
AD-16375S ADA(TRDENAME) SOFTUARE ENGINEERING EDUCATION RND 1/3

ls TRAINING SYMPSU (2. (U) ADA JOINT PRORAM OFFICE
LUICLSS1FED ARLINGTON VA C MCDONALD ET AL. 11 JUN 97 / 125 M

Ila
iWi':4 L,

W W~ w4W ~ - w w w l

* . * * *Sn

00J DT
U -

Q I g U6 E CTE
AUG. 14 V

rr0

* I S

0ACADEMI

AdLsargsee taeako h S oenet(JO

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entewee_ __

REPORT DOCUMENTATION PAGE RE osDI UIOS
BEFORE COMPLETEING FORM

. REPORT NUBER RiNECIPIENT'S CATALOG NUMBER

4. TITLE (and. ubtitle) 5. TYPE OF REPSRT &_Pt ?D

Ada Software Engineering Education and Training symposium, June9-1', 1 RED
sympo si um

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)
Catherine McDonald and Greg Kee, Ed.

9. PERFORMING ORGANIZATION AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
Ada Software Education and Training Team AREA & WORK UNIT NUMBERS

Ada Joint Program Office, 3E114, The
Pentagon, Washington, D.C.20301-3081

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Ada Joint Program Office June11, 1987
3E 114, The Pentaqon 13. NUMBEH o PAGE
Washington, DC 20301-3081 217
14. MONITORING AGENCY NAME & AOORESS(If different from Controlling Office) 15. SECURITY CLASS (of this report)
Ada Joint Program Office UNCLASSIFIED

15a. RhA FICATION/DOWNGRADING

N/A

16. DISTRIBUTION STATEMENT (ofthisReport)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20. If different from Report)

UNCLASSIFIED

18. SUPPLEMENTARY NOTES

19. KEYWORDS (Continue on reverse side if necessary and identify by block number)

Ada Programming language, Ada Training, Education, Training, Computer
Programs, Ada Joint Program Office, AJPO

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

This document is a collection of twenty papers presented at the Second
Annual Ada Software Engineering Education and Training (ASEET)
Symposium, June 9-11, 1987, in Dallas, Texas.

o.

DD ,,. 1473 EDITION OF I NOV 65 IS OBSOLETE
I JAM 73 S/N OOZ-LF-014-6601 UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

- - ~ ~- -* v***'~'~'**U ~ ~ *.X- 'I'?'.'~jq,,- ~ -'

Ada Software Engineering Education
and Training Symposium

June 9-11, 1987
Dallas Market Center Marriott
Dallas, Texas

PROCEEDINGS OF THE SECOND ANNUAL ASEET SYMPOSIUM

Edited by: Catherine McDonald
Greg Kee Accesion For

Sponsored by: NTIS CRAVj

Ada Software Engineering Education and Training Team DTiC TAR

and U inno, ied 0

Ada Joint Program Office t*J

t) t t

DTIC

v0Py
ltSPECTF

The views and opinions herein are those of the authors. Unless
specifically stated to the contrary, they do not represent official
positions of the authors' employers, the Ada Software Engineering
Education and Training Team, the Ada Joint Program Office, or the
Department of Defense.

4N

h.

' %-%-%

Ada Software Engineering Education and Training Team

Mr. John Bailey

LL David Cook

LL Tony Dominice

LCDR Dave Endicott

Major Charles Engle

LtCol Rick Gross

Mr. Paul Howe

Mr. Greg Kee r. .

Major Allan Kopp

Major Patricia Lawlis

Ms. Catherine McDonald

LCDR Melinda Moran

Major Doug Samuels, Chair

Major Randall Saylor

Major Ken Schoonover

Mr. James Tucker

Captain David Umphress

• -'

J*

R.1

Ill~.
. d .. l

This page left blank intentionally

t

iv

TABLE OF CONTENTS

Page

C hairm an's Forw ard .. 1

Wednesday, 10 June 1987

Managing the Implementation of an Ada Training Program 3
Mr. Paul Barkowitz, Harris Corporation

Reporting on Ada Training Evaluation Guide Project, 11
Ms. Priscilla Fowler, SEI

Ada from a M anagement Perspective .. 19 , "
Maj. Charles Engle, US Military Academy
Lt. Tony Dominice, Keesler AFB

Comparing Designs: A Methodology for Teaching Software 25 '. -
Engineering, Ms. Putnam P. Texel, TEXEL & COMPANY

Instantiating Ada at the University of Central Fla. (and Why 43
There Are Few Good Texts on Ada and Software Engineering),
Dr. Darrell Linton, U. of Central Florida

Treatment of the Ada Language in a Programming Language 47
ACM-CS8) Course, Dr. Michael Meeker U. of Wisconsin-Oshkosh

Ada from the Trenches: A Classroom Experience 51
Mr. Jaime Nino, U. of New Orleans

Introducing Ada and Its Environments into a Graduate Curriculum 63
Maj. Pat Lawlis, Ms. Karyl Adams, Air Force Institute of Technology

Lessons Learned in Using Formal Specification Techniques in 79
an Ada-based Software Engineering Course, Ms. Charlene Hamiwka- '
Mr. Laurence Latour, U. of Maine at Orono

A Student Project to Extend Object-Oriented Design 89
Prof. Richard Vidale, Boston University
C.R. Hayden, GTE Government Systems

An Evolution in Ada Education for Academic Faculty 99
Ms. Susan Richman, Pennsylvania State Univ.

v

. '- , %

w *,. ~ ~* ~ . O_ it

3

Page

Thursday, 11 June 1987

Software Engineering and Its Ramifications to the Ada 107
Programming Language Training Environment,
Mr. Jerry F. Berlin, Harris

Ada Training: A Development Team's Perspective 117
R.J. Vernik, Tinker Air Force Base

A da for the M anager, .. 137
Freeman L. Moore, Texas Instruments

Ada in the M IS W orld, .. 143
Eugene Vasilescu, GNV Associates

Turning COBOL Programmers into Ada Software Engineers 153
Maj. Charles Engle and Maj. Colen Willis, US Military Academy

Teaching Software Engineering in a First Ada Course 171
Dr. Robert Mers, North Carolina A&T Univ.

Ada Education and the Non-Computer Scientist 179
Dr. Charles Kirkpatrick and Dr. Paul Knese,
Parks College of St. Louis University

Ada in Undergraduate Curriculum at Saint Mary College 191
Mr. Victor Meyer, Saint Mary College

The Programming Team and the Accelerated Course as Methods 203
for Teaching Ada, Mr. David Barrett, East Texas State Univ.

IN D E X ... 20 9 .

vi '

Ve

Chairman's Forward

It is with great pleasure that I welcome you on behalf of the Ada* Software
Engineering Education and Training (ASEET) Team to the Second Annual ASEET
Symposium. We hope the symposium provides you the opportunity to acquaint yourself
with some of the education and training materials available within the Ada community. .
This year we have both an academic and industry track. We're certain the information you
obtain here will be extremely beneficial to you and your organization. There's a lot to learn . .--
from us as well as other people already established in academia and industry. Take this
opportunity to converse with each other and exchange as many ideas as you can. We hope
you have a great week in Dallas.

Major Doug Samuels, USAF 4 e".
Chair, ASEET Team

v• i

•*Ada is a registered trademark of the U.S. Government, Ada Joint Program Office i: ,',,:: :

% % %

J- 'i~ ~~. .° M '

Piu

This page left blank intentionally

4.,.-

,.

.1

41

J.

Managing the Implementation

of an

Ada® Training Program

June 10, 1987 1WAA

Second Annual
Ada Software Engineering Education

and Training (ASEET) Team Symposiu i. '

I-. 'r

Presenteil)b: by:

Paul Barkowitz
Harris Corporation -.

2101 \Vest, Cypress ('reek loal '-.

Fort I d:iler(lhle, Floridla 33300" "

(800) 2.15-61:3

1 .

Adla is a registered t r: detwi:rk or' th ,e I.S. (<vernimeilt, .d\ 1 I) '< ,ntlro"J';1 Mitl ei(. .

3 %
.... .+'++++++V 'S'.*. * '+::+:,;::' " 5, ,'r - p '':+ / -, - %+ ,' <'' 'Sf% + ' <+4 + , :

a HARMS Education Center

ABSTRACT

I

This paper details the management process used to initiate development of an Ada

training program. An overview of the various issues involved is followed by a

description of the implementation procedure. The setting is a training department in

a commercial environment. The existing staff have various technical, teaching. anld

course development skills but no Ada experience. One consideration is whether to hire
an Ada expert from outside or develop Ada expertise from within. Another concern is

how to determine goals and objectives for the Ada training program. A discussion of

the different training materials to be developed is coupled with a description of the

methods used for obtaining necessary resources. Finally, means of evaluating the

quality of training are discussed. , ,' ; p .:
{" /

V.

'--

J.,.

1..

; ',.. ." -

'I s

SHAR I Education Center

I would like to thank the ASEET Symposium Committee for giving rme the opportunity
to present to you, the Ada Programming Language training community., a descriptioln
of the process I used to implement an Ada training program.

Background

Let me first give you a feel for my background and the environment in which I work. I
am the Manager of Software Training for Harris Computer Systems, a 2 billion doll: r
a year information processing, communications, and electronics corporation. 'I'll-,
Computer Division of Harris specializes in the manufacture and assembly of superiini e
computer systems for a broad customer base in the engineering, scientilic. e(lcatiolial.
and aerospace industries.

The Education Center functions as an autonomous unit within Ilarris and operates as
a separate profit center. \Ve are staffed with both software and hardware instructors
whose backgrounds include education, the military, academia, engineering,, and
application programming environments. As the Software \fanager of our ['ducatiori
Center, I oversee the development and delivery of training courses designed to handle
the educational needs of our customers and internal flarris employees. Ny I
background includes a Master of Science degree and published research papers in the
Social Sciences combined with 10 years of working experience in the computer
industry.

Harris, in 1984, began developing Ada on its computer systems as a result of the
perceived needs of our aerospace and defense customers. I found myself tasked with
preparing an Ada training curriculum to support our product. As we went through
the development of our Ada training program, a number of issues had to be addressel
and key management decisions had to be made. These included:

Finding Ada Expertise

. Setting Goals and Objectives for the Ada Training Program

* Determining the Number and Length of the Courses

* Producing the Necessary Training Materials

-Judging the Quality of our Ada Training

Finding Ada Expertise

Our first problem was locating Ada expertise. The I hirris A(da Pr(oluct Nlanagellcil
team consisted of Ada marketing experts, and our Software I)evelople lit stal1 h, a .
number of Ada syntax experts, but nowhere did we have a trime .\dai Ipractical codi'in."
expert - someone who had spent several years generating extensive .-\la code ill :Ill
applied environment.

The issue became, do we hire an Ada technical expert from otsie of our crill:mnV (,"

AN0"%,;4

5,
"NW "dN'N,%

* HARRI Education Center

develop thle expertise from %%it biin ourit t rtinir o)r-aliit iolOt" I tirin an,:Ii Ask ex pert
woUlid allmvii It) lili ciirte ulevloI,)iiieiit alliitt)t iiiilaev (bl evelo:ping, our

own Akik expert %omI If hr a1 It n gt I IN-I t~ w, I ak IiI 1s~ I, k ve Ii klIv rc:i Iizet I tha ,t%
trule Ak experts With Ii m e (Xr iiil tistr vy exIritliet %%cri I'\ :il I:ir let with. NlIfst
Ada "experts" (4' tilt' tittit %%erv reallyv Vh~ vlIttx fexj'trts. 31t I,1 ' till lihave teeni
expenlsive to hire. Fu~rthter. jivt becaulse !Iiv\ %%vrc .lh cxptrts [I(a~n 1:1ratitee thait
hev Wo)iilt he Ashla ed oulcav? experts \%It to Ii ciittssfiilIvy 'ltvtk j mlt (itliver Asa

Weiver la- t ll. iltii :- 'toh mr ()~l .wt rt,:uit t , Ii:1t t lit t\%v ailt alt~ toa

0111ve 'ii ts . te t-: j tI aliv 1 tur tI, rainingt t \% tv rt hat ht li t jp-) I wn)lt

tiarti ~ ~ :11, reaii- t Are shluts \ t~ 11 to lisIt Acsr A Ia lt ure ti ug 11 gra i a

P lc e.*. TI , irt it vn ov rl re I r t iri *Ir i6 to 11 iit -c I I g r - t i I f) l 1-411 1't.)f (lt

WItIr i ouIre iII(I s El It \%t re () tlr t leWtcIt :I, Io t v t fU o1 r It t i i-i I ' I ~ A ItI Ii I Hov s fr

W i i IIoI -F nex l i :I i I a ItI i \%v I I : I lie) lf-tt f. '1 :1ir (fI w t -tri rg liIt ikpl()e.

Pee ,inn th \V4be andi' I:eig ht Aor he (r oui rit 11

, p

-1 :t I It ,11 i iPitc 1(M t:k ,
)ti Ilev h It.mr. A-h~% . * %

* 3IA S Education Center -

cost (both in time and dollars) to the student. Given that we operate in a vocational
setting, we realize that our customers are limited in the amount of time they can
dedicate for their employees to attend training classes. To minimize our customers'
financial expenditures, we decided to cover as much information as possible in the
least amount of time. To do this we had to make an important assumption.

We assumed that our students would be programmers experienced in a high level
language and thus should be familiar with software engineering principles. With that
as a prerequisite to our first Ada course, instead of preparing a separate introduction
to software engineering principles, we integrated this discussion into our presentation
of programming within Ada.

Rather than cover all the features of Ada in one course, we decided to create separate
courses for the introductory and advanced topics. Further, we wanted to separate the
Harris-specific implementation of Ada from the more general programming features.
Finally, we saw the need for an advanced workshop to provide students with an
environment for extensive exploration of specialized programming applications, the
large-scale production of maintainable code, and the life cycle support of Ada 7-
software.

The result of these decisions is a 4-course curriculum. Our first course is a 1-week
Introduction to the Ada Programming Language. This is followed by a 1-week
Advanced Ada course. A 3-day course is provided for those interested in the Harris
Ada Programming Support Environment (HAPSE®), and our most advanced course is
a 1-week Ada Programming Workshop.

Producing the Necessary Training Materials

The key educational tool to support our live lecture delivery of information is the
Student Guide. Produced as a learning tool, as opposed to a reference document, the
design of this guide follows adult learning concepts. Information is presented in a
manner that facilitates learning.

Lectures are followed by laboratory sessions designed to reinforce, in a practical
setting, the theoretical subject matter. Students are given exercises of increasing
difficuilty. and those who finish a lab ahead of schedule are given optional exercises to
complete. Since approximately 50r%7 of each course is spent in the lab, equal em)hasis
was Ilaced on student exercise de'Velolnent and student guide creation.

