate of the area occupied for each of the gates, it is possible to have an esd-
mate of the area occupied by each implementation. Since schemeA has 7 levels while scheme8 has 8.
schemeA would be faster than scheme8 under the assumption that all the tagged functions had the same
delay,

In addidon to the ime and space esdmates provided by the /eve{ mechanism, the system can be
extended to allow the specification and calculaton of user-specified parameters for each tagged function
and for the aigonithm as a whole.

§ Space Domain Implementations of vFP Algorithms

A VFP algonthm can be mapped into 2 soructure corresponding to a combinational network by
passing symbolic inputs to functions which in turn generate symbolic outputs. The unit of informadon
represented by a symbolic atom can be anything corresponding to the level of abstraction. Thus, a2 sym-
bolic atom may represent a wire, a set of wires, a bit vector, or an integer, as required. An acyclic com-
putanon graph with vFP primitives as nodes is obtained by tracing the application of a function to 2
symbolic input This compuadton graph can be transformed into a layout using techniques described
later. By tagging the appropriate functions, the layout may be generated at any desired hierarchical
level. For exampie, Figure 2 shows a layout of a FuilAdder using and, or, and xor gates: whereas Fig-
ure 3 shows the same FuilAdder 13 being composed of HaifAdders.

The mapping from a vFP algorithm to 2 combinatonal network is allowed under the following
resmctons. Functons like iora, whose output srrucrure depends on an input value, cannot be laid out.
[n addidon, duning symbolic evaluaton, the predicate part of 2 conditional must be evaluable to a
boolean.
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Figure 2: The stucture of a FullAdder Figure 3: A FullAdder using Half Adders .

As in UFP (Sheeran84), strucrural iseranons over the input of the circuit can be handled by the
inserr and apply-ro-all functonal forms. Other types of srrucrural recursions are allowed in VFP since
the condinional funcnonal form is treated as 2 srucrural form for the purposes of layout Depending on
the value of the predicate of the condinonal, either the consequent or the alternate part will be evaluated
symbolically for its squcture but no structure will be generated for the predicate part. A new primitve L
called sw (for switch) is provided in vFP which corresponds to the conditional form in uFP. This prim-
iave takes three arguments. [f the first is | then the output is the second argument; if it is 0 then the 4
ourput is the third argumen; else it is . [n addidon, it is required that the serucrures of the second and :’
third arguments be the same. -

-

A vFP description of 2 circuit can be genernic in the sense that the description is independent of
the input dimensions of the circuit For example, there needs 10 be only one description of a decoder.
This same descnpdaon works for a decoder independent of the number of inputs. The 3-to-8 decoder
shown in Figure 4 is obtained by evaluatdng the description of the genenc decoder with 2 symbolic

argument of size 3. Figure 4 shows how the generic iterative decoder is formed by first applying 1-to-2 >
decoders (Decl) to the inputs and then inserting the function DecStage. DecStage takes an n-to-2°
decoder and 2 new input to make a (n+1)-to-2>*" decoder. -
defun Decoder 'DecStage @ &Decl enddef :
<
defun DecStage  &an''g @ concat @ &disd @ disr  enddef <
defun Decl [notid] enddef o
As before, these implementations may be evaluated to get speed/area estimates, but now, since routing o
13 taken into account, 3 berter esumate of area can be provided. '
Cell iteranve networks are combinauonal circuits which are formed by interconnecang a particu- ::
lar cell in a regular pattern. Although combinatonal curcuits without feedback can be descnbed in vFP :-.
using the forms wnhented (rom FP, some addiuonal funcuonal forms are provided to give designers '\
more conaol over exactly how cell iteranve networks are to be laid out. These networks are thus ‘;-.
. K |
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Figure 4: A 3-10-8 Decoder at different levels of absmaction
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Figure 5: The seq functional Figure 6: The seqxy funcuonal
fern 2pplied to F form applied to £

readily descnibed in VEP by invoking the form (corresponding to the interconnection pattern) on the
funcuon (corresponding to the cell). For example, Figure § shows the seq functional form pictonally.
Somenmes it is necessary to have two inputs to the funcgon F at each stage and to have one of those
inputs come in from the x direction and the other from the y direcnon. This is accomplished by the
seqxy functional form shown in Figure 6. Though both forms result in the same computation graph,
theyr layout 1s different.
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system 1 VFP. D! is 2 phantom element that corresponds to an inverse time delay. It is used to keep
track of the number of clock pulses the output is going to be delayed by. This information is needed by
the consmruct funcuonal form to synchronuze its components since the semantics of the constuct require
that the outputs of its elements appear together. Generally the D™! elements are moved, via ransforma-
nons, to the outputs of the circuit where they serve to denote the delay.

When ciements of a sequence are available serially in time along the same wire(s), it is neces-
sary to know when each element is valid. This is accomplished, during symbolic simulation, by having
cach symbolic item carry the name of a clock with it [t is assumed that its value will be stable before
every uck of the named clock The system wall automatcally widen the intervals between clock ticks to
ensure that this 1s oue. lmdally, all the inputs are associated with the same clock. Each combinational
element will assign to its output the clock associated wach s input. Uf there are n elements to the input
sequence of 2 SOP/, then each of its output elements will be clocked by the clock n Cy: and conversely
for 3 POSI. A clock named 2 C, denotes 3 clock which has a clock ticks in berween consecutive ticks
of the clock named C,. Though the descripaon of 2 SOP! or POSI is generic, the vaiue of n (the
number of clements in the sequence) must be known at layout time.

As an example, consider a time-domain impiementation of an inner-product algorithm
('+ @ &*). The straightforward impiementaton of the algorithm, using the equatons given above, ;
would result in the layout shown in Figure 7. Since there are two D~} eiements in the layout. the output .
will be delayed by two clock tcks from the input. y

i_ SOPI ' ]T

LlllsLoplllllT ll
l

__SOP!_| ]

— S e -

]
R

o~ o~
|
Figure 7: lrunal Implementanon Figure 8: Opasruzed Implementauon
of the lnner Product of the Inner Product

However, using the idenaaes

D' @ POSI @ f@ SOP! s apndr @ (D' @ POSI @ &'f @ SOP1 @ ur . f @ last)




POSI@ D' @ SOPInSOPI@D™' @ POSI = id

f@piaD'@fr

(Ur , last) @ apndr » 2pndr @ (tr , last] = id
the program may be ransformed into the folowing
D' @!T+ @ apndr @ (&"* @ SOPL @ ur, * @ last]

whose layout 1s shown in Figure 8. The single D! element denotes that the output is delayed only one
clack tick from the input

This umplementauon accepts all its inputs simultaneously and eventually gives its result [t will
only work for input sequences of one partcular length, since only fixed size SOP/s can be laid out
However, if each element of the input sequence was input serially to the implementaton, a correspond-
ing POSI could be incoduced at the input and then used to transform out the SOP/ that exists in the
current umplementanon. This would make the implementadon genenc in the sense that it would be able
to handle arbirary length sequences as its inputs.

7 Layouts from vFP Specifications

In dus secuon the mapping from vFP algorithms to layouts is briefly described. A more detailed
exposigon and a descnipuon of its implementauon can be found in (Schlag84). The intent of this sys-
tem 13 10 provide the VFP designer with an interactive environment in which the design can be viewed
as 1t 13 constructed. The mapping from vFP is actually the composition of two mappings. An vFP fune-
uon s first mapped to an intermediate form (IF) which reflects the planar topology of the function and

then thus [F is mapped to fixed geomertry by sclecting and resolving relatve position constaints (com-
pacuon).

The rauonale for dividing the mapping in two steps is the observadcn that a certain porton of
the mapping from vFP should be functonal even though the entre map cannot be. That is, a pardcular
vFP functuon applied to a particular symbolic object should define an [F uniquely, while the geomexy of
the function should depend on its environment Fixing the geometry of a sub-function may create wiring
and shape incompatibilities with other sub-functions which would require additional area to resolve.
Functonality has two advantages.

L. The mapping can be implemented as an applicagon of an vFP function to an object.

2. Algebraic ransformations on the VFP functon have predictable effects on the [F.

The exgacton of the topology (IF) of an vFP expression 1s implemented as an interpreter. A funcuon
applied to an object generates an [F and each combiming form dictates a topological organizaton of the
Fs of s sub-funcuons. The rouang is the direct resuit of the routing pnruuves and the combining
forms of the funcdon. This implementanon generates a sketwch of the vFP specificauon in terms of
“‘Soxes’’ and ""wuws'’ by symbolically tracing the VFP function and represenung each atom as a ware.
The level of abstacton of the sketch can be controiled by selecung which funcuons to represent as
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boxes and what objects each atom represents. The [F consists of a list of horizontal cross-sections each
of which is a left to right ordering of the “‘boxes’’ and ‘‘wires’’ which intersect the cross-section. Any
cross-overs are represented explicitly: each cross-section corresponds to a horizontal track. The [F gen-
erated by the interpreter is fed to a program which resolves the cross-sections using honzontal compac-
uon and displays the sketch on a graphics terminal.

