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FOREWORD

The Army Mathematics Steering Committee (AMSC) sponsors annually the
conferences entitled the Design of Experiments in Army Research, Development
and Testing. The thirty-second one in this series had as its host the US
Army Comhat Development Experiment Center (USACDEC) and was held 29-30
October 1986 at the Hilton Inn Resort, Monterey, California. Dr. Marion R.
Bryson, Director of USACDEC, served as the local host and conference
coordinator not only for this conference but also for the twenty-third and
twenty-eighth Design of Experiments meetings, The members of the AMSC
appreciates his efforts and the efforts of his staff in coordinating the many
details needed to conduct all three of these symposia,'

The Special Session this year was entitled "Field Experimentation: The
Analysis of Messy Data." There were three invited papers presented. The
papers of Professors Dallas E. Johnson and John Tukey discussed the analysis
of messy data, while the joint authored paper by Drs. Marion R. Bryson and
Carl T. Russell presented some of the problpms of scoring casualties in field
trials. The titles of the techni:al and clinical sessions give some idea of
the many statistical areas treated in the contributed papers: (1) Parametric
Statistics,(2) Statistical Theory, (3) Design of Experiments, (4) Data
Analysis and Modeling, (5) Theory and Probablistic Inference, (6) Fuzzy
Statistics, (7) Forecasting and Prediction, (8) Small Sample Analysis, and (9)
Regression and Smoothing. The program Committee, for the invited speaker phase
of the conference, obtained the following nationally known scientists to talk
on topics of current interest to Army personnel as well as other attendees.

S.peaker and Affiliation Titles of Address

Professor George E.P. Box Statistical Design, Analysis for
University of Wisconsin Quality Improvement

Professor Walter T. Federer Statistical Analysis for
Cornell University Intercropplng Experiments

Professor Persi Diaconis The Search for Randomness
Stanford University

Professor Emanuel Parzen Quantile Statistical Data
Texas A&M University Analysis

Professor Stuart Geman Some Applications of Bayesian
Brown University Image Analysis
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The Lonferencu was preceded by a two-day tuturial on "Oensity Estimation,
Modeling and Simulation" by Professor James Thompson of Rice University. The
dates for the tutorial were Monday and Tuesday 27-28 October 1986. Professor
Thompson has conducted extensive research in the areas covered in his
lectures. His approach to the prpspnted material was excellent and he
generated many interesting discussions.

Or. Francis G. Dressel was the recipient of the Sixth Wilks Award for
contributions to Statistical Methodologies in Army Research, Development and
"esting. Dr. Dressel was uniquely qualified by virtue of his service in the

Mathematical Sciences Division of the U.S. Army Research Office over three
decades. He was one of the principals at the inception of the Army Design of
Experiments Conference and along with Sam Wilks, planned and implemented the
then-fledgling conference. Dr. Dressel currently serves as editor of the
Conference Proceedings and continues to contribute to the advancement of
statistics in the U.S. Army.

The AMSC would like to thank the members of the conference committee for
gui'-ing this excellent scientific conference, and to also thank the
Mathematical Sciences Division of the Army Research Office, for preparing the
proceedings of these meetings.

CONFERENCE COMMITTEE

Carl Bates Bernard Harris Douglas Tang
Robert Burge Robert Launer Malcolm Taylor
David Cruess J. Richard Moore Jerry Thomas

Carl Russell
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AGENDA

THIIRTT-SECOND (ON1ERENCE ON T119 01980 IOf0 WER.INUNTS

IN ARM! RESELARCN, DfVELOMUNT AND TESTING

29-31 October 1986

Host: US Army Combat Developments Experimnentation Center
Fort Ord, California 93941
Dr. Marion Rt. Bryson, Director

Location: Hilton Inn Resort
1000 Aguajito Road
Monterey, California 93940

* * * * duesday, 29 October*****

0815-0915 REGISTRATION Vista D.1 Mar Roos

09 15-0930 CALLIN OF THE CONTILRECI TO 03033 Presidlo Roos

Dr. Marion Rt. Bryson, Director
US Army Combat Developments Experimentation Center

WELCOMING REMARKS

093041200 GUIERAL SESSION I Presidlo Roos

Chairman: Dr. Marion Rt. Bryson

0930-1030 KEYOTE £001158: STATISTICAL DESIGN, ANALYSIS FOR QUALITY
IMPROVEMENT Presidio Roos

Professor George E. P. Box, University of Wisconsin

1030-1100 BREAK Vista Del Mar Room

1100-1200 STATISTICAL ANALYSIS FOR INTERCROPPING
EXPERIMENTS Presidio Roos
Professor Walter T. Federer, Cornell University

1200-1330 LUNCH

1330-1530 SPECIAL SESSION - FIELD EXPERIMENTATION.- THE ANALYSIS OF -

MESSY DATA Presidio Room

Chairman: Mr. William D. West, Director, Science and Technology,
US Army Combat Developments Experimentation Center
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SP9CLAI. SESSION (cont'd)

TITLE: SCORING CASALJLTIES IN FIELD TRIALS
Dr. Marion R. B~ryson, Director, USACDEC and
Dr. Carl T. Russell, US Army Operational Test and
Evaluation Agency

SOME TOPICS IN M4ESSY DATA ANALYSIS
Professor Dallas E. Johnson, Kansas State University

TITLE: To be announced
Professor John Tujkey, Princeton University

1530-1545 BREKAI Vista Del Mar Room

1545-1705 TKIChVCL SESSION 00 PARAMETRIC STATISTICS Presidio Roos

Chairman: Dr. Oskar Essenwanger, US Army Missile Coumand

MAXIMUM LIKELIHOOD ESTIMATION OF THE PARAMETERS OF A
FOUR-PARAMETER CLASS OF PROBABILITY DISTRIBUTIONS
Dr. S. HI. Lehnigk, US Army Missil~e Command

ON THE PITTING OF CLIMATOLOGICAL DATA SAMPLES DY A THREE
PARAMETER DISTRIBUTION FUNCTION
Mr. Helmet P. Dudel, US Army Missile Command

1830-1930 CASH BAR BiS Suar Room

1930-21 30 BANQUET AND PRISEnATXION OF WILES AWARD Big Sur Roos

* ** *Thursday, 30 October ****

08 15-1000 TECHNICAL SESSION I -STATISTICAL THEORY Presidio Roos

Chairman; Dr. Francis Dressel, US Army Research Office

QUICK APPROXIMATIONS TO SYNTHESI'S IN PATTERN THEORY
Professor Jayaram Sethuraman, Florida State University

ON ROTATION LN FACTOR ANALYSIS OF ATMOSPHERIC PARAMETERS
Dr. Oskar essenwanger, Redstone Arsenal

AN EXACT 14ETHOD FOR ONE-SIDED TOLERANCE LIMITS BASED ON A
BALAN~CED ONE-WAY ANOVA RANDOM EFFECTS MODEL

Mr. Mark Vangel, US Army Materials Technology Laboratory

LIMIT THEOREMS FOR GENERALIZED RANDOM ALLOCATION PRORLEMS
Dr. Bernard Harris, MRC, University of Wisconsin
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0815-1000 CLINICAL 518o1 I - DESIGN OF EXPERIMENTS Vista Del Mar Room

Chairman: Dr. Malcolm Taylor, US Army Ballistic Research
Laboratory

Panelists: Dr. Kay* Basford, Mathematical Sciences Institute
Cornell University

Professor George E.P. Box, University of Wisconsin
Professor Walter Federer, Cornell University N

APPLICATION OF EXPERIMENTAL DESIGN TO THE EVALUATION OF EXPt&RT
OPINION

Mr. Franklin E. Womack and Mr. Carl B. Bates
US Army Concepts Analysis Agency

ANALYSIS OF AN INCOMPLETE BLOCK DESIGN OF EXPERIMENTS
Ms, Wendy A. Winner and Me. Jill H. Smith, US Army Ballistic
Research Laboratory

1000-1030 BREAK

1030-1200 TECHNICAL SESSION 2 - DATA ANALYSIS AND MODELING PresLdio Room

Chairman: Dr. William Baker, US Army Ballistic Research
Laboratory

A HEURISTIC APPROACH TO POtT-HOC COMPARISONS FOR SIGNIFICANT
INTERACTIONS - A SIMPLIFIED NOTATION

Dr. Eugene Dutoit, US Army Infantry School

THE DESIGN OF EXPERIMENTS TO DETERMINE THE INCIDENCE OF SKIN
BURNS UNDER CONTEMPORARY ARMY UNIFORMS EXPOSED TO
THERMAL RADIATION FROM SIMULATED NUCLEAR FIREBALLS

Mr. Brian R. Shallhorn, Mr. Anthony J. Babe and
Mr. Stewart Share, Harry Diamond Laboratories

STATISTICAL EVALUATION OF DESERT INDIVIDUAL CAMOUFLAGE
COVERS (ICC) BY GROUND OBSERVERS

Mr. George Anitole and Mr. Ronald L. Johnson, US Army Belvoir
Research Development and Engineering Center

Mr. Christofer J. Neubert, US Army Engineer School
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.1030-1200 CLINICAL 813510I II - THEORY AND PROBABILISTIC INFERENCE Vista Del Her Room

ChaiLman: Mr. Carl Bates, US Army Concepts Analysis Agency

Panelists: Dr. Kays BaSford, Machematical Sciinces Institute
Cornell University

Professor Jayaram Sethuramen, Florida State University

COMIINATORLAL ISSUES AS3OCIATED WITH MACHINE FILTERING OF
TACTICAL MESSAGE$

Mr. Tarry Cronin, US Army Signal Warfare Center

ONPARAMETtIC SMALL SAMPLE TOLERANCE LIMITS
Hr. Donald Neal and Mr. John Reardon, US Army Materials Technology
Laboratory (Presented by Dr. Bernard Harris, MRC, University of
Wisconsin)

1200-1330 LUNCH

1330-1515 TECINlCAL I88I1O1 3 - FUZZY STATISTICS Prenidio Moae

Chairman: Dr. Carl Russell, US Army Operational Test and
&valuation Agency

INCORPORATING FUZZY SET THEORY INTO STATISTICAL HYPOTHESIS
TESTING

Hr. William g. Basker, US Army Ballistic Research
Laboratory

PRACTICAL MODELING WITH FUZZY FUNCTIONS AND FUZZY DATA
Dr. Aivars Calmins, US Army Ballistic Research Laboratory

A CENTRAL LIMIT THEOREM FOR FUZZY RANDOM VARIABLES
Dr. Steven B. Boswell, Harvard University School of
Public Health

Dr. Malcolm Taylor, US Army Ballistic Research Laboratory

AN APPLICATION OF A FUZZY RANDOM VARIABLE TO VULNERABILITY
MODELING

Dr. Steven B. Boswell, Harvard University School of
Public Health

Dr. Malcolm Taylor, US Army Ballistic &esearch Laboratory

1330-1515 CLINICAL SESSION III - FORECASTING AND PREDICTION Vista D•l Mar Room

Chairman: Dr. Charles A. Correia, US Army Logistics Center

Panelists: Professor Persi Diaconis, Stanford University
Professor Emanuel PArzen. Texas A&M University
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CLINICAL SESSION LIZ (contd)

AN EVALUATION OF AUTOMATIC FORECASTING TECHNIQUES APPLIeD TO
ENLISTED PERSONNEL SEPARATIONS

Dr. Betsy Abbe and Mr. Frank Womack, US Army Concepts Analysis
Agency

STUDY ON THIE FEASIBILITY OF GENERATING "PREDICTIVE ANALYSIS
FLAGGING SYSTEM" (PAFS) BY UTILIZING THE APMY'S EXISTING r.
DATA SOURCE

Ms. Li Pi Su, US Army Materiel Readiness Support Activity

1515-1530 BREAK

1530-1730 GENItAL SESSION 11 Presidio 3oom

Chairman: Professor Henry B. Tingey, University of Delaware

THE SEARCH FOR RANDOMNESS
Professor Persi Diacouis, Stanford University

QUANTILE STATISTICAL DATA ANALYSIS
Dr. Emanuel Parzen, Texas A&M Univeristy

* * * * * Friday, 31 October * * * * *

0830-1015 TECHNICAL SESSION 4 - SMALL SAMPLE SURVIVAL ANALYSIS Presidio Boom

Chairman: Mr. John Robert Burge, Walter Reed Army
Institute of Research

SAMPLE SIZE REQUIREMENTS IN QUANTAL RESPONSE TESTING
Mr. Berry A. Bodt, US Army Ballistic Research Laboratury
Professor Henry B. Tingey, Univeristy of Delaware

A TEST FOR CONSISTENCY OF A CLASS OF VULNERABILITY MODELS
Mr. David W. Webb and Mr. J. Richard Moore, US Army
Ballistics Research Labpratory .".

MORE ON THE PERVERSITY OF MISSING POINTS IN 16-POINT DESIGNS
Dr. Carl T. Russell, US Army Operational Test and Evaluation

Agency
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0830-1015 CLINICAL SESSION IV - REGRESSION AND SMOOTHING Vista Del Mar Room

Chairman; Mr. Franklin E. Womack, US Army Concepts Analysis
Asslacy

Panelists: Professor Stuart Geman, Brown University
Professor Walter Federer, Cornell University

A M'tTH0D F0R THE STATISTICAL ANALYS7S OF THE STRESS-STRAIN
PROPERTIES OF EARTH MATERIALS

Mr. G. Y. Baladi and Mr. Bahzad Rohani, US Army Engineer
Waterways Experiment Station

10 15-1045 BREAK

1045-1 200 GENERAL SESSION III Presidia, l..

Chairmen: Dr. Douglas B. Tang, Walter Reed Army Institute
of Research, Chairman of the AMSC Subcommittee
on Probability and Statistics

1045-1100 OP&N M4EETING OF THE STATISTICS AND PROBABILITY SUBCOMMITTEE
OF THE ARMY MATHEMATICS STEERING COMMITTEE

1100-1200 SOME APPLICATIONS OF BAYESIAN IMAGE ANALYSIS
Professor Stuart Geman, Brown University
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Statistical Analyses for Intercropping Experiments

Walter T. Federer
Cornell University
Ithaca, N.Y. 14853

Abstract

Statistical methodology for analyzing intercropping experiments was

developed over the last 20 years and is being developed at present. Con-

siderably more research is required for the many and diverse types of ex-

poriments involving sole crops (crops grown alone) and mixtures of crops

(intercropa) grown together or in sequence. The growing of two or more

crops together or in sequence is known as intercropping. An outline of

twenty chapters of a book on the statistical design and analysis of inter-

ctopping experiments is presented. A number of the statistical analyses in

the book are briefly described. Sections 2 to 8 relate to analyses for two

crops in a mixture along with sole crops. Sections 9 to 15 discuss

analyses for three or more crops in a mixture in addition to sole crops and

mixtures of two crops. It is stressed that it is dangerous to extrapolate

from sole crop responses to mixtures of two crops and from mixtures of k

crops to mixtures of k + 1 crops. Many of the data sets examined produced

unexpected and sometimes surprising results. The last section discusses

other areas of application, e.g., survey sampling, nutrition, education,

medicine, and recreation, where these results can bfi utilized,
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Statistical Analyses for Intercropping Experiments

Walter T. Federer
Cornell University
Ithaca, N.Y. 14853

*N

BU-880-M

1. Introduction

Intercropping investigations involves the growing of two or more crops

an the same area of land either simultaneously, partially at the same time, -

or sequentially. It is a centuries old practice in tropical agriculture,

and to some extent in temperate zone agriculture. Agricultural, biolog-

ical, and statistical investigations have tended to ignore the problems of

research in this area. Statistical analysis; of intercropping investiga-

tions is considered to be the most important unsolved statistical question

related to research in tropical agriculture. It is an area neglected by

all except a handful of statisticians. A computer aea'ch of statistical

literature resulted in the single paper citation tor Mead and Riley (1981).

This is an excellent paper, though limited in outlook for the broad range

of statistical analyses useful in intercropping research.

* In the Technical Report Series of the Biometrics Unit.
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To acquaint the statistical profession with relevant procedures and to

fill a need by intercropping researchers, a book is being published by this

author on the topic. The table of contents is: i

Part I - Two Crops

Chapter- 1. Introduction •
Chapter 2. One main crop grown with a supplementary crop

Chapter 3. Both crops main crops - density constant - analyses for

each crop separately I
Chapter 4. Both crops main crops - density constant - combined crop

responses

Chapter 5. Both crops of major interest with varying densities

Chapter 6. Monocultures and thoiz pairwise combinations when re-

sponses are available for each member of the combination

Chapter 7. Monocultures and their pairwise combinations when

separate crop responses are not available

Chapter 8. Spatial and density arrangements

Chapter 9. Some variations for intercropping

Part II - Three or More Crops

Chapter 10. Introduction

Chapter 11. One main crop with more than one supplementary crop p

Chapter 12. Three or more main crops - density constant

Chapter 13. Three or more main crops - density variable

Chapter 14. Monocult'zros and their combinations when responses are

available for each crop

Chapter 15. Monocultures and their combinations when separate crop

responses are not available N
.1*
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Chapter 16 Spatial and density arrangements for three or more crops

Chapter 17 Variations for interccopping of three or more crops

Part III - Additional Topics

Chapter 18 Experiment design for intercropping experiments

Chapter 19 Other areas of application

Chapter 20 Bibliography on intercropping investigations

It is necessary to fully comprehend the nature of two crop mixtures

before proceeding to anything more difficult. The interpretational

difficulty increases by an order in magnitude when going from sole crop

(crops grown alone) experiments to experiments with sole crops and biblends

(mixture of two crops.) It goes up another order ir magnitude in going

from intereropping experiments with two crops to experiments involving

mixtures of three or more crops. In addition to the interpretational

difficulty, it is dangerous to extrapolate from sole crops to biblends and

from biblends to mixtures involving three or more crops. It is dangerous

to extrapolate from lower densities to higher ones. Many, if not most,

experiments contain an unexpected result.

A number of statistical analyses found useful for intercropping in-

vestigations are discussed below. The topIce follow the table of contents

of a forthcominp book that is outlined above.

2. One Main Crop Plus one Supplementary Crop

The experiment designs found useful fir sole crops will be the same

ones found useful for one main crop grown with a supplementary crop. The

treatment design consista of the varieties of a main crop grown as sole

crops and in combination with varieties of the supplementary crop. To

4



illustrate, suppose that five c m varieties of maize are to be grown

alone and in combination with six a c varieties of beans. A single don-

sity for maize and for beans is selected, i.e. plant population per hectare

is not a variable. The treatment design would be:

Cropping System

Maize Bean Variety
Variety Sole 1 2 3 4 3 6. Cb

1

2

3

4

5uc

There would be v c 0m + c bcm a 36 treatments composed of five sole crops

and 30 biblends. Experiment designs appropriate for 36 treatments would be

used (see e.g., Federer and Kirton, 1984.)

Statistical analyses for experiments in a given experiment design and

for the above treatment design would involve the same types of statistical

analyses as used for sole crop experiments (see e.g., Snedecor and Cochran,

1967.) Some common statistical procedures used would be

(i) single (or subsets of; degree(s) of freedom contrasts,

(ii) multiple comparisons procedures,

(iii) subset selection procedures,

(iv) covariance analyses, and

(v) multivariate analyses.

Some additional statistical analyses found useful for yields are:

(vi) Tukey's one-degree-of-freedom analysis for the crop one by

crop two interaction.

5
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(vii) Finlay-Wilkinson (1963) analysis for mixtures,

(vjii..) tests for interaction given that one or more of the c Mmaize

varieties are standards for comparison, and

(ix) yields of main crop are niot to be reduced by more than a fixed

percentage.

3. Two Main Crops -Density Constant

Experiment design considerations for biblends when both crops are main

crops, are the same as discussed In Section 2. The treatment design would

have sole crops of both crops included; otherwise, It is the same as dis-

cussed In Section 2. Statistical analyses on the yields of each crop

* separately would follow that outlined in the previous section.

In order to evalugte cropping systems and to compare biblend produc-

tion with sole crop production, it is necessary to combine the yields of

both crops in some meaningful manner. An economic point of view would

pla~e a value, vi, on the produce from crop i. say Yj and use

V a V Y I* v 2 Y 2 ' If v Iare prices, it might be more realistic to use

ratios of prices, which are more stable, and uase relative values

V a Y + Y2 (v 2/V 1). For sole crops, VWor V could be obtained by putting

* 0 for~ crop one and Y, 0 for crop two. A nutritional point of view

would convert the yield to calories and/or protoin and use a measure of the

formt C wc IY I c 2 YV where c is a calorie (or protein) conversion factor.

An agronomic or land use point of view would consider a linear combinationI

of yields of the form: -

7.1 Y.2

6
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where Y bi is the yield of crop i in a biblend mixture and 11i i the yield

of crop I grown as a sale crop. There are many forms of Lit which is

called relative yield or land equivalent tatio. The component yields of

the mixture at* put into proportions of yields obtained from sole crop

yields. Since yields may vary considerably, a ratio of sole crop yields

might be. more stable. In this case a "relative land equivalent' ratio

would be computed as

L* Y bl + Y b2(Y $I'/Y 2)

A statistical point of view would use a discriminent function analysis and

construct a canonical variable of the form:

where R is chosen to maximize the ratio, treatment sum of squares divided

treatment plus error sumse of squares.

The first three linear combinations liven above, i.e., V, C, and L are

readily interpretable quantities by a researrnher or a farmer. Th. last one

D is not and sole crop yields cannot be compared with D, but can be with V,

C, and L. Although a statistician's first thoughts in combining yields

most likely would be to use multivariate analyses, this wovld not be the

correct thing to do as comparisons of sole crop yields and farming system

yields cannot be made and the canonical variable has no practical meaning

in the @@ene that C, V, and L do. Some aspects of multivariate analyses

have been found useful by Pearce and Oilliver (1978, 1979) in studying thq

nature of response from mixtures.

I%
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Statistical analyses for linear combinations C, V, and L, are straight-

forward, Those outlined in the previous section may be utilized. These

creatod functions of yield may be used in the same manner as canonical

variables from a discriminant function analysis, i.e., univariate analyses

are- performed on the canonical variables. It is possible to combine value

and land use by taking the ratio Y alvI/Ys 2 v 2 - R and using the created

function of yields YI + RY2' It does not appear realistic to combine

variables other than yield variables as described above.

4. Two Main Crops - Density Variable

Plant populations per hectare in sole crops and in biblends need to be

considered seriously in conducting intercropping investigations. Crop

densities maximising yields Yi, or linear combinations of yield V, C, and

D, are desired. Using univariate analyses, a multiple comparisons or sub-

set selection procedure may be used to pick the "optimal" densities for the

crops. A useful procedure %ould be to Imodel yield as a function of plant

density. Within narrow ranges of densities, a linear approximation of the

form has boen found to be usefult

YIiAtk * 0O1 + 1k + Bltdi t + tii.k

where Yii~k is the yield of the ith crop as a sole crop, 0i is an inter-

cept, l is a linear regression coefficient, dii is the density Ai for

crop i, k is the effect of block k, and tii~k is a random error term with

mean zero and variance al. Note that a variety of other functional rola-C

tions could be used to model yield as a function of density. Using the

above form, the yields of crop I in the mixture ij of two crops may be

8



expressed as

Y(i)Ai• 2 k Oi 9 +. 81 di + d ) + C

where vi(j)(di~i, dj ) is an additive effect on the yield of crop i due to

its being intercropped with crop j at the corresponding densities diA

and dlAI. A large positive value of yi(j)(d£A , dj J) is desired.

When there are many lines of a cultivar in an investigation, the above

analysis may be conducted for each line. Then, analyses over all lines can

be obtained.
I.

5. Modeling Responses for Sole Crops and Biblends - Two Responses

In many situations, responses for both components of a mixture are

available. The crops may be intermingled but distinct in type so that

responses for each crop are obtained, or the crops may be spatially sepa-

rated and again responses for each crop are available. Fot treatment de-

signe containing 11 sole crops and all possible combinations of lines of

crops in msixtures of two, response model equations can be constructed which

have measuree of a general mixing ability (Sea) effect and of a specific

mixing ability (sme) effect of a line or crop. To illustrate, supposo that

it was desired to compare yields of v a five bean cultivate as sole crops

end in mixtures of two. The v(v + 0)/2 - 15 combinations would bei

Cultivar 1 2 3 4 5

1 S B I B B

2 S B B B

3 S B B

4 S B

5S
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where S stands for sole crop and B denotes a biblend. With such a treat-

ment design in a randomised complete block dosign, one possible linear

model is:

Sole crop-i:

Yhi is + P h+Ph +'ti + hlis'

where p + Pk is a block mean effect, ii is cultivar effect, and thiis have

zuro mean and common variance a .

Biblend ii:

¥hi(j)b " (2 P h + *i ÷ 8)) + ) hi(j)b

Yhij * 1 (P + Ph+ Ij + 43)+•()
h(i)jb 7 (i)j 'h(i)jb

where Yhi(j)b is the yield of cultivar i from the mixture iJ *, Ph* and ti

are as defined for sole crop, 61 is a general combining ability effect for

cultivar I when grown in biblends, yij is an interaction effect for crop i

in the presence of crop J, and the 'hi(j)b are error components for cul-

tivar i responses which have sero mean and common variance 0'/2, The

coefficient 1/2 is included in order to have the i, ph, ii and 6, from the

biblends on the same basis as the corresponding parameters for sole crops.

With two cultivars on the same area of land as the sole crops, each crop

response caii only contribute 1/2 to V, Ph' and ti" Response model equa-

tions can easily be constructed for the case where one crop occupies a

proportion p of the area and the second crop occupies I - p of the area. In

this case, care must be taken in defining an interaction effect. An

interaction is defined to relate to two items in equal proportions. To

interact, both must be present. When p ( 12, only 2p of the total

material in an experimental unit is available to interact on a 1:1 basis;

10%
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1 - 2p of the material is not available. If some such definition as the

above is taken, interaction effects will be invariant with respect to

changing proportions p.

Note that when other treatment designs are used, other models can be

constructed. For example, suppose that only a subset of the v(v - 0)/2

biblends were included in a experiment along with sole crops. The para-

meters of ohs %t' and %1/2 + Y (j) " I 1(j) can be estimated. It is not

possible to obtain solutions for 8I/2 and Yi(j) but only their sum. If the

experimenter were willing to assume that the yi(j) not present were all

sero, then solutions are possible. This is considered to be an unrealistic

assumption.

6. Modeling Responses for Sole Crops and Biblonds - One Response

For certain hypes of mixtures, such as, e.g., a diallel crossing

experiment, it is impossible or difficult to obtain responses for both

components of a biblend. Experiments involving sole crops ard Axtsiree of

two lines of a cultivar where the lines are not phenotypically distinct or

are not spatially separated would be found for wheat, beans, and many other

crops. In mixtures of grasses and legumes in hay it is difficult to obtain

the separate responses for each member in the mixture. Several response

mod"ils ore available. For a randomized complete block design and the

treatment design involving sole crops and all possible biblends, the

fcllowing pair of equations for sole crop and biblend yields has been

proposed (Federer et aJ., 1982):

Yhiis " h i ÷ hiis

YhiJb P Ph + ('i at + +j + dj)/2 + Yij + 'hijb

%'s

r ` rV ` *%A .' . . •. • ` .~.*• . `. • '''' ', ,."'.'"'.' % • '. S."'• .," ''. "''-. . .
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where the effects are as defived in the previous section except for Yjij

which is art interaction component for specific mixing ability. Note that

Y in equal to the sum Yi(j) + y(i)j' These last two components cannot be

estimated unless individual responses are available whereas yij can be

estimated when only the combined response is available.

Another treatment design would be sole crops, all combinations, and

all reciprocals. To illustrate, suppose that v - 5 wheat varieties are

available, and the experimenter wishes to have all varieties bordered by

every other variety and itself. Responses from border rows are not ob-

tained. The vt * 25 treatments would be:

Wheat Variety

Border 1 2 3 4 5

1 S B B B B

2 B S B B B

3 B B S B B

4 B B B S B -

5 B B B B S

where S denotes sole crop and B denotes the mixture. Note that variety 1

bordered by variety 2 is not the same as variety 2 bordered by variety 1.

One set of response models for sole crop and biblends respectively is:%

Yhii " +h i +Chiis

and

Yhijb Oh + + 'i + 6 i + 7ij + Chijb,ioj

where J, P h i' lit tHils' and Ehijb are as defined as above and Yij is a

within variety interaction term with y * 0 ; Vij is an interaction term 'u

for crop i when bordered by crop J.

12
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A second response model equation for the above treatment design would

be the one for a two-factor (crops and borders) factorial:

Y hiJ + 0 h + a i + 0 j + 00 ij + 'hij.

where ai in the effect of crop i, 0j is the effect of border J, and coij is
jJ

an interaction term. Such a model would not be too realistic in a variety

of situations since sole crop responses may be quite different from biblend

responses.

A third model is adapted from Martin (1980) and is the previous model

with the following change:

up iJ a r, j + (a J + rii " '

where n ij for i a j and nii W -n/(v-l) for i 0 J W. IJ

(a0lj + aPji)/ 2 + n/(v-1) for 1 0 J, and r W (00il - Sell)/2.

A fourth model is a mixture of the previous ones and is

Whijb " P + 9h + 'i + 'i + 0; + '0j + 'ij + ChiJb'

where B' and w' are similar to the above RB and u but are condi-

tional on the fact that a*ii a 0; the remaining parameters are as defined

above.

Other situations will lead to the construction of other response model

equations. Appropriate models will need to be constructed for the

particular conditions encountered in an investigation.

13
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7. Spatial and Density Arrangementsn

Spatial arrangements and density levels are very important items to

consider in intercropping investigations. By spatial arrangement, we mean

the pattern used for plants in a given ares of land. The plants could be in

rows, in hills, or drilled. Tie number of plants per hectare could be

varied over a wide range. The f(llowing five items need to be studied for

any intercropping investigation:

(i) spatial arrangement of crop one,

(ii) spatial arrangement cf crop two,

(iii) density of crop one,

(iv) density of crop two, and

(v) intimacy of the two :rops.

By intimacy we mean the closenes:-L of plants of the two crops. If plants of 1.•
the two crops are randomly mingled in the same row, we say that they are

100% intimate. Plants of the two crops in separate rows would be less

intimate. If the two crops were isolated far enough to eliminate any

interaction, they have zero intimacy. To illustrate, suppose that density

is not a variable but intimacy and spatial arrangement are. One plan could

be to have two crops, say maize and beans, in the same row with rows one .

meter apart. A second plan could be to double the density within rows and

double the distance between rows. The density per hectare and intimacy

would be the same but spatial arrangement would be different. A third plan

would be to alternate rows of the two crops. The intimacy would be less

than in the first two plans. Another plan commonly used for maize and

14
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beans in Brazil ia one raw of maize and two rows of beana alternating as

below (M - maize and B - beans):

MBBMBBMBBKEBBK..

rho maize rows are one meter apart and the bean rows are one-half meter

apart. A fifth plan would be:

?O1BB~BIO4BBBBOQ3BU1O(***

The pairs of uaizo rows are 1.75 meters apart and the rows -if a pair are

0.25 meter apart. The bean rows are one-half meter apart. The last plan

could be the best as more light would be available for maize and for bean

plants than in the previous plans. The rows should be oriented in a

north-south direction in order to benefit from the additional light.

Several plans are available co study wide variations in density with a

relatively small amount of material. They should be used to cbtain

information on rang*P of density for future study. The best known of these

is the fan design of Nelder (1962). There are several versions of this

design. Another useful design has been suggested by S. N. Okigbo (1978).

The design is a circle with orientation noted (see below). A small circle

in the center is not used as some space im needed to start the rows. The

row spacing becomes increasingly distant as one moves away from the center

of the circle. The density within a row could be kept constant or the

density per hectare could be kept, constunt by increasing the density within

a row as one moves away from the center of a circle of the following

nature:

151



North

Hest East

South

The lines above could indicate the ruwa of plants. The above desigii could

be for a single crop or for mixtures of two crops using the previously

described plans for spatial arrangements and intimacy. A Nelder fan design

would bu one-quarter of the above and would be used if directional orienta-

tion were unimportant. Both the Okilbo-circle and the Nelder-fan designs

are very parsimonious of space. One statistical analysin would be to

divide the circle into concentric circles of equal areas. Yields would I

then be obtained for the aresa of individual rows. The results could be

plotted graphically to determine optimal yields or some regression function

could be fitted to the yields. Optimal row distances and optimal densities

for yield could then be obtained. These circles or fane could be con-

structed for various cropping systems and replicated over a range of

16



conditionn to be encountered in practice It may be poosibie to determine

optimal density, spatial arrangement, and intimacy weil enough so that

future experimentation is not necessary. However, it is likely that future

experimentation will be needed to more ;irecissely determine optimal values.

8. Variations and Additional ?Lallyes

Many and diverse situations exist 'An intercropping resesaron. One such

are io to study the effect of replacing one crop in a mixturo with a

second crop with proportions ranging from zero to one. Given that pais

the proportion for crop a and 1 - pa a b is the proportion of crop b in

the mixture and Y,-yield of sole crop 1, the computed value for a

strictly replacement seriles would be p aY a& + Pb Y & If the yield of the

mixture at proportion (p SPb) was greater than this value, this would be

termed cooperation. If less, then denote this as inhibition. If one crop

is inhibitod anid the other exhibits cooperation, this would be denoted as

coempensatlon sinces the yield of one crop is increased and the other is

decreased. For Intercropping, proportions and crops showing a large amount I
of cooperation are deilsired.

Several other statistics have been developed for competition studies.

A number of them are relatodc to a land eilquivalent ratio.

Lot Y i/ L i which is the proportional yield of the crop in a

mixture relative to the crop grown alone. A land equivalent ratio ic L

L I+ L 2'A ctatistic. was developed to compute total #tYectehe area* for theI
came vneive A, a area deVoted to sole ctop I and A *area devotgd to the 0

mixturo oif the two crops. Then, totai effective area j. computed as

A 1* A 2 LAM. A r*elativq crowdinS coefficient is computud as

L L /(I - LOC 7 1. A cooefffcienit of aggresalvity to measure the
1 2
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dominance of one crop over another is computed as L - L A competltive

ratio index is given by L1 /L 2. Each of these can be adjusted to the

relative proportions pa:Pb of crop a and crop b in the mixture. Other

coefficients have been suggested. A number relate to crop stability (ail

ill-defined term) and to "risk to farmers". Survival farming mupt take

some form of these measures into account as a farmer needs to produce food

every year in order to survive.

Another type of analysis suggested by B. R. Trenbath in his discussion

of the Head and Riley (1981) paper is linear programming. Here yields of

the crops as sole crops and in mixtures is required. Then for a goal, say

S units of starch and P units of protein, an optimal allocation of area to

sole crops and to mixtures can be computed. A farmer can minimize land

ares needed to reach his primary goal (food production) and can use the

remaining area of his farm for crops to achieve a secondary goal (say

produce for sale). Economic studies make use of linear programming for

some of their investigations.

9. One Main Crop with Two or More Supplementary Crops

Consideration of mixtures for more than two crops in the mixture would

at first sight appear to be a straightforward extension of the procedures

for two crops. This is not the case. To illustrate this for one main crop

with supplementary crops, it would appear that one could simply follow the

procedures described in Section 2, but consider the following treatment

design and example. Barley was the main crop and only one barley variety

was includod in the experimental units along with barley in combinations of,,.

one cultivar plus barley, all possible combinations of three of tho six

cultivars with barley, and one combination of all six cultivars with

18
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barley. Plant numbers per experimental unit were kept constant and the

same number of barley plants were harvested in every experimental unit.

Barley as a sole crop was one of the treatments. In all there were I + 6 +

20 + I - 28 treatments. For a randomized complete block design and barley

yields for variety g (one variety), one set of response equations is:

Sole crop -- variety 1

Ygh0 A g9+ph +Cgh

Variety a plue one crop i

Yghil d I h

Variety a plus two crops i and I

Y ghij2 0 )A + 1~ 2 + 0 h/ + (A I g+i hij

Variety g plus three crops i, J, and k

Y ghijk3 " I + 'S + Ph '(di 'j + ad' k 2 0 ij + Yi j

+ ijk +g hijk

Variety a plus all cultivars

Yghij...v P £ h + a.+Y X. + + W12 ... v +Itghij ...

For the above example, mixtures of barley with two other crops were not

Included in the experiment. pi * i I Is the mean for barley variety g grown

as a sole crop, p h is the h'th block effect, 61is a general mixing effect

fcrombina on ofarople ady n h yields of barley X is a tn-specific mxn feto h

cmiainof crop s i n on bthe yield. ofi1 bale.X is a bri-specific mxn feto h

effect of the combination of crops i, J, and k on the yield of barley,

W 1 .. vis a v-specific mixing effect of the combination of all v crops on

19
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the yield of barley, anid all the to are considered to have mean zero and

common variance OR . The assumption of common variance appears to be a

realistic one for this experiment involving only barley yields.

10. Three or More Main Crops - DensitZ Constant

A first step in analyzing data from an intercropping experiment

containing mixtures of three or more crops is to obtain statistical

analyses for each crop separately. The method of Section 9 may be used for

this when appropriate. Response model equations for such experiments

designed in a randomized complete blocks design, found useful are:

Sole crop g (h w 1,2,.--,r; i a 1,2,---,c a):

Yghi lagP + 0gSh + tgi +g hi'

Mixtures of three in proportions P1 3P2:p3, PI k P2 k P3):

Crop 1 yield, i'th line

Y Ihi(jk) "PI(Pl + '1h +. ' i + j2) 2 P27i(j) + 2P3"i(k)

+ 3Pi(jk) + lhi(jk)

Crop 2 yield, J'th line

Y2h(i)j(k) " 2(P2 + "2h + 2J +2j) 2 2(i)j+ 237j(k)

+3P3(i)j(k) + 2h(i)j(k)

Crop 3 yield, k'th line

Y 3h(ij)k " 3(43 + p3h + '3k + '3k) + 2 P3(y(i)k ~' (J)k)

+ 3P31(ij)k + 9~i~

whore interaction effects r-~) ij) etc. are defined for equal amounts

of material on an area basis, t ghi have zero mean and common variince

20i



o2 C have zero mean and common variance *2 a 02 p P is

gE ghi(jk) gc3 gE 9 gh

a block effect fox crop g, 1a is a mean effect for crop g, and the sub-

scripts ir parentheses denote the other two crops in a mixture. Crops g,

g*, and g' were taken to be 1, 2, and 3, respectively. The I'th line of

crop g, the J'th line of crop g*, and the k'th line of crop g' is used. In

experiments analyzed to date, only one line of each crop was included but

the above equations are written to allow for one to cg lines of each crop.

Also, note that each crop's contribution to an interaction term can be

estimated.

The construction of created variables as a linear combination of

yields is straightforward from the two crop situation. For crop value, one

uses rCv Y instead of vlYI + v2 Y2 . Or, all values v may be madeIgg g -2
proportional to a base crop value, say v1; the created relative value will

be c Y (v /v1 ). For calorie (or protein) value, the created variable

Y or ZIY(c/c 1 ) would be used. For land use values, the linear

combination of yields EcY /Y - C L , or E' 1 Y(Yle/Y r

would be used for Ygb a yield of crop g in a mixture and Y yield of

crop g as a sole crop.

Multivariate discriminant function analyses are not usable (se,.

Federer and Hurty, 1984) for analyzing data from intercropping experiments.

Multivariate theory needs considerable extension before it can be used.

Problems of missing values, comparisons of sole crops with linear combi:,,-

tions of some of the crops, comparisons of different linear combinations,

and the practical lnterpretation of the linear combination appear to make

present concepts of multivariate theory unusable for intercropping data.

Satisfying mathematical considerations and not practical interpretations is

a vacuous solution for an experimenter trying to interpret results from an

experiment.

21
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11. Three or Hare Main Crops - Density Variable

With only two crops in a mixture, the assumption that the sole crop

regression of yield on density holds for all densities of the second crop

may be tenable in a small region of densities. With more than two crops in

a mixture and with varying densities, this assumption may not be appropri-

ate. To illustrate, consider mixtures of three crops gg*g' for g, g*,

S' * I,...,c crops at densities dis, d$, and dkg, for i a 1,...,cg, J w

and k - 1,..",c8,. The regressions could be obtained for each

of the c,*c,, density combinations and not just the sole crop. These

regressions could be compared for homogeneity to ascertain whether the sole

crop regression is appropriate for mixtures of three. If the regressions

can be considered to be homogeneous or relatively so, the following

response model equation for the yield of density combination (dis, d8,*.

dkg,) may be expressed as:

YShi(jk)(disdjs*,dkh,) g 002 + Pgh + 01sdis

+ vi(jk)(disIdj$g'dks') + £ghi(jk)(digsdjg*,dkgs')

where i a 1,...,c, j 0 1,...,c*,, and k - 1,-..,c ., Bo0 g, gh, and 0lf are

as defined in Section 4, and e hl(jk) (digodj *,dkg,) have zero mean and

common variance at The i(Jk) (di,.djg*.dkld ) may be partitioned into

an overall effect, an effect of crop g* at density J, an effect of crop g'

at density k, and an interaction effect for the Jk'th densities of crops V*

and g'. These effects would relate to the yields of crop g.

IN,
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12. Modeling Responses for Mixtures of Three or More Crops - Individual

Crop Responses Available

Various response models for mixtures of two crops were discussed in

Section 5. For mixtures of three of c cultivars, say i, J, and k, the

following L 's91 are considered plausible for consideration using a RCBD:

Sole crop i

Yhi TA + Ii + Ph + 'hi

Mixture ilJk

Crop i yield a

Yhi(jk) "0 + h It + 6 1 M)/3 + 2 (7i(j) + Vi(k)) / 3

+Wi(jk) + hi(jk)

Crop j yield (
Yh(i)j(k) (g + 0h + J + a1)/3 + 2(y(i)j + YJ(k))/

+ T(i)j(k) + th(i)j(k)

Crop k yield +

Yh(iJ)k ( + P h + %k + ak)/ 3 + 2 (7(i)k + Y(J)k)/3

+ I(ij)k + Ch(Ij)k "

A simpler form for crop i yield from a mixture of three would be

hi(jk) ( + 3 * ( Chi(Jk)

where di, 7 , and 'i(jk) are all combined into an effect 'W*
i' j)' Yi(k)' ij)Ij)

The interpretation of the parameters is the same as described in previous --

sections. Solutions for %

2~* 'tj) ndt
i(J), (-)' nditJc

St .k) ,idj)
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subject to usual restrictions may be obtained when all possible combina-

tions of crops are present. Otherwise, it is recommended that the above

simpler form be used.

13. Modelins Responses for Mixtures of Three or Nore Crops - Individual

Crop Responses Not Available

Suppose that sole crops and all possible combinations of three of the

crops represent the treatments in a RCBD. Possible response model

equations are:

Sole crop

Yhi a P + Ph + 1i + Chi

Mixture iJ k

Yhij"I + 'h + ('i + 'i + VJ + 6J + lk + 4k) /3

+ 2 (yij + lik * Yjk) 1 3 + 'ijk + Chhijk

If all combinations were not present the model for mixtures may be simplt-

fied to:

Yhijk + 4. ('+i +'J + Y k)/ 3  jk +chijk ,,

where a sum of general mixing (d ), bi-specific mixing (y j). and tri-

specific (Ik) effects would be represented in w*
ijk ij k

Several other models described in Section 6 can be generalized to

consider three or more crops in a mixture. When v$ combinations of lines

of three crops or factors are present, a three-factor factorial model may

be used. Another response model for sole crops and mixtures of three crops

i, J, and k would be:
I

24



Sole crop

Yhis h + Ii + ahi

Mixture ilk

Yhijkb P + ph + 'I + $I + 4ijk + hjijk

where 7±Jk is an interaction effect within crop line I of component one of

the mixture for lines j and k of the second and third components. Alterna-

tively, I jk could be an interaction effect within the combination ij. To

illustrate, suppose that four lines of a crop, say A, B, C, D, are avail-

able, that center row yields only will be obtained, and that the center

rovw will be bordered on one or both sides by every line. For line A, the

center and outside rows would be AAA, AAB, AAC, AAD, BAB, BAC, BAD, CAC,

CAD, DAD. The interaction effects XAJk would be the deviation@ of the

quantities Y*iJkb - ;.i..b' and the interaction effects X Af would be

the difference t ý-ABCb - •.ABD"b

Martin (1980) states that his model does not extend to a throe-factor

factorial. A response model for a two-factor factorial in a RCBD would be:

Yhij " 4 + 'h + *i + Oj + 00ij + 9hij •

Martin's model deals with functions of the o0ij. A corresponding three-

factor factorial response model would bet

YhiJk " P 0h '0 + h+ + 00i + 4Vik + 4 8V + *÷+ijk + ohijk

Construction of two-factor responses and using the previous model, oaij,

a? and Oyjk can all be partitioned. Partitioning of the three-factor

Interaction aBvijk does not appear to be straightforward. One could
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collapse two of the factors into a single category and apply the previous

Martin model. The other models discussed in Section 6 can likewise be

extended.

14. Spatial, Density, and Intimacy Arrangements for Three or More Crops

For two crops, arrangements have been constructed to have one plant of

crop one bordered by zero, one, two, three, and four plants of the second

crop an equal number of times. Comparable plant for three or more crops

have not been devised to date. As long as all plants of three or more

cultivars (crops, lines of a crop, etc.) are randomly Intermingled in an

experimental unit, no difficulty arises. As soon as cultivars are placed

in rows or planted in patterns, spatial patterns must be thoughtfully

considered. The following items must be investigated for three crops:

(i) density of crop one,

(ii) density of crop two,

(iii) density of crop three,

(iv) spatial arrangement of crop one,

(v) spatial arrangement of crop two,

(vi) spatial arrangement of crop three,

(vii) intimacy of crops one and two,

(viii) intimacy of crops one and three, and

(ix) intimacy of crnps two and three.

When using the Nelder fan or the Okigbo wheel, care must be taken in

investigating orientation, density, spatial, and intimacy relations. These

designs will be parsimonious of space and should be considered as obtaining

preliminary results. More extensive investigation will more than likely be
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required in order to determine optimal conditions. The above considera-

tions hold for mixtures of k of v crops..

15. Additional Statistics for Mixtures of Three or More Crops

Many of the statistics described in Section 8 may be extended to

consider mixtures of three or more crops. The total effective area under

three crops as sole crops, in mixtures of two, and in a mixture of threo

would be:

A 1 + A 2 + A3 + L 12A M12 + L 13A M13 + L 23A M23 + L13Am2

where A~ area under sole crop 1, A *i area under mixture of two crops ±

and J, A m123 " ares under the mixture of thý*e crops, L land equivalent

ratio for mixtures of crops i and J, and L13is a land equivalent ratio

for mixtures of the three crops.

A coefficient of agreasivity for two crops in equal proportions of

land area Is L L Z. For three crops it would be L I - (L 2 + L 3)/2 for

crop 1 , L 2 - (L I + L 3)/2 for crop 2, and L 3 -(L 1 + L 2 )12 for crop 3.

Extension to k crops is straightforward. Li yield of crop i mixture

divided by yield of crop i as a sole crop.

A coispetitive ratio index for two crops in equal proportions of land

ares is L 1/L2. For three crops, it would be 2L 1/(L 2 + L 3), 2L 2/(L I + L 3)

and 2L 3/(L1 I L 2) for crops 1, 2, and 3, respuctively.

For k crops in a mixture, the coefficient would be nlkL/( eaiecodn ofiin u rp is LL/0 - L)( - 2)

Graphical representations for linear programming can be made for

mixtures of two and three crops, but not for mixtures of four or more

crops. However, linear programming techniques allow for k crops int a

mixture and as sole crops.
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16. Other Mixtures Where Stati&tical Techniques Are Useful

There are a large number of areas where the ideas and statistical

procedures developed for intercropping can be used. For example, consider

a survey sampling situation where answers are sought to sensitive, incrimi-

nating, and/or embarrassing questions. Direct questioning will not allow

the surveyor to obtain this information. Anonymity of response is essen-

tial in order to obtain the information. Raghavarao and Federur (1979)

have shown how to use the block total response procedure using supplemented

and balanced incomplete block designs to obtain sensitive information. The

respondent is required to give a total of answers to k of v questions.

From the various block totals, estimates for the sample can be obtained

without knowing individual responses. This in similar to knowing only the

total response for a mixture rather than having the individual mixture

component responses.

Other areas where these ideas can be utilized is in applications of

drugs, therapies, medicines, recreational programs, physical training

programs, educational programs, using sequences of courses and other

mixtures, nutritional studies, use of pesticide and herbicide mixtures. 4nd

any other area where mixtures of components are involved. Studies in these

areas to date have centered on mean compari&ons of single or siwilar I"
components, upon single reeponses for the mixture, and standard statistical

procedures. Modeling aspects and competitive appects have been ignored.

Statistical theory has not provided adequate statistical methodology tj do

more than what is being don-. It is a fruitful area for future research

and application. IS.
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SCORING CASUALTIES FROM FIELD TRIALS

Car] T. Russell
US Army Operational Test and Evaluation Agency

Falls Church, Virginia

Marion R. Bryson
US Army Combat Developments Experimentation Center

Fort Ord, California

ABSTRACT. Real Time Casualty Assessment (RTCA) is often used to
"shape the battle" in Army operational tests by simulating attrition in
near real time as a function of measured engagement conditions. Based on
engagement conditions measured by test instrumentation, a computer obtains
a Pk from a table of kill probabilities and draws a random number against
that Pk to determine whether the target player lives or dies. Both firing
and target players are given near real time feedback concerning the
result, and "dead" players are removed from the battle as quickly as
possible. As long as the attrition rates used real time are approximately
correct, RTCA encourages realistic engagement conditions by generally
rewarding smart player actions and penalizing dumb ones. That is,
"approximately correct" attrition rates suffice to "shape the battle."
However, if test measures of effectiveness involve force losses, attrition
rates which are only approximately correct are not good enough. Post-test
analysis of the battle typically identifies engagements which either were
improperly recorded by test instrumentation or were partially garbled
during real time computer processing. Alternatively, the analyst may be
asked to estimate what force losses would have been with smaller or larger
Pk's for some players. Once the actual engagement conditions are
determined post test, an actual or hypothetical Pk (PKA) can be determined
and compared to the Pk used real time CPKU). Whenever PKA differs from
PKU, the attrition rate used real time was inappropriate and may have
started a cascade of misleading real time losses. The analytic goal is to
estimate what expected losses would have been if live ordnance (having
true Pk=PKA) had been used. "Aliveness analysis" is a computational
technique which attempts to meet this goal by crediting kills adjusted for
cumulative differences between PKA and PKU. The technique originated at
CDEC and was modified for application to the SGT York Follow on Evaluation
conducted in April-May 1985. This paper discusses the aliveness analysis
technique and illustrates the technique using examples based on this
SGT York testing.

REAL TIME CASUALTY ASSESSMENT

RTCA Description. Army use of Real Time Casualty Assessment (RTCA)
originated at the Combat Development Experimentation Center (CDEC) in the
1970's and is used extensively in tests conducted on CDEC test ranges at
Fort Hunter Liggett, California. RTCA is an instrumented testing
technique which shapes the battle by simulating kills in near real time.
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Field trials at CDBC are generally two-sided free-play trials up to
battalion versus company in size, and they my involve armor, infantry,
aviation, air defense, field artillery, mines, or chemical equipment. The
trials are conducted under conditions as nearly realistic as possible, and
they are highly instrumented for trial control, safety, and data
collection. The computerized instrumentation consists of a number offixed stat~ions CA stations) whilch poll transponders mounted on players CD'•.,

stations) and transmit position location and other data back to a central
computer (C stationl for processing (see Figure 1). Players are
instrumented, typically using coded lasers, so that when one playor fires
at another, the target can be identified. During the play of a test
battle, RTCA encourages realistic engagement conditions by generally
rowarding smart player actions and penalizing dumb ones. It does this
through a three step process (see Figure 2),

Wheo an engaplement occurs (i.e., one player "fires" at another), a
coded laser is fired at th, target. The B station on the firer
tells thi4 computer "I fixed" and the type of ammo used. It a target
player is paired Kith the firer, the B station on the target tells
the computer "I've been engaged," the code of the laser. and the
sensors llWuminated.

The computer roftelves the engagement inforetion and analyzes it in
terms of eriebles ehich affect the probability of kill atypically,
the nature of the firer,chect thee obabil tyrget, the range, they
ammunition used, firer and target movemont, target exposure, and
target aspect). Tables of "kill probability" (Pk) determined by
pretest modeling are then used to determine the Pk associated with
the crucial engagement parameters. This Pk is then used to simulate
a "kill" or a "survive" via Nonte Carlo. That is, the computer
draws a random number against the looked-up Pk, killing the target
if the random number is smaller than the Pk.

- This zi'rulated engagement result is fed back to both firer and
target in the engagemoent, usually within a few seconds of the
original firing. Dead targets either stop (ground players) or leave
the battlefield as soon as possible (air players). Dead players are
typically rerked by strobes or smoke and their ability to fire at
others is disabled.

RTCA Intoriretstio. Field trials as conducted at CDEC are
simulations of actual combat, not reality itself. Representative battle
initial conditions are determined prior to the start of testing, and RTCA
is used to shape the test battle so that post-test estimates of attrition
will provide reasonable predictive insight to actual battle outcomes (see
Figure 3). The role of RTCA in this cimulation is as • tool to encourage.
sequences of individual engagement conditions represencative of combat
under the specified initial conditions.
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MAKINg ATTRITION RBTIMATES FROM RTCA DATA

Problem Btatement. How should attrltion be ostimated in the context
of PTCA? The first inclination of an analyst accustomed to binomial
coin-tossing experiments is to coiint simulated kills. That approach is
wrong because it adds tzuaicei.sajI' variability to attrition estJniates. The
right approach is to LS ý-,wrs of Pk's,

Bimnlifled SrambL:. Consider for example a simplified example in an
air defense context. ,'hree Red aircraft (a rotor wing labelled R and
fixed wings labelled 8 and T) attack a Blue armor force consisting of five
tanks (labelled I through 5) and two air defense weapons (labelled A and
B). Imagine that five enqagements ensue (see Table l)b

- At I minute into the battle, Red rotor wing R engages tank I under
engagement conditions which give a Pk of 0.6. The compu':er draws
the random number 0.8635 (or some such) against 0.6, so tank 1
survives.

- At 3 minutes into the battle, Red rotor wing P engages tank 2 under
engagement conditions which give a Pk of 0.7. A random number less
than 0.7 is drawn, so tank 2 is killed.

- At 4 minutes into the battle, Red fixed wing 8 engages tank 3 under
engagement conditions which give a Pk of 0.1, but a random number
larger than 0,1 is drawn, so tank 3 survives.

- At 5 minutes into the battle, Blue air defense weapon B engages
fixed wing T with a Pk of 0.8, but T survives.

- Finally, at 7 minutes into the battle, Blue air defense weapon A
engages rotor wing R with a Pk of 0.3, but R survives.

The RTCA body count gives one Blue and no Red killed, but a better
attrition estimate is clearly evailab.e. The expected kill on each
engagement is known once the Pk Is kr.own, so a partial kill equal co the
observed Pk should be credited at ea'h engagement Overall expected kills
should be calculated by summing there credited kills. That is, sums of
Pk's should be used.

Trick Oues Eon. Estimating attrition from RTCA data is like
estimating the expected number of "3's" from an experiment where a fair
die is rolled twice with a "5" and a "1" observed. The expected number of
"3's" could be estimated as zero, and that estimation procedure would be %
unbiased because, in the long run, the average number of "3's" obtained in
two rolls of a fair die would be one third. However, since it is given
that the die is fair, the probability of rolling a "Y on any one roll is
known to be one sixth so the expected number of "3's" must be one third.
That "5" and "I" were rolled in one experiment is irrelevnnt. The
expected number of "3's" should be estimated as one third because the
relevant probability is known in advance.
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Crucial Point. In suunmary, there are three crucial points to be
remembered when making attrition estimates from RTCA data.