"'echnical locuimentaticm is provided through use of the 4da Programming Language

H i1AP'SU: is a trademark of iarris (orporation.

'WON
7

ne %

- ~ ' 'd%

IHARUS Education Center

Reference Manual (ANSI/MIL-STD-1815A). Additionally, each student is given a copy
of Grady Booch's, Software Engineering With Ada. From this text, the instructor
suggests supplemental readings to complement in-class presentations.

Every course contains a companion guide for the instructor to accompany the student
guide. This Instructor Guide promotes consistency across course presentations. It is
also used by instructors preparing to teach a course for the first time. Besides
pointing out important topics for discussion, the Instructor Guide contains preparation
notes, optional activities, cross-references between the Student Guide and technical
documentation, and solutions to student exercises.

Judging the Quality of our Ada Training

One means of determining effectiveness of training is through the measurement of
student progress. Instructors evaluate practical knowledge through the student's
performance on laboratory exercises, while gains in conceptual knowledge are
measured through in-class testing.

More importantly, we rely on student feedback as an important method of judging the
quality of our training. At the conclusion of each course, students are asked to
evaluate the training on a number of dimensions, including quality of the instructor,
the course materials, and the learning environment. Our course critique form
combines numerical ratings with open-ended items. Students are encouraged to
suggest additional topics for discussion and changes in course content or emphasis.

We have been delivering Ada training both domestically and internationally for more
than two years. Our students have included both users of Harris computers as well as
those needing Ada training on other, non-Harris, equipment. With this diversity of
experience, we have received feedback from customers in a wide variety of
applications.

Members of our Ada Software Development team have taken our courses and have
given us technical guidance. Additionally, many of our field analyst force and our Ada
Product Marketing team have been through our Ada curriculum and have provided us
with suggested changes to meet customer needs.

Our relationships with those in academia working at the forefront of Ada continue to
provide us with a critical external peelr review of our Ada curriculum. Although our
instruction is based in a vocational setting, it is important to us to maintain an -

academic standard of excellence.

At Harris, we have found that development of an Ada training program is an ongoing
process. As educators of Ada, we must keep current with the latest technological
advances and be responsive to the chan uging needs of our customers.

8

*HARRIS Education Center

BIBLIOGRAPHY

Booch, G. Software Engi'neering l'Vith Ada, Second Edition. Menlo Park:
Benjamin/Cummings Publishing Company, Inc., 1987.

Reference Mfanual for the Ada Programmi'ng Language, Ada Joint Program Office,
Department of Defense, Washington, D.C., February 1983, ANSI/MIL-STD-
181 5A.

9.1

This page left blank intentionally

10N

The SEI Ada Training Guide: Status and Motivation
Priscilla J. Fowler

John H. Maher, Jr.
Software Engineering Institute

Carnegie Melon University
Pittsburgh, Pennsylvania

April 30, 1987

Abstract: The Ada1 Training Guide is a project of the Software Engineering Institute's
Training and Transition Methods Program. The Ada Training Guide will facilitate the
transitioning of Ada by giving direction for the selection and evaluation of training in Ada
and related topics. The first version of the guide is targeted for System Program Offices
(SPOs), where management as well as technical staff must have training in Ada and its
implications. Later versions will add material for software project managers, training
managers, and software engineering practitioners. The guide will serve as a prototype
for future guides addressing training in other software engineering topics, and is designed
to complement related activities of the Ada Joint Program Office.

This paper describes the proposed guide and the impetus and process for its creation.

The Need for the Ada Training Guide

A Look At Ada Transition Work To Date
Getting Ada into routine use requires major training and education efforts. It also requires a

massive technology transition effort to address both the technological and the human changes V
which are required. Considerable effort has been expended over the last several years to ad-
dress the technological aspects of Ada, including compilers, environments, and demonstration
projects. Significant effort has also been spent in dealing with the need for Ada training and .

education, and the need for information about Ada resources. The Ada Joint Program Office in
particular has sponsored many substantial efforts, including the Ada Information Clearinghouse,
the the Catalog of Resources for Education in Ada and Software Engineering (CREASE) [5],
and the Ada Software Engineering Education and Training (ASEET) Team [3]. The broad train-
ing needs assessment by the Commission of the European Communities (CEC) [7], completed
in 1984, is also worthy of note.

1Ada is a registered trademark of the U.S. Government, Ada Joint Program Office

This work was sponsored by the Department of Defense,

, S . I i%

The SEI Ada Training Guide

These efforts are to be commended as a major step towards effecting Ada transition. There is
now broad awareness of Ada at all levels, as well as an understanding of curriculum needs for
software practitioners who will use Ada.

What is needed next Is work to assist specific organizations in using Ada in specific projects
[11, 12]. That Is, what is needed is technology transition skills within each organization
[4, 9, 10, 15, 16] which will adopt Ada, whether by choice or by mandate. Each organization

which will use Ada must be able to select appropriate training, and plan effective Ada insertion
strategy without the help of experts.

Training as an Ada Insertion Mechanism

In order for Ada to become broadly integrated into the MCCR software community, software
practitioners skilled in the use of Ada must be readily available. Training courses must therefore
also be available. In addition, training which is available must be carefully selected if it is to
serve to facilitate adoption of Ada by an organization, and not just enhance individual skill sets.

To date, Ada curricula [5] have offered generic solutions to the question of who needs what
skills. Usually they have targeted typical job categories within software development projects.
And while the study by the CEC has attended to the training needs of managers, commercial v

offerings of Ada courses often omit managers or provide them with inappropriate content or
educational approach.

Useful Ada curriculum design must address all affected populations. Practitioners and their ,
project managers make up the first of these. Officers and executives who manage groups of
projects, or who make major policy or resource decisions are a second important group. And -.
finally, program office personnel, who more and more frequently are working on contracts in-
volving Ada, make up a third, and very key, group. Without support from management
[14, 16] and technology transition partners such as program office personnel, training of prac-

titioners will be of limited value, since they will not be able to use what they have learned. .

The Ada Research Centers proposed by ASEET may be able to address curriculum design and
development needs for all these groups in the future. In the meantime, the best strategy is to
select judiciously from courses already available. It is rare that the person most familiar with
technology such as Ada also has education and training skills. Thus the rationale behind the
Ada Training Guide is to provide useful procedures, based on sound educational principles
[2, 13], for the selection and evaluation of Ada training, where expertise in training and educa- ,

tion is not readily available.

Content of the Guide

The Ada Training Guide will contain four sections. The first section will provide procedures for
Ada training needs assessments. The second will suggest approaches to selecting training.

30 April 1987,13:41

12

%,~ *%,* . %, %~J%.*.~Vv ..~%. V,...N.. .~:. ~ .:. .,71 , ;. ,

The SEI Ada Training Guide

The third will review useful evaluation procedures. And the fourth will discuss strategies for Ada
technology Insertion. Each of the sections is described briefly below.

Training Needs Assessments

Instructional designers know that good training is wasted on students whose training needs
don't match the ones for which the course was designed. For instance, an Ada course for
programmers who are already familiar with Pascal will be quite different from one designed for
Fortran programmers. A course for project managers will not provide enough detail on Ada
packages and generics for a designer, and will discuss topics, such as Ada's impact on cost
estimation methods, which do not interest a designer at all. It is therefore extremely important
to determine, before a course is acquired or developed, what potential students' needs are for
training.

Questions such as these can help define student types:

1. What groups (categories) of people in your organization need to be trained?
2. At what organization level?
3. What educational background does each group have?
4. What experience does each group have?
5. What are the major job functions in each group?
6. What are the supportingAnterfacing job functions in each group?
7. How critical are the decisions made by people in this job function?
8. How critical is the work performed by people in this job function? -
9. In each case, how will Ada impact the job function?

10. In each case, what categories of information must the job holder know about Ada? -

The above questions can help determine appropriate training content. Other factors, such as
numbers of students needing the training, and frequency of that need, must also be considered.
Training presented too early or too late may largely be wasted effort. Some examples of non-
content factors are:

1. An immediate need for training, versus ongoing training requirements
2. Organizational issues, such as quality of management support
3. Budget
4. Policy, such as days per person allotted each year for training, and student selec- p.%

tion criteria
5. Location, including facilities needed such as classroom space, audio-visual equip-

ment. .1

Training Selection ,5%

Once needs for each student group have been collected and analyzed, these can be used as "S.
selection criteria. Sources such as CREASE [5], vendor brochures, and vendor demonstrations

30 April 1987,13:41

13

% ~-. C~ , S~~ ~ , N, 4% %%~C V%~

The SEI Ada Training Guide

at conferences can provide course descriptions. Selection criteria can then be mapped onto
course descriptions, and more information gathered as necessary. When there are no matching
courses, the criteria can be used to prepare a draft specification for developing an original
course.

The Ada Training Guide will provide structured selection procedures and example sets of
criteria for some typical student groups. The CEC study [7] has an excellent set of descriptions
of student groups typical of software development organizations; the Ada Training Guide will
reuse as much of that as possible, and will add descriptions of other typical DoD MCCR student
groups, such as SPO personnel. p..

Training design and development is generally labor intensive as well as expensive. One hour of
class time -- lab session, lecture or exercise -- can take as much as 100 hours of course -,
development time [1]. Since this is the case, the guide will provide references to materials use-
ful in specifying or planning for course development efforts.

Training Evaluation

Once a course has been selected, it must be evaluated. A good way to evaluate a course
before sending students to it is to check the experience of organizations who have already sent.-'
students. Reputable training vendors will supply references. Even a brief telephone interview
with such a reference can elicit helpful information. The questions which follow can help struc-
ture the interview:

1. How many students has the reference sent to the course?
2. Was the background of those students comparable to that of your potential stu-

dents? . '

3. How did the job performance of students change as a result of the training?
4. Was the instructor knowledgeable? What was his or her background?
5. Was the course lively, involving, interesting?
6. Were the materials provided easy to use, helpful?
7. Were the visuals easy to read? Were copies provided?
8. Was reference material such as an annotated bibliography provided?
9. Have students used the reference material on the job? How? V

10. Were there lab sessions? Describe these.
11. If this was a course for software engineers, were software tools used for "hands-

on" exercises? Will those tools be the same as or similar to tools you are using or
plan to use?

It is also useful to ask questions of the training vendor. Some suggested topic areas are listed"

here:
1. How many offerings of this course have you given?

2. To whom? Types of corporations or agencies sending students, and typical stu-
dent education and experience background should be described.

30 April 1987,13:41 ,

14

The SEI Ada Training Guide

3. How are Instructors trained, certified? I.

4. Is the source of course content expertise the instructor or course developer? If
not, what source was used?

5. What text Is used?
6. What data can you provide to show how effective the course is?

The evaluation procedures described above are adequate for course evaluation if only a small
number of students will attend a course selected. If a large number will attend, or smaller
groups will attend periodically, It is worth investing in actual course attendance as a final step in
evaluation. The student attending should be typical of the group that will eventually attend the
course, and should be willing and able to comment on both content and, with guidance, on
pedagogy. Making this initial effort is well worthwhile: spending tuition money and time away
from the job for one person is much cheaper than for ten people. ,

Strategies for Technology Insertion

The best training will do little good if not placed in the context of an effective technology inser- a
tion strategy [14, 16]. In the case of Ada, the DoD's many dissemination mechanisms have
created awareness of the technology, and its mandates have created impetus to consider Ada
adoption. However, it is helpful to understand how an organization should make plans to adopt
Ada. If, prior to training, an Ada compiler and a set of support tools have been identified, and
local design and coding standards defined, the training can be selected to match. If such is not
the case, it is necessary to time the training for most students after these materials have been
prepared [8, 151.

Thinking in terms of transition, with training as part of the effort, can lead to other helpful
strategies. For example, which student groups should be trained first? How soon can those
groups use their training? It may make sense to train managers and planners early in a project,
and train programmers only after software architecture is complete.

The guide will suggest transition strategies, and provide some typical scenarios as examples.

Design Philosophy
The design of the Ada Training Guide will be guided by these thoughts:

1. The guide should be as succinct as possible, and organized to provide ready ac- p.

cess to information. The initial version will be paper-based. An alternate form of
delivery, perhaps PC-based, is possible in the later versions.

30 April 1987,13:41

15

The SEI Ada Training Guide

2. The guide should be written by a team, representing:

a. Ada expertise, as required by each typical student group
b. instructional system design and evaluation expertise

c. members of the targeted student groups
d. software engineering expertise.

3. The guide should be tested by collaborative users, and revised accordingly.

4. The guide should be prototyped, that is, the initial version of the guide should be
directed to one student group.

Status and Initial Plans

The SEI will provide both Ada and instructional design expertise. A System Program Office will
be sought as a collaborator to provide additional team members with both acquisition and Ada
development expertise. This team will work to produce a prototype version of the guide, with F-

the initial users being program office personnel.

These initial users have been selected because their training needs have not been addressed
by typical Ada curricula. In addition, this group is a particularly influential group within the DoD,
able to influence Ada adoption in general, and Ada training in particular, especially among con-
tractors [6].

The prototype will tell us how well the guide works. As we test the prototype, we can also
determine the answers to these important questions:

* Is our test group typical of all groups of that type?
" Must the guide be redone for each student group, or can we include all typical stu-

dent groups in one guide?
" Must the guide be domain-specific? That is, must it be provided in different ver-

sions for Ada for flight simulators versus Ada for missiles?
" How much effort is required to use the guide? What errors are avoided by the use

of it?
" Most importantly, are people's training needs more precisely targeted and are

courses selected more appropriately as a result of using the guide?

References

1. Advanced Technology. Nonpersonal Studies and Analysis Services for Assessment of New
Training Technologies. F41689-84-C-0012, Air Force Air Training Command, Washington,
D.C., June, 1985.

30 April 1987,13:41

16
%, V % *S

The SEI Ada Training Guide

2. HO ATC/DAPE. Instructional System Development. AF Manual 50-2, Department of the Air
Force, Washington, D.C., May, 1979.

3. Institute of Defense Analysis. DoD Ada Software Engineering Education and Training Plan.
Final Report P-1919, Ada Joint Program Office, Arlington, VA, January, 1986.

4. Bridges, William. *How to Manage Organizational Transition". Training (September 1985),
28-32.

5. lIT Research Institute. Catalog of Resources for Education in Ada and Software Engineering
(CREASE), Version 3.0. MDA903-83-C-0306, Ada Joint Program Office, Arlington, VA, May,1985.

6. Foreman, John, and Goodenough, John. Ada Adoption Handbook: A Program Manager's
Guide. Software Engineering Institute, Pittsburgh, PA, May, 1987.