An example is presented to tllustrate how vFP facilitates the gansiton from algorithm to imple-
mentation taking into account the layout The vFP specification of a carry chain adder {Brent80) is
considered. The specificanon is generic in that it adds two bit vectors of length 2” for 2 >0. The input
consists of the 2" pairs of bits 10 be added with the leftmost pair, containing the least significant bits,
(a.by)(axbdy)laspby). . . .. (@405 2)).

For 1Sig; 27,
1 if a carry into column i would 1 if adding columns  through j
P, propagate as a carry out of column j and G; , = causes 2 carry out of column j
0 otherwise 0 otherwise

The computation is performed by computing the carries for each column, G, and then obtaining the
sum bit using,

"l'i;l.‘-lpa_l for l<l'$2~. Jl=P|.l, and.\‘z-qulJ. [7[]

P, and G, are computed for each i by using the following identities, implemented by the function
PG.

For lsl(h, Fi)SPiJP/OIJ and P1A=(GEJP,OI.A)+G/OIJ| [72]
The imttial P, , and G; , are computed by the function PG1.
Pu-=d‘ b; N G,'J=d"b; . [73]

The computaton of P, and G ; is achieved in two steps by the functon getcarries. The following is
the specificanon of getcarries.
: # input = ((20,b0),(al,b1),(a2,b2).... (a2**n - 1,b2**n - 1))
defun getcarries  secondhalf @split@ 1 @firsthalf @&PG1  enddef

defun firsthall  if eq@(length.% 1] then id eise firsthalf @&stage | @pawrr #  enddef

defun stagel  concat@(&D@ 1, &D@UM@2.[PC@{last@1,last@2]}] enddef

defun secondhalfl if eq@(length.%1]@1 rthen done eise secondhalf@concat@
(split@&D@ | .stage2 @uU]|@apndr@{concat@&(id.last|@ur.l ast} A

enddef

defun stage2 concat@

&((apndr@(&D@Ur@ 1@ 2.PC@(1.1ast@ | @2]],&D@2@2]@{ | .split@2])@pair
enddef

defun D 1d enddef
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defun done id enddef

First getcarries computes (P, ,,G,,) by applying PG1 to the two bits in each column and then it applies
firsthaif. firsthalf computes (P, _n,,,.G;_p,,,) for each column 1=(2m+1)2" where m is an integer.
This 18 accomplished by arranging each column (i.e. its pair (P.G)) in 2 group of its own and then
recursively applying the function stagel to pairs of groups undl only a single group remains. stagel
combines a pair of groups computing a new (P .G ) for the last column of the second group by applying
PG to the last columns of the two groups: the pair of groups is then concatenated to form one group. All
other columns are unchanged: the function D which is given the definition id is applied to them. When
all columns are in a single group getcarries applies the function secondhalf to compute the fnal
(P.G)'s. secondhalf is aiso recursive, termunaang when each column is in 2 group by wself. At each
step the final (P ,G)'s of decreasing muitiples of powers of 2 are computed. Assume that i the previous
step P, and G, have been computed for each column i=m2* In the next step to compute the
(P.G)'s of columns whuch are mulaples of 2*~', it is necessary only to compute new (P.G)'s for
columns i =(2m+1)2*"' = m2¥ 428! the odd muloples of 2*~! The current (P.G) in column 1 s
(Poop-taGiappray) (P1u,Gy,) can be obuined by applying PG to the current (P.G) and
(P mpG | mp) lunally the columns are divided into two groups and since firsthalf computed the
final (P.G)'s for powers of 2, the last column (2 mulnple of 2°~') has 1ts final value. At each step
secondhalf duplicates the last column from each group and then applies stage2 after removing the first
group. stagel takes each group, splits it 1nto rwo and computes new (P G )'s for the last column in the
left group of each new pair using the duplicated column ummediately to the left of the group. The first
group 1s then appended to the resuit of stage2.

11 I | 1L

(pG1} [PG1] (PG1] PG1

1
PG
D]

Figure 9: The sketch of getcarries with each (P.G) as a wire

Figurz 9 is the sketch of getcarries in which the pair (P G ) for each column 1s represented by a
ungle ware. This 13 accomplished by directing the interpreter to draw PG1. PG and D as boxes and by
giving PG1 and PG symbolic defimaons.

(define-symbolic PGl inputs(a b) ourput = () )
tdefine-symbolic PG input=(a b) output = ¢ }




(drawbox PG1 label=PG1 ht=2)
(drawbox PG label=PG ht=2)
(drawbox D label=D ht=2)

a0 a,

Figure 10: The sketch of getcarries with the definitions of PG1 and PG filled in

Figure 10 is the sketch of getcarries with each wue corresponding to a bit this time and with the
specificanons of the functions PG and PG1 “*filled in.’’ The definiton of done is changed since only
the G of each column is required to compute the final sum. Nodce that the layout interpreter generates
only those wires and boxes which have paths to an ourput The previous specificadon would be
extended as follows.

defun done &(2@1) enddef

defun PG1 [[xorg,andg]] enddef

defun PG (andg@(1 @1.1@2],0rg@(andg@(2@1.1@2],2@2]] enddef

(drawbox D labelaD ht=2)
To obuain the final sum by (7.1) it is necessary to combine the first P in each colymn, P, , with the G of
its left neighbor G |, _;. One way of doing this would be to duplicate each P, , generated by PG1. route
them along the side and then merge them back into the columns to compute the final sum as in Figure
11. The addinonal area required for roudng makes this an unattractve alternaave. A better design
would be to route the P, along with the (P .G ) down its own column. This extension is easily handled
n vFP by modifying the functon PG so that it duplicates its first argument if it receives only two argu-
ments 1n 2 column and simply passes on the extra argument otherwise. The specificanon is modified as
follows.
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Figure 11: An inefficient design

defun add K
concat@([1),&xorg@pair@U@tlr.[last]]

@concat@apndl@(1@1.&([1.3]@ )@U]@getcarmes '
enddef

defun PG

apndl@(D@1@2, if nul@U@U@?2 then oidPG eise oldPG@(1.u@2] £i)
@ f null@U@U@! then id eise (U@1.2) fi
enddef

S T Y A

defun oldPG  (andg@(1@1.1@2),0rg@(andg@(2@1.1@2],2@2]] ~ enddef

defun done id enddef

{(drawbox D labei=D ht=2)

The funcaon add applies getcarries and then handles the columns according ro (7.1) to obtain the fnal ,
sum bits. Figure (2 is the sketch of add. z

Figure 13 is the sketch obuained of a carry save array multiplier. This example is presentad to
illuserate the geomerric flexibility of fixing only the planar topology in the specificanon. The functons .
HA®, FA®, FA®*, and HalfAdder are represented as primitives. The specificanons of the functions -3
HA®, FA®, and FA®* are '

$FA®op2:((ab)(yx) —>((cx)s) where 2c + s = (2 + b + yX)

defunop2  (lorg@(1.1@213).2@21@
(1@! HalfAdder@(2@1.2),.3)@(HalfAdder@1.andg@2.2@2]

N
enddef R
1 HA® opl " ((a) (y x)) -=> ((c x) s) where 2c « § = (a + ¥X) 3
defun opl {[1@1,2),2@1)@(HalfAdder@({1@1.andg@2].2@2] enddef .

NN ‘«.( o
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2 FA** lop2: ((ab) (y x)) -—=> (¢ s) where 2¢ »$ = (2 + b + yx)
defun lop2

(org@{1.1@2].2@21@(1@!1 HalfAdder@({2@1.2]]@({Half Adder@1.andg @2}
enddef

defun op0 {1.andg) enddef
Figure 14 contains the sketches of these functions, while 1n Figure 15 the same carry save aray mulu-
plier is represented in terms of lower level primitives. Note that the geomerry of the functions HA®,

FA® and FA*® vanes; each instance has some @exibdity in adapting to the parucular geomemnc con-
straints it encounters.

AB Y X A Y X AB Y X
] |

HA

HA _HAND

HA
HA

Cor

! —

C XS C XS CS

Figure 14: FA®, HA® and FA**

All of the figures in the paper with the excepuon of Figures § and 6 were generated by this sys-
tem. [t is limited in that the data flow is vertcal with a function’s inputs and outputs on the top or bot-
tom. More sophisticated layout techmques which would not suffer from this limstation are being exam-

ined. However this system is useful in that it provides visual feedback quickly allowing the designer to
see the planar implications of the specificadon.