- The kill probability Pk for each engagement Is obtained directly
from measured engagement conditions via a a Pk table, not estimated
from simulated kills.

- A simulated kill or survive is generated by a draw of a random
number against engagement Pk, not observed directly from the
engagement.

- RTCA encourages realistic engagements by providing quick feedback to
players in terms of simulated kills, but attrition should be
estimated using stus of Pk's, not simis of simulated kills.

Q=TILL INH'RRNT WITH SUMS OF' Pk's

Inherent Overkill. There Is an inherent difficulty with estimating
attrition using sums of Pk's, individual players or groups carn be
"killed" more than once. This fact has been used as an argument against
the aliveness formulas which will be discussed shortly, but the difficulty
is actually inherent with simple sums of Pk's. The initial reaction of
most analysts to such overkill is to consider it intolerable and attempt
to modify the way kll.ls are credited in order to insure that no more than
one kill is ever credited against an individual player. There is at least
one case where such deflation of overkill is indeed desirable. In
general, however, overkill is desirable. The following discussion,

- illustrates how overkill can occur by revisiting the simplified
example discussed in the preceding section,

- shows how to deal with one case of undesirable overkill, and

- gives a rather elaborate example, in terms of a hyrothetical
experiment, which provides a test for any estimation method proposed
as an alternative to sums of Pk's.

Revisited Example. If in the simplified example of Table 1, rotor
wing R had fired at surviving tank 1 a second time rather than firing at
tank 2. the overall attrition estimates should not change. However, 1.3
kills must be credited against tank 1. There is no way around this
problem if unbiased estimates of attrition are desired. Overkills are
necessary to compensate for only partial kills credited egainst totally
dead players, as originally happened against tank 2 In Table I, onl,' 0.7
kill was credited but tank 2 was forever 100% dead.

Undesirable Overkill. One situation where overkill is clearly
undesirable occurs when one player ftreu several roundt at another player
over a relatively short period of time so that the rounds should be

considered only one engagement. Then the engagement Pk should be
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calculated using appropriate products of Pk's rather than sums of •k's.
In particular, if n rounds are fired, each with Pkep, then 1-Ci-p)
should be used rather tharn tp as the engagement Pk. As long as np Is
small, the difference between the two formulas is slight, since

np-(1-(0-p)l cannot exceed (np) 2 (proof, use binomial expansion).
However, if np is relatively large (in particular, if np is greater than
1), then the difference Is large. For example, if three antitank weapons
are fired by the same firer against the same tank during a very mhort
period oA time and each firing has Pk=O.7. then npo2.1 but
rl-(U-p) "no.973. The better answer in clearly 0.973.

Desirable Overkill. If products of Pk's rather than sums of Pk's were
used to credit kills, no more than one credited kill could ever be
accumulated against a single player. Thus overkill could be avoided if
products of Pk's rather than sums of Pk's were always used to rredit kills
for estimating attrition. The following example shown that crediting
kills using products is misleading because It generally underestimates
expected attrition. In addition, because it provides a situation with
real bullets and real deaths for which the true expected kills can be
calculated, the hypothetical experiment in thin example provides a test
for any estimation methc, proposed as an alternative to sums of Pk's (see
Figure 4).

Hypothetical R[mmnlo,
" An urn contains 1,000,000(1-p) harmless blanks (painted green) and

1,000,000p absolutely lethal rounds (painted red).
- Draw 100 rounds at random from ýhis urn and load them into a gun

(which conveniently holds 100 rounds).
- Now select 100 volunteers and shoot the rounds at them from point

blank range.

As long as care iL taken to shoot only at live vo.lunteers, l)Op volunteers
are expected to die. The number cf expected kills is the same no matter
which of the following methods is used to distribute shots among
volunteers,

- Shoot one round at volunteer 1l. Shoot one rowid at volunteer 52.
Shoot one round at volunteer 100.

- flandoinly select (with replacement) a living volunteer. Shoot one
round. Repeat the random selection and shooting of one round until
all rounds are expended.

- Randomly select (without replacement) a living volunteer. Shoot
rounds at this volunteer until all rounds are expended or the
volunteer dies. hepeat until all roumds are expended.
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Figure 4
HUpothetical Experiment:

AUAcceptable Method for Estimating Attrition
Should Give lOOp Expected Kills
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To be convinced that all three methods give the same expected kills,
simply consider the number of lethal rounds loaded. If R red rounds (and
100-R green rounds) are louded into the gun, then exactly R volunteers
will die. Thus all three methods give the some number of kills, hence the
same expected kills. Moreover, all 100 rounds will be fired with each
method. The random variable R has essentially binomial distribution with
suceass probability p and N=IO0 (actually the distribution is
hypergometric), and the expected value is lOOp. Any acceptable method of
estimating attrition using Pk's should estimate the true expected kills,
and sums of Pk's does. Since p is known, the expected value can be
correctly estimated by crediting a partial kill equal to p on each shot
and adding credited kills (sums of Pk's) to: give lOOp. If p is of
moderate size, then crediting more than one kill against some volunteers
is virtually certain using either the second or third methods, in
particular, if p.O6, overkill would occur against any player shot at more
than once, and both the second and third methods virtually guarantee
multiple shots against some players. Applying the product formula would
avoid such overkill, but would give the wrong estimate for expected
kills. In fact, the product formula would generaily give different

answers for each of the shot distribution methods If OplI and OMHd.00,
and except for the first method, the answers themselves would be randoma

- For the first method, the product formula would credit a partial
kill equal to p against each player, giving the same answer as sum
of Pk's, namely, lOOp.

- For the second method, the product formula would credit p kill on

the first shot against a particular player, credit p(1-p) kill on

the second shot, and in general credit pc(-p)(k-1) kill on the kth

shot against a particular player. Rince p(jl-p)Ck-1)<p, credited

kills would be less than lOOp unless all plAyers were shot at

exactly once (an extremely unlikely occurence unless p is very near

1). Since at least R different players must be fired at # first

time, credited kills must be at least Rp. The remaining (100-R)

rounds must als,) be shot and the smallest number of kills would be

credited if all those rounds were shot against a single player.

Thus the smallest number of kills credited by the second method

would be (RB-)p+("-CI-p)lOO'R+Ij, and the actual number of

credited kills would vary randomly from this number to lOOp.

- For the third method, the smallest ntumber of .redlted kills -iould be
the same as the second method, but the largest number of credited
kills would be strictly less than lOOp unLess R,99 end the last
round left is green. In general the third method would give
substantially less credited kills than either other method sInce at.
most R+1 players would be shot at.
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Overkill W/rap-up. The preceding discussion shows that some overkill
must be allowed when estimating attrition in an RTCA experiment. As long
as expected kills are to be estimated by crediting partial kills, some
players will be removed from play with less than a whole credited kill, so
other players must be allowed to accumulate more than a whole credited
kill to make tip for the shortfall.

WHY AL.IVENESS ANALYSIS IS NEEDED AND WHAT IT IS

Whe ,de . Until now, this paper has argued that: sums of Pk's should
be used to estimate attrition from RTCA data. However. this argument was
based on the tacit assumption that RTCA works as advertised, assessing all
or almost all engagements correctly. Unfortauately, many engagements
which should go to real time assessment do not, typically because of
instrumentation failure, faulty real-time position-location data or buffer
syncronization problems in real-time computer processing. In addition,
the Pk's used real time may prove to be incorrect due to software errors,
errors in Pk tables, faulty real-time position-location data or simply
inability of instrumentation to capture crucial engagement conditions in
real time, Moreover, Pk's may change post test either because new data
indicates the Pk tables should be modified or because "what-if" analyses
of Pk's are desired. In fact, there are effectively two Pk's associated
with each RTCA engagement, the Pk used real time (PKU) and the actual Pk
(PKA) determined through post-test analysis. Whenever the PKA's are not
equal to the PKU's, the attrition rate applied real time was wrong, and
too many or too few players were left on the test battlefield. Simply
summing 0he Pk's (that is, the PKA's) could give misleading estimates of ,,
attrition if PKA's were frequently unequal to PKU's. Aliveness analysis 1.

is an arithmetic adjustment for cumulative differences between PKA's anid
PKU's which is applied prior to summing Pk's. It is essentially a back of N.
the envelope calculation too big to do on the back of an envelope.

Adiustment Approach. Ativeness analysis makes sensible adjustments to
attrition estimates by reducing or increasing credited kills to compensate
for cumulative errors In attrition.

- If PKU is less than PKA then too little real time attrition was
applied and the subsequent attrition capability of the target should
be reduced.

- If PKU is greeter than PKA then too little real time attrition was
applied and subsequent attrition capability of the target should be
increased.

- On the other hand if PKU is equal to PKA then real time attrition
was Just right and no adjustment should be applied.

Aduistment.Formula. The concept of aliveness analysis was originated
at CDEC by H. Bryson. The largest application of aliveness analysis to
date was in the analysis of the fcrce-on-force portion of SOT York Follow
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on Evaluation I (FOE I), which will be described below. PrIor to thi
start of FOE I the authors of this parer worked tcietQ.znr , .i ne the-
aliveness methodology and produce specific formulas for perf.,-iiii.,
aliveness aialysis. Aliveness anulywý,. adjusts for differences, hetweer
real time an(; post tesc attrition ratr. by crediL•ng tartial kills via
".otency" or "aliveness" weightings on live players as follows.

tefine a "potency" or "aliveness" factor A for ePch plAyer, where

Ainitialml for all players. Track cumulative creoited kills by

player I versus player J as K(I,J) with Kinitial(I,J)-O for all

player pairs. Then• when player I [potency Aoir(I)l engages player J

(potency Aold(J)] with kill. probabilities PKA (actual, irom

post-test analysis or revised table) and PKIU (used in RTCA), adjust

potency frctors and cumaletive credited kills as followsz

Knew(I,J) - Kold(I,J) + Aold(J)xC1-(l-PKA)Aold(I)J

Anew(I) - Aold(I)

Anew(J) - Aold(J)x1(l-PKA)Aold(I)I/(1-PKU)

Potency of the ta:•et, Anew(J), is redced to zero for any exigagement
which goes to real time assessment and results in a dead taiget.

Formulti Motivation. The underlying motivation for these formules is
straightforward. First, the calcuiation adjusts potency of surviving
players as a ratio of survival pro'abilities (provided the firei has As1).

- If a player survives with twice tht ;-robebiiity he shouid have (for
example, if Pk.*O.6 and PKU-0.2), his potency is halved.

- If a player survives with half the probabilLity he .should have (for
example, if PKA-O.6 and PKIIJO.8), his potency is doubled.

Second, the odd-looking exponential adjustment for the potency of the
firer is actually based on a standard statistical formulN:

- n firings with Pk-p give total Pk-1-Cl-p~n

- a potency n player firing with Pksp gives total Pk-l-(l-p)n.

In addition, the calculation

- reduces to sums of Pk's when PKA's always equal PKU's

- adjusts in the right direction when firer potency is 1, and

- performs well in practice, as the ret~t of this paper shows.

APPLICATION OF THE ALIVENESS CALCULATI.ON

Examinina Aliveness. The most straeghtforward way, t3 examine the
aliveness calculation is to observe how it performs orn actual sequerices of

'U_.e. '
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ftoggeamnts. Th~e remainder of this paper describes the application of
a1ittviligs met-hodology to score easualties in the field trials of RGT York
FOE 1.

Is,%tDusc~oiao±. The foice-o-forco, portion of FOR I was conducted
at the US Army'Combat Developments Experimentation~ Center (CDR(:), Fort
Hunter' Liggett, California, from 2 April to 22 Mlay, 1985. It was a
platoon level test conducted to compare cafabtlities of three different
air defense families to provide protection to an armor battalion task
force in similar types of misuions. The three air defense families were
nominally called "BUT York," "Bietline," and "Alternate." All three
families had five Stinger missile systems forward and two Chaparral/FI..IR
isisile systems with the battalion traina;. Whet distinguished the
families was the large air dafense systens doployfid forward:

-The 89T York family hid four sOT York air defense gun systems
forward.

*The Baseline family hid fo'.r Vulcan air defense gun systems forward.

-The Alternate family had two Vulcan air defense guin systems and
two Chaparral/FLIR Missile systems forward.

Test lEaylet ~. Overall, there were typically more than 80 Blue players
and more than 30 Red players in each trial. In addition to Blue air
dofensc, the Blue armor task force consisted of roughly 28 Abrams tanks,
13 Bradley fighting vehicles, and 20 other Blue ground forces CM1l3's,
trucks, etc,). The Red air attack force consisted of four fixed wing (two
Fitters surrogated by A-7's and two Frogfoots surrogated by A-1.0's) and
four rotor wing (four Hinds or four Huvocs, each surrogateld by AH-64's).
Three surrogate Red BCHI aircraft (one fixed wing and two rotor wing
stand-off Jammuers) were present on some trials, and three Blue aircraft
(one AH-18 rotor wing and two F-4l fixed wing) were used to investigate
poesible fratricide. 1Finaliy, a small Red armor force (20 T-80 tanks
surrogated by M-6O's and 8 BK1P s surrogated by fl113 's) permitted a limited
armor battle.

jaaA...Criteriajr~. The main missior performance criteria for FOE I
addressed the relative proportion oi Blue Force losses to Red Air during
trials when the three different families of air defense systems were
present. That is, for "similar" trials involving each family, it wasU
necesxary to estimate Blue Force losses to Red Air, divide by Blue Force
size to estimate the proportion lost, and then form appropriate ratios of
the proportions. Wi~th

Y - Proportion lost In SOT York trials,

BaPro~iorltion losc in Baseline trials, andI

A -Prcportion lost In Alterniate trials,
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the required ratio for comparing SaT York versus Dasoline was

(B-Y)/B - I - V/B

while the required ratio for comparing Alterimto versus Basellne was

(B-A)/B - 1 - A/B.

Over 70 trials were attempted during FOS I, and ý2 trials (29 York,
12 Baseline, and 11 Alternae)& were validated-fto arie.Iysis. Proportlor)
lost was estimated in each triel, and the appropriaL'o ratios wer

estimated in an analysis of variance frahowork in ordEor to adjust fer
differences in trial conditions between, families. The criteria values t..ndU
detailed results are classified, to thoy-will not be discussed fully tit

FOR Problems. In F0R 1, thire were frequent, diffortones betksnon PICA
and PXU. The most comm~on case of inequallty between PICA &wad P~i(J was when
PKA~KwO, which typically occured whon engagements did not go Ln real
time assessment (that is, no firer-target poalrýng could "e n~ade in rPRd
time) but .#noaoemont conditions (hence P.Asl were roconistructed throug;1
poxt-temit analysis. In fact, in MIOT Yaork FOR I, across voe-ious
f iror-target categories, 40 41 50 percent of engasge'nent-I did not 'go to
real time assessment (soe Fipiaro 5). bu~t PKAs state frequently recovered
through post-test analysis (indicated by the dotted aroas in Figure 5)
However, the percen't recovered was stubsttinti~lly different for different
firer categories because availabiliry o f hoost-test ests sourtes si.ch 4s
video and audio tapes was different for ditferarit firer catejorios. In
addition to the cases PWA'PIWO, there were many cases of OWr0PM, lihich
occurred because the pro-test tobulations' of Ak's for Blue air defense
versus Red air were gene:&Ily too hiijh. Jigure 6i shows as an tvxaicplo the
extent to which PRA's differed from PKDbs for- fir~n~s by selected Blue air
defnse firers against selected Red air targets. For these ceses, PK~s
equalled PKU's less then a third of ':he time. Almost the only time when
PKA's equalled PICI's was when both were zero (dotted PorLion of PKAvPKU

bars in Fig'irt 6)j.

E2LtLLkauAJku. The tollow~ng three e.-amplest are based on enigagrementsU
in FOE 1. Ficticious Pk values and firer-target paitu have been used in
order to koep this paper unclassified. However, the actual engagement
sequonces led to exientially the same ao~ivenexs calculations given here.
These exw'~plev provide convincing evidence~ that th.e aliveness calculapion
perform's well in practice.

surrogate Frogfoot close air support aircraft. In the first engalement,

tits actual survival probability (1 PKA1O.62) was '.14 times what was
ipplled in real timie (1-PCMO.29). That is, in a large number of guch

angagoments, there would be 2.14 times as many survivors as wereo bserved
real time. 'rhe aliveness calculation i.ncreases the potency of Progfoot-1I
to 2.14 and credits 0.38 kill against Frojfoo&-1. Tho sec ond engagement
did no;. go~ to real time assessment so the real time survival rr~ibabilitv
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was 1.00. Since the actual survival probability was only 0.00, the
aliveness calculation decreased the potency to 1.41n0.66x2.14 arid credited
0.73n2.140O.34 kills against Frogfoot-1. In this example, 1.11. kills were
credited by aliveness while the sum of Pk's was only 0.72 and no simulated
kills were observed. The aliveness result makes the most sense.

OLD OLD NEW
FIRER FIR TAROET TOT TOT CRTD SIM
ID Z= _ ID ~ EM~ EKM -M EI: LMI EM~ KIlL KIL

OTIN(JER-4 1.00 FROUFOOT-1 1.00 0.38 0.71 0.62 0.29 2.14 0.38 BURV
STINOER-1 1.00 FROOOOT-1 2.14 0.34 0.00 0.66 1.00) 1.41 0.73 N/A

Summary of Attrition Estimates,
Simuilated Kill. u fP' rdtdKl

Against Red 0.00 0.72 1.11
Against Blue 0.00 0.00 0.00

Zramplo 2. The second example consists of a series of engagements by
SOT York-i. The first engagement against Fitter-i to similar to those,
already considered, except that the target was killed real time so that
instead of increasing to 1.61, its potency wan reduced to zero. In the
second engagement, however, BOT York-i was the target of Hind-3.
SOT York-i should have survived with probability 0.28, but survival
probability 1.00 was In effect applied real time because the engagement
did not go to assessment. The aliveness calculation decreased the potency
to 0.28 and credited 0.72 kill against SOT York-i. Then in the third
engagement, SOT York-i with potency 0.28 fired at Fltter-3 with potency
1.94. The effective actual survival probability should be greater than
1-PKAs0.69 because the firer was only "partially alive", that is. if this
trial were repeated many times with perfect RTCA, SOT York-i would only be
around to fire a small fraction of the time. The a:liveness formula says

that the effective survival probability should be 0.90.0).690.28, and
intuition iviggests no better number. Thus the new potency of the target
increased by 1.77a0.90/0.51 times to 3.42, and 0.19u(1-O.90)xl.94 kill was
credited. Once a firer has potency less than 1.00, not only are credited
kills reduced but also potency of targets tends to be increased. This Is
illustrated by the last engagement of this example, where even though PKA
and PKU were the same, potency of the target increased by 23% to 1.23.
Overall in this example, 0.53 kills were credited by aliveness against Rod
while the sum of Pk's was 0.82, and there was one simulated kill. This is
exactly the reverse relationship from the previous example where credited
kills were largest, followed by sum of Pk's and then by simulated kills.

Again, the aliveness result makes the most sense.
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OLD OLD NEW
FIRER FIR TARGET TGT TOT CRTD BIN d=
IDa PTCX .ID PTCY PIA . L-PKA L EICX KILL KIeL

SOT YORK-i 1.00 FITTER-i 1.00 0.26 0.54 0.74 0.46 0.00 0.37 KILL
HINm-3 1.00 SOT YORK-i 1.00 0.72 0.00 0.28 1.00 0.28 0.89 N/A

SOT YORK-1 0.28 FITTER-3 1.94 0.31 0.49 0.69 0.51 3.42 0.06 HIJHVSOT YORK-1 0.28 HIND-3 1.00 0.25 0.25 0.75 0.75 1.23 0.05 BH/RV

Summary of Attrition Estimate.:
glmulmted Kills S

Against Red 1.00 0.82 0.82
Against Blue 0.00 0.72 0.72

Example . The final example is much more routine, involving a firer
with aliveness one, where PKU's ware either correct or were zero because
the engagement did not go to real time assessment, In all but one
instance, the credited kill was equal to PKA, and a.1 three measures of
attrition nearly agree.

OLD OLD NEW
FIRER FIR TARGET TOT TOT CRTD SIM
ID E1I D E= . _EM EEM 1P L :M KILL KJJLL

HIND-2 1.00 ABRAMI9-1O 1.00 0.57 0.57 0.43 0.43 0.00 0.57 KILL
HIND-2 1.00 ABRAINB-5 1.00 0.3e 0.38 0.62 0.62 1.00 0.38 8URV
HIND-2 1.00 ABRAflS-13 1.00 0.45 0.45 0.55 0.55 0.00 0.45 KILL
HIND-2 1.00 ADRAAIS-13 1.00 0.00 0.00 1.00 1.00 0.00 0.00 D/T'
HIND-2 1.00 ARRAIS-7 1.00 0.48 0.00 0.54 1.00 0.54 0.48 N/A
HIND-2 1.00 ABRAJ•-5 0.00 0.00 0.00 1.00 1.00 0.00 0.00 D/T*
HIND-2 1.00 UNKNOWN 1.00 0.00 0.00 1.00 1.00 1.00 0.00 N/A
HIND-2 1.00 ABRAMB-14 1.00 0.51 0.51 0.49 0.49 1.00 0.51 BIJRV
HIND-2 1.00 SOT YORK-4 1.00 0.95 0.00 0.00 1.00 0.05 0.95 N/A
HIND-2 1.00 ABRAMB-16 1.00 0.39 0.00 0.61 1.00 0.61 0.39 N/A
HIND-2 1.00 ABRANS-16 0.61 0.48 0.48 0.52 0.52 0.00 0.29 KILL
HIND-2 1.00 BRADLEY-10 1.00 0.72 0.72 0.28 0.28 0.00 0.72 KILL
HIND-2 1.00 ABRAMB-16 0.00 0.00 0.00 1.00 1.00 0.00 0.00 D/To

BD/T-DEAD) TARGET
Summary of Attrition Estimates,

Simulated Kills Bumof P.•l Crdtted Kills
Against Red 0.00 0.00 0.00
Against DBlue 4.00 4.91 4.72

OVERALL IMPACT OF ALIVENERS ANALYSIS IN FOE I

Trial-bv-trial Summary. Figure 7 displays trial-by-trial estimates
for the proportion of blue ground lost to red air by each of the three
methods. It shows that results of the aliveness calculation tended to
fall between simulated kills and results obtained by sums of Pk's. This
occurs because the most common RTCA error was failing to go to real time
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assessment when a Pk1O should have been used, which produces no simulated
kills and gives potency less than one to survivors. Differences between
the attrition estimates were substantial in some trials. (The apparent
smoothness of the aliveness curve in Figure 7 compared to the other two
curves is due primarily to the order in which trials were sorted for
plotting.)__ _

Analysis of Var.ian.e esilts and Overall Concluxions. For ongagem.nts
by Red air against Blue ground during FOR I, the tendency for sLums of Pk's
to be larger than credited kills from aliveness - which in turn tend to be
larger than simulated kills - carried over to the attrition estimates
obtained from analysis of variance in a general linear models framework.
Sums of Pk's were used instead of aliveness analysis to present attrition
estimates to decision makers because sums of Pk's are simpler bnd they
gave the same result as aliveness for the crucial BUT York family - the
criteria were met.. Tn retrospect, this agreement appears to have been
luck. Even though the direction of comparisions hetweon attrition I
estimates based on sumis of Pk's. alivwness, and simulated killu was
consistent across air defense families, the relative size of the
differences between estimates was not consistent across families. In o.n,
case involving Alternate and Vulcan families, a crucial estirmte based on
aliveness was loss than half that obtained from stus of Pk's and made a
difference whether or not an important criterion was met. Results from
aliveness analysis can be substantIa.lly different from analyses based
either on simulated kills from RTCA or on unmodified sums of Pk's. Since
there can be a real difference between results of the techniques unless

RTCA works extremely well, a preferred technique should be chosen. Both
simulated kills from RTCA and unmodifted sums of Pk's give wrong attrition
estimates when PKA's differ from PKU's. Thus aliveness analysis should be
the method of choice.

Adam, John A. (1987). "The Sergeant York gun, a massive misfire,"

THLESpectrum, Volume 24 Number 2 (Febriary, 1987), 28-35. fThis article
presents a balanced and quite accurate account of the SOT York program.]

Bryson, Marion R. (1984). "Analysis of Opportunities to grngage,"

Hystem. Andvsi.s and Modelina in Defense, Develooments. Trends aid
ILl&sU, ed, Reiner K. Huber, New York and Londont Plenum Press, 479-474.
(This paper, presented at a NATO symposium in 1982, contains an early
version of aliven.z. ideas. Although each author of the current paper has
presented later versions of aliveness ideas at other conferences, none
have been published.]
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Maximum-Likelihood Estimation or the Parameters
or a Four-Parameter Class or Probability Distributions

Siegfried H. Lehnigk

U.S. Army Missi1e Command
AtISMI-RD-FIE-OP

Redstone Arsenal, AL. 35898-5248 F,

1, -rrdufo
We shall be concerned with the problem of parameter estimation by

means or the likelihood function for a class of four-parameter

distributions (hyper-Gamma class) characterized by the probability

density function (pdt) class

isexp - , :(x-s)b1, x it

fox,p) a br((i-or) (0.1)

The parameter vector P = (s,b,p,$) has the components 9 = shift

(location), b a scale, p a initial shape, 'terminal shape, with b > 0, p

<1, > 0. In practice we are given a set of absolute frequency data

(XV1, tav) (V a l,...,m), fal > 0. fav it 0 v 2, ... m-1), fam > 0

m
Z fav aN u total nuJmber of observations. The shift parameter s,
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therefore, Is restricted to 9 < i

The distribution class defined bU (1.1) is of wide applicability. As

special cases It contains a number of distributions well-known In

statistics and statistical physics: Gauss (pz0, $-2) Weibuill(:-C)

exponential (p:1..$:o), Rayleigh (pzI-$xx-i), Gamma (pci, $:I),

chi -square (pz(2-v)/2. :I aI), MaxwellI (p-- -2, 0 =2), Wien (p-- -3, p1)

Relative to the most essential parameters p and ~ the class

(1. .1) covers the open quadrant p < 1,. 0 of the (p~-ln.The

locations at the special cases just mentioned are shown In the

accompanying figure.

It Is our objective to show that the class (1 .1) is easy to apply In

practice. In other words, we shallI show that, for a given set or

trequencg data (xv. ray) (p:i..,) the tour parameters a, b, p, and

can easily be estimated, The likelihood function approach will be used.

2. The Likelihood Function
m

Let (xv,,fav) (VMI1 ... IM), E fav =N, be a set of given frequencyj data.
1'U 1

we set log (XV-9) z pv. Then the likelihood function L(P) for the pdt

class (1.1 takes the torm
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1() N rN (ip )(P)N flefav PPePb t M ~ v

Introducing relative frequencles fV N-1 fav we obtain for R(P): log

L(P) the function

R()zlg lgr(I-w1 ip o C-O (2.1)

In which

m m
B( ,0 E ir '1> C S pP

The objective Is to maximize the function R(P) given In (2. 1) under

the constraintss9<x Ib >0.p < 1.> 0.

The partial derivatives of R with respect to s, b, p. and (in this

order) lead to the equations

pE + $b-OF 0 ,(2.2)

*(-~- O I 0 (2.3)

((IP)0 4' log b -C 0O2.4

0- (1-p)0- 2 y((1-p)Or') +b-OB logb - b1OD 0 .(2.5)
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3. The Likelihood Eauations

The equations (2.2), .... (2.5) are the four likelihood equations in 'he

four unknowns s, b, p. and $, relative to the logarithmic likelihood

function (2.1).

We make the following essential observations.

First, since E > 0, $ > 0, b > 0, F > 0, equation (2.2) shows that, if

the shift parameter s is considered as unknown, the initial shape

Rwarneter p mustbe Lass zr o,

Ser.ondlU, equation (2.3) shows that the scale parameter b can be

expressed In terms of the parameters 9, b, and .

0 z (1-p)$ 1 3. (3.1)

Thirdly, using this expression for bO in (2.4) and (2.5), we see that

the inUttCI shape parameter p can be eliminated since it can be

expressed in terms of s and ,

(I-p)- M- , p: I - A-B , (3.2)

where

A = t.(s,,) = O(n-BC).

ConsequeQTllj, out of the set of the four equations (2.2, ... , (2.5)., we

need retain only two, namely (2.2) and (2.4). Eliminating from these b

and p bý means of (3.1) and (3.2) we arrive at the two equations

57

-.. ,," .=



•(sp)= (A- 1 ) + log A - OC z o, (3.3) •

h(S,O)=(0-1A-,B)E + F r 0. (3.4)

The solution (j,$) of these equations and the corresponding numbers

obtained from the auxiliary formulas (3.2) and (3.1) give us the desired

estimates for the four parameters relative to a given set of frequency

date (xv, Y.)

For the numerical solution of the system of equations (3.3) and (3.4),

it is convenient to introduce the functions Z, 9, and , defined by

A=p $ m , Bze Pm , F= ie .m

"Example3 for the solution of equations (3.3) and (3.4) will be given in

the paper byl Mr. H. P. Dudel.
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ON 140TATION IN FACTOA ANALYSIS OF ATMOS9tIefIC
PARAMIETERS

Oskago M. Essefnwanger
Aerophyuics Branch

Research Directoratit
Research, Developme?~t, bncO Eri;ilnbering Center

U.S. Army Missiles Command
Redstone Arterial, Alabama 35890-5240

ABSIBALI. Many authors of texts and articles on factor analysis
recommend rotation of factors after original solutions of unrotated
factort. This goal it readily a~hleved today with the aid of Ocanned
programse on most of the bigger computer Oystems. It was noticed,
howaver, that for a system of factor ana lysis of atmospheric parameters
orthogonal rot~ation. was signif ieently dif erent for only some methods of
esti moting comniunalit' as. Furthermore, oblique rotation differed little
from ort~hogonalI rotation.

It will be shown that in casss where the alignment of data in a
(rectangular) system aor close to the abscissa and ordinate of the system p

rotation does not ccntrlbutA much to further alignment. Whenever the L
original factors display scatter in the diagrams the dispersion is already
reduced by an orthogonal rotation, Thu.s oblique rotation would not bring
much. improvement.

It will to di scussed that the "simplificatione of factors by rotation
willI aid in the diagnosis of the systemn but does not Improve the task of
prediction fr~rm the system.

I. INRDCIN With~ the C.'ailability of Ocanned programs' forU
foctor analysis the rnathemat~cal difficulties have largely been resolved
although one should carefully consider the mathematical background on
.ihich theqo ocanned programs" ere based. After calcu lation of the
unrotated factors many authors (e.g., Cattel 1952, 1965) recommend ,

simplification by rotation of the systems. The concept of rotation is not
supported by some authors dealing with meteor ologiral data. In fact, Buell z
(19?l1) finds it completely unnecessary,

It, a previous stu. Jis author ( 1986a) deduced that rotatio~n resulted
in an alignment of factors although the factors were obtained by different
methods of estimating the *communal Itieso. Thus rotation In foctor
analysis of climatological data seems to serve a useful purpose, reducing
the Individuality and subjectivity In the decision of estimating the
commune lities. It was discovered, however, that little difference
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between orthogonal and oblique rotation of climatological factor data
showed up. Thus the author decided to study rotation In factor analysis of
climatological date in more detail.

dtm The analysis disclosed that whenever the original factor analysisSdisplayed little scatter of the factor components plotted Into a

rectanguier coordinate system the rotation did not render significantly
different results. Factor components with larger dispersion, however,
provide better Mlignment of date along the axes and provide loes scattering R
after rotation. In the given examples from climatological data of
Stuttgart, Germany orthogonal rotation diminished the scatter already to a
point where oblique rotation could not contribute to a further reduction.

It can be shown that rotation may simplify the factors and decrease
the scatter but does not contribute to Improve the ability of prediction
utilizing the factor analysis. The prediction error remains the some,
whether rotated or unrotated.

2. FACTOR MODEL AND ESTIIMATION, The factor model Is based on:

MX: MAMF + MF (1)

where M Is a data matrix (symmetric), MA a coefficient matrix and MF

a factor matrix. In the principal components analusis with tne nUmberdt"
of factors corresponding to the dimension of the data matri'. Me Is an

error matrix. 11A is also called the factor loading matrix or factor

pattern. For diagnosLic purposes tiF Is not calculated In most cases.

The mathematical solution of eqn. (1) can be formul1te, A:

11X-MAM MTA+(rT) (2)

which Is an elgenvector problem. i is a factor covar lance matrix, • I
_.MTFMF, 4 is a diagonal matrix if the errors and the factors are

uncorrelated. This Is genera lli assumed. In Its standard form MX Is a

correlation matrix with unity In the diagonal (cornmunalItles). In Lhis
form the factors are called principal components. In the true ractor
analysis the assumption is made that not all factors are known. Thus
the diagonal element is < 1.0. Several substitutions have been suggested
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T~r the cormWUr1itlltes (e.g. GLUtmM), 1956, or see Essenwarngar, 1976, P.
281). In recent times several estimation methods for the communalitles
as de.Rcribed by Joreskog (1967) have been develoDed based on statistical
principles.

The unweighted least squares (ULSQ) method requires that U is a
mlnimum for:

U: (1/2) tr (r11 - Mx)2  (3)

whiere M. 'is the correlation matrix with estimates In the diagonal and tr
means the traCe.

The generalized least squares (OLSQ) method minimizes G for:.

and the'nmaximum likelihood (MXLI) method Mi for:

titr [(MXI M~jJ - InI(MX-lMS)I n (5)U

Ir, adoit ion to the three methods described above a truncation In the
number of ractorf2 obtained from the principal components analysis could
also he used (see hssenwanger, 1986a, b), Since this method maximizes

other three methods wili have a higher percentage of representation of
t~io varlarc~e. I.

Rotatiori serves to slmplIfW the factorts (see Essenwanger, 1976 p.
*2e85. or 1,980a). Rotaticii can DA accomplished nU a transrorrnat ion
matrix 7k such as;

MF --MAT, (6)

where MFO Is the rotated matrix by orthogonal rotation. In various Cases

SIMPiiflctlon Is not sufricieritly achieved by an orthogonal rotation and
an oblique rotadion Is appropriate. In this case two matrices must. De

P1F MT (7a)
S 61
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MF =MAT2  .(7b)

where MFs Is named factor structure and MF factor pattern matrix. TheweeMS P
structure matrix MF represents the covariances (correlations) between

factors and variables and MFp can be interpreted as regression

coefficients. In the orthogonal rotation the factors remain uncorrelated
while in the oblique case the factors are correlated,

3. EXAMPLE OF ORTHOGONAL ROTATION. A simple example Is
Illustrated for an orthogonal rotation of factors. A principal components
analysis was performed for the observed data of Frankfurt during
January 1946-1956. The correlation matrix between four elements
(visibi!ity, L.e, logarithm of visibility, temperature, and windspeed) Is
given In Table 1. Table 2 exhibits the four factors from this principal
components analysis. The (orthogonally) rotated factors are shown In
Table 3, Figure 1 depicts one particular phase of this rotation between
(modified) factor I and 4. In this case the rotation angle calculated by
the VARIMAX method (see Kalser, 1958, or Cattell and Khanna, 1977)
was -390, The figure Illustrates that the four points are much closer to
the axes after rotation of the coordinate system. Since the rotation Is
orthogonal the other factors are not affected.

4, EXAMPLES OF ROTATION AN) COMPARISON OF ESTIMATION METHODS,
While comparing estimation methods for communalities In factor
analysis (Essenwanger, 1986 a, b, ) It was noticed that oblique rotation
and orthogonal rotation did not differ much for the Stuttgart, Germang
climatological data samples. A typical example Is exhibited here In
Tables 4 and 5. For better readability values S 0.4 were omitted. For
the orthogonal rotation the (actor loads and for the oblique rotation the
structure matrix is shown. It is apparent that orthogonal and oblique
rotation differ very little. The rotation procedure, demonstrated In
section three, is depicted In Figures 2 and 3. They provide an example
from a truncated principal components analysis for the January
1948-1953 data at Stuttgart, Germany. Nine climatological elements
(ceiling, cloud amount, visibility, I.e, Its logarithm, wind direction and
speed, temperature, dewpoint, relative humidity, and pressure) were
chosen for the factor analysis. Four factors were retained,
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Figure 3 illustrates the reduction of the scatter by orthogonal
rotation. In the graph the components of one factor were used as the
.jbscissa and the components of the second as the ordinate. We may

issume that further rotation for simpliflcations Is unnvcessary If the

components pair for the two factors fall witnin a distance of !. 0.2 from
the axes. For the tour factors (54 points for 9 elements) 20 points
remain outside this band in the unrotated factors case (Figure 2). After
orthogonal rotation only four data points remain outside the band
(Figure 3). This leaves little room for Improvement by an oblique
rotation.

The problem of rotation was further analysed for 12 factor analysis
results although only for one station: Stuttgart, Germany. Table 8
discloses the count of data points outside the postulated acceptance
band _. 0.2 around the axes. The left hand part shows the counts for the
unrotated and the right hand part the counts after an orthogonal
transformation of axes was performed.

Although this count should not be used as the only source for
evaluation and interpretation of the merits of an oblique rotation It
discloses some interesting facts, however. Apparently the principal
components analysis and the unweighted least squares estimations show
the greatest dispersion of the 54 component points for the unrotated
factors, After rotation only a few points remain outside the "desirable"
bounds, A closer scrutiny reveals that oblique rotation may provide an
Improvement through the alteration of axes only In a few cases (e.g.,raw

winter, 12h) where the orthogonal rotation left between 10 to 14 points

outside tme_* 0.2 band. Thus the improvement in simplif ication may be
judged by~ a count of the number of points f allIIng outside the !.. 0.2
tolerance band. In addition, the distance from the origin (magnitude of

vectors) con be Included into the Judgement criteria.
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The closeness between orthogonal and oblique rotation can also be judged
by a comparison of the transition matrices TI and T2. For the data or

Table 4 and the principal components analysis those two matrices are
given In Table 7. A close Inspection reveals that the corresponding
numerical values differ very little between T, and T2 . In addition to the

transition matrices the correlation between factors can be examined. In
the orthogonal case the factors are uncorrelated and the numerical value
Is zero. The factor correlation matrix in Table 7 displays that the
correlation coefficient, although not precisely zero, Is extremely low. In
fact, the deviation from zero do not hold up under the scrutiny of a
statistical significance test at the 95% level of significance. In this
case oblique rotation would not be necessary.

5, PREDICTION FROM FACTOR ANALYSIS: It was Illustrated in the
previous sections that for climatological data oblique rotation would not
add to simplification and diagnosis In factor analysis beyond the
achievements by orthogonal rotation. One question remained. Would
oblique rotation improve the prediction based on factor analysis? From
a theoretical point of view rotation would neither improve nor diminish
the results for prediction. This expectation is confirmed by the data
presented In Table 8 as follows.

A factor analysis was performed as a pilot for a sample of 15
observation data sets randomly chosen from the winter months December
1946 - February 1948 at Stuttgart. Although the sample Is small It
reveals the essential facts. The nine elements were chosen as
previously used. For every element the prediction was based on four
factors whose components were calculated for the 15 observations.
Then the differences c2 = 2 (x-xp) 2 /N were calculated for every

element (x = observed, Xp = predicted). The result for the unrotated case

and the oblique rotaticn is found in Table 8. As expected the two error
columns e2 are identical except for one difference by rounding. This
result Implies that the goodness of fit for prediction depends only on the
number of factors and Is Independent of rotation. In a previous article
(Essenwanger, 1986b) it was pointed out, however, that the (truncated)
principal components analysis provided the highest percentage
approximation of the total variance. Thus the quality of prediction
would depend on the estimation method for the communalities. In this
article It was also demonstrated that the dissimilarity of the factors Ivor
obtained by differences In estimating the communalities virtually mw' ."
vanishes for climatological data after othogonal (and oblique) rotation.
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Thus the simplification achieved by rotation leads to the same

"climatological factors.N

8. CONCLUSION AND SUMMARY' Rotation in factor analusls was studied
in detail for climatological data samples. Although the study was
limited to one station (Stuttgart, Germany) the result may Indicate that
orthogonal rotatIon of factors for climatological date may be eufficient
to achieve simplification. Unless simplification Is desirable In cases
where the factor analysis is utilized as a prediction tool the percentage
approximation of the total variance Is not Improved by rotation.
However, rotation serves in aligning the original dissimilar factors to a
uniform sustem or factors In terms of climatology although the
individual estimators for the communalities differ.
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Table 1. Correlation Matrix for Four Meteorological Elements, Frankfurt,
Germany, 1948-1958 (Matrix Mx)

In(v) 1.0 0.08 0.08 0.42

P 0.08 1.0 0.05 -0.16

T 0.08 0.05 1.0 0.20 A

W 10.42 -0.18 0.20 1.0

V:a Visibility, P = pressure, T = temperature, W z Windspeed

fable 2. Factor Matrix MA for Correlation Matrix of Table 1. I
(Principal Components Factors),

0.76 0.18 -0.45 -0.42I
-0.10 0.95 -0.19 0.24

0.44 0.31 0.83 -0.15

0.85 -0.2 1 -0.04 0.49

% 1.50 1.07 0.93 0.50 (Eigenvalue)

frable 3. Rotated Factor Matrix (Orthogonal Rotation)

.98 .22 -.07 .17

.12 .98 .06 -.05

.14 .02 .99 .08

.36 -.07 .08 .95

1.04 1.03 99 94
68
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Table 4. ORTHOGONAL (ORT) AND OBLIQUE (06) ROTATION (STUTTGAR1,

JANUARY 1947-1953) UNIT 0.01

PR INC IPAL COMPONENTS

______ORT 08 ORT 08 ORT 08 ORT 08

1 CEIL 91 83

2 CL.AMT 94 95

3 Ln VIS 79 81

4 WD 62 66 41 44

5 WS, 73 76'

6 TE MP 89 91

7 DEWP 97 99

8 REHU 73 69

9 PRES _______________ _____ ___ 97 98

VAR 218 223 1 191 190 217 214 100 100

Fa726 727

UNWEIGHTED LEAST SQUARES

______ORT 06 ORT 0B ORT 08 ORT 06

1 CEIL 85 87

2 CL.AMT 91 92

3 Ln VIS 76 78

4 WD 52 55

5 WS 62 64

6 TEMP 86 88

7 DEWP 100 100

8 REHU 58 56

9 PRIES ________________________ 99 98 ___

PROD. VAR 171 173 172 171 204 202 99 100

645 647

%ar
orp
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Table 5. ORTHOGONAL AND OBLIQUE ROTATION (STUTTGART,
JULY 1947-1953) UNIT 0.01

PRINCIPAL COMPONENTS

ORT 08 ORT 06 ORT OB ORT OB ,_-_

1 CEIL 80 82

2 CL.AMT 77 80

3 Ln VIS 69 69

4 WO 63 61

5 WS 41 68 64
6 TEMP 69 68 68 75

7 DEWP 93 92

8 REHU 87 86

9 PRES 97 97

VAR 208 202 213 215 143 147 101 102

665 666

UNWEIGHTED LEAST SQUARES

Ill ORT o0 ORT OB ORT 06 ORT OB

1 CEIL 74 77

2 CL.AMT 91 94

3 Ln VIS 40 41

4 WD 70 71

5 WS 67 69

& TEMP 80 83 57 63

7 DEWP 99 99

8 REHU 98 98

9 PRES 11 11

PROD VAR 187 185 145 147 136 137 107 105

575 574
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Table 6. Number of D04ta Points Outside Tolerance Band (Stuttgart, 1946-1953)

UNROTATED ORTH. ROTATION

SAMPLE DATA PC ULSQ GLSQ ML PC ULSQ GLSQ ML

0ANUARY 20 25 27 12 4 7 6 8

APRIL 27 34 14 2 8 5 5 1

JULY 21 25 6 7 5 2 3 3

OCTOBER 21 21 6 9 2 1 6 2

SUMVICR 0h 13 26 4 8 9 3 3 2

SUMMER 06h 21 20 5 6 7 3 3 2

SUMMER 02h 13 17 5 12 3 8 4 10

SUMMER 18 h 16 23 13 6 5 6 13 6
-v.

WINTER 00 23 24 24 14 9 6 3 6

WINTER 0 6 h 22 17 22 13 8 9 6 8

WINTER 1 2h 24 22 28 10 13 11 14 10

WINTER 1 8h 2? 25 14 10 11 5 5 6

S243 279 168 109 84 66 71 64

Mean 20.2 23.2 16.0 9.1 7 .0 5.5 5.9 5.3

PC = Principal Components Analysis, ULSQ-Unweighted Least Squares Estimators,

GLSQ = Generalized Least Squares Estimatots, ML = Maximum Likelihood Estimators

A
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Table 7. STUTTGART, JULY (1946-1953)
TRANSFORMATION MATR ICES

(PRINC. COMP. METHOD)

ORTHOGONAL OBL IQUE

T 1 T2

0.67 -0.68 -0.29 0.05 0.65 -0.74 -0.34 0.08
0.66 0.71 -0.17 -0.18 0.68 0.65 -0.19 -0.21
0.34 -0.06 0.94 0.10 0.34 -0.10 0.89 0.11
0.05 0.17 -0.11 0.98 0.04 0.15 -0.10 0.97

FACTOR CORRELATION

1.00 -0.07 -. 09 -. 01
-0.07 1.00 .06 -. 06

-0.09 0.06 1.00 .01

-0.01 -0.06 .01 1.0

r-jL

l
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Table 8. FACTORS AS PREDICTORS

UNROTATED OBLIQUE
ROT.

Mean c2 £ ec2

CEILING 9.2010O3 ft 8.2010 3 5.38 2.31 5.38

CLOUD AMwT 0.625 .44 0.009 0.10 .009

Ln VISIBIL. 0.8 0.95 .085 0.29 .086

WIND DIR 276~ 900o 24.33 4.93 24.33

WIND SP 4.0 kt 3.1 kt 2.22 1.50 2.22

TEMP 24.00F 0.60F 6.29 2.51 6.29

DEWP 21.0O 95 2.01 1.41 2.01

REL. HUM. 89.0% 10.3% 30.48 5.52 30.48

PRESSURE 1021.0 mb 6. 1 mb 1.15 1.07 1.15

50.64 50.64

c Z(x-x p 2A

UNITS IN LAST TWO COLUMNS ARE THE SAME AS IN THE FIRST COLUMN.
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FIG 1. EXAMPLE OF ROTATION (ANGLE - 390)
(FRANKFURT, GERMANY, 1946-1956)
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FIG ?. STUITGART, JANJARY (1946-1953)

PRINCIPAL COMP METHOD

UNROTATED FACTOR LOADS

1.0

x A0.8 A AA

A A J0.6 4 4T

0.4 x A

0A

-0.2

-0.4 A
,A

-0.4 .••,

-0.6

-0 .8 -0. -0. -0." A- '

-1.0 -0.8 -0.6 -0.4 -0.2 0 0.2 0,4 0.6 0.8 1.0
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FIG 3. STUTTGART, JANUARY (1946-1953)

PRINCIPAL COMP METHOD

ORTHOGONAL ROTATION
FACTOR LOADS

0.8:

0.8 A

0 . 6, -

0.4

0.2

aX
JIX '

, it

-0.2 x

-0.4

-0.6

-0.8

- 1 .0 ' I I, I , , I I
-1.0 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1.0
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An bact Method for One-Sided Tolerance Limits

in the Presmace of latch-to-latch Variation

Mark Vanal

U. S. Aruy Materials Teoanology laboratory

Watertown, Mgssachuatts 02172-0001

Abstract

Mae and Owen (1983) proposed an improvement on a method of Lemon (1977)

for estimating tolerance limits from a balanced one-way ANOVA random effects

model. This method uses an approximation of Satterthwaits (1946) to replace a

linear combination of two chi-square random variables with a random variable

having a chi-square distribution. The tolerance factor is then estimated as a

quantile of a noncentral t-distribution. The Mae-Owen procedure is conserva-

tive for all values of the population variance ratio.

An alternative approach is to view the tolerance limit problem as a

variant of the Behrens-Fisher problem. The work of Welch (1947) and Trickett

and Welch (1954) may then be applied to derive an integral equation the

solution of which, a function of the ratio of the between batch to the within

batch mean squares, provides an exact solution to the problem.

An algorithm is presented for iteratively approximating this function.

Neither the existence of a solution nor the convergence of this algorithm are

discussedl but numerical evidence is presented which suggests that the pro-

posed solution is, for the purposes of applied statistics, exact for all

values of the ratio of between batch to within batch population variances.

Two other topics considered in this paper are an approximation to the

tolerance limit based on the Welch-Aspin series solution to the Behrens-Fisher

problem and a discussion of the effect pooling and using a single sample

procedure has on the coverage probability of the tolerance limit.

An application to determining (.90, .95) lower tolerance limits for

composite material strength data in the presence of batch-to-batch variation

is discussed. This tolerance limit is referred to as the 'B-basis material

property' by aircraft designers and is used to determine the acceptability of

a composite material for aircraft applications.
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1. Introduction

If a material is manufactured in many large batches and the population of

interest consists of all batches, the random effects model may be an appropri-

ate model for measurements made on characteristics of the material.

Let X denote the jth of J observations from the ith of I batches. If
ij

Xij follows a one-way balanced random-effects model, then

(1.1) X ij + bi + aij

where V denotes the population mean, v + bi denotes the mean of the ith batch,

and eij is the error term. The b Is and the e 's are assumed to be indepen-
iji ij 2 2

dently distributed normal with mean zero and variance ob and oa respectively.

An observation X from this population is thus normally distributed with mean W

and variance

(1.2) a 2 2 + U2e

This paper presents techniques for determining one-sided

tolerance limits for X based on a random sample of J items from each of I

batches. A (s, Y) lower tolerance limit is a random variable T such that a

proportion A of the population is covered by the interval (--, T) with proba-

bility y. The methods developed here for lower tolerance limits may be

adapted in an obvious way to upper limits.

An important industrial application of tolerance limits is to thp charac- '

tarization and certification of structural materials for aircraft. In order

to determine the acceptability of material for aircraft applications, design- AR

ers use 'material basis properties' which are tolerance limits on the strength

of a material as determined from experimental failure data. A (.90, .95)

lower tolerance limit ia called a 'B-basis' value or 'B-alowable'. The more

stringent (.99, .95) limit in referred to as an 'A-basis' value or

'A-allowable'.

There is increasing interest in the use of composite materials as light-

weight alternatives to metals for aircraft applications. Composite material

properties typically exhibit far more batch-to-batch variability than do
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metals; consequently there is a growing need for methods for determining one

aided tolerance limits in the presence of batch-to-batch variation.

A modification of a procedure of Lemon (1977) and Mee and Owen (1983) has

therefore been adopted for this application by Neal et. al. (1987) and will be

included in Mil-handbook-17 (1987), a handbook for the use of composites in

aerospa:e applications. It is hoped that the virtually exact method to be

discussed in Section 6 will eventually supersede the Mee-Owen procedure for

this application.

2. The Mae-Owen ProcedureI

let n - IJ denote the sample size. The parameters w,, o2 and 02 of the

random effects model may be estimated by the pooled mean u, the within batch

mean square MSe and a linear combination of MSe with the between batch mean
square MSb wherest

- I J I
I J

(2.2) ES z i-i ja

(2.2 M b E(Xi.- )

(2.3) MS* t- E (n j

An unbiased estimator of the population variance al is

(2.4) 02 . MS /J + (1 - I/J) MS
X b Is

For 0 1B 1, let K be the B quantile of the standard normal distribu-

tion, i.e

(2.5) 1 1Vl//2T0 et6/2/dt.

A (B, 1) lower tolerance limit is a 1001% lower confidence bound on *
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(2.6) P - K A X. _-

By analogy with the single sample case (see, for example, Owen (1968)),

one seeks an estimator of the form

(2.7) U - koX r -

where k is chosen to satisfy

(2.8) P(p - koxS U - Kox) -

Since p is distributed normal with mean p and variance

(2.9) oa (Jo- + "2)/n

one may rewrite (2.8) as

(2.10) P((Z + /nK 0B)/Cox/aX S VnkB) - ;

where

(2.11) Z m (l.. " )I) ,

(2.12) B - ((JR + 1)/(R + 1))

and

The random variable a 2 is approximately distributed an the ratio

of a chi-square to its degrees of freedom, where the degrees of

freedom are given by (Satterthwaite 1946)
2

(R + 1)
f

(2.14) (R + 1/j) + (0 - I/J)

I- I n

80

- -v *'9$



If Tf (N, 6) denotes the inverse of the noncentral

t-distribution with f degrees of freedom and noncentrality parameter 6, then

(2.15) k Tf' (Y, /nBK )/('nB)

Unfortunately, the tolerance limit factor k depends on the nuisance parameter

R. Mae and Owen suggest replacing R with

(2.16) Ra I ((MSb/MSe)Fn - 1)/O

where Fn is the 10On percentile of an F random variable with degrees of

freedom I(J-1) and I-1. Pn is a 100n% upper confidence bound estimate on R

(Searle, 1971, p.414) and the confidence coefficient may be determined by

numerical integration so that

(2.17) P(P - k(Rr)oa S K ox) a

for all I, J and R. These values are reproduced from Maec and Owen (1983) for
various combinations of 0 and i in Table 1.

For the case of B " .90 and I - .95 some of the conservatism inherent in

the above values has been removed by allowing n to vary with I and J. The

result of this numerical work is presented in Table 2.

3. An Exact Solution for Known R

If R is known, the tolerance limit factor k is the appropriate quantile of

the distribution of

Z + 6

(CjYj+ C2Y2) "

where Z has a standard normal distribution; Yi is distributed as a chi-square

with ni degrees of freedom for i-, 21 and C1 , C2 and 6 are constants with C,

and C2 positive. Once this distribution has been determined the
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tolerance limit may be obtained exactly.

The density of the linear combination Y a CIY1+C2Y2 is

show in Fleis (1971) to be

r((n l+ 1,2)/2)•=_"
f•(y) U ,..

r(n 1 /2) r(n 2 /2)(3.3)- .•

nj/2-1 n2 /2-1
x (1 - x) xn +ny/(CIx +C2(0 - x)))dx

0 .

where x2(') is the chi-square density with f degrees of freedom.

By conditioning on the denominator of (3.1) one sees that

F(k) a P(A 6 k)

r((nl+ n 2)/2) 1 nj/2-1 n 2 /2-1fx (1-x)
r (n,/2) r(n 2 /2)(3.4) .0!

f *(kt - 6)fy(t 2 /(Clx+C2 (1 - x))) 2t/(Clx+C2 (l x X))hdxdt

r ((nl+ n2 )/2)

r(n,/2) r(n 2/2)
n 1 /2-1 n 2 /2-1

S(1 - x) Tnnk((nl+ n 2 )(CIx + C2 (1 - , 6)dx

J ~~~ ~nl+n2k(i )),6d0

where 0(0) is the standard normal distribution and T(t, 6) denotes the

noncentral t cumulative with E degrees of freedom and noncantrality parameter

6, i.e.

(3.5) T (t, 6) u u ONlr(u) *(tu/,/f -6) du
r(f/:J' J•1u2)
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where 6(0) and #(.) are the standard normal density and cumulative respective-

ly.

For the tolerance limit problem, let

(3.6)

C, IM(1 - 1), C2 a V/(R + 1),

6 - K0(n(R + 1)/(JR + 10

and

(3.7) n, I - 1, n 2 a 1(J - 1)

where I, J, K and R are as in Sections 1 and 2. The value k(R) such that

F(k) - I then provides an exact solution to the problem.

Although the above derivation is simple, it is apparently not well known.

A much more complicated representation of the distribution of the random

variable (3.1) is developed in Ray and Pitman (1961).