7. Hummel, H., Nast, M., Uthke, E., Dowling, E.J., Glynn, J.G., Thomas, R.J., Goldsack, S. J. ,
Training Concept for the Cost-Effective Development of Reliable Software Using the Program- ,

ming Language Ada: Final Report, Phase 2. Commission of the European Communities, Brus-
sels, Belgium, September, 1984.

8. Jackson, Conrad N. "Training's Role in the Process of Planned Change". Training and
Development Journal (February 1985), 70-74.

9. Kanter, Rosabeth Moss. "Change Masters and the Intricate Architecture of Corporate Cul-
ture Change". Management Review 63, 6 (October 1983), 18-28.

10. Leonard-Barton, Dorothy. and Kraus, William A. "Implementing New Technology". Harvard
Business Review (November-December 1985).
11. Myers, Ware. "Ada: First Users--Pleased: Prospective Users--Still Hesitant". Computer 20,
3 (March 1987), 68-73.

12. Rogers, Everett. Diffusion of Innovation. Free Press, New York, 1983.

13. Romizowski, A.J.. Designing Instructional Systems: Decision Making in Course Planning
and Curriculum Design. Nichols Publishing, New York, 1981.

14. Svoboda, Cyril P., and Sayani, Hasan H. Management and Education: Critical Factors in
Technology Utilization. Proc. National Conference on Methodologies and Tools for Real-Time r'V-0
Systems, 1986.

15. Ebenau, R.G. Report of the Group on Training as a Technology Transfer Vehicle. Proc.
IEEE 1983 Workshop on Software Engineering Technology Transfer, 1983, pp. 6-8.

16. Peters, L. Report of the Group on Behavioral Aspects of Software Technology Transfer.
Proc. IEEE Report of the Group on Behavioral Aspects of Software Technology Transfer, 1983,
pp. 11-14.

30 April 1987,13:41

17

%-'.

.

* --

UN

Ada* from a Management Perspective
by

Major Charles B. Engle, Jr.
&

Lieutenant Anthony R. Dominice

V

There has been a great deal of debate as to whether or not Ada is the solution to the software
crisis identified by the DoD in the middle 1970's. Ada's various features and its integrated
facilities make it tempting to argue that it is the panacea that many people would have you
believe that it is. However, Ada is NOT the solution to the software crisis; Software :%
Engineering can make that claim.

Software Engineering is an engineering discipline that is still in its infancy. The very
principles upon which it is based are still subject to debate. In fact, a concise definition of the
term "Software Engineering" has not been generally agreed upon. The Software Engineering
Institute initially decided not to even try to define the term; instead they accepted the term as
"axiomatic." But while not everyone can agree on what software engineering really is, there are
few that dispute its value or its potential. By applying time-tested engineering principles to the
management and development of software, we gain the ability to make time-critical decisions, to 'C
develop monetary and time metrics, and to manage a software project from its inception to its
completion.

These ideas are not new; they have been around for at least 15 years. But our ability to usethese ideas, and the methods and principles which support them, has been restricted by our lack
of adequate tools. In particular, we lacked a tool with which we could realize our designs.
Traditional programming languages were just not well suited to the software engineering
revolution because they forced us to translate our "clean" design concepts into a few rigid
language structures. The result was an abstraction of our design which was itself an abstraction
of the problem. Thus, the tool which we used to solve the problem introduced added,
unnecessary complexity caused by the lack of expressitivity of the implementation language.

Ada is the programming language which was itself engineered to meet this need. Starting
with a set of requirements, proceeding through several design iterations until it became an
ANSI standard, Ada was meant to be a TOOL with which we could directly implement the
software engineering principles and methodologies that we had already developed. This is not

't

Ada is a registered trademark of the U.S. Government, Ada Joint Program Office.

% -.

to say that Ada has any new or unique features; for the most part it doesn't. But Ada consists of
the best features from several different languages which have been integrated to provide the user
with a TOOL that is needed to implement software engineering.

In general, DoD software has certain characteristics which can be summarized as: 1) they
are large, 2) they are complex, 3) they are long-lived, 4) they have a high demand for reliability,
5) they have real-time constraints , and 6) they have size constraints [11. In the past, the DoD
has suffered from certain fators which have adversely affected its software. Among these
factors are : 1) ignorance of life-cycle implications, 2) lack of standards, 3) lack of
methodologies, 4) inadequate support tools, 5) poor software management, and 6) lack of
trained software professionals [2,31.

The traditional approach to software was that it was a necessary evil which was required to
make the hardware operate. Another approach was that it was a "black art" which was done,
but which decent people didn't talk about. Another traditional approach was to select some
known gurus and magicians and place them in a dark room until they had developed what was
needed. In all of these approaches, the DoD was forced to confront its fundamental problem: its
inability to manage the complexity of its software systems 141. This was due in large measure
to its lack of a disciplined, engineering approach.

The establishment and application of sound engineering, regardless of the field, is
predicated upon a hierarchy as outlined by Dr. Charles McKay 151. First, the underlying
concepts of the discipline must be identified. Principles are then developed which support the
concepts. From these principles, models are created. These models give rise to various
methodologies, which then cause the development of standardized tools. Collectively, these
tools become an environment upon which the practitioner can rely and in which he can gain
skill. When this environment is combined with standards, guidelines and practices.
computational products which are correct, modifiable, reliable, efficient, and understandable ,
throughout the life cycle of a system can he developed and supported.

A programming language is a software engineering tool. It expresses and executes design
methodologies. The quality of a programming language for software engineering is determined
by how well it supports a design methodology and its underlying concepts, principles, and
models. Traditional programming languages were not engineered when they were designed .
They have lacked the ability to express good software engineering concepts and have thus acted
to constrain our use of software engineenng. Ada. however, was engineered, and its rich set of
constructs and features were integrated, to support sound software engineenng The Ada
language embodies the same concepts, principles, and models as software engineenng and thus
supports several methodologies. Ada is the best tool (programming language) for software
engineering currently available.

-a-

Some of the generally recognized pnnciples of software engineering are 1) modularity. 2)
abstraction, 3) localization. 4) information hiding, 5) completeness. 6) confirmability. and 7)
uniformity. For a complete discussion of these principles and their definitions, the reader i%
referred to Grady Booch's text, Software Engineering with Ada 161.

A listing of the major features of :he Ada language, in no particular order. is I)
standardization. 2) readability, 3) program units, 4) separate compilation. 5) package%. 6)

.a..
-5

" w ! ';/r ' -' '-"-'"'P¢'-',"- " ."J , "r" "g . 2 -'-:" , "" " " " L" ". t . "" "'¢'" . ,, .€ ,.', ,, €% ,,, ,. , ,',e,,/',;

strong typing, 7) typing structures, 8) data and operation abstraction, 9) tasking, 10)
exceptions, and 11) generics [7]. An exhaustive examination of how each of these features of
Ada attacks a particular problem and/or supports sound software engineering would be too
lengthy for this paper. Instead, we'll focus on a few of these features as examples of the strong
support that Ada provides for software engineering.

Ada is an precise standard as defined in ANSI/MIL-STD- 1815A [8]. It can have no subsets
or supersets. Conformance to this standard is zealously guarded by the Ada Joint Program
Office, whose main function is the promotion and use of Ada. Compliance is assured by the
use of a trademark for the name Ada. In order to be able to use the trademark, compiler
developers must pass a battery of programming tests called the Ada Compiler Validation
Capability. This standardization allows for portability and it promotes reusability. But perhaps
the most important result of standardization is that it shifts the focus of software from the
mundane to the important. The programmer can concentrate on solving the problem, not on
nuances of portability.

Ada "programs" consist of several program units. Each of these program units consist of
two parts: a specification and a body. The specification defines the interface between program
units; this is "what" the program unit does or can do. The body defines the implementation of
the program unit; this is "how" the program unit does it. The clear separation of the "what"
from the "how" allows the programmer to channel his thoughts into the problem at hand. The
programming system is designed with specifications and implemented with bodies. At all tiiaes
there is a clear distinction between architecture and implementation.

Separate compilation is another powerful feature of Ada. This capability is to be
differentiated from independent compilation allowed in other languages 191. Separate
compilation allows the programmer to separately compile his program units, but guarantees and
enforces the interfaces across compilation units. Not only are program units separately
compilable, but the specification of any program unit is separately compilable from its body. In
this manner, Ada realizes not only a logical distinction between architecture and implementation,
but a physical distinction as well! Separate compilation allows the development and testing of
independent software components, thereby encouraging us to reuse components and keep our
investment. The human effort in software development need not be disposable any longer.

.5.'

Packages are the fundamental feature of Ada which allow for a change in mindset. Program
units which are logically related can now be "packaged up" and be placed in one physical ..

.

space. This allows us to define and test reusable software components and resources.
Packages are an architecture-oriented feature. They place a wall around resources which can
then be selectively exported to the user. They may contain local resources which are not made
available to the user. As such, packages directly support abstraction, information hiding,
modularity and localization.

Data abstraction is a powerful means of combining "raw material" to form higher level
structures. There are various levels of abstraction. Each level enforces an abstraction on a
higher level structure. Data abstraction extracts the essence of an idea without becoming
concerned about the details of the implementation. In fact, a truly abstract data type requires the
ability to prohibit the use of its implementation details by higher level structures. This promotes
understandability by allowing the reader to focus on the idea and not the details. It also

, %'

'A

':,.# -.'. ..% \ '', /%-'.S%"" . . .' ' .'" .. .-.... .- ."." '- .. ' .":" - -" - " -'

promotes modifiability by preventing a using program from relying upon the details of
implementation, so that changing the manner in which the data is represented cannot have any
effect on the user's program. In Ada, data abstraction is provided by private types which
directly implement information hiding.

Tasks are Ada program units which act in parallel with other program units. This allows the
programmer to directly express parallel algorithms in a natural manner. It also takes advantage
of the move toward parallel hardware architectures with their gains in fault tolerance and
distributed systems. The ability to express parallel actions directly and naturally in the language
reduces the additional complexity which would otherwise be required to express parallel actions
in a sequential manner.

It must be recognized that in today's large, complex systems, errors will occur in both the
hardware and the software. Real time systems must be able to tolerate these errors and continue -

to operate in a degraded mode. Traditional languages lack specific features for dealing with error
situations, yet reliability and safety must be engineered into a programming system.
Exceptional situations such as these are handled by another of Ada's constructs, the Exception
Handler. Ada provides a facility to separate the exceptional situations from the normal
situations providing increased readability. When an exceptional situation, which need not
always be an error, occurs, Ada can trap the exception and either correct the problem in some
manner, or propagate it to the next higher level. By providing control over exceptional
situations, Ada increases reliability and reduces complexity.

Ada also provides a generic facility. A generic is a tailorable template for a program unit.
Generics are program units that may be "parameterized" by objects, types, or subprograms.
This allows us to increase software reusability by an order of magnitude. Generics reduce the
size of the program text and increase the reliability of the system by allowing reuse of known
reliable components. 6

In the software life cycle, Ada provides large gains in productivity. We shall briefly KIP,
examine some of the ways that Ada provides support for the software life cycle, but will not
provide attempt to discuss each phase of the life cycle completely.

In the design phase, Ada features support most architectural design methodologies, such as
top-down, bottom-up, or some combination of these approaches. A design can be expressed
directly in Ada by using Ada as a Program Design Language (PDL). This allows us to enforce
the design interfaces because of the use of a compilable PDL. Further, Ada features are rich
enough that they reduce the need to squeeze the design into the meager features afforded by
most programming ' .nguages. Finally, Ada's standardization brings a much higher level of
predictability because of the known semantic meaning of the Ada language itself and because of
the use of existing Ada software components. Reusability of Ada components also provides
excellent support for rapid prototyping. *e_

Ada is also helpful in the coding phase because its features insure that the original design is
not violated. Additionally, the use of Ada as a PDL reduces the amount of coding activity.
Readability of the Ada code also promotes greater productivity.

I'

22

In the component testing phase, Ada is extremely useful. The ability of Ada to support
separate components allows for more effective testing. Further, Ada's exception features allow
us to "build-in" testing facilities.

When we reach the system testing and integration phase, Ada has greatly reduced our
workload. The use of Ada as a PDL will have already enforced our interfaces, so these are
necessarily correct. Thus, more effective time can be spent in testing the system as a whole,
rather than fixing small integration errors. ..

The biggest payoff for the use of Ada, however, comes in the maintenance phase. The use
of proper software engineering techniques throughout the design and implementation phases,
combined with the readabliity of Ada, should reduce the overall maintenance costs significantly. /
Time alone will tell the tale.

[This paper is a written form of the talk on this same
subject given by the authors in early December at the
Pentagon and, privately, to the Under Secretary of the
Army.]

:F.

,d.

23

e d, r--e Y,,.

Bibliography

[1] D. A. Fisher, "A Common Programming Language for the Department of Defense -
Background and Technical Requirements," Institute for Defense Analyses, Report
P-1191 (June 1976): 19.

[2] M. T. Devlin, Introducing Ada: Problems and Potentials, USAF Satellite Control
Facility (unpublished report), 1980, p. 2.

[3] G. Booch, Software Engineering with Ada, Benjamin/Cummings Publishing
Company, Second Edition, 1987, p. 9.

[4] Ibid, p. 28.

[5] C. McKay, Presentation at the First Annual ASEET Symposium, Orlando, FL,
June, 1986.

[61 Booch, op. cit., pp. 31-35.

[7] Reference Manual for the Ada Programming Language, United States Department of

Defense, Ada Joint Program Office, February 1983.

[8] Ibid.

[9] N. H. Cohen, Ada as a Second Language, McGraw-Hill Book Company, 1986, p.
422.

% P%"'I

.' '

24"

r- 1At
" "-"2 4

COMPARING DESIGNS:
A METHODOLOGY FOR TEACHING SOFTWARE ENGINEERING

Putnam P. Texel
TEXEL & COMPANY

Abstract: This paper describes an approach to
teaching software engineering that was discovered
quite accidentally and has proved to be an invaluable
pedagogical tool. The paper describes the approach
and its use in seminars for management and software
engineers.

1. INTRODUCTION

This paper describes an approach that is used to train software
engineering with Ada that has proved to be quite successful.
The approach consists of a workshop centered on comparing
multiple Ada designs designed to the same statement of
requirements. The workshop has proved to be a valuable
pedagogical tool in training software engineers. Because of
that success, a decision was made to "port" part of the exercise
to a technical management seminar. The results were equally
successful.

Section 2 describes the background of this work. Sections 3 ,..

through 8 describe the technical details of the workshop:
Section 3 contains the Statement of Requirements; Sections 4 and
6 contain two Ada designs, while 5 and 7 summarize the class
evaluation of the designs with respect to the principles of
software engineering; Section 8 shows how dependency diagrams
are a useful tool for presenting layers of abstraction.