8 Conciuding Remarks

The objective of this research is to develop a formal high-level language approach o
specification, simuladon, performance evaluaton, and chip layout pianning for VLSI systems. Our
approach takes a high-level applicative language (VFP) and programming style as its basis. The
rauonales for using VFP and and its potendal in dealing with several specificauon and implementation
agpects are the subject of this paper. Specifically, 2 few examples have illustrated how VFP can be used
to specify combinational, iterative, and sequenual circuits. User-specifiable performance parameters
may be used at any abstracton level to provide a basis for making design decisions duning the synthesis
process. Layouts which are suitable as floor plans are extracted {rom high-ievel aigonthms. Currently,
an automnated attnbute system is under development. More sophisticated layout techniques and topolog-
ical optimuzanons are being examuned. as are techniques to handle other classes of sequental circutts.
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Figure 15: The Carry Save Armay Muldplier with FA®, HA® and FA** filled in N
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A Functional Langusge for Description and Design
of Digital Systems: Sequential Constructs

F. Meshkinpour® and M.D. Ercegovac

Computer Science Department
University of California at Los Angeles
Los Angeles, CA 90024, USA

Abstract

A functional (applicative) hardware description
language (FHDL), capable of dealing with both the
sequential and combinational systems is discussed. The
language supports multi-level executable specifications
and interpretation of functional specifications as imple-
mentations at a given level of primitives. That is, the
FHDL specifications are symbolically interpreted to pro-
duce structural representations (implementations) of
hardware algorithms. The symbolic interpreter presently
implements the specification of hardware algorithms at
the gate level. The FHDL allows definition of function
attributes, such as delay and number of logic level so
that the performance characteristics of implementations
can be obtained during simulation.

1. Introduction

Background: High-level hardware description
languages (HDL) arc used in various phases of design in
order to reduce the design time and errors, and simplify
checking, debugging and modification of specifications
and the corresponding implementations {19]. The high-
level HDLs are also used in simulation at various levels
in the design hierarchy. Multi-level simulation is & very
important aspect of VLSI design because of the lengthy
manufacturing process.

The HDLs bave been following the evolution of
programming languages in the sense that both the im-
perative (procedural) and applicative (functional, non-
procedural) languages have been considered as models.
The HDLs based on conventional, imperative languages
have several serious defficiencies: they bave no rigorous
basis, their syntax and semantics are complicated, their
constructs are ad hoc, and they reflect closely the
sequentia] model of computation. Consequently, the
HDL programs tend to be complex and error-prone, dif-
ficult to compose out of other programs, provide no in-
berent basis for checking and verification, and do not
support concurrency. Moreover, there is no direct corre-
lation between 8 high-level specification and its imple-

* Currently with Perceptronics Inc., 6271 Variel Ave., Woodland
Hills, CA 91367.

mentation at a topological/geometrical level. Use of vari-
ables and the possibility of side-effects make the analysis
of algorithms and their implementations very difficult.
The chief advantage of conventional HDLs is a common
familiarity and wide-spread use of conventional
languages.

Recognizing the potential benefits of languages
with formal foundations, simple and precise semantics,
and inherent power to deal with concurrency and multi-
level abstractions, several researchers have considered
nonconventional language approaches for specification
and design of digital systems. Functional (applicative)
programming languages [1,2] satisfy these properties
(13,6,17,11]. The basis of functional programming (FP)
style is the representation of computations by functions
that map objects into objects, and functional forms that
combine functions. Objects are stoms (e.g., numbers and
strings) or sequences of objects. Since an FP program is
a function, it provides a generic specification of a compu-
tation: it applies to any size of the input object. An FP
language allows hierarchicai description of computations.
Since the language does not have side-effects, the compo-
sition and analysis of programs are straightforward.
[1,6,17] A possibly the most significant property is the
mathematical basis of FP languages which provides
means for systematic program transformations and for-
mal design verification.

The FP hardware description languages provide an
integrated framework for the following phases of design:
(i) Specification: capturing proper behavior, (ii) Imple-
mentation: obtaining a suitable structure (implementa-
tion), and (iii) Optimization: r~finement of the imple-
mentation to satisfy realization constraints.

The differences between functional programming
languages (FP) and imperative languages as general pro-
gramming languages have been discussed in depth in.
{1,3] The previous work on the use of functional
languages as HDLs by [13,9,8,4,10,11,16,15)
discusses key ideas and the tradeoffs of this class of pro-
gramming languages compared to imperative HDLs.

A functional program, being an expression, is clearly
suitable for describing combinational networks. Most of
the previous work on functional languages as HDLs deait
with the combinational systems only. Recently ap-
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proaches to deal with sequential networks have been dis-
cussed ia [15,20]

Overview of the article: The principal contributions
discussed here are: (i) FP language extensions to deal
with sequential networks, and (ii) an attribute system to
deal in a general way with the evaluation of characteris-
tics of designs. Section 2 discusses the FP language
(FHDL), its sequential constructs, and the handling of
attributes. The main features that support transforma-
tions from the algorithmic level into the logic design level
are emphasized. Several functional forms have been ad-
ded to support the specification of sequential systems.
We illustrate these forms in both the bchavioral and
structural domains.

To aid the designer in estimating the performance
parameters at various levels of abstraction of the designs
obtained from FHDL specifications, FHDL provides
means of defining and evaluating the system characteris-
tics using attributes such as propagation delay and the
aumber of logic levels. The paper concludes with a more
complex example in Section 3 illustrating the main capa-
bilities of FHDL.

2. The Langusge (FHDL), Sequential Constructs and
Symbolic Interpretation

The language FHDL is an enhancement of the FP
language defined in [17). FHDL can be used to specify
synchronous sequential networks. A sequence that is
produced sequentially by a synchronous sequential
machine can also be produced spatially by a combination-
al iterative network [12,7,5]. Thus, a synchronous
sequential system can be specified in FHDL using its spa-
tial equivalent - combinational iterative network.

In order to transform the FHDL expressions from
the behavioral domain to its structural domain, a symbol-
ic interpreter is used. In this interpretation the functions
operate on objects which are values or symbols to pro-
duce the logic diagram or a net-list. To pravide informa-
tion on the performance parameters, the symbolic inter-
preter evajuates 8 number of attributes associated with
each primitive function. These attributes represent imple-
mentation characteristics such as propagation delay and
number of logic levels.

The transformation of FHDL expressions from the
bebavioral domain to the structural domain requires an
instantiation of the specification with an object of given
dimensions. For example, the description of a multi-
plexer can be used for any size multiplexer. That is, a
4-input or a 32-input multiplezer have the same descrip-
tion, and for the actual structural realization the size of
the input object must be known.

We now consider the use of objects, functions and
functional forms of FHDL in the structural domain.

Objects In the symbolic domain, objects are associated
with both symbols and values; functions operate on ob-
jects to generate new symbols, except in the case of
predicates. Since predicates are used to control the flow
of data, they operate only on values. Thus, in general

St e

cach atom must contain a symbol and a value. In order
to obtain design characteristics, the value: of various at-
tributes are passed along with each object so that each
function can update these values depending on its charac-
teristics.

In general, an atom in the symbolic domain has
the following form:

(symbol-or-name value optional-list-of-attribute-values)

Currently the symbolic interpreter supports only two
types of attributes: the propagation delay(D), and the
number of logic levels(L). For example, atom “(MUX-
IN1 1 25 3)" can be interpreted as a wire or connection
called "MUXIN1" with value of 1. The delay of the
corresponding signal is 25 units of time, and the signal
has passed through 3 levels of logic. It should be noted
that a predicate like atom returns true token “(DUMMY
1 0 0)" when applied to an object like "(MUXIN1 1 10
2)", since this object is an atom in the structural domain.

Functions In the structural domain, functions operate on
symbols, values and attributes. For example, or function
applied to ((IN1 1 5 1)(IN2 0 9 2)) will produce an atom
(WIRE.O1 1 18 3). Three categories of functions that
appear in FHDL must be considered. First, there are the
functions that perform basic boolean operations such as
and, or, xor, nand, nor, and not. These functions are
mapped directly to the corresponding logic gates. Second
category contains basic interconnection functions such as
"select” and “distribute left”. These functions never
create new atoms and their effect is independent of the
value of their input atoms. They merely rearrange the
atoms within an FP object, possibly leaving some out and
replicating others [18]. Third, there are functions that
are introduced for ease of describing algorithms. Exam-
ples are length, atom, null, and predicates. Predicates
usually have dual purpose. They are used sometimes to
manage the flow of coatrol and ease the description of
algorithms, while in other instances a predicate is
mapped directly to low-level implementation. In FHDL
symbolic interpreter, conditional constructs and predi-
cates are used to control the flow of data and ease of al-
gorithm description solely. For functions like length
there exists no mapping to a lower level.

The boolean functions include time delay and logic
level attributes. Each time a boolean operator is applied,
the corresponding delay and logic level attributes are up-
dated as follows:

Daq = max(Dy,Dy) + Dy

Loy = max(ly L) + 1
where D, and D, denote the time delay of the inputs, L,
and L, represent the logic level of the inputs, and Dy is
the propagation delay of the operator. The equations are
interpreted in the worst-case sense: the time delay attri-
bute of the output signal is equal to maximum time delay
of the inputs plus D, the time delay of the function
(gate). The logic level attribute of the output signal is
equal to maximum logic level attributes of the inputs plus
one. The following is the output of the symbolic inter-
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preter for applying the function HALFADDER to the in-
put "((A0 1 0 0)(Bl 1 0 0))" which illustrates how the
boolean functions operate on attributes.