4. The Effect of Pooling on the Coverage Probability

The tolerance limit procedure discussed in Section 2 is conservative (i.e.

provides a coverage probability greater then the nominal value) when the

population variance ratio, R, is small. Mee and Owen therefor suggest that

data be pooled and a single sample method be applied when the mean square

ratio is less than 1. They then proceed to investigate the conditional

behavior of their proposed estimator.

Using the distribution developed in Section 3, one may determine the

coverage probability for a single sample procedure applied to pooled data as a

function of the variance ratio. This result will be used to determine the "'

unconditional coverage probability of the Nee-Owen method in Section 7.

Let Yj and Y2 be as in (3.2) and let nj and n2 denote the between and

within batch degrees of freedom respectively (seo 3.7). The pooled variance

eutimate is

(4.0 S2 M l/(n - 1) 1 E (X - u) 2
ilJul jai ij
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where n denotes the pooled sample size, I the number of batches, J the batch

size and W the grand mean. Partitioning the total mean square and substitut-

ing (2.9) for the variance of V1 , one obtains

(4.2) 02 Y2+ (JQ2 + 02)Y1  n
(S / )2 b .

a + 2e n-i

where R is the variance ration (2.13).

If ka denotes the single sample tolerance limit factor (e.g. Owen, 1968,

pp. 446-448), then the coverage probability as a function of R is

(4.3) y(R) - P(p' - k0S S i - K ox)

P((Z + KOxloa ) / (S/0) S k0 )

with notation an in Section 2. Substituting (4.2) into (4.3) and employing *

the distribution (3.4), one may readily examine y (R) numerically. From the

typical plot in Figure I it is apparent that the coverage probability obtained

may be substantially less than the nominal value even for small values of R.

Clearly, criteria which result in the decision to pool must be considered

carefully if one is to be assured of a reasonable tolerance limit estimate in.-0,

the presence of batch-to-batch variation. Alternatively, one might seek an

estimator which performs well for all R, eliminating the need to pool alto-

gether. This approach will be taken in Section 6.

5. The Solution for Unknown R: Welch-Aspin series

For unknown variance ratio, the tolerance limit problem is very closely

related to the Behrens-Fisher problem. Following the work of Welch (1947) and

Trickett and Welch (1954), two forms for a solution are obtained.

A series solution is developed first. While computationally simple, the

first order approximntion presented here is anticonservative and may only be V,

suitable for many batches.

Alternatively, the tolerance limit factor as a function of the mean square

ratio may be obtained approximately as the solution to an integral equation.

Although this requires the use of a computer, the method which results appears

to give the desired coverage probability - even for small sample sizes.
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To simplify the notation in what follows, let S'

be the mean squares and oa their expected values for ijl, 2, i.e. I
i

s - Msb al -Jo b

S2 = MS o2 2
2 -as

Given the two mean squares, the tolerance limit factor may be expressed in

terms of the standard normal distribution:

P(P - kx 5 V - KaOx)

(5.2) a E s2 S(4,(kax/(Op/.n 6))

SE S2, S (O(h(s, SD) /(ao//n) 6)).

The problem is to determine a function h(SI, S2) - kox so that (5.2) is

approximately satisfied for all o2 and o2. If tolerance limits on the median

are desired, then 6 a 0 and the results of Welch (1947) and Aspin (1948) may

be used directly. If 6 is not zero, the idea behind the Welch-Aspin deriva-

tion may still be applied, though the algebra is considerably messier.

Following Welch (1947), one begins by expanding the normal cumulative

about (al, o1) and recognizing that the expectation is the moment 6enerating

function of the product of two independent chi-squares - with diffexential

operators as the independent variablew in the generating functions. If one

defines

(5.3) 8 2h(S 2

S §2 (S 2 . w•

i i i
then

(5.4) (h(S'( S2) /(01/,/n) - 6)
1 2

Substituting (5.4) into (5.2) gives
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(55)o 2 a '~ (S2 - 0)aj XaýS;1)

(5.6) X2 (S) dS2

1 n /2-1 -n S2/(2o01) dnS/

r(n 1/2)2

are the densities of the mean squares S2 and the n 1 are their respective

degrees of freedom.

In terms of the operatorU

2 n/2 -ola
(5.7) 0 z H (1 - 2ala /n ) fl a i i

i-l i i ±

1+ oE a /n

the tolerance limit probliem can be stated as

(5.8) fl*(h(SI Sl)I(ol/Vn) - 6) y

The next step is to expatid the normal cu~mulative about K (see (2.5)) in

a second Taylor series, giving

(5.9) 0(h(S 1, S1 ( 1/n 6)

e (h(S¶ Sj) /(a1/V/n) -6 - K~ )D

where 
8



(5.10) Drr (v) v (v) rv"K0

Express h(SI, Sj) as a series in increasing inverse powers of the degrees

of freedom

(5.11) h(S2, S2) -ho(S2, S2) 4 h1 (S|, 51) +

where hi (S1. SD) consists of terms of order j in 1/ni for i.1, 2. One can

now, in principle, solve successively for the h Is. If terms of order greater

then zero are considered negligtble, then

(5.12) h0 (S2, Sj) /(o 1 /,vn) - 6 -K

which leads to a zeroth ordQr approximation to kIi

(5.13) ko = ho(Sl, SI)/ox

K + K /(I( + (J - 1)si/s)

The next term, h1(S, Sj), can be shown to be the solution to

K (S 1 /o - O)D

K ((Y X- ax / (oj/Vn))D ._,

.5)h1 ($!, S!) /(o 1I•/n)D
e s •(v).

After some algebra, the first correction to k0 is seen to be

(5.15) ki - 8/(4%V1) (K (K; + 1) /n,

+ 2K K2 VI /n1 8 + K2K I /n1 82 + K VI /n91e

+ K2 K L(J-1)1/(n2 MSRI)8 2  + 4Kl(J-1)2 /I /(n 2MSR2 )83 )
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where

(5.16) 8 a (1/(l + (3J - 1)/MSR))i

and

(5.17) MSR i St /Sj.

The coverage probability for the above approximation as a function of t):e

population variance -stio is plotted in Figure 2 for a (.90, .95) tolerance

limit and J - 5. Note that for many batches the series solution performs

well, though for few batches it is anticonservative.

6. An Alternative Solution for Unknown R

For small samples, the first order approximation developed above may not

be adequate. An alternative approach is to viev the problem as an integral

equation, following Trickett and Welch (1954). If one defines

(6.1) T 3 1/(JR + 1)

then (3.4) may be written as

(6.2) Y " [ x (1 - x)
r(nl/2)r(n2/2) J.0

Tnj4k(T)((nj+ n2 )(I/CI - 1)x +T(1 - x)))|, 6)dx

where

(6.3) 6 - VnK B a K(I( + (J - 10T

and B is as defined in (2.12). The parameter T may he estimatmd by the

reciprocal of the mean square ratio (4.17)t

(6.4) u E I/MSR *F
na, nj
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where Fn 2 , n, denotes a random variable with an F distribution with n 2 and n,

degrees of freedom. The tolerance limit problem reduces to determining a

function k(u) such that

(6.5) y W P((Z + 6(0)) M(M/(1 - 1)Y1 + Sy2)1 6 k(u))

= P(Z S k((n 1 /n 2 )(Y 2 /Y0)) (IM(l - I)Yl + TY2)1- 6W)

where Z, Y, and Y2 are as in Section 3. This is equivalent to the inteqral

equation

r((nl+n (i(n2)/2) I1 nj/2-1 n2/2-1,

(6.6) .. x (1 - x)
r(n 1 /2)r(n 2 /2)

T n+n (k(c)((n l + n2 )(I/(I - 1)x + r(l - x)))', 6(T))dx

where I

(6.7) c - ni(1 - x) /(n 2x)r.

Using the results of Section 5, one may define

(6.8) k(M) - ko(c) + tk 1 (c)

where ko(c) in the first order approximation from the Welch-Aspin procedure

and kl(c) is an unknown function. If an approximation to k1 (c) can be ob-

tained this approximation may lead to an improved ko(c).

Letting V(.) tspresent the functional (6.6), if one expands V(.) in a

Taylor series about c a 0 one obtains the first order approximation

dV c.0(6.9) V -y (ko(c)) + ck 1 (c)) • V (ko(c)) + c =nj - o '0

Since t is arbitrary, it may be taken tc equal one. The approximation may

then be written as
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- r((n1 + n 2 )/2)
(6.10) y - V(kO) +

r(n 1 /2)r(n 2 /2)

1 'nd2-l n2/2-1-
x (1 - x) kl(c)((nl+ nZ)(I/(I - 1)x + r(1 - x)))

t.n;2(ki(c)((nj+ n 2 )(I/(I - 1)x + i(l - x)))i, 6)dx

where tf(., 6) denotes the noncentral t density. The noncentral t density

with f degrees of freedom and noncentrality parameter 6 may be calculated by

means of the following formula (Odeh and Owen, 1980, p. 272):

tf(x, 6) - (fix) (Tf+ ((f + 2)/f)ix. 6)

(6.11) Tf(XI 6)).

The first term on the right hand aide of (6.10), V(ka), may be evaluated

numerically for given T since k0 (c) is a known function. The second integral

is concentrated about nj/(nj + nz). If k1 (c) is evaluated at this value, the

remainder of this integral may also be evaluated numerically. Note that

(6.12) kn(c) Ix a n/(n 1 +n 2 ) 0 k(4).

so that, with obvious notation for the two integrals to be evaluated nuneri-

cally,

(6.13) y - VO + k1 (T) V,

i.e.,

I.

(6.14) k 1(T) " (y - VO) /V1 .

Since k(c) in the same function of c that k(i) is of T one may use a first

approximation k0 (c) to get a new approximation kl(c) by evaluating (6.11) for

90 &
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a mesh of T values. This k, becomes the ko for the next iteration. Al.-

though it is certainly not obvious that such a procedure will converge, or

mien that a solution exists, it vill be shown below that this algorithn

appears to provide a solution to the tolerance limit problem that is (for

practical purposes) exact.

7. Discussion

The situation of primary interest to the aircraft industry, (.90, .95)

lower tolerance limits, is the only case yet examined in detail. Four methods

have been presented in this paper: the Moe-Owen method (Section 2), a modified

Mec-Owen method (Section 2), a method based on the Welch-Aspin series (Section

5) and a method based on the solution of an integral equation (Section 6).

The coverage probability functions corresponding to these methods are numbered

1-4 in Figure 3 for five batches each of siue five.

The integral equation solution is for most practical purposes an exact

solution to the problem. The Moo-Owen method has the disadvantage of being

substantially conservative when the variance ratio is small.

Only a modest reduction in this conservative has resulted from the modifi-

cation of the confidence level of the variance ratio estimate (Section 2,

Table 2).

The Welch-Aspin series solution is clearly not suitable for as few as five

batches, as discussed in Section 5. However, it is easy to compute and
provides an adequate starting function for the iterative solution of the

integral equation (6.11).

From the rescaled plot of the coverage probability funct ton for the

integral equation solution (Figure 4) it can be seen that for R > I the a:tual

coverage probability differs from .95 by no more than ± .00005. This small

difference can be attributed to roundoff error. For R < 1. however, the

difference in the actual and nominal coverage probability indicates that the

convergence is not uniform. The convergence of the successive approximations

to the tolerance limit factor needs to be more thoroughly examined, thouih the

practical gain from such an investigation may be slight.

.1t

S. bwle

The data in Table 3 are a pseudo-random sample of 25 from a normal distri-

bution with mean 50 and standard deviation 10. These data have been arbitrar-
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ily grouped into five batches of five. By fitting a one-way random effects

model to these data one obtains (2.1 - 2.4)

- 48.30

(8.1) MSb- 89.88 o2 - 144.9

MS - 158.6.

A (.90, .95) lower tolerance limit is of the form

(8.2) T- -Kox.

For the method of Me. and Owen (1983) K - 1.90. If the Mee-Owen method is

modified as suggested in in Section 2, then K only decreases to ).89. The

series solution of Section 5 gives K - 1.78 and the integral equation of

Section 6 results in K a 1.83. The tolerance limit estimates are, respective-

ly, 25.42, 25.54, 26.82 and 26.29. These values may be compared with the

tolerance limit estimate for the pooled data, which is 26.00.

9. Conclusion 't

One-sided tolerance limits for random effects models is a topic of consid-

erable importance in engineering statistics. The purpose of this paper has

been to consider this tolerance limit problem from the point of view of the

Welch-Aspin interpretation of the Behrens-Fisher problem. This approach leads

to what will very likely prove to be a solution which, for the purposes of

applied statistics, is exact. Some numerical work remains to bo done, leading

to the preparation of tables to be presented in a subsequent publication.

10. References

Aspin, A. A. (1948), "An Examination and Further Development

of a Formula Arising in the Problem of Comparing Two Mean

Values", Biometrika, 35, 88-96.

927

4 I%

~ * .- . .. '.X



"Composite Materials for Aircraft and Aurospace

Applications". M4i1 Handbook 17, in preparation.

Plions, J. L. (1971) "On the Distribution uf a Linear

Combination of Independent Chi Squares", Journal of the

&Merican Statistical Association, 66, 142-144.

Lemon, G. H. (1977) "Factors for One-Sided Tolerance Limits

for Balanced One-Wlay ANOVA Random-Effects Model", Jora

of the American Statistical Association, 72, 676-680.

Mae, R. W. and Owen, D. B. (1983) "Improved Factors for

One-Sided Tolerance Limits for Balanced One-Way ANOVA

Random Model". Journal of the American Statistical

EAsgiLa.ion, 78, 901-905.

Neal, D., Vangel, M4. and Todt. 1. (1987), "Determination

of Statistically Based Composite Material Properties", in

Engineered Materials Handbook, ad. Cyril A. Dostal,

American Society of Metals Press, Metals Park, OH.

Odeh, R. E. and Owen, D. B. (1980)t Tablas of NorMal

Tolerance Limit1g Sampling PlAns And Screening. Marcel

Dekker.

Owen, D. B. (1968), "A Survey of Properties and Applications

of the Noncentral t-Distribution", Techlometicsii, 10,
445-478.

Ray, W. D. and Pitman A. E. N. T. (1961). "An Exact

Distribution of the Fisher-Behrens-Welch Statistic for

Testing the Difference Between the Means of Two Normal

Populations with Unknown Variances", Journal of the Royal

Statistical Society. 23, 377-84.

93

Ilk if _



Satterthwaite, F. E. (1946), "An Approximate Distribution of

Estimate of Variance Components", Birunetrics Bulletin, 2,

110-114.

Searle. S. R. (1971), Linear Models, John Wiley and Sons,

N.Y.

Trickett, W. H. and Welch, B. L. (1954), "On the Comparison

of Two Means: Further Discussion of Iterative Methods for

Calculating Tables". Biometrika, 41, 361-374.

Welch, B. L. (1947), "The Generalization of Student's

Problem When Several Different Populacion Variances are
Involved", Biometrikal, 34, 28-35.

94

* ~ ~ ~ ~ ~ . 10z %' ~ .. '



Table I

vj Values for (y ') Tolarowcs
Limits (ies. and Oý. 1963. p.90)

.90' .95 .99

.90 .78 .85 .94

.95 .79 .86 .95

199 .81 .875 .96

I '.4
95

v vb .1"



Table 2

q Values for (.90. .95) Tolerance

Limits for the NMa-Ome Method.

ROWS Number of batches

COLUMNS: Batch size

3 4 5 6 7 8 9 10

3 .63 .69 .73 .75 .76 .77 .78 .79
4 .75 .78 .80 .81 .82 .82 .83 .83
5 .80 .82 .83 .83 .83 .84 ,84 .84
6 .82 .83 .83 .84 .84 .84 .84 .84
7 .82 .83 .83 .84 .84 .84 .84 .84
8 .82 .83 .83 .84 .84 .84 .84 .84
9 .82 .83 .83 .84 .84 .84 .84 .84
1 .82 .83 .83 .83 .84 .84 .84 .84
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Table 3
Example Data

1Batche 3 4 5

59.45 38.46 30.58 55.65 60.41
40.70 43.2e4 29.15 50.68 64.45
e4.67 66.se 46.29 67.62 36.57
30.60 51.95 63.85 42.02 59.76
52.51 38.50 51.71 41.09 40.84
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THE DISTRIBUTION OF THE NUMBER OF EMPTY
CELLS IN A GENERALIZED RANDOM ALLUCAVTON SCHEME

Bernard Harris(1)

Morris Marden(2)

C.J. Park(3)

ABSTRACT
I-

n balls are randomly distributed in N cells, so that no cell may contain

more than one ball. This process is repeated m times. In addition, balls

may disappear; such disappearances are independent and Identically

Bernoulli distributed. Conditions are given under which the number of

empty cells hlas an asymptotically (N-'.) standard normal distribution.

( 1"University of Wisconsin, Madison

(2)University of Wisconsin. Milwaukee I
(3)San Diego Stzte University 7
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1. INTRODUCTION

The distribution of the number of empty cells in the following

random allocation process is considered. Let n, N be positive Inte-

gets with n % N. Assume that n bells are randomly distributed into

N cells, so that no cell may contain more than one ball. Then, the

probahility that each of n specified cells will be occupied is N

This process is repeated m times, so that there are (N)m randomn
allocations of tm balls among the N cells. In addition, for each

ball, let p, 0 % p z I, be the probability that the ball will not

"disappear" from the cell. The "disappearances" are assumed to be

stochastically independent for each balli thus the disappearances con-

stitute a sequence of nm Bernoulli trials.

Several special cases of this problem have previously been con-

sidered . In particular, p a 1, n a 1 Is the classical occupancy

problem, t•'l [23,[33,1103. The case p 1, n arbitrary has been

discussed in [43 and [71. The case 0 p < 1. n - 1 is treated In.

C. J. Park 5]3.

In this paper, we obtain the probability distribution and moments

of the number of empty cells. In section 3, we show that the number of

empty cells may be represented as a sum of independent Bernoulli ran-

doa variahles. This representation permits us to determine conditions U
on m, n, p, N such that the number of empty cells is asymptotically
normally distributed.

This random allocation p,:cess may be viewed as a filing or

storage process. Objects are lindomly aisigneA to files or storage bins.

From time to time, objects may be missing or have disappeard.
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2. THE PROBABILITY DISTRIBUTIONl 8r1D THE MOMENTS OF THE NUMfnER

OF EMPTY CELLS

Let mnN be positive integers with n 9 N. m sets, each con-

sisting of n balls, are distributed into N cells at random so that

no cell can contain more than one ball from the same set. As each set

Is distributed, the balls that have been placed during the preceding

distributions are left in the 'cells. Thus, at the end of the process,

calls may contain as many as m balls. In addition, each ball may

"disappear" with common probability 1 - p, 0 s p s 1. These disappear-

ances are stochastically independent and thus constitute a sequence of

mn Bernoulli trials.

Let PM~n$N~p(J) be the probability that exactly j of the N

cells are empty.

We now establish the following theor•m.

There 1,2...N hn ''

N N NIJ LN-J

1.0.

Prooft. Let A~ be the event that the vth cell is empty,

1.2,,,,,N, Then,1-r. l
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P(A) (N)-t (~(1P ? (2)

For 1 s vj-cv 2  N.

*VN ViE 1 1 (nlm

Thus, for 1 v1 'vs < *' ' s N,

vk IS0

Thus, ULIng the lncluslon-excluslon method, the probability that exactly

J calls are empty it

mnN n rij r 1J0

We can write (5) in the form (1) by letting r *J *

We nlOW deter',lne the factorial moments of S ,the number of

empty cells.

IbsgCrm2. The vth factorial moment of S

E (S ('V) 6ým (Mv) E ,J(~ )(v))m*(6nJn n-jJ
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Proof. From J. Riordani [93, p. 53, from (4), it follovis immediately

that

We thus obtain Ase following.

Corollary. E(S) a N(l - ) ,(8)

*N(N.l)r(N! ýýNfll). + 2(l.p)ftfN.n. + (l.P)lnnli

+.N NP~ N(1 .i) (9)

Prof From (7)

E(S) N(" -p)-lP

Since

*E(S ~+ E(S) -(E(S))'

the conclusion follows readily from (6), after some elementary calcula-

tions.
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For some purposes, the following equivalent forms of (9) will

prove useful.

N* -)l n((-)-~-) ~ - f) ,m (IN -f (0

and

m ( (I m flDI(N.lh) M
+ T' C- (N-1)(N-pni)1

From Theorem 2, we readily obtain the following.

Theorem 3. The factorial moment generating function of S is given by

10 (t) - E(l~t)5* IN Nt r N) r (,_1  (N ~ * (12)

Note that $ (t) is a polynomial in t of degree N. This fact is A

exploited in the next section, where the asymptotic distribution of

S is obtained. In particular,

0 0 (t) 0 (1 0tIN (13)

and
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(t (l+t)N~~ (1 + (lap)t)n . (14)

We now investigate the heymptotic distribution properties of the

number of empty cells.
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3. THE ASYMPTOTIC DISTRIBUTION OF THE NUMBER OF EMPTY CELLS

In this section, we determine conditions under which the ntruber of

empty cells (when suitably nomalized) has in asymptotically normal distri-

bution. In order to establish this, a number of prelitiinary results are

required.

Si•j1 Let N,n,r be non-nogative integers, r % n s N. Then
ri

Proof. Since (") * 0 whenever v < ( , we can write

Sv" "- -f-X•- n-v-

To obtain the conclusion, note that

r (x)(r)(N-r)
Q ... f l- * { X 1 • / • • -

x:0 (4) N

where X his the hypergeomietric distribution. From B. Harris [1],

p. 105,o,. 0,

(X()Nr r , ,(
04 ~~
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The conclusion follows itnedlately.

Lemmva 2.

n .)()"p ,_P,N-,(N•) r)

Proof. The right-hand side of (16) may be written

r (N-h'(r r rr r
V80 ()(.l)O p a v=0 V=JN

n N
n

Thus, the coefficient of p1  is

(-~ NI r (v(~)r)/( N)
Vmj n-" v n

From Lenmna 1,

(_ ) rr J r N-I / N

Z-) (vj )(Nn.rv)(r)/(n) •(-I J(r)(n-J"/'n'

v Jn-v v n j n-i n

from which the conclusion follows immediately. Enploying the above

leImmas, we can now establish the following theorem.

,%%
II,

'vp

p\.6
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Theo rem 3. The factorial moment generating function of the number

of eMpty Cell$ OM(t) (12) satisfies the following differential-

difference equation,

Om~~t I(-IJn(j pt2 DJ ) mWt m Ol0,1,... (17)

where d * j

Proof. For mn 0. 0,0(t) *(14t) ; hence

*(t)N-n (l+,Pt~n)tj(tnj

in agreement with (14).

Assume that (17) holds for mn 1.l2,...,kc. Then, from (12),

ONO
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and

TIlz) - tlz)) a c, TI (z-z ), (20)
C€tI

If the zeros of ý(z) are real and satisfy

-b : x Q s-a, a,b z 0

then the zeros of tp1(z) are real and satisfy

b )(1) (- 21) •

TT-7 sx. :5-a.

Proof. Lot

Cy (z:lz+(c-1Y)I S C(c-a)2+Y' c a2 b) (22)

Clearly -a and -b are on the boundary of the circular region Cy.

Consequently all zeros of p(z) are in Cy . Let z* be a zero of

%P(z). Let

* (z 1,()OO (1) lz*I1~))(*V'tI) (z 1 z-')
11 2 ' N N o

11/4

I' 1 r1
.. .. . . ,

~e~ ¶~ -(f:-~ . ilV? ii i i~& i i; i i



That is *z ,...,zI ) I T(z )i s a linear symmetric

function of z,1) ,• 1),... l)( . Thus, the conditions of Walsh's

theorm (M. flarden [5), p. 62) are satisfied. Thus, if

(O 0 (0)z1 $2 *...N art points in C..1 , then there is at least one

point C in C.. such that

Tt(z* -cN] • 0,

that is, one can set z (1) C, (1) (,...,•1 . 4 and preserve th

value 0. Ffom (18).

T[(z )N (z* -)N (* pz*)

Thus eithor z -* and therefore z is in or z ,

and z* Is in I
B ply • {z:lz4.(c.4Y)(l.p)' s [Y(c-') *y2)l/ 2 (l-p)l . (23)

However, Y is real and arbitrary. Hence It is clear that

C- r'• {-z:z real ,-b % x % -&a (24)

and
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ap , pty {z:z real, -b(l-p)"I s x s .a(1-p)"I. (25)

Consequently, C tu B is contained in the interval (21), proving

the lemma.

We now establish the following theorem.

Theorem 4. Let

re(t) " N (Nr)tr(M -m( rJ N-,1 ,1 X' )

Let t (M)tm) ,M . t(m) be-the zeros (not necessarily distinct) of1 2 *** bNh
m(t) Then tim), j l,2,...,N are all real and

"".p)"S t I -1i, j. 1,2....,,N;m, 1,...

Proof. From (19)1.

O*m.t - T(Om(t)). m - 0,1,...,

and from (13),

00(t) (l+t)N

kA.
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The Zeros Of W are ) t(a) o - -1. The zeros1 2 N

of f,1 t) are t 1) ( N -1, - "0 )
I N-M N-f~tI-+1 000046

ti1 I -1/(l.p). N4ow apply Lemina 3 with '(z) a €1(z) obtaining

a * 1, b a (l.p) 1 . Then, the zeros of €2 (t) are real and satisfy

2 ~(2) ja
-('-P)"- S tlz 1 .1, j - 1,2,...,N .

It then follows readily by induction that the zeros of ¢k(t) are

real and satisfy

p)"k s t~k) -.1, J a l,2,,..,N, k 2,3....

Theorem S. For 1 n s N, 0 s p S 1, m a 1, S has a

representation as the sum of N nutually independent Bernoulli random

variables. That is, there exist mutually independent Bernoulli random

variables, Y Y (Nqmrpjn), j 1 92,?...,N, such that

N
s I Y (26)

and

P . l • Y • 1 - P( j ) . (27)
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Proof. Let Y be a Bernoulli random variable with P{Y *1)

Then the factorial moment generating function of Y is

Ey((1+t) (lt)F.:

if

N
Wa Yj

where Yl'Y2'*'''YN are mutually independent Bernoulli random variables

with P{Y~ . 1) 0 TV, then the factorial moment generating function of

W is

W N N
C(t) aEW{(l+t) UTI E Y ((l+t)yi) M n (l+'Tt), (28)

Jul j Jul

where 0 % j 1, j - l*2,.'...N. From Theorem 4. the factorial

moment generating fraction of S may be written

N
Om(t) * (1-P)M" TI (t-t( 1~)) 1n M *i 0,1,... (29)

Jul ~

where t~)are real and -(l-p)wm g t~") r. -1, j a ls21seeHs

Since every polynomial of degree N with real roots has a unique

representation of the form
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f(x) - c(X-Xl)(X-X 2 )...(X-XN)o xl S xZ g ... I xN

the representation follows by setting T -(t 1 m)). and noting

that 1O) - a 1.

Let K& 1 , (nNmp) be the cumulants of S and let K[]

be the factorial cumulants of S. That is,

log ýM(t) K IV ] I•t/vl /

Then

1k1W E2

where 0jot are the Stirling numbers of the second kind.

Then, as N om,

V" (S- E(S))/cs

is asyptotically distributed by the standard normal distribution p -,

(mean 0, variance unity), whenever

Ax• 2- ,m .-'.

2 2
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From (29),

"N (i) N
log *m(t) - nm log(1-p) + I log(t-t ) +log(l+r.t)

N. k
(. _")k

Thus,

r v S I i - 0 <1

and

Then N

I 1Kj c, No (30)

since the $j do not depend on Nn,m, or p

lie now establish the following theorm.

)
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Theorem 6. V - (S-E(S))/oS has an asymptotically standard normal

distribution as N w *, whenever any of the following conditions are

sati stied.

1. "on 0, Ppi'P 1 and MM

Nh

2. m-p 0, (1.p)- 0 so that for some c > 0,

(imp) .+ot((lk)), 0 ( p 1. and

mnP ,D;•

)p + )p 
..,

3. • 0, (.-p) V c( + o( ), P 2! 1 and " "

N

4. r>o;

1. 2and 3 I log N
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Proof. From (11), we can write, for a-0 ,

K 2 U ~~(1-0'0- - tpeinC') + O(npcI) + 0(p2 al)

where o !2. Then, as a

K2 N(l -oft'/2) (aT a~p + Op) + 0(Nol) + 0(mn(%).

Then, if p p* 01 9

K2 Nct(l-p) + 0(Ncai)

and

K 3/2
- whancver -

N N

Similarly, if (1_ p) (mno) + C(0 )) 0 < 1, c 0

then

K Nci(1 .p) + o(Noi(l .p))
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and

K/2
2~ whenever amp

The conclusion is obvious whenever r > 0.

If a-* as N.-o, thenU

K 2 NoeMC +0 (Ne2 01)

and

S3/ 2U
2 whenever 3m. log N-0mo
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APPLICATION OF EXPERIMENTAL DESIGN TO THE EVALUATION Or EXPERT OPINION

Franklin E. Womack and Carl B. Bates

US Army Concepts Analysis Agency

Bethesda, Maryland 20614-2797

AiSTkAZ:. Expert opirior car be a valuatle source of informatlio to

tap in the building of a systeis model. At tne US Army Concepts Analysis

Agency (CAA), the compJter mcoel FORCEM (Force Evaluation Model) is used to

evaluate the theater-level co"tat system,. FORCEM is built and mainttined

by a group of CAA analysts. The corrrand and control part of FORCEM is a

logical surrogate for the field commander at various levels of combat I
(i.e., theater, army, corps, or division). A simulated war Is conducted by

exercising FORCEM. The command and control part of FORCEM is allowed to
perceive information about the state of the war through a perception data H
base. Using the information from the data base, it applies decision rules

for the further conduct of the war. In order to validate these decision

rules and make enhancements to the present model, 81 students at the Army

War College, Carlisle, Penrsylvania, participated in ar informatlon

gatnering experiment. Several dezisions fror, the conmand and control part

of FORCEM were presented to these eKperts in the form of a structured

experimental design. Infurration from the perception data base served as

factors for the experimental design, and responses were solicited from

chese experts. This paper discutses the experimental design employed ind

the statistical analysis performed.

Corwvents by panelists Drs. Kaye Basford and W. T. Federer are at the
end of this artical,
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1. INTRODUCTION. The US Army Concepts Analysis Agency developed the

Force Evaluation Model (FORCEM) during the period 1982-1935. FORCEM is a

fully automated computer simulation of a conventional theater campaign

treating combat, combat support, and combat service support in a theater of

operations. The model is used in studies of the capabilities of current

combat forces; requirements for support forces; and requirements for

personnel, supplies, and major items of equipment.

FORCEM is a time-sequenced model; each cycle represents 12 hours of

simulated time. At the beginning of each cycle, intelligence and

communications determine a set of perceived data for each headquarters

unit. Based on these data, command and control (C2 ) decisions are made.

Then the activities of the cycle are represented: combat movement and

combat service support.

Command and control representation depends on a perception data base

and decision algorithms. The decision algorithms are built into the model

and involve a set of input threshold parameters. This paper addresses a

study of the C2 decision algorithms.

2. PROBLEM DESCRIPTION. The purpose of the study was to verify or

enhance the C2 decision algorithms of FORCEM. The decision algorithms

considered are identified in Table 1. Each decision algorithm was exarnired

and the factors within the algorithm were identified. Naturally, some

factors are contained in more than one algorithm T..o 12 unique factors *1•

involved in the 8 decision algorithms are listed in Table 2.
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Table 1. FORCEM Decisions Considered

Number Decision

1 Assignment of New Corps

2 Assignment of New Division

3 Assignment of New Field Artillery Battalion

4 Designation of Posture of Online Corps r

5 Specification of Priority to Corps for CAS

6 Specification of Priority to Corps for CSS

7 Specification o+ Priority to Division for CAS

8 Specificatlon o' Priority to Division for CSS

Tible 2. Deci3ion Factors

Symbol Factor

A HMs Reserve Corps

B Corps Engagement Status

C Corps Force Ratio

D Location of ubjectivp of Corps/Posture of Corps

E Echelon to Whicn Corps Assigned/Has Reserve Corps

r Echelon to Which Corps Assigned

G Ratio of Corps Artillery Battalions to Divisions

h Location of Objective of Corps

I Posture of Parent Army

SJ Division Equipment Status

IK Oivision Force Ratio

L Lchelon to Which Division Assigned
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The levels of each of the factors are given In Table 3. Factor 0 is

actually a combinatiun of two factors (Objective Location and Posture);

however, all factor-level combinations of the two factors did not exist.

Only the six combinatlcns shown in Table 4 existed.

Table 3. Levels of Decision Factors

Level
Factor

1 2 3 4 5 6

A No res Has res

B No res Engaged

C ':3 1:1 3:1

D Rear/ Reachen/ Reached/ Fwd/ Fod/ Fwd/
Wiithdr Delay Defend Delay Defend Attack

E Reserv Onln/Yes Onln/No

F Reserv Online

G 1.00 0.25

H Rear Reached Forwird

I Delay Defend Attack

J No Yes

K 1:3 1:1 3:1

L First Second Third
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Table 4. Possible Location/Posture Combinations

Objective 
Posture

location Withdraw Delay Defend Attack

Rear
Reached 2 3_

Forward 4 5 6

All the factors within each experiment were completely crossed within

all other factors of the experiment. Consequently, all designs were

factorial designs. The factors and the number of cells are shown in Table

S. The sizes of the experiments range from 12 to 108 cells.

Table 5. The Eight Experiments

Decision Number of Number of
number Factors levels cells

1 Ax~xCxD 2x2x3x6 72

2 BxCxDxE 2x3x6x3 108

3 BxDxFxG 2xfx2x2 48

4 CxHxI 3x3x3 27
, V-2x1

5 BxCxF 2x3x2 12

• BxCxF Lx3x2 12
7 7 .xKxL 2x3x3 18X

8 JxKxL 2x3x3 18
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For each experiment, a questionnaire was developed that described the

scenarios defined by the factor-level combinations (cells). Subjects

(military officers) were asked to assign a criticality index (from 0 to

100) except for decision number 4. For decision 4, subject's response was

one of the four postures--Withdraw, Delay, Defend, or Attack.

3. TEST METHOD. The approach was to us students at the US Army War

College as subjects, use computerized questionnaires for each of the eight

decisions, and collect data from the Army "experts" concerning the

criticality of each of the scenarios of each of the eight decisions.

To test the feasibility of the planned approach, a pilot test was

conducted inhouse. Decision number 1, which involves factors A, B, C, and

D, was selected for the pilot test. Nine senior officers of the US Army g..

Concepts Analysis Agency were selected as subjects. In the pilot test,

only the high and low levels (1:3 and 3:1) were used for factor C (corps

force ratio). Five to ten practice questions (Figure 1) were given before

the 48 quistions of the 2x2x2x6 design were given to allow for any learning

effect. To assess the subject effect, Subjects (S) were treated as a

random factor (factors A, B, C, and 0 were fixed). Five of the cells were

replicated to provide an estimate of within error variance.

130

• •• •• •• •, ••., ,,.,,.



YOU WILL BE ASKED TO RESPOND BY ENTERING A NUMBER BETWEEN 0 and 100
based on the following scale of how critical
you think It is for the newly arrived CORPS
to be assigned to reserve status behind the
ONLINE CORPS. After entering a number hit 'XMIT'.

0 20 40 60 80 100

---..--.-----.---------.---.--.-..-.-.--...-.- ..-- ........-- - - - - -------- I---

NOT SLIGHTLY MODERATELY VERY EXTREMELY
CRITICAL CRITICAL CRITICAL CRITICAL CRITICAL

PLEASE HIT 'XMIT' NOW TO PROCEED

PAUSE 00000

WARMUP NUMBER 1

1. There is currently at least one CORPS assigned in reserve behind the
ONLINE CORPS.

2. The ONLINE CORPS is currently engaged.
3. The location of the parent Army's Objective Phase Line is now located
at the present position of the ONLINE CORPS' current forward phase line. .km

4. Assuming all divisions currently assigned to the ONLINE CORPS are in
place, the current posture of the ONLINE CORPS is defend.

5. Assuming all divisions currently assigned to ONLINE CORPS are in place,
the friendly-to-enemy combat worth force ratio is currently perceived to be
FRIEND:ENEMY (1:3)

PLEASE RESPOND BY ENTERING A NUMBER BETWEEN 0 AND 100
based on the aforementioned scale of how critical
you think it is for the newly arrived CORPS
to be assigned to reserve status behind the
ONLINE CORPS. After entering a number hit 1XMIT1.

PLEASE ENTER THE NUMBER NOW.

Figure 1. Sample Question
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An analysis of variance (ANOVA) was performed on the data. The ANOVA

model was

ya U+A+B+ C+D+S

+ AB + AC + ... + DS

+ ABCDS + R,

where y represents criticality Index; u is a true but unknown constant; A,

B, C, 0, and S are as defined above; and R Is residual. All effects

involving S were tested over MS(R), and all fixed effects were tested over

their corresponding interaction with S. That is, the F-ratio for testing

the factorial effect of factor A is MS(A)/MS(AS), and the F-ratio for

testing the AB interaction effect is MS(AB)/MS(ABS). Some of the Subject

variance components were statistically significant; however, the four fixed

effects factors accounted for over 150 percent of the total variability.

The ANOVA results were used to give a hypothesized "significant" model

for fitting. Dummy variables were used for the qualitative factors and

regression analysis was used to develop a prediction equation. This

prediction equation provided the model to be compared with the current

FORCEM algorithm for the particular decision. The comparison is shown in

Table 6, which contains the regression model predicted values, the 48 cell

means, and the current algorithm priority. The first and the forty-eighth
..,

priorities of all three priorities agree. Also, the first six to seven and

the last five of the regression model and cell mean priorities agree.
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Table 6. Comparison of Models

Regression model Cell mean Present
predicted value critical index FORCEM
and priority and priority priority

1 99.4 1 96.2 1
2 92.6 2 91.4 13
3 79.8 3 79.3 25
4 72.9 4 77.8 37
5 64.6 5 67.1 3
6 57.8 6 650 15
7 54.4 9 :4.5 5
8 53.8 7 62.1 7
9 53.6 8 58.4 2

10 47.5 12 43.4 17
11 47.0 14 43.3 19
12 46.8 10 47.8 14
13 45.4 11 44.5 9
14 45.0 13 43.4 27
15 41.8 15 40.0 26
16 38.6 17 35.8 21
17 38.1 21 32.4 39
18 37.5 18 35.6 11
19 35.0 22 31.1 38
20 34.8 16 37.7 29
21 34.2 25 30.0 31
22 33.8 19 34.4 4
23 31.1 20 32.5 8
24 30.7 24 30.5 23
25 27.9 27 26.7 41
26 27.3 30 24.7 43
27 26.9 28 25.3 16
28 26.1 26 28.4 6
29 25.8 23 30.6 33
30 25.4 31 22.3 10
31 24.3 29 25.1 20
32 22.0 37 17.7 28
33 21.3 33 19.0 12
34 19.2 40 14.7 32
35 19.3 36 18.0 18
36 18.9 32 20.1 45
37 18.5 38 17.7 22
38 17.9 34 18.1 35
39 15.1 35 18.1 40
40 14.5 44 12.8 24
41 14.3 41 14.6 30
42 13.5 42 13.0 34

43 12.5 39 17.2 44
44 11.0 43 13.0 47N
45 9.5 45 10.7 3646 7.5 47 8.5 42
47 6.7 46 8.8 46 w48 2.7 48 5.5 48
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The regression model equation was considered to be an adequate fit of

the dati for the intended purpose. Consequently, the pilot test was

considered successful, despite the fact that the results of the developed

models were iniconsistent with the algorithm priorities. The decision was

made to proceed with the project as planned.

4. DATA COLLECTION. A questionnaire was computerized for each of the

eight decisions in Table 1 and administered to a group of students

(Subjects) frcm the US Army War College. The experiments were administered

on four afternoons during December 1985 and January 1986. Each afternoon

consisted of two 2-hour sessions with approximately 10 subjects. The

allocation of subjects to experiments is shown in Table 7. Experiments 1,

2, 3, 7, and B were administered to 20 subjects, experiments 5 and 6 were

administered to 21 subjects, and experiment 4 was administered to all 81

subjects.
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Table 7. Allocation of Subjects to Experiments

Decision Number
Group of

(zesston) 1 2 3 4 5 6 7 8 subjects

1 X X X 10

2 X X X 10

3 X X X 10

4 X X 10

5 X X X 10

6 X X 10

7 X X X 100

8 X X X 11

5. ANALYSIS. In addition it was recognized that the present FORCEM

decision could be writtten as a linear equation. In decision #1, one online

corps among several candidates must be chosen by the theater headquarters

to receive a newly arrived corps in reserve. The factors used to make this

decision are A, B, C and D discussed In Table 2 above. Each candidate has

a specific set of four values associated with it. Each such value corre-

sponds to a particular level of one of the factors as discussed in Table 3

above. For each candidate, the equation Y -55 - 36.A + 18.B - C + 3.D

is evaluated using the four values associated with it. The Y value so

calculated is the priority for the candidate. The candidate corps whose

priority is larger than all of the other candidates is chosen to receive
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the newly arrived corps in reserve. If two or more candidates tie with the

largest priority, no decision can be made based on these factors. In this

case, each of the four values for these candidates would be equal. This

would imply their equivalence in relation to the four factors considered.

A more fruitful analysis could be obtained if the subjects' responses

could be transformed to a response similar to the priority value assigned

to each online corps by the present FORCEM algorithm. One transformation

that showed definite promise was the rank transformation. The rank

transformation used consisted of ranking each subject's response from 1 to

N, where N is the number of cells in the particular design (N - 72 for

Decision #1). The smallest criticality index, usually a zero, was assigned

the value 1 and the largest criticality index, say 100, was assigned a 72.

Where several responses of the subject had the same value (i.e., ties), the

average rank was used. The rank transformation did not seem to affect the

overall results obtained in the original cell means model, and had the

added advantage of being directly testable against the present linear model

of the FURCEM algorithm. Using the ranked responses of the military

experts and estimating coefficients of the same linear model of the FORCEM

algorithm, the equation Y - 62.4 - 15-A + 3.94.B - 12.1.C + 4.27.D was

obtained. However this model lacked fit and a better model was obtained by

adding terms related to the significant cross products of the cell mean

model, Y u 50.0 - 9.57.A + 10.4.8 - 14.2.C + 17.1.U - 6.17.02 + 0.698.D -

4.28.A.B + 0.588.C.D. Testing the null hypothesis of no difference be-

tween this model and the model of the FORCEM algorithm, one obtains a
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calculated F ratio of 215.3. This is much larger than F(9,1368,.95)

1.92. This implies that the hypothesis of no difference between the models

must be rejected.

Decision 4, Designation of Posture of Online Corps, was treated

differently from the other decisions because it involves an ordered

categorical response variable. The response variable is posture. The

subject was required to choose the most appropriate posture for a given set

of input factors. The choice was attack, defend, delay, or withdraw. The

factors gave a structure on which to base the experiment; however, each

cell was analyzed independently of the other cells. The factors C, H, and

I are described in Table 2, and the levels are shown in Table 3. In

FORCEM, a definite posture must be assigned to a corps given a set of

factor levels. A posture assignment is unique for a given set of factor

levels and is given to each corps possessing a particular factor-level

combination during a run of FORCEM. In the real world posture assignment

would probably be stochastic rather than deterministic. An approach to

dealing with this statistically is to test each cell with a simple

statistical hypothesis test. For each of the 27 cells, the null hypothesis

for the cell is that less than half of the expert population chooses any

one of the postures. The alternate hypothesis, the statement desired for

the cell, is that more than half of the expert population chooses one

cormnon posture; i.e., a "majority" posture. The test takes the form of

HO: p ý 0.5 and HA: p >0.5. The random variable XI (I a I to 81, for

sample of 81 expert subjects) takes on the value 1 when a subject picks the

posture with largest number of responses (i.e., the "favored" posture) in
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the cell under consideration; the probability that Xi - 1 is p. The random

variable Xi takes on the value 0 if the subject picks any other posture;

the probability that Xi a 0 is (I - p). If there is a tie for the favored

posture, the test cannot logically result in a rejection of the null

hypothesis. Assuming there is a favored posture, a test must be

constructed to decide whether (1) to reject the null hypothesis or (2) not

to reject the null hypothesis because of insufficient evidence to the

contrary. The appropriate distribution is the distribution of the sum of

the random variables XI. This is the binomial distribution with parameters

N w 81 and p a 0.5. A critical region must then be determined for which

the null hypothesis is rejected when in fact true with no more than a

stated probability. This probability is referred to as alpha, the

significance level of the test. For the case under consideration,

(N - 81), alpha - 0.05, the critical region corresponds to a count of

responses of K - 48. For alpha - 0.01, K a 52. On this basis, the count

for each of the 27 cells is tested in the hope of rejecting the null

hypothesis. Table 8 displays the results of the test. The favored posture

is designated in the cell for the given levels of the factors C, H, and I.

The number of subjects of the total of 81 choosing the posture is indicated

in parentheses. Double asterisks (**) indicate that the null hypothesis

can be rejected at the alphd - 0.01-level of significance, and a single

asterisk (*) indicates that the null hypothesis can be rejected at the

alpha - 0.05 level. For the remaining cells (those without asterisks),

there is insufficient evidence to reject the null hypothesis; indeed, as

noted in the table, for some cells there is no favored posture.
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Table 8. Decision 4 "Favored" Postures

Posture Location of objective
of parent Force

army ratio Rear Reached Forward

Delay 1:3 Delay (51)* Defend (42) Defend (56)**

1:1 Delay (47) Defend (46) Defend (51)*

3:1 Delay (31)# Defend (39)# Attack (58)**

Defend 1:3 Defend (37)# Defend (72)** Defend (68)**

2:1 Defend (47) Defend (70)** DeFend (52)**

3:1 Defend (38)# Defend (53)** Attack (70)**

Attack 1:3 Defend (59)** LUefend (61)** Defend (51)*

1:1 Defend (53)** Defend (49)* Attack (43)

3:1 Attack (52)** Attack (6/)** Attack (81)** .,

Key:

**: significant at dlpha = 0.01

*: significanrt at alpha = 0.05

#: no majority posture

1.39
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6. SUMMARY. Concerning the seven experiments havinq criticality as

the response variable, the smaller experiments appeared more successful

than the larcer experiments. Subjects' responses sugi;est the*. the s:ýala C-

to 100 is too large a scale. Most subjects assigned values by lOs--i0, 20,

30, ... ; some assigned values by E%--5, 10, 15, ... ; and very few assigned

by unity such as 17, 43, or 83. Large experiments may exceed the S

differentiality of subjects. There was diso evidence that all subjects

were not on the same scale. Some tended to use the lower portiln, sor"m the

center, and some the upper portion of the scale. Hetrogeneity was also a

problem. This alsu seemed more severe with the larger expcriments.

Concerning the Pxperiment with the discrete respense, it wac nct felt

that the analysis employed was the most appropriate. Time did rot permit

further study and research of the problem.

Finally, if subjects employed are indeed experts, the .tatictical

methods of experiqsrntfl design, ana.ysis of variance, and regression £

analysis have potential for verific.ation of algorithmb of simulation

models.

II

-A

1/40

% ! I



COWCvTS V PARELISTS DR. KAYE IASFOPX AND) PR~lSSOR w. 7. FEhERER

ON~ THE FOLLOWdRCJ.TICAL

App11cat Mofr iawmntal arig to the evaluation of winport

Opi"Aar by

Fran3lin W., hWMso

"n Carl B. B~tet

U.S. Arq/ Cancapvs. Analysis Age~cy

laye 13stord: 11w' authors a.*4 attw~pting to val~idate deeaisim
rulip; &Wt vke e rlancwnews tco thF present UdIel

t~aied on reiprnses (row. 61 s'Z~den!i t 0the' Awn, Rat

(x.cliuqe. This sp~oas.' to bE. a differc- population

ftt'o the one' uWe to originally specify the wD~el.

Thus ditferint answe'rs could be & r~sult of the

differing populatiwmi ratheur thaui just a larer

sapple, trva the saws populiation.

We.T. Fm'deru': 7*fl U.S. Arvy Corxwpts Analysis genrvy (CAA) has a

oowputuir wodIl FVECX? vwrmir. the oowwnmdz Lid

oonrolv pert can be used by a fN.ld co'wmnuder at
various levels of ooffbat. Expert opinlion is a wil-

~uble otmpordmt of such a systema wodel. Using

FORZM, a f ie ld cvwrm~nder car. wakv dec is ions abou~t

Owa futvur -r1 mt or a wr. In order to fu~rther

iwpi-oro. FO-M 91 students frow the "-'w, r

CoI leohe p&r ic ipated irI&f an nforWu' or g~ktIwr irr

systemr. To this witer, it w~uld appear that thE

use of FflFED' vntld be ocostwse efficieni if cumr

UmJniert. -inulatec' a, wsr rather thar. actually field

testing~ e~k-rylhinq I t is r-eas:-ed that fin~al

dpcisioris frorr. any siwulation should be fiedd

tested but oonsiderable insight car, b* gaxi'ud frvn

siwulationt wxid &t a i-eliurily low: oott.



fA nuyyber of experiwents vx-re conducted xsirn a

factorial treatmnt design and gmuos of 20 (21 in

one oase) students in an experinent. Tiw response
variable was a criticality sooPw (zero to 100)

except for one response variabli. The witers used

an effect by subjects interactian as an error an I
"square tur each effect. 1Why wren't wnm inter-
aotions with subjects pooled to ism are degrees of

freedom in an error term? Why ussn't aa analysis

perftorw on the eight decisions arid eight grouI

sessions in Tablw 7? Also, tim regressiun n'del

used needs wme explarmtIon. Presumbly, this is a

Imn effects regrssion Yridal with the %tght

decisions as the eight idxepenment variables in the

regreasion equation. Iti the interactions are soll

conpered to wmin effects, it wuld be expectd• that

the aegreennt britmen prdiotud vaalrs from

regression and reii imurs wuld be good (swm Table

6).
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ANALYSIS Or AN INCOMPLETE BLOCK DESIGN WITH MISSING CELLS

Wendy A. Winner
Jill H. Smith

Dii ertcr.
U. S. Army Ba-lle Research Laboratory

ATTN- SLCBH-SE-1.
Aherdevri Proving Ground, NIL) 2100ýi-5086

Abstract

The Ballislic Research Laboratory (BRL) condduct~ed in intersc-
tive Firepow"er Control Experiment from 2 thru 20 Detember 1985
to ucquire knowlodge on ho,. military personnel make tactical fire
control decisions for field artillery, and, for the firt time, automati-
c,ally colleeted data on the digital communications betweeni the field
ae~ti~lery battery Fire LDirec-tion C'enter (FA btry FDC) and simu.
lated 155m-rm bowitzer firing units. *rhis later portion of the experi-
ment. the Battery Fire Direction Center (Btry FDC) portion, was
designed to test 3 levels or the number of howitzers per battery, 3
levels of sinmultaneous mi~sions, and 2 leve6L of fire inissioo control
ratios with each other. The intended desigm was three replications
of a 3 x 3 ), 2 factoi tal with the linear Howitzer x Mlission interac-
tion blo'cked b% day. Unforeseen softwAare problems precluded the
cornplei on of th- design fr'r this controlled l&oboratory experiment,

Aa result, informal iv.e dat a m a.s onlyv collected for twelve of the
eighteen trcatniwn combinations of a single replication, At the
conference, expe-,t idvi~e wa.; solicited on the appropriate method
of anayiF rd the sppropriate ronclu-.ions to draw from the

on!~~ i da:t a cie lfrom t his ex perinwnt *

LCriuiiets by panelists Drs. Kaye Besford and W. 1. Federer are at the
end of this a-tica). a
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1. Introduction

The Batlistic Research Laboratcry (BRL) conducted an interactive Firepower Con-
trol Experiment from 2 thru 20 December 1985 to acquire knowledge on Fire Direction
Officers' (FDOs') tactical fife coutrol decisions, and, for the first time, automatically cot-
lected do-ta on the digital communications between the field artillery ba~tter,, Fire Direc-
tion Center (FA btry FDC) and simulated 155mm howitzer firing units. The objectivesk
of this experiment were (1) to collect data on the FDOs' decisions on the type and
volume or howitzer fire for selected targets, and (2) to characterize the net utilization
between the Battery Computer System (BOS) at the btry FDC and the Gun Display
Units (GDUs) at each howitzer of the firing btry. These two objectives were achieved
by conducting a controlled laboratory experiment that simultaneously focused on these
two independent objectivns, i.e,, portions, of the Fiiepower Control Experiment.

II. Test Configuration and Design

To run the portions together, the BRL integrated a commonly shared database,U
uniquely developed BI3R simulators, and a combination of tactical and commercial com-
pilter equipment interfaced by a 13RL "Bit Box", i.e., a modem between GDU protocol
and standard, commercial computer RS232 protocol. Officers from the U.S, Army Field
Artillery School, Fort Sill, OK, participatei as FDOs and I3CS o)pvrators while BRLl's
interactive bilnulators emulated forwerd observers (i.e., the Multiple Forward Observer
SCEnario simuilator, MFOSCE,), the Tactical Fire Direction System (TACFIRE) bat-
talion FDC (i.e., the Fire Direction Simulator, FDS), and the firivg btry (i.e., the Gun
Display Unit Sinwl':.tor, GUNSINI). Figure 1 outlines these major components of thle
laboratory setup. andl Figure 2 depicts their field counterparts.

Six different test cells containing sixty targets each were developed from a Scenario
Oriented liecurring Evaluation System Eurort--i, Sequence 2A (SCORES 2A) division
siice. E'ach test ceil %as developed to contain an identical mlixture of twe~ty different
tgrget. types. Thý- ,ixty tarrt41t in ,ach test cell ware randomized, and the six test cells
wcre used to lpro-IIIe ai total of vightee-i scenario test cells. All targets in each tesit cell
were forw~arded to the FI)()rfir selection o! a i.ypc and volume of fire. Twelve pre-
identified targets of the sixty i~rgets were acent to the OCS operator a~s fire missions, i~e.,
targets to be fired on with the spncifled type aiid volume of fl~e. It was hypothmsized
that the LICS would require an houtr or testing to tirc all twelve fire missions and that all
additional forty-eight targets Nyould be needed to "load" the FDO for an hour of teiting. 4ý

In (!esignirg the experiment, it was imaplicitly assuimed that the FDOs' decisions on tar.
gct5 being forwarded to the J3CS for simulated n-ring wo-ild not affect the htry FDC
portion's measurei of per'ormance. ru~

The factor8 rf'jr the [DO Iort ion of the experiment were (1) FDO, (2) target type
ar'd subt3 r-ý, (3) target !;ize, ('in) type of fire mission control, and (5) the initial aminlink -r
tion load 'Figure 3). rhie r.-cta)rs for the btry FI)C portion of the experin.ent were (1)
the number of siinultativous firt missions at the 13(1, (2) tl,Ž nuimber of howitzers in the I4
htry, arid (3) the fire miission conitteI ratios (Figure .1). 'Ihe levels ot each of theseN

%
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" FDO

3 levels, i.e., 3 FDOs

"* TARGET TYPE AND SUBTYPE

10 levels, i.e., 10 different target descriptions

"* TARGET SIZE

2 levels, i.e., 2 sizes per target type and subtype

"* TYPE OF FIRE MISSION CONTROL

2 levels, i.e., adjust fire and fire-for-effect

"* INITIAL AMMUNITION LOAD

3 levels, i.e., 100%, 80%, or 60% of a basic load

-v

Figure 3. Factors and Levels for the Fire Direction
Officer Portion of the Firepower Control Experiment
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* NUMBER OF HOWITZERS IN A BATTERY

4 HOWITZERS

6 HOWITZERS

8 HOWITZERS

* NUMBER OF SIMULTANEOUS MISSIONS

1 MISSION

2 SIMULTANEOUS MISSIONS

3 SIMULTANEOUS MISSIONS

* CONTROL RATIO OF THE FIRE MISSIONS

2 ADJUST FIRE: 1 FIRE-FOR-EFFECT

1 ADJUST FIRE,. 2 FIRE-FOR-EFFECT

Figure 4. Factors and Levels for the Battery Fire Direction
Center Portion of the Firepower Control Experiment

148

__



gm

factors were selected as factors the BRL was interested in testing. First, for example,
the BCS is only designed to handle up to 3 fire missions at time. Second, each BCS
currently handles 6 howitzers in the field and future alternative considerations may have
the BCS handle 4 or 8 howitzers. Third, fire mission control refers to how fire is
directed on the target. For all Adjust Fire (AF) missions being sent to the BCS opera-
tor, a default of two "adjustments" (consisting of a total of two High Explosive rounds)
were fired to better locate the target's position before the expenditure of the btry vol-
leys, i.e., the Fire-for-Effcct (FFE) portion of the fire mission. In the case of FFE mis-
sions, the observer has accurately located the target, and it is unnecessary to "adjust"
before firing the btry volleys.