Finally Section 9 describes the main benefit for management and
Section 10 implores those individuals currently involved in
teaching software engineering with Ada to consider the inclusion
of such workshops in future seminars.

2. BACKGROUND

TEXEL & COMPANY is under contract to General Dynamics to provide
a software engineering curriculum based on Ada*. A portion of A..
the resulting curriculum is shown in Figure 1. Part of TEXEL &
COMPANY's responsibility is to design, implement and test teach
each course in the curriculum. During the design of the
Preliminary Design sequence it was apparent that simply talking
about the principles of software engineering would not provide
the proper level of understanding of Ada's support of these
principles.

*Ada is a registered trademark of the US Government (AJPO)

25

Ai

,-4

<<

oJ

LLzJ

o Z

%

%

264

0-

'--F3

]
2. BACKGROUND - Continued

Ironically the Coding Sequence had already been implemented and
test taught one time (at General Dynamics request). One
exercise in the Coding class is for small teams to implement an
adventure game (1]. One of the implementations of the adventure
game was extremely poor, violating all the principles of
software engineering.

That design, along with 2 others that were somewhat better, were
included in the Preliminary Design course, along with a design
created by TEXEL & COMPANY. At the appropriate point in the
Preliminary Design course the class is divided into groups of 3
or 4 students. Each group is provided with a statement of
requirements and asked to evaluate the first design against the
principles of software engineering. The groups work
independently and are instructed to return in 1 hour. Each
group then presents their findings to the other groups. The
sequence is repeated for each of the remaining 3 designs. The
results are astounding.

3. STATEMENT OF REQUIREMENTS

The statement of requirements that is distributed to the class
is shown in Figure 2. A simple adventure game is to be
designed. The goal of the exercise is not to develop the most
intricate adventure game, but to focus on the designs and their
adherence, or lack of adherence, to the principles of software
engineering. Bells and whistles can be easily added at a later
date if a "good" design exists for a simple adventure game.

4. DESIGN 1

The following paragraphs contain the elements of Design 1, the
first (and the worst) of the 4 designs in the Preliminary Design
class that the students evaluate. This is also the first design
that is distributed in the management seminar for evaluation.

The design consists of one package, ExploreSpecs, with the main
routine, Explore_Driver, importing ExploreSpecs.

} N

27

LA.

STATEMENT OF REQUIREMENTS

ADVENt2URE GAME

We are to design an adventure game.

Rooms:

The game shall consist of a minimum of five rooms that are
connected to each other to form a maze. Each wall may have
an exit to another room (or be blocked) and the game
consists of levels. A room may have an exit to a room in
an upper level or lower level, for a total of 6 possible
exits per room.

Points are associated with each room. The adventurer
accumulates these points when he enters the room for the
first time.

There is a message associated with each room. When the
adventurer enters the room for the first time the message
is displayed.

Treasures:

Each room may or may not have treasures that are associated
with the room. There must be a minimum of 4 treasures in
the game.

Each treasure is worth a certain number of points. As the
adventurer roams through the maze, he accumulates points
for each treasure acquired the first time the treasure is
acquired. The adventurer's point total is decremented if
the adventurer drops a treasure.

Commands:

The adventurer may drop and pick up items as he travels .'4
through the maze. The adventurer may move from room to
room. The adventurer may want to display the contents of a
room and/or display current possessions.

Points:

The player to accumulate the most points iwins the game or
the player that picks up a predetermined prize wins the
game.

Figure 2. Statement of Requirements 'h

28

v s. "N " "" "" v,' ' l " - ''; , "" "''" ' " "-'' ' 'at\

4.1 Package Specification

package Explore-Specs is
type WallEnum is (n, s, e, w, u, d);
type ExitType is (None, Open, Closed, Locked);
type ItemEnum is (Weapons, Treasures, Keys, Misc);
type Backpack ItemEnumType is array (1..10)

of ItemEnum;
type Action-Type is (Take, Drop, Throw, None);
subtype NameSubtype is String (1..10);
subtype DescSubtype is String (1..160);
type ItemAction is array (1..5) of ActionType; N
type MonsterType is (Norm, Gary, Parker);
type BackpackType is array (1..10) of NameSubtype;
type DangerType is array (1..2) of NameSubtype;
type Person is
record

Backpack : Backpack-Type;
BackpackItemEnum : BackpackItemEnum Type;
ItemCount : Integer := 0;

end record;

type Wall_Type is
record

WallExit : Exit-Type;
NextRoom : Integer;

end record;

type ItemDesc is
record

Name : Name-Subtype;
Action : ItemAction;
Lookup : Integer;

end record;

type ItemType is array (1..3) of ItemDesc;
type RoomWallType is array (Wall_Enum) of WallType;
type RoomItemType is array (ItemEnum) of Item-Type;

type RoomType is
record

Wall : RoomWalljType;
Item : RoomItemType;
Description DescSubtype;
Dangers : Danger-Type;

end record;

Player : Person;
Room : array (1..25) of Room-Type;

29 i%

e

4.1 Package Specification - Continued

--*************subprogram declarations*******

function Length (Sentence : in String)
return Integer;

procedure ExploreIntro;
procedure Open-Door (RoomIndex :Integer);
procedure UnlockDoor (RoomIndex Integer);
procedure CheckMove (RoomIndex in Integer;

Direction : in Wall Enum;
Ok : out Boolean);

procedure Describe (Room-Index Integer);
procedure ExploreInit;
procedure TakeItem (RoomIndex Integer);
procedure Drop-Item (Room_Index Integer);

end Explore-Specs;

4.2 Package Body

with Text_10; use TextI*;
package body Explore-Specs is

function Length (Sentence in String)
return Integer is separate;

procedure ExploreIntro is separate;
procedure OpenDoor (RoomIndex :Integer)

is separate;
procedure UnlockDoor (RoomIndex : Integer)

is separate;
procedure CheckMove (RoomIndex : in Integer

Direction : in Wall_Enum;
OK : out Boolean)

is separate;
procedure Describe (Room-Index : Integer)

is separate;
procedure ExploreInit is separate;
procedure TakeItem (Room Index Integer)

is separate;
procedure Drop-Item (RoomIndex Integer)

is separate;

end ExploreSpecs;

30

.% v'J

4.3 Main Routine 4.34

with TextIO; use TextIO;
with Explore-Specs; use Explore-Specs;
procedure ExploreDriver is .4

-- type for commands J.,

begin -- Explore Driver

-- the game

end ExploreDriver;

5. EVALUATION OF DESIGN 1

Because it is impossible to replicate the entire class
discussion in a paper, only the high points are summarized
here.

5.1 Abstraction

Design 1 does not support abstraction very well. For example:

o one package supplies all game information,
there are no levels of abstraction
- all types are visible to the main routine
- all subprograms are visible to the main

routine

o poor choice of identifiers w

- wallenum instead of Direction Type,
- n,s,e,w,u,d instead of north, south, etc

O no user defined exceptions to represent error K
conditions that could be encountered by
Take_Item, Drop_Item, and so on

o RoomIndex of type Integer is passed instead
of a room vJ.

" all boundaries are hard coded
- Room : array (1..25) of RoomType;
- type DangerType... (1..2) of NameSubType
- type BackpackType... (1..10) of NameSubType

319

5.2 Information Hiding

Design 1 does not support information hiding very well
either. Yes, the subprograms are declared in the package
specification and their implementation is deferred until the
body. However all types and subprograms are visible to the
main routine Explore_Driver. Finally both the player (Player
: Person;) and the game board (Room : array (1.25) of
RoomType;) are contained in the Explore-Specs specification
and are therefore visible to the user of the package, thus
subject to modification.

5.3 Modularity

What is clear is that the main package is far too large.
Goodenough defines modularity as "..purposeful
structuring"[5]. All groups agree that Design 1 does not
exhibit "purposeful structuring".

According to Constantine's [2] and Meyers [3] criteria for
evaluating design by examining modules and their
relationships, a package is not, and nor will it ever be, a
module [4], - neither are subprograms declared locally within
a declarative region (for example nested subprograms,
subprograms declared within a package body, and so on) [4].

One can examine each subprogram and determine its level of
coupling and cohesion but it is clear that the standard
criteria need to be re-examined with respect to Ada designs
[4].

5.4 Completeness

Design 1 is not complete because all components of the
abstraction are not present. Design 1 does not provide a
mechanism to accumulate points.

Design 1 does not satisfy the statement of requirements.

5.5 Confirmability

All groups agree that they simply would not know where to
begin to test this design. All groups state that they would
not let this design pass a Preliminary Design Review. .,-

5.6 Localization

All groups report that logically related resources are
collected in the one package. All groups also report that
they "feel" that localization could be better but they are not
sure how.

32 I 2

5.6 Localization - Continued

Most groups report that the command type and the subprograms
that operate on a command (getting and executing the command)
do not belong with the main routine but the groups are not
quite sure what to do with these command resources.

5.7 Uniformity

There simply are too many inconsistencies in Design 1 that, in
addition to the lack of abstraction, lead to confusion. For
example inconsistencies exist in the following areas: choice
of names, parameter modes, and subprogram selection. Each of
these is discussed below.

5.7.1 Choice of Names

Type names range from those that are meaningful (Exit_Type) to
a name like ItemEnum. What is ItemEnum?

Type names range from those suffixed with -Type (ExitType) to
those not suffixed with _Type (Person). Either suffix all
types with _Type or do not suffix all types with -Type.

Abbreviations are not consistent. The use of "n,s,e,w,u, and
d" for directions instead of "north south, east", and so on is
not consistent with use of Desc in DescSubType or Misc in
ItemEnum.

5.7.2 Parameter Modes

The parameter mode in appears explicitly in one procedure
declaration (Check-Move) and is omitted in the rest, thereby
chosen by default.

5.7.3 Subprogram Selection '

There are only two subprograms that return a value: Length
and CheckMove. One is a function and the other a procedure.
Why?

5.8 SUMMARY

All groups agree that Design 1 does not support the principles
of software engineering. A complete redesign is required.

6. DESIGN 2

The following design is the last (and the best) of the 4
designs that the Preliminary Design class evaluates. This
design is the second (and last) design that the management
class evaluates.

• '1
. , 'S

9 W i•, i -'J','' 'J "i' "x -- ¢°< .?d-' .P F.,'. . " - - - '_" "

6.1 CommandPackage Specification

package CommandPackage is

type CommandType is private;

procedure Get (Command : out Command Type);
procedure Execute (Command : in Command Type);
function Done return Boolean;

BadCommand : exception;

private

type Command-Type is access String;

end Command Package;

6.2 Main Routine

with Command-Package; use Command-Package;
procedure Play-the-Game is

Command : Command-Type;

begin -- Play-the-Game

COMMANDLOOP:
loop

Get (Command);
exit when Done; .,

begin
Execute (Command) ;

except ion
when Bad Command =>

PutLine "("Inva l id command"):
PutLine "("Enter another");

end;
end loop COMMANDLOOP;

end Play the Game; p_*.

' p

* . . U *.~**b~*~***.. *-..--

r W~rwr ~ ~ . .P-* .

6.3 CommandPackage Body

with TextIO; use TextIO;
with GamePackage; use Game-Package;
package body Command-Package is

-- Execute parses the command
procedure Parse (Command : in Command_Type;

Verb : out VerbSubType;
Noun : out NounSubType)

is separate;

procedure Get (Command : out CommandType)
is separate;

procedure Execute (Command : in Command-Type)
is separate;

function Done return Boolean is separate;

end Command_Package;

6.3.1 GamePackage Specification

package Game-Package is

type RoomNamesType is
(Dungeon, BanquetHall, Kitchen,
Throne_Room, Bedroom, Bathroom, None);

type Words-Type is
(move, pickup, drop, display, stop,
gold, diamonds, silver, Ada, game,
room, my status, north, east, south,
west, up, down);

subtype Verb_SubType is Words_Type
range move .. stop; 9

subtype NounSubTvt e is WordsType
range gold down;

subtype TreasuresSubType is NounSubType
range gold .. Ada;

subtype Directions SubType is NounSubType
range north .. down;

procedure Move (Where : in DirectionsSubType);
procedure Pick Up (Object : in TreasuresSubType);
procedure Drop (Object : in TreasuresSubType);
procedure Display (Room : in RoomNames Type);
procedure Display PlayersStatus;

No Exit exception; --raised by Move
No Object exception: --raised by Pick Hlp or Drop

end Game Package;

air %

6.3.2 GamePackage Body

with TextIO; use TextIO;
package body GamePackage is

type ExitsType is array
(Directions SubType) of RoomNamesType;

type TreasuresInfoType is
record

FirstTime : Boolean := False;
Points : Positive;

end record;
GameTreasures : TreasuresInfoType;
type TreasuresSetType is array

(TreasuresSubType) of TreasuresSetType;

MaxPoints-perRoom : constant Postive := 50;
type RoomsType is
record

Exits : ExitsType;
Treasures : TreasuresType;
Points : Positive range l..MaxPointsperRoom;
Message : String (1..40);

end record;

type TheGameType is array
(Room Names-Type) of Rooms-Type;

TheGame : TheGameType;

MaxPoints-perGame : constant Positive := 500;

type Player-Type is
record

Points : Positive range l..Max_Points-perGame; s
Location : RoomNames-Type;
Treasures : TreasuresSetType;

end record;
Player : Player-Type;

procedure InitializeGame is separate;
procedure Display-InitialGreeting is separate;

procedure Move (Where : in DirectionsSubType)
is separate;

procedure PickUp (Object : in TreasuresSubType)
is separate;

procedure Drop (Object : in TreasuresSubType)
is separate;

procedure Display (Room : in RoomNamesType)
is separate;

procedure DisplayPlayersStatus is separate;
begin -- GamePackage

InitializeGame;
DisplayInitialGreeting;

end GamePackage;
36

7. EVALUATION OF DESIGN 2

7.1 Abstraction

At the highest level of abstraction, an adventure game
consists of a player who sits at a terminal and repeatedly
enters commands and waits for the command to be executed. The
player quits when he is through or when he has achieved some
goal. At this level of abstraction knowledge of the legal
words of the game is not required.

At the next level of abstraction, we have a player who moves
from room to room picking up and dropping objects until some
predetermined prize is found or the player quits. The player
can optionally display a room contents or his own possessions.
At this level the legal words of the game and the legal
operations of the game must be defined so that Execute may
call the appropriate routine to execute a command. Note that
although the legal words of the game must now be declared, at
this level the game board and point scheme do not need to be
defined.

At the final level of abstraction, the maze, player and point
scheme must be defined.