> 1 HALFADDER 841
> 1((AD100) (Bl 100)

> 2 AND.842

>2(A0100)(B1100)

> 2 (WIRE.84319 1)

> 2 XOR.844

> 2 (AD 1 00)(B1 100)

> 2 (WIRE.845 0 16 1)
> 1 ((WIRE.843 1 9 1) (WIRE.845 0 16 1))
The pumber following ">" is the level of nested function
calls. Each function occupies three lines. The first line
bas the function name with a number appended at the
end, to make a unique function name. The second line
lists the inputs, and the third line has the list of outputs.
The function HALFADDER.841 has a worst case propa-
gation delay of 16 units of time and bas one logic level
(as shown by atom WIRE.845). The gate delay of and
primitive is 9 units of time and the gate delay of xor gate
is 16 units (Mead and Conway [14] timing model is con-
sidered).

Functional Forms We now discuss the implementation of
functional forms of FHDL in the structural domain. The
structure shown for each functional form is generated by
the symbolic interpreter and a graphic interpreter [18).

8) Composition Functional Form

f@g:x
p——

i G ]
| , ]
’___r

r3G:x

Figure 1. Interpretation of Composition

b) Construction Functional Form
((RPRINA R ¢

S
il
|

Figure 2. Interpretation of Construction

¢) Constans Functional Form
%c:x == (namex000)

d) Right-Insert Functional Form
1 :x where x = (x, 1; 1y X, X4)
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Figure 3. Interpretation of Right-Insert

¢) Left-Insert Functional Form
\f:x where x = (x; x, xy x, x4)

X3 2 © ] <
|
C__r ]
C____»r ]
I .
C v ]
r:x

Figure 4. Interpretation of Left-Insert

f) Tree-Insert Functional Form
f:x where x = (x, 2, Xy X 25 x4 Xy X4)

x1 3 X4 x§ X5 X7 X
(e 1] e ] O]
L] Cr_]

Lr ]

rx

Figure 5. Interpretation of Tree-Insert
Apply-to-All Functional Forms

Two types of apply-to-all functional forms are pro-
vided for interfacing the sequential functions to the com-
binational ones and for specifying algorithms in general.
These forms are equivalent at the behavioral level, while
they differ in the structural domain. This distinction is
caused by modeling the sequential systems by iterative
networks in the behavioral domain.

a) Space-Apply-to-All Functional Form(&)

&f X == (f:hf:b"'vf:!n)y
where x is a spatial sequence of clements.

Space-apply-to-all functional form at the structural level
will be mapped to n copies of function f. The function
&f operates on all clements of the input object con-
currently and produces the results simultaneously. This
form is equivalent to apply-to-all functional form defined
by Backus (1].

&f :x where x = (x, 1) 1y X, xy)

120 agh to8 S8 v g b

tLTe

-

s

w

LSS

"r e '

. s e -
'.'\lu..

’-.'-.'..‘l\ L]

A

- -y ~.’<.,~.’ i



nxl f:xa th
Figure 6. Interpretation of &
b) Time-Apply-to-All Functional Form($)

$fx == (fxy,fx,,....f2,),
where x is a time sequence of elements.

At the structural level time-apply-to-all is mapped to one
copy of function f. Input x is a time object because the
implementation of $f implies that the elements of the in-
put are applied to f onc at a time. In other words, x,; is
the input at time t1, x,, is the input at time t2, and so on.
In the structural domain, the fime-apply-to-all functional
form only operates on one element of the input at a time
(the symbolic interpreter uses the first element of the in-
put objects). Time-apply-to-all consumes an input gen-
erated by a sequential system and produces an output to

be used by a sequential system.
$f:x where x = (x; xg Xy 1y Xg)
—
L ’ ]
I_—_J

Figure 7. Interpretation of $

We now discuss how these functional forms are
used to describe sequential systems.

Sequential Functional Forms

The abstract model of a synchronous sequential
system is a finite state machine where x is the input and
z is the output, while y is the present state and Y is the
next state. The following three functional forms are pro-
vided as the implementation of finite state machines.
The previous argument used to distinguish between the
time and space domain implementations applies directly
to these functional forms. All of the following functional
forms are implemented in time domain and applied to
time objects.

8) Sequence Functional Form

(seq init seqfunc g seqend)x ==
Q:(w:z.x‘,),g:(gz(bﬁm,x‘,).xq)....).
where x is a time object.

Keywords seq, seqfune, and seqend act as delimiters.
The functions inir and g are the initialization and state-
transition functions. Sequence functional form describes
a finite state machine where the output vector z is the
same as the present state y.

ny
Figure 8. Structural Interpretation of
Sequence Functional Form

The following example of a bit-serial adder illustrates the
use of sequence functional form.

# Bit-serial adder using the sequence functional form

defus seqadder () # OUTPUT ((Co Sy).-.(Co-1 Su-1))
eq [%0,%0) #C_,=0,S;,=0

seqfunc fulladder @
wpodl @ [1@1,2)

seqend
enddel # INPUT ((Aq By)...(A,-, B,-))
defon cpal ( # OUTPUT (S S, --- Sp-1) Go-)

52, # select Sums

1G] @  # select C,_,

seqadder
enddef # INPUT ((A; By)...(A,-, B,))

Note that in FP programs functions are applied from
right to left.

b) Mealy Functional Form

(mealy init meout A menext ¢ meend) :x ==
(h:(init:x,x,),h:(g:(init:X,x.),1,),
":(8:(‘:“"“-1"1)-!2)v!!)t"')

where x is a time object.

The keywords mealy, meout, menext, and meend are
FHDL delimiters. The functions inif, A, and g are the ini-
tialization, output, and state-transition functions, respec-
tively. In a Mealy machine, the output depends on both
the present state and the input. Function inif provides an
initial value of the state register.

X r
]
L G ]
STATE-RIG
p—
L I ]
f "
ouUTrUT 7
Figure 9. Structural Interpretation of
Mealy Functional Form

In the following example a bit-serial adder is specified
using the mealy functional form.
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# Bit-serial adder using Mealy functional form

defun mealysdder ) @ OUTPUT ((Co So).--(Go-1 Su-1))

moaly (%0,%0) #C_,=0;S_,=0
meout 1 # pass Carry and Sum
menext {ulladder @
wnd @ (1@1,2)
meend
enddef # (Ao Bo)(A) By) ... (Ap-y B,_y))
defan cpad ) # OUTPUT (S8, ... Sg-1) Cyey)
32, # select Sums
1@last] @ #elea G,
mealysdder
enddef # INPUT ((A¢ By)...(A,- B,-y))

¢) Moore Functional Form

(moore init moout h monext g moead)x ==
(A (init:x),h:(g:(init:x,x,)),
h:(g:(g:{init:X,x,),x0)),...)

where 1 is a time object.

The keywords moore, moout, monext, and moend are
FHDL delimiters. The functions inif, h, and g are the in-
itialization, the output and the state-transition functions,
respectively. Iln Moore machine the output depends on
the present state only.

Figure 10. Structural Interpretation of
Moore Functional Form

The bit-serial adder is now specified using the
moore functional form.
# Bit-serial adder using Moore functional form

defun mooreadder ()  # OUTPUT ((Cy Sp)--(Cp-1 Sa—1))
moore [%0,%0] #C_, =0;S_, =0
moout id # pass Carry and Sum
mooext {ulladder @
apnd @
{1@1,2]
moend
enddef # ((Ag B)(A; By)...(A,-1 B,-y))
defun cpa2 () # OUTPUT (% S, - Su-1) Gy-1)
(s2. # select Sums
1@last) @ # selet C
mooreadder
enddef # INPUT ((Aq Bo)...(A,- By.)))
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3. Example

We now illustrate the use of apply-to-all and
sequential functional forms by considering the specifica-
tion and implementation of a multi-operand carry-save
adder. Muiti-operand carry-save adder uses a carry-save
logic with feedback in order to perform additions. The
final partial-sum and the carries are passed to a carry-
propagate adder to generate the final result. A high-
level logic schematic of the adder is shown in Figure 11.
The foliowing is an FHDL description of the multi-
operand carry-save adder.

defun fulladder ()
(1er2)3) @
spndl @ (1. halfadder@{2.31] @
apndr @ [halfadder@(1,2],3]

#(C. 8)

enddet #(ABC)

defun halfadder () *(CaS)
{and,xoc)

enddef # (A B)

defun initcsa () # initial value of state
[(& [%0,%0D,%0) @ 1
enddef

defun addall () # (X Sow-1 0)...(Xq-1 Sa-1e-1 Ryoys-1))
&apndr @ trans @ [1@W@1,2)

enddef # (((Sos-10)...(Sq-18-1 Ry-14-1) G1)
# (Xo ... X5-1))
defun rearrangeoutput ()
# (0 $)(Co $)..(Co-z Sy-1)
pair @ spndl @ [ %0,id) @ concat
@ & reverse
enddef # ((CoSo)C 8)..(Coy Sp-1))
defun csa () # ((0 Sog)--.(Ry- 15 Sy~ 1) Gw)
{Ur,1@last) @
rearrangeoutput @
&fulladder
@ addall
enddef # (((0Sop-2)- (R 1oy Sy-1g-1) Crg-1)
# (X X5-0))
defun multiopcsa ()

# (((0 Sou).--(Ry- 1y Sh-1p)) o)
+

# ((0 So)--(Ry- 12 Sn- 10m)) Coer)
seq initcsa seqfunc csa seqend
enddef # (A Ano 1) (Ao Ay 1))
defun m“lﬁOP“ddﬂ 0 * ((Pn-'.u‘--Pm le)-”
# P Poa)
(apndr @ [cpa@1,2]) @ last
@ $({apnd) @ I %0,%01,1},2))
@ multiopcsa

enddef #* ((Aou---An- 1) (Ao - Aq- i om))

The function multiopcsa specifies the carry-save adder.
The function multiopadder connects the carry-save adder
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Figure 11. A Multi-operand Carry-save Adder

(the sequential system) to the carry propagation adder
(the combinational circuit). The important aspect of this
example is the use of the sequential functional form in
csa function and the use of rime-apply-to-all functional
form in function multiopadder to interface between the
sequential part and the combinational one.