During the first week of testing, the BCS operator noticed anomalous behavior of
the firing btry simulator, GUNSIM, in comparison to the actual tactical equipment.
While GUNSIM was modified, the FDO portion of the experiment was run. As a result,
these unexpected software problems precluded the completion of the design for the btry
FDC portion of the Firepower Control Experiment. The remainder of this paper will
focus on the appropriate nethod of analysis for the data collected and computed from
this portion of the experiment,

III. Battery FDC Portion of the Experiment

1. Design Matrix and Measures of Performance

The intended design was three replications of a 3 x 3 x 2 factorial with the linear
flowitzer x Mission interaction blocked by day (Figure 5), The purpose was to measure
the effect of these factors and their interactions on the btry fire direction (FD) net's
message traffic. Two different responses were computed to measure message traffic.
The first, net utiliZation, is computed by dividing the total transmission time by the
total time required to complete the simu!ated firing of the twelve fire missions associated
with a treatment tombination. The significance of the btry FD net's usage in the
battlefield is that higher net usage increases the enemy's opportunity to detect the loca-
tions of the btry F'I)C and the 15&5rmm howitzers. Presumably, detection would lead to
enemy d(estiruction of these important assets. The second, the average number of me.-
aaje8 per minute, is computed by dividing the total number of messages for a particular
treatment by the total time requited. This indicates the number of times the tactical
equipment must be turned on anid off to transmit and receive messages. Both of these
measures are important indicators of btry FD net usage when radios (rather than wire)
will link the FA btry FDC and future semi-autonomous howitzer systems.

As previously mentioned. mid-experiment software problems did not permit the
completion of this design. Subsequently, data collected under experimentally controlled
conditions was only available for twelve of the eighteen treatment combinations of a sin-
gle replication of this design, specifically, days 2 and 3 of the design matrix in Figure 6.
This paper will focus on the analysis of the avwrage number of messages per minute for
these twelve treatment corrbinat ions.
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Day Hu Number of Howitzers Number of Missions AF:FFE Ratio

1 1 4 2 2:1
2 4 2 1:2

3 0 1 1:2
4 0 1 2:1

6 3 1:2
* 8 3 2:1

2 1 8 1 1:2
2 8 1 2:1

3 4 3 1:2
4 4 3 2:1

6 0 2 2:1
8 2 1:2

3 1 6 3 2-1
6 3 1:2

3 82 1:2
4 82 2:1

54 1 2:1
o4 1 1:2

fR

Figure 5. Design Matrix for Each Replication of the Battery
FOC Portion of' the Firepower Control Experiment
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2. Average Number of Messages Per Minute

Six different fixed format. messages can be transmitted on the btry FD net, and
each of these messages has a different purpose and fixed message format, Message types
A, B, C and D correspond to messages associated with instructions from the BCS opera-
tor to the btry personnel via the GDU located at every howitzer, and message types E
and F are the messages associated with polling between the BCS and GDUs (Table 1),
i.e., requests and responses for the firing status of each howitzer. Before the body of
each of these messages, a preamble (i.e., a continuous 1200 hertz sine wave) is transmit-
ted for a specific time to allow the transmitting and receiving equipment to reach
operating conditions. The minimum specification preamble for BCS and GDU messages,
i.e,., 250 milliseconds, was used for all message preambles on the btry FD net.1 During
the experiment, all message preambles on the btry FD net were fixed at 250 mil-
lisecoi(ds,

Table 2 presents the average number of messages per minute for the twelve treat-
ment. combinations hr'oin the experiment, From scanning this table, the average number
of miessages for the treatment combination 6 howitzers, 3 simultaneous missions, and a
2:1 AF:FE control ratio is low compared to the surrounding treatment combinations.
A detailed investigntion revealed that the busy BCS operator failed to act on the first
several transmissions of a critical mission message, and for another mission, the operator
sent. an erroneous message creating approximately 4 minutes of net silence. The net
result of these actions that t he, I3S operator was essentially only actively working with
2 of the 3 mission buffers, Forn this data, the BRL wanted to determine if the number
of howitzers, simultaneous missions, control ratios or their interactions had a significant
effect on this measure of performance, and solicited expert advice on the following pro-
posed method of analysis and om suggestions for alternative methods of anstlysis.

IV. Analysis of Battery FDC Portion of the Experiment

!. Proposed: Cell Mean Estimation Proceduro

'h, ('cell mt'i ns model( iquatiot for the btry FDC.! experiment is.-'.,'".

Yijkn " P + (, W 'i + (("")Ij + + k + (A +(k + + (a*H')ijk + Oijkn

where

Yijkn observation for control ratio level i,
simultaneous mission level j, howitzer

"Extereai Interf&ce specification fcr ompuler (ijo Diret ion C 1'.137i ). (IYK.20 ['art of the Computer Syst.m. G;u Dire~tion

AN GYK-.1( ) (V U united Technologies ('orportlnu--Nordeu I),vioion .;pecilicatioa No EI,-(T.2678i-TF 31 October 1981
3 14 3 18 p 55
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Table I. Message Formats and Message L•Agth2sA2

Meusge Message Transmitted Transmitted Lengtb

Code by to (in characters)

A Common Data BCS GDLrs 43

B Common Sp1eial BCS GDts U
C Individual Ga Order BCS GDLU 2.7

D Control BCS GDI.'s 13

E Request BCS GDL: 11

F Response GDLU BCS

Table 1. kverage Number of Messages Per Minute
Transmitted on the Battery Fire Direction Net

SIMULTANEOUS CONTROL NUMBER OF HOWITZERS
MISSION(S) RATIO PER BATTERY

(,kFFFE) 4 s £

31 2.51-5

112 .1508 .1589

31l I 34.,jQ 36 10

Its ,0 969 40g93

111 41 19 .29.71 '

lI i 42173 42 R8

_ _ _ _ _ _ _ _ ___j

eBbed 02l 10 wtrlts 00S 12•mFu, msled SHOT wiss4* &ajd acorretly test &at .%(f0 meliu,
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level k, and observation n

pJ overall mean

oaI effect of control ratio level i, i=1,2

effect of simultaneous mission level j,
j=1,2,3

"7k effect of howitzer level k, k=1,2,3

(01•))k effect of blocking

(OR)IJ, (cfl)k,
(a1'y)Ijk two- and three-way interactions

eijkn error for observation Y1kn which is distri-
buted independently and normally with
mean 0 and variance a2, ie., N(0, Cr2 )

This model Is overpararneterized for the btry FDC experiment since observations are
missing for six cells. It was recommendedt that a cell mean estimation procedure using
the basic linear model could be employed to estimate the six missing cells, 2

Using this procedure, estimates for the missing cell means can only be made if the
model is constrained by assuming one or more interactions are zero. The application of
constraints, however, may not relate all missing cell means to the other observed cell
means, and will yield one of two types of models: (1) connected models where all means
of the missing cells are linearly estimable and any linear hypothesis on the cell means
can be tested; and (2) unconnected models where not all missing cell means are estim-
able and the bypotheses of interest may still be tested. If one can justify the constraints
necessary to produce a connected design and the constraints are valid, then stronger
conclusions can be drawn; however, constraints should not be applied to just produce a
connected design. Hocking also notes that there are varying degrees of connectedness,
and the application of additional constraints increases the precision of missing cell mean
estimates.

For the btry FDC experiment, the first reasonable constraint would be to assume
that there is no three-way interaction Howitzer x Mission x Control Ratio, i.e.,

((,0I)Ijk m 0. Based on this assumption, the missing cell means, 15ijks, can be estimated
by the following equation:

lock 0. Grynovicki, U 9 Army Ballistic R,.search Laboratory, Aberdeen Proving Ground. MD

2 Hocking, Ronald R , Thii An.lJysis of Liner Models, Monterey, CA Brooks/Cole Publishing Company, 1986
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PA k-P i' jk-Pij'k +P?'j'k = Pijk' - Pi'jk' -/Jij'k' +P/A'k'

where

i,it = 1,2: i .7 it for the control ratio levels

j,j' - i,2,3; j F jt for the simultaneous mission levels

k,kt = 1,2,3; k 7 kt for the howitzer levels

.Aowever, this constraint yields an unconnected model with none of the six missing cells
being linerly estimable. Based on the design assumptions, anothor reasonable assump-
tion wo~ld be that there is no Howitzer x Missiun interaction, i.e., (I'/)jk = 0, in addi-
tion to no Howitzer x Mission X Control Ratio interaction. Based on these two assump-
tions, the missing eel! moans can be estimated by the following formula:

PAk - P' k - Pijk' - Pil' k'

These constraints provide estimntes for the r missing cell means, and the associR','d sin-
gle effective crnstraint is

Pill - P 113 - P122 + P123 - P131 + P132 = 0

Using these constrmints, the missing cell means can be related to the observed cell means
as follows:

P112 = 113 -P123 + P122 = 26.80 - 38.10 + 34.99 = 25.60,

P212 P P213 - P223 + P222 = 25.89 - 40.93 -,. 40. = 25.92 ilk

P 121 P123 - Ptj3 + P II = 36.10 - 28.80 + 24.51 = 33.81

P221 P213 - P023 + P211 = 40.93 - 25.89 + 25.08 = 40.10,

P133 = P33 -Pitl + Pil = 41.19- 24.51 + 26.80 = -13.48

"P233 " 11231 - P211 + P':3 = 42.73 - 25.06 + 25.89 = 43.58

Table 3 proe,des the estimates for the 8 inissing treatment combinations along
with the 12 treatment combinations from the experiment. By using the values in this
table, an analysis of variance (ANOVA) waE performed and is provided in Table 4.
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Table 8. Observed a&Ld Estimated Average Number of
Messa, ges Per Minute on the Battery Fire Di•ction Net

SIMULTANEOUS CONTROL NUMBER OF HOWITZERS
MISSION(S) RATIO PER BATTERY

,_ . iAF:FFE) ,4 8

21l 24.5A 25.69t 20.80

1:2 25.06 25.92t 25.89

2:1 33.81t :34.99 " 36.10

1:2 40. 10t 40.96 40,93

2:1 41.19 29.71 " 43.48t
3

112 42.73 42.88 43,56t

tEstimated.
*Based on 10 targets.

"FDO missed SHOT message and incorrectly sent an MTO mesage. % V
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I
Table 4. ANOVA on the Effect of the Factors
on the Average Number of Memsages Per Minute

SOURCE DEGREES OF SUM OF MEAN F
FREEDOM SQUARES SQUARE RATIO

Howitzers 2 22.8559 11.4280 0.32

Missions 2 760.0711 380.0356 10.83

Control Ratio 1 55.6864 55.6884 1.56

Howitzers X Control Ratio 2 21.0985 10.5493 0.30

Missions X Control Ratio 2 29.4570 14,7285 0.41

Pooled Error 2 .1.4755 35.7378 -

Total 11 960.0444

F2,2,•-0.056-- 10.00-
Fi,2,o. 0.o0 = 200
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One should note that the Howitzer x Mission x Control Ratio and the Howitzer x Mis-
sion interactions were pooled for error since it was assumed that these interactions were
not significant in the cell mean estimation procedure. From Table 4, one concludes
that none of the main effects or two-way interactions are significant at a = 0.05 based
on the assumptions of no Howitzer x Mission x Control Ratio and Howitzer x Mission
interactions. If either of these assumptions are incorrect then the pooled error is biasedt
using a biased error value lowers the F ratios and can result in factors or their interac-
tions being statistically insignificant.

A consequence of using this cell mean estimation procedure is that one-third of an
unreplicated design was estimated based on two assumptions. The resulting ANOVA
!ailed to detect any significant main effects or interactions despite seemingly differences
between certain levels of the factors. Additional experimentation would be required to
test if the assumptions associated with the cell mean estimation procedure were justified
and more confidently determine the conclusions of no significant main effects or interac-
tions. In lieu of additional testing and this cell mean estimation procedure, the panel
recommended paired t tests.

9. Suugestedi Paired t Tests

Based on the panel's suggestions, paired t tests were performed on the datis to test
for a significant difference between the means, i.e., the average number of messages, of
the levels of each factor assuming no interactions. The null hypothesis, H0, for each test
was that there was no differerce between the means of two levels of a factor versus the
alternative hypothesis, H1, that the men.n for a given level exceeded another. This one
sided alternative hypothesis wai not rejected only if the difference between the means
was significantly greater than zero.

An overall paired t test was computed for the difference between the 1:2 and 2.1
AF:FFE control ratio levels under the same howitzer and mission levels, i.e., 6 paired
differences. H0 was not rejected since the computed t statistic at a significance level of

-- = 0,05 was close to but did not exceed the tabled t value It r= 2.015. This was a
bit surprising since only "one GDU's worth" of me3sages are requested and transmitted
for each "adjustment", and each "adjustment" requires "one round's worth" of time.
Thus, one would expect the average number of messages per minute fot a 2:t AFFFE
control ratio to be lower than a 1:2 AF:FFE (,,ntrol ratio,

In addition to this paired test, two other paired t tests were momputed; one with
the pairs by howitzer level and the other with the pairs by mission level. In computing
these tests, two difference pairs were obtained for each howitzer and mission level by
computing the difference across a specific control ratio level. H0 was rejected if the com-
puted t statistic exceeded the tabled t value at a significance level of a = 0.05, i.e.,
t, 6f= 6.311. Only two of the six null hypotheses could not be accepted ai a
significance level of a = 0.05. First, 110 was not accepted between I and 3 simultaneous
missions for 4 howitzers. This supports the expectation that as the number of simultane-
ous missions increases more missions are handled in a shorter time, i.e., the average
number of messages per minute increases. However, no significant difference wa4s
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detected at a = 0.05 between 2 and 3 simultaneous missions for 3 howitzers, or between
I and 2 simultaneous missions for 8 howitzers. Second, Ho was not accepted between 6
and 8 howitzers handling 2 simultaneous missions. This also supports the expectation
that as the number of howitzers increases more howitzers are sending and receiving mes-

sages in essentially the same amount of time, i.e., increasing the average number of mes-

sages per minute. Similaly, uo significant difference was detected at a = 0.05 between
4 and 8 howitzers handling 1 mission, or between 4 and 6 howitzers handling 3 simul-
taneous missions.

V. CoUClusIGsAu

The data colleted from the btry FDC portion of the Firepower Control Experi-
ment suggests that different procedures should be considered to reduce btry FD net
usage when radios will link the FA btry FDC and future semi-autonomous howitzer sys-
tams. The oai'ed t tests on the average number of messages per minute detected a
Eigniflcant difference at a = 0.05 between 1 and 3 simultatneous missions for 4
hcwitzers, Knd 6 and 8 howitzers handling 2 simultaneous missions. Although this sup-
ports our initial debigi, essumptions that the number of howitzers and simultaneous mis-
sions significantly affect the usage of the btry FD net, it also clearly points out that
completing the intended design could halve produced more confident conclusions.

I.
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COW9ENTS BY PANELISTS DR. KAYE BASFORD AND PRO'FESSOR W. r. FEDERER

ON~ THE FOLLOWING ARTICAL

Analysis of an Iomoulete block design of experiwants by

Wendy A. Winner

and Jill H. Smith

U.S. Arw' Ballistic Resalc Laboratory

Kaye kBastrd: Because full data vare not collected an the original

designed experi~mnt, I suggest that it be analysed in

a ,wnh sinplor may. For instance, simple t tests or

non-paranutric tests could be used to conplare fire

mission control ratios ovwr all howitzer and! mission
letvls. Although not giving the detail of the planrwd
anialysis, it should allow soye information to be

obtained from the data collected.

W.T. Feodererir fli resulting design is a tuo-thirds fraction of a

2 x 31 factorial of the following niature:I'

1:2 2:1
b b

x I M

mhere x denotes coonnt ion present and! blank dervotes

looft~ination absent. In the abol fraction main

effects will be estimable as uell as 12-(l1+12+2) .26

dog.ees of feeom f or intoractions. 71ims 6 degrees
of freedom are A xB (2 Cf.), A xC (2 d~f.)

B (linear) x C (linear) (I d.f.), and Ai x B (linear) N01I
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)C C (lirmar) (I d.f.). Unless it mare knownm that one

or vame of the degrees of freedom tar interact ion
represeted super iwonta I error no erro ian square

would be available for testing the significance of
the effects. For no available error wean square, It

Is s~igested that use be umde of Cuthbert Denial1's
half norwmi plot procedure to ascertain viiob of the
eleven treatwent siwple degrees of freeoI sums of
squares vere alike and mhich were different. If the

similer, contrasts responding similarly could be
considered as possible cardidates for no treatwent

effectsi then an error term oan be obtained using
Cuthbert Denial's procedure (sew e.g. S.A. Brans
(1963) "Half nrwvml plots for multi-lewil factorial
experimantsg Prco. Eighth Conf. Design Expt. ArpW

Res. Dev. Testing, pp 261-265).
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A HEURISTIC APPROACH TO POST - HOC COMPARISONS FOR SIGNIFICANT
INTERACTIONS - A SIMPLIFIED NOTATION

Eugene Dutoit

U.S. Army Infantry School

Fort Benning, Georgia

ABSTRACT:

The omnibus F ratio test used in analysts of variance is used to
determine if any of the main or interaction effects are statistically

significant. Customarily, various techniques are used for performing
post-hoc comparisons on the statistically significant main effects. The

purpose of this paper will be to present a heuristic approach for post-hoc

procedures on the significant interoction effects. These procedures will

use the conventional graphical methods to show the overall interaction

effect and then apply conservative methods to detect the significant

components of the overall interaction. The paper will develop graphical

and notational method for decomposing a complex interaction into its
significant components for further analysis. Examples will be given for a

two-way design with variables at two and more levels.

ACKNOWLEDGEMENT: The author wishes to thank Dr. John Tukey for his

suggestion to use a Bonferroni contrast in addition to the Scheffe
method. The Bonferroni method will be calculated for each of the examples

in this paper and the results compared with those obtained by using

Scheffe contrasts.
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SECTION I (A TWO-WAY ANOVA PROBLEM )

Consider the following tw( way ANOVA problem obtained from OstlL. The

dependent variable is the yield in soy beans (bushels/acre). The raw data I
and the resulting ANOVA are presented in the table below.

TABLE I

TWO WAY ANOVA

Date of Planting EARLY LATE

Fertilizer C1 Aero Na K Cl Aero Na K
29 29 28 29 30 33 30 33
37 29 27 28 32 31 33 32

33 31 26 28 32 31 33 32

33 29 29 32 31 34 34 29

x 33 29.5 27.5 29.25 31.25 32.25 32.5 31.5

Source DF SS MS F

Day of Planting 1 34.031 34.031 10.44 *(Sig)
Fertilizer 3 20.594 6.865 2.11 (Not Sig)
Interaction 3 47.344 15.781 4.84 **(Sig)

Error 24 78.250 3,260

* F1, 24 (.05) - 4.26

** F3, 24 (.05) a 3.01

The usual Scheffe contrast ( i ) is formed:

S*r AiXi, where EAi -0. (1)

The critical difference (CD) is calculated as

C D * (S)(SE.), where (2)

S * [(number of treatment levels -3) F (critical, a )]112 (3)

12 .
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For a simple pairwise contrast between two means:

r 11/2
SE; * (2) (MSerror) (4)

L N group j
The Contrast is statistically significant if

l*1 ' CD (5)

The above procedure is applied to the data in this 2 way ANOVA against the

main effects of day of planting and fertilizer type.

Day.of Planting Effect:

Average yield for early plantin; (Early) * 29.81 bushels/acre

Average yield for late planting (Late) • 31.88 bushels/acre

The contrast ( ) is:
A am-" ate " early " 31.88 - 29.81 • 2.07 bushels/acre

S [ ((*treat levels - 1) F (critical))¼ (11)(4.26)34. • 2,06

SEA ~1/2 ).2)p/2
[(2)(MSerror) 3L 16)

LNQ *.64

CD * (S)(SE4) - 1.32

Since (14t - 2.07) ' (CD • 1.32 } ; the contrast is significant at

the St level of significance. Of course, the ANOVA table results already indicated

this effect. The Scheffe calculation was presented to illustrate/review the

procedure.

16'
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Fertilizer Effect

Average yield for chlorine (Cl) * 32.125 bushels/acre

Average yield for aero (Aero) a 30.875 bushels/acre

Average yield for sodium (Na) a 30.000 bushels/acre

Average yield for potassium (K) a 30.375 bushels/acre

There are (4 C2 )- 6 possible pairwise contrasts. These are given in the

table below:

Table 2
Pairwise differences ]T1 for four Fertilizers

(bushels / acres)

Cl Aero Na K

Cl 1.25 2.125 1.75

Aero .875 .50

Na - .375
K

S • [(#treat levels - 1) F c.'itical,]i [ r(3)(- dl)J • 3.005
SE;, ((2)(MS error) (2)(3.26)1/2 .90

N group r 8

CD * ( S ) (SEA) * 2.705

Note that no value of 1 i( in table 2 above is greater than the CD. The ANOVA

table furnished the same information as the above calculation. Now let us examine

the significant interaction effect as shown in table 1.

-I'
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Interaction Effect
This section will develop a way to examine the interaction effects. Consider

the diagram below (Figure 1). In this example, there are two factors A and B, each

factor at two levels. The parallel lines indicate there is no interaction. The

total interaction can be decomposed into two seperate graphs for each level of

factor B. The decomposition just makes it visually easier to calculate the slopes

for each of the two lines.

Figure 1

Interaction Decomposition 1,

6 B,6i

ResponseI 5 5

4 (decomposition) 4 I
3 3 .

2 2 '~) - -44j~

1 1 I

Leyel Le el 1 A 2 1 2

rAi le JAI

(No Interaction)

Paying iteton o he right side of the arrow in the above figure, the slopes
for 91 ana 2 respectively are:

"Sl-e s Y 5-2 6-3

SX 2-1 2-1

or alternatively

Slope - A - C - D
This expression can be written as

(A +B) -(C +D) *0
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This identity forms the basis for writing the contrast ( $ ). If no interaction
exists, then the contrast can be written as:

$ n (A+ 8) - (C +O) a 0 (6)
This contrast will be used to examine the significant interaction term In Table 1.

The arithmetic mans for the day of planting and fertilizer interactions are given below
in Table 2.

Table 2In eaction Data
(Arithmetihc e ans) ,

(Yiu el e -iS• (Yield Avg uhes per Ac re) •

Early Cl a 33 Late Cl 0 31.25
Early Aero a 29.5 Late Aero a 32.25
Early Na a 27.5 Late Na a 32.50
Early K a 29.25 Late K M 31.50
The above Interaction effect can be plotted in the usual way. This is shown

below in Figure 2.

Figure 2

The Total Interaction
34 U •
33 C1

Yield 32

31
30

29
28

27

26

Early Late

Day of Planting
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Examination of figure 2 suggests that the significant interaction shown in Table

1 is driven by the effect of the chlorine fertilizer as it interacts with the other

three fertilizers. Figure 3 below gives the interaction decomposition (using the

notation of Figure 1) of the Na, C1 component of the total interaction.

Figure 3 U
The Na, C1 Component

33 33 cz-3.

32 32

Yield 31 31 1

30 30 N

29 29 U
28 28

27 27 I s7

26 26I

25 . 25 ,_ _ _ _ _ _ _

Early Late Early Late Early Late

Using equation (6), the interaction componnt contrast can be calculated:S"(XA -B (RC+ YD) i

• (31.25 + 27.5) - (33 + 32.5)

I¢I- 6.75
In order to determine if this component of the total interaction Is

statistically significant (is I significantly greater than zero?), the Scheffe

critical difference (CD) will be calculated using the methods reflected in equations
(2) through (5). .
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SE2A * M4SELai/nisE2 E
-SE2. . ?GE[I I/nA i I/na + I/nC + l/n 0]

In this case all ns are equal.

SE 2 ^- Ms [4/nA

Therefore

E (3.26)(4/4)

SEý 1.81

The Other Component:

S2  N (dft ) (dft )I F(df, (df I , (df ,k .
L_ _ _ __ _ _ L

df for interaction critical value

S2 a ((f interaction) F (critical,_

In this case

52 (3) F 3, 24 (.05) " (3) (3.01) • 9.03
S• 3.00

The Critical Difference

CD a (SEA) (S) a (1.81) (3) - 5.43

Since {l~l- 6.75) > {CD, 5.43) the day of planting, Na/Cl interaction
component of the total interaction is significant.

Figure 4 shows the interact! i decomposition of tkhe Na. Aero component of *he

total interaction.
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Figure 4

The Na, Aero Component

33 33 10 to 12.2's

32 32

3 31 Aeke31

30 \k 30 /
29 29 I •.s

28 28
27 27
26 _ _,_26__ _,_ _ I

Early Late Early Late Early Late

The lines are not exactly parallel but are the differences in slopes
statistically signi ficant?

The contrast is:

S(XýA + X) - (Xc + D) *(32.5 + 29.5)- (27.5 + 32.25)

*2.25

The value for the critical difference (CD) is still 5.43.
Since {G - 2.251 < {CD - 5.431 ; the day of planting, Na/Aero component of the

total interaction is not significant.

In this example problem there are (4C2 ) or 6 pairwise components that make
up the total interaction. The results of these six components are summarized in
Table 3.
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Table 3

Component Summary

S, 05 .-

CD 5.43

Component Results
Na/Cl 6.75 Sig

Na/Aero 2.25 NS

Na/K 2.75 NS

CI/Aero 4.50 NS

CI/K 4.00 NS

Aero/K .5 NS

It should be noted that although only one of the components of the total
interaction was found to be statistically significant (v. .05), the chlorine

fertilizer effect was involved with the largest values of .

The results of the Bonferroni method will now be compared to the results

obtained from the Scheffe method used so far in this paper. The values for the
contrast ( * ) and the SE are calculated the same way as for the Scheffe methods.
Thelfl is significant if:

S> (ta/ p v)(SE-) (7) , _

wh'ere: p is the number of components or contrasts examined in the total

Interaction.
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v is the degrees of freedom for the error term.

t / 2 p is then obtained from tables of the critical values for the

Bonferroni t (Milliken and Johnson).

The Bonferroni critical difference (BCD) is calculated as:

BCD - Cta/ 2p , v)(SE.) . (7A)

In this example:

0" .05

p • 6 possible contrasts

v 24

therefore (t. 05 /2p , v m 24) - 2.88

and SEA n 1.81.

therefore the BCD a 5.21.

Referring to Table 3, it is apparent that this 4% decrease in critical

difference (5.43 versus 5.21) does not change the decision regarding the significant

component of the total Interaction for this particular example.

Section 2 (A Three-Way ANOVA Problem).

The following example will expand the discussion of section I to a three way

ANOVA. The dependent variable is the time (seconds) required by a blind rat to run

a maze. The independent variables are:

-17
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1) When the rat was blinded (early or late in life).
2) Intelligence (bright, mixed, dull).

3) Movement (free (F) or restrained (R))

The data and the resulting ANOVA tables are shown below:

Table 4
Three Way ANOVA

. • •Early Blinded Late Blinded

Bright Mixed Dull Bright Mixed Dull
F R F R F R F R F R F R

27 55 130 140 55 132 90 105 61 65 140 142

45 81 120 150 76 96 120 110 82 80 99 96

S = 36 68 125 145 65.5 114 105 107.5 71.5 72.5 119.5 119

Source df MS F
Time of Blindness (B) 1 287.04 .83 NS

Intelligence (I) 2 1652.05 4.76 (Sig 5%)

Environment (E) 1 1785.38 5.15 (Sig 5%)

B x I 2 7638.79 22.02 (Sig 5%)*

B x E 1 1584.37 4.57 NS

I x E 2 91.12 .26 NS

B x I x E 2 115.88 .33 NS

Error 12 346.88

23

F2 , 23(.05) " 3.89
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At this point only the significant Interaction (time of blindness, intelligence)

will be examined in detail. The data for this particular interaction are given in Table
5.

Table 5
Interaction Data

(Arithmetic Means)

(Dependent variable; time in seconds)

Early Blind; Bright a 52 sec Late Blind; Bright a 106.25 sec

Early Blind; Mixed - 135 sec Late Blind; Mixed - 72 sec
Early Blind; Dull w 89.75 sec Late Blind; Dull - 119.25 sec

The-plot 'of the interaction is given as figure S.

Figure 5
The Total Interaction

150
Aug

Response 125 L ATI

Time

(sec) 100 ,
~~r A K PLYi

75

Bright Mixed Dull

(B) (M) (D) Intelligence
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The total interaction will be decomposed in the same manner as shown in section 1.

Thereare( 3 C2 ) or 3 components to examine. The components of jBright to Mixed
Intelligence) and of jMixed to Dull Intelligencel appear to be significant. The third

component jBright to Dull) is probably not significant.

Figure 6 shows the bright to mixed Intelligence component.

Intelligence; Bright to Mixed

150 150 I Label points,

Time accordin: to

(sec) 125 "/ Pk 125 prevlous

~. conventior.
100 100 lob

75 475I

C. /I; /C50 ___50_ _ _ _ _ _ _ _ _ _

B M B M B M

(Intelligence)

By labeling the points according to the previous convention and using equation

(6), the interaction component contrast can be calculated:
S " (IA +'B) (ac Xc D) - (135 + 106.25) - (52 + 72)

- 117.25
In this case ¶'

S S2 - M Z9/ni

or SE2 • MSE(4/n) which is the same as in section 1. The number of
observations for each cell (n) is 4 therefore:

"-d
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SE2  s " 346.88('V4) . 346.88

SE.* 18.62

The other component (S2 ) is:

S2 a (dfinteraction) Fa a (2) (3.89) a 7.78

S - 2.79

The (CD) is:

CD a (S) (SE- 51.95

since ý ,*h 1 117.251 >{C D- 5.95, this component of the interaction

[Intelligence; bright to mixed] is statistically significant.

Figure 7 gives the mixed to dull intelligence component.

Figure 7

Intelligence; mixed to dull

150 ,tr 150 C I

T i m e t k L 61

(scc) 125 *125/p k'/. . ,,

100/ 100 /

75 / /.I,'rS 75 m

50 ___ 50 _ _ _i_ _ _ _ _ _ I

M D M D M D

(Intelligence)
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The contrast for this component is:

X ( +A 1B) - (Xc + ID) " (89.75 + 72) - (135 + 119.25)

-92.5

The CD is still equal to 51.95

Since 1 41 92.51 > jCD - 51.95}, the mixed to dull component of the interaction is

statistically significant. Thi.s was expected.

Finally, Figure 8 shows the bright to dull component.

Figure 8

Intelligence; Bright to Dull

150 150

Time

(sec) 125 QLIIO ..o 125 B

100 101 100

75 11ALý75

50 La 5
'I

B D B D B D

(XA + X B) " (XC + XD) (89.75 + 106.25) (52 + 119.25)

S 24.75

""7

A.
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4Ote that I4;* 24.751 < tCO " 51.95). therefore this component of the interaction

is not statistically significant.

In this problem, 2 out of 3 total pairwise Interaction components were

significant at a 5% level of significance.

The Bonferroni method will be applied to this problem. SE is the same value

(18.62), P is equal to 3 and n is 12. Therefore the Bonferroni t (0 - .05) is equal

to 2.78. The Bonferroni critical difference (BCO) is (18.62) (2.78) or 51.76.

This is only slightly less than the Scheffe CO of $1.95. There are no differences

in the decision regarding significant components between the two methods for this

particular example.

Section 3 (Interaction Where Both Factors (F, G) Have More Than Two Levels)

Consider the case where factor F has three equally spaced levels {fi, f2,

13̀ land factor G has levels f~l g2, 931- Consider Figure 9 below which
shows the decomposition of the total interaction in the interval for factor F in

jfi. f2 .

Figure 9

Two Factors at Three Levels

a.f

fZ f2  f 3  f f2 fl f fl f2 1
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Given that no interaction exists; is the "chaining notation" discussed in

sections I and 2 of this paper true in this situation? Following the

notation/convention discussed earl 1er:

S- (Xb + ) - (Xd + x) + (7d + )" - (if +c) - 0 (8)

The demonstration is simple. Given that no interaction exists, then (Xb Xa)

(Xd c (Xf - Xe).

Equation (8) can be written without brackets:

b + ic - id - 7& + Td +e - 7 •- -

Re-arranging terms:

lb - xa - 7d + Ic + 7d - ic - ff + -Fe -

Inserting brackets

(b- Xa) - (Xd Y c + (Xd V- - (7f -e

Since all terms in brackets are equal to each other, it follows that:

* 0 if no interaction is present.

Note that the E a, - 0 for the contrast.

In, this case:

SE2q MEa2/n1•MSEEa /nI

If ni are equal to n, then

7 , .
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SE2; M ISE(B)

In the case of the Scheffe methodology:

S2 (dfinteraction) Fa (2 x 2) F 4FV

or,
S 2* a

These values for (SE , S) could be the same for examining interaction components

in the interval f2, f3 l and ffl. f3}.

Summary

This notation (chaining) can be applied for two factor Interactions where the

factors are at any number of levels. Each linear component of the total interaction

can be examined to determine which component(s) contributed to the overall

significant interaction. As the examples presented in this paper show, a

statistically significant interaction (per the omnibus F test) does not imply that

all components of the total interaction are statistically significant. The post-hoc

analysis of the interaction should lead to improved insights about the data just as

these methods aid in the analysis of the main effects. Both Scheffe and Bonferroni

methods were ,pplied to the example data. No differences were made in the decision

concerning which components of the interaction were significant and the differences

between the "critical differences" were small. It should be noted that these

comparisons are based on just two examples using a two-way ANOVA. The differences

may become more apparent for more complex designs.
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STATISTICAL IVALUATION OF DESERT

INDIVIDUAL CAMOUFLAGE COVERS (ICC)
BY GROUND OBSZRVIRS

George Anitole and Ronald L. Johnson

U.S. Army Belvoir, Research, Development and Engineering Center
Fort Belvoir, Virginia 22060

Christopher J. Neubert
U.S. Army Engineer School

Fort Belvoir, Virginia 22060

ABSTRACT

The ICC is a personal camouflage net for soldiers which will be useful
for patrols, snipers, and ambush situations. This study determined whether
the ICC should have large or small Hogan incisions, and what color(s) best
blended with the desert backgrounds. Ten U.S. Marines and two civilians
subjectively evaluated seventy-four ICC% (thirty-seven different colors half
large and half small Hogan incisions) at five desert sites. The ICCe were
ranked in groups of six, selecting four at a time, to reduce the number to the
final six colors with associated incisions. The final six were subjected to
paired comparison rankings which overcomes the problem of inconsistency of
judgemtnts given by the same observer. The data was analysed statistically to
determine preferred color with associated incision, establish confidence
limits, and color grouping for each site and across all sites.

1.0 SECTION I - INTRODUCTION

The Countersurvei~lance and Deception Division was tasked by FORSCOM in
early 1986 to develop the individual camouflage cover (ICC) for desert,
woodland, and snow environments. The ICC is a small cloth cover, 5' x 7,
which will weigh about 10-14 ounces, and be able to fit into a battle dress
uniform pocket when not being used. It will deny the detection of a prone
soldier in an ambush situation, or when on a surveillance, long-range patrol
situation. The purpose of this study was twofold. The Lask first was to

determine if a small or large Hogan garnish incision was best. The second
task was to determine the best desert color to accompany the incision. Five
sites were selected in the desert southwest, and the ICCs were evaluated by

ground observers as to how well they blended with the desert backgrounds.

2.0 SECTION 2 - PROCEDURE

2.1 'test ICCe. .j

There were a total of thirty-seven variations of desert colors for this
study. The nucleus of these colors was taken from the Saudi Arabian net
pilette study. These original colors were tested in the deserts of Saudi
Arabia 2 / and the U.S. desert southwest. Additional colors were obtained

through modification. Each of thirty-seven colors were painted on seventy-

four vinyl-coated sheets, 5' x 7', which were then incised with either the

small or large Hogan incision. Thus, there was a total of seventy-four
vinyl-coated ICCes - thirty-seven small Hogans and thirty-seven large Hogan@.
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2.2 Test Sites.

Five sites were used to evaluate the ICCs. Two of the sites were in the
Yuma, Arizona area, two at Anza Borrogo State Park, California, and one at Jean
Lake, near Las Vegas, Nevada. Both sites at Anma Borrego State Park were sandy
with small stones. Vegetation was very sparce. Yuma site #1 was very sandy with
some vegetation, while Yuma sits #2 was on Ogilby Road and was rocky with very
sparce vegetation. The Jean Lake site contained moderate vegetation with rocks,
and was located on a hillside.

2.3 Test Subjects. i

The test subjects consisted of ten enlisted U.S. Marine Corps personnel from
Camp Pendleton, California, and two civilians from the Belvoir Research, Develop-
ment, and Engineering Center, Port Belvoir, Virginia. All personnel had
corrected 20/20 vision and normal color vision. No observations were made with
sunglasses.

2.4 Data Generation.

The seventy-four Hogan incised ICCa were randomly assigned to groups of six
each. The four that best blended with the desert environment, in terms of color a
and texture, were selected and put aside for additional evaluations. This
process continued until the original seventy-four ICCs were reduced to the six
best. The best six ICCs were then shown in all possible pairs - fifteen, with
the best ICC for each pair chosen for ability to blend with the desert. The
number of times the individual ICC was judged to be the best was tabulated and
subjected to data analysis. %

3.0 SECTION 3 - RESULTS

The ICCs were evaluated at each of the five sites to determine which colors
best blended with the desert environment. Section 2.4 describes how the best six
ICC# were selected for each site. Table I shows the top six colors for each of
the five sites.

TABLE 1
Summary of the Best Six Desert ICCs for Each Site

Site "_,_
Yuma Yuma Anza Borrego Anza Borrego

Colors Site 1 Site 2 Jean Lake Site I Site 2
P6-S Xw-s x xx y

12-S XX XXI-S X X X
XI-L X X X
12-S
21-S X X"
21 -L X X X

26-S X X X X
26-L X X
33-S X X X X X
33-L X X
37-S X

NOTE: The L is large Hogan incision, while S is small Hogan incision. Net
33-S is the only color to make the best six colors for all five sites.
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The results of each site for thi above six best nets will not be
included, because they would be too voluminous to present in these pro-
ceedings. This data ik available upon request from the U.S. Army !elroir
Research, Development and Engineering Center, ATTN: STRBE-JDS, Fort Balvoir,
VA 22060. When averaging the final best six ICC# across all five sites, a
total of twelve IC%1s made the best list. Some nets such as 37-S made the
final six ICCs A"or only one site. A value of sero was added for each cell
block when the ICC did not make the final six for that particular site.
Tables 2-4 contain the statistics for the twelve ICCs, Figure 1 is the
graphic display of Table 2. Table 5 describes the final twelve ICC nets as to
color and incision.

TABLE 2

Descriptive Data for Final ICes (Color Bland)
with Desert Background, Across All Sites

STANDARD 4.5% CONFIDENCE INTERVAL
COLOR N MEAN ERROR LOWER LIM UPPER LIM

P6-s 59 0.1864 0.6010 0.0298 0.3431
W-S 59 1.4237 1.6422 0.9957 1.8517
XI-S 59 1.5932 1.5550 1.1879 1.9985
YI-L 59 1.6780 1.8795 1.1881 2.1678
12-S 59 0.1017 0.6616 0.0000 0.2741
21-S 59 0.9153 1.3808 0.5554 1.2751
21-L 59 0.9831 1.2931 0.6460 1.3201
26-S 59 2.8983 1.8541 2.4151 3.3816
26-L 59 1.2712 1,7304 0.8202 1.7222
33-S 59 2.7119 1.4026 2.3463 3.0774
33-L 59 0.6610 1.1539 0.3603 0.9618
37-S 59 0.5763 1.2206 0.2581 0.8944

Nots that the higher the mean value, the better the ICC blended with the
desert environments.

TABLE 3

Analysis of VarJance for Final ICC9 (Color Blend)
with Desert Background, Across All Sites

SOURCE DF SUM OF SQUARES MEAN SQUARE F-TEST SIG LvEL

Color 11 508.5466 46.2315 22.8823 0.0000*
"Error 696 1406.2034 2.0204
Total 707 1914.7500

* Significant at O less than .001 level.

This table indicates that there are significant differences in the %
ability of the final ICC. to blend with the desert backgrounds. Table 4
identified which ICCs are significantly different from each other.

a A
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High

+3.50

+3.001

Abil- +2.50 {1
i ty

to +2.00T

Bland +f.5T

+1.00 IJ6
+0.50

Low 0.001.~....L...
P6-s W-S Xu-S XI-L 12-S 21-S 21 -L 26-S 26-L 33-S 33-L 37-S

COLORS

Figure 1. Ability of the Final. ICCs to Bland with
Desert Background, Averaged Across All Site*.

TABLE 4

Individual Comparisons, Identifying Which of tht Final
ICC Colors Differed Significantly from Each Other,

Averaged Across Sites

COLOR Pf-S AND COLOR W-S
COMPARISON - -1.2-3729 SUM OF SQUARES - 45.16102
F n 22.352 SIGNIFICANCE LEVEL - 0.00000

COLOR P6-S AND COLOR XI-S
COMPARISON * -1.40678 SUM OF SQUARES - 58.38136
F -28.896 SIGNIFICANCE LEVEL * 0,00000 **

COLOR 26-S AND COLOR XI-L -

COMPARISON * -1.49153 SUM OF SQUARES - 65.62712
F *32.482 SIGNIFICANCE LEVEL - 0.000001) *

COLOR P6-S AND COLOR 12-S
COMPARISON - 0.08475 SUM OF SQUARES In 0.21186
F 0.105 SIGNIFiCANCE LEVEL * 1.00000
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TABLE 4 (Cont)

COLOR P6-S AND COLOR 21-S
COMPARISON a -0. 72881 SUN Of SQUARES - 15.66949
7r a 7.756 SIGNIFICANCE LEVEL * 0.00543 *

COLOR P6-8 AND COLOR 21-L
COMPARISON a -0.79661 SUM Of SQUARES - 18.72034
P 9.266 SIGNIFICANCE LEVEL - 0.00238 *

COLOR P6-S AND COLOR 26-S
COMPARISON * -2.71186 SUM OF SQUARES - 216.94915
FP a 107.379 SIGNIF~ICANCE LEVEL * 0.00000 *

COLOR P6-S AND COLOR 26-L
COMPARISON * -1.08475 SUM Of SQUARES - 34.71186
F *17.181 SIGNIFICANCE LEVEL u 0.00004 **

COLOR P6-S AND COLOR 33-S
COMPARISON - -2.52542 SUM OF SQUARES - 188.14407
F u93.122 SIGNIFICANCE LEVEL * 0.00000 *

COLOR P6-S AND COLOR 33-L
COMPARISON - -0.47458 SUM OF SQUARES - 6.64407
F -3.288 SIGNIFICANCE LEVEL * 0.06998

COLOR P6-S AND COLOR 37-S
COMPARISON * -0.38983 SUM OF SQUARES - 4.48305
F a 2.219 SIGNIFICANCE LEVEL * 0,13656

l*OLOR W-S AND COLOR XI-S
COMPARISON * -0.16949 SUM Of SQUARES * 0.84746
F -0.419 SIGNIFICANCE LEVEL - 0.51732

COLOR Il-S AND) COLOR XI-L
COMPARISON * -0.25424 SUM OF SQUARES - 1.90678
F *0.944 SIGNIFICANCE LEVEL * 0.33148

CO~LOR W-S AND COLOR 12-S
COMPARISON *1.32203 SIN OF SQUARES - 51.55932
? a 25.519 SIGNIFICANCE LEVEL * 0.00000 *

COLOR W-S AND COLOR 21-S
COMPARISON *0.50847 SUM OF SQUARES 7.62712
F *3.775 SIGNIFICANCE LEVEL - 0.05222

COLOR W-S AND COLOR 21-L
COMPARISON 0.44068 SUM OF SQUARES * 5.72881
F 2.835, SIGNIFICANCE LEVEL - 0.09243

COLOR W-S AND COLOR 26-S
COMPARISON - -1.47458 SUM OF SQUARES *64.14407
F *31.748 SIGNIFICANCE LEVEL * 0.00000 *

185

kip, WK N 1.



TABLE 4 (Cont)

COLOR W-S AND COLOR 26-L
COMPARISON * 0.15254 SUN OF SQUARCS - 0.68644
F • 0.340 SICNIFICANCE LEVEL * 0.56006

COLOR W-S AND "OLOR 33-S
COMPARISON - -1.28814 SUM OF SQUARES - '48.94915
F ? 24.227 SIGNIFICANCE LEVEL " 0.00000 **

COLOR W-S AND COLOR 33-L
COMPARISON - 0.76271 SUM OF SQUARES 0 17.16102
F - 8.494 SIGNIFICANCE LEVEL , 0.00362 *

COLOR Wl-S AND COLOR 37-S
COMPARISON - 0.84746 SUM OF SQUARES - 21.18644
F - 10.486 SIGNIFICANCE LEVEL - 0.00123 **

COLOR XI-S AND COLOR XI-L
COMPARISON * -0.08475 SUM OF SQUARES 0 0.21186
F " 0.105 SIGNlIFICANCE LEVEL * 1.00000

COLOR XI-S AND COLOR 12-S
COMPARISON * 1.49153 SUM OF SQUARES - 65.62712
P m 32.482 SIGNIFICANCE LEVEL - 0.00000 •*

COLOR XI-S AND COLOR 21-S
COMPARISON * 0.67797 SUM OF SQUARES - 13.55932
F a 6.711 SIGNIFICANCE LEVEL " 0.00968 **

COLOR XI-S AND COLOR 21-L
COMPARISON " 0.61017 SUM OF SQUARES - 10.98305
F P 5.436 SIGNIFICANCE LEVEL - 0.01987 *

COLOR XI-S AND COLOR 26-S
COMPARISON * -1.30508 SUM OF SQUARES - 50.24576
F a 24.869 SIGNIFICANCE LEVEL * 0.00000 **U

COLOR XI-S AND COLOR 26-L
COMPARISON - 0.32203 SUM OF SQUARES - 3.05932
F - 1.514 SIGNIFICANCE LEVEL * 0.21870

COLOR XI-S AND COLOR 33-S
COMPARISON ' -1.11864 SUM OF SQUARES - 36.91525
F - 18.271 SIGNIFICANCE LEVEL * 0.00002 ***

COLOR XI-S AND COLOR 33-L
COMPARISON - 0.93220 SUM OF SQUARES - 25.63559
F P 12.68F SIGNIFICANCE LEVEL - 0.00038 ***

COLOR XI-S AND COLOR 37-S
COMPARISON * 1.01695 SUM OF SQUARES - 30.50847
F * 15.100 SIGNIFICANCE LEVEL - 0.00011 **
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TABLE 4 (Cont)

COLOR XI-L AND COLOR 12-S
COMPARISON - 1.57627 SUM OF SQUARES - 73.29661
F * 36.278 SIGNIFICANCE LEVEL * 0.00000 **

COLOR XI-L AND COLOR 21-S
COMPARISON * 0.76271 SUM OF SQUARES - 17.16102
T a 8.494 SIGNIFICANCE LEVEL * 0.00362 **

COLOR XI-L AND COLOR 21-L
COMPARISON • 0.69492 SUM OF SQUARES - 14.24576
F * 7.051 SIGNIFICANCE LEVEL * 0.00801 **

COLOR XI-L AND COLOR 26-S
COMPARISON * -1.22034 SUM OF SQUARES - 43.93220
F a 21.744 SIGNIFICANCE LEVEL * 0.00000 ***

COLOR XI-L AND COLOR 26-L
COMPARISON - 0.40678 SUM OF SQUARES - 4.88136
P = 2.416 SIGNIFICANCE LEVEL - 0.12032

COLOR XI-L AND COLOR 33-S
COMPARISON --1.03390 SUM OF SQUARES - 31.53390
F P 15.608 SIGNIFICANCE LEVEL * 0.00008 *

COLOR XI-L AND COLOR 33-L
COMPARISON * 1.01695 SUM OF SQUARES * 30.50847
F a 15.100 SIGNIFICANCE LEVEL * 0.00011 ***

COLOR XI-L AND COLOR 37-S
COMPARISON * 1.10169 SUM OF SQUARES - 35.80508
F w 17.722 SIGNIFICANCE LEVEL * 0.00003 *

COLOR 12-S AND COLOR 21-S
COMPARISON * -0.81356 SUM OF SQUARES - 19.52542
F a 9.664 SIGNIFICANCE LEVEL * 0.00192 **

COLOR 12-S AND COLOR 21-L
COMPARISON = -0.88136 SUM OF SQUARES * 22.91525
F a 11.342 SIGNIFICANCE LEVEL - 0.00078 ***

COLOR 12-S AND COLOR 26-S
COMPARISON * -2.79661 SUM OF SQUARES - 230.72034
F m 114.195 SIGNIFICANCE LEVEL - 0.00000 ***

COLOR 12-S AND COLOR 26-L -'
COMPARISON - -1.16949 SUM OF SQUARES - 40.34746
F a 19.970 SIGNIFICANCE LEVEL - 0.00001 ***

COLOR 12-S AND COLOR 33-S
COMPARISON * -2.61017 SUM OF SQUARES - 200,98305
F • 99.477 SIGNIFICANLE LEVEL 0.00000 ***_
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TABLE 4 (Cont)

COLOR 12-S AND COLOR 33-L
COMPARISON - -0.55932 SUM OF SQUARES - 9.22881
F a 4.568 SIGNIFICANCE LEVEL = 0.03275 *

COLOR 12-S AND COLOR 37-S
COMPARISON - -0.47458 SUM OF SQUARES - 6.64407
F a 3.288 SIGNIFICANCE LEVEL * 0.06998

COLOR 21-S AND COLOR 21-L
COMPARISON * -0.06780 SUM OF SQUARES - 0.13559
F a 0.067 SIGNIFICANCE LEVEL * 1.00000

COLOR 21-S AND COLOR 26-8
COMPARISON • -1.9830o SUM OF SQUARES * 116.00847
F a 57.418 SIGNIFICANCE LEVEL * 0.00000 **.

COLOR 21-S AND COLOR 26-L
COMPARISON * -0.35593 SUM OF SQUARES - 3.73729
F a 1.850 SIGNIFICANCE LEVEL - 0.17403

COLOR 21-S AND COLOR 33-S
COMPARISON - -1.79661 SUM OF SQUARES * 95.22034
F a 47.129 SIGNIFICANCE LEVEL - 0.00000 **

COLOR 21-S AND COLOR 33-L
COMPARISON O 0.25424 SUM OF SQUARES - 1.90678
F * 0.944 SIGNIFICANCE LEVEL * 0.33148

COLOR 21-S AND COLOR 37-S
COMPARISON * 0.33898 SUM OF SQUARES - 3.38983
F a 1.678 SIGNIFICANCE LEVEL * 0.19543

COLOR 21-L AND COLOR 26-S
COMPARISON - -1.91525 SUM OF SQUARES - 108.21186
F * 53.559 SIGNIFICANCE LEVEL " 0.00000 **

COLOR 21-L AND COLOR 26-L
COMPARISON a -0.28814 SUM OF SQUARES - 2.44915
F - 1.212 SIGNIFICANCE LEVEL 0.27108

COLOR 21-L AND COLOR 33-8 ,
COMPARISON a -1.72881 SUM OF ,SQUARES - 88.16949
F a 43.639 SIGNIFICANCE LEVEL - 0.00000 **

COLOR 21-L AND COLOR 33-L
COMPARISON * 0.32203 SUM OF SQUARES - 3.05932
F a 1.514 SIGNIFICANCE LEVEL * 0.21870

COLOR 21-L AND COLOR 37-9
COMPARISON * 0.40678 SUM OF SQUARES - 4.88136
F * 2.416 SIGNIFICANCE LEVEL - 0.12032
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TABLE 4 (Cont)

COLOR 26-S AND COLOR 26-L
COMPARISON - 1.62712 SUM OF SQUARES - 78.10169
F - 38.656 SIGNIFICANCE LEVEL * 0.00000 ***

COLOR 26-S AND COLOR 33-S
COMPARISON - 0.18644 SUM OF SQUARES - 1.02542
F a 0.508 SIGNIPICANCE LEVEL * 0.47633

COLOR 26-S AND COLOR 33-L
COMPARISON - 2.23729 SUM OF SQUARES - 147.66102
F - 73.085 SIGNIFICANCE LEVEL * 0.00000 *

COLOR 26-S AND COLOR 37-S
COMPARISON - 2.32203 SUM OF SQUARES - 159.05932
F a 73.726 SIGNIFICANCE LEVEL - 0.00000 ***

COLOR 26-L AND COLOR 33-S
COMPARISON - -1.44068 SUM OF SQUARES - 61.22881
F - 30.305 SIGNIFICANCE LEVEL - 0.00000 ***

COLOR 26-L AND COLOR 33-L
COMPARISON - 0.61017 SUM OF SQUARES - 10.98305
F - 5.436 SIGNIFICANCE LEVEL - 0.01987 *

COLOR 26-L AND COLOR 37-S
COMPARISON - 0.69492 SUM OF SQUARES - 14.24576
F - 7.051 SIGNIFICANCE LEVEL - 0.00801 **

COLOR 33-S AND COLOR 33-L
COMPARISON • 2.05085 SUM OF SQUARES " 124.07627
F * 61.412 SIGNIFICANCE LEVEL * 0.00000 **

COLOR 33-S AND COLOR 37--S
COMPARISON * 2.13559 SUM OF SQUARES - 134.54237
F = 66.592 SIGNIFICANCE LEVEL - 0.00000 ***

COLOR 33-L AND COLOR 37-S
COMPARISON - 0.08475 SUM OF SQUARES - 0.21186
F m 0.105 SIGNIFICANCE LEVEL m 1.00000

The following ICC. differed significantly from each other: P6-S vs. W-S,
P6-S vs. XI-S, P6-S vs. XI-L, P6-S vs. 21-S, P6-S vs. 21-L, P6-S vs. 26-S,
P6-S vs. 26-L, P6-S vs. 33-S, W-S vs. 12-S, W-S vs. 26-S, W-S vs. 33-S, W-S
vs. 33-L, W-S vs. 37-S, XI-S vs. 12-S, XI-S vs. 21-S, XI.S vs. 21-L, XI-S vs.
26-5, XI-S vs. 33-S, XI-S vs. 33-L, XI-S vo. 37-S, XI-L vs. 12-S, XI-L vs. -,

21-S, XI-L vs. 21-L, XI-L vs. 26-S, XI-L vs. 33-S, XI-L vs. 33-L, XI-L vs.
37-S, 12-S vs. 21-S, 12-S ,a. 21-L, 12-S vs. 26-S, 12-S vs. 26-L, 12-S vs.
33-S, 12-5 vs. 33-L, 21-S vs. 26-S, 21-S vs. 33-5, 21-L vs. 26-9, 21-L vs.
33-S, 26-S vs. 26-L, 26-S vs. 33-L, 26-S vs. 37-S, 26-L vs. 33-S, 26-L vs.
33-L, 26-L vs. 37-S, 33-6 vs. 33-L, and 33-S vs. 37-S.