Note that these levels are supported by the Command_Package,
Game-Package specification and GamePackage body respectively.
Design 2 exhibits good use of abstraction. The main routine
only has access to the CommandPackage. The CommandPackage
only has access to the GamePackage specification. Finally
the GamePackage body contains the game and the player.
Details are deferred until the last possible moment.

Note also that the remaining deficiencies of Design 1 have

been removed.

7.2 Information Hiding

Abstraction helps decide what to hide [5]. Because of proper
abstraction in this design, the details that are suppressed at
one level are hidden. For example the game itself is hidden
from the main routine; only the command package is visible to
the main routine. As another example of good information
hiding, the game (Game : GameType;) and the player (Player
PlayerType;) are declared in the GamePackage body and are
only accessible to the implementation of the routines that
repeatedly update the game and/or player status.

Design 2 exhibits good information hiding.

37

7.3 Modularity

Although a package is not a module in the classic sense of the
word (see Section 5.3), commands are contained in a command
"module" and game information is contained in a game
"module".

The subprograms provided are cleaner than in Design 1.

7.4 Completeness

All components of the abstraction are present (Is this
true?). A point system now exists. The design maps to the
statement of requirements.

Design 2 exhibits completeness.

7.5 Confirmability

At the highest level the command package can be tested. At
the second level the definition of the game can be tested. At
the third level the game itself can be tested.

Design 2 is confirmable in logical steps. Each level of

abstraction is readily testable.

7.6 Localization

The command and its logical operations are packaged in one
package, Command-Package. The description of the game is
contained in the GamePackage specification while the game
itself is implemented in the Game_Package body. Code that is
logically related is physically co-located.

Design 2 exhibits localization. The groups now see how to
implement what they intuitively felt was required, a better
localization of resources. The class learns that what was
needed was a better abstraction.

7.7 Uniformity

All the inconsistencies of Design 1 are gone. Design 2

exhibits uniformity because:

o naming conventions are employed

o abbreviations are not present

o parameter modes are explicitly stated for

all procedures, not for functions because
functions can have parameters of mode in only

3's%

8.0 DEPENDENCY DIAGRAMS

As a final step, the class is shown the dependency diagrams
shown in Figure 3. A visual inspection of the diagrams for
the two designs clearly shows how the Game and the Player are
visible to the world in Design 1 (declared in ExploreSpecs
specification) and how they have been suppressed to the third
level in Design 2 (declared in GamePackage body).

9.0 APPLICABILITY TO MANAGEMENT

The applicability of the pedagogical approach for software
engineers has been successfully demonstrated in this paper.
Because of its usefulness the exercise was refined for use in
the three (3) day Ada for Technical Management course. The
last 2 hours of the last day of class are devoted to comparing
2 of the 4 designs evaluated in the Preliminary Design course,
specifically the worst and the best (the 2 designs contained
in this paper). The results are extremely encouraging. Not
only do the managers really begin to understand software
engineering, but they begin to appreciate why education in
software engineering with Ada requires more time than training
a programmer in FORTRAN.

10.0 CONCLUSION

There are 2 design flaws in Design 2. Each group of
individuals (software engineers and managers) has been able to
detect the 2 design flaws. Their ability to read and comment
effectively on Ada designs, prior to having a coding class,
is proof that one does not need to know everything there is to
know about Ada in order to effectively participate in design
reviews.

In this author's opinion design comparison yields positive
results, for both managers and software engineers. Inclusion
of this technique in future Ada related courses can only
enhance the students' learning process.

DESIGN 1

Spec

Get-1 Epoex PseGe

Text-OSub units

Fgue 3 CDeendndarm

DESIGN~~.. 2 pc......

Spe Spec *-. 5.

Biblioaraphv

[1] The adventure game as an exercise was originally
conceived by D. Bolz (USAF Ret.)

(2) Yourdan, E. and Constantine, L., Structured Design, 2nd
Edition, Yourdan Press, NY, NY, 1978.

[3] Myers, G., Composite Structured Design, VanNostrand
Reinhold, NY, NY, 1978.

[4] Hammons, C. and Dobbs, P., "Coupling, Cohesion, and

Package Unity in Ada", AdaLETTERS, Vol IV, No 6, May/June
1985.

(5] Ross, D., Goodenough, J., and Irvine, C., "Software
Engineering:Process, Principle, and Goals", COMPUTER Magazine,
May 1975.

41'

O. N

'p.

--- ."*.

This page left blank intentionally

42 4

"'"--

NK, %% ../

Istantiating Ada at the University of Central Florida
(and Wy 'ere Are Few Good Texts on Ada and Soft-are Engneering)

Darrell G. Linton, PhD, PE
Associate Professor

Camputer Engineering Department (CEBA 207)
University of Central Florida

Orlando, Florida 32816
(305)275-2236

Abstract

This paper describes how Ada software engineering education is
implemented in the Computer Engineering Department at the
University of Central Florida. In addition to the format of the
courses, the textbooks chosen and the available hardware and
software, the need for more complete texts and more efficient
software are addressed. Failure to correct these deficiencies has
the potential of delaying the acceptance of Ada and reducing the .
number and quality of software engineering graduates.

Introduction

During the academic years 1985-86 and 1986-87, Software Engineering
with Ada has been taught as a two-course sequence in the Department
of Ccmputer Engineering at the University of Central Florida. The
first course (Efl5806, Software Engineering I) covers the Ada
language (using Saib, Ada: An Introduction) and the principles of
software engineering (using Fairley, Software Engineering Concepts)
and the second (EC6807, Software Engineering II) is a project
course where teams of two to four students design, develop,
implement and document a system in Ada. Both courses are graduate
level although undergraduates may receive credit for Software
Engineering I.

The E3C5806 class is taught live on the Orlando campus but is also
taped and sent to several other locations throughout the state of
Florida. This provides students who work full-tine with the
opportunity to persue a Master's degree without the necessity of
driving to Orlando for classes. Exam and homework are transferred
via a coouLrier service and off-campus students are about two days
(one or to lectures) behind the live class. The B246807 course is
not taped (since it is a project class) and meets late in the
afternoon, twice per week, so that working students can attend.
Class time is spent on implementation problems experienced by each
team and periodic status updates (including execution of the
current system in front of the class).

Hardware and Software

Students in the College of Engineering (OE) have access to two

43 .

I,

mainframes, an IBM4381 (with the VM/CMS operating system) and a
Gould 32/6780 (with UTX, Gould's version of the UNIX operating
system), both of which run a validated version of the TeleSoft Ada
compiler. Although students often choose to use cxmpany-owned Ada
facilities, approximately 60% of the class use university
equipment. Turn-around time (i.e., the time required to compile and
execute a main procedure) on the Gould is about 30 seconds to 1.5
minutes while on the IBM, it is on the order of 6 to 10 minutes.
Part of the reason for this discrepancy is that the IBM services
the entire university comunity while the Gould is used primarily
by ODE students (most of which are in the Ada course). As of this
writing, there are five hardwired terminals (located in the ODE and
available 8arn - 5pr) and four modem lines into the Gould, and 100+
terminals (located on campus and throughout central Florida and
available 24 hrs per day) and fifteen modem lines into the IBM.
Thus, although the Gould has a smaller turn-around time, the IBM is
more accessible. In any case, turn-around time is poor crnpared
with what most students (and practicing engineers) are used to and V
a fast (efficient), microcxwputer-based, reasonably priced _.
(including the cost of a site license), validated Ada compiler is
sorely needed by the university comunity. (An Alsys validated Ada
compiler for the IM PC/AT is on order at the ODE but it is
relatively expensive.)

The 'Best' Ada Text

Although it was not surprising, it was discouraging to find not one
single text which contained the minimum features an instructor
should expect. Ebr instance, if key term like 'instantiate',
'files' and 'context clause' are not in the index of a text or,
although present in the index, none of the page references provide
an understandable English definition of the term, the book is not
appropriate for classroom use. ITe lack of comlete examples (the
shorter, the better) is another deficiency of numerous Ada texts. 4
Many authors simply do not understand that someone learning any
cxmputer language must be provided with at least four things:

a. complete source listings (preferably, computer printouts
from working source files) of all compilation units used in
each example,

b. a keystroke-by-keystroke description of exactly what the %

user entered when the program was executed,

c. a complete listing of the output produced by the program,
and

d. a discussion of a., b. and c. 'p

It would be especially nice if, perhaps in appendices, crnuands for
compiling, editing, linking and executing Ada programs which run
under UNIX, CMS and VMS were shown and illustrated with example
programs. Textbook writers often forget that there are at least to ,70.

44

languages that must be learned when studying a computer language -

the language itself and the onands associated with the operating
system. Most computer manuals which discuss, for example, how to
perform separate compilations using an Ada compiler and linker, can
be understood only by experienced systens programmers (who are also
familiar with Ada).

What, then, is the best Ada text? There does not exist such a thing
in this author's opinion. The most omplete and understandable
handbook on Ada is by Cohen, Ada as a Second language - this book
is a must for anyone who is serious about Ada. Texts with many
examples (some of which are incomplete) include: Saib's Ada: An
Introduction, Wiener and Sinovec's Programming in Ada, Price's
Introduction to Ada and Vasilescu's Ada Programming with
Applications. One of the few texts which details the many
subprograms fram packages text io, sequential io and direct io is
by Elbert, nbedded Programming in Ada. A text specifically on
parallel programming is Cherry's Parallel Programming in ANSI
Standard Ada.

What is the 'best' Software Engineering Text?

The Fairley text mentioned above is the 'best' software engineering
text that the author is familiar with. However, the real problem is
not the availability of texts -it is how to teach software
engineering in a classroom envirorment and how to grade the
assignments. Topics such as software requirements definition,
software design, implementation, validation techniques and
maintenance can all be discussed in the classroom but testing the
understanding of these principles requires a term project. Grading
a project, however, often becomes a series of subjective judgements
based in part on writing style and the use of correct English. In
fact, it is often the use of English that distinguishes the quality
of one project from another.

Few software engineering texts provide examples or exercises which . -

could be given on an in-class exam. In addition, most topics can be
read about and understood without in-depth classroom discussions.
Case studies which illustrate good and bad applications of software
engineering principles and which are discussed with respect to a
standard (e.g., DOD-STD 2167) are not presented in today's texts.
Until and unless the case study concept is inonrporated into
software engineering texts, it will be difficult for academia to
produce high quality software engineers. Thus, as of this writing,
the author is unaware of any software engineering texts which meet
the needs of the engineering community.

Conclusions

The primary goals of this paper are to: 1. share what is happening
in Ada software engineering education and training at UCF, 2.
indicate the need for fast and inexpensive Ada compilers for
classroom use and 3. point out deficiencies in the available .

1p 45
3 'v-. v-" ''.. '" " '-" '' -, .-"./ "-"" .""' -"' . .; ". ;3 '',V.- V.'°'

textbooks on Ada and software engineering. Goals 2 and 3 are
intended to encourage all those interested in the future of Ada
software engineering education to improve the existing compilers
and fill in the gaps left by many of today's texts. Failure to do
so, in this author's opinion, will reduce the number and quality ofsoftware engineering graduates as well as delay the acceptance of

Ada by the engineering profession.

References

Booch, G., Software Engineering with Ada (2nd Ed.) (Benjamin/
Cumings,Menlo Park, CA, 1986).

Cherry, G., Parallel Programming in ANSI Standard Ada (Reston
Publ., Reston, VA, a Prentice-Hall Co., 1984).

Cohen, N., Ada as a Second Language (McGraw-Hill, New York, NY,
1986).

Elbert, T., Embedded Programming in Ada (Van Nostrand Reinhold, New
York, NY, 1986).

Fairley, R., Software Engineering Concepts (McGraw-Hill, New York,
NY, 1985).

Price, D., Introduction to Ada (Prentice-Hall, Englewood Cliffs,
NJ, 1984).

Saib, S., Ada: An Introduction (Holt, Rinehart and Winston, New
York, NY, 1985).

Vasilescu, E., Ada Programming with Applications (Allyn and Bacon,
Boston, MA, 1987).

Wiener, R. and R. Sincovec, Programming in Ada (John Wiley and
Sons, New York, NY, 1983).

1.6
MAU-'.

Treatment of the Mda Larquage in a

Michael R. Meeker

Department of CQmputer Science
University of Wisonin - Oshkosh

The 1978 ACI r ndations for undergraduate CaQWuter Science curricula make
provision for a course dealing with the organization of programing languages. %
It is r that this course be required of all students majoring in the 1;
area. Typically, students wculd have completed two courses in computer
programng, including treatment of strucured progranning, deging, data
structures, and recursion. In addition, it is highly r-nnm -3 that students
ccmplete courses in assemblers and file processing before enrolling in the
course. The objectives [l) of the course are:

"(a) to develop an understanding of the organization of progra ing
languages, especially the run-time behavior of programs;

(b) to introduce the formal study of programming language specification and
analysis;

(c) to continue the development of problem solution and programming skills
introduced in the elementary level material."

In order to acccmplish these objectives it is necessary to develop the context
for classification and description of programing languages in general, as
well as to illustrate aspects of programing languages by citing their
implementations in various languages. To that end, Ada is an attractive
language to study because it possesses many important features of which.
intermediate level students are unaware. Hwever, Ada is a large language and
therefore much detail ust be taught before the student is in a position to do
programig exercises that illustrate its advanced features. One purpose of
this paper is to identify those topics within a programn languages course
where Ada provides octstandring examples.

Students at this level have only limited knowledge of the principles of
software engineering. It is difficult for them to appreciate the language
design decisions that are so fundamental to Ada. Unless same design
justification accompanies treatment of the language features, students are
likely to develop an indifferent attitude toward many of Ada's strong points.
The second purpose of this paper is to relate some of the software engineering
concepts important to student appreciation of Ada's design.

EXPLOITATION OF ADA'S STICtG TYPING

By the tire cputer science students reach the intermediate level, there is a
good possibility that they have encountered a language with same data typing
and enforcement features. Most ommonly this experience coes through a
knowledge of the programming language Pascal. Reardless of their previous
language experience, it is unlikely that these students have used typing to
its full advantage. One of Ada's prominent features is the ability to specify
derived data types. The use of derived data types becmes the basis of strict
enforcement in Ada. Since the derived data type is not a feature in many
languages (Pascal in particular), it is necessary to familiarize the student
with the techniques as well as the justifications for derived data types. In
order to take advantage of strong type checking, students mrust learn to

.-

rerognize irammtar~e in vAd typingj error. couild be prevented by using

Vin.

darived typ. Sin gta towar! einltm are:

- rel kwrmti are jre in ditfferent (acaitm), e.g.ti
abetractin t eatr coud be rzinte in Fahrwthmit, Calsiu5, or |

- intee r are used to count different objects, e.g. 5 apple
+ 22 autos -> ????.