Figure 12, 13, and 14 show the logic diagram of
functions multiopadder, multiopcsa, and csa respectively.
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Figure 12. Logic Diagram of Multi-Operand-Adder
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Figure 13. Logic Diagram of Sequential CSA
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Figure 14. Logic Diagram of a CSA

For carry propagate adder(CPA), function cpa, any of
the specification in Section 5.2 can be used. A more de-
tailed discussion is given in {15). As mentioned earlier,
two different tools are used in this work. First, the func-
tional interpreter provides a functional simulation of the

FHDL specification. Second, the symbolic interpreter is
used to transform the specification from the behavioral
domain to the structural domain. The following is a
sample of the functional simulation of mulfiopadder and
multiopcsa functions.

multiopesa:((0000)(0001)(0111)0010))

((((0 0) (00) (00) (00)) 0) (((00) (00) (00) (01)) 0)
(((00) (01) (11) (00)) 0) ({0 0) (1 1) (0 1) (0 0)) 0))

multiopadder:((0 0 0 0)(0 00 1)(0 1 1 1)(0 0 1 0))
(10100)

The simulation of multiopadder in the structural domain
using the symbolic interpreter is given below. Only the
high-level modules are shown below.

> 1 MULTIOPADDER 408
> 1 (((IN11 10 0)(IN12 1 0 0)(IN13 1 0 0)(IN14 1 0 0))((IN21 1 0 0)
(IN22 1 0 0)(IN23 1 0 0)(IN24 1 0 0)))

> 2 MULTIOPCSA. 409
> 2 (((IN11 1 00)(IN12 1 00)(IN13 1 0 0)(IN14 1 0 0))((IN21 1 0 0)
(IN22 1 0 0)(IN23 1 0 0)(IN24 1 0 0)))

>3ICSA49

> 3 (({((CONST 410 0 0 0}(CONST.411 0 0 0))((CONST 412 00 0)
(CONST 413 0 0 0))((CONST 414 0 0 0)(CONST 415 0 0 0))
((COINST 416 0 0 0)(CONST 417 0 0 0)))(CONST 41800 0))
((IN11 1 0 0)(IN12 1 0 0)(IN13 1 0 0)(IN14 1 0 0)))

> 3 ((((CONST 474 0 0 O)(WIRE 431 1 32 2))({WIRE 4330 34 3)
(WIRE 444 1 32 2))((WTRE 446 0 34 3)(WIRE 457 1 32 2))
((WIRE.459 0 34 3)(WIRE.470 1 32 2)))(WIRE 472 0 34 3))

> 3 STATE 473
> 3 (({{CONST 474 00 0)(WIRE 431 1 32 2))(WIRE 4330 34 3)

(WIRE.444 1 32 2))((WIRE 446 0 34 3)(WIRE 457 1 32 2))
((WIRE 459 0 34 3)(WIRE 470 1 32 2)))(WIRE 472 0 34 3))

> 3 (({((CONST 410 0 0 0)(CONST 411 1 0 0))((CONST 41200 0)
(CONST.413 1 0 0))((CONST 414 0 0 0)(CONST 4151 00))
((CONST 416 0 0 0)(CONST 417 1 0 0)))(CONST 418 00 0))

> 2 ((((CONST 410 0 0 0)(CONST 411 1 0 0))((CONST 412000)
(CONST 413 1 0 0))((CONST 414 0 0 0)(CONST 4151 0 0))
((CONST 416 0 0 0)(CONST 417 1 0 0)) ) CONST 418 0 0 0))

> 2 CPA4TS

> 2 ((((CONST 476 0 0 0)(CONST 477 0 0 0)))({CONST 41000 0)
(CONST 411 1 0 0))((CONST 412 0 0 0)(CONST 41310 0))
((CONST 414 0 0 0)(CONST 415 1 0 0))((CONST 416 0 0 0}
(CONST 4171 00)))

> 2 ((WIRE 490 1 32 2)(WIRE $04 1 50 4)(WIRE 518 1 68 6)
(WIRE 532186 8))

> } ((WIRE 490 1 32 2)(WIRE 504 1 50 4)(WIRE 518 1 68 6)
(WIRE 532 ) 86 8)(CONST 418 00 0))

The symbolic interpreter does not provide the full simu-
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lation of the FHDL specification. The interpreter simu-
lates the specification only to the level necessary to
transform the specification to the structural domain. As
illustrated above, the function multiopadder was applied
to the input consisting of two numbers represented with
bit-vectors 1111 and 1111. The output of symbolic inter-
preter was 1111, because the interpreter executes the
multiopcsa function only once. That is, it adds the first
input with the initial value of state register w. The inital
value of state register is provided by function initcsa
which is zero.

The maximum clock rate of multiopadder is 34 un-
its of time plus the time delay of the state register (i.e.,
8 units of time). The delay of cpa function is 86 units of
time. Thus, for adding 20 numbers about
20°(34+8)+86 = 926 units of time are required.

As illustrated above, FHDL can be used to specify
digital systems, to map the specification into a gate level
implementation, and to simulate its functioral behavior.
The use of attributes provides a systematic method for
gathering performance characteristics of the design.

4. Conclusion

A functional programming hardware description
language (FHDL), based on the Backus's FP, was
described. FHDL supports the specification of both com-
binational and sequential systems. The sequential sys-
tems are modeled by equivalent iterative networks at the
behavioral level. Then, a symbolic interpreter is used to
interpret the specifications automatically at the structural
level, which presently consists of gates, registers and in-
terconnections. Characteristic attributes are introduced
in a general manner so that the information about system
performance and design parameters can be extracted.
The two implemented attributes are the delay and the
number of levels.
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Abstract

A generalization of low-cost residue codes into two-
dimensional encodings was presented and error detect-
ing and error correcting properties of two dimensional
inverse residue codes were discussed previously. This
paper presents byte-serial checking, additive inverse
(complementation), and addition algoritbms for
operands encoded in two-dimensional residue and in-
verse residue codes.

1. latroduction

A general approach to the cost and cffectiveness study
of low-cost arithmetic error codes has been presented in
{AVIZ 71a}. This paper introduced the concepts of in-
verse residue codes and of muliiple arithmetic error
codes. The concept of repeated use faults was presented
and the cffectiveness of various arithmetic codes with
respect to both determinate and indeterminate repeated-
use faults was established. An important result was the
proof that inverse residue codes can detect the “com-
pensating” determinate repeated-use faults that are not
detected by ordinary residue codes. The modulo 15 in-
verse residue code was applied in the JPL-STAR experi-
meantal computer {AVIZ 71b]. Further resulits on deter-
minate faults were presented in [PARH 73] and [PARH
78]. An extension to signed-digit arithmetic is found in
(AVIZ 81). 1. F. Wakerly has analyzed the detectabili-
ty of unidirectional multiple errors {WAKE 75|, and
A.M. Usas has demonstrated the advantages of inverse
residue codes for multiple unidirectional error detection,
when compared to inverse checksum codes [USAS 78].
Bose and Rao have considered unidirectional one-line
error correcting codes using a combination of byte pari-
ty and residue (not low-cost) encoding (BOSE 80).

A new generalization presented in [AVIZ 83] extended
the application of low-cost inverse residue cndes into
two dimepsions: row (byte) and column (line) residues.

* This research has been supported by ONR contract N00O014-83-
K-0493.
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This extension improves the detection of errors, espe-
cially of those due to indeterminate faults, and provides
certain efror-correction capabilities. Of special interest
to current VLSl implementations of arithmetic are the
advantages offered by two-dimensional inverse residue
codes in the detection and correction of errors that af-
fect byte-wide communication paths and processing ele-
meats. Such paths are widely used in high-performance
array processors, systolic arrays, and for inter-processor
communication in large multi-processor systems. Byte-
wide processing elcments are very suitable for the im-
plementation of large processing arrays [AVIZ 70],
[TUNG 70] and variable-precision signed-digit arithmet-
ic [AVIZ 62].

This paper presents the fundamental byte-serial arith-
metic algorithms for operands encoded in two-
dimensional low-cost inverse residue codes. The algo-
rithms are:

(a) the lie-residue checking algorithm;

(b) the additive inverse (complementation) algo-
rithm;

(c)  the addition algorithm.