* Significant at o lees than .U0 level.
** Significan|t at t less than .01 level.
*** Significant at t less than .001 level.
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TABLE 5

Physical Description of the Final Twelve ICC6

COLOR/INCISION DESCRIPTION

P6-S Black spots on tan color 26, color XI
on reverse side.

W-S A fifty-fifty mixture of Saudi Arabian
color 8 and 7 in both sides of the net.

XI-S Standard tan color on buth sides of the
net.

XI-L Same color as XI-S, only this ICC has
large incisions.

12-S New color on both sides of net.

21-S Color XI on one side of the net, new
color 33 on th" other side.

21-L Same color as 21, only this ICC has
large incisions.

26-S New color on both sides of net.

26-L Same color as 26, only this ICC ham
large incisions.

33-S New color on both sides of net.

33-L Same color as 33, only this ICC has
large incisions.

37-S Color XI on one side )f the net, with
color W on the other side.

Note that S is #mall Hogan incisions, while L is large Hogan incisions.

4,0 SECTION 4 - DISCUSSION

All the colors were on the gray or tan scale, with the tan colors rated
an having the most ability to blend with the desert background. Table I shows
that the pattern ICC net P6-S was the only multi-color to make the final
twelve ICCe, and it along with net 12-S was Judged by the ground observers as
having the least ability to blend with the desert background when averaged
across all five sites. Net 33-S was the only net to make the final six for
all sites. ICC 26-S was a final net for all sites, except for Yuma site #2.
These nets did not significantly differ from each other (a- 0.416), with net
33-S having a preference rating of 3,07 to 3.38 for net 26-S. The Yuma site
02 area was very rocky, while the othev sites were very sandy. The test team
has seen deserts in Egypt and Saudi Arabia, and these deserts w.re very sandy.
Therefore, net 26-S appears to be the best ICC for general desert use. This
color was among the best six at Yuma site #2, only it had large Hogan inci-
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aions (26-L). The texture of the rocks is larger and more rough in appearance
than that of sand. It appears that the texture of the rocks was the driving
force in the selection of 26-L rather than 26-S. Four of the top five ICCs, 4
26-S, 33-S, XI-S and W-S, were small incisions. The only exception is ICc
XI-L. Except for very rocky deserts, the small incision blends best with the
texture of the desert floor. Desert color paint studies 2 ,3,4/ have shown that
the desert southwest is a darker more gray desert than those seen in Saudi
Arabia and Egypt. Additional deserts of interest in the Middle East should be
photographed and soil samples studied before a final decision is made for the
colors 26 and 33.

5.0 SECTION 5 - SUMMARY AND CONCLUSIONS

A total of thirty-seven colors were painted on seventy-four vinyl-coated
sheets 5' x 7'. Each color was given either the small or large Hogan
incision. These ICCo were then taken to five sites in the desert southwest
and evaluated as to their ability to blend with the desert background in terms
of color and texture. Ten enlisted U.S. Marine Corps personnel from Camp
Pendleton, California, and two civilians from the Belvoir Research,
Development and Engineering Center, Fort Belvoir, Virginia, served as ground
observers. The seventy-four ICC. were randomly assigned to groups of six
each. The four ICCs that best blended with the desert environment were
selected and put aside for additional evaluation which continued until the
best six for each site remained. These best six ICCs were then viewed on all
possible pairs (15), with the best selected for each pair in their ability to
match the desert floor. The number of times the individual ICC was judged to
be best was tabulated and subjected to data analysis. The following
conclusions were drawn;

a. Colors 26 and 36 were the most effective in blending with the desert.r r.

b. Color 26 was selected for initial ICC production.

c. The small Hogan incision (S) is more effective than the large Hogan

incision (L) except for very rocky terrain.

d. The U.S. desert southwest is darker and more gray than the sites seen

in the Middle East, making additional work on the two colors necessary before
final color selection,
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The Combinatorics of Message Filtering

Terence M. Cronin

US Army Signals Warfare Center, Warrenton, Virginia

Topic: Computational Aspects of Event Recognition Under Conditions of Sparse
Reporting, Uncertainty, and Information Decay

[Background: The general problem of filtering a stack of documents is arguably

context-sensitive, i.e., an individual document cannot be prioritized independently of

semantic knowledge about the current environment. In pursuing this line of thought,

an attempt is being made to recognize background events which change dynamically
in time, with the ultimate motivation being to assess the import of any given message

with respect to the time-criticality of the most recent set of events.

[Abstract: Given a set of message traffic and an exhaustive menu of possible events,

select the event which is best explained by the message data. This problem involves a

reasoning process known as abduction, as differentiated from the processes of

deduction and induction. An argument is made that the recognition of events from

message data is a diagnosis problem. In the medical world, disorders are diagnosed

from observation of symptoms. In the case of electronic troubleshooting, failure of a

whole circuit may be explained by failure of single components or sets of components. N

In the general sense, an event may be diagnosed by careful observation of the ,..:,.,

constituent phenomena which comprise the event. With respect to battlefield,'

situation assessment, both the manifestations for events and the events themselves

change dynamically as more message traffic enters the system, since the decay of one

event is accompanied by the emergence of another over time. This paper develops a

formal theory of machine-assisted event recognition, but also casts an eye on the

feasibility of implementation. Treated with some rigor are the combinatorics

associated with such new formalisms as suspecting an event; confirming an event;

computing the threat of an event; revoking a stale event; introducing two levels of

relaxation into statistical testing; recovering from fundamental forms of string error;

and the number of feasible ways to filter a stream of n messages.
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Fundamentals: Definitions and Concepts.

A message m is a feature vector together with a string of text: m = (XI,

x2 , ..., xn, xstring}. The feature vector is a set of sensor-measurable observable

attributes of a manmade object. The string representi natural language which may
have been gentrated by one of two communicators: either an individual who in some
way controls the manmade object, or an outside observer describing the interaction of

the object with the world. Z

The timeliness of a message mi is the time ti at which its feature vector

was created (time at sensor detection). A message mi is said to be more timely than

message mj iff ti > tj.

A map y is a spatially organized representation of a section of the world

upon which the manmade objects referenced in messages move about.

A constituent phenomenon g is a logical function of message data

conjoined with map data. If the expression g(xi,y) evaluates to true, then g(xi,y) = 1;

otherwise g(xi,y) = 0. 
"

An evente is a set of constituent phenomena: e = (g1, g2, ... , gk9.

The message set M isthe set of all messages. M = (miIi a 1,n).

?N.

The event space E is the setof all events: E = (ei li = 1,m}.

U-'p ,,
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Becoming Suspicious, Amassing Support, and Confirming Event Hypotheses.

The problem of recognizing an event by aggregating the truth or falsity
of its message-derived r.onstituent phenomena is being treated as a diagnosis problem.
Message-driven event recognition must avail itself of a reasoning process known as
abduction (as contrasted with induction and deduction), in which the event which best
explains the message data is selected as the most likely hypothesis, even when the
message data is incomplete, subject to some error, and describe temporally transient
phenomena. This form of automated reasoning is still very much a research issue, with
several disjoint efforts seemingly offering potential leverage. An abductive
inferencing mechanism is being explored for a medical domain, by assembling those
hypotheses which are best explained by a set of data [J1I. There has been promising
work recently in the areas of justification-based and assumption-based truth
maintenance systems [DI, D2, M1]. These techniques achieve truth maintenance by
detecting inconsistency, followed respectively by dependency-directed backtracking,
or by gathering the most general context which preserves consistency. Yet another
interesting line of research is a minimal coverirg set theory approach [N1, P1], which
attempts to diagnose medical disorders by constructing the least set of symptoms
which point to each disorder. However, the computational feasibility of this technique
is questionable, since derivation of the minimal covering set belongs to the class of
NP-complete problems [G1i.

The foundation of a new theory of event recognition emerges if one

unifies the disciplines of truth maintenance systems with minimal covering sets. If a
dimension is added to accomodate other than temporally static situations, then the
theory permits recognizing events from their manifestations, when both the events

and their manifestations may be changing dynamically in time. A crucial underpinning
of the theory is that the emergence of a new event is inversely proportional to the
decay of an older event, since the same observable primitive resources are involved.
Also assumed as axiomatic is the concept that full credence in an event is well nigh ./

impossible, due to the non-systematic way in which evidence accrues, together with
the difficulty in retracting an assertion once it is assigned a probability of one [K3Q.

Therefore, the theory must be capable of confirming events when only partial support
is manifested. It will be seen that this becomes feasible if one is permitted to revoke
support for phenomena which have already emerged and sustained under both spatial

and temporal constraints
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A message m is said to support an event e if and only if there exists some

feature xi of m, some constituent phenomenon gk of e, such that gk(xi) evaluates to

true. If such is the case, we also say that phenomenon gk is supported by m. Any

unsupported phenomenon of e is called a virtual phenomenon.

Entropy is a measure of information not available to make a decision

about an event's feasibility. In this context, entropy is synonymous with uncertainty.

A phenomenon entropy function fp assigns to each constituent

phenomenon gk of an event ei some integer value nk based on the relative utility of

gk: fp(gk) = nk. Phenomenon gk is said to have entropy value nk. Small values are

assigned to constituent phenomena which are of minimal use in the decidibility of

event ei.

Although no such object has
There exists son? object X which been reported upon, if X is
is located near some river V and assumed, then some of the other

X is constructing a bridge, constituent phenomena are true.

Object X has historikally beenAloteojcs Zwhh
shown capable of conducting All other objects (Z) which

an operation of this semantic are organizationally associated I

type. z wih Xare within a reasonablespatial radius of X.

i There exist some objects of {Z) The coordinates of object X seem
spatially and temporally to represent a reasonable part
configured to support X. of river V for conducting a

crossing operation. [9

River Crossin'g Constituent Phenomena

Figure 1. Illustration of Constituent Phenomena and Respective Entropy Values for a Hypothetical

Event. Note the Subjunctive Voice of the Upper Right Phenomenon.

The total entropy Te of an event ei is the sum of its phenomenon entropy

values: Te = T" fp(gk), k = 1,n.
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The instantiated entropy te of an event ei is the sum of the entropy values

associated with the currently supported phenomena of el.

The suspicion-ratio for an event ei is the quotient of the instantiated

entropy of ei with the total entropy of ei.

&r-

MtV2~3,.Natural
Language

Total Entropy - 84

Inutantlated Entropy - 3?

Suuplelon ratio - 44

Figure 2. A single message supporting some constituent phenomena of a single event, with total and

Instantiated entropy values illustrated, together with the Instantaneous suspicion-ratio.

The suspicion accumulatorsn(ei) for an event ei is a temporal sequence of

suspicion-ratios, updated whenever a new message is processed.

The volume-ratio for an event ei is the quotient of the number of

messages which support ei with the total number of messages contained within a time

frame of interest.

The volume accurmulator vn(ei) for an event ei is a temporal sequence of

volume-ratios, updated whenever a new message is processed. fSA

The suspicion-volume accumulator svn(ek) for an event ek is the

sequence defined by the point-by-point multiply of the suspicion accumulator with the
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volume accumulator: SVn(ek) a (st(ek) * vl(ek) I i a 1, n}, whqre n is the number of
messages processed during the time frame of interest.

An event ei warrants suspicion-arousal if its suspicion-ratio exceeds a
specified necessity condition, or if its suspicion accumulator sequence becomes
monotonically increasing.

Example. The figure below depicts an event template which contains a
total entropy of 27 information units, within a framework of 10 constituent
phenomena. Suppose the criterion for suspicion-arousal is that the instantiated
entropy be greater than 6 information units. There are 210 = 1024 ways of logically
conjuncting the 10 constituent phenomena. An Interlisp search routine was
implemented to identify those which fail to trigger suspicion-arousal. Result: 78 cases
fail to satisfy the criterion.

I I-

1 I I

4 4 4

Figure 3. One of 78 Event Template Configurations (out of 1024) which FalIs to Trigger

Suspicion-arousal tinder the Specified Constraint. .,,

A temporal cusp is defined to be a point in time when the
suspicion-volume accumulator sequence for one event becomes monotonically
increasing (decreasing), while concurrently the suspicion-volume accumulator for
another event becomes monotonically decreasinq (increasing). %

S.0

"P A
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An event ei warrionts suipicion- con firma tion if its suespicion-ratio exceeds

a specified sufficiency condition, or a temporal cusp favorable to eOis detected and all

other events have less instantiated entropy than ei.

Exercise. Consider the message stream below together with support arcs

pointing to events (the dashed lines represent phenomenon revocation, which is

defined in the next section, but for the purpose of this example causes cancellation of

a support arc). Compute the suspicion -accumulator, voiume-accumulator, and

suspicion-volume accumulator sequences for events El and E3. Also identify any

messages which cause a temporal cusp.

[M2M2 . M3 04

1E1 E2 E3 E 4El

Solution. *

Mi (.33) (1.0) (0.U) (09))

M2 (.33',33) (1.0,1.0) (0.0,0.0) (0.0.0.0)

M 3 (.33,33,30) (1-0.1.0,1.0) (0.0,0.0,.251 (0.0.0.0,33)

M4 (.33,33,10,33) (1.0,1.0.1 .0,.7551 (0.0,0.0,25,50) (0.0,0.0,.33.301

Ms (3 3,.3 1.SO,.3 3, 17) (1.0,1.0,1.0,75,60) (0. 0,0.0,. 2 SS..50S.O) (0.0,0-0,.33,.50,.601

svn, El: (.31,.33,.50,.25,.10) E3: (0,0,0.0,.08,.25,.30)
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Figure 4. An Illustration of the susplcion accumulator end volume accumulator sequences for two

events. Aiso shown aro the suspicion-volume accumulators for each. The dashed lines indicate

atrong-sense comstituent phenomenon revocation (defined below). Melsage M4 causes a temporal

cusp, together with suspicion-confirmation of E3 (assuming that the instantiated entropy for El is
diminutive when compared to that of E3).

Note that this theory of event recognition relies upon monotonic

conditions induced by the conservation of resources shared by events evolving in time,

and by so doing abstains from decision based on numerical thresholds. In the example
above, suspicion about the existence of E3 was confirmed with only half its constituent
phenomena instantiated by message evidence, and with an instantaneous
suspicion-volume accumulator value of only ,251

A potentially powerful technique to abduce an event from message data

is the occasional use of the subjunctive voice when attempting to logically instantiate
the constituent phenomena of an event. It may be the case that several constituent
phenomena become true if the truth of just one primitive clause is (for the time being)
assumed, even though the message data has not yet corroborated the primitive clause.
Refer back to Figure 1 for an instance of the explicit use of the subjunctive voice.

thh
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Discounting Events which have already Emerged, Sustained, and Decayed in Time.

Much attention has been paid in the literature to deciding when an event
is supported by evidence. Equally important is determining when an event no longer
warrants having its constituent phenomena maintained because of the decay of
information overtime. Currently automated systems are frequently incompetent when
event probabilities reach a plateau. When such is the case, a computer process should
be capable of deciding whether the event is continuing to prog,-ess, or has already
sustained and decayed. When an event becomes obsolete, automated techniques are
required to revoke its constituent phenomena so that the computer's belief in the
event is retracted, or at least discounted. The following section describes a set of
computational techniques designed to solve problems in this area.

A message mj is said to be revocation-provocative In the weak sense with

respect to event ek iff 3 some message mi less timely than mj; xs ( mi, mj; gt E Ok;

gt(xslmi) = 1, and gt(xslmj) a 0. See Figure 5.

F igure S. W k" I . .... It m'

I I

-- 7 - -

Figure S. Weuk-sense Phenomenon Revocation. !

Discussion. Weak-sense phenomenon revocation may provide the rudiments for
automated non-monotonic reasoning. Before one may accomodate the

unanticipated, one must be capable of suspending belief in a previous state of the
world by reasoning in the following way:

a) Some object has obtained new spatial and temporal coordinates which negate

belief in an earlier set of coordinates which were accountable by some event;

,..,..'
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b) No other explicitly modeled event contains constituent phenomena capable of
explaining the new coordinates.

Once an automaton demonstrates a weak-sense phenomenon revocation capability,
its next logical step would be to generate a new event to explain the coordinates of
the errant object. There is currently no technology available to perform this process,
and it is not likely that there will be for some time, since a leap of this magnitude is
intrinsically linked to data-driven templating, and learning by discovery. *1,

A message mj is said to be revocation-provocative in the strong sense

with respect to event ek iff 3 some event el different from event ek, 3 some messsage

mi less timely than mj; xs i mi, mj; gtE ek; gu E el; with gt(xslmi) * 1, gt(xslmj) * 0,
and gu(xslmj) * 1.

Figr . Srn-ses Pheonn Revcaton

...... .............. t... .. ...... -- ...... ...

An event ei becomes stale if both its suspicion and volume accumulator

sequences become strictly monotonically decreasing.

An event ei warrants having its attributes revoked (i.e., its constituent

attributes gi set to O) under two conditions:

i. A temporal cusp unfavorable to ei is detected.

ii. ei is determined to be stale.
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Event Stasis Induced by External Phenomena.

Under certain conditions the constituent phenomena of an event may
become inert for protracted periods of time. In such a situation, the event is said to be
undergoing stasis. Stasis is caused by the existence of external phenomena (not
associated with the event) which tend to force spatial immobility upon the objects
which (logically conjoined with a map) define the constituent phenomena of the
event.

The stasis factor of an event is defined to be the tendency for the
constituent phenomena of an event to remain inert. The stasis factor is computed by a
two-step process:

1. Construct the stasis matrix as follows: for each constituent
phenomenon (whether instantiated or virtual) belonging to the event, assign a
probabilistic estimate representing the certainty that there exist external phenomena
committed to any of the following:

a. Prolonging the constituent state.
b. Transitioning the constituent object(s) from the current state to

one recently visited.
2. Average across all probabilities derived at step 1.

Stasis as used here is a state of the world induced by countermeasures,
and is functionally akin to the result obtained by applying a minimax criterion utilized
by game theorists.
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Threat Computation is a Nonsimplistic, Data-driven Process.

The threat of an event cannot be derived by isolating the event from its
environment. An event which unto itself seems threatening may in fact be quite
innoculous given that sufficient countermeasures are brought into play. Other factors
which must be utilizod in the derivation of threat include both the nature of preceding
events and the potential impact of follow-on events. This section describes a
computational technique to derive the threat of an event based on both the support
for an event and the countermeasures at hand to thwart the event.

tvont 2

_ _ _ _ _ ____ __

Figure 7. An Event Emerging During the Decay of Its Predecessor (dashed area
Indicates the region of constituent phenomena revocation for the first event).

Assume that an event El has already transpired, and that another event
E2 may be emerging Since the same primitive resources will be utilized in event E2 as
were used in event El, we expect to see the computed subjective probability of event
E2 rise at the same time that the compu..ted probability of event El starts to fall (see
Figure 7). Symbolically, we represent this as P(E21E 1), read "the probability that E2 is
emerging given that El is decaying". Earlier research focused on developing a
data.driven technique which lends itself to modeling the unsystematic skewness of

events for which message data is providing asynchronous clues, and against which
countermeasures may be progressing [C21. The distribution of choice is the WeibulI
distribution, which has density function:
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f(t) • W at e-ot fort > 0, 15.1]
- 0 elsewhere,

foro, P > 0.

if this function is differentioted with respect to time and set to zero, the
critical value of t is:

This expression is significant because it predicts at what value of time (in

terms of a and 0) the distribution will peak. All that remains is to couch the probability
of an emerging event together with the countermeasures available to thwart the
event in terms of a and P.

Computation of the Probability of Emerging Events,

Let P(E21EI) be the probability that event E2 is emerging given that event
El is decaying. This probability is equal to the quantity obtained by normalizing the
suspicion-volume accumulator for E2 with respect to those for all other events in the
event set. This quantity is also known us the evidence for event E2 with respect to the
reference class El, or simply .a, the evidence for event E2

Computation of the Probability of CouhtermeasUres to an Emerging Event,

Let P(CIE2) be the probability that countermeasures are available to thwart E2, given
that E2 is emerging _This probability is computed by noting the real and virtual
constituent phenomena of E2, setting up the stasis matrix for E2, and computing the
stasis factor across all phenomena for E2,

Make the following substitutions for a and P in equation 5.2:
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a 1/(1 - P(CIE2)) (5.31

* 1/P(E21E1) (5.41

The resultant critical value is:

t - ((1-P(E21E1))(1 - P(CIE2))]P(E21E1) (5.51

Define the threatTe of an event to be equal to this critical value. Note that threat is a
function of probability-valued functions, and is mapped to the interval (0,1].

Discussion of the computational Implications of the threat expression: A close look at
equation (5.51 reveals that the derived threat is polynomially related t3 both the
support for other events [called the plausibility uf the event under the
Dempster-Shafer formalism], and to the lack of countermeasures at hand to thwart the
event. However, threat is exponentially related to the direct support for the event.

The threat of a message is defined to be precisely equivalent to the maximal threat of
the list of events whose constituent phenomena are supported by the message. Let Ei

be the event in the event set with the maximum instantaneous suspicion ratio. The
message threat is directly proportional to both the evidence for Ei and the stasis factor

of Ei.
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Filtering Operations on Message Streams, and the Equivalence of Priority with Threat.

As messages enter a processing center for analysis, the sheer volume of

traffic can rapidly generate a backlog which begs attention. It is reasonable to seek %

automated assistance in ordering the queue based on the priority of the messages, so

that the most time-critical items are presented first. Queuing based solely on either

message time of arrival or message timeliness is inappropriate because the threat of

events for which the messages provide evidence must be brought into play.

Regrettably, threat is a context-sensitive process, and must be painfully derived by

abduction of events from the message data. The following section develops two
theorems which show respectively: a) the number of ways to order a stream ofn

messages; b) the number of feasible filtering solutions on a stream of in messages.

A message stream is a queue of messages ordered chronologically by time
of arrival in the queue.

A time-ordered queue is a message queue sorted by timeliness of the

individual messages.,

A filtering of a message stream mn is a permutation based on ordering m

as a monotonically decreasing function of threat,

A coarse threat quantization scheme on a message stream mn of n

messages is a partition of mn into k threat classes such that every message contained in

m is assigned to exactly one of the k classes.,p~

Theorem 1. Number of Possible Ways to Order a Stream of n Messages.

There are nI ways to order a message stream of length n. 1

Proof. Since a filtering is a permutation on n objects, there are nl ways to

order a message stream.

Definition. A feasible filtering solution is a filtering in which every message is '

correctly assigned to a threat class by a coarse threat quantization scheme.,~'
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Theorem 2. Number of Feasible Filtering Solutions on a Stream of n Messages.

Let P be a coarse threat quantization scheme on a message stream of
length n into threat classes {Cl, C2, ..., Ck). Let lCil denote the order of class Ci. Then

the numberof feasible filtering solutions is equal to 11 :;Cil, i m 1,k; with Z ICil a n.

Proof. Let Ci be an arbitrary threat class. Then the number of ways to

order ICil messages within the class is ICil!. Over all k threat classes, the number of

possible orderings is IC I I * IC211 * ... ICkl! = flCill, i = 1,k.

Example. Below is a diagram showing 9 messages coarsely quantized into
5 levels of threat. Theorem 1 asserts 91 = 362,880 possible orderings on this message
stream. Theorem 2 says that this number can be reduced to 1! * 1! * 31 * 31 * 1! • 36

feasible filterings.

~w" ',1

"\ ... ,-

T o ,

Figure 8. A Coarse Threat Quantization Scheme on 9 Messages. Application of .. ?.'•
Theorem 2 Yields 36 Feasible Filtering Solutions on this Message Stream. Z••!-
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Message Processing Sources of Error and the Potential for Recovery.

Messages may contain two distinct data structures: a statistical feature

vector, and an excerpt of language uttered by a human being who in some way
interacts with the object characterized by the feature vector. Machine processing of
messages therefore involves comparing and contrasting feature vector data, together
with natural language processing. These two types of reasoning processes are

sufficiently diverse that mainstream iechnology thrusts in each area have been
pursued in parallel for several decades, with one thrust being in the statistical pattern
recognition arena, and the other in computational linguistics. Both technologies
continue to produce new research, and each suffers from its own peculiar form of
error. It is instructive to play the devil's advocate and construct a taxonomic error tree,
which graphically portrays the ways in which an automated message processing system

may be fooled, either by errors in the message data, or by faulty reasoning about the
data:

Figur 9, illae Proessig Eror foml ad BeoleaErrorcnqus

Stat istivctor Error is gen eral trb tbet esrm n ro fte,
sen or wh ch ga e ise to r thMet r al e ,b t c ats curru ineta iti a

patiulrDti gt v uhn eror e p 11 
E
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Figure 9. Message Processing Error Forms and Recovery Techniques.

Feature vector error is generally attributable to measurement error of the
sensor which gave rise to the feature values, but can also occur during statistical
testing because of faulty modeling. Due to the limited sensitivity of the sensor
working within the constraints of terrain and other sources of interference, any
particular attribute value must be characterized by an error ellipse probable (EEP),
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with the semi-major axis along the perceived line-of-bearing, and the semi-minor axis
sweeping across the arc described by the angular resolution of the direction-finding
capability of the sensor.

However, there is also an error associdted with modeling the statistical

distributions of the geodynamic objects which the sensors are attempting to measure.
It may be that an object's location is inappropriately characterized by a normal
distribution, whereas if the probable direction of movement is known a priori, it may
behoove the system modeler to utilize some distribution which is conveniently skewed
in the direction of the motion. Conversely, if it is known that an object is currentlyK.

stationary, it is advisable to ensure that the distribution used for modeling possesses a
bell shape.

Yet another source of error when performing statistical tests with feature

vector data is the problem associated with hardwiring a statistical level of significance
to a particular test. A Boolean decision is made about the null hypothesis based on the
outcome of this test. For example, it may be the case that a test of means fails at the
.95 confidence level, and therefore the null hypothesis is rejected out of hand. A less
biased approach would be not to make a deterministic decision about the truth of the
null hypothesis, but rather post an indication of how well the test was passed, or what
level of significance would guarantee that the test is passed.

The worst-case branching factor of introducing two levels of relaxation
into statistical testing is m X n, where m is the number of distributions used to model
phenomena, and n is the number of levels of significance over which the tests are
conducted. Knowledge-based statistical testing permits an intelligent ordering of the

tests, so that the most likely distribution (based on data-driven knowledge about the
phenomenon) is selected to be checked first, For example, a check for a moving

object's location may pass a chi-square test of means at the .95 confidence level, yet '4

not pass a Gaussian test until the level of significance is dropped to a .50 level. The

more powerful the search knowledge, the less costly the relaxation process. When the
data is well-modeled and sensor measurement error is at a minimum, a cost of 1 is
enjoyed, since the appropriate distribution is selected immediately, and the highest
confidence level test of ineans (for the given dis'%.ribution) is passed.

Because any statistical test of a null hypothesis will be passed (no matter
what the distribution) if the confidence level is sufficiently low, it is not prudent from a
decision-theoretic standpoint to use a depth-first search during the two levels of
relaxation, Instead, it makes sense to start with a high confidence level, breadth-wise

test across an intelligently ordered menu of distributions for acceptance of the null
hypothesis, and then decrement to a lower contidence level if all tests are failed. •-
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Figure 10. Relaxing both Distribution Constraints Together With Levels of Significance to Enhance
Statistical Testing.

Natural language processing, independent of the particular grammar
used, also is subject to different forms of error. The problems of ambiguous words,
anaphora, ellipsis, and prepositional phrase attachment are four areas which continue
to produce thesis-quality research. Parsers work with sets, whether they be sets of
parts of speech, sets of case frames for verbs, or sets of semantic primitives. In some
form or another, whether syntactic or semantic, all possible words and actions are
partitioned into cells (lexicons), each of which represents some generalized concept Ii
about a grammar, or more generally about the world. Error in the most fundamental
sense can occur in two ways, just as in statistical testing: a string may fail to be inserted
into its proper cell; or it may be inserted into an improper cell.

If a string of natural language fails the set membership test for any
lexicon during processing, and the string is in fact appropriate to the target domain,
then one of two alternative hypotheses may be true: either the system designer failed "'
to install the string into the appropriate lexicon during the knowledge engineering
phase, or the string may be mispelled. in the former case, an intelligent natural
language parser may be able to use context to deduce the grammatical class of the
string (e.g., it is frequently possible to guess that a test string is a location). If on the

other hand the string is misspelled, it may be computationally feasible to recover if the
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error is not too serious. The following table enumerates the number of ways that-
generic types of string error may occur during transmission, followed by the number
of strings which a maschine must brute-force generate to guarantee recovery.

some preliminary Results Regarding n-character t String Error Recovery

Type Error Possibilities2  Recovery Combinatorlcs 3

transposition n - 1 n j

k-extra-Iettors (n, k)Ck * 26k (n + k)Ck

k-dropptd -1 tters nCk nCk 26k

k-wrong-letters 25k nCkin25k

ki-dropi-and-Uk8adds 4  nCki (n -ki ,k2)Ck2 26k2 (n - ki I k2)Ck2 *(n + k2)Ck1 126k1

k2.adds-and-kl-d rops4  (n + k2)Ck2 a26k2 * (n + k2)Cki (n + k2):kl Ia 26k I (n + k2)Ck2

11Assuming for didactic reasons that a characttr is a member of the English alphabet

2 The number of ways that the error can happen in the world.

3 The number of strings which a machine must generate to guarantee recovery.

4 The processes of dropping and adding are obviously not commutative.

implications of the String Error Combinatorial Expressions.

All string error can be explained in terms of linear combinations of added

or dropped characters. From the above table, it can be seen that guaranteed recovery
from errors of the type indicated in the last four rows requires an algorithm of
exponential complexity, since an exponent appears in the recovery .ombinatorics
column. It has been shown elsewhere (Gil that for fixed source and destination strings
and a finite number of operations, that the destination string can be derived from the
source string in polynomial time, given thist characters are corrected one at a time
rather than in groups of k.
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Conclusions.

Due to context-sensitivity, the topic of message filtering cannot be
broached without addressing the more fundamental problem of recognizing events
pointed to by message evidence. To this end, a formal theory of event recognition is
being developed, complete with a treatment of the computational aspects of
implementation. Formal definitions have been developed for such concepts as
constituent phenomena, suspicion -arousal, suspicion -con firma tion, weak and
strong-sense event revocation, event stasis, and the threat of an event. Combinatorial
expressions have been derived for the number of feasible ways to filter a stream of n
messages; the branching factor introduced by permitting both distribution-level and
confidence-level relaxation during statistical tests of means; and the number of
machine-generated strings necessary to guarantee recovery from generic forms of
string error encountered during natural language processing.

Future Directions of the Research.

Work shall continue on developing a coherent theory to explain
message-driven event recognition, with the ultimate goal being to filter a stream of
messages which are providing clues to the events. Although the work thus far has
striven to explain how a human decision maker suspects and confirms hypotheses
while handicapped with sparse data, the theory remains flawed because it is
incomplete. New work shall focus on an epistemology of reasoning with the
constituent phenomena which comprise an event. Currently driving the research is the
realization that a human problem solver frequently tests the truth of an unsupported
clause belonging to a constituent phenomenon by posing it in the subjunctive voice,
because by so doing the truth of a significant portion of the other constituent
phenomena may be induced, especially when they were for all intents and purposes
already true but for the lone dissension.

Implementation Issues.

The objects characterized by feature veclor data in many applications
may be represented by a taxonomic hierarchy of semantic activities. To limit search, a
message router has been developed in Interlisp to extract the list oi possible activities
alluded to by a message. The generic Conceptual Structures Representation Language

22.3



(CSRL) developed by Ohio State University [B1] is being utilized as a rapid prototyping

tool to further process the message by invoking the set of specific functional parsers

pointed to by the router list. The natural language system must of necessity be Type C,

which means that the beliefs and intentions of the communicators are taken into

account [H2]. As such, recent research on planning [G3, K1, L1] is being investigated to

bolster the Type C NLP knowledge base, and to enhance the control of the parsers.

Since an event is defined in terms of constituent phenomena, which are themselves

defined in terms of a map, spatial representation of the objects is crucial. There has

been some commendable work undertaken to represent the relative positions of

objects described with natural language [H1], but much remains to be done, especially

in bringing such a spatial configuration together with the absolute description

conveyed by a map. A companion document is in preparation to describe the

implementation which is currently underway. .k
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Use of the P-Value and a Q-Value
In

Rejection Criteria

Paul H. Thrasher
Plans and Quality Assurance Directorate

White Sands Missile Range, New Mexico 88002

ABSTRACT

The p-value in a hypothesis test, which is a well established and useful

although not universally used statistic, may be supplemented with q-values.

Each q-value, Just like each possibly designed value of the Type-I1 risk

universally denoted by 0, corresponds to a possible value of the tested

parameter. The algorithm for calculating q-values is the same as for

calculating O's; the inputs that yield O's include the Type-I risk, which is

universally denoted by a, and a planned number of measurements (i.e., planned

sample size). The corresponding inputs that yield q-values are the p-value

and the actual number of measurements (i.e., available samplf size). Thus,

the q-values contain post-test Type-I! risk information in the same manner

that the p-value contains post-test information about the Type-I risk.

By using a q-value which corresponds to a particular unacceptable value

of the tested parameter, different criteria can be established for the

rejection of the null hypothesis. Three alternate criteria imply rejection if

(1) (q-value/0), (2) (q-value/8)/(p-value/a), or (3) (q-value/p-value) is

greater than unity. The use of any of these three would be a radical

departure from the traditional rejection when 1/(p-value/a) is greater than

unity. The (q-value/p-value) criterion is independent of a, 0, and the

planned sample size because both the p-value and q-value depend only on the

results of experimental measurements. All three of these alternate criteria

Comr*nts by panelists Drs. Kaye Oasford and W. T. Federer are at the
eno of this artical. 'A
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lead to tronds in critical region size which differ from the trend resulting

from the traditional criteria. Replacement of the traditional rejection

criterion, with one of the proposed alternate criteria or a decision procedure

incorporating rational from the alternate criteria, could significantly

influence government and contractor relations and the products or services

involved.

1. Introduction. Hypothesis testing is a widely used procedure for designing

and conducting experiments to evaluate a parameter against a standard. In

government-contractor relations, the government sets the standard. The

acceptability of the contractor's product or service is often determined by a

hypothesis test.

a. The basic procedure is to:

(1) Formulate a null hypothesis, Ho, relating a parameter, 6, to a

standard, 00, and el

(2) Reject Ho only if there is sufficient experimental evidence

that the assumption Is unlikely. i
The null hypothesis in government-contractor relations is usually the

assumption that the product or service meets the specification. The

traditional basis for rejection of Ho, stated in terms of a statistic which

is increasingly being reported and interpreted, is that the p-value is too

small.

b. The p-value is defined as the probability of an additional experi-

mental result as unlikely as the data. It is a function of two properties of

the data:
i.' .

(1) The used sample size, nus which is the actual number of 1'

measurements and
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(2) Either the measurements or their ranks.

It is also a function of a third factor:

(3) The distribution of all possible measurements under the

assumption that Ho is true.

The traditional rejection criterion, written in a slightly obscure manner

which is in the same format as alternate rejection criteria proposed below, is

1

where p is the p-value and a is a predetermined probability of the Type-I

risk or the ccntractor's risk. This is the risk that the contractor's product

or service meets the standard but will be rejected by the hypothesis test.

Rejection when the p-value is too small is justified by an insistance that the

contractor will take a reasonable risk.

c. The p-value provides one aspect of post-test information. Statistics

called q-values described the other viewpoint. For the introduction of

q-values, see "Proposed Additional Inferential Information During and After

Hypothesis Testing", Procedings of the Thirtieth Conference on the Design of

Experiments in Army Research, Development, and Testing, Paul H. Thrasher,

1984.

d. Before data is taken, the Type-I risk is supplemented by the Type-Il

or government's risk. This risk, denoted by B, is the probability of

incorrectly falling to reject Ho. It is the companion risk to a, since a

is the probability of incorrectly rejecting Ho. Since there are many values

of e for which Ho is false and the alternate hypothesis denoted by Ha is

true, there are many O's. Each 8 a function of:

(1) a and

219
4 0 4:1..

JJ % .'i -A= * , A * A - . A .d .A•A . ..... .
• r~',v' 'L'or-- . .,,. , •., ,. .,•' ,, •., , ., *,, 4 ., h A ,t.•,,.•,,.-. - . - .

4 a* ** .& ..*.•.• . . , '. .- '• • . " - . ,." •. -."."."* "



(2) The planned sample size, np, which is the planned number of

measurements.

The O's differ from one another because each is also a function of

(3) A specific value of e which is not equal to or better than 0o.

If one of these unacceptable parameters, denoted by Gu, is of particular

interest, then it is meaningful to concentrate on one 0.

e. After the data is taken, the p-value is supplemented by q-values. The

same algorithm used to calculate 0 from a, npp eu, Ho, and Ha may be used

to find a q-value, A q-value calculation differs from a B calculation in

that

(1) The p-value, instead of the original value of a, and

(2) nu, whether or not this is equal to np,

are used in the algorithm. Use of

(3) The same value of the parameter Ou and the same hypotheses, that

were used in the calculation of 0, permits direct comparison between B and a

q-value. A q-value tends to be greater than a planned value of B if

either nu < np or the p-value < o. Similarly, making nu > np or

obtaining data whose p-value > a tends to yield a q-value smaller than the

original value of 8.

2. Alternate Rejection Criteria. The traditional rejection criterion is well

established. It is not however the only rational decision technique.

a. Instead of requiring the contractor's risk not be too low, one

alternate is to require that the government's risk not be too high. This

argument replaces the traditional rejection criterion,
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with the first alternate rejection criterion:

> 1.

The use of this alternate rejection criteria naturally requires that an

unacceptable paramenter, ou, must be set along with the standard, 0o. This

first alternate criteria shifts the emphasis completely away from the Type-]

risk to the Type-1% risk.

b. A second alternate rejection criterion which considers both the Type-1

and Type-HI risks is to reject if

This result may be obtained by multiplying the traditional and the first

proposed alternate criteria.

c. A third alternate rejection criterion which concentrates entirely on

the post-test information, by considering only the p-value and a q-value while

ignoring the specific values a and 0, is

q > R.""

p

When the limiting ratio of the post-test Type-I1 risk to the Type-I risk. R,

is set equal to one, rejection occurs under this criterion if the government's

risk exceeds the contractor's risks. Other values of R may be used to design

a test with other relative emphasis on the government's and contractor's

risks. This criterion considers the ratio, R - 0/a, instead of considering a

and B separateiy.

d. The traditional rejection criterion and the three alternate rejection

criteria Introduced above have contradictory and incomplete attributes.
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No single criterion will provide a panacea for all situations. For example,

the third alternate criterion may be appropriate when large values of a and a

fortuitously cause no large financial or logistic difficulties (e.g., when the

contractor can easily rework rejected items and the government can feasibly

replace items not functioning properly). If either a or B must be small

however, the third alternate may be inappropriate (i.e., setting R may not

provide the desired values of a or 0). In this case, the second alternate may

be desired or perhaps a simultaneous application of the traditional and first

alternative criteria may be warranted. Satisfying the second alternate

criterion does not gurarantee that the traditional and first alternate

criteria are simultaneously satisfied. All of the criteria must be scrutin-

ized individually. Each, or each combination, must be justified or discarded

on the basis of its own characteristics. Only one, or one combination, can be

used in any particular hypothesis test.

3. Critical Regions In One Example. The critical regions, defined as

intervals in which data implies rejection of Ho, may be found for any

situation in which traditional hypothesis testing is done. The specific

situation used in this section is one used in the previously referenced

presentation at the Thirtieth Conference on the Design of Experiments.

Basically, this situation has a standard, a 0o and as unacceptable level, ou

for the variance, a , of a random variable which is assumed normal. The

Chi-squared distribution then describes (n-i) s /a where s is the sample

variance.

a. This example yields the critical regions plotted in figures 1

through 13. For this example at least, the trends in the critical regions of

the proposed alternate criteria are significantly different than those of the
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traditional criterion. Two very evident trends are seen by looking at the

lower ends of the critical regions which are called the critical points. For

the traditional criterion with reasonably low values of a, the critical

points,

(1) All correspond to measurements better than the standard and

(2) Decrease as the sample size increases.

b. For some situations involving the alternate criteria, the critical

points

(1) Correspond to measurments worse than the standard and

(2) Increase as the used sample size increases.

c. Both of these properties are naturally disturbing to hypothesis

testers who are used to the normal criterion with low values of a. However,

both actually occur in the traditional criterion when the value of a is ilade

large enough.

d. The figures describing q/0 > 1 and (q/0) / (p/a) > 1 are

much more complicated than those describing 1 / (p/a) > 1. However, the

figure describing q/p > 1 is as simple as the figures describing

1 / (p/a) > 1. This occurs because both p and q are independent of o,

np, and B.

4. Generalizations, Extensions, and Applications.

a. In figures 1 thi-ough 13, there is an inversion of trends between the

trdditional criterion and any choice of alternate criterion. This appea,^s to

be a general property for this particular hypothesis test. Much theoretical_-V

and simulation work needs to be done, -er, before extending this statement

to other hypothesis tests.
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b. If any of the alternate criteria are applied in government-contractor

relations, significant changes will occur in the way business is done. It

would be entirely possible, for example, that contractors would be In the

governments's present position of wanting an increased sample size. Using the

traditional criteria, the government is vulnerable when n~ < lp; using an

alternate criteria, the contractor may feel vulnerable when this change in the

planned number of tested items occurs. This inversion is certainly signi-

ficant. It could lead to a significant decrease in cost and/or increase in

quality of products or services that the government procures from contractors.

c. A secondary benefit from using any of the alternate criteria is that

the government would be forced to specify an unacceptable parameter as well as

a standard, This requirement would yield an improvement in management.

d. The choice of a criterion or perhaps a set of simultaneous critoria

for any situation must consider the costs of production, testing, and use of

"the product or service. This consideration will undoubtaole be complicated

and many faceted. The measurement of cost may not even be straightforward.

(e.g., dollars, time, lives, and military success may be competing measures of

cost.) Nevertheless, the total cost should be minimized by a selection from

the possible rejection criteria.

r .%r
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Figure 2. "Inverted relationship betweeii s', and used number of

measurements flu, resulting from alternate criterion based

on ratio of attained to planned Type-Il risks, q-valuell.
This oinverted Incrase in smin with an increse in flu

occurs for a a 0.01 and several combinations of planned
n umber of measurements , n p, and discrimination ratios of Pa:unacceptable to standard variances, aL a/
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CO1I4NTS BY PANELISTS DR. KAYE BASFCORD AND PROFESSOR W. T. FEDERER

ON THE FOLLOWING ARTICAL

Use of thr P-w•lmw ard a Q-wlun in rejection mituria by

Paul H. 7hrashku
U.S. "yI, Whitt Sands Missile Range.

i Thhpaper sv not presentMedl xt MI roeived a copy of the

pape n subsequdntl y.

&aye Eksfrd: This is a very interesting paper in %ihioh it is

suggested that the usual type I error (a) used to•=*

a ccept or reject the nvuli hypothesis be supported by

som information an the Type 11 error (P). Hance

Instead of a decision being vmdo solely an the

p-valIL, the q-ualtw mild also be used.

Dr. Thrashor suggqested three alternativ criteria for

rejection of thm null hypothes wid studied their
behavior for orn particular test. 71w general
properties of these decision criteria r.ed to be

Inwstigated for hypothesls test. with different
underlying distributions. Only then could a
reoonvwndation be made an the desirability and

feasibility of lntroducing such a oriterian. This is
a ohallenginq research project mhich I hope will be

taken up in the near futurep.
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INCORPORATING FUZZY SET THEORY INTO

STATISTICAL HYPOTHESIS TESTING

William E. Baker
Probability and Statistics Branch

Ballistic Research Laboratory
Aberdeen Proving Ground, Maryland 21005

ABSTRACT

In many instances the data used in statistical hypothesis testing may be vague or
imprecise and, as such, may suggest results that are incorrect. Rank tests, in particular,
seem susceptible, since the original data, once ranked, bas no further influence on the
testing procedure no matter how closely they are grouped. A posi3ble solution is to
treat the ranks as fuzzy integers represented by membership functions thbt indicate the
degree to which each rank assumes each integer value. In this paper, a method is
suggested for obtaining these membership functions; and the concept is incorporated
into an existing rank te3t. Ant application of this fuzzy hypothesis-testing procedure is
provided.

iI
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I. INTRODUCTION

Suppose we have the following set of data:

{-0.888, 0.200, -1.000, -0.417, -0.052, 0.188, 0.067, -0.467, -0.623, -0.181} . (1)

By considering their absolute values, we obtain a set S consisting of ordered pairs,

S - ((, -0.052), (2, 0.067), (3,-0.181), (4, 0.180), (6, 0.200), (6, -0.417), (2)

(7, -0.467), (8, -0.623), (9, -0.888), (t0, -1.000)),1

where the first member of each ordered pair is the ranking (smallest to largest) of the
absolute value of the second member of the ordered pair. This type of data is often
used in rank tests, nonparametric hypothesis tests which generally examine the mean or
median of a distribution or the equality of means or medians of several distributions.
Rank tests are sometimes eschewed because once the ranking has been established, the
data are treated as though they were equally spaced; and potentially-valuable
information concerning the proximity of the data points is discarded. In the preceding
example, note that some of the rankings may be tenuous; for example, ranks 3 and 4
could easily have been permuted had the numbers to which they correspond been
inaccurate in the third decimal place. Therefore, the degree of accuracy in the ranks is
diredtly related to the degree of accuracy of the orig.asl data; and this can sometimes be
a problem.

In many applications, the available data may be vague or imprecise, due to a
variety of reasons which may include improper calibration of equip ment and subjectivity
cf the experimenter. This, of course, can lead to imprecise ranking of the data and
possibly an incorrect conclusion from the resulting hypothesis test. Such data, as well
as their ranks, can be represented by fuzzy numbers' - a relatively new concept in
which a number is described by a central value along with a spread about that value.
When applied to ranks, this technique may overcome the previously-mentioned problem
inherent in rank tests; and in certain situations this representation will allow for a more
realistic approach to hypothesis testing.

II. FUZZY RANKS APPLIED TO THE WILCOXON SIGNED-RANKS TEST

A. Wilcoxon Signed-Ranks Test

The Wilccuxon signcd-ranks test is a nonparametric hypothesis test which is
generally used to test for equal med:mvs of two distributions. The data consist of paired
observations (xi, y1) from the two distributions. The differences betwecn the -,

observations, Di = xi - yi, arc then calculated; and their absolute values are Pssigned a
rank Ri from smallest to largest. Finally, Ri is multiplied by -1 if Di is negative. The
sum of the ranks of the positive differences, T = E Ri, Ri > 0, is the test statistic. If
the two distributions have the same median, we would expect about one-half of the DI's

Web. Ld A, 'Fueiy Soto. Informhtawn am Control- Vol $. 196b

p.1
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to be positive. Very high or very low values of T indicate that numbers from the first
distribution are consistently higher or consistently lower than those from the second
distribution and, therefore, will cause rejection of the null hypothesis of equal medians.
The theory behind the test along with tables containinr various quantiles of T are
provided by Conover .

For each ordered pair of the set S, we can consider the second value to be D! and
the first value to be the Ri associated with it. Taking the sum of the Ri's associated
with the positive Di's, we find that T = 2+4+5 = 11. Probability levels for the
Wilcoxon signed-ranks test for a sample of size 10 are given in Table 1. Referring to
this table, we find that our value of T indicates that there is insufficient evidence !or
rejecting the hypothesis of equal medians at a 10% level of significance. In this case the
probability of T being less than or equal to 11 is 0.0527; and since we are performing a
two-sided test (examining T to see if its value is either too low or too high), we double
that figure to get the critical level of the test. Had the value of T been 10 or less,
rejection of the null hypothesis would have been warranted.

TABLE 1. Probability Levels for the Wilcoxon Signed-Ranks Test Statistic
with a Sample Size of 10.

T P T P T P T P
0 .0010 7 .0186 14 .09067 21 .2783
1 .0020 8 .0244 15 .1162 22 .3125
2 .0029 9 M0322 16 .1377 23 .3477
3 .0049 10 .0420 17 .1611 24 .3848
4 .0068 11 .0527 18 .1878 26 .4229
5 .0098 12 .0654 1i .2158 28 .4609
6 .0137 13 .0801 20 .2461 27 .5000

T = sum of positive ranks

P = probability that the sum of positive ranks will be less than or equal to T
under the nuil hypothesis

Since the distribution of T is symmetrical, only one-half of thb. distribution is
tabulated.

B u R

Let R =-- {rl, r2, ..., rn} be a set of clements and Q be a subset of R. Then we can
define the characteristic function p:P R-,0, 1) such that

2i2
SConover. W J Prictical Nonnarametnc Si c JoLh Wilty &nd on e, Ise .171
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MQ(ri)- irr1 %Q' (3)

If, however, R is the set of men and Q is taken to be the set of old men, there may
be some vagueness about the membership of certain r, in Q. Is a 50-year-old man a
rrn-mber of Q? I used to think so; but now that I'm older, I'm not quite so sure.
Suppose we let pQ take on values other than 0 and 1; in particular, any value between 0
and I so that pQ: R--+O, 11,

In this case Q is called a fuzzy subset of R and pQ is called the membership
function of Q. Each r, has associated with it a value pq (ri) representing a degree of
membership in Q. The closer this value is to one, the more completely the associated r-
is a member of Q. Numerical data can be represented by equating R with the set of
real numbers, in which case Q is called a fuzzy number.

In this application we will examine fuzzy numbers and, in particular, fuzzy integers
since we are concerned with ranks. A fuzzy number will be represented by a
membership function quantifying the degree to which It takes on any specific value.
Figure 1 shows a membership function p for "fuzzy six". This function assumes its
maximum value at six, p(6) - 1; the closer any number is to six, the higher its degree
of membership in "fuzzy six". When we examine fuzzy ranks, the membership functions
will be discrete, since our interest will be only in the degree of membership for integer
values.

This membership function is not unique; rather, it is subjective, determined by the
user and based on his perccption of the vagueness of the data. In order to fully utilize
this methodology the Extension Principle3 permits definition of a mathematical

operation f on two fuzzy numbers. It states that if X is a fuzzy number with
membership function px-x) and Y is a fuzzy number with membership function Py(y),
then Z = f (X,Y) is a fuzzy number with membership function

pz(z) = max min [px(x), pyvy)] . (4)
x,y

f(x,y)=-z

3Zdeb, L A. *The Concept of a Lioluistic Vanable and its Applicatiom to Approximate Reuo'miao I, I. IIl.'
IaLLamWgion ua.. Vol$ 1 9. 1•76
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Figure 1, Membership Function of Fuzzy Six.

Figure 2 shows some membership functions established for the absolute value of
three of the members of the original data set (.0.181, 0.188, 0.200). Recall that the set S
contained ordered pairs of the form (IX,X) where X was a number from the original data
set and lx was the rank associated with the absolute value of X. The shapes of these
membership functions are symmetric and triangular with a spread equal to ten percent
of the largest value in the data set (remember that these are modeling decisions).
Hence, the membership value of "fuzzy 0.181" is non-zero from 0.081 to 0.281 and has
its zenith at 0.181.

We can define a membership function for the finrt member of each ordered pair -
the rank denoted by IX - as follows:

Pl (l1y) = max min IPx(z), pUY(z)]. (5)
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Figure 2. Membership Functions of a Portion of the Original Data Set.

This equation provides the membership value for Jy in "fuzzy rank Ix". Thus, in
Figure 2, the top horizontal line intersects the ordinate at a point equal to p3(4), the
middle horizontal line intersects the ordinate at a point equal to P4(6), and the bottom
horizontal line intersects the ordinate at a point equal to 103(6). This definition of the
membership function for the fuzzy ranks produces the following properties:

P Ix (Ix) ff ,(6)

pIx (ly) = 0 if px(x) and p,.(y) do not intersect, and (7)
'UI (1y) M PI (Ix), (8)

Figure 3 shows the membership functions for the entire set of original data. The
ordinate values of their points of intersection are listed in Table 2. These, of course, are
the values of uix (Jy) shown in Equation 4 and define the membership functions of the
fuzzy ranks of the data, such functions being discrete since the ranks can take on only
integer values. Note that the table is symmetric, a result of Equation 7.
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Figure 3. Membership Functions of the Original Data Set.

TABLE 2. Membership Functions Associated with the Fuzzy Ranks for the Original Data Set.

Ranked
Data 1 2 3 4 5 6 7 8 9 10

Points
1 1.00 0.03 0.36 0.33 0.26 0.00 0.00 0.00 0.00 0.00
2 0.03 1.00 0.43 0.41 0.34 0.00 0.00 0.00 0.00 0.00
3 0.36 0.43 1.00 0.98 0.91 0.00 0.00 0.00 0,00 0.00
4 0.33 0.41 0.08 1.00 0.03 0.00 0.00 0.00 000 0.00
5 0.26 0.34 0.91 0.93 1.00 0.00 0.00 0.00 0.00 0.00 -

6 0.00 0.00 0.00 0.00 0.00 1.00 0.76 0.00 0.00 0.00
7 0.00 0.00 0.00 0.00 0.00 0.75 1.00 0.22 0.00 0.00
8 0.00 0.00 0.00 0.00 0.00 0.00 0.22 1.00 0.00 0.00
9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.44

110 0.00 0.00 0.00 -0.00 0.00 0.00 0.00 0.00 0.44 1.00
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C. Incorvorating Fuzzy Ranks into the Wilcoxon Signed-Ranks Test

Once the membership functions of the ranks are established, it is necessary to
calculate the value of T, the sum of the positive ranks. T will be the 3um of fuzzy
integers and, as such, will be a fuzzy integer itself. To determine its membership
function, we refer to the Extension Principle and determine that

PT(t) - max min [Pi(IYa), P2(lY,,), ... ? Aio(lyo)I, (1)
(Iyt, ly,, ..., Iy1 )

10t == Ely,, Yj>0

where (l•,, Ty,, ... , Iy10) denotes all permutations of the integers lyV, Iy,, ... , Iy,..

In this case of ten data points, T can take on all integer values between 0 and 55;
each of these possible sums will have a membership value associated with it. To obtain
#T(t), we refer to Table 2 and perform the following steps:

1. Select a permutation of the ranks,

2. From Table 2 determine the minimum membership value of the ranks in " .
their respective positions for this particular permutation.

3. If that minimum membership value is greater than zero, determine the sum
of the positions of the positive ranks for this particular permutation.

4. If the membership value is greater than the membership value currently
associated with that sum, replace with the new membership value.

We continue with this sequence of operations until all the permutations have been
exhausted, at which time we have associated with every possible value of T a
membership value which is the maximum over all permutations of the minimums for
each individual permutation.

Using our set of ordered pairs, S, we can provide an example of the sequence above: -M

I. Suppose our selected permutation is & 13 2 4 7 6 8 10 9.

2. Referring to Table 2, we can see that the membership value of rank 5 in the
first position is 0.26, the membership value of rank 1 in the second position
is 0.93, the membership value of rank 3 in the third position is 1.00, and so
forth. If any one of these is equal to zero, then the minimum is equal to
zero, and we skip steps three and four. For this particular permrutktiot, the
minimum membership value is 0.20.
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U
3. The sum of the positions of the positive ranks for this particular

permutation is equal to ten (first plus fourth plus fifth).

4. If 0.26 is greater than the current membership value associated with a sum
of ten, then replace it.

When we have examined all possible permutations, the membership function
associated with the sum of positive ranks, T, is shown in Table 3. Membership values
associated with T:5 and T>13 are all equal to zero.