- seprate m mraticru with eqivalent functionality, e.g. ASCII and
IC charcter' mets.

oks Ada textbooks covr data type feature, but unfortumately do rot provide
clear disusions of how effetively to use strun type checking. While this
is probably accetable for expmriwvmd proramrn , it is insufficient for

intr~.atelevel students.

ADA ASRICflS

Moo intezeiate computer cinci e students' exqrience with software
develomt is with relatively simple softre syuam. hme syst are
usually simple eru that an individual pr mrmr can be resposible for the
develpmit of the colete systim. Usually the oftre system has a brief
life cycle, eding the assigned pr ject is mmitted for istrutor
evaluation. Hn, the issues of information hiding, ned to)mow, N
localization, and maintainability hardly, if ever, surface.

.. %

On the oter hand, most comter scienc sudents have de< with mmarou.-
abstracion without being conscioumly aware that they were doing so. Sam
comimanly umed abstractions are data and Exar film, ompilers, link
elitors, and variou opera tng i yam servioe. In introctory progring
courses, the ume of abstractions are primrily motivated by cc ri of C
undertadability (data abstraction) ar! stzuctre prcqrirq corcepts
(algorithmic abstraction). At the introductory level, them concrns ar only
looely related. An imortant le to be learnd by Ada students is that
data and algoritknic abstraction go hard in hand (5.

One approac to the effective use of abstraction is to envision a data
abstraction hierarxiy [2). At the bottom of the hierarrhy are data objects
associated with implomitation detail, at the top are data objects of great p

aktraction. Once such a hierarchy is astablimhed it is posible to deal with
algorithm at each level. Ihis hier-arr-ical approach has the advantage of
making aparent the informtion hiding and need to know issues. It logically
sepuratem the implawwtation asets of the abstraction from its use. It is at
this point that packaging logically fits into the course outline.

FALT MIERANT ADA SYSTEM

?et beinning computir asigcwnts are deigned s. that tt w nput Iata
whie prqrly proud will yield correct results. Selcku do we intrrxkice the
omlelxity of error ondition into cur 1x11lin. Exception rxxidtians are
therefore wmaifeat an proqrai faults Whic mst be el imirnat by "
modification or correction of mainline cod. This ovmrimpl if ied perueti of
proro ystem re to be modified at the intatruadiate leve. ir the
curriculum.

It iLs often te came that the 1a g alch are t am ar t , ;texris prP'

• -

>.)-';,.' :,:,, , %-)'*-.-.*:..- -,d," -." '. '. " *" .. ;" "

little or ro ammpion hwdlirq capbilities. This inli the deign of fault
toleruit 1: difficult or imposible to speify. MA provides fault
tolarant unchwdm in a variety of ways:

- itairai ancetians are alwys pres.
- damta types my be contrained.
- the jzt in I My Putint dooins with the win" andl "not in" operators.
- the ;- p n sey cftzol the ewpto handl.ing with Ma cod.
- the m ptiai my be Mpesate to a hic~mtr level by deferring ompt ion

hordling or rw-raisirq the asompin.
- pw~iaian is mad for premture exit frxm iterative proesses
- the pcm~wom my create user define exepions.

7he paeorz te*iq that ptvdku fault tolerant systm are
.traitfrwaMr. 2Wm do, howver, rmz~ire that the students ewmru1 their

IF ~iM Of oo yeW OCRItrol =CWiM.B As a reult of the wide
~~U~Sof structured koqinir tedstiqius, 1studenlmts have beow

ilr~trinted with the priunciple that parU statements in textual equon
CMxrWcid to the emscutim sequence [4]. This principle =jet be moified to

Int 40106tion hIru~iJnj A SOIn issue of interest is the propagtion
wr4or r.-raisirq of excepions o as to refer the exception to a hiqher level
of abtracion. 'The quietions of vimre as wall an how to handle an exceptioni
are row topics for intermeiate level students.

TSID AND INtWDYD ADR

There is little dout that compter technlogy is heading in thm direction of
parallel procesing. At the prinumt tim w are in the precarious positioni of
having both feet firmly plantud an single yr-o~o nzofbaru technology grtrxl
that is momn to wr . Little is being don to tach or even introdce~
urirruste students to parallel pzriop te±~chiues. In the opinioni of %

the author, tsediirq parallel pxrop techiquies shold be a high priority
task within the compter since curriclum.

At the prinit tim sany compter science proqri do not have aces to
uiltiproomaeeo systems. Howeer, A prie the apearance of such 3]. This%
is suff icient to begin stu~dent orientation to parallel system.

The inrporxration of a discuss ion of Mda into the intrmeiate programdNrr
language (AC-<U) aourve is Jutified. Mda contains awy larquw~e features
that are not commly taught or empasized in prerequxis ite courses. Ada is
deigned with considerat ion for softwre enginering prirmiples. Therefore, a
dicsion of Ada features serves to orient the intenmiiate stdent to this
topic. Finally, Ada irxxrporatas language features that are compatible with
the ourrunt direction of t±Knologica developot. Mda represents a
programmn tool for the premant as wall as the future. Part of the defi-nxtior
of a wall rvr~s comxjter inciwce stdn shou.ld u'Eltde knoledge of the Ada
progrming language. It* prrsing langug coure provides a cxrien lent
and relevant context to hawe this haen

1 Aumt trw, PH., Barnes, B.H., Ekxrwt, D.T., EnqeI, r(.L. andi Sto*esr'.

rarr ioil 'm'78: FWxinnat ions for the '!ndergrakatA- Pryii7 n 00"pter

Scia. (mm. AC](22, 3, 147-166.

[2] Dxod, G. [1987] Sofbwe !ngineering with Ada. 2rn d. Benjamin/cOmigs,

[3] 3kJwIrmn, B. (1987) Principles of Prograuming Lxjuag s: Design,
Valuation, and Implmntaticn. Holt, Reinekadt and Winston, New York, NY.

[4] Pratt, T.W. [1984] Prcgraing L uages. Deign and Implementation. 2nd
E. ft it o - Il , Enl a msod Cliffs, N.

(5] Wirth, N. [1986] Algoritm and Data Structures. Prentice-Hall, Englewood

P.

.VI

JR .

I.-
• %

-'.

", , . - o '. • • ,.', "
- ". -". -"." " "" '." '" - •"- ' -- " , , ,',' . " o..'

Ada from the Trenches : A Classroom Experience

Jaime Niho
Computer Science Department

University of New Orleans

Introduction.

In August of 1984, the department of Computer Science of the University of New
Orleans started implementing the programming language Ada as the departamental
language. After almost 3 years into the project, we feel we have succeeded. The purpose
of this paper is to share our experience to the Computer Science educators and Ada users
at large.

Structure of paper.

The paper is composed of the following topics
University Setting.
Departamental Setting
Curriculum overview.
Ada as a Primary Programming Language.
Ada curriculum implementation history.
Ada teaching experience.
Student Population Response.
Compiler Experience.
Book review.
Conclusion.

University Setting.

The University of New Orleans (UNO) is an urban university of approximately 17,000
students situaded on Lake Ponchatrain in New Orleans, La. It is an urban public
university, the second largest of the institutions governed by the Louisiana State Board
of Regents.

The UNO academic computer resources consists primarily of a cluster of four VAX
8600 16 Mb computers running VMS Version 4.5. and DECNET and approximately 150
Zenith microcomputers with Winchester discs and numerous terminals throughout
campus. There is also a campus-wide Ethernet. Computer Science undergraduates taking
core courses are supported by this system.

Departament Setting.

We offer the baccalaureate in Computer Science and in conjuction with the
Mathematics Department we offer a master degree in Mathematics with specialization
in Computer Science. The department consists of 10 full lime facu!ty members all of
which are expected to teach programming classes. We are supported by part time ," ,
faculty, several teaching assistants and paper graders.

There are approximately 400 Computer Science majors at UNO, and typically 1500
students studying Computer Science courses at any one time. In any given semester.
there are approximately 120 declared Computer Science majors studying CSCI 1583, the
first Computer Science course for our majors, comparable to CS1 in the terminology o.
the ACM Curriculum Committee [Augt 791 There are approximately 90 students enrolled

.d

.°a,
.4..4..

1.. . K F~ .,.,,,-.;..:-::..:,. .,;,.-,.. _ : . , ,...,,.., , , ... , ,. ,',...,.. •.., : , , ..,..:,., :.., ., 4.

in CSCI-2120 (or CS 2 in the ACM curriculum) and 60 in CSCI-2125 (Data Structures or
CS 7).

UNO is on a semester system, with most Computer Science courses having three hours
of lecture per week, and offering three credits to the student.

Curriculum Overview.

The University of New Orleans Computer Science Curriculum lUNO 84] closely
resembles the ACM Curriculum '78. For this paper we will take a closer look at the -*

syllabus of our introductory courses CSCI-1583, CSCI-2120 and the Data Structures
course CSCI-2125, for which programming is a major component.

CSCI-1583
Prerequisites Plane trigonometry with Algebra
Corequisites Calculus I or Discrete Mathematics. We advise the students to
coregister in Discrete Mathematics.

Syllabus overview: %
The major topics of study in this course are computers in general programming
principles and the Ada language.

Computers in general covers computer systems organization, basic computer
organization and history of computers.

Programming priciples covers programming languages concepts, examples of p

programming languages, typical programming tasks, software lifecycle, software
quality, algorithm design (top-down, bottom-up) with strong concentration on top-
down design and step-wise refinement. Structure Programming, Abstract data types,
algorithm testing, documentation.

..

From Ada we cover primitive types, data manipulation via typed objects. control
statements, subprograms, scope and visibility, records with fixed types, arrays. and
use of packages. Attributes and Input/Output using the standard input and output
files.

Programming assignments size varies from small (tens of lines) to moderate size %
(no more than 1000 lines). %

CSCI-2120
Prerequistes : CSCI-1583 and either 1) credit in Discrete Mathematics or 2)
concurrent registration in Discrete Mathematics and credit in Calculus I

Syllabus overview.
Introduction : Software life cycle Ada Review Data types Types, Subtypes Simple
types Integer, Float. Boolean. Character Type classification Control Structures
Subprograms. Structured Programming Structured Types Records and arrays More 1
on data types Abtract Data Types Encapsulation. localization and Information Hiding
Design Techniques Top Down design Bottom Up Design Separate compilation and
top-down coding. Top-down testing Other design techniques Ada Block structure
Scope and visibility Recursion and backtracking Programming in the large
Packages Bottom up design and packages Robustness Exceptions Files Testinq
(Structured walk throughs) and verification Program assertions loop invariants
Partial program correctness

0i

.

The student is given on average 5 programs whose size varies from 500 lines to
1500. Students are also given a programming project whose size is between 2000 to
3000 lines.

CSCI-2125
Prerequisites : CSCI-2120 , Discrete Mathematics and Calculus I.

Syllabus overview.
Abstract Data Types : Specification, design, validation , implementation. Study of
typical data structures as ADT's : Stacks, Queues, Lists, Recursive Types, Binary
trees, General trees, Graphs. ADT's and algorithms : searching, sorting, hashing.
Other ADTS's.
From Ada : Generic Packages. Access Types. Variant Records.

Ada as a primary programming language.

The term "primary programming language" is used in [Auge83] to describe a language
taught in the initial courses of a Computer Science curriculum and thereafter used as a .* ,
standard language of reference.

There has been a great deal of debate in the Computer Science community about
primary programming languages. [Auge83] discusses the relative merits of Pascal, PL/I,
and Ada as primary programming languages. The ACM Curriculum Committee [Koff84] has
recommended that only Pascal, PL/I and Ada meet the criteria for an acceptable language ,,
in the revision of their earlier proposal for CS 1.

'C.

In [Evans et al 1985) the autors cite several reasons against the adoption of Ada as a C,

primary programming language. Among the reasons cited were the complexity and the
size of the language, the lack of compilers and textbooks. Of those reasons one may still
argue against the adoption of Ada on the basis of its complexity. After three years of
teaching Ada we have demonstrated that we can find a suitable subset of Ada that does
not do a disservice to the language and that supports and serves us well in our teaching
endeavors.

Many universities in North America have created an Ada course in the Computer
Science curriculum [SigAda 87]. Almost no universities have adopted Ada as the primary
programming language. We in the compute Science Department at UNO adopted Ada as the
primary language in the fall of 84. To aid in the understanding of our choice of Ada as
the departamental language I proceed to state our common teaching philosophy and
goals. at least with respect to the programming courses.

In our teaching endeavors we teach and stress the principles and fundamentals of
the art of programming. We underplay "programming tricks" in behalf of readable,
maintainable and correct programs. Software engineering has developed well proven
principles which aid in the development of software. Some of those principles are ."
structure programming, modularization, information hiding, data abstraction,
encapsulation and localization. Software engineering also provided techniques and
guidelines for programming in the large. Our philosophy lies on the teaching of e
fundamentals of programming; one of our major goals on the teaching of programming is
to leach the principles and the methodology necessary to produce a program that is
correct, reliable, robust, maintainable, verifiable and portable. Therefore we teach the
principles and techniques available from software engineering that aid us in attaining
this goal.

Ada is a modern programming language which was designed to support all of these
principles and the needs of modern software development. Using Ada we have a unique
language were the students get the opportunity to put the principles, taught in class to
practice The advanced features found in Ada to support the development of embedded

V ,;4-
,, ~~~ % , , ,. ,.. .. ,...-,,.., . .,...,-,.. • . .. ,-.,- .,.; . ,

systems has given us the opportunity to be able to use Ada in the upper level courses
which have a programming component. We can therefore say that Ada has unified our
curriculum as we can use Ada throughout our curriculum as a programming tool.

In the core programming courses we use Ada as a tool to illustrate programming
techniques and principles. The learning of Ada per se is not a goal in our programming
courses. What this means is that we teach the necessary Ada syntax and semantics to
illustrate programming principles and techniques. Ada is a very rich and complex
language whose wealth of features can overwhelm any well experienced programmer. We
had to carefully trim Ada to make it into a manageable language from the point of view
of the teaching of programming. We can certainly say that students that go through our
core programming courses adquire an excellent foundation in Ada; they can put Ada in use
to produce high quality programs using the standards of software engineering; we cannot
say that they are Ada experts; this is not one of our goal.

One can certainly argue that Ada is too complex a language to be taught in an
introductory course in programming. My response to that argument is based on the
intended goals for that course. If the goal is to teach Ada per se, I support that
argument. If the goal is to teach programming using Ada as a tool, I do not see any extra
burden put on the student by choosing Ada, I only see benefits from the choice. I am of
the opinion that the difficulty of teaching introductory programming lies on the subject
matter itself; programming is a difficult task, and this task can be ameliorated or
worsen with the programming language chosen. If an introductory course is aimed to the
teaching of programming as an art with well proven principles and techniques, Ada can
provide a programming environment where theory can be put into practice. For a case in
point, it is a lot easier to show in Ada how one can implement the information hiding
priciple that say, in Pascal. Ada not only have subprogram, but packages and private
types.