A brief review of the error-detecting and error-
oorrecting properties of 2-D inverse residue codes fol-
lows the description of arithmetic algorithms.

2. Model of the Byte-Serial Communication and
Computation Psth

We consider a communication and conTu:adon path con-
sisting of b bit lines (XX}, . '). The binary
operand X consists of &b bi!s, proa:sed as Lt bytes
(Xo, . ,X,. PR .X.-,) of b bits Ienglh each. ﬁg\ﬂe
1 shows the notation used in this paper.

Two types of low-cost residue encoding are applicable to
the operand X:

(8)  Residue Code: the k bytes carry an error-
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detecting code check tyte X, that represents the
modulo 2*-1 residue X' of the operand X:
X'=(2*~1)|X; and the operand is now k+1 bytes
long. Usually the residue value X'=0 b
represented by a string of b ones. If the all-zero
operand can exist, its residue will be » zeros, un-
less explicitly disallowed.

(b)  Inverse Residue Code: the inverse residue byte X,
represents the value X° that is the (2°~1)'s com-
plement of X'. It is obtained as
X = (2-1)-X'= (2°-1)-(2*-1)|X; and the
operand is again k+1 bytes long. The residue
value X' =0 is represented by b ones, and the in-
verse residue X” in this case is represented by b
zeros. The all-zero operand X has an inverse
residue code X° represented by b ones.

To form & two-dimensional residue encoding, one more
check line X? is added to the communication and com-
putation path (Figure 1). The lines X% X',.... X*"! are
summed modulo 2'*!-1 to get the line-residue of X.
Two classes of 2-D low-cost residue codes can be em-
ployed:

() Two—dimensional Residue Code: the check bits X}
of the check line X? represent the modulo
28*V | line-residue X; :

) b~1 %
X, = (2*'-1)| Ix/;where X/ = x{ 2/
j=0 i=0

(d) Two—dimensional Inverse Residue Code: the
check bits X} on the check line X* represent the
modulo 28 *1-1 (nverse line-residue X, :

X, = @*-1) -x,

It is important to note that the bits (X} ~',.... X]) of the
check byte X, are treated as the most significant bits of
the lines Xb~!,..... X0 when the line-residue of X is
determined. The line-residue encoding is superimposed
on the already encoded operand.

Oheck  line line line line byte
line X* Xx*! e x! e xt x° symbol
X" X‘" P x$ e x} x' Xo
i o I Xl xi x"-| Xe-r

xt A chex
e X

Figure 1. Model of the Path and the Operand X

3. A Dyte-Serial Line-Residue Checking Algorithm

Given a Two-Dimensional Inverse Residue encoded
operand X (as shown in Figure 1), the line-residue
checking algorithm requires the computing of the line
check result R(L): , N
R(L) = 2**'-1) | SX/; where x! = 3 x{ 2!

J=0 i=0

An “all-ones” R(L) indicates s valid encoding; all other
values of R(L) indicate an error.

In the byte-serial implementation, one byte of X be-
comes available at a time, with the least significant byte

b
X, arriving first. The “line sum™ 3 X/ designated by

J=0
3.(L), is computed as the weighted sum of the “count of
ones” in each byte:

) kb
@ = 3x = 3 (K2

J=0 i=0 f=0
In order to get R(L), the modulo (2**'-1) residue of
3 (L) must be computed. That requires an “end-
around-carry” addition of the “overflow bits”
(Spems--sSpey) of X(L) that are in the positions
k+1,... k+mof 3(L). Since a full-length addition de-
lay is inacceptable in high-speed byte-organized comput-
ing (e.g., systolic arrays), a fast line-residue checking

algorithm is developed bere that requires only a short,
m-bit (with 2™ = b+1) addition after 3)(L) has been
byte-serially computed.

The speed-up is accomplished by the simultaneous com-
puting of two temtative line sums (L) and
F(L) = 3(L)+2™. The value of m is determined by
the maximum value of the lioe sum Y,(L). An upper
bound for Y(L) is obtained by assuming all digits
X{ (0sisk; 0s/<b) to have the value "1°. (This situa-
tion cannot occur for a valid encoding, but could be
caused by an error.) In this case,

SL)mas = G+DE*-1) = 2241+ 2 -1)-»
and the "overflow bits” represent the value b with
respect to the position k+1 of the line sum 3(L). The
value of m is the smallest integer that satisfies the con-
dition:

2-12b or 2™ =2b+1
For example, 8-bit bytes (b=8) will nced m=4, regard-
less of operand length k (in bytes).

After 3(L) and J (L)' = ¥ (L)+2™ bave been comput-
Cd, the m “overflow bits” (S“,,,,...,S,,,) of E(L) are
added to the m least significant bits (S,_,,....Sq¢) of
¥(L). The resulting carry-out C, determines the
choice of the bits (S;,...,.5,):



(a) UC,=0,(5,,...,5,) come from (L)
(b) HUCy=1,(S,,....5,) come from ¥ (L)

The “all ones” lipe check result (S,=1 ; 0si=<k) indj-
cates the absence of crrors; any other line check result is
an error indication. The determination whether
(Si,.--.5.) are "all ones” is done while these bits are
computed. The final step is to test whether the bity
(Sm-1s---+5q) also are "all ones” after the "end-around”
addition of the “overflow bits”.

4. The Byte-Serial Additive Inverse Algorithm

The additive inverse of an operand X is formed by ob-
taining the complement of X. Either “one's” or “two's”
complements can be employed; the specifics are dis-
cussed in [AVIZ 71a] and [AVIZ 73].

The purpose of this section is to develop the correspond-
ing complementation algorithm for the inverse line-
residue X®. When the “one's” complement X of X is
formed, the “count of ones” in each byte X, of X is :
b~1— b—1
Sx{=b-3x
/=0 J=o
This leads to the relationship for 3 (X):

z(i) = i = "f xh2'=s2**'-1) - 30
=0

i0
Taking the lige-residue modulo (24*1-1), we get:
@*'-n | 3m =

=@2*1-1n [{o-[2**'-) | SMO)]=
=@*-1) - @' | ZTE)

The relationship demonstrates that the line-residue of
the "one's” complement X is obtained by taking the
one's complement (2!*1-1)~[(24*'-1) | 3(X)] of the
line-residue (2'*!-1) | 3(X) that was computed for the
operand X. The same argument follows for the inverse
line-residue.

If the “twa's” complement X*® of X is to be formed, it is
considered to be: _

X* = X+20
In order to get the line-residue of X¢, the line-residue of
2° must be added modulo 2!*' -1 to the line-residue of

X. For inverse line-residue encoding, this means the
addition of CJ=1, as described in the next section.
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S. The Byte-Serial Addition Alporithm

We cohsider the byte-serial addition of two operands X
and Y, cach kb bits long, to get the sum Z=X+¥. The
addition is modulo 2®°-1 (“one’s” complement), or
modulo 2** (“two's" complement).

The check byte Z, is obtained by adding the check bytes
X, and ¥, modulo 2)-1. If "two's" complement is
used, a “correction signal” input needs to be used, as
defined in [AVIZ 73).

An algorithm to generate the inverse line-residue for 2
from the inverse line-residues of X and ¥ is devel
bere. As first developed by Garner [GARN 58], the
carries generated during the addition of X and Y need
to be employed in the calculation of the inverse line-
residue for Z.

The “count of ones” (designated by a(Z,)) in each byte
Z, (Osisk-1) of Z is:

b=1 b-1 b=t . o

22Z=3 (xf+rh - (T ch-2ct + cf;

J=0 Jj=0 =1

or: a(Z) = a(X)+a(Y))-a(internal C)-2C? + C?;

where C{ is the carry into the j -th position of the sum
byte Z, and C%, = C} for 0=<i<k-2. For “one’s”
complement addition of X and Y, we also have
¢, =cl.

The above leads to an expression for 3(Z) when
3@ =% a@)2 + a@2 ;

i=Q
or
2(2)= T (xX)+ZT*(1)- 3 *(internal C)~2"CP_, +
+C+2Ma(X,) +a(ry) - a(Cy))

The count a(C,) is the total count of carries C{ for
1sj<b, since C{ = C} in the modulo 2* -1 addition of
the check bytes X, and ¥, ; i.e.,:

b
a(Cy) = 3 Cf = a(in C)+C}
J=1
Two cases need to be discussed separately:

(2) “One's" complement (modulo 222 - 1) addition of
Xand?Y;

(b) "Two's" complement (modulo 2*) addition of X
and Y.

For "one’s” complement, C}_,=CJ is the "end-around-
carry”, and the expression for 3 (Z) is :
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T2)=3'(X)+3(N-2 (e c)-2ch ,1ch., ¢+
+2%a(X,) +2ta(Y) - 2ta(in Cy)-2'C}
The expression reduces to:
S@)=SX)+ SN[ S(m C)+2(CR+c-)-CLi)

Taking the line-residue modulo A=2*'-1 of 3(2), we
get:

Al ZT@)=Al Al Z(X) +

+Al SN Al S(me. C)+24c+ct-) -1}

This relationship shows that the line-residue of Z can be
predicted from the line-residues of X and Y, as well as &
line-residue computed from the internal carries formed
during the summation of X and Y. The two "end-
around” carries C}_, and C} also need to be included in
the calculation.