TABLE 3. Membership Function Associated with the Sum of Positive Ranks for
the Original Data Set (Non-zero Values).

T- "T
( 0.330

7 0.355
8 0.005

10 0,975".-

11 1.000
12 0.430

Of course, examining all permutations can be very time consuming. This paiticular
case required 201 seconds of central processor urit (CPU) time on a CDC 7600
ccmputer. However, because of the large number of memb~rsbip values that were equal
to zero (see Table 2), many of the permutations could be ignored, since resulting
minimums would be equal to zero and would not affect subsequent maximums. By
taking advantage of this information to modify the permutation subroutine, I was able
to reduce the CPU requirement to 43 seconds. Even with this kind of reduction, it is
difficult to exceed a sample size of twelve without incorporating other shortcuts. One
very effective method is to segment the data set, particularly if there is a datum point
which is crisp rather than fuzzy; that is, its membership value at all but one po3ition is
equal to zero. Using this characteristic, I was able to handle a sample size of 32 in a
later application of this work.

111. INTERPRETING RESULTS

When the data were considered non-fuzzy, we saw that there was insufficient
evidence for rejecting the hypothesis of equal medians. We could have provided a
critical level ha defined by Conover; in doing so, we would have concluded that the null
hypothesis could have been rejected at a significance lvev! of 10.,542/ (see Table 1 and

recall that we are performing a two-sided test).
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Treating the data as fuzzy numbers provides a fuzzy result for T with a
membership function described in Table 3. This allows for several methods of
interpretation. Observing that p(a) =. I (its maximum) when T=11, we might state
that there is insufficient evidence for rejecting the null hypothesis at the a - .10 level.
Thus, the classical (non-fuzzy) signed-ranks test emerges as a special case.
Alternatively, knowing that T=10 was the threshold for rejection, we might state that '

the null hypothesis can be rejected at the a = .10 level with a membership value of
0.97T. Since we recognize the data as imprecise, perhaps the best alternative is to accept
the imprecision inherent in the resulting test statistic and make the decision as to
whether or not to reject the null hypothesis based on the entire membership function.
In our example, the membership value exceeds 0.O00 for T=8 through T-11.
Therefore, none of these values should be disregarded when analyzing the data; They all
became viable candidates for T when the model took into account the proximity of the
data points, The nature of any particular application should assist in making the final
decision less subjective. Our example represents a situation in which the null hypothesis
of equal medians would not have been rejected based on the original data set but may
be rejected when the data, imprecise in nature, are treated as fuzzy numbers.

V. SUMMARY

Hypothesis testing is an important and useful tool for data analysis. When the data
are vague or imprecise, an additional source of error is introduced and may result in an
"incorrect decision whether or not to reject the null hypothesis. Treating the data as
fuzzy numbers allows us to model the uncertainty; and manipulating the datA using
fuzzy arithmetic allows us to carry the uncertainty through to the final results, at which
point a more informed decision can be made.

Rank Tests are a class of hypothesis tests which are especially susceptible to the
problems of imprecise data since the data, once ranked, have no further influence
regardless of how closely they might be grouped. The Wilcoxon signed-ranks test is one
example; ard it was this particular hypothesis test that was applied to some data
assumed to be vague in nature. The data were represented as fuzzy numbers, and the ,
test statistic was calculated using fuzzy arithmetic. This provided a final result which
was itself a fuzzy number, and several methods of interpreting tis result were
discussed

I found computer time to be a major problem with incorporating fuzzy data into
rank tests. In this case I needed to examine al! possible permutations of rankings for all
the data. For 10 data points the problem is not too bad; but if the data set is expanded
to 30 points, then even with newer, faster computers some special t4chniques must be -,

applied. In most cases one should be able to segment the data set, so that groups of ten
or less can be examined and the results combined. This should make fuzzy hypothesis .. '

testing feasible as well as reasonable -- an even more important and more useful tool for
the statistician!

-. .p. '
s e 0%
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A Central Limit Theorem for Fuzzy Random Variables

Steven B. BOSWELL
Department of Biostatistics
Harvard University School of Public Health
and
Department of Radiology
Harvard Medical School

Malcolm S. TAYLOR
US Army Ballistic Research Laboratory
Aberdeen Proving Ground, MD 21005-5068

Abstract

Fuzzy random variables have been proposed to treat situations in which both ran-
dom behavior and fuzzy perception must be considered. A deflnition of independence is
given for fuzzy random variables, as well as a notion of fuzzy Gaussian random vari-

ables. It is shown that a sum or mean of independent fuzzy random variables converges
in the limit to a fuzzy Gaussia" random variable, thus providing a fuzzy analogue of the
central limit theorem of classical probability theory.

This paper will appear in the journal Fuzzy Sets and Systems.
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An Application of a Fuzzy Random Variable to Vulnerability Modeling

Steven B. BOSWELL
Department of Biostatistics
Harvard University School of Public Hlealth
and
Department of Radiology
Harvard Medical School

Malcolm S. TAYLOI?
US Army Ballistic Rtsearch Laboratory
Aberdeen Proving Ground, MD 21005-5066

Abstract

Fuzzy sets are useful as a modeling tool in situatiotis which have an ingredient of
uncertainty or vagueness, as distinct from randomness. One class of problems fitting
this description arises in vulnerability analysis. An applic2.tiorv of a fuzzy random vari-
able to enhance a vulnerability model currently in use is discusscd.
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1. Introduction

Kwakernask, in a seminal paper IB] introduced the notion of a fuzzy random vari-
able as a random variable whose values are not real but fuzzy numbers. Expectation
and probabilities r~lating to a fuzzy random variable are developed as images ol a fuzzy Pv.i
set, representing the fuzzy random variable, under appropriate mappings. A natural
development of the theory is to examine fuzzy analogues of classical probability laws.

Toward this end, Kruse [5] and Miyakoshi and Shimbo [81 report on a strong law of
large numbers. Stein and Talati [13), following Nahmias 1g1, develop a theory
specifically for convex fuzzy random variables. Boswell and Taylor [21 piovide a fuzzy
analogue of the central limit theorem for fuzzy random variables admitting a moment
generating function extensicn. Puri and Ralescu I[I) outline a theory similar to
Kwakernaak's and derive a dominated convergence theorem.

Application of these potentially powerful concepts has yet to evolve. Schlegel,
Shear and Taylor [121 cite areas of vagueness in vulnerability modeling and suggest
fuzzy sets as a potential modeling tool. The implementation of one such suggestion
using a fuzzy random variable is the topic of this paper.

2. Fuzzy Random Variables

Kwakernaak [1) defines a fuzzy set f as a triple f = (A, t, p) consisting of a basic
set A, a logical prupo3ition p which can be applied to every mernaef of the basic set, '
and a function t which assigns to every member x i A a truth v., t(p(x)) indicating
the appropriatenesr of the proposition p as applied to x. Most authors suppress the pro-
position p notation, since it is implicit in the organizing principle of the fuzzy set, and
compose the proposition and truth value into a membership function p:A --+ [0, 11 which
acts on the baskc set, pj(x) = t(p(x)). Thus f would be written f = (A, P); we shall
adopt this convention.

An a-level set corresponding to a given fuzzy set f - (A, ji) is an ordinary non-
fuzzy set, denoted

I1. (f) = {x c A Ip(x) > a). (2.1) ,.

A fuzzy number is a fuzzy set having the real line R as its basic set. The fuzzy number
f, or its membership function p, is said to be unimodal if for every a 1 (0, 1], L. (t) is 4

convex. We shall be concerned with a collection C of fuzzy numbers defined as follows: .4 0

a fuzzy number f-= (1R, p) belongs to C if its membership function p satisfies

(i) # is upper semicontinuous,

(ii) for some x R, p(x)= 1,
and ""

(iii) for all a > 0, L,. (f) is bounded.

The •et of membership functions satisfying (i) - (iii) will be called S.

' .
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Fuzzy random variables are constructed as a means of modeling phenomena which
could properly be described by ordinary real random variables defined on a probability
space (fl, F, P), but which are partially obscured by fuzzy perception of the real line. In
particular, if UO is the underlying random variable and w is the outcome of a random
experiment, the exact value U0(w) is unobservable; instead, it is assumed that a fuzzy
number f = (R, Xj) is known which characterizes the result U0(w). The mapping
X:f( -- S given by X(w) = X, supplies a membership function for each random out-
come, and is called a fuzzy perco.ption function. To the observer who must perceive
random outcomes via X, the identity of U0 is lost, and in fact there may be many recon.
structions of U0 which are amenable to fuzzy perception. By the standard operations of .
fuzzy logic [4], X generates a valuation function which applies to random variables as
entities. Namely, if U is an F-measurable random variable, then

px (U)= inf X"' (U (w)) (2.2)

is the valuation of its suitability as a reconstruction of U0 .

Kwakernaak's development of the basic set of random variables to serve as candi- I
dates for reconstruction is rather involved. In [2] we make some simplifying assump-
tions which are sufficient for our application. Briefly, we admit as a basic set UF, the
set of all F-measurable random variables on f0 , and enforce partial retention of the
structure of (0, F, P) through the requirement that for all a e (0, 1] the functions

U (w)=inf {x RIXX,(x) > "a)

and (2.3)

"U*" (w)= sup (x (RI X, (x) Ž a}

are measurable with respect to (fl, F). The sigma algebra generated by the random vari-
ables U,,', a ( (0, 1] and Ua.", et c (0, 1] is denoted by a(X), and X denotes the set of all
o(X)-measurable random variables on 0.

Letting UF be the collection of all F-measurable random variables on [I, the fuzzy
random variable induced by X is defined as

X = (UF, ix).

Some properties of a fuzzy random variable may be obtained directly by the exten-
sion principle [14). For example, the expectation of a fuzzy random variable X is a
fuzzy number .

EX = (R, PEX"

with membership function
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PEX(X) Bui (U (w))Ut UI4E x 'tO

= utU P., (U), x i R. (2.4)

In (2.4), E denotes the usual mathematical expectation.

A fuzzy random variable X is called unimodal if for each w c fl, the membership
function X, is unimodal. Kwakernaak shows that if X is unimodal the basic set UF
may be restricted to X, the set of all &(X) -measurable random variables on RI.

Theorem (2.1). If X is unimodal, then

PEx(X) sup mt XjU(w)), x c R. (2.5)
UiX:EU=x wefl

8. Vulnerability Modeling

This is an account of an application of a fuzzy random variable to an important
problem in vulnerability modeling. Succinctly, vulnerability modeling is an attempt to
characterize the interaction between a target (armored vehicle, aircraft, bunker, ...) and
a munition (kinetic energy penetrator, shaped charge, explosive device, ..) and to assess
quantitatively the resulting damage sustained (inflicted) within the target-munition comn-
bination,

Experimental testing required to provide data pertinent to vulnerability modeling is
destructive, and the data base upon which these models are built may be modest, or in
the case of conceptual systems, nonexistent. Furthermore, while certain damage-related
measurements (velocity of impact, depth of penetration, component function) may be
determined in an unambiguous manner, many others (structural deformation, fracturing,
component degradation-of-function) may not. The composition of quantitative measure-
ments and qualitative infermation into a cohesive assessment of damage remains at the
core of difficulty in vulnerability modeling. We will consider a particular vulnerability
model [101 currently In use and demonstrate the applicability of fuzzy sets to its
enhancement.

Figure I represents a data summary of an encounter between an armored vehicle
and a kVnetic energy penetrator. A rectangular grid of lOx10 cm cells has been superim-
posed ou te profile of the armored vehicle, and within each cell of the grid, the proba-
bility tLat the vehicle will be rendered inoperable (killed) should it sustain an impact"''" .•

within that cell, is listed. Within the bold rectangle, for example, the probability-of-kill,
given a hit in cell i, P kjh,, is estimated to be .19. t
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Fig. I. Data summary of to, encounter betweeno an armored vehicle and
Itkinetic enoergy poletrator.

Consider the conditional probability-or-kill, P~, for an arbitrary cell i, Tbis
number is produced by a computer simulation (101 involving a blend of geometry, proba-
bility0 heuristics, and archival information about similar systems. The cell probabilitws
are combined by an averaging over all cells to produce a single value, Pk, representing
probability-of-kill for this particular configuration of vehicle vs. kinetic energy penetra-
tor. If an aim-point on the vehicle is designated, then a weighted aversge of the cell

Phsis calculated, the weights provided by a bivariate probability deusity located at
the aim-point.

The overall proba bility-of- kill estimate Pk is subject to criticism as a value which
conveys little useful information, and none about the variability inherent iii the esti-
mate, The magnitude of the computer simulation prohibits repeated runs to provide an
empirical or bootstrap estimate of the distribution of overall probability-of-kill.

While randomness is clearly present in the experimental data collectedi, an even
greater source of uncertainty lipfs in~ the procedure producing the cell Pk h ," an sgets
the incorporation of fuzziness as a modeling artifice. We consider the data in Figure 1. a's
representing the sample space 0 of an exp.~riment which has been discretized by the
overlaid grid. The experiment. -onsists of firing at the tank, and a random variable U .K
provides for each impact location a corresponding probability-of-kill Phjh, . We replace
the cell PWh, value with a fuzzy number whose membership function is illustrated in Fig-
ure 2. The width of the interval on which p'x) takes the value one is chosen to be
Pih, (1 - Pklh,), the variance of the Bernoulli distribution modeling the individual cell
probabilities. We have thus defined a fuzzy random variable X, whose expectation we
seek. 0

0%
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Since the membership functions are unimodal, the expectation of X is a fuzzy

number EX with membership functiou

Anx(x) Busu inf Xu, (U(w)), x e R. (3.1)

This expression can be evaluated using the *-level sets (2.1). Given the family of level
ftets L. ('),the membership function pEX may be recovered with the aid of the formula

p(x) = sup (a, 1o 10 l, 11 x: } xi R. (3.2)

For the simple membership function of Figure 2, this computation can be simplified
using procedures dotailed by Dubois and Prade [31 or Ionnixone [1. Applying these pro-
cedurej to the data in Figure 1 we obtain for EX the membership function bhown in
Figure 3.

.16 .11 .13 .to

F.g 3 Memberthip (uitctlii, frr earcIp tiutI 1X of fussy random variablt X
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4. Conclusion

The form chosen for the cell Pih, membership functions (symmetric, normal, con-
vex) leads to a membership function for EX that is similar to the constituent P(x) in
Figure 2. The interpretation of the resultant pX is that estimates of overall Pk in the
interval (.18, .231 are, within our framework of uncertainty, wholly plausible. The
impulse to take the level set L.90 ('), say, and consider it a 90% confidence interval for
Pk must be resisted; there are no probability statements carried by the a-level sets. We
have, however, modeled the uncertainty of the cell Pdh, estimates in the overall
probabllity.ot-kllU estimate Pk In a direct way, and distinguished between randomness
and uncertainty in the vulnerability model. We also have the framework in place to con-
sider Pkjh, membership functions far more intricate than the one shown in Figure 2.
This is a significant methodological improvement.

ý ý1.)
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PROBLEMS ENCOUNTERED IN FITTING A LARGE NUMBER OF SHORT TIME SERIES

Franklin E. Womack and Elizabeth N. Abbe
US Army Concepts Analysis Agency
Bethesda, Maryland 20814-2797

ABSTRACT. The US Army Concepts Analysis Agency has become increasingly
Tnvolved in various forecasting projects. Most of the projects have
some common characteristics. Typically each series has less tM 100
observations and often less than 50 observations. Box-Jenkins() suggests
that more than 100 observations are preferable and that one uses experience
and past information to yield preliminary models where fewer than 50
observations are available. Usually the Agency analysts are not
extremely familiar with the systems and processes which generates these
series. Each project commonly has a set of series which consists of
many elements. The number of elements in a set can range from 600 to
1,000 individual time series. The identified model form of each
individual time series in the set varies greatly. Often only white
noise is present. On the other hand some of the series will exhibit
seasonal behavior. Many of the series are nonstationary and have
potential interventions. Many of the series take on only a discrete set
of values such as the set of positive integers from zero to ten.

1. INTRODUCTI0IN. One project requires a forecast of the quantities of
various commodities shipped over various routes. The forecast of
potential loads would be helpful in scheduling limited transportation
facilities. This project involved about 400 individual series each one
describing the history of a particular commodity; for example, coal over
a particular route, say port of New York to Europe. Another project
involved forecasting the number of separations from the US Army of
enlisted grades E.5 and E-6 for about 300 different military
occupational skills. These series are often influenced by policy
changes. Table 1 illustrates the types of forecasting projects and
their requirements for two recent projects.

Table 2 compares the results of several different forecasting techniques
giving a "best" forecast, as described further in this paper, for a
selected sampling of time series from these two projects.
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Table 1. Series Characteristics

Project

Characteristic
1 2

Length of series 84 38

Length of fit 72 34,35,
____ ___ ____ ___ ___ ____ ___ ___36,37

Forecast horizon 12 1

Total number of series to evaluate 400 579

Table 2. Comparison of Forecasts

Project
Forecast ,, ,,

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ N
Box-Jenkins 34 14

Winter/Gardner 27 39

Ties 0 10

Unknown 5 0

Total 66 63

2. PROBLEMS. Many problems arise in the analysis of time series.

However, the literature is limited on methods to handle short series.
The Agency is often confronted with both a methodological and a
procedural problem. The methodological problem is largely a result of
the inherent instability of model form and values of estimated
parameters for short time series. The procedural problem is usuallyfimposed by study sponsors who require a process which will act in a
production mode by incorporating new observations into the forecast as

they become available.
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Since no particular methodologies are suggested as super~or for

short series we have adopted an all inclusive policy. The foremost
technique for evaluating long time serles is the Box-Jenkins process
(Table 3).

Table 3. Box-Jenkins Process -

POSTULATE IDETIFY MODEL 7I~TIMýT DIAGOSTIC I
GENERAL CLASS TOBIETENTATIVELY FOR~ECAST

OFMOMITERTAINED PAAETR ChECKING

IDENTIFICATION ESTIMATION & TESTING FORECASTING

The Box-Jenkins process Is a three state process consisting of two
iterative stages; (1) identification, followed by (2) estimation and
testing, and finally (3) a forecasting stage. The task of identifying
400 individual series by evaluating the sample autocorrelation and
sample partial autozorrelation functions can be monumental. This is
especially true when typically not only the original series must be
examined, but several other series duq to nonstationarity and the
consideration simultaneously of seasonal as well as nonseasonal model
forms. Automated identification is an essential consideration in these

Agency projects. Therefore we have employed two pieces of software

atrbtsaedsrbdi alwhich render automatic identificatio o Te se software and their
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Table 4. Automatic Identification Routines for Box-Jenkins
Methods Employed

(1) AUTOBOX

AUTOMATIC IDENTIFICATION
INTERVENTION DETECTION (UP TO 5)I
BOX-COX TRANSFORMATIONS (SQUARE ROOT, NATURAL LOG,
RECIPROCAL SQUARE ROOT, AND RECIPROCAL)

(2) ARIMA:D

AUTOMATIC IDENTIFICATIONI
USES AKAIKE'S INFORMATION CRITERION
MANUAL TRANSFORMATIONS POSSIBLE

In addition to the Box-Jenkins technique several techniques of modeling
an exponentially weighted moving verage have been employed. Two
techniques are the Holt/Winters?6 1 Model and the Giardner-Mckenzie(J)'"
Model. The update forms of these models are shown in Table S.

Table 5. M~ultiplicative Seasonal Models Update Sequences

WINTERS - HOLT GARDNER NONLI NEAR

Ct = Xt.-Xt~p1) et -y tj

StNSti*Tti*caet/It~p St -*tj*tj*(-)tI~

+tn!p6(1-ca)e /St I a I*61l-al(2-oflet/St

i1(1) a(S 1*T1)11-p41  *t1 (St+sTt)1t-P+l

WHERE
Xt OBSERVED VALUE TIME t At(l) *ONE-STEP AHEAD FORECAST

St *LEVEL (MEAN) AT TIME t 7t a TREND AT TIME FOEATERRA IEtA IE tI
it *SEASONAL INDEX AT TIME t a *LEVEL SMOOTHING PARAMETER

y*TREND SMOOTHING PARAMETER a SEASONAL INDEX SMOOTHING
**TREND MODIFICATION PARAMETER PARAMETER

P *NUMBER OF PERIODS IN A CYCLE
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The local implementdtion of the Gardner Mckenzie technique is described

in Table 6.

Table 6. Gardner Model Procedure

1. FIT LINEAR REGRESSION TO RAW 3R TRANSFORMED DATA TO ESTABLISH BEGINNING
SLOPE AND INTERCEPT, So AND To.

2. FOR NONSEASONAL MODEL, ESTIMATE a, y, AND * BY A GRID-SEARCH METHOD TO
MINIMIZE MEAN SQUARE ERROR,

3. FOR SEASONAL MODEL, ESTIMATE 6 BY HOLDING Y, r, AND # FIXED AND DOING

A GRID SEARCH FOR 6 TO MINIMIZE MEAN SQUARE ERROR, CHOOSE INITIAL
SEASONAL IflDICES

I .9 TO I0 SUCH THAT Ij.0-P'X.J/J J.

WHERE Xw a OBSERVATION I IN PERIOD J

ni NUMBER OF OBSERVATIONS IN PERIOD J
p * NUMBER OF PERIODS

The estimation process for the exponentially weighted techniques
requires the development of parameter values which are traditionally
chosen In an arbitrary ad hoc fashion.

in order to develop a reiterative process and also to some extent to
ameliorate the stability problems of short series, a sequential
technique was employed. This process is described in Table 7.

Table 7. Algorithm Followed In Project #2

(1) RESERVE SOME NO OF THE LAST OBSERVATIONS
(2) ITERATE N' TIMES CALCULATION OF PARAMETERS FOR THE SEVERAL MODEL TYPES

(3) USE N-N' OBSERVATIONS ON FIRST ITERATION

(4) CALCULATE ONE-STEP AHEAD FORECAST AT FIRST ITERATION

(5) ON SECOND AND SUCCESSIVE ITERATIONS ADD AN ADOITIONAL OBSERVATION UNTIL
"N-i OBSERVATION$ ARE INCLUDED, CALCULATE PARAMETERS FOR THE SEVERAL
MODEL TYPES

(6) CALCULATE ONE-STEP AHEAD FORECAST AT EACH ITERATION

(7) CALCULATE ROOT MEAN SQUARE ERROR OVER ITERATED ONE-STEP AHEAD FORECASTS _'
FOR EACH MODEL TYPE

(8) FIT ALL N OBSERVATIONS BY METHJD YIELDING MINIMUM ROOT MEAN SQUARE ERROR

ON THE N' RESERVED OBSERVATIONS
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At each new time point all techniques are simultaneously applied to the
time series. For a certain period of the recent past, in our case the
last four points are evaluated to determine a "best" technique. In one
project which involved 38 quarterly observations, the last 4
observations formed this recent past and are referred to as the reserve
set. Four successive steps involving 34, 35, 36, and 37 observations in
each series were modeled by each of the several techniques. At each
step, for each of the techniques, the one-step ahead forecast error was
calculated by subtracting the technique's forecast from the true
observation. A very rough measure of selecting the best technique to - -

forecast the 39th point in this case could be made by selecting that
technique which yielded the minimum mean square error on the reserve set
(i.e., times 35, 36, 37, and 38).

3. Exmls Table 8 gives a frequency chart for 63 typical series
selected from the project; each series in the project involved 38
quarterly observations described above. Each row specifies the model
form type identified by the automatic identification software for the
Box-Jenkins technique described above. Each column identifies one of
the techniques employed in the local process described above. Each
element of the table gives the number of series among the 63 which were
identified as a particular ARIMA form and were "best" modeled by a
particular technique. Figure 1 illustrates a model which was identified
as autoregressive nonseasonal, and this form was selected as "best" on
the reserve set (i.e., minimum mean square error over time points 35,
36, 37, and 38). Figure 2 illustrates a series identified as a
nonstationary seasonal moving average, and this form was selected as
"best" on the reserve set. Figure 3 illustrates a series identified as
nonseasonal autoregressive, but a Winters/Holt Model was selected as the
"best" on the reserve set. Figure 4 illustrates a series identified as
white noise, but a model of the Gardner Multiplicative Nonseasonal
Nonlinear Trend type was selected as the "best" on the reserve set.
"Figure 5 Illustrates a series identified as white noise, but a model of
the Winters/Holt Multiplicative Seasonal was selected as the "best" on
the reserve set. From this sampling of typical time series it is
evident that the all inclusive process picked model forrs from a variety
of techniques. It is amazing that even series identified as white noise
by examination of their sample autocorrelation and partial
autocorrelation can sometimes be better approximated over the reserveset by an exponentially weighted moving average model,

Figure 6 illustrates the preponderance of these 63 series which have
only a small set of values. In this sampling 26 out of 63 (about 41
percent) of the series take on values from zero to ten.
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Table 8. Model Freguency

MINIMUM MSE OVER RESERVE SET

4Ap 4

IDENTIFIED AS.

WHiTE NOISE 4 3 8 8 25

AR 4 1 7 2 3 17

MA 1 _2_

SEASONAL MA 2 -3

MIXED NONSEASONAL AR AND
SEASONAL MA PARAMETERS 3 42LMINIMUM ME OVER RESERVE
SET TOTALS 14 10 5 16 63

4. SUMMARY. It is difficult to obtain guidance from the literature on
how to evaluate short time series. Even though the sample statistics
froin which time series forms are identified become very unstable for
short series, there is an operational need for forecasting the short
series. This paper has described attempts to cope with a real problem
in the face of little guidance. The purpose of this paper is to solicit
further guidance on the subject. Specifically we would like to ask
several questions;

a. What forecasting method(s) are recommended for situations
involving hundreds of "short" series with little time to accomplish? 1)_

b. Why does not Box-Jenkins make a better showing with respect to k
the exponentially weighted moving average models?

c. How do you recommend comparing forecasts from several pion
techniques?

d. Are there any special techniques for treating series which take
on only a small set of values such as the integers zero to ten?.
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STUDY ON THE FEASIBILITY OF GENERATING
"PREDICTIVE ANALYSIS MODEL"

by
UTILIZING THE ARMY'S EXISTING DATA SOURCE

Li Pi Su
Logistics Engineers/Readiness Division

Materiel Readiness Support Activity (MRSA)
U.S. ARMY

ABSTRACT: This is a preliminary report on the feasibility of a
predictive model for an Army data source.

The following seven tasks will be taken to determine the
feasibility of a predictive model for a certain Army data source:

1. Clarification of the description of the data.

2. Classification.

3. Determination of the effects that influence the data.

4. Stratification of the data by location, mission usage,
etc.

5. Examination of thQ quality of the data.

6. Adjustment of data. Effects, time period, outliers, etc.

7. Selection of a predicting model.

I. INTRODUCTION:

a. An adequate data source is important for obtaining
reliable results from statistical analysis. However, if the data
source is inadequate, the choice of analytical techniques
selected to perform an analysis can improve the validity of the
results and thus increase the accuracy of the prediction. The
existing Army data collection methodology is not fully compatible
with known predictive techniques. It is difficult to analyze the
existing data statistically and to obtain useful and valid
information such as: safety, reliability, readiness, cost, mean
time between failures, mean time between replacement, or
maintenance cost of certain systems. It is even more difficult
to use the presently collected data for predicting any of the
above information with a high confidence level.

b. This is a preliminary report. The report addresses some
of the ways in which current Army data sources may be used in the
application of ;, predictive technique and of some of the
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techni quee that could be utilised for conducting predictive
analysis, given adequate data.

c. In section XI, some of the applicable prediction
techniques are presented. The basic requirements for a data
source to be compatible with predicting techniques are discussed
in section XII. Then the problematic areas for both Army data
sources and predicting techniques are stated in Section IV. In
Section V, the approaches to be taken to determine the
feasibility of generating a "Predictive Analysis Model" for an
Army data source are discussed. Some of the possible
applications for a predictive analysis technique are provided in
Section VI.

II. Predicting Techniques and Fitting Criteria. 'rhe
predicting (or forecasting) techniques discussed here are the
known scientific ones. The structures of these scientific
predictions can be determined by statistical and mathematical
methods. Although each technique is somewhat unique in its
predicting capability, in practice, it has been found that a very
large group of data can be fitted with a "reasonable
confidence-level" by one of the following basic models or one of
their combinations: constant mean, linear trend, linear
regression, autoregression, moving average, seasonal and periodic
models, and exponential and non-linear models. A brief
description of each of these techniques is given below. (See
Gilchrist)

A. The constant mean model. This technique is of the form

Xt a Ii + t , t - 1,2,3,...

where v is the constant mean of all x,,'s and ct is one of a
sequence of independent random variables with zero expectation,
i.e. E(¢.)-O, and constant variance Uo. Fitting criteria: zero
mean error, reasonable small confidence interval. This method
dealL with a set of data fitted approximating to the glotal
constant mean.

B. Linear trend model. This technique is of the form

"2 Q * , t = 2,2,5,

where a has the expectation of x. , S is a constant slope and t
is a sequence of independent random variables with zero
expectation, i.e. E( et )-O, and variance of t , var(c)- c2 .02

Use the least square method for the fitting criteria.
The method deals with the data structure showing a linear trend
with a random variation added.

NOTE: Both techniques A&B use only the past values of the
variable being forecasted, the future values, and thus these
approaches are limited to obtain the best forecasts because it
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Zeuls to itse the influence information contained in other
variables.

C. Regression model. The general fort of this technique is
k

Yt Y ~ 1ti + 't , t u 1,20,3 ..

where )'a, 1-O,1,...,k are constants, and x's are variables
related to yt , and ct is a random variation. When the data
structure shows a seasonal trend, some of xrt 's, may be replaced
by harmonic terms. The criteria fo: fitting is the mean square
forecasting error.

NOTE: Random variables in techniques A,B and C, discussed above
are simply added "errors" which were added to a strictly
deterministic function. Technique C will also rake use of other
information that is related to the one being forecasted so that a
better forecasting product could be obtained.

D. Autoregressive model. This technique is of the form

p
x x = + Ot , t = 1,2,3,

Where 4 's, i-1,...p are constants estimated from given data, and
i's are identically distributed with zero mean and constant

variance, i.e. U( Y-)r0, and Var( Ed)- 0. It is usually denoted
by AR(p), where p is the order of this autoregressive model and
is a positive integer. For fitting criteria see page 81 of
Pankratz.

E. Moving average model This technique is on the form

xt Ct + Jil ejt-j t - 1,2,3,

Where *j'5, j-l,...,q are constants estimated from given data,
and tis are identically distributed with zero Trean and constant
variance, i.e. P(c •)-:. and Var( %lr a. It is usually denoted
by M.A(q), where q is the order of this moving average model and
usually is a finite positive integer. For fitting criteria see
page 81 of Pankratz.

NOTE: Techniques D & E are stochastic rodels a-6 have the rand:J-
variahles play the dmat• part in deterr.-r: t-A stricture c •
the models. Box and Jenkins (1970) mixed autoregression and
moving average models into one model that will improve the
forecasting. This integrated model, usually called Box-JenkinsT"s
model, ..s denoted by KPY%(p, q . Moreover, SC7e ncn-stationary
models may become stationary by replacing the xt's by differences!:
of x 4 's. The d-th d~fference is obtained by te)aing differences
for the d-th time from xe's. The integrbted autoregressive -
moving average model, denoted by ARIMA(p,d,q) is a result of
combining d-th differencing process and ARMA(p,q). (See Box and
Jenkins for mathematical forms.)
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F. Seasonal and periodic models. These techniques do not
have a unique form. They deal with the data to display a
repeating pattern at a certain period. Some methods often used
to deal with seasonal data are: Seasonal index methods, Fourier
methods (see Gilchrist), and stochastic (or integrated
autoregression - moving average) methods (see Box-Jenkins,
Gilchrist, Jenkins and Pankratz.)

G. Exponential and non-linear models. In many situations,
e.g. growth or decay, tUe data can only be fitted to provide a
reliable forecast by exponential, logarithmic parabola, or their
modified curves.

Remarks:

1. In the situation where the data structure is highly
stable and the chosen model is the truth about the underlying
structures of the data, the model is called a"global model". In
other situations where the data structure is not stable overall
but it is stable in the short run, and this instability may not
affect the techniques ability for forecasting over a short
period, the model for forecasting over a short period is called
"local model". There are no differences in the mathematical or
statistical formulation of these two types of models. The only
difference is in the way in which the models are used.

2. Most predictions involve forecasting more than one
variable. If the variables are independent then each variable is
predicting as a univariate foreuasting. If the variables have
some correlation, then multivariate forecasting should be used.
The techniques for multivariate forecasting are studied by
various Time Series Analysts. (See Hannan, Jones and Robinson.)

III. Basic Requirements for a data source to be compatible
with predictive tocniques.

It is easy to see that the quality of forecasting can not be
any better than the quality of data available for analysis. Butit is nearly impossible to define the quality of data.

Generally, the data should provide the information to meet the
following rcquirements (see Gilchrist):

A. The data should provide directly relevant information.

1. The data should provide reliable information.

C. The data should continually and promptly provide new
information.

Th* directly relevant and reliable information will help
obtain forecasting results with higher accuracy, and the new
information is essential for validation of the model. In
practical forecasting, there are many occasions in which the data
sets do not satisfy these three conditions. In this event, thefollowing processes may help to improve the forecast. ,A
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A. The data should be obtained by the forecasters
themselves.

a. The data should be examined to see how well the three
requirements are met.

b. The data 3hould also include information about the
external environment.

B. Where the data were not obtained by the forecasters, the
forecasters must use the robust and exploratory methods to cope
with the sets of data in an informal way that will provide the
forecasters with data structure, and an extensive reportoire of
methods for the detailed study of the data.

IV. Problematic areas of existing Army data collections and
statistical Predictive Techniques.

A. Data Sources.

In general, Army data collected are affected by the
following conditions that are outside the controls of the data
collector or analysts:

i. Fleet changes in aircraft configurations.

ii. Periods when the fleet was grounded.

iii. Changes in usage rates which provide for more or less
exposure to replacement.

iv. The data are not fully compatible with classical -
statistical analysis or predictive analysis techniques.

v. There are multiple National Stock Numbers (NSN) and
part numbers (NP), manufacture lots, etc. for an individual
generic piece on some systems. (e.g. parts in aircraft)

vi. The location changes in fleet employment have been
shown to influence part replacement rates.

vii. There are dynamic changes in maintenance procedures:
inspection intervals, inspection activity, repair levels, part
rework procedures, etc.

viii. Some data collections programs do not contain the
relevant information about the external environment.

ix. In most cases the forecasters; are not involved in
data collecting plan nor process.

B. Statistical Predictive Techniques.

a. Risk/Confidence Lwvels: The statistical predictions
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always involve some uncertainty and the desired confidence level
is not always attainable.

b. Compatibility with data: Only data with a stable
structure can be forecasted with low risk and high confidence
levels.

c. Predictive Capabilities: The confidence level
decreases as the number of lead predictions increase.

d. Data requirements: In order to obtain the validity
of statistical analysis the three minimum requirements mentioned
in Section III should be met.

V. Approaches. Since the basic requirements for a data set
to be compatible with the predictive methodologies and
problematic areas are identified, the forecaster must select an
approach to filter out the unwanted information and to obtain a
forecast model with high reliability. The following tasks must
be accomplished to obtain a more valid analytical output of a
predictive model with an acceptable confidence level.

Task 1. Clarification of the description of the data.
The purpose of this task is to select from a given data set the
most relevant information needed for prediction. If the
forecaster was not directly involved in collecting the data, then
intensive interviews with data collectors and/or field visits
should be done to understand how the data were initially obtained
and the standard method used. This will assist the forecaster in
the selection of the forecasting model and in the interprotation
of the forecasting results.

Task 2. Classification. There are many kinds of weapon and
equipment systems. The scenario and environment in which each of
these systems may be used could have significant impact on the
collection and structuring of the data, the selection of the
forecasting techniques, and In the interpretation of the forecast
results. Therefore it is essential for the forecaster to
classify the commodity, i.e., aircraft, missiles, etc.,of the
systems for which forecasting efforts are to be applied and to
identify the prediction rationale prior to the initiation of a
forecasting exercise.

Task 3. Determine the effects that influence the raw data.
There are certain effects that are known to influence the raw
data. Some of these have already been mentioned in Section IV.
A suitable adjustment should be made for the effects to improve
the forecasting accuracy.

Task 4. Stratification. Many data collections contain vast
amounts of information obtained from different locations,
missions, usages, climates, etc. Each group contains relevant
information for its particular predicting purpose. .C.
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Task 5. Examine the quality of the data. Use the three
minimum requirements in Section III to determine the quality of
the stratified data and whether any adjustments need to be made.

Task 6. The adjustment of data. Most Army data are not
collected for the purpose of foracasting. The raw data may need
to be modified to allow or disallow for some features before the
date can be used in the prediction process.

a. Adjusting for known influencing causes. Some of the
known causes have already been mentioned in Section IV. The ways
of dealing with these vary greatly.

b. Adjusting for time period. Almost all forecasting
methods assume that data are input at fixed intervals. If this
is not so, then some adjustment has to be made to produce a new
data set of the required intervals. For example, adjust monthly
data set into quarterly or yearly data set, or adjust yearly data
set into monthly, bi-monthly, quarterly, etc. data set.

c. Adjusting data by transformatiors. Some data sets
with nonstationary variance may be transformed into a stationary
one by natural logarithms. Some data sets with a nonstationary
mean may be transformed into a data set with a stationary mean by
applying a differencing procedure.

d. Adjustment for outliers. Most practical forecasting
systems contain quality control procedures that will pick out
values which are in some sense extreme (by engineering judgement,
or out of some standard deviations from the mean error, etc.),
and are called outliers. In an operational forecasting system,
it is advisable to replace the outliers with some other suitable,
but less extreme, values so that the leading forecasts will not
be influenced by outliers.

Task 7. Selection of a predJcting model. Having completed
the above six tasks for a data set, there remains to examine the
three minimum requirements of Section III again before
constructing a model for its forecasting. In general, the
forecaster begins to fit the simplist model with the reduced
data. If the nrodel does not fit well, according to its criteria, o'
then the next model should then be tried. It is often that a
forecaster can not obtain a model with the confidence level
desired. Some experienced judgement must be made before the
final model selection, or sometimes a forecaster may use a model
and then modify it as new data come in. 'A

VI. Applications: The ability to predict (forecast) a given
operational parameter of a system is one of the most important
elements of logistic support and managerial decision. The
predicting analysis techniques can help project operational
readiness, dependability, safety and hence, the probability of
mission success of a system. These techniques also can assist in
the development of a mathematical model for provision planning of
a system, manpower maintenance planning, logistic supoort
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planning, etc. Moreover, the result of the predicting analysis
can be used to assess the engineering design specification and
influence engineering designs or changes.

Summary:

There are numerous sources of data collection in the Army
community. It is worthwhile to investigate which of these data
collections may be used to predict safety, reliability, cost,
etc. There are also several known forecasting techniques that
are available, and the forecaster must use discretion in the
preparation of the data to be used with each technique, as well
as the selection of the technique.
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QUANTILE STATISTICAL DATA ANALYSIS

Emauel Parsenu
Department of Statistics :
Texas A&M University

Abstract.

This paper presents trnso reasons why theoretical and sample quantile functions should be routinely used
by contemporary statistical data analysts. Quantile methods are introduced in the context of the exponential
distribution as a fit to the historically important life table data of Oraunt (1681). Section titles are: history
of statistics and contemporary textbooks; quantile concepts; identification quantile function; identification
quantile box plot; tail classification of probability laws; goodness of fit plots; IQQ plot; cumulative weighted
spacings function D(u); quantile simulation and distribution of extreme values; comparison quantile function;
nonparametric estimation of probability density; conclusion.

1. History of Statistics and Contemporary Textbooks.

A central problem of statistical data analysis [that was formulated by 19th century pioneers such as
Quetelet (1796-1874) and Galton (1822-1911)] is identifying distributions that fit the data. In The History
of Statisttcs, Stigler (1988) writes (p. 268) that these pioneers emphasised the use of normal curves to fit
data; they 'proposed that the conformity of the data to this characteristic Inormall curve was to be a sort
of test of the appropriateness of classifying the data together in one group; or rather the nonappearance of
this curve was indicative that the data should not be treated together.'

By 1875 Galton 'had devised a different way of displaying the data. He ordered the data in increasing
order. and, effectively, graphed the data values versus the ranks.' Galton used the name 'ogive' for the
theoretical form of this curve for a normal distribution; Stigler writes 'we now call it the Inverse normal
cumulative distribution function'. I call this ideal graph a quantile function of the normal distribution; the
graph of ordered data values, denoted X(j;n), versus (y - .8)/n or j/(n + 1), is called the sample quantile
function, denoted Q(u),O < u < 1.

This paper presents some reasons why theoretical and sample quantile functions should be routinely -

used by contemporary statistical data analysts. They can be used to not only test the fit (or lack of fit) of a
normal distribution to data, but also to describe other general families of distributions and to identify which
distributions fit the data.

Textbooks with titles such as Introduction to Contemporary Statistical Methods omit mimy important
topics that are actually useful in the theory and practice of sta~istical data analysis. On my list of important
topics (for which I always look in the index and usually fail to find) are: uniform distribution, exponential
distribution, order statistics, extreme values, quantile function. Traditional introductory textbooks describe
methods based on mean and variance. To qualify as 'contemporary' a textbook adds the following topics:
box plot, fences, stem and leaf plot, trimmed and Winsorised sample. In my opinion quantile function
interpretations are needed for theoe topics to acquire beauty and utility that will excite students; however -

how to do this is not explicitly discussed in this paper.

We introduce the ideas of quantile-based statistical data modeling in the context of the exponential
distribution. Let X be a continuous random variable with distribution function F(z) = PrIX _ zJ and
probability density function f(z) - F'(z).

IT
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We call F(z) an exponential disttibution with parameter A if

1 - F(x) - exp(-As), z> 0, f(x) - A exp(-Ax), x> 0

Its mean ju equals 1/A, since (for a non-negative random varibls)

p -f j(x)dz - (I - F(z))dx exp(-As)dz.

The Standard exponential distribution Is the exponential distribution with mean 1.

2. Quantitle Concepts.

The QUANTIZE FUNCTION Q(u4,0 < 1, is the inverse:a T- F(t) of the distribution function
u - F(x). To Aind z - Q(u) one solvses u -F(s).

For an exponential distribution, one obtain@ z - Q(u) by solving 1 - u- exp(-Az); therefore

Q(U) - (,/A) log(, - u)-' - A(- log(1 - u))

The mean pi of a distribution P or random variable X can be compitted from the quantile function 9:

-u Q(u)du.

The MEDIAN and QUARTILZI of a distribution F or random variable X are defined to be

the values of Q(u) at u = .5, .25, .75. We define QUARTILE DEVIATION DQ by DQ - 2(Q(.75) - Q(.25)).

For an exponential distribution, Q(.5) - plog2 - .6i9p; Q(.25) wulog(4/3) = .29;A; Q(.75) - plog4
1.3 9 p. The interquartile range Q(.75) - Q(.25) - 1.1p; quartile deviation DQ - 2(Q(.75) - Q(.25)) - 2.2p.

Two important quantile concepts are q(u) - Q'(u), QUANTIZE DENSITY FUNCTION, and f Q(u) -
f (9(u)), DENSITY QUANTILE FUNCTION. For F continuous, F(Q(u)) = u and f Q(u)q(u) - 1. For a
standard exponential distribution, 19(u) - I - u.

Two important universal measures of scale of a distribution ame DQ and 11f (median) = 11f Q(.5)
q(.5). They approximately equal each other because DQ is a numerical derivative of Q(u) at u. - .5.

How do we apply these concepts to determine distributions that fit data? Given lata (sample) compute
a sample quantile function denoted Q"(u). The sample distribution function is defined by Fr(z) =fraction
of sample,•e z; the sample quantile fu~nction Q"(u) is the inverse of F'(u). In terms of the order statistics
X(1; n) 5 ... :5 X(s; n) of a sample

Qi(u) - X(j; n)for(.j - 1)/n < u:5 j/n.

One usually adopts a continuous version of the sample quantile function defined by linear interpolation
between its values

Q( - .5)/n) - X(j; n),j i n,n

When true mean p - 18, and the distribution is exponential, Q(A5) - 12.4, Q(.25) =5.2, Q(.75) =25.

If similar values hold for the sample analogues of populatim~n parameters ..(dcenoted by adding a tilde ()to

the populatimn not~tion) one suspects, and conjectures, that an exponential distribution fits.
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Table 1. GRAUNT's LIFE TABLE (1661). OBSERVED PROPORTION AND CUMULATIVE PRO-
PORTION IN VARIOUS INTURVALI Of OBSERVED VALUE$ O AGE AT TIME OF DEATH (IN LONDON
1534).

Index Age Interval Proportion Cumulative proportion
• - 1)) - Q-(,(j)) pl) U,()

1 0-6 .38 .36 = r(6)
2 0-18 .24 .80 - r(16)
S 16-26 .1s .75 - r(26)
4 28-36 .09 .84- r(36)
5 38-46 .06 .g0 -r(46)
6 46-56 .04 .94 - r(96)
7 58-66 .03 .97 -"(66)
8 80-76 .02 .99- r(76)
9 70- 86 .01 1.00 - r(86)

Table 2. GRAUNT'S L.WE TABLE SAMPLE QUANTILz FUNCTION.

0 0 1 2 3 4 5 0 7 8 9-k
U(j) 0. .36 .60 .75 .84 .90 .94 .97 .99 1.00

Q'I((y)) 0 a 16 26 36 46 56 66 76 so

For an illustrative example we consider Graunt's Life Table data (that should be familiar to all students
of statistics). It was published in 1861 by John Oraunt, in an attempt to analyse data dealing with age
at time of death in London, The original data was collected by Thomas Cromwell in 1534 from Church of
England records of births and deaths. Oraunt Is credited with starting modern statistics by creating Table 1.
Brilliant lectures by James R. Thompson of Rice University brought this important data set to my attention.

From Graunt's life table (Table 1) one computes sample mean j," m 18,22 (in words, the average age at
death was approximately 18 years), Q'(.25) - 4.2,q "(.5) - 11.8 (median age at death was approximately 12
yeas), Q"(.75) - 28, DQ - 43.6. These are found by Interpolating the values of the sample quantile function
in Table 2.

To compute sample mean (from grouped data) we use formulas

- • .5(Q-(u(j - 1)) + Q-(u(j)))(U(j) - ,,(y - 1))
,Jul

- .(Q-(u(y)) - q'(u(j - I1))( - .s(u(y - i) + U(M)))

The second formula can be interpreted using the fact that 1 -- u is the standard exponential density quantile.

It does not seem to be customary in the literature to discuss which distributions fit the data that one is ,,

analysing (here Graunt's life table). Techniques are discussed in this paper which can guide the statistical
data analyst to identify and test standard parametric distributions (such as the exponential distribution) as ,
a smooth distribution that fits the sample. We discuss the respective roles: (i) F"(z), sample distributioni
function, (ii) Q'(u), sample quantile function, (iii) F^(z), smooth distribution cetijiated from data (for

Graunt life table, an exponential distribution with mean 18.22), (iv) Q^(u), smooth quantile function, (v)
D-(u) - FQ'(u)), comparison quantile function, (vi) D'(u), cumulative weighted spacings, tests constanicy
of ratio of derivatives Q'(u)/Q'(u), (vii) QI(u), identification quantils function. The etatistician's problem
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is to devclop a framework which explains how and why to use these functions to develop graphical and IN
numerical diagnostics which guide us to identify distributions (such as the normal or exponential) that fit
the data.

3. Identification Quantile Function.

The median, which we henceforth denote MQ = Q(.5), is a universal measure of location. It is superior
to the mean by the criterion of being more robust (resistant to outliers in the data whose presence will in
fact be detected by the identification quantile function). But we recommend the median not because of its
robustness but because it forms one of the tools of quantile based methods of statistical data analysis.

Statisticians who favor (or at least teach) mean and standard deviation as measures of location and
scale use them to standardise the data by subtracting the mean and dividing by the standard deviation.
The quantile based analogy to standardization is to transform the random variable X to

X1 - (X - MQ)IDQ

whose quantile function is 11 .7
QI(u) - (Q(u) - MQ)/DQ Y IL

We call QI(u) the Identification Quantile Function. Our motivation for introducing this function is that

it is approximately equal to the unitised quantile function

Q1(U) - (M(u) - MO)/Q'(.5) - fQ(.5)(Q(u) - UQ).

which has value 0 and slope 1 at u - .5. The probability density f(z) corresponding to the unitized
quantile function has been normalized so that /(median)- 1. The unitised normal probability density Is
1(z) - exp(-7irz).

Univer3al measures of location and scale are MQ and DQ. Diagnostic meaures of skewness are

QI(.25), Q1(75), QIM - .6(Q1(.25) + QJ(.75)), -. 25/Qt(.25), .2S/Q!(.7?5);

note that always Q!(.75) - QI(.25) - 5. Diagnostic measures of (left and right) tall behavior are QI(.01) and
QI(.99). A combined measure of tail behavior (useful for probability density estimation) is QI(,99)-QI(.01),
called the identification quantile range.

4. Identification Quantile B=o Plot.
An Identification quantile box plot is a plot consisting of a box from QJ(.25) to Q1(.75) with a midline

at QI(.5) = 0 and a cross at QIM. Fences are defined to be max(-1,QI(o)) and min(l.Ql(l)). Lines
are drawn from identification quartiles to fences. Data values outside the fences are considered outliers or
out-and- outliers, depending on whether they are interpreted u representing long tails or blunders. One
also Indicates the location of (sample mean-MQ)/DQ. The values of identification quartiles and fences are
recorded on the plot. 7

5. Tall Classification of Probability Laws.

Representations of the density quantile function behavior as u tends to 0 or 1 is used to provide a
quantitative index of tail behavior which we call the tail exponent. It Is used to qualitatively classify tail
behavior in three types, called short, medium, and long, Medium tails are further classified in three groups: 9.
medium-short, medium-medium, medium-long; a goad summary of these concepts introduced by Parzen A
(1979) is given by Schuster (1084). %*. .•..

These five groups reduce to three groups (short, medium, long) when expressed in terms of hasard rate. •
functions (decreasing, constant, increasing). The right and left hazard functions are respectively defined by

hz(z) z)l(l - F(z)),ho() f (x)IF(z),
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The right and left hasard quantile functions are defined

hQ(u) - fQ(-)/(l - u), hoQ(u) - fQ(u)/u.

Our clasifications of tail behavior can be empirically related to the behavior of the identification quantile I
function as u tends to 0 or 1. The left tail is classified: 0 > QI(.01) > -. 5, short tail; -. 5 > QI(u) > -1,
medium-short; -1 > QI(u), medium-long and long tail. The right tail is classified short, medium short, or
long %ccording as QI(.99) < .5, .5 < QI(.99) < 1, 1 < QI(.99).

For Oraunt's Life Table, QI(.25) - -. 17, QI(.75) - .33, QIM - .AQ1(.75) + QJ(.25) - .08, QI(.01) -
-. 27, QI(.99) - 1.47. Experience with typical values of these diagnostic measures for various standard
frequently encountered distributions leads one to conjecture that the sample distribution function P(z) of
the data in Table 1 is fit by an exponential distribution F^(s) with a suitable estimated mean P".

6. Goodness of Pit Plots.

To evaluate the fit of a model described by F'(z) or Q*(u) to data described by 1"(z) or Q'(u) one
has a bewildering number of options. The theory of goodness of fit tests is concerned with the theoretical
study of the many test statistics available, and offers little practical guidance on which methods to use in
practice. This extensive literature can only be briefly illustrated in this paper, with emphasis on graphical
comparisons.

One can compare plots: (1) F'(x) and 7(z) vs. x, on the same graph; (2) Q'(u) vs. Q'(u), called Q-Q
plot; (3) D(u) - F^(Q'(u)) vs. u, called D.uniform plot (it is equivalent to a plot of 7(z) vs. F(z) called a
P-P plot), We recommend variants of the last method. One can interpret D(u) as sample quantile function
of the transformed random variable ^ - 1'(X). The goodness of fit problem is transformed to tests of fit
of U^ by a uniform 10,1J distribution and by estimation of the true quantile function, denoted D(u), of V.U
We call D(u), 0 < u < 1, a sample comparison quantils function.

When I' is exponential, D'(u) - 1 - ,xp(-Q*(u)/p'). Its values for Graunt's life data is given in Table
3. Figure 2 presents a IQQ plot a a test of fit of Oraunt's life table by an exponential distribution. Figures
3-6 present plots on same graph of sample and smooth distributions. The combinations are 7(z) and F'(z)
vs, x (Figure 3), Q'(u) and Q'(u) vs. u (Figure 4), Q'(u) vs. Q^(u), a Q-Q plot (Figure 5), and F^(x) vs
P(x), a P-P plot (Figure 6) which also plots D(u) - r(Q'(u)). Figures 6 and 7 present D(u) plots as tests
of fit of Gaunt's life table by an exponential distribution; D'(u) - cumulative weighted spacings in Figure 7,

7T. IQQ (Identification quantlile - quantile) Plot.

To test whether a sample is normal or exponential, one tests the hypothesis Q(u) - P + vQo (u) by a
scatter plot of (Qo(u(j)), Q"(u(j))) at suitable values u(j),j - 1,...j k, in the interval 0 < u < 1, This plot,
called a Q.Q plot, is judged visually for linearity.

We prefer to use what we call a IQQ plot; it is a scatter diagram of (Qo!(u(j)), Q'i(u(j))) with a grid
of lines which may make it easier to judge visually for linearity. A IQQ plot for Graunt's life table is given
in Figure 2.

8. Cumaulative Weighted Spacings F~unction D(u).
Users of QQ and IQQ plots report that they are difficult to interpret, I propose that one should prefer

plots that are graphs of functions such as various functions D(u),o < u < 1, which can be defined to measure
the 'distance' between two distributions.

To compare Q(u) with u-• cQo(u) we recommend comparing their derivatives (equal to q(u) and cqo(u)
respectively). SVnce a is unknown we test for constancy the ratio q(u)/qo(u) q(u)fuQo(u); equivalently
test the deviation frorn 1 of

d(u) -q(u)uQo(u)/ao,

285

ef le e.*W if or C,. C(,r r ~ .



0o = q(t)foQo(t)dt.

We call d(u) a weighted spacings function, since spacings X(k; n) - X(k - 1; n) are the buildirl blocks of
estimators of q(u).

One approach to testing d(u) is to estimate and test the deviation (from the uniform function Do(u) - u)
of the cumulative weighted spacings function

D(u) -= d(tdt-

The sample analoue of d(u) and D(u) to test exponentiality is: for u(j - 1) < u < u(j), ('(u) - (j),

d'(j) - (Q'(u(j)) - Q'(u(j - I)))(l -. 5(u(j - 1) + u(j)))/j';

D'(u) linearly interpolates its values D'(u()) d'(1) + ... + ((j), Note that o'o - jJ

Table 8. GRAUNT'I LIFE TABLE Q, Q", , F(Q)m D' FOR PITTED EXPONENTIAL F(S) -
1- exp(-z/p'),p'" = 18.2, D(u) CUMULATIVE EXPONENTIAL WEIGHT SPACINGS (CUMWTuPAo).

J Q"A)) M(u()() r u(t(()) 7AQ()) D'(u(j))CUMWTSPAC

0 .09 0 .00 .00 .00
1 8.13 6 .36 .28 .27
2 16.69 le .60 .58 .56
3 25.26 26 .75 .76 .7,
4 33.-39 36 84 .86 .85
5 41.95 46 .90 .91 .92
6 51.26 56 .94 .96 .96
7 63.89 66 .97 .97 .986
8 83.91 76 .99 .98 .997 T

9 96.54 86 1.00 .99 1.00

Figures 6 and 7 show how we plot D'(u) for comparison with Do(u) - u. In Ildition to the graphical
diagnostic of the plot, there are many numerical diagnostics that can be perform, ,

9. Quantile Simulation and Distribution of Extreme Values.

A general distribution function F(m),-oo < x < cc, is a non. decreasing function continuous from the
right. Its quantile function (or inverse distribution function), defined by

Q(u) - inf(z: F(z) ?_ u},

is a non-decreasing function continuous from the left. It is an inverse under inequality; for any z and u -s

F(s) _ u if and only if z ;? Q(u).