Ada curriculum implementation history.

We started the implementation of Ada in the fall of 84 with the course CSCI-1583. ,
In the fall semester two sections were offered to a initial total of 60 students. We
continue offering CSCI-1060 which is the equivalent course using Pascal.

In the spring of 85 we offered two sections of CSCI-1583 and one section of CSCI-
2120 using Ada. We offered one section of CSCI-1060 and one section of CSCI-2120 -,
using Pascal. .-.0

In the fall of 85 we offered CSCI-1583, CSCI-2120 and CSCI-2125 using Ada. We
continued facing out the sections of CSCI-2120 and CSCI-2125 using Pascal that %
Computer Science major could take for credit.

By the Spring of 1986 the only section remaining to be faced out from our
curriculum was a section of CSCI-2125 using Pascal.

In the fall of 1986 we taught all the programming core course sections of CSCI-
1583, 2120, 2125 using Ada. There were no sections of any of those courses offered
using Pascal in that semester or afterwards. We continue teaching an introductory
course using Pascal which is aimed to the Liberal Art students as well as an
introductory course using FORTRAN aimed to the Engineering School students,

By the fall of 1986 faculty teaching higher courses with a programming component
could expect to have many of the students in the course with Ada experience. Not all
upper level students can be assumed to have Ada experience at the time of this writing.
But their number is rapidly diminishing.

54
.-.-"
% %

Ada Teaching Experience.

I proceed to relate the experience per se of the teaching of Ada in the courses CSCI-
1583, CSCI-2120, CSCI-2125.

The main goal in CSCI-1583 is the teaching of the elements of structured
programming, data abstraction, algorithm development and the necessary syntax to
support such activities.

In 1583 the students get exposed to the following concepts:
1. Structure programming.
2. Abstract Data Types.
3. Top-down design.

Ada serves well each of the concepts listed above. Ada has a complete and fully
braketted control structure set. Ada distinguises between OUT and IN OUT parameters in
contrast with Pascal and its by-reference parameter mode. Having given the definition
of abstract data types, we can illustrate it via the Ada primitive types and the fact that
no implicit coercion is allowed in Ada. We can also illustrate it by introducing derives .,

types of primitive types. Students can be given the opportunity of using non-primitive
types via packages provided by the instructor. With this simple instance, an instructor
can illustrate Abstract Data Types, team programming as well as the information hiding
principle. Top down design is supported in Ada via subprograms and separate compilation
and this last Ada feature gives the instructure an oportunity to give the student the N
experience of programming in the large.

From the point of view of concept formation (programming in this case), students
can be given a package or a set of packages developed by the instructor, and the students
write simple drivers for those packages. The instructor can use separate compilation to
give the opportunity to students of being part of the writing of a rather "interesting"
program by assigning the students the writing of a subprogram which will be linked to a
main subprogram written by the instructor. This feature can be exploited further by
given different group of students different subprograms to write.

Notice that in these situations the students can be made part of a programming
effort with a minimum knowledge of Ada syntax. To use packages students need to know -.

how to declare and give value to the arguments how to use the conditional and while
control structures, how to call subprograms and to include packages with their drivers.
The actual writing of subprograms can be helped by giving simple by well defined
operations to implement, whose logic is simple and do not need tne use of sofisticated
Ada features.

The goal of the second course CSCI-2120 is to teach to the student the principles
underlying the production of programs which are correct, portable, maintainable,
modifiable and verifiable.

In the teaching of the second course the choice of Ada is more and more rewarding.
Among the main concepts taught in this course we have:

1. Structure Programming revisited.
2. Design methodologies . (Top-down , bottom-up, among others)
3. Robust programming and error trapping.
4. Recursion and Backtracking.
5. Abstract Data Types revisited.

The concept of abstraction which was taught using subproyrams can be reenforced
using unconstrained arrays and discriminated records and user defined enumeration
types. Using separate compilation student can get experience in top-down design . top.

) types.

"a

down coding and top-dow testing. With packages students learn bottom-up design and
coding Exceptions simplifies the introduction and the actual implementation of error
trapping.

At the time the course CSCI-2125 is taken, the student has a good backgroun in
programming in Ada. In this course the students get experience in the specification,
design and implementation of Abstract Data Types. At this point packages, private and
limited types will support the concepts of information hiding, encapsulation and data
abstraction.

From the teaching point of view, one of the strengths of the programming language
Ada is in the fact that it supports all the modern principles of software engineering,
making the teaching of such an easier and rewarding task.

I am the first to admit that teaching Ada syntax is quite a taxing and trying task.
This task get ameliorated by introducing Ada to support programming principles as I do
in my courses. One can literary spend a whole semester just teaching the sequential part
of Ada. A concerted effort must be made not to get lost in the forest. For example I
teach arrays slices to be used to make calls to subprograms with unconstrained array
type parameters; this is an example of the implementation and use of abstration. I do
not teach all the possible ways to form aggregate expressions. I do not see a principle
that can be illustrated with this activity. .,%

Student Population Response.

The student population consists mostly of commuter students who live in the
metropolitan area. The great majority of them work while attending classes. From
conversations with the students and their comments in the teacher evaluations, one can
easily surmise that the difficulty of a given programming course lies in the subject
matter and not in the programming language.

The questions and difficulties the students bring to my office are within the same
class of questions and difficulties as when I was teaching Pascal. I have yet to meet a
student who attributes his or her difficulties directly to the complexity of the language.

The attrition rate using Ada in the core programming courses was not affected. For
the first course we had experience up to 50% attrition rate, for the second course up to
33% attrition rate and for the third course no more than a 25% attrition rate when
Pascal was the departamental programming language. Many students drop the class due
to the fact that they do not have enough time to devote to programming. As I mentioned
above, most of the students are full time and hold a job while going to school. We feel
that when each student owns or has access to a personal computer the attrition rate
will decrease significantly.

Compiler Experience.

During the three years we have been using Ada in our curriculum we have used two
compilers. In the fall of 84 we started the teaching of Ada using a pre-validation
version 1.3 of the Telesoft Ada compiler. This was not a full Ada compiler.

This fact cause some difficulties. The students could not readily key in program
examples from the text book, or try out some of the syntax explained therein. This fact
put more work on the instructors as we have to teach the standard features of Ada as
well as the version that seemed to work in the compiler we had available. The most
notorious features lacking in that compiler version that were noticed in the teaching of
the first programming class were the lack of generic io packages of textio, the lack of
some type transfer functions. and the fact that output parameters could be read.

• • • -. • " " • •" " * - "
°

", " o " - " " , • % "% % " " =." "" - " 56

There were many other problems with that compiler most of them due to the
incompleteness of the compiler. We felt that the use of the version 1.3 of Telesoft Ada
would have lead to very serious problems with the implementation of the second and
third programming courses.

In January of 1985, the Telesoft-certified release, Version 2.1 was substituted.
This version for VMS was submitted for DoD validation early in 1984 but not validated,
failing two programs in the test suite.

With some minor difficulties, this version was used for the spring semester of 1985
in both the first and the second programming courses.

During the spring of 1985, the DEC Ada compiler became available. We have used
that compiler from the summer of 1985. This is a full Ada compiler which is supported
by the DEC VAX/VMS symbolic debugger. This is an excellent compiler. It generates /
relatively small object files and the run time of the executable image is more than
adecuate for an academic environment. •

We currently have the latest validated version 3.10 of the Telesoft Ada compiler.
Judging from the list of problems we have encountered with this version (see appendix
), it is clear that the compiler to use in a VAX/VMS environment is the DEC Ada;
Telesoft Ada is an adecuate choice, but requires large amounts of secondary space to be
allocated to each user

Books review.

Below, you find a list of some of the Ada books that have come across my desk or we
have used in our courses. I still have yet to find a good book for the introductory class;
several books claim to be introductory books; among their faults are poor writing and
style; some books do not focus on the teaching of programming from the point of view %
of the principles of software engineering; some books have many errors regarding either
the syntax of Ada or the use of the Ada features. One can find adecuate books
nevertheless, but the instructor must carefully read the book to warn students of
possible errors or misleading information and the instructor must complement the book
with his or her own material. Most books assume at least a minimum of programming
experience.

Books aimed to an introductory class.
Introduction to Ada. David Price. Prentice Hall 1984

First lower level book to appear on Ada. Much of the examples give do not give
justice to Ada; they are more Pascal like examples. Some of them are actually
incorrect. (See page 70 for example). It uses poor examples to show different ways in
which an Ada feature can be used. The author breases through the syntax and semantics.
Not Recommended..'S.

Introductory Ada. Packages for Programming. Putnam P. Texel Wadsworth
Publishing Co. 1986. It introduces Ada and in general programming via packages and
subprograms. Since no syntax of statements is given at the beginning of the book,
abstraction gets well served. When introducing syntax, it uses cross reference to the
LRM. Exceptions and LOOP are introduced early. From there control structures is
completed. Types are introduced starting with basic types and finishing with composite
types (arrays and records). The book is finished with a closer look to packages. Good and
illustrative examples throughout. The book seems adecuate for a beginners class if
instructor complements book with his or her own material.

Ada: An Introduction. Sabina Saib. Hollt, Rinehart and Winston. 1985. The book is
full of idiotic and erroneous statements (.... the safest form of a loop to use is the for

r,7

Or

-5.VA 7 ..-

loop.... for example). It coudl be used in an introductory course but instructor must
carefully read it ahead to prevent misconceptions.

Books aim to students with programming background.
Most of the Ada books out fall in this category. The large mayority of them teach the

sequential part of Ada to a good depth. Most of them gloss over the concurrent features
of Ada. The list of books given below can be used for a good indepth introduction to the
sequential features of Ada. All books must be complemented with outside material to
be used in a class equivalent to CS 2.

Ada for Experienced Programmers. A. Nico Habermann. Dewayne E. Perry. Addiso
Wesley. 1983. This book teaches Ada by comparing it with Pascal.

An Introduction to Ada. Second (revised) Edition. S.J. Young. Ellis Horwood Limited,
Publisher. 1984.

Programming in Ada. Second Edition. J.G.P. Barnes. Adisson Wesley. 1984.

Introduction to Ada: A Top-down Approach for Programmers. P. Caverly and P.
Goldstein. Brooks/Cole Publishing Co. 1986

Ada Language and Methodology. Prentice/Hall International. 1987.

Conclusion.

We feel that the choice of Ada as a departamental programming language has been
benefitial to the teaching of programming by having a language that is both modern and
supports the needs of modern software development, for th eunification of the
curriculum courses with a programming compoenent and ultimately for the student who
has the opportinity of exposure to a language that is making a definite impact in our
field. We have shown that it is possible to use Ada in the introductory courses with
more benefits than disadvantages; and these benefits accrue as the students take the
more advanced courses using Ada. It is benefitial to the teaching of programming to use
a programming language that is a standard language, with modern features and which is a
real language that is making a definite impact in the world.

Bibliography.

[Ada 83] Reference manual for the Ada Programming Language, United States
Department of Defense, Washington 1983.

[Augt 79] Austing, R., H. et al., eds. Recommendations for the Undergraduate program in
Computer Science, Communications of the ACM, Vol 22, no.3, March 1979, 147-166.

[Auge 83] Augenstein. Moshe, Aaron Tenenbaum, and Gerald Weiss, Selection a Primary
Programming Language for a Computer Sciece Curriculum. PL/l. Pascal and Ada. ACM
SIGCSE Bulletin, vol. 15, no. 1, February 1983, 148-153.

[Evans 85] EVans H. et al. Ada as a primary Language in a Large University Environment.
Proceedings of the 3rd Annual National Conference on Ada Technology. March 20,21
1985.Pages 7-13.

[SigAda 871 SigAda Education Committee Academic Liaison Working Group
JCollege/University Ada course survey Ada Lettprs Vol VI1. No 2 . March. April 1987,
299. to 2-101

Appendix.

The Telesoft Ada compiler has very annoying bugs and characteristics that can render
it undesireable or actually unusable

1. Requires large amounts of disc space. 5000 blocks is not unusual.

2. Can not instantatiate generic packages.

3. Files produced by the compiler are huge. For a "one line program", the DEC Ada
compiler produces a five block file. For the same program the TeleGen2 compiler
produces a two hundred and eleven block filel

4. Text input is hopeless.

5. There is no debugger.

6. The DELETE operations on the Ada library only removes the names form the library.
It does not make the library any smaller.

7. The FORMAT utility is useless.

a.

* 'a

"a... -.

F.

This page left blank intentionally

Ner..

604

L AI*?JLPvI
,,-.U

Up'.

.

'.4_

This page left blank intentionally,.

a'4

a.

" :U,.I

PP

.4'

.4'

0

This pegs left bla.k I.eeutIoually

0

4'

'4,

.4

A

A.
-p

.4-

4 V~?..-%:%tUP.~.'..~*d./.~ .4-..

Introducing Adag' and Its Environments
into a Graduate Curriculum

Major Patricia K Lawlis and Karyl A. Adams
Air Force Institute of Technology

Wright Patterson AFB. Ohio 45433

A h-trac I

A(the First symposium sponsored by the Ada Software Lngineerum-
Education and Training (ASEET) team. there was a presentation discussing
the growing commitment at the Air Force Institute of 'Technology iA"T) Ii,
the Ada language and philosophy L1awlis. 1986) This paper is, in a sense,
a continuation of that presentation Since the time of the last Symposium
AFIT's curriculum has continued to refietI continuing use of Ada
Improved facilities, expanded LourSe work. and greater tnmphasis (iij

research have each contributed to the expanding role oft Ada in educaniq,
the AFI student

Lrnderstanding the grosking need within the)eparitnent () IDetrr'c
DoD). AF17 has accepted the challenge to educate Ada professionals I' 1

that end. .AJ- strives to prov ide iS ts ficers with the nkost ad~ aricd
information available regarding the language and its uses, particularix as i
ipplie% to militar% systems and applications I he Institute - omputti
faculty has taken an active role iii defining and c.oristanti> imnpro\ ing thc
.Ada curriculum in order to ref-lect the current statr o)I the Ada tei hriulog',
and research

In concert \oith the Io)sphilosoph,. that A\da i' mi)or than itif
anguage itself. the t urric ulurn doeN riot iltethe larigua~v I In, apr' at h

taken is to present the language within a fratmewori. ol ii nlr

erigine- ring print iploes it e-nlihqidies ch 4 JI C r.: I I (- Iot

criv ironrnent % that ,hould ,upplit \da dr~ (lhorirfitit f lic rf1jIm

airena in ^,hit..h \Ada muki solI\e pt 4hlrmi I11-11rohti x

will better prepare the \HfI studentI I" A-''-urTW J I'lu1IL11 '"-o
the Ada iiommunit%

New _ourse, haic hern Jret-1oprd 1,or pcw ii(ji '1%

environrrents, anrd real imi Atesi~lzn anid1sIptu'iVU I t.

courses have evolved to present a more complete view of the language
within a practical context.