Common-mode errors can occur if the carries are in-
correctly determined. To avoid such errors, separate
and independent carry-forming circuits need to be em-
ployed to form the carries for line-residue determina-
tion.

For two's complement, the "correction signal® C}_,
must be added (modulo 22— 1 to the modulo 2*-1 sum
of inverse residue check bytes X, and Y, [AVIZ 73]

The expression for Y (Z) is now:
S@=Z (X +Z 1) -3 (. €)-2'CL_ +Co+
+2%a(X,)+2%a(¥y) - 2alin C) - 2'ch+2'Ch,
The expression is reduced to:
S@=3(x)+ZM-[ Tl €)+2'C}-Ci)

where CJ=1 only exists if one of the two operands is
being complemented (in “two’s” complement) simultane-
ously with the addition. Once again, we take the lipe-
residue modulo A =24*"' -1 of 3(2) as follows:

Al3@) =

=A A | SE)+AL Z(N-A | [ S ©)+2'C}-CTl

The difference between "two's” and “one’s” complement
cases is quite small with respect to computing the lipe-
residue (28*1-1) | 3(2).

In practical implementation of byte-serial arithmetic the
"two's” complement addition (and subtraction) is strong-
ly preferable because there is no “end-around-carry”
that requires either 8 second addition or the generation
of two “teotative” sums - with and without the end-
around-carry.

i=0, ..., k). The check bits (X}, . . . .X}) represent
4
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6. Detection of Unidirectional and Bidirectional Errors

In this and the following sections 7 and 8, the error-
detecting and error-correcting properties of the two-
dimensional codes that were first presented in [(AVIZ
83] are reviewed, illustrated, and extended to two and
three adjacent lines.

Given a modulo 2°~1 inverse residue code, the un-
detectable unidirectional errors are those that have error
values E congruent to zero modulo 22— 1, where

£=3 [SE)
J=0 \i=0

All other unidirectional errors will be detected; howev-
cr, there are no error correction properties.

One bit-line determinate (“'stuck line”) faults that cause
unidirectional errors will always be detected as long as
the condition:

(k+1) < (2*-1)
is satisfied. For mwo adjacent 'stuck lines,” the condi-
tion is:

3(k+1) < (2b-1)

For m adjacent “‘stuck lines,” the condition is:

@ -Dk+1) < (2*-1)

For the purpose of this discussion, lines 0 and b~ 1 are
considered adjacent.

The PM (pattern miss) [AVIZ 81] percentages for
“stuck line"” faults remain very low after the left side of
the inequalities above exceeds the limit that guarantees
PM percentage of 0%. For example, for one “stuck
line,” when k+1=2°—1 is reached, we have:

PM (Inv. Residue) = 100/(2**)

since only one of the 2¢* possible error patterns on the
“stuck line”* (all zeros - all ones, or vice versa) goes un-
detected. The situation is not as favorable with “'stuck
byte’ faults, as discussed oext.

There is one undetectable one-byte unidirectional ervor;
it results whep an all-zero byte X, is changed to an all-
ones byte, or vice versa. The PM percentage for this
“stuck byte” fault is (100/2*)%. Introduction of byte
parity bits will detect only one of the twe (stuck-on-one
and stuck-on-zero) “stuck bytes’’; the other one remains
undetectable.

The “stuck byte" detection problem is fully solved by
the use of two-dimensional inverse residue encoding.
There is one additional check bit X? for each byte X,




the modulo 2**'-1 inverse line-residue ¥ of the
opcrand X that is oow interpreted as b lines X/
(=0, ....,b—-1) of k+1 bits length cach. It is evident
that every “stuck byte” now will be detected by the use
of 1" as long as the condition:

(b+1) < (22*'-1)
is satisfied. For two adjacent “stuck bytes,” the condi-
tion is:
3(b+1) < (2¢*'-1);
for p adjacent ‘stuck bytes™ it is:
@-1)eE+1) < @2*'-1)

The bytes X, and X, are considered adjacent in this
analysis.

The two-dimensional inverse residue is clearly superior
to the byte-parity encoding, since the “stuck byte” con-
dition subsumes all other possible error patterns (dou-
ble, quadruple, etc.) in the byte, while all “even error”
patterns go undetected when byte parity is the only
form of encoding.

In general, the remaining undetectable errors in the
operand X are those that are missed by both checks:
modulo 2°-1 over the bytes {not including the check
line bits X%), and modulo 2¢*'-1 over the lines, with
the check byte bits X{ included in each line j. Most uni-
directional errors are detectable; furthermore, the detec-
tion of bidirectional crrors is significantly improved, as
discussed below.

It has been noted that low-cost inverse residue codes are
considerably less effective in detecting bidirectional er-
rors due to indeterminate repeated-use faults [AVIZ
71a]. The addition of the line-residue (i.c., the second
dimension of encoding) allows the detection of all bi-
directional errors that affect a single line, as well as ail
bidirectional double errors affecting any two bits of the
operand X. The double, quadruple, and other even
“half-and-half” bidirectional errors on one line that were
undetected by the byte check are now detected by the
line check, while those in one byte are detected by the
byte check.

The remaining undetectable bidirectional errors are
those that are simultaneously undetectable by the byte
check and the line check. An illustration is the quadru-
ple error that changes Z to Z* as shown below:

0 10

z=19=>2 =)

Here an even number of opposite-direction changes oc-

curs simultaneously in the bytes and lines of the

operand X. In general, all quadruple errors of this type

(at four corners of a rectangle of bits within the operand
X) are undetectable.

7. Correction of Single-Bit and Unidirectional
Single-Line Errors

The introduction of the inverse line-residue Y° also
makes single-bit error correction possible. As shown in
(AVIZ T1a], the low-cost inverse residue codes bave the
“partial error location™ property. Therefore a single-bit
error value E{=+1 (0sjsb—1; 0si<k) will produce a
unique indication for line j in the modulo 2°-1 check
and for the byte ¢ in the modulo 2!*!~1 check, making
a correction of E/ possible in the operand X. The
single-bit error E}=+1 that occurs in the check line b
will produce the indication for byte { (0si<k) in the
modulo 2¢*!-1 check, but no error indication at all in
the modulo 2°-1 check, since it does not include the
bits of the check line. Correction of E? is therefore pos-
sible.

The cotrection property can be extended to most uni-
directional single-line errors as follows. If we assume a
determinate single-line fault on line §, the error values
E(j) will fall into the range:

k &
~UYEI<EG)sVIEf
1=0 =0
The positive values will be due to a stuck-on-one (s-0-1)
and negative values — due to a stuck-on-zero (s-0-0).
The actual byte check results will assume the values

C()=(2-1) | E(j), and as long as (k+1)<(2*-1)
holds, all error values due to 8 s-0-1 fault will be detect-
able and have a unique byte check result C(j) in the
tange

0=<C,(j) = (2°-N|@k+1)

Similarly, the error values due to a 3-0-0 fault will have
the byte check result in the range:

0= Co(i) s (-1 | (-)(k+1)

However, many other error patterns (on two or more
lines) can produce the same values of check results, and
error correction is not possible with the byte residue en-
coding alone.

To obtain single-line unidirectional error correction, we
use the additional information provided by the line
check result obtained from the inverse line-residue en-
coding. Given a byte check result C(j) discussed
above, we find its value to be N, represented by b bits
(Np=1s - - - .Ng).

First we form the hypothesis that N is due to a single-
line stuck-on-one determinate fault on line
(0sjsb—1). U the fault is m line j=0, then N(0)- N
error bits £7=1 in line 0 will produce the byte check
result N. We determine the numbers N(j) of error bits
El=1 on lines j=1, ... ,b-1 respectively that would
be needed to produce the byte check result N by end-
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around shifting N to the right b—1 times. The shifts
will produce the numbers N(1), . . . ,N(b—1) in succes-
sion.

The number of error bits E{=1 (due to s stuck-on-zero
line) that would be needed to produce N(j) for any
0sjsb-1 is given by (2°-1)-N(j), that is, the “one’s
complement” of N(j). All values of N(j) and
(2°-1)-N(j) that are greater than k+1 are discarded
as impossible solutions.

To test the hypothesis that a given byte check result N is
due to a single-line determinate fault, we use the line
check result

R=@-1] 3 im‘]
J=0=0
This result will contain N(j) digits R,=1 (0sisk+1) if
there is a single-line determinate (stuck-on-one) fault in
the line / The presence of each R, =1 indicates that the
digits X{ should be corrected by the 1-0 change.

The line check result R will contain (26— 1)-N(j) digits
R,=0 (0<i<k+1) if there is a single-line determinate
(stuck-on-zero) fault in the line / The presence of each
R,=0 indicates that the digit X{ should be corrected by
the 0-1 change.