An important property of quantile functions is a formula for functions of random variables. THEOREM.
Assume g is non-decreasing and continuous from the left. Then Y - 9(X) has quantile function

Qy(U) = (Qx(M)).
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One can represent X in terms of a uniform 10,11 randor-. variable U by X = Q(U) since Q(U) has
quantile function Q(Qu(u)) - Q(u).

When F is continuous, one can transform X to U, a uniform 10,11 random variable, by U = F(X) sinco
F(X) has quantile function P(Q(u)) - u.

A random sample X(1),..., X(n) of X can be simulated by generating a random sample U(1), .. " (P
of U, and forming X(Y) - Q(U(a)). This process, illustrated in Figure 8 fo! the normal and Cauchy distribu-
tions, demonstrates that the quantile function provides a powerful graphical representation of a distribution
because of the following equivalence: (1) a random sample of X, (2) observing Q(u), quantile function of
X, at a random sample of points on the unit interval. To compare two distributions, such us the normal or
Cauchy, one way is to plot (as In Figure 8) graphs of their id~entification quantile functions plotted on the
same scale (the longer tailed one will have to be truncated at a suitable value).

Thes respresentation of X in toerm of U by X - Q(U) provides a qua'itile approach to the distribution
theory of order statistics and extreme values. Let X(1; n) < ... < X(i; n) be the order statistics of a
randomn sample X(1),. .. ,X(n). The kth arder statistic X(k; n) has the same distribution a. Q(U(k; n))
where U(k; nt) is the kth order statistic of a random sample from uniform 10,11.

10. Comparison Quantile Function.

A quantils, based concept that unifies parameter estimation and goodness of fit hypothesis testing
procedures Is the comparison quantile function D(u) - F(G1 I(u)) which compares two dlsttibutioA functions
F(s) LAd 0(z). The comparison quantile density is

d(u) - D' (u) - f(-()1(-I()

The Kuilback information divergence can be evaluated by

1(0;, F) -- / (log(f (x)/g(x))g(x)dx -f -log d(u)du

The graph of d(u) provides Insight Into the rejection method of simulation. One sekes to generate a
3aMPle X(1), ... , ,X(n) from F as an acceptable subset of a sample Y(1),..., ,Y(n) from 0(z). THEOREM.
Assume that D(O) = 0 and there is a constant c such that d(u) :5 c for all u. Generale two independent
uniform 10,11 random variables U(1) and U(2). Acceptance and rejection rule: If

U(2):5 d(U(1))/c.

then a'rcept Y - G-'(U(i)) as an observed value of X. Otherwise reject Y. (Continue by generating two

more uniform [0,1] random variables). The probability of acceptanct is 1/c.

The relation between two distributions F and G Is best understood by a plot of U2 - d(ul).

Th's plot can be used to graphically describe the rejection rule of simulation and to prove it. Verify that
tie area under the curve from ul = 0 to u, = G(z) equals D(0(z)) - F(z); the event that U(1) 5 0(X)
and U(2) 5 d(U(1))/o has prob~bility F(s)/c; the event that X :5 z can be shown to have probability F(z).

11. Nonparametric Estimation of Probability Density.

To identify distributions that fit data, oiie can use parametr~c models such as the location-scale parame-
ter model Q(u) - #+aQo(u), )r one can non param %tric ally form estimators f^(z) of the probability denbity
function (see Silverman (1986)). We consider only the kernel estimator

fr(z) =(/n) 57n(l/h)K((..
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whe.re K(z) is a probability density function and h iii a bandwioth to bi selected.

F~or A we recornmead (Parson (1962)) the 'Parson window' which is the prubbblUzy densty of the sum

of four uniforms((/) 2  ao <.

K(s) - (8/3)(1 -X)3,. .

0o, 1<

As a firt choice to consider for h, by adapting Silverman (1988), p. 47, we recommend

hopt K()( '

To accept or reject the goodness of the value of h chosen we Judge the deviation from uniformity of the
comparison quantile function D"(u) = F^(Q(u)). We evaluate this function at us W (j- .5)/n by F^(X(j; n)).
Other c~hoicso of hopt are multiples of hopt based on diagnostics oi the tail behavior of the distribution, given
by QI(.99) - QI(.01). The deviation of D^(u) from uniformity is used to guide the search for the best value
of h for the data being analysed.

The details of this procedure for choosing a kernel probability density estimator cannot be given in this
paper. It is best explained by examples of the quality of nonparametric probability density estimators to
which it leads for fammus data sets (Buffalo snowfall, Yellowstone geysor eruption times) which are used as
test cases for density estimation methods (compare Silverman (198A)).

13. Conclusion.

Th3 proco" of analysing a univariate @ample can be viewed as fitting a amooth distribution F*(z) to
a sample distribution F'(x). The process of comparing F' and r requires & knowledge of the theory a&nd
practice of quantile functions. 'In. order to get to the fruit a/ the ire# you havei to to out on a limb' is a
proverb that statisticians may take as an *men that they should explore the quantile limb which Is always
lurking. Ný
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Figure 1. Identification quantile plot of Craunt life table.
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Figure 2, Identification quantile-quantile (IQQ) plot of Graunt life table vs. exponential distribution.

SXItealstrikAjo i~n~I, lon F1GUJRL
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A CCWARISICN OF M'( SENSrT!Vfl TESTDIG PJRO ES WITH
IJWUCAflCNS 7V8 S~WPLZ SIZE D M'1'tDAfl

Barry A. Bolt
US Army' Ballistic Research Laboratory

Henry B. Tingey
thiveraity of Delaware

Wu (1985) proposed an efficient class of sequential designs for estivating

re~opae distribuationi quantiles in a sensitivity test envirutunt. Here, a

good perforner within that class of designs, logit-HU, is copa~rdd to a

Dalayed Roins-kMrmi procedure in which the final quantile estimate in

obtained via maxim~n likelihood. Their similar Monte-Carlo perfonance

under many test conditions is discussed. Lyplications for sazr~le size

determination when estim~ting the median and 3rd quartile are brief ly con-

sidered.
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I. INTRODUCTION

A sensitivity test is a destructive test in which a level of stimulus is applied to an
experimental unit and a binary response is observed. The binary response is commonly
referred to as a success or failure under the level of stimulus chosen.

l-ach member of the population from which experimental units are sampled is
assumed to have a critical stimulus. For a given experimental unit, a stimulus applied
at or above the critical stimulus level would necessarily result in a success. A stimulus
below this critical level would result in a failure. Critical stimulus is a continuous ran-
dom variable which is not directly observable, but rather only through success or failure
is it observed. A success or faihire constitutes only partial or indirect information, as it
indicates only whether the stimulus level chosen was at or above, or below the critical
stimulus for that unit.

In a sensitivity test, an adequate characterization is desired of some region or quan-
tile of the response distribution - the distribution function of the random variable, criti-
cal stimulus. Such a characterization lends insight, in a probabilistic sense, to the gensi-
tivity of the population to various levels of stimulus. To this end extensive literature
exists, some of which is contained in our list of references.

Much of the work contained in these references pertains to sequential design and r

estimation. In many applications, data are expensive to collect and are gathered most
cost effectively in a sequential manner. This is the case in large-caliber-munition testing
for the Army. In this sequential setting our dual objective is first, to choose a good
design and estimation procedure among those available; second, to briefly consider sam-"
ple size determination for estimating distribution quantiles at specified levels of precision
and under a variety of test conditions.

I1. DESIGN AND ESTIMATION

The proposal of a new class of sequential designs and a detailed comparison of the
new class to existing procedures is given by Wu (1985). Under varied test conditions a IN
comparison of these procedures, some of which are modified, is given by Bodt and
Tingey (1987), Drawing from these two studies, only the Delayed Robbins-Monro with
maxirrum likelihood estimation and the logit-MLE will be considered as candidate pro-
cedures.

The Delayed Robbins-Monro (DRM) is a modification of the Stochastic Approxima-
tion Method of Robbins and Monro (1951). Denote the nth level of stimulus as xn, the
nth response as y, and the quantile of interest as Lp. Let y, = I signify a success and

Yn= 0 signify a failure. Then referencing the work of Kesten (1958), Cochran and
Davis (1964), Davis (1969) the next design points for a DRM-c design are given by, 5 .

x n+i = xn - c (y n - P) (1)

where c is an appropriately chosen constant according to the variance of the population. .;% "
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Data is collected in this manner until a reversal occurs. Reversal is the occurrence of a
(success, failure) or (failure, success) in succession. Subsequent design points are chosen
accordinglto the usual Stochastic Approximation Method by,

xn+= X i- xnk+ - (Y.- P) (2)

where k is the first sample number corresponding to the first reversal.

The primary advantage to delaying the reduction in step size until the first reversal
is evident in the common situation where a reasonable gupss for the quantile location is
not available. The design refrains from attempted convergence until some indication
(reversal) of being in the desired region is present. This convention makes the most
sense if the quantile of interest is the median but will be used here for the .75 quantile
as well, Davis (1969) shows the DRM to be a good performer.

The logit-MLE is one application of Wu's general technique found by him to be
effective in estimating the quantiles of the distribution. The next design point is taken
to be the desired quantile's maximum likelihood estimate based on all of the data gath-
ered up until that point. The maximun likelihood procedure assumes a logistic model,
hence the name logit-MLE. Silvapulle (1081) shows that the unique existence of this
maximum likelihood estimate is guaranteed by a zone of "mixed" results; the necessary
and Sufficient condition for which can be expressed,

(Ximint xIMU) n (XOmin, XOmu) (3)
where x 1min is the minimum level of stimulus at which a success was observed. In the
first few tests there is reasonable likelihood that this condition will not be satisfied.
Furthermore, use of maximum likelihood estimation on only a few sensitivity data
points often results in poor estimates. What is needed is another data collection pro-
cedure to be used until the logit-MLE can be applied. In this study, the Delayed
Robbins-Monro was used until condition (3) was satisfied and more stable maximum
likelihood estimates were likely.

An algorithm for this procedure is to collect data as per DRM-c until condition (3)
is satisfied or sample point six has been reached, which ever comes later. After which
time the next design point, x,+,, is taken to be the logit-MLE with restrictions imposed
by the following equations.

If dn is the solution of
d,

L -= xn -n (Y-P) (4)

where Lp is the logit-MLE for the pth quantile based on n observations, then

Xn+1 =-- x1 (y., - p) (5).• ~n-k+l 1•

where

d' max [6, min (dn,d)] d > 6 > 0. (6)
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Here 6 is fixed at .01.

This restriction prohibits the procedure from varying wildly in its choice of the next 0_

design point. Henceforth, the above procedure will be denotod MLE(c,d). For a more
detailed discussion see Wu (1985).

Preparing to compare the two procedures, DRM-c and MLE(c,d), we note that
when no prior knowledge of the distribution is available Wu (1985) finds MLE(c,d) to be
better than the RM type designs he examined. In addition, Bodt and Tingey (1987)
show in a Monte-Carlo study that MLE(c,d) specifically out performs DRM-c under a
variety of practical test conditions such as restricted sample sizes (:5 15), stimulus noise,
varied response distributions, and varied combinations in the selection of the initial
design point and the constant c. Based on this work we will make one final modification
of the estimation technique when using DRM-c. To motivate that change we will first
take a brief digression.

One goal of this experimentation is to precisely estimate a quantile of the critical
stimulus distribution. Since the advent of sequential procedures in this setting, much of
the attention has been placed on asymptotic convernce properties. It is true that
many of these procedures for collecting data also serve to consistently estimate. In
addition, designs such as DRM-c are nonparametric so no restrictive model assumptions
need be made regarding the shape of the response distribution. For these reasons some
Pperimenters have ceased to separate design and estimation when considering this
problem. Consistent with the experiment goal mentioned, the performance of various
combinations of design and estimation procedures are examined, Bodt and Tingey
(1987). In the restricted sample size environment we found that it data were collected
using DRM-c and estimation was carried out via maximum likelihood, the results were
as good or better than for any other design and estimation scheme studied. This result
was true under the variety of practical test conditions mentioned previously,

Thus the promised modification is that when using DRM-c, data is collected as that
procedure dictates; but final estimation is accomplished using the same logit-MLE tech-".-
nique as per Wu's procedure. We will continue to refer to this combined design and esti-
mation scheme as DRM-c.

.1i

I1. A SIMULATION STUDY

Before making sample size determinations, we wished to first compare DRM-c and
MLE(c,d) under practical test conditions and sample sizes which are not unduly res-
tricted. This comparison was performed in a Monte-Carlo study under the crossed con-
ditions listed in Figure 1. For this part of the study the .5 quantile was estimated. The
measure of precision w The number of iterations performed was 500 per
treatment combination.
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FACTORS LEVELS

Response Distribution normal, Cauchy,
.________ exponential, uniform

Initial desip point median, median - 3

Design & Estimation MLE (10,30), MLE (20,30)
DRM-1., DRM.20

Sample size 10 to 50 by 5

Figure 1. Factors Included in the Design.

Four response distributions representing a variety of shapes were chosen. Each had
median equal to zero. Three were given a standard deviation of unity. The quartiles of
the Cauchy were made to match those of the normal distribution. The purpose in con-
sidering c - 10, 20 for DRM-c Is that we wished to compare DRM-c to MLE(c,d) under
suboptimal conditions for the data collection upect of DRM-c while maintaining good
conditions for MLE(c,d). Based on Wu's findings, d=30 should yield giood results for
MLE(c,d). Through results of Chung (1954) and Hodges and Lehmann (1955) the
optimum choice of c for the usual Stochastic Approximation Method is (Ft (.5))-l where
F is the response distribution. For the response distributions chosen, theso values of
(F' (.5))-l range between 2 and 2.5. Thus the chosen values 10, 20 are much removed
from the optimum and will act to slow convergence relative to the optimum. It is in
such an environment, suboptimal values of c or lirited prior knowledge of the response
distribution, where MLE(c,d) was shown to be superior to RM type designs.

The results of the simulation comparison are efficiently represented in graphical
form. In Figure 2 we are examining the relative magnitude of (MSE)1/ 2 for nine sample
sizes. The true response distribution was normal, and the initial design point was zero
as indicated by the arrow. To obtain the DRM-10 and MLE(10,30) points for each sam-
ple size, the same random number sequence was used for both in each iteration so that
any difference in the quality of the design points chosen was a function of the design
under these particular conditions. Unless otherwise noted, the procedures yield esti-
mates which are, for practical purposes, unbiased.

Given that the response distribution standard deviation is unity, the mild fluctua-
"tions between procedures illustrated here are considered negligible. Similar results hold
true for the uniform and Cauchy distributions. See Figures 3-4.

The disparity in precision among the three distributions for small sample sizes is
believed to be caused by the different response distribution shapes. The reasons for this
belief are given in the following discussion. Since the disparity is most noticeable
between the Cauchy and the other two, the discussion will focus on the effect of the
heavy tails of the Cauchy distribution.
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First, consider the citimation of the median of the response distribution. Define a
wrong decision as moving away from the median to collect the next design point.
Wrong decisions inflate the variance of the maximum likelihood estimate. This follows
because when the design steps away from the median it causes the collection of data
holding less information regarding its location. Banerjee (1080) shows this rigorously for
a normal response distribution. Additionally, when & wrong decision occurs a larger

value of c (consistent with small samples) will result in data collection farther
n-k+1

from the median than for a small value of that qjuantity. In an extreme case the design
may begin errantly sampling in the tail of the response distribution and take several
steps to return to levels of stimulus more likely to yield useful information. Second, if
presently sampling in the tail of the response distribution, the Cauchy distribution is
more likely to cause a wrong decision than the other two. If x, is currently below the
true median a wrong decision occurs with probability F(xn). Thus, for a fixed x, in the
tail area of the Cauchy distribution F(xr,) is large relative to corresponding probabilities
as evaluated for the normal and uniform distributions. Third, if few samples are used
the importance of the informational content of those samples is accentuated thus lead.
ing to the disparity mentioned.

In Figures 5-8 all 500 iterations are represented in histogram form. The observa-
tions are estimates of the median by DRM-10 or MLE(10,30) under the Cauchy response
distribution for a sample size of 15 or 36. The arrow indicates the true median. As
expected after viewing Figure 4, no substantive difference exists among the empirical
densities,

In Figures g-10 the exponential response distribution is considered, with results
similar to the previous three, in terms of relative precision. However, a& Figure 10 illus-
"trates, the estimates produred by either method are biased with DRM-10 arguably more
biased than MLE(10,30). Vb0 , zero in thi3 case, denotes the mediau of the response dis-
tribution associated with critical velocity. Velocity is a common stimulus in Army test- ,%
ing. Each point on Figure 10 represents the average of 500 estimates of V60. The rea-
sons for the bias are similar to the reasons for precision disparity mentioned earlier, ,-

Although not displayed, similar results hold true for comparison of DRM-20 to
MLE(20,30) and under the condition of the initial design point equaling the median - 3.

In estimating the median, the results are clear. There is virtually no difference in
precision between the two procedures for 9 variety of response distribution forms. In
general the designs must be judged equivaient in their abihity to gather pertinent data
for the estimation of the median, since the estimation is aceomp!ished using maximum
likelihood with a logistic model for each and the random number sequences were identi-
cal for each. The only studied exception was that MLE(c,d) produced slightly less
biased estimates than did DRM-c for the exponential response distribution. In this case
it appears that MLE(c,d) gathered data in a slightly more efficient manner.

Their general equivalence is important to consider when choosing a design. Extend-
ing the comparison to computational ease, DRM-c is easier to employ than is MLE(c,d)
in many practical settings. Prior to each test DRM-c requires of the field experimenter
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only the solution of a single equation with one unknown. This is a computation that cer-
tainly could be performed by hand. Not until the data are collected is it necessary to %

iteratively solve for the maximum likelihood estimates in a more time consuming effort.
Assuming that the conditions for maximum likelihood estimation have been met, use of
MLE(c,d) would require that prior to each sample taken, an iterative solution for the
estimates be performed. The potential difficulties in a field test are obvious.

At this point we mention two additional facts regarding MLE(c,d). First, there is a
suggested provision for delaying implementation of maximum likelihood estimation, Wu
(1985). We denote this MLE(c,d,o, where I is a lag delay after the unique existence cri-
terion is satisfied; after which maximum likelihood estimation is to be employed. The
intent of this provision is to delay use of maximum likelihood esLimation until it is likely
that the estimates will be more stable. This is why we used maximum likelihood no
sooner than in the selection of the 7th design point. We mention this for completeness
because I could be chosen to be variable so that maximum likelihood estimation was
delayed until the last data point was gathered; in which case MLE(c,d,l) reduces to
DRM-c as defined in this study.

Second, although an iterative solution is necessary to solve for the maximum likeli-
hood estimates, Wu (1985) does suggest an approximation which would eliminate the
need for an iterative solution. The approximation is valid if design points are close to
the quantile being estimated. Caution is warranted when using this approximation in a
small sample test environment with no prior knowledge of the response distribution.
There, closeness of the design points to the quantile of interest cannot be assured.

Thus far only the median has been considered, It is certainly possible, and in many
situations more desirable, to estimate quantiles other than the median. The median is
the quantile commonly used for inference primarily because it is the easiest to estimate.
We also compared the two procedures for estimating the 3rd quartile, In practice, for
estimating quantiles beyond the first or third quartile, specific extreme value designs
may be more practical.

Figure 11 shows the precision of the two procedures when estimating the 3rd quar-
tile of the normal distribution. Once again, any differences between the two methods
appears negligible. The procedures appear to be biased in estimating the 3rd quartile
for small sample sizes. In Figure 12 the ordinate is now averaged estimates of the 3rd
quartile. The arrow represents the true quantile value, .675.

Figures 13-14 concern estimation of the 3rd quartile of the Cauchy response distri-
bution. Remember that the normal and Cauchy response distributions were chosen to
have the same quartiles. Thus by comparison we see that the precision of the methods
is much worse for the heavier tailed distribution. It does appear that MLE(10,30) tends
to be more precise and less biased than DRM-1O for larger sample sizes.

Figures 15-16 constitute our cursory look at sample size determination. Our
approach was to indicate the best and worst precision for each method for the different
sample sizes. The extreme precisions were extracted from the performance of the pro-
cedures under the four resplonse distributions. Initial design point selection and
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magnitude of the constant . were not considered, since we are primarily interested in
larger samples where they have no noticeable ,-ýffc-ct. Another common problem,
stimulus noise, was not considered. Bodt and Tingey (1987) show maximum likelihood
estimation under t similar normal response to be insensiti i to stimulus noise.

Figure 15 clearly indicates the range of precision gained from additional samples.
Figure 16 compares sample sizes necessary for estimating the median and third quartile
of the response distributions with approximately the same precision. Note the cost
effectiveness of using the median if it can serve as a reasonable point for inference in the
application at hand.

Normal Response Cauchy Response

VAII V76 V& V7&

10 20 to 25 10 45
1.5 25 15 > 50
20 35
25 35 to 40
30 45 to 50
35 45 to 50
40 > 50

Figure 16. Sample Sizes Required for Estimating the Median and Third
Quartile with Approximately the Same Precision.

W. SUMMARY

Under suboptimal conditions for the stochastic approximation method, DRM-c's
ability to collect data pertinent to the estimation of the median of the response distribu-
tion, was comparable to that of MLE(c,d). This was true over a variety of response dis-
tribution shapes and sample sizes. For the estimation of the 3rd quartile they were
again comparable when the response distribution was normal. If the response followed a
Cauchy distribution, MLE(c,d) was slightly superior to DRM-c. The experimenter is
encouraged to take into account these findings when planning a sensitivity test. -'
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TESTS FOR CONSISTENCY OF VULNERABILITY MODELS

This paper studies the problem of confirming a set of estimated probabilities of kill
for a small number of independent, but not identically distributed, Bernoulli outcomes.
The problem originates from vulnerability studies on tanks in which kill probabilities of
individual components are desired. The cost of resources makes it unfeasible to obtain
these probability estimates by repeated field testing. Therefore, computer simulation is
used to get the desired estimates. Researchers then want to test the accuracy of these
computer generated values. Again, the economics of live firing sometimes allows for the
firing of only one round at the tank. The question becomes "Can the kill probabilities
obtained through simulation be confirmed by the results of a single round field test?"

Denote the simulation estimates by the vector [Plt, P2¶,,.,,Pk0 ] where pi* is the pro-
bability of kill for the ith tank component of interest, If we assume that the com-

ponents are independent, we may rewrite the above question in the form of a hypothesis
test.

H: P1 m P0, P2 ' P20 ,', Pk Pk0 , Vs.

H&: pi 3 pI°, for some. i,

Note that when pN = P120 ., = pk 0 = p0 , this is the k-trial binomial case,
B(k,p*), and the null hypothesis is simply HO: p = p0 . We seek a test for the more gen-
eralized case of unequal pi's, As may be expected, the small size of k will present prob-
lems with power. Also, it should be pointed out that the alternative hypotheses only
says that at least one inequality exists, In practice though, it will usually take several
gross differences between the hypothesized and actual vectors for any test to reject Hlo.
Therefore the tests to be explored will not be able to validate the hypothesized probabil- -

ities; they will be able to check for consistency between the simulation estimates and
field test results as a whole,

Suppose we observe a set of k independent 0 or I outcomes (representing survive or
kill), denoted by the row vector A =a,. a2, ... , ak]. For example, if k = 5, we may
have A = [0, 1, 0, 0, 1J, There are 2 possible outcome vectors. The probability of
observing outcome vector A under the null hypothesis is given by the density function*1 91) , N1' . sk

P(A) = pO' . (I - p(I)(I piý' 0 - P2)I ' Pk' (0 - Pk)(i-

imI

A test of the null hypothesis needs Porme way of ordering the 2 k possible outcome vec-
tors, We will examine three test procedures characterized by their ordering schemes.

P~~S e. *ý4 %

• .'%.2

• t. 4
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This test rejects the null hypothesis if the observed vector is among some
predefined critical set of "rarest" outcomes. The outcome set is ordered by the density
function in increasing magnitude, and each outcome is numbered so that A1 is the least
likely to occur and A•k is the most likely. Define a "cumulative function" B, whereby

P(A0) i -- I

B -IB + P(A1 ) i = 2, 3, ... , 2k.

Choosing a "c" such that

c =imax {j I Bj < a and P(Aj) VP(Aj+)),

then the set

ARR " (Ap, A2 , ... , At

represents the c rarest outcomes and defines the rejection region for test of H, with a
(&)J00% level of significance. The 'test staiistic" is the observed vector A; if it is in
ARtR, then H. is rejected.

This test is based upon the number of kills observed. The underlying notion is that
under the hypothesized model, a certain number of kills is expected. Letting K(A) be
the number of observed kills, then the expected value of K(A) under the null hypothesis
is

E[K(A)]= pl 0 + pso + ,. + Pk0

k= ~2pi°.
P-1

If the observed K(A) is much smaller than this value, then perhaps the simulation
overestimated the kill probabilities and H. should b;, rejected. On the other band, if the
observed K(A) is much larger, then Ho should be rejected since the kill probabilities may
be underestimated.

To perform this test, we begin by calculating P(A) and K(A) for all 2 k outcomes.
The outcomes are then ordered by increasing magnitude by the number of kills and
numbered so that

K(A1 ) • K(A2) ... _ (A).

(The order among outcomes with the same K(A) is irrelevant.) Similarly to Test One,
the "cumulative function" is calculated. Since rejecting Ho may be the result of too
large or too small a value of K(A), a two-tailed test is used. Critical values ci and c2
are selected so that the actual alpha level

%kA
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P[K(A) • ell + P[K(A) 2 C21 (N)
is maximized but still less than or equal to a. The rejection region for Test Two is

K(ARR) = {0, 1, ..., c} U { cc 2 + ,...,k}

The simulation generated estimates will be rejected as inconsistent with the field
test if K(A) E K(ARR).

Test Three- •

This test examines the number of "correct responses", where a correct response is

defined as:

1, if ai 0 when pi" < .5, or a• = I when pi* > .5

'Y - 5, if pi - .5

10, otherwise.

Therefore, a correct response of I is given if the more likely outcome (kill or survive) is
observed. On the other hand a correct response of 0 means that the less likely event
occurred. As somewhat of a tiebreaking policy, if the hypothesized probability is .5,
then the correct response value is .5, no matter which outcome is actually observed.

The test statistic is C(A) y ", + "y2 + + "" k
k

The expected value of the test statistic is

E[C(A)] = CL + k/2 + CU,

where

CL = ••(I - pjO) for all pj0 < .5

Cu = pj 0  for all pi° > .5

k= = "number of pjO equal to .5" .

The test procedure begins by calculating P(A) and C(A) for all possible outcomes. Ie,
The outcomes are arranged by increasing magnitude by the number of correct responses
without regard for ties so that

P(K(A) _< ll Bi, for i = max K(Aj) < K(Aj+,) and K(A;) el)
P[K(A) _2 1 - I - Bi, for i = min (j I K(Aj) > K(Aj- 1) and K(Aj) c2)
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The cumulative density is computed as usual. Observing a value of C(A) much smaller
or larger than the expected value leads us to believe that H0 is false. Therefore, a two-

tailed test is desired, and the critical values cI and c2 are chosen to maximize

PIC(A) _5 el + P[C(A) >_ c21 _<

the actual alpha level, where

P[C(A) el cl = B1, for i = m&Lx{j I C(Aj) < C(Aj+I) and C(Aj) = cl}

P[C(A) _ c21 = 1 - Bi, for i = min {j I C(A) > C(Aj- 1) and C(A1 ) = c2).

Since the rejection region is CRR = {(0 1, ..., Cl} U {c2, c2 + 1, ... , k), we will reject H.
at the a level of significance if C(A) E CRR.

Properties of the Tests.

T'o study the three test procedures, 2000 pairs of k-dimensional probability vectors
were randomly generated for k=6,...,1O. The first vector of a pair (P0 , PJ) was con-

sidered the hypothesized probability vector, and the second was the alternative proba-
bility vector. The level of significance was set at a = .05. The power of the three tests

was computed for each pair (P0, P.).

Figures 1 through 3 show a graphical way of comparing power between any two
tests, A and B. Each point represents a pair (P., FP). Its coordinates (x,y) are the

power of Tests A and B, respectively. If Test A is more powerful than Test B, then we

expect to see a graph similar to Figure 1. If the opposite is true, the graph will be simi-
lar to Figure 2. But if both have approximately the same power then Figure 3 is the
proper scatterplot.

Comparison of the three tests based upon the 2000 randomly generated vectors is
shbwr. in Figures 4-8. Several observations can be made from these graphs.

1. For most pa,"s of vectors, and for k=6,7,8,9,10, Test I has greater power than
either of the other two tests.

2. Median power increa.ses with k for Tests I and 3 (see Figure 9).

3. Median power remains fairly constant for all k with Test 2. The median power
of Test 2 is not mucb greater than the alpha level. This indicates how poor a
procedure the test is. "-d

When comparing the power of all three tests for each point, it was occasionally
found that the superior test was either Test 2 or Test 3. For example, X

-• 42i ,.'..
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P1.71 .23 .10 .09 .15 .67 .50 .931

no - [.80 .35 .47 .34 .38 .27 .04 .05]

TEST 1 2 3

Rej. region 187 least likely {0,1;7,8) {.5,1.5,2.5,3.5}

Exact alpha .0400 .0495 .0495

Power .3631 .7728 .7728

This leads us to ask what can be determined from (P., PJ) about the power of the
tests, if anything? One possible relationship studied was the power versus the distance
between P, and P, in k-space, i.e. A (P., P,) where

= V(p 1 , _ p,,)2 + ... + (Pko - POT

Figures 10-14 show scatterplots of this relationship for each test and sample size.

The correlations between power and A (P., P,) are shown in Figure 15.

The problem with looking at the relationship between P. and P., however, is that
in practice we do not know what P, is. It will not be very helpful to know that the
choice of best test for a given P., is dependent upon the choice of P,. We should look
for a best test given P0 only. This is the topic of ongoing research.

SUIMMARX

The problem is most complicated by the fact that we must judge the entire set of
computer generated estimates on a single fired shot. While we admit that Test I was
not able to detect some greatly differing alternative t•t of probabilities, it was in general
the best of the three test procedures. The reasons become obvious when we clo3ely
examine the other two,

Test 2 does not take into consideration the order in which the ai's appear. For
example, let our hypothesized set of probabilities be P0 - [.01, .02, .03, .97, .08, .09).
For the observed outcome vectors A, = (0, 0, 0, 1, 1, 1] and A2 = [1, 1, 1, 0, 0, 0], we
compute P(Al) .8857 and P(A2) = .000000000036. However for both outcomes we
compute K(A1 ) = K(A2 ) = 3, the expected value of the test statistic under H0. There-
fore we would not reject Ho in either case. Not only does Test 2 not reject Ho given A2

(when it obviously should), but it has managed to equate the most likely and least likely
outcomes.
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Test 3 does consider the order of the observed outcomes, however it does not incor-
porate the magnitude of the pi°'s. To see how this is dangerous, let P0.1 = [.53, .52, .51,
.40, .48, .471, P0e ,= [.47, .48, .40, .51, .52, .531, and A - [1, 1, 1, 0, 0, 0]. Under H. 1,
P(A)--.010756 and C(A)=6, while under Ho2, P(A)=.012220 and C(A)=0. The test has
exaggerated the difference between the two probability vectors, despite their being
nearly equal.

Test 1 is the best of the three candidate procedures because it simply tries to create
the largest possible rejection region. Imagine trying to fill a fishbowl with as many mar- .
bles as possible when the marbles are different sizes. Since we do not want to take up
space with larger marbles, we fill the fishbowl one marble at a time starting with the
smallest, then the second smallest, and so on until the bowl is full. In a similar fashion,
this is how tle rejection region for Test I is formed, thus resulting in a most powerful
test.

Further research into this problem will look at other possible tests and euier imple-
mentation of Test 1.

-i-v
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Test 6 7 8 9 10

1 .824 .835 .829 .837 .825

2 .345 .301 .264 .284 .290

3 .736 .748 .751 .789 .780

--

Figure 15. Correlations Between Power and a (Po, P.-).
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NONPARAMETRIC SMALL SAMPLE TOLERANCE LIMITS

Donald M. Neal, Mark G. Vangel , and John Reardon

Watertown, MA 02172-0001

ABSTRACT

Results from this clinical study have identifieýd the Hanson.
Koopmans method as the most desirable nonparametric small sample lower

tolerance limit estimator in the range where conventional nonparametric
procedures are not defined. The Monte Carlo studies indicated that
this method worked well for 3ample sizes from 2 to 28. The authors'

i tnittial effort i'sing a linear function of the first four order
statistics was reasonably effective for sample sizes greater than 15.

Other efforts to obtain a solution to the p,'oblem include

extension of the quantile sign test, a scnhne involving a reduction
factor for the first order value, and a smooth nonparametric quantile I
estimator. These methods were not satqfactory #lue to either
instability of first ordered volue when sample s.zes are small, or the

inability to provide proper cover ge rate for N < 28.

IN TROrDUCTION

The inabi ity to obtain exactly the same stroictural properties
from all specimens obtained from a manufactured material results if, a

" relatively large variability in strength measurements when a large

number of specimens are considered. In the case of designing an

aircraft structure, it is required to design such that a maximum stress
value exists in critical locations, and these values do not exceed the

minimum guaranteed material properties (strength). Obtaining minimum I
"strength values will reduce the possibility of some production
components containinq weaker material than that from the laboratory
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test element. This guaranteed minimum strength value is defined as the

design allowable (basis value) by aircraft design engineers.

Usually, the measured value is considered acceptable in estimating

the population parameters for predicting population percentiles. In

the case of the design engineer, it is advisable to have a prediction

which will determine the accuracy of the percentile estimate at a high
degree of statistical confidence. This is the correct interpretation

of a basis value. For example, certain military standards, e.g., MIL-

HDBK-5 2 req'Ire material property data to be presented on an A or B

allowable basis. The allowables represent a value determined from a
specified probabtlity of survival with a 95 percent confidence in the

assertion. The survival probabilities are .99 for the A allowable, and

.90 for the B allowable.

MTL Is involved in the development of the statistics chapter for
the MIL-17 Handbook 3 on composite material in aircraft structural iw

design. The chapter will include methods for determining the design

allowable values. The inability to identify the statistical model from
limited or multi-modal data motivated the authors to find a non-

parametric model which will provide a correct tolerance bound (P-.95)

on the quantile values (P-.1O). The conventional nonparametric method

using the quantile sign test 4 provides a solution if there are at least
28 values in the sample. Unfortunately, the model needed is one for

sample sizes less than 28.

This paper presents the results of a clinical paper presented at

the ARO sponsored Thirty-Sixth Annual Design of Experiments Conference U
on methuds fcr obtaining an accurate measure of the above mentioned
design allowables involving smll sample nonparametric modeling. It

should be noted that there are difficulties in extreme quantile
modeling techniques invclving determination of tolerance bounds for the ?ý',

quantile values In the allowable computation. Brieman, Stone and Gins i

have discussed thp difficulties existing in model identification when

very small tail probabilities are required. This is the result ut
parameter estimates that usually are obtained from data in the central

portion of the distribution, where most failures occur, leaving thp N I
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tail region limited in representation. This is unfortunate, since the

relatively small amount of data in the tail region is of prime

importance to the allowable computation. The nonparametric scheme can

model the lower ordered values of the distribution. The Hanson-

Koopmans model is recommended as a solution to the nonparametric small

sample tolerance limit when considering the various alternative

solutions, the application of the method does not result in overly

conservative estimates of the allowable values. Other methods were

attempted, including an extension of the quantile sign tet, Ini ne? i

function of first four order statistic (authors' proposed method), )

smooth nonparametric quantile estimators, and an adaptive scheme

involving simulation procedures for obtaining ratio of the first order

value to the allowable value. None of the above methods were

acceptable for the sample size requirements of 2 <. n < 28, due to

either computational problems or inability to provide minimum coverage

of 95%.

QUANTILE ESTIMATE - SAMPLE SIZE

The importance of determining a tolerance limit on the quantile

values is graphically displayed in Figures ia and lb. The standard

normal distribution function is plotted for sample sizes of 50 and i0,

using 25 sets of data. In figure la, N a 50 the amount of spread in

quantile for the 10 percentile values in .80. Figure lb shows a spread

of 2.4 for the same percentile. This example shows the importance of

having large sample sizes, or otherwise providing a tolerance limit on

the quantile estimate.

Often in structural design, a criteria requires material property

values to be larger than the design stress in order to define the

margin of safety. Determining a property value from 10 material

strength tests in order to obtain 90% reliability estimates could

result in nonconservative vaoues and possible structural failure.

Obtaining a lower 95% confidence bound on the reliability estimate can

provide the necessary assurance.
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DEFINITION OF THE 8-BASIS VALUE

The B-basis value is a random variable where an observed basis

value (design allowable) from a sample will be less than the 10

percentile of the population with a probability of .95. In figures 2a

and 2b, a graphical display is shown for the basis value probability

density function (N(O,1)) for sample sizes of n - 10 and 50. The

dotted vertical lines represent the location for the 10 percentile

(Xlo) of the population and the probability (basis value < X.10) a 95

for the basis value probability density function. The graphical

display of the basis value density functions show much less dispersion

for n - 50 than for n w 10. Small sample sizes will result in more

conservative estimates of the basis values.

QUANTILE SIGN TEST (Conventional Nonparametrtc Analysis)

The quantile sign test 4 is introduced in the text as a procedure

that provides an accurate B-basis value for n > 28. The authors

initially attempted to extend this method for n < 28 using various

procedures related to the first ordered value without success.

The analysis involves considering, for example, q. 1 O as a quartile

of a distribution, then the values ( q.,o are binomial random variables

with n trials and probability of .10. If X(r) is the rth ordered value

in the sample, the B-basis value is equal to X(r) where r 1 I is the

largest integer solution to

a = > .,95

w r

whr w n 1/w !(n - wwhere"'

and n sample size WO

See Table I for computing values for r given n. ..
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TABLE I

Ranks (r) of Observations (n) for determining

R-Basis Values for an Unknown Distribution

n r n r n r

(29 -129 8 227 16
29 1 142 9 239 17
46 2 154 10 251 18
61 3 167 11 263 19
76 4 179 12 275 20
89 5 191 13 298 22

103 6 203 14 321 24
116 7 215 15 345 26

EXTENDED O.QANTILE SIGN TEST

The extended quantile sign test was developed in order to obtain

the B-basis values for n < 29 using nonparametric procedures.

Let n be a fixed value less than 29. Calculate the probability

values PP, P2, . Pk as follows: I < J k, and Pj is the solution

of

.05 *(1 - )n + n) P

.+ . . (n)(1 -. pj)n-jp ij

where k < < n.

Example: If n • 15, let k a 3, then P 181 P? * ,28nl and

P3 0 .364, with corresponding order statistics X(1 ), X( 2 ), and X(3

"(see Figure 3).
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X

so .10 .20 .0 P 64

FIGURE 3

The following interpolation models were applied in order to obtain X
for P a .10:

X a A Log (BSP + 1), (3)

X s A Log (PS + C) given P - .0001 and X0 0.0, (4)

and X a AP 2 + BP + C given P a .0001, X 0 0 0.0. (5)

The model in equation (3) failed to p rovYi de acceptable

interpolation results because of its inability to represent (PO, K0),

(P 1, XI), (P2 $ X2). and (P3, Y3 effectively.

The models f rom equations (4) and (5) provided adequate

interpolation results for P *.10. The computation procedures for

obtaining each B-basis value from sample requires either linear

(Equation 5) or nonlinear (Equation 4) regression models. These are

not simple computational methods when compared to conventional quantile

sign test application. The authors applied a simulation process with a

given n value and N(.0,) models to approximate probability density

function for
F *B-basis (6)
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F-

The purpose was to obtair a reduction factor F for the first ordered

value In order to obtain the basis value for given sample size n. This

is a similar computational procedure, as in the conventional

rionparametric method.

A schematic of the results are shown below:

/~~ ~ ((0 1) N(5)

F r

FIGURE 4

The substantial spread in the N(O,5) case for F was primarily the

result of unstable first ordered values for the simulation. The

authors have also rejected t he acbove approach since It requires

i individual regression modelIng for each sample If an accurate baei s

number is to be obtained.

B-BASIS VALUES FROM FIRST FOUR ORDERED STATItTICS

This method involves determining a linear relationship between the

weighted gaps of the first four ordered values (X()I) X(?), X(3 ), and

, X (4 and the s'ir dard deviation s of a normAl population N(2n,S).

Random selection of R - 5000 samples f size n were obtained for

selected initeger values I < S ( S. A 95% tolerance limit is obtained

S for the 10 perceitile of the Ni(20,S) distributions. This value

X.lo .95 represents the value where 95% of all vAlues are < X .0 n

perc ntile of distribution) from the randon, sampla of size n. This

Xvalue approximates the B-basis value for N-(20,S).
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The following linear relationships are applied in the analysis!

1 K 4 K3  2 " 2 X

from weighted gaps X 2 - X1, X 3  X 1, X4  X K1  (7)
of the order statistics

and y2(s) a X4 +K 3 + 2 + X1 11. 101.95

where Xils are expected values from the order statistics.

The linear relationships in equations 7 and 8 are represented

graphically in Figure 5

y b S

Y

~i i Y2 b 2 S

FIGURE 5
The B-basis value can now be defined as,

Bvalue OS (3 + .25)X1 I (S* - .25)(X 4 + X 3 + K 2), (9)

The above method was very effective for n 15, and provided
reasonable coverage rates, as indicated in the Monte Carlo study using
Weibull and normal distribution.
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The Iamnsom-Koopmams I method provided the most satiSfactory results
f~or obtaining small sample nonparametric Sebasis values. The method
involves applying the following equation:

V va Iue I( C M~ k I

where X '(2)' '(3)0 . X ,
1 n are the ordered S t at iSti C v aIues,

and C n is obtained from solution Ofnv( e)C

AS j(kI Ik)

where j I and k 0. The region of integration by the lines winO for
o < v < 1, val for 0 < v < Is the line w'v for 0 -C v 4 p and by the

Wuv au 1I/C ftv (C nr1fl/C n

for p Y < I.

The C values for equation 10 are tabulated in Table 11 wher~t

following manner:

8 value a 1 CrI(X 4 ' I))I

Usim; the f-,rst aC fourth ordered values previded acceptable results,
although another combination could have provided a bettor approximation
to the desired covtrage rate of 95%. in 4he Case where 3 n ~ ,the
following equatioms were obtained:

B value X2 w LLR( *

where C2  3S.2 ond C3  28.8,

for n ak and 3 'Pespectively.
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A-Comparison: Hanson-Koopmans NOK) vs. Sineor Order Statistic, Model

(LOSM).

TABLE 11

n nCnznmn
... Cn n.... n Cn n Cn

4 .505 11 2.635 18 1.745 25 1.198,I
54.101 12 2.474 !9 1.651 26 1.136
3 .765 13 2.327 20 1.564 27 1.078

7 3.478 14 2.192 21 1.482 28 1.027
8 3 .229 15 2.068 22 1 .404 29 .971
9 3.009 16 1.952 23 1.331 30 .811

10 2.812 17 1.845 24 1.263

A Monte Carlo study was completed 1nvolving a comparison of
coverage rates obtained from HK and LOSM, where the Weibull W(a,0) and
Normal N(O,o) were the selected probability density functions. In the

simulation, tho confidence coefficient (coverage rate) was obtained
from determining the percentage of replications for which the 8 value
was less than the actual 10th percentile of the distributions. 5,000

replications were used in the experinent. A minimum percent of 95 is

required. Percentage slightly greater than 95 is also desirable.
In Tables III and IV, the coverage rate's percent is tabulated for

both the Linear Order Statistic Method and the Hanson-Koopmans Method

where the normal and Weibull models are used in the simulation process.
In Table III, a range of standard deviations are considered in order to
examine for the effects of dispersion in the data. LOSM results show
poor coverage rates when n a 10, and acceptable coverage rates for n-15

and 10 > o r The Hanson-Knopmans results show universal acceptance
except for marginal acceptability for n - 15. The authors also
obtained results for n - 14, 15. 16, 17, 18, and 25 for the HK method.
In all cases, coverage rates of at least .95 were obtained, indicating
that the lowest values are for n ' 15. A t'ifferent set of ordered
values could possibly Increase coverage values for n - 15. Results
from the table indicate an optimization process could be developed

where a set of ordered values would be determined to provide the
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minimum acceptable coverage (.95) depending on sample size n. This

would prevent the over con~ervativism shown in the tables (e.g. .99,

.98, .97 coverago rate).
In Table !V, a range of a values (shape parameter) for Weibull

functions, are used for examining effects of dispersion. Again, the

LOSM results show poor coverage rates when n - 10. The case when
N v 1S shows reason values since .93 is the lowest value.

The Hanson-Koopmans retults are similar to those shown in Table

!1.1. The minimum values are at n • 15, which also occurred when the
normal model was used in the simulation process.

It can be inferred from the above results that the HK method is a

desirable nonparametric procedure for obtaining B-basis values when

n < 28. It is not clear why the reduction in coverAge to .94 exists
for n m 15, while n - 2 and n a 30 have a coverage rate of .99.

Ideally, .overages of .95 for all n and dispersion parameters would be
desirable to prevent overly conservative estimates of basis values.

TABLE III

Confidence Coefficient (%), N(M,U ), M-50,

LINEAR ORDER -

STATISTIC METHOD HANSON-KOOPMANS METHOD

-- I n.10 na15 n-a n8lO na I5 n.30

2 .60 .99 .99 .97 .9s .99
6 .76 ,M8 .99 .97 .94 .99

10 .78 .94 .99 .q8 .94 .99
14 .7o .92 .99 .98 .94 .99
30 .80 .90 .99 .97 .94 .99
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V

TABLE IV

Confidence Coefficient (I', W(O,5), 5-50

LINEAR ORDER

STATISTIC METHOD HANSOtN-KOOPMANS METHOD

a1 nmlO n@15 nos n-lo n-15 nw30

2 .82 .93 .99 .98 .96 .g9
6 .78 .93 .99 .97 .95 .99

10 .77 .96 .98 .97 .94 .99
14 .77 .98 .98 .97 .94 .99
30 .74 .99 .98 .97 .94 .99

CONCLUSIONS

The Hanson-Koopmans nonparametric small sample tolerance limit
model provided the most desirable solution to obtaining B-basis values.
The authors method, LOSM, provided an acceptable method if n > 15. For
small sample sizes, results were excessively non-conservative.

Methods involving factors of the first order statistic resulted in
overly conservative or non-conservative B-value estimates, depending on
the dispersion of data and the sample size, The extended quantile sign
test failed to provide either 3 computationally simple solution to
obtaining basis values, or a factor associated with first ordered value
In calculated B-basis value. The need for repeated application of
non-linear regression to each sample, when factors were not availahle,
reduces its value as an engineer's s~atistical method. The
conventional quantile sign test was not applicable for n < 29, although
it is an acceptable procedure otherwise. ,4
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A SECOND LOOK AT THE
PERVERSITY OF MISSING POINTS IN THE 24 D•-2'•

Carl T. Russell
US Army Operational Test and Evaluation Agency

Falls Chlurch, Virginia

ABSTRACT. At the 1982 Design of Experiment- CLrnf-rence, the
author presented a Clinical Paper entitled T2he Perversity of Missuzg
Points In the 21 Dest.gn That paper tried to 7b;ýracterize what
points could be deleted from the 24 design without losing the
resolution V property (that is, main effects and 2-factor interactions
are estimable). That paper used brute force (computer plus sweat)
methods to investigate numerous special cases and formulate some
promising conjectures, but no general conclusions were reached.
G.E.P. Box was the primary discussant on the paper, and he
suggested using a matrix trick to reduce the dimenslonality of the
problem from eleven to five. The current paper shows how notation
from group theory and graph theory can be used to exploit Box's
suggestion to prove the conjectures of the original paper. In
particular, even if five of the sixteen points are deleted at random
from a 24 design, ':-' probability is almost 0.7 that the resulting
design is still resolution V-that is, all eleven parameters are
estimable from the remaining eleven data points. Unfortunately, the
method used does not appear to generalize to larger designs of
greater interest.

I. INTRODUCTION. Execution of a military field test seldom
proceeds exactly as planned, and rather large amounts of missing
data are common. In fact, two other papers given at this Design of
Experiments Conference dealt with aspects of the problem. Winner
and Smith described a situation where a iargc portion of the plannet
experiment captured no data; Bryson and Russell presented a
method for adjusting attrition estimates from "Real Time Casualty
Assessment" based on changed estimates of kill probabilities which
were "missing" when the real time casualty assessments were
made. In 1982, 1 approached the problem from a different angle by
studying what happens when points are arbitrarily deleted from a
factorial design (Russell, 1983a). This study was motivated by the
observation that most field tests of military materiel are designed in
a factorial framework and conducted in blocks of time and/or space.
The blocks could in theory be constructed from appropriately chosen
fractional factorials to reduce the potential bias due to confounding

Preceding Page Blank
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which is common in much traditional field teat design (wee
Russel--1981, 1982, 1983b, and Section V of this paper). Before such
a design approach can be prudently implemented in expensive field
tets, however, an understanding of Its robustness to substantial
data loss is needed.

In the summer of 1982, 1 began this study by looking at the
simplest interesting factorial design, the 24 design. The study asked
two quettions

(1) Characterization problem-what points can be deleted
from the 24 design without losing estimability of the
mean,main effects and 2-factor interactions (resolution V
property)?

(2) Structural problem-when the remaining design is
resolution V, what is the structure of the least squares
estimates obtained?

The problem turned out to be much harder than I anticipated, and
it grew into a Clinical Paper presented at the 1982 Design of
Experiments Conference (Russell, 1983a), That paper used brute force
methods to beat a portion of the structural problem to death usng a
computer and to make some promising conjectures for the
characterization problem. G E. P Box was the primary discussant,
and he made a suggestion for the characterization problem which
enabled me to prove the original conjectures and quantify the
likelihood that random deletions of points from the 24 design would
destroy the resolution V property. This paper presents the results
growing out of Professor Box's suggestion. Unfortunately, the
methods used do not appear to generalize to larger designs of greater
interest.

Why write this paper if the results essentially represent a dead
end? First, it closes the loop from a Clinical Session where as an
Army statistician, I received useful assistance on an important
problem whinh enabled me to proceed further than I other-wise could
have. Second, even though the methods of this paper do not appear
to generalize, they are mathematically appealing, they took me a
good part of the 1982-83 winter to derive, and they enable
quantitative results which make me more optimistic that some ,4
fractional factorial blocking approaches may be quite robust against
random data loss Third, this paper re-emphasizes an important
problem which needs and deserves further work by statisticians
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11. PRELMIENARIUB. A standard notation for the four factors
and sixteen points In the 24 design Is the following.

LeE I W

1111 a ac ad acd (1)
MEILh I b bc bd bcd

on ab abc abd abcd

The full model can be written (in slightly unusual order) as

*ik X * $j+ 9 (2)

* (OCOWS) Ik (c)jk A 4')i E oSg I (j)J I P~,

where the subscripts can be removed by the usual side conditions:

ft+4xjzO, that Is acgatO( (3)

60; &1 =, that Is &I it&
(o4)0*(o)0 ,(ocPw~o 4 1=0z, that Is (ot$)ijj:(oc$)

(~S~~4(~S~ ,(~),~(~S, ,Othat Is (?(8X ':±((2)

W ws)4+(Oxs ZONOo 1 0, le. (O(OW)1,Jk,:(oc0'S).

In matrix form, these normal equ it/iam are

Y X0 +*a. (4)I
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where the design matrix, X. hat rows corresponding to design points
and columns correspondinj to parameters. The reduced main effects
and 2-factor Interactions model is:

YI-Aki = X 4J 01~ +P Wk + $1 (5)

(c'P)ij (0•)1k (o'S)ia + ($2()Jk + (Ps)j + (2&)k, + £Iljl.,

which reduces the number of columns of X from 16 to 11. Figure 1
shows the design matrix for the full model, (2), partitioned to
accentuate the missing parameters in model (5), and assuming the
unsubecripted parameters from (3) are used. Deleting points from
the design corresponds to deleting rows from X. The normal
equations, (4). have a least squares solution 1ff X'.X is nonsingular.
In which case the solution is

* = (X'.X)-,.X'.Y. (B)

Since there are 11 parameters in the reduced model, (5), solving the
characterization problem via (B) for 5 or less missing points requires
checking a matrix of dimensions at least l1xl1 for singularity.

To reduce the dlmensionallty of the characterization problem,
Box suggested partitioning the design matrix, X, by making the m
misSing p.oits correspond to the last m rows and the p p.arametr-s
of interet correspond to the first p columns:

p1 X n-p

X ,= (3Jf..m.(7)
X11I X4 m ,A I

By assuming orthogonality of X and expanding the orthorgonality
relationships X".X = nI =X.X' in matrix form, Box proved the
following lemma via an elgenvalue argument.

Lm. X1 .X is nonsingular 1ff X4"'X4 Is nonsingular.

3'4
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NMI Carruupee te seiu. polnts

-Cosnmms Csrraspeh to PnrmmiutersS(c4) (o•) £ (Es) (D~&) (cepS) (•~s
~A ~ ~ (D) 4(09) (00 (46) V(

F -I-I 1-1 1 1 -1 1 1 1-1-1 -1 -11 '<-() [;

-I1- -1-I1 -I-1-1 1 -1-1 1 '-I ab•
-i-I- I-1 -I1 -1 1-I I I -b

11111 - --I-I--1 -1I-1--I 1 -abc

1-1-1I1-1I1-1 -I1-1 1 11-1 -1 -
1-1-I I-1 11-1-1 1 I I-I1-111 s-ad .'

I- 1-I-1 1 -11!-11-1 -I I-Il 1 blp
1- 1 -1 -I 1-11- -1 -1 - 1-1 ,-abc

-- I-I-1- 1-1 -1 I-1-1--1 1-d
-I I - -I I I I - -II - - I I -td ,

1 1 1 1 1 1 1 1 1 -1 -1 1 1 1 -I -abcd1 I 1 -1 - I l -I I - I -1 ,-ld

1 -I -I -1 I I I I -- I -1 -acd L2
' - I -I -I I - !I I - -I - I ,-bcd
SI I I I 11 1 I I I 4-abcd •

Submntlra SubmetrIN
Cerresponding to Corrusponing to

Mean, sMe Effects, Nigher Order
end 2-Fecter Interactions Interactions

(Presset Peoroetere) Iieslng Paermetera)

Figure 1. The Design Matrix, X, for the 24 Design,
Partitioned to Show Present and Missing Parameters in the

Main Effects and 2-Factor Interactions Model.
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In the case of the 24 design, the lemma reduces the dimensionality
of the characterization problem from eleven or more to five or less.
For example, with five missing points (m-BS) and pIol (the number
of parameters in (5)), the 5-dimensional square matrix X4'X 4 could
be examined for singularity instead of the 11-dimensional square
matrix X I"X1 , and the problem gets easier with less than five
mining points.