Example 1: Line Correction

Consider an operand X with scven bytes (k =7) of 4 bits
cach (b=4). Inverse-residue onding is used for the bytes
(modulo 2%-1=15) and for the lines (modulo
2t71-1=255). The enended opcrand (following Figure

1) is shown below:
check line line line line
line 3 2 1 0
1 0 1 0 0 byte 0
0 0 0 1 1 byte 1
0 1 0 0 1 byte 2
0 0 0 0 0 byte 3
0 1 0 1 1 byte 4
1 0 0 1 0 byte §
0 1 0 1 0 byte 6
0 0 1 1 0 check byte 7

The byte check result (modulo 15) is N=1111, and the
line check result (modulo 255) is R=11111111. No er-
rors are indicated.

Now assume a stuck-on-one line 2 and set all digits in
line 2 1o one. The new byte check result is N=1001.
The single-line determinate fault pmsibilities are:

Rt e ke & a ATt N AT N P e e e e N TN e e e et
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Stuck-on-One Stuck-on-Zero
N(@0) = 1001 = 9 15-N(0) = 6
N(1) = 1100 = 12 15-N(1) = 3
N(2) = 0110 = 6 15-N(2) = 9
N(3) = 0011 = 3 15-N(3) = 12

The values greater than k+1=8 are discarded, and the
rcmaining possibilities are: line 2 (6 errors) or line 3 (3
errors) stuck-on-one, and line 0 (6 errors) or line 1 (3 er-
rors) stuck-on-zero.

The new line check resuit is
R = (Ry ....Rg) = 01111110

The six ones in R indicate that the “line 2 stuck-m-one”
hypothesis is valid, and the corresponding six poaitions in
line 2 sre corrected by setting them to zero.

The single-line, unidirectional error correction algorithm
can not be compl:ted only in the cases in which two
conditions occur simultaneously:

(a)  More than one line is indicated by the occurrence
of identica] values of N(j) or of 15-N(j) for two
ot more lines j of X.

(b)  The correction pattern indicated by the line check
result R is actually applicable to more than one
line j of the operand X, i.e., the lipes have all
zeros (or all ones) in the positions to be torrect-
ed.

Example 2 below illustrated condition (2); the subse-
quent discussion deals with condition (b).

Example 2: Correction Ambiguity

Now assume that line 1 is stuck-on.zero. The byte check
result is N=0101, and the possibilities are:

Stuck-on-One Stuck-on-Zero
N(0) = 0101 = § 15-N(0) = 10
N(1) = 1010 = 10 1IS-N(1) = §

- N(2)=0101 =5 15-N(2) = 10
N@3) = 1010 = 10 15S-N(3) =5

The remaining poasibilities all point to five errors. The
modulo 255 line check result is

R = 00001101

The five zeros In R (positions 7,6,5,4,1) indicate a
stick-on-zera on line 1 or line 3. To resalve the ambi-
guity, we find that line 3 already has 1™ digits in posi-
tions 6 and 4, and cannot be corrected there; therefore
the stuck line must be line 1.

It is possible that both potential corrections could be
carried out in Example 2 above; that is, both line 1 and
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line 3 could have zeros in positions 7,6,5,4,1. In such s
case, the error has been detected, but a correction is ot
possible, since both conditions (a) and (b) occur simul-
taneously.

8. Two-Line and Three-Line Errors

A more critical case than the ambiguity discussed above
would be that of a mis-corzection, in which the restored
pattern would differ from the original one, such as in
the case of triple errors encountered by the Hamming
SEC/DED code.

A mis-correction for two-dimensional inverse residue
codes will occur if the bit pattern of the operand X
changes in more than one line, but both the byte check
resuit value N and the line check result value R remain
the same as for a single-line error. This will happen
when:

(a) the byte check result is altered by +c(25-1)
(b)  the line check result is altered by +c(2**! -1)
(c) both (a) and (b) occur simultaneously.

In cases (a) and (b) the otber check result remains un-
changed.

It is readily shown that a mis-correction cannot occur if
only iwo adjacent lines (or bytes) are affected by ihe
fault; the detection is guaranteed in all cases. When
three adjacent lines (or bytes) are affected, a mis-
correction can occur. The byte check result will be al-
tered by +(2%-1) when the following changes are im-
posed on a correctable unidirectional single-line error
pattern:

(a) two error bits from line j are moved one line to
the right, causing a net change in N of
22272 = 282

(b)  one error bit from line j is moved ooe line to the
left, causing a net change in N of 2-1=1.

The total change in N is then (20-2)+1=2%-1, and it will
lead to s mis-correction if the following two conditions
are satisfied:

(1)  there are no further error changes, and

(2) the positions in line j that would be mis-corrected
actually do contain correctable bit values.

An example of the conditions under which a mis-
correction will oocur is shown in Example 3 below.

ORI N ST IR NN

Example 3: Conditions for Mis-Correction

Consider the enonded operand below (same format as in
Example 1). Without changes, both N=1111 and
R=11111111 are obtained.

check line line line line

line 3 2 1 0

1 0 1 0 0 byeo

1 1 @ 1 0 0 byl

1 1 1 1 1 byte 2

0 0 1 1 2 0 byeld

1 1 1 0 1 1 byte 4

0 0 1 @ 1 0 byte §

0 1 1 & 1 0 byte 6

0 1 1 0 0  check byte 7

The unidirectional (0 ~ 1) crrors affect three adjacent
lines (3,2,1) as shown, and impnse exactly six changes.
Now we get N=1001 and R=0111110. This is exacrly
the same condition as in Example 1, and “line 2 stuck on
one” hypotheasis is validated, since bytes 1 through 6 om-
tain ones in line 2. Setting those six bits to zero will
causc a mis-correction.

9. Conclusions

It is concluded that the two-dimensional codes are very
pearly 100% (except in the cases of ambiguity as illus-
trated in Example 2) single-line correcting, and full
100% double-adjacent-line detecting codes with respect
to unidirectional errors. The probability of mis-
correction in the case of three-adjacent-line unidirection-
al errors remains very low, since a very spedfic error
pattern and original pattern of X must coincide to cause
a mis-correction.

It has been shown that { te-serial arithmetic can be car-
ried out with operands which are encoded in two-
Jdimensional residue and inverse-residue codes. Two-
dimensional encodings provide a very powerful error-
detecting and a substantial error-correcting capability
for byte-serial arithmetic. Promising application arcas
are systolic arrays, multiple-precision arithmetic, and
bigh-speed array computing.
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APPENDIX
Example 4: Line-Residue Checking

The byte-serial line-residue checking algorithm of Section
3 is Blustrated below. The operand X is from Example 1,
with the “line 2 stuck-on-one” error. Here m=3 and
L=8.

cheek

line 0 01 0 0 0 o0 1
line 3 01 0 1 0 1 o0 o
line 2 1 1 1 1 1 1t 1 1
line 1 1 1 1 1 0 0 1 o0
line 0 0 0 0 1 0 1 1 0

[ - 0 1 0
TW=016 0 1t t 1 1 1 0 o0
$11810%9 cy — 0

—
—
o

z(L)"O 10 1 0 0 0 0 n n %0

(LY = T(L)+2?, since m=3
Since C3=0, S(L) is sclected as the check result, with
’2"'1"'0=1 10

- v & a_s_ =
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ABSTRACT OF THE DISSERTATION

Layout from a Topological Description
by
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The interconnection topology of a circuit does not, in general, correspond to
a planar graph. However by encompassing the routing of a circuit in the
specification, it is possible to obtain a planar characterization of the topology of a
circuit. The planar topology of a circuit is formally defined and the use of
specifications with planar topology for the layout of integrated circuits is examined.
An applicative language(FP) is used to obtain circuit specifications with planar to-
pology. The planar topology arises naturally out of the constructs used to specify the
behavior of the circuit. An efficient mapping from planar topology to geometry is
implemented. The problem of transforming the planar topology to minimize the in-

terconnection complexity is addressed by exploiting the structural information of the

specification as opposed to using only the planar topology.
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Abstract

We propose to develop a general and systematic methodology for the design of
matrix solvers, based on the dependence graph of the algorithms. A fully-parallel graph
is transformed to incorporate issues such as data broadcasting and synchronization,
interconnection structure, [/O bandwidth, number and utilization of PEs, throughput,
delay, and the capability to solve problems larger than the size of the array. The
objective is to devise a methodology which handles and relates features of the algorithm
and the implementation, in a unified manner. This methodology assists a designer in
selecting transformations to an algorithm from a set of feasible ones, and in evaluating
the resulting implementations.

This research is motivated by the lack of an adequate design methodology for matrix
computations. Standard structures (systolic arrays) have been used for these implemen-
tations, but they might be non-optimal for a particular algorithm. Reported systems
have used ad-hoc design approaches. Some design methodologies have been proposed,
but they do not address many important issues.

A preliminary version of the proposed methodology has been applied to algorithms
for matrix multiplication and LU-decomposition. The approach produces structures
which correspond to proposed systolic arrays for these computations, as well as struc-
tures which exhibit better efficiency than those arrays. The results show that different
transformations on a graph may lead to entirely different computing structures. The
selection of an adequate transformation is thus directed by the specific restrictions and
performance objectives imposed on the implementation. The designer can identify and
manipulate the parameters that are more relevant to a given application.
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