The rows of the full 24 design corresponding to 3- and 4-factor
interactions (that Is, the rows of the missing parameter submatrix
in Figure 1) represent the vertices of the 5-dimensional hypercube
which have an even number of minus signs. By Lemma 1, the
characterization problem is reduced to characterizing the subsets of
these even vertices which are linearly dependent. All the vertices of
the 5-dimensional hypercube form a group 4g under coordinatewise
multiplication, and the even vertices form a subgroup 4O, The
subgroup Z4 is isomorphic to the quotient group obtained by
identifying opposite vertices (i., those with all signs switched) in 9,..
By mnemonically relabeling the columns of missing parameters inFigure 1, (OWS) - A, since o is missing from ($24),

(acd8) -- 3, since 0 is missing from (oc•8),
(ocat) -4 C, since W is missing from (o4&),

(oct) "" D, since & Is missing from (o4 ),

(42(S) -4 E, since E is missing from (Opf,),

and letting a letter A D. C. 0 or 9 appear In a vertex label iff the
sign of the respective coordinate Is positive, the quotient group
becomes Erosge/(I, ABCDE). Figure 2 gives the new labeling of the
mining parameter submatrix from Figure 1 In terms of A, 8, C, D,

and E together with the respective cosets. The ±1's of Figure I have
been replaced by simply +'s and -'s In Figure 2, and one- or
two-letter design point labels are underlined to Indicate that they
will be used as standard comet labels. (Group theory is used here only
for limited notational convenience: not much algebra is exploited.
Likewise, the graph theory introduced in the next section is used
simply as a bookkeeping tool. Better exploitation of these
mathematical objects might lead to more general results.)

I.
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OLD -P ARAfIETER LABELS(2)- NEW POINT
POINT (OWS) (*4S) (ac4S) (&$I) (&$V9) LABELSM3 -

LABELS"I A C 0 E (COSETS( 41)

(:1) - - i-,,,• AC0
_a E ACDC DE.

b.- - ACD BE,
ab + + ABE~
C + AMD a CE
ac + + ACE f It .
bc + -CE AR
abc A-- -AliCE

d + - AMCDE
ad +' ADEC c L
bd + ODEi L

cd - CDE % &M
acd- I f ACDE
bcd A - - BCDE
abcd + + A5C0E f 1

Tabulal 3ymbols Are the 319m of Entrtoe In the

Mising Parameters ubmtrix of Ft~ure 1.

(1) The usual wau of labeling design points, or treatments, in
2n experimental designs-see (1) in text.

(2) Greek letters in parentheses are the old parameter labetq,
outlined capital letters are the new parameter labels.

(3) An outlined letter appears In the new treatment label (first
column) ifr 0+" appears in the respective column.

(4) Cosets obtained byj identifying opposite vertices of the five
dimensional hUpercube. Underlined labels (one- or two-
letter combinations) are used as standard coset labels.

Figure 2. The Matrix of Missing Parameters.
Showing New Labels.
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Iil. MAIN REBULT. The geometric underpinnings of the
reformulated problem suM5 a geometric approach to its solution.
The problem is to characterIze linearly dependent subsets of the
vertices of a hypercube. Clearly, opposite vertices of a hypercube
are pairwime lEnearly dependent (hence interchangeable in linearly
dependent subsets), so the identification of opposite vertices in cosets
simply gets rid of a trivial nuisance. Once opposite vertices are
identifie.d in the 5-dimensional hypercube, defining an edge between
two new vertices if there was an edge between pairs of old vertices
is natural. In fact, it is useful to define a quotient graph on the new
vertices as follows.

bDiatinm. The qutoUent grap.4 f5 of SS is the graph whose

vertices, V(ft), are the elements of the quotient group

f 5# and whos edges, E(G5), connect any pair of vertices

in V(ft) whose cosets -were connected In 47.

In the notation of Figure 2, V(aS) consists (if the identity, single

letters, and double letters, and E(04) consists of edges connecting:

* I with each of the single letters A, 5, C, 0, and E.

A

D
IE

Each of A. 5, C, D, and E with I and with each double
letter containing it.

Example: AN-S'm

Iow AC 
'i.
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, Each double letter with all single letters contained In It
and with each other double letter disjoint from it.

Example: CO CEE

OE

The usual definition of a subgraph is:

gmIWliM. A subgraph 3 of a graph I defined by the
vertices V(S) is the graph such that V(S) K V(S) and

-(8) consists of the edges of 6 connecting vertices of 8,

With this definition, the following theorem will be proved.

T..m (Main Emit- . Let 8 be a subgraph of SS defined by V(S)

where V(8) has 5 elements. Then the elements of &rI

corresponding to V(S) are linearly dependent 1ff 3 contains a
subgraph of one of the following three forms.

(2e) *w*(3t) •(4e)

Prmf f M MM It is easy to show that each of the three types of

subgraph give linear dependence. All are closely related to P.W.M.
John's three-quarter replicates (John 1971, pa1n 161-163), which
formed the basis for much of my earlier paper (see especially Table
1, page 604, of Russell 1983a, denoted by "Ti" below).

The 2-edse type, (2e) - with 4 vertices - corresponds to deleting
the quarter replicates of cam 2 and 6 in TI (defining contrasts
similar to I=D=BC=BCD and I=AB=CD=ABCD).
Example Case 2. Case 5.

"I=D=BC=BCD I=AB=CD=ABCD
abcd= I 4--- A=bcd abcd=I *'4 E=(t)

ad= KC .-.. DE =d cd= A 4D O CD=ab I
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The 4-edge type. (4e) - With 4 vertices - corresponds to deleting
the quarter replicates of cases I and 3 In TI (defining contrasts
similar to I=C=D-CD and I=BCzBDwCD).

Example Case 1. Cam 3.

I=C=D"CD I=BC=BD=CD

abcd=I A:bcd bcd:' mmA:lbcd

acd=S r] -AScd (M):E - 4AE=a

The 3-edge type, (3e) - with 1 s,•rtices - corresponds to deleting
an appropriate additional point from the quarter replicates of
cam I and 3 in TI (defining contrafts similar to I=D=-ABC=-ABCD
and InABC=ABD=CD).

Example Cast 4. Case 6.

I=D=-ABC=-ABCD I=ABC=ABD=CD

,,,, A=bcd o,1110 I=bcd
Cl)bdd= mA!*¶1,,KOý SDE=d bcd=AOl;1,,,,O,,I • ADO

' Oe:cd "'10 *E=b

These correspondences between the graphs and three-quarter
replicates show that the main result actually establishes the
conjecture on page 522 of Russell, 1983a.

pt o.f .. m.ity. To prove necessity assume without loss of
generality that I Is a vertex of the subgraph and that I has the
maximum number of Incident vertices. The proof considers
cases based on the number of vertices at 1, and as a byproduct
used in later extensions of the theorem, counts the number of
possible graphs of each type which result in linear dependence.

Oess O-[d1. If there are no edges incident at I, then the only
subgraph has independent vertices.

10OACIr -

IO OAD
gae

360



__ U

Om I-EW If there Is onw edge incident at 1, then there are two
types of suberaph, omi of which has type (2e) dependentvertices which can occur In 240

I0A I -A Type (2e)

IO KA 0 (240 ways)

Cm 2-Edg If there are two edges incident at 1, then there are
six conceptual types of subgraph, two of which are not
realizable, and one of which has type (2e) dependent vertices
which can occur in 480 ways.

'CA OW

5 OCE
A .t

ANOT ACDecI POSSIBLE

" ANOT A AC Type (2e)

POSSIBLE K 480 ways)

-- l.
3E 1j
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Ows 3-ErLl If there, are three edges incident at 1, then there are
three conceptual types of subgraph. One has type (3e)
dependent vertices which can occur in 160 ways. The other
has 4e ependent vertices which can occur in 480 ways.

A Type (3e)
9 OK (160 ways)

8 (480 ways) I
C C

Cuse 4-Edg. If there are four edges incident at I, then the only
subgraph has independvnt vertices.

A

C * 'N

IV. C01SVQUZNCr, OF MAIN RESULT. It follows
immediately form the main result that cases (2.) and (4e) represent
the only ways four points can be deleted from the 24 design and fail
to leave a design of resolution V &nd that if less than four points are
deleted then the remaining design is of resolution V.

Crsalf . Let 8 be a subgraph of %5 defined by V(S) where V(S)
has 4 elements. Then the elements of EI' corresponding to V(S)

are linearly dependent iff 3 contains a subgraph of one of the
following two forms.

(2e) (4e)
0.-.

O1e1IKI. If !ass than 4 points are deleted at random from the 24
design, then the remaining design is oi resolution V.
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Totalling numbers of linearly dependent subgraphs Identified In the
proof of the main result (with a recount in the 4-point ease) gives
the following rather surprising quantitative results. They establish
the conjecture that most designs obtained by deleting four or five
points at random from the 24 design are of resolution V (Russell,
1983a, page 522).

jahof. If 5 points are deleted at random from the 24
design, then the probability that the resolution V property
is lost is

240+JJ+160+!B -• 03
(5:) 43,68

Lilmii. If 4 points are deleted at random from the 24
design, then the probability that the resolution V property
is lost is

1J4 0 a 2 0.11.16) 1820

V. GENERALIZATION OF MAIN RESULT. The methods of this
paper do not appear to generalize in a useful manner to 2n designs
with n>4. They might extend to the case where just n- and
(n-t)-factor interactions are ignored in the 2n design, but that
situation is of little Interest. Reduction if dimensionallty is already a
big problem in the resolution V case with the 25 design: there are as
many excluded parameters as present parameters (16 parameters),
and the 16-dimensional hypercube looks very complicated. The
present methods would require looking at 32 of the 65,536 vertices of
the 16-dimensional hypercube to study loss of the resolution V
property. The case which originally Interested me in this problem
was even larger, namely, a resolution V quarter replicate of the 28
design. I felt and still feel that such a design should be relatively
Insensitive to data loss, but the methods of this paper don't seem to
provide a good way to look at miming points In such designs. It is
possible that extending the geometric, graph theoretic approach
might be easier than it appears. Or a usable general characterization
of linearly dependent vertices In an n-dimensional hypercube may
be known. Alternatively, there might be a purely algebraic
approach to the proolem which would yield general results.

in any case, the general problem still needs and deserves more
work. As an exercise to see how far one might push 2n-k fractional
factorial designs in a field test framework, I designed In 1983 a
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hypothetical operational test for a communications Jammer using
formal experimental design methods (Russell, 1983b). The resulting
design examined 32 factors, aach nominally at 2 levels, in such a
way that 62 effects (including carefully chosen interactions) would
be estimable. The design had 512= 29 points and in fact was a 2-23 u
1/8,388,608 fraction of a 232 deftin (4,294,976,296 points) run in 64
blocks of size 8. Tho design would have required 8 days to run and
could have been easily extended In 8-day increments to a "full
factorial" test 219 a 254,288 times as long and lasting over 11,000
years. If one were really to try to run such a design, however, the
risk associated with missing points shouldn't be too serious because
there are many more points than parameters, and the results of
this paper concerning the 24 design suggest that the risk could be
quite small. But even at a cost of only S1,000 per data point,
actually running such a design would cost more than a half million
dollars. Large field tests cost many times more. The statistician's
risk In proposing even substantially more modest designs (such as
that in Ruusell, 1982) would be much less if there were better
theoretical understanding of robustness to data loss,
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A METHOD FOR THE STATISTICAL ANALYSIS OF THE
STRESS-STRAIN PROPERTIES OF EARTH MATERIALS

G. Y. Baladi and B. Rohani
Geomechanics Division, Structures Laboratory

U.S. Army Engineer Waterways Experiment Station
Vicksburg, Mississippi

ABSTRACT. Stress-strain properties of earth materials under various test
boundary conditions, such as unlaxial strain, hydrostatic compression, and
triaxial shear, are required for conducting a two-dimensional (2D) analysis of
explosive-induced ground shock. Such properties are random and often contain
artificial instrumentation-induced noise. The randomness is primarily due to
spatial variation of the soil properties, biases associated with field samp-
ling disturbance, and errors in laboratory testing equipment and procedures
and must be accounted for in ground shock analysis. This necessitates the use
of 2D probabilistic wave propagation computor codes as opposed to determinis-
tic procedures. To use the stress-strain properties for such probabilistic
oalculations, one must first eliminate (or reduce) the spurious instrumenta-
tion-induced noise In the "raw" data and then statistically quantify the
"smoothed" data. The outcome of the statistical quantification is the repre-
sentation of the stress-strain data In terms of the expected response, its
variance, and the associated correlation coefficients. The paper discusses a
methodology for smoothing the raw stress-strain data and the subsequent sta-
tistical analysis. Application of the methodology is demonstrated for Nellis
Baseline sand.

I. INTRODUCTION: The ground shock calculation techniques currently used
to predict the states of stress and ground motions induced in earth masses by
explosive detonations are deterministic tools. That is, the input parameters
(media -onstitutive properties and surface airblast loadings) are specified as
single-valued deterministic quantities or functions. In actuality, however,
both the constitutive properties of earth materials and the characteristics of
the airblast pulses are dispersed random variables. The randomness of these
input variables indicates that resulting stresses and ground motions are also
random variables. Therefore, ground shock problems should be analyzed

probabilistically. The purpose of the probabilistic analysis is to obtain a
quantitative understanding of how the variabilities or uncertainties in the
input parameters for a particular problem affect the dispersion of the output
quantities or parameters. To use the stress-strain properties for such
probabilistic analysis, one must first eliminate (or reduce) the spu;"ous
instrumentation-induced noise in the "raw" data and then statistically
quantify the "smoothed" data. The outcome of the statistical quantification
is the representation of the stress-strain data in terms of the expected
response, its varianco and the associated correlation coefficients.

The paoer presents the development of a compiterized methodology for
statistically analyzing a set of random stress-strain data. This Includes
(1) a procedure for eliminating the spurious noise in the raw data due to
instrumentation without affecting the actual physical rezponse of the material
and (2) a procedure for statistically analyzing the random behavior of the
"smoothed" data. The outcome of these procedures is a representation of the
stress-strain data in terms of the expected response, its variance, and the

Comments by panelists Drs, Kaye Basford and W. T, Federer are at the
end of this artical. 365
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correlation coefficients. Application of the methodology is demonstrated for
Nellie Baseline sand.

II. DATA SMOOTHING PROCEDURE. The laboratory stress-strain data often
contain artificial noise due to Instrumentation which must be filtered out
before the data can be used. Therefore, a technique to smooth the measured
data without changing the actual physical response of the material is needed.
Such a procedure has been developed by Baladi and Barnes (Reference 1) and is
bted on the concept of a marching mean square. If the measured value of the
I data point is expressed as ym(Xi) , the corresponding smoothed
response y,(X1 ) can be expressed as

n-

ys(X) - 1 2 YM(Xk) ()

k-i n21

where n - 1 is the window over which the marching mean square is taken
(i.e., n 1 is the number of data points to the left and to the right of

2
the ith data). Note that n has to be an odd number equal tc or greater
than 3.

Equation 1 was applied to smooth the raw data from uniaxial strain
(Figure 1) and triaxial compression (Figure 2) tests for Nellie Baseline
sand. As shown in these figures, the results of these tests are quite noJsy.
The value of n used to smooth these data was 5. Several passes had to be
made in order to obtain a satisfactory set of smoothed stress-strain rela-
tions. The final set is shown in Figures 3 and 4, and it is noted that the
overall character of the stress-strain relation is not altered as a result of
the smoothing process (for example, compare Figures I and 3).

III. STATISTICAL ANALYSIS OF SMOOTHED STRESS-STRAIN DATA. In this section, a
generic procedure is outlined for statistical analysis of nonlinear stress,-'
strain data. Consider a set of curves relating the random variables y and f-A..

x (Figure 5). The objective of the statistical analysis is to determine the
mean curve with its one-standard-deviation bounds relating the random vari-
ables y and x . This can be accomplished by applying standard statistical
procedures to the slope of the random curves in Figure 5. The following steps
should be taken to conduct the statistical analysis:

(1) For a given set of n curves, divide the x-axis into W number of
equal increments Ax (Figure 5).

(2) For the ith increment, determine the slope of the jth curve
denoted by a

ijy

" , , .(2)
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(3) Determine the expected value and the standard deviation of the slope
at the I inorement for all the curves according to the following expres-
sionst

fl " E(n) (3)

1g (aij.g) (4)J.1

(4) Next, compute the mean and the standard deviation of y . To accom-
plish this, the covariance and the correlation coefficient matrices of the
$lopes oov(Qkam) and Pkm , respectively, can be first calculated from the
following relations:

V(Q k' 0m) = k[( - "k k)(0m - 5m) "n--'T (A' j -k )(0j m (5) --,
J=1

Pkm u () 
(6)

- ) E(m - Wm)"]

In which

k k n I -j k

where k 1 #,2,...i....W and M -1,2,..i.,..

Finally, the mean value and standard deviation of y at the ith incre-
ment become

t-i

Emi

G(y i = P km C(Ok) Axk O(Qm) AXm (9)
Vm-1 k-1
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Equations 8 and 9 were applied to the smoothed stress-strain data for
Nellis Baseline sand presented in Figures 3 and 4. The resulting curves are
shown in Figures 6 and 7. Each figure contains the mean response with its
one-standard-deviation bounds.
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Figure 1. Uniaxial strain test results for Nellis Baseline sand.
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Figure 3. Smoothed uniaxial strain test results for Nellie Baseline sand.
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COMMENTS BY PANELISTS DR. KAYE BASFORD AND PROFESSOR W. T, FEDERER
ON rNE FOLLOWING ARTICAL

A 1ethod for the Btatistioal Analysis of the Btivss-Strain

Properties of Earth iMterials by

O.Y. iladi

and B. Ifhmni.

U.6. Arm/ Elsinwer Haterways Uiperimnt Station

W.T. Fidereri ef ore any oom., nts in depth could possibly be winde,
a copy of thu paper and discussions with the

experinanter, would be required. FIrom listening to

the lecture and pondering an the topic, it would

appear that an explosion oreates a spherical shook

.wa effect with only the radius of the sphere being

a random variable. 7be above would follow for onev

endiu m stuh as air or voter. Howvwrg, wdhn a sned
medium is a outered the radius of a sphere

chanIes. That is, the sphere tor air is nat the

sawm as tor voter.

ii real problem had to do with an air burst's effect

on undaergrownd structures. TIe heterogeneity of the
soil meant that several media were being anIo utered.

This adds coxsiderably to thu conplexity of the
problem. It would appear that onorentrating on the

radii and confidence intervals for radii in various

media would sinplify the problem. If the bu-sts were

directional, then other regular figures such as an

ellipsoid mould need to be oonsidered. The shape of .
the burst would determine whioh measurement should be

used. Hence, wore eaphasis on the shape of bursts in

various media should be mnde. The statistical

problem is usually sinplified whnn the nodel
structure is oonpletely specified. Than, for a given

number of media (e.g. sand, clay, loom, rooks, etc.)
in a given proportion, confidenoe intervals oould be

IonstrwI ted.
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SOME APPLICATIONS OF BiAYESIAN IMAGE ANALYSIS

Stuart Gernan -
Division of Applied Mathematics

Brown University
Providence, Rhode Island 0891f/USA

The various tasks of image processing, such as removing blur, finding boundaries, and
detecting objects, have traditionally been approached on a case-by-case basis. The result
is a spectrum of ad hoc techniques. The author and his colleagues are trying to develop a
coherent mathematical foundation that will support a variety of these tasks, ranging from
problems in "low level vision", such as noise removal, to problems in "high level vision", such
,a scene segmentation and analysis. The framework is Bayesian: probabilistic image models
are constructed. These are probability distributions jointly on picture element grey-levels,
locations of edge elements, placement. and types of textures, and other image attributes as
may be appropriate in a particular application. Markov random fields (equivalently, Gibbs
distributions) are especially apt and convenient for representing real-world prior knowledge
about these attributes. The end product of the formulation is a posterior distribution, on the
uncorrupted grey-levels, locations of edges, texture labels, and so-on, given an observed and
possibly degraded picture. Image restoration and analysis amount to the identification of
the mode (or sometimes the mean) of this posterior distribution.

The approach is implemented in four steps. Each step will be discussed in detail,
highlighting the important theoretical issues. These steps are:

I. Construction of a prior distribution. The result is a probability distribution,
(qf), where the components of I represent picture element grey levels, locations and orien.

tations of edges, types and locations of textures, labels and locations of objects, and other
image attributes relevant to the image processing task. The dimensionality is very high, in
the order of 10' or l0o, This prior distribution is a Markov random field, and is constructed
to be consistent with prior information about such things as the spatial smoothness of the
image inteasity levels, the tendency of textures to appear in homogeneous patches, and
so-on. This construction is greatly facilitated by the equivalence between Markov random
fields and Gibbs distrihutions; the Gibbs representation is well-suited for accommodating
the various types of prior knowledge in a consistent manner.

2. Modelling of the Degradation Mechansim. The observation, ý, is some degrada-
tion of the ideal image, 5. The degradation may, for example, involve an attenuated Radon
transform, as in tomography, or a blur and noise process, as in satellite or infrared imaging.
Or, it may simply be a projection, as in the problem of boundary finding or object identifi- •. -
cation: we model the degradation as "hiding" the boundary locations or the object labels.
Modelling the degradation amounts to specifying the conditional distribution, w(,•), on
the observable process, V, given the ideal (and unknown) image 1.

S. Identificalton of the Posterior Distribution, This is simply a matter of applying -'
Bayes' rule to w(F) and .(glff) to derive 7r(flyl, the posterior distribtuion on the ideal image
given the observable process 1 .

4. Identification of the Mode or Mean of the Posterior Distribution. This cor- IV

Research partially supported by Army Research Office contract DAAG29-83-K-01 16,
National Science Foundation grand DMS-8352087, and the General Motors Corporation.
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responds to image restoration and analysis. If, for example, I involves such "high-level"
attributes as texture and object labels, then identifying the mode of w(fllv corresponds to
choosing the most likely interpretation, in the sense of texture and objects identification,given the observed process 17, The posterior mean is computed by a hgihly parallel algo-

rithm called otochastic relaoation. This is a Monte Carlo technique that yields an ergodic
Markov process, 1(t), with equilibrium distribution w(flI. The mode can be found by a
variation called .inUdattd annealing, which can be shown to converge (weakly) to a global
maximum of or(fIyl.

The utility of the approach has been demonstrated by the results of experiments with
real scenes. These illustrate: (1) boundary detection; (2) texture segmentation and labeling;
and (3) single photon emission tomography. Details of these experiments, together with
theoretical results on parameter estimation for the prior, and on convergence of stochastic
relaxation and simulating annealing, can be found in the following references. These contain,
as well, discussions of the many contributions made by by other authors to the Markovrandom field/Bayesian framework for image analysis.
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An Algorithm For Diagnosis of System Failure*

Robert L. Launer
U. 5. Army Research Office.

1. Background.

In this n,.e, the optimal diagnosis of system failure is considered.

Suppose that there is a system of n components C,, C2 , ... , C., and that
this system becomes inoperable or fails when any one of the components fails.

In order that this problem be well posed, the term "component" may also
represent a subsystem of units operating in parallel so that subsystem

failure occurs when all of the components in that subsystem fail.
The problem considered here is that of finding the failed component or

components in the least possible time, or cost when a system failure occurs.
The testing will be conducted one component at a time, initially. The more

general case will be considered later. Since the testing sequence will be
based on probabilistic information, the component reliabilities (or equiva-

lently the failure rates) and the average time (or cost) to test each of the

components are assumed to be known.

Wong (31 considered this problem of finding a (single) malfunctioning

component "such that the expected test time is optimal in the sence of

Bellman's principle of Optimality." The main result of that paper is that
"the minimum number of test points required for conclusive detection of sys-

tam failure is equal to the total number of terminal test points; this set
of points constitutes the optimal choice." No algorithm for sequencing the

components for achieving optimality is presented in this paper. It is

pointed out, however, that the "optimal strategy .. proceeds with the most

unreliable and the least test time component .. as the first component to
be tested; next in the sequence .. is the next most unreliable and costly

component. .. between the last two components, an optimal strategy always iqj

chooses the one having a smaller test time regardless of their reliability

data."

In the present paper, a precise sequencing algorithm is daveloped and

presented. The problem is also generalized by considering multiple failures,

subsystem testing, and the idea of allowing a time for testirg a component

that has railed which differs from the time to test when it has not failed.
The overall goal is to develop sequences which minimize the expected value

of the testing tl - or cost for the several testing situations considered.

"*The autlor of this paper presented it at the 31st Conference on the Design
of Experiment%.7
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2.One Component at.a Time Testing.
Let RI(t) be the reliability function of the i-th component at standard

use conditions. Let T and T[ represent the time to test the i-th component

when it is operable or failed, respectively. It will be assumed that the
components fail independently of one another. If the reliability functions
are continuous, then the probability of more than one failure occuring at
time t is zero. This, of course, excludes catastrophic failures from
externally imposed destructive forces or other common-cause failures. Never-
the less, multiple failures will also be aiscussed.

The probabilities of component failure given system failure are obtained
as follows. The probability of component I surviving until time t is RI(t).
This may be computed explicitly from Ri(t) - exp(-.t h(u)du). LetSt repre- .1 ~ 0
sent the event that the system does not survive beyond time t, and Ci the
corresponding event for component Ci. Then the following equality involving
conditional probabilities holds:

P(SICi] PIcO] * P[ciIs] PIS]

From the previous assumption about component failures, the system fails when
any component fails so that P[$sci] * 1,and

P[Ct Is] - PIC,] / P[S]

This is the conditional probability of the failure of component I given system
failure (at time t). Let this probability be denoted by pi. Then from the
previous assumptions it fcllows that

n
Pi  - (1-R i) n Ri / Ir (I"Rk) N (1-R ) (1)

Suppose that the system has failed and that the components are tested
one at a time in the order 1, 2, 3, ... until the defective component is found
at which tirm testing is terminated. The initial ordering of the components

is arbitrary. The expected test time, E, is then
T n K-1 , k-1 n n,

E - TIP0 , {([ TI+Tk] 1i (1-pi)p!} + ( E TO) ( n (1-pi)) (2)
k=2 ijl ivl iI i.1

Let E' represent the expected test time when the order of the k-th and the
(k+l)-th components are interchanged and all others remain the same. The
difference E' - E is easily spen to be,
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k-1E"-E = pkPk+1 R ("pi)[(Tk+l/Pk+l)-(Tk/Pk)-(T k+-T kl)+(Tk-T )] (3)

The expected testing time is decreased by this permutation if E -E is negative.

Using a finite induction argument, then the optimal ordering is found by

computing the n quantities,

Gk a (Tk/k-(Tk-Tk) (4)
Gk (4)) k

for each component and order the Gk beginning with the smallest and ending

with the largest. Examination of the first and last terms in E indicate that

the ordering scheme (4) also applies to these terms.
The optimal expected test time is obtained from (2) with the terms

arranged in the optimal order, but without including the last term since it

would be unnecessary to test the "last" component if the other n-1 were

tested and found to be operative.
Notice that if the terms Tk and Tk are equal, then the Gk are easily

seen to correspond to the intuitive feeling that the components with shorter

testing time and higher failure probabilities should be tested first generally.

3 MultipleeFailureS With One At A Time Testing

The case of multiple failures is considerably more complicated than the

single failure case. There is first of all the problem of determining the

multivatiate failure law, which would yield the conditional failure failure

probabilities corresponding to (1) in the simpler case. The derivation of

this set of probabilities should be based on the physics of the particuldr M
S situation. In the absence of specific information one might use compound a N••'

probabi lities.
Another complicating factor is how testing and repair is to be conducted.

If all of the failed components are to identified before any repair begins,

then exhaustive testing would be implemented in which case the testing

sequence is irrelevant. If, however, testing proceeds one component at a

time until a failed one is found, followed by immediate repair of that

component with further testing following the repair only if it is required,
then the testing sequence is important. The following development treats

the latter case.

Assume for the moment that the system in question is known to contain

exactly m'< n failed components. The expected repair time for this case can

be written explicitly. It can be analyzed similarly to (2). The result has
381



been worked out for the cases m-2 and m-3 and may be described in the following U
way. The testing order of the first m components does not effect the testing
time. The remaining n-m components should be tested in the order dictated by
(4). The general case was not worked out because of the inordinate amount of

algebra involved. The lower order cases indicate no surprises for the higher
order ones.

The point of this discussion is that if, unknown to the tester, the
system contains more than one failure, the procedure given by (4) will still

result in an optimal or near optimal sequence if continued testing is indi-

cated by system malfunction after the first failed component has been found

and repaired. Naturally, system "turn-on" after repair could induce a failure

among the previously tested components. Without appropriate data or probab-
ilistic information about this phenomenon, no definitive guidance can be given

about optimal or reasonable strategies to protect against it.

4. Subs~ystem Teatting ,

It seems reasonable to ask what further saving in testing time can be

realized by simultaneously testing components in groups if that is possible.

For example, if half of the components in a system could be tested together
in a reasonable period of time, followed by testing smaller subgroups or

single components when appropriate, it would appear that the expected testing

time could be further reduced, especially if only one component has failed.
Assume that the system in question yields a natural decomposition into

M subsystems or modules M1, M2 , ... Mm. Module k consists of n(k) components,
and its reliability is given by Qk' The average time to test module k as a

single entity (that is, exclusive of any component testing) is Uk if it is
operational and Uk if not, while the corresponding average times for component

j of the k-th module are Tk and T'k The probability that module k has failed
given system failure, Pk' is M

Pk " ('Qk )jkQJ / ('i k J

The probability that component j has caused module k to fail is given by (1)

where the pis Ti and Ti are restricted to the components of module k.

Corresponding to the previous testing set-up, it will be assumed that
testing proceeds one module at a time until the failed module is discovered.

'.,
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Then the individual components are tested one at a time until the failed

component is found. m

Let Uy. represent the vector (U1,U2,.O.Um.1,Um), Tj represent the vectorm m m m

(T 2,,J.1, T ) and 1k the k-vector each component of which is a 1. Note

that the transpose of a matrix or vector will be denoted by a superscript T.
Further, let M M represent the event that, given system failure, modules 1
through m-1 were found to be operational and module m was diagnosed as failed.
Let Cm represent the event that, given failure of mudule m, conponents 1,2,..J-1
were found not to have failed and component. J was diagnosed as failed.

Then for an arbitrary ordering of modules and components, the expected

testing time E is

M n(m) T U + 1 T. T mU 141 (6)n1 j.-m -mTj 6

If the m-th and (m+l)-th modules are interchanged, and the quantity

E-E is computed as was done in section 2, the minimizing algorithm is
obtained. That is, the quantities H are obtained:

HIj a E + (U;- U) + u / P (7)

where E represents the average time to complete the one at a time testing
of the components in module J. The algorithm indicates that optimization
of modular testing depends on the optimization of the component-wise testing
within each module, but both optimizations are obtained independently of
the other.

The optimizing algorithm is therefore to order the components in each
module according to (1) within the module, and then to compute the H forJ J
each module, Jm1,2,...,M. The testing proceeds by diagnosing the module
corresponding to the smallest value of the Hi. followed by the module
corresponding to the next smallest value of Hi, and so on to the module
corresponding to the largest value last.

It is useful to ask when component-wise testing within a given module

is more efficient than modular testing for that module. A good rule of thumb
is to use that method which requirzs the lesser overall average testing time.
This leads to the following algorithm. If the following inequality (8) holds
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then use modular testing.
, n(J)

4 Pj U; ,•(-P (ZITi-U ) (8)

It should be pointed out that there are several loose ends related to

this discussion which should be kept in mind. First, the given algorithms are

optimal in the sence of lowest expected testing time under certain restricted
conditions. The most general test situation would allow for an unrestricted

mix of any combination of single components and subsystems, whether these

are natural subsystems or not. There are 2 n -1 such possible subsets to con-

sider in various combinations. This would require a prohibitively large

amount of computer time for even a moderately small system.

Another possible area of further exploration involves the computation of

the component reliability functions at every new failure. Unless the failure

rates are unusually well behaved, such as all constant failure rates, the

quantities GI and Hi must be recomputed at each failure. With constant fail-

ure rates for example, the crossings of the reliability funetions could be

computed once and for all yielding a set of (n(n+l)/2) time zones of consider-

ation.

Finally, there Is the question of data and prior or partial information.

The Ri, Ti and so forth, might not be known exactly. Moreover, if other p-ior

information is available, it certainly should be incorporated into the analysis.

REFERENCEN C

(1]. Barlow, R. E. , and F. Proschan, Statistical Theory of Reliablity

and Life Testing: Probability Models; 2nd Edition; Holt, Rinehart &

Winston, 1975

(2], Boggs, Paul T. and Robert L. Launer, Time-Optimal Rejection Sequencing;

Transactions of the Twenty-Fourth Conference of Arnly Mathematician5 --

[(], Wong, James T., An Optimal Diagnostic Strategy for Finding Malfunctioning "Kp .

Comrponehts in Systems; NASA T'ech Memo 8h335 (USAAVRADCOM 83-A-7). Mar 1983

384
* t



.LaD.L1U.~EIL V.ER..SUS QlB.UP SAMPELING*

Paul A. Roediger

John 0. Mardo

U.S. Army Armament, Munitions and Chemical Commiand

Dover, New Jersey 07801

ABiS'IRACT: L~ot acceptance based on INDIVIDUAl. sampl ing haa

b~een widely used during the past decade. Recently it was

rec.oninended that this practice be discontinued and future

hampling be done on a GROUP basis. The need for specific

ý.onversion guidance and procedure. warn thereby created A model

assuming the family of negative log garmma distributions% on

incoming INDIVIDUAL quality rates has been developed for the

purpose of selecting the GROUP plan most comparable to a given

1\1flIDLAI. plan. In addition to the model details, excamples tire

presented and a previously published alternative is discussed.

1 .0 INTROfLUCTION

In lot-by-lot attributes sampling inspection, product is

divided into inspection lots and random samples are drawn from

each. We assume there are mn quality characteristics each having a

well -defined attribute rtquirement, i.e.,* a requirement which is

either met or is not. A unit not in conformance with the j-th

requirement is called a i-type defective. A non conforming unit

*The &uthor5 of this paper presented it at the 31st Conference on the DesignU
of Experiments. 385
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with respect to one or more requirements Is called a defective.

Two sampling modes, one based on defectives, called GROUP

sampling, and the other based on the rit defective tvpes, called

INDIVIDUAL sampling, are described. Both are permitted in [IJ,

MIL-STD-1OSD.

Let d be the number of defective. obtained in a sample of N

unit.. We say that sampling is done in the GROUP mode when the

decision rule to accept or reject the lot is based only on d,

without further regard to defective types therein. In practice

GROUP sampling is implemented by the following

RULLE..0: ACCEPT LOT IF d4C, OTHElRWISE REJECT.

The numbers N and C are called the "sample size" and

"acceptance number" of the GROUP plen. Sucht plans are denoted by

(N.C). Note, the GROUP criterion ignores underlying defe(ctive

types entirely. For now, "rejiect" stands for any course of action

taken on lots not accepted.

Let p be the true lot fraction defective and q-1-p. Then,

the GROUP probability of acceptance (PA G), in binomial form, of

lots of quality q is

(I1 PA G' q OCVq N ,C)qN -4 i '

1-0
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OC, for convenience treated as a function of q instead of p, is

called the Operating Characteristic (OC) curve of (N,C).

The second type of sampling, used in many current U.S. Army

commodity specifications, is INDIVIDUAL. sampling. Let d. be theJ

number of j-type defectives found in a sample of n units. In this

mode, lot acceptance is based only on the d.'s and is typically

invoked via the following

RUA_L: ACCEIPT L.)T I1 EACH d j< c, j =1 , 2 , .

OTIHERWI SE- REJ ECT.

The numbe r i n and c a re ca I I ed the "sample si ze" and

"acceptance number" of the INI)IVIDUAI. plan, which is denoted by

(n,c)m. I.et p. be the true j-type defective rate and qj=l-p.. The

INDIVIDUAL. probability of acceptance (PA ) of lots with quality

profile Q = (tll(2 . q ) is

(1.2) PAI (Q) = TToc(q ;n c

.1 = 1

Note, PA is not a function of the one parameter q, as is

PA .G but i s instead a product of GROUP- I ike (X curve terms.

For a given profile Q, the overall lot quality, assuming

independence among the m defective types, is given by

Best Available Copy
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This equation establishes the basic connection between the

two sampl ing approaches, relat ing q, the GROUP quality of (1 .1).

with the qj*&. the lNDINADC.Al. qualities of ( 1.2).

The following conversion problem is considered:

PROR~II "P" GIVEN Till: (nc INDIVIDUA PLAN

FIND TIM "BlST (N.C) GR0OUP PLAN REPLACEMNT.

The inverse problem ii apparent).\-nlite complicated, but, in

principle, can be bnck-sol'ed h\ iterati'elv sol\ing a con~eriing

seqluence of problems of the type ro%ed.

The two approaches share b curious history. (HOLP sampling.

once the authori7ed method, \\-i, e~entuallv replu~ed b\, the

INDIVIDLAJ. method. This de~elc'prnent m.'as an outgrowth of aU

Computer revolution that helped promote a component oriented

approach to system relmablji\t.. Subsequent years ha~e seen more

than just a balancing of thi% trend-, indeed, a steady return to a

more integrated "systems" approach has ensued. With it, interest

in GROUP samnpling has grown, to the point that direction was

recently given in (4] to discontitnue the use of INDIVIDLAL.

sampling altogether. Unfortunately, a sound conversion rationale

does not exist. Several sets of tables prescribe GROUP acceptable
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quality levels (AQL's) for various m. Most, however, are either

statistically unfounded, rely on untenable assumptions or can not

be generalized; as 6uch, they have no real bearing upon our

problem. 'The tables of (2] were more disappointing in that more

was promised. They are considered below in greater detail.

2. 0 BOUNDARY CURVES

Consider the range of PA1 (Q) values obtained by varying Q,

keeping q, as delined in (1.3), constant. The bounds on PAI(Q•q),

calculated in Appendix I, are given by

/m; /n m r
(2.1) (V q;n,c) , PAI(Qq) Q (I ("(q/mn,c)_

We call these hounds l(q) and U(q) respectively. The minimum

L.(q) is attained when

Cq if jk
q F o br each k-I ,2,... m ,

" if j~k

representing, at the one extreme, profiles where all but one of

the incoming defective rates are zero.

The maximum U(q) is attained when

I/m
q' " q2- ..- qm" q
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representing the other extreme where al! incoming detective rates

are equal.

As q is allowed to va~y on (0,11, the bounds of (2.1) produce

an envelope that contains all possible PA I(QJq) values. A sample

envelope resulting from the (125,11) 14INDIVIDUAL plan is depicted

in Figure I1. The importance of the enve lope i 4 stated in the

following

CONCILUSION: A CANDII)ATFi OROL11 ()C MURVE

MUST BEi CONT'A INEDi WITHlIiN Till-i EN*VE-I.)PI:.

THEiREFOREi, L(q) 4 (K(q:N,C) 4 L(q)

The envelope collapses it' and only if rn-i or c-0. In both

cases, I\I)IVII)LAI. and GROUP sampling are identical, provided o f

course that (N,C')-(n,c).

3 .0 \1OU~L REQU I kI.iVTS

\khie re e xa c I wi t hi n the env elIop e shlio uld t he "be s t" GROUP ()C

curve be located? To help guide us, a model is proposed that

The model has two desirable properties: it is general, taking

into account important aspects of the problem, yet tractable,I

allowing computations to he carried out and simulated in terms of

known statistical quantities.

The fol lowing are ut ili zed as part of the model:

the Beta probability density function (pdf),
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(3.1) bet(i;a.b) a 4-I (I-)b'l/S(G.b)

and the Negative Log Gamma pdf.

(3,2) sllg(sb) a abu3( 1 1 b'I / r (b)

md

where fl(2) 1 2J 0 tul dt, B(a~b) * Ma)r(b)/r(*-b)

and z:d), a,0. b-0 and (,x•1.

The cumulativc distribution functior,s (cdf's) obtained by

integrating bet( t ;.b) aind nlg( t ;ab) with respect to I, it 1,)',

ire denoted by BLT(%:a.b) and NLG(x ;,b). retpetti el\t.

The negative lot gmarrna densit. cl•sel% re.emlet. the more

familiai beta. In fact, (3.2) is obtained fron 1,3. ) by replacing

(I-%) with In(I 'x), two nearly equal term.% for x close to 1, and

adjust ng the constant term to normalize the in'tgral. Ior f•xed

".a". this famil of den iti es his the specie! feature of being

closed under multiplication, i.e.. if L.-nlt(h.b) i-I,2, henI S

the product LU: 2 nlg(xa.bb 2 ) . The family is also a rich one,

taking on a wide variety of shapes including the "L". "L" and

"J" shaped, uniform and uni-modal densities. Its name is derived

from the fact that N is negative log gas ina distributed, if and

only if, -InY is gamrima distributed. References (3] and 16]U

contain more details about this distribution.
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4.0 EL.EL

The model specifies whigl'tian pef's on the qI's

(4.1) fi(ql) - nlg(qi;a,b) . where 8>0 and bi .O, i-1,20....m.

In order to randomly generatt vectors & given q, the

conditional cdf of an arbitrary qk' given q and pomaibly some, or

all, of the Other qj's must be determined. The desired cdf's,

developed in Appendix 2. are, for k-l,2,...,m-l,

S(4.2) k (qItlq~ql~q2,..... qk.1) M BET(T k(q k);Sk.+l b k) ,

where T k(qk) - ln(q k/Pk)/ ln(t/Pk) 'Pk Gqk01

m

Sj- •b and P1- q. Pj - q/ f q1 ' lJjr.ii

i-j I j

Equation (4.2) provides the basis for the following

procedure: for k-1,2,...,rn-I, take

)BET" I (R ;S b )

(4.3) 4k (Pk) ' T k $k+)l'bk
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where the R s are random numbers generated from a uniform

distribto on (0,11. Once the first (Iti m&re gnrtd

qmis simply P m

Implementation of procedure (4.3) allows us to study the

distribution of PA I(Q6q) via Monte Carlo simulation methods.

5.0 EARAMIETFR kPILFCTION

The pdf on q resulting from (1.3) and (4.1) is

(5.1) f(q) - nlg(q;a .Si

An interpretation of "a" is found by taking the expected

valiue tit (S1. Igiving E(q)-u/(u+1) so that F[liIq). (1Fq)J, the

odds~ of' randomly picking an effective unit when quality is at its

uverage. Consequently, in most practical applications, "~a" will

be quite large. Note, however, (4.2) and (4.3) are indepetident of

thl i % par ame t e r.

Of particular interest to us are the "J" shaped pdf's that

result when a>1 and b-1. Then, (5.1) defines a orne-pa~rameter

family which is deemed sufficiently rich for the purpose of

assigning appropriate weights to q. Hlaving no prior information,

the b i.s are assumed to be equal. Since they sum to b-1, b I ./rn

for -12..myielding J-shaped weights on the q1 s which are

asymptotic at q.-1.
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6.0 CONVERSION &iRTrEG

A three step) approach to solving problem "P". fully

computerized and documented in (81, will now be described.

.STEP.1: Monte Carlo simulat ion-

(a) Choose K, the number of distinct q'h at w~hich

to simulate PA 1(QJq). We take K-19.

(b) Select an appropriate q-interval (ulu KI. We utilize

the criteriv. IL(u1 ).'.1O and I.(\uK)>. 9 5 , eiisuring

that PA (Q q-u )<. 10 and PA (QJq-uu,)>.95

(c) Define the equi-spaced intermediate pointR

u. .' hi+u K' u (-),for 112,.,.2

(d) Generate 1-ium random vectors Qjq-u,, per C4.3).

Our sinmulations utilize Isum-1OQO repetitionps.

(e) Obtain the empi rical density of PA1 (Q q-u1 ).

(f) Compute the 5 0 th percentile, and call itYI ¾ y¾ if q-u ~

Other percentiiles, namnely .0, .1,.2, .3, .4, .6, .7,.8, .9

and 1.0, are computed and processed as are the nmedians.

However, we do not consider the resulting GROUP plans

to be as useful simply becaiuse the risks to producer

and consumer are unbalanced.

(g) Repeat (d) thru (f) using uu 3. . .. u K instead of u1

(h) Obtain i(u ,y) -,,
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()If the 'a are increasing, proceed directly to step 2.

If not, and this case has never occurred, either

increase the the number of trials Isum, decrease the

number of points K, Or Open Up the interval (ul.uK]

.SIEP..2: Interpolation-

(a) Linearly connect the points (u1 , ) i- I 2y. K

Call this increasing piecewise linear function y-f(q).

(b) Use inverse interpolation to find mix unique q values,

u1thru a.6, corresponding to Y, 1 -f I ) thru Y6 m-f(u 6 )

where ¾inl-. j2-.3, Y~,5 -~.7, v,- 9 and 6 9

.STIEPE..3: Find the "best" (N,C) approximution-

(a) Define a range (OCiin,(hux] ror C.

We take Qnin-max(O,c-5) , (nax-Crnln+10 and begin the

search with C.Cmin.

b) Permissible (N.C) are requi red to Natiiify

(X11 N ,( I nd

oc(u-6 ,N C) y6 -e6

where e1 ,e 6 are two small positive coniptants. The use

of perturbed values (e1 ,e 6 ý(O) helps ensure that the

"best" NC combination is not eliminated at the start

of the search. In the terminology of Hald ([3]. pp 25).

(NC) is said to be "stronger" than a plan whose

OC curve passes thru the two points (u .lyl1-e 1 )andN
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(u y-0 .We utilize e -6W2.

Cc) Find the largest interval I(C) such that the conditions

of (b) are met for all N I1(C). Approximate formulae

developed in (3), pp 51, are used to determine the exactI

interval. If I(C) is empty, proceed directly to (e).

(d) Find the N that minimize. Del(NC)-2Z o(I:NC)-jd

for NWIC). Call it N C. Note, D~el does not depend on u6.

Ce) Repeat (b) thru (d) for C-Cmnin+I ..... .ra

CC) Obtain a final set of candidate plant;

i(CcIC)l C (QiminQMAX], l(C)j 0)

(g) Find the C that minimiies lDel(NcCX)

for C ((Cmin,Ormax] ,I(00 0. Call it C.

(h) Obtain the "best" GROUP plan MNC). namely (NC ,C

7.0) EXAMPLES AND) DISCUS4IflN

The above three step procedure will he designuted method B

(for "best"). The "best" M0,C will be called the IB-pl an.

Several examples provide a setting for our discussion of

method B.

First, consider P1  Given (n,c)m  (2 )4

Obtain its B-plan CN.C) - (94.1).
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A partial summary of simulation data (steps lh and 2b) along with

approximating B-plan OC curve values are presented in Table 1.

Table 1. B-plan for P-

Median B-plan Median B-plan

PA 1 (QIq) OC(q;94,1) PA1 (QJq) OC(q;94,l)

.9525 .04728 .058647 .9800 .43265 436909

.9550 .06110 .071625 *.9822 .50000 .499582

.9575 ,07410 .087243 .9825 .50934 .508711
.9600 .09319 .105966 .9850 .59520 .587320

'.9608 .10000 .112802 .9875 .67824 .671285
.9625 .11415 .128314 *.9881 .70000 .691709
.9650 .14505 .154860 .9900 .77007 .757932
.9675 .17526 .186224 .9925 .85072 .842845
.9700 .20826 .223054 *.9942 .90000 .894978
.9725 .25857 .265998 .9950 .92500 .919145

* .9747 .30000 .308413 *.9962 .95000 .948909
.9750 .30661 .315661 .9975 .97897 .976533
.9775 .36534 .372537

' Interpolated values

Method B has been designed specifically to be a fair

conversion strategy, suitable to both producer and consumer. This

intention is particularly reflected in

Steps..JL: Skewness in the simulated data convinced us that

the B-plan should approximate the set of median, not mean,

PAI values. As such, the B-plan rejects more often than the

INDIVII)UAL. plan, for half of the profiles Q considered in

the simulation, and accepts more often for the other half.

In this sense the producers and consumers risks associated

with the conversion are equalized.

Steps la thru lc: A fair GROUP plan should provide close

approximation throughout the low, middle and high range of
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median PA1 values. Our choice of q-interval and fine

discretization of It into K-19 equl-spaced points ensures

that the simulated median PAl'S will cover the entire

spectrum of interest.

S•p.i2.....: A fair GROUP plan should also give equal

consideration to the low, middle and high range of median

PAI values. Unfortunately, it is not possible to choose the

u1i's in advance so as to get a balanced set of' median PA1

values. For example, the raw (un-interpolated) data of

Table 1, with almost half (9/19) of its simulated medians

below 0.25, is considerably biased toward low PAI values.

Were a (•ROUP plan fitted to the raw data, a (95,1) 11-plan

would result, producing a fit that is slightly better than

(94,1) in the low PAI range, but worse elsewhere. For this

reason, the fl-plan has been based on ui's corresponding to

the more balanced set i.1,.3,.5,.7,.9) of interpolated

median PA values. The insensitivity as to which data base

is used, raw or interpolated, is typical and reassuring.

Step A )e l, the sum to be minimized, attaches equal

weight to the approximation's lack of fit at each

interpolated data point.oi

The set of candidate plans, including the (94,1) B-plan,

along with their scores Del (step 3d), are presented in Table 2.
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Table 2. Candidate B-plans for P1

C NC Del C NCDe I o

0 39 .35901 5 318 .41117
1 94 .03495 6 374 .46023
2 IS0 .14799 7 430 .50000
3 206 .26565 8 486 .53313
4 262 .34854 1 9 543 .56060

The NC and C of Table 2 are highly correlated, with r-.999996

and regression N(C - 56C+38.2. In general, candidate B plan OC

curves are naturally forced to pivot about (au3 ,.5), the fixed

"Indifference point" (IP) determined In step 2b. How closely the

(MC curves approximate the IP depends on the other Ui' ,

eKpecially when C is small, but their effect dimirnishes rapidly

as C increases. Based on the IP only, Hlald shows in 13), pp 195,

that NC - aC+b, where a-I/(i-ai3) and b-(i+u3)/(3-3u'3). By taking

u3 -. 9822, a-56.18, b-37.12 and rounding to the nearest integer.

the N.'s of Table 2 are duplicated, except when C-),1 and 2,

where you get 37, 93 and 149 respectively. This correlation can

be exploited to economize the search for candidate plans, but,

depending only on u3 t does not constitute per se a reliable

shortcut approach.

"Before other examples are presented, an alternative

conversion method forming the basis of (2) is described. It

consists of taking N-n and letting C be the smallest X satisfying
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OC(AQLm:N,X) b OC(AQL;nc), where n,c and m are specified and AQL

is defined by OC(AQL;n,c)- .95 (or .90). The intent here is to

accept, with high probability, incoming product whose quality

characteristics are all at AQL. From a consumer point of view,

such an approach is intuitively unacceptable. The version

proposed in [2], designated here as method A (for "alternative"),

limits (n,c) and (N,C) to be MIL-STD-IOSD plans, and utilizes

tabulated AQI. values instead of exact ones. (N,C) determined in

accordance with mcthod A will be called an A-plan.

Table 3 presents sample conversions obtained by the two

methods, for seven INDIVIDUAL plans having nominal AQL's of .996

(.4% AQL in (I]), at two values m-3 and m-14,

"Table 3. Comparison of AI-plans

m-3 I m-14

A-plan B-plan A-plun B-plan

n -c - C N -" N -C N -C

32-0 32-2 32-0 32-5 32-0
125-1 125-5 104-1 *125-14 94-1
200-2 200-5 160-2 200.21 140-2
315-3 315-7 247-3 213-3
500-5 500- 10 389-5 329-5
800-7 800-21 624-7 519-7

1250-10 1250-21 973-10 V 804-10
A,13-plans for Pl, also depicted in Figure I Iu

Method B results imply that producer and consumer risks are

more naturally balanced by taking C-c and N<n, than taking N-n

and C>c, as suggested in (2]. Also, method Ii conversions produce

average sample reductions (c>O) of 20% and 30% in the m-3 and

m-14 cases tespectively, as compared to no anticipated method A

reductions, except tlhose incidental to the tabular limitutions of .r.,lo, %
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(1.viz., the repeating (200.21) A-plan. Note also that method A

misses the only sensible conversion when Gi-0, namely (N,C)-(n~c).

Figure I compares the A and B-plan OC curves of Table 3(Q

showing them in relation to the envelope [L(q)A.J(q)1 defined by

(2.1).

ii" 14
(riC) W (125,1)

ALT(A) 1 (125,14)
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Table 4. B-plans, varying m

.n-2 m-3 M-5 m-7 m-10 m-15 m-20

n -c N -C N-C N -C N -C N-C N -C N -C

50-1 44-1 42-1 40-1 39-1 38-1 38-1 37-1
315-3 271-3 246-3 227-3 222-3 218-3 213-3 210-3

As m increases, INDIVIDUAL sampling loosens and becomes less

discriminating: with C-c, GROUP sampling can mimic this behavior

by decreasing N from n to c as m goes from I to infinity.

8.0 CONCLLT)INQ RMARKI S

A general model has been described that allows one to

simulate important performance measures of INDIVIDUAl, sampling

for a fixed q, e.g., PA1. We have utilized simulated median PAl'4

as target values for PA(I, thereby determining the B-plan

conve rs. i on.

Not to he overlooked are the important considerations of how

one responds to rejected lots and its impact on average outgoing

quality (A(0Q). Thie direct application of the B-plan without

regilrd to alternative screening rules may substantially effect 0,.

AOQ, and consequently average fraction inspected (AFI), as -1-e

compared to the INDIVIDUAL. plan. Future work will include an

analysis of the conversion problem from the standpoint of AOQ,

aimed at picking the "best" GROUP screening rule, given (n,c)m

and its (NC) B-plan.
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APPNDIX 1

Proof of (2.1): to handle the constraints Ocq.l, seq- e- .

By taking logs of objective function (1.2) and constraint (1.3),

the problem takes the form

m 2x
LIPt im Ize l'(X) -2...n(OC(e ~;n,c))

i-1

m

subject to G(X) - x 2 -ln(q).
7-I

According to the Lagrange multiplier theory, extreiina occur when

all piartialg of F(R,A) - l,(X)+-A1G(X)+in(q)) are zero.

The computations rely on

d/dq[()C(q ;n,c) 4 n-c qf~(1-q)C/B(n-c,c+I ),

which i% just u restatement of (KC(q;n,c) B- 13V(q ,n-c,c+1 ), and

M(fl ,c q C(I -q)Cl) cw(\he re t1( q)n- (q/(jlqflJ

d/dx.~~~ (I-,A) - x

implying that ext reins occur at vectors Qwhose components either

(a) equal 1, or (b) satisfy, for q 1 and q i not 1. 11(qi)- 11(q i).

Since 11(q) is monotone increasing, ll(q H1( qj) implies q-j
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so to satisfy the constraiut /IdAi[F(X.A)) - U(X)..l(q) - 0,

it follows that optimal & hav'e (m-k) components equal to 1,

I/k
and k components equal to q/, for k=l,2,...,r. To determine

which values of k correspond to the max and min, consider

gft). 4COC(q li/t :n,c))t. Fr integer tjl, g(t) is the objective

function (1.2) evaluated at optimal Q vectors. Since g(t) is

decidedly monotone increasing (see [7)), the min and max occur at

k-I and k-m respectively. producing (2.1). Q.E.D,

Proof of (4.2): make the change of variable

qm " ' fl q, " ro
i-I

The joint density

rn-1

m-1

- nlg(Pm;a.bm)I inlc(qi :a'b)/qi)
M In
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The conditional joint density is

h(qlql,.,,qm. 1 q) . j(q,q Iq 2 o.. .qm. I)/nlg(q; ,a )St

FIF 2 /F-

M 1 bb,-I

where F 1I ((:n 2 I / II
- SI-I

2 m

n-1- S -1

H n 1+1'' /(ln(l/P i r I

•-m-1 m-I

and F = { I" r(bi)}'r(SI) - Ifl B(S il,b b
u-I i-I

rn-I

Therefore h = i bet(T.(q.);Si+ ,bi)dTi(qi)/dqiSi II
Integration of h with respect to q, over [Pi,xj if i-k, and

(Pi,I] if ilk, for i-1,2, ... m-I and a specified k, then setting

x back to qi. produces (4.2). Q.E.D.
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