From all indications, the inclusion of the the advanced course work.
coupled with increased use of the Ada language throughout the curriculum.
has been a critically important step in the maturation of the AFIT graduate
computer program. Students and instructors alike have acknowledged the
value of the approach. Accompanying the maturing course materials ha,,
been an increase in Ada-based research. As the program has matured.
the level of research has reflected thai maturit) with current thesis effort, N
investigating facets varying from compiler performance measures to the
study ot internal interfaces within proposed Ada support enmironment,"

It has not been trivial to convert an entire graduate program iN I
new programming language. There have been failures or setbacks. I,.

counter successes. However, the results of the Ada ettoit at AFlT ha\-,
been encouraging and generadly positive Enough so that it is important n,
present them, and to share those successes and failures that accomlpan\
such an undertaking.

I his paper provides a look at the current AFII programi It discuse,
thc roots of the program and descrbes hovl the AIJT program ia',
emerged over the years In conclusion, the paper states the impact,, t
Sncorporating Ada as the foundation language tfor the curTTiuurnII,

I n t r od u c t i o n

I he introduction of Ada into an estahlished coriiputertc! ,Ci iiC atid

engineering curriculum is a diffic, ult task It requires insight ded-a n 1t.,li 01

and time to realize success [-acult , members at AVI-'l rtoCgni/ed the ricd
for Ada educatini Moreoe l. the realiz.ed AI-II , itenIIl ,J .j Iln) .
educational tesourcc and began I() incorporate Ada Intli ite lIaduilC"

UiIICUlUiri alound 1980

Jhis hirst \vleture vwitlh Ada Aa,. a siimall)1)i,, [liel n j iiil t-I-"

U. C I0. 1 a k (,, ap)propilate su))Ht) l ta(li C , i ll in\la.t I (b \ , r1ii .,,c

rTi(lIe th eals (ll\ orts rathci dd\tlIturcs(lilt- Il i alitd 111h 1)I.
()[)IitiM u I ',Ull i) f l tiiO lalluage A ll1I It Ut' t ri x i, id O.tlfltfl: "

gn vo th in) tile fac l i , e d o i Illil) s tus(t) ItI lallrUat.1,
26

AlI I t(dla\ ' l uppo ti, a ilta1ti\tl\ r,lu'ti AIit h d, i w ti ii ultill Ii
d(I(II(M I I IWIndriCNItal settI\Adef rl(n(.en urs 1agh 11 U 1 o h V1,1

.#'.,-., ., -... ,, ..,-..........

many of the advanced courses in traditional computer science areas, such
as graphics, compiler theory, operating systems, and database theory,
either use Ada exclusively or for significant project work. Several new
courses have been brought into the curriculum in response to the technical
areas so vital to Ada's complete use, such as software support
environments and real-time systems. A look at the several year process
will serve to define how AFIT developed its Ada capabilities.

p%

The Early Years

The early experiences with using Ada at AFIT were undoubtedly
much like those of other universities. With the language being so new,
there were few who knew enough about it to instruct. There were few
textbooks, no compilers, and very little support in the commercial world
when AFIT decided to venture into the Ada world. The language definition
hadn't even stabilized yet. It was a venture that only the strong-hearted
would undertake.

P

However, during that time, the interested faculty at AFIT developed
a first course in Ada. With no access to Ada compilers within the institute.
the language could be studied only from a theoretical standpoint. Exercises
in programming Ada code were "hand compiled" by the instructor. This
was certainly an adventure for student and instructor alike' An Ada
course was taught several times in this fashion before any support
facilities were available. This lack of computer support certainly detracted
from the overall effectiveness, and contributed to a general feeling of 7

'incompleteness" in the course. Despite the difficulties of instructing this
powerful new language in a virtual support vacuum. Ada had been
introduced at AFIT The potential of the language was recognized and the
impact of Ada began to spread to other courses.

The first courses outside of the actual introductory Ada course t,.
reflect the influence of the language were those in the compiler sequence.
Long before AFT]! possessed an Ada compiler, students were challenged to ',

delve into the language definition as part of the compiler courses. Projeci
work involved the development of partial compilers for the language in
Pascal By contrasting the requirements which Ada. versus less powerful
languages such as Pascal, levied on compiler writers, oreater appreciation
of the technical composition of the language was achieved.

(iradually. other evvnts began to untold at A111 whch enhanlced tic
fledgling Ada program A milost significant tacet of the infant)rogralm , .5*

the beginning of Ada-based research for the master's thesis work None of
these early theses could make use of Ada as the language for development.
but they did look at several of the technical aspects of Ada and its.
necessary support environment. Students investigated such areas as
compiler design, debuggers, editors, and mathematical support librarie,
which would exploit and support the features of the language IGarlington.
1981; Gaudino, 1981; Ferguson, 1982; Lawlis, 19821.

Thus the first days of Ada at AFIT were a struggle. But the potential
for Ada was recognized, and interested faculty member% continued to push
for its continued use. Those who understood the potential for Ada
continued to expand the role of Ada at AFIT They pushed for better
computing support and for an expanded curriculum for the computer
science and computer engineering students at the institute. [acu Ity
members also became active in the Ada community and established AFIT',
membership in task teams established by the Ada Joint Program Office
(AJPO). Slowly, but surely, their efforts began to pay dividends

"/

".,

The Impact of Compilers

With the advent of available Ada compilers, the AIT program wav,
ready to move forward with the rest of the Ada community [he trst
compiler acquired at AFIT was an early, unvalidated version of the
TeleSoft Ada compiler, along with its TeleQuiz package, which rai on a
VAX under the Berkley 4.2 Unix r m operating system Although the
compiler had not yet passed validation testing, it did provide AII with a
much needed support facility.

With the receipt of a compiler, the manner in which the Ada hai ed
courses were taught changed. The introductory Ada k-our,,e oold einhir,i. c
the practical aspects of using the language in addition to Itih. ihvrct ,
studies. Compiler projects could now be accomplished In1 .\d,t Iit -i.t t P%

other programming languages.

While the TeleSoft syst,-m provided a heretoh)re nl C l 'it .
capability, the most significant impact on Ah I-'" p1 ogram ,.t I
acquisition of two noteworthy, validated compiler system, In ttll\ IPOS
both the Verdix Ada Development System iVAI)S) for Inx ,and ithe)1(

Ada system for the VMSM operating system were btought into) h

institute. These two compiler systems, coupled with the I cleoti * 'I'.

provided AFIT with the basis for complete instrutIIt lion in " tIanLnti,.,,'
~N.'.o
p ',~t

- -' ',('/' , 5' E¢. - . ' ' * S','',,,,, q '. ". ';- ', ;;''':',,,A ,," ; - . ..- , -" -. ,,' .,....

features, drill exercises with the TeleQuizzes, a basis for compiler
comparison, and complimentary facilities under both Unix and VMS.

A Changing Curriculum

Going from a dearth of capability to such relative prosperity opened
many new avenues for Ada education at AFIT. During this timeframe, the
interested faculty at AFIT developed and proposed a radical change to the
entire computer science/engineering curriculum. This change highly
recommended that Ada be used as the "official" language for the computer
science and engineering students, completely replacing Pascal and C in that
educational series.

Such a proposal had severe implications for the existing curriculum,
as it would in any organization. Two departments within the institute
cooperatively administer and instruct the graduate computer science (GCS)
and graduate computer engineering (GCE) curricula. Agreement within one
department for such a severe departure from the status quo can be
difficult. The difficulty with devising a reasonable plan which could satisfy
both departments' needs was significant.

In the final telling, the curriculum committee accepted the proposal
to incorporate Ada as the basis for the GCS/GCE program. The class of
students entering AFIT in June of 1985 was the first class to start the Ada-
based program. In order to smooth the transition period to Ada and to
satisfy departmental requirements that well established courses not be
adversely impacted by mandating an immediate conversion to Ada, only
the introductory programming courses at AFIT were completely redefined.
'[hat really was all that could be handled by the Ada literate faculty
anyway. Only three faculty members had any significant background with
Ada and they formed the core instructional pool for the Ada-based
courses.

lhe introductory course was again revamped to focus more on the
software engineering aspects of the language. Programming exercises
were expanded to make full use of the available compiler support. Armed
with it convictlion that Ada could, and should, make a difference at AFIT,
the f aculty prepared to greet the incoming class of students.

-: €.

•-, ~ ~ *~ '" #

Growth of the Ada Program

In the first class of students to start the Ada sequence there were
sixty students. For a faculty still relatively inexpert with Ada, and
certainly not fully comfortable with the new compilers, this was a large
class to manage. The students were divided into three sections and the
first major Ada instructional effort was underway.

One problem area that immediately surfaced was the computational
load on the computer equipment when numerous Ada students were
developing software simultaneously. The system was known to handle up
to forty students , but the detrimental impact on system response time
was felt by both the Ada students and all other ART users. This first class
quickly demonstrated the seemingly enormous space and time
requirements that Ada development systems require.

Satisfactory resolution of the facility scheduling and resource
allocation problem, to fully support Ada development while not hampering
other equally important programs, became an on-going effort within AFIT.
While no complete solution was found, by attempting to balance the
computational load on the centrally available systems, increasing the
available computational power, and trying to encourage good, common
sense usage, the situation was at least tolerable.

Students and instructors alike survived this first session of Ada
education and it was difficult to determine who learned more. Prevailing
sentiment was that the instructors emerged much the wiser for the effort.
In addition to honing their instructional skills, faculty members had
successfully interested a significant group of the students to undertake
Ada related research work.

The research that was undertaken by this class of students provided
the much needed impetus for more AFIT faculty members to become
active participants in the Ada curriculum. Most of the remaining twenty
instructors had maintained a somewhat ambivalent posture toward the use
of Ada. Within the advanced courses there had been no compelling reason
to introduce the new language, so it was not used. Ada had been seen by
many as just a language being taught within one department, but not to he
used within the other.

These new "Ada" students advancing through the curriculum, and
their research, forced the next major advancement in the acceptance of
Ada into the curriculum. Faculty found it more necessary to be conversant

68 Is,

with Ada to serve as advisors and committee members for thesis research
Some were "stunned" to discover that students did course projects in Ada
because it was the only language they knew! In response to this
heightening faculty need for Ada education, a course for the faculty wa,,
conducted. The course was well attended and served to improve tacult%

awareness and understanding of the capabilities and features of the
language. As a result of this experience, more of the AFIT faculty were
beginning to see the potential for Ada and the need for .a more
consolidated curriculum. There was much work to be accomplished beforc
Ada was fully incorporated into the GCS/GCE curriculum, but the
foundation had been established.

The response from the first class was positive. Although d\ta was
quite different from other languages with which the students were .'

familiar, they recognized the importance of understanding the lol)
sponsored language. Many enjoyed learning and using Ada and felt it
would be very useful in future Air Force careers. Once the first cla,
completed the course, AFIT instructors were busy improving the content -
based on student critiques. By the time the next class of students entertd.
AFIT in June of 1986, the Ada courses included a much rcvi,,ed
introductory sequence. better integration into advanced computr c

courses, and advanced courses in software environ/ent, afrd rCa I tme
operations.

The actual instructing of the language was still accompli,,hed criticl\
within one department. The vast majoritv of the coures which u,,ed Ad i
for project work were also offered out of the one departmen t. SIMtlt11
critiques of the program, their desire to continue to use the laiieiagt thic,
were taught instead of learning a second or third and n wc LacuIlt\
members who had a working knowledge of the langtage '%crc calsi t
slow infusion ot Ada throughout the curriculumv, Intructor in\. o\h mct - .

improved and more faculty \ were attempting to use L-\da a" tii ,' rt I tt
of their courses. Another coure for faculty members '. Js titicic'l, .it'.i

several faculty attended the formal classes .%ith the si t ltt \ 11llc I t hr .-.
were still many roadblocks to a comllplctcl, intc"r,ticd :\,., ,utit' ,lto
slow acceptance was at least beginning.

AH's Current Curriculum J

tlhe current curriculum at AiI I attempt, t) pfos idec s ltttl \.1,1
skills to computer scientist, engineer, anld n ai, cr Alike \dt ltv'A, 1, '.
the rminimum goal for all of the ((S/(i;U . \ttlcnt1 I lir . stiilttt "-"

%*• %

' "-- . ," - ' ,,: " - ' . .9 , VV * • " ",- ' • +' ' ' -- " -r ' -- ,',*- * . 4' ," ' -" . .".V" ?."

taught Ada as their first formal language. Other engineering s'udents in
electrical engineering specialties also learn Ada during their first few
months at AFIT.

The introductory program has been defined to accommodate the
computer specialists as well as other engineering students. Two Ada
courses are offered, each tailored to the specific needs of the identified
educational path. One course is the "Introduction to Software Engineering
with Ada". This course is mandatory for all GCS/GCE students. This is a
comprehensive course designed for the experienced student. It covers the
full extent of the language features. The focus is not on Ada syntax, but
rather on the embodiment of software engineering principles within the
language. Students are expected to be proficient in the use of the
language, understand the philosophy and rationale behind the language
and its support environments, and be able to reasonably design and
develop small Ada code samples. The course also serves as an introduction
to basic data structures, with man, of the programming examples
illustrating the language features which support the definition of such
structures. The course has been designed as a one quarter course with
four hours of lecture and a three hour lab session each week [ENC. 19861.

,.,

The second introductory course is much less rigorous than that for
the G('S/(CI- students. This course has been designed for those engineering
students who take some of the same advanced courses with the GCS or GCE
students and need to have a fundamental knowledge of an implementation.
language. These students do not need the in-depth knowledge that the
computer track students require.

The alternative course is an "Introduction to Computer Science". The
course is designed with the inexperienced student in min,. It does include
very basic software engineering tenets and rudimentary data structures.
It makes no attempt to cover the entire Ada language however. It is a
much gentler introduction to the language, as is reflected in the choice of
textbooks, the introductorv text by Texel [Texel. 19861. While the course is
not as rigorous as its compantonl course, the stutde its are expected to
become knowledgable and proficient in the use of basic .\dla constructs.
Ada will become their Iinguage ot irplerentatiori, and the ntu;t be able.
to satisfactoril, construct working Ada programs 10[80.1 , ")-6 .

With the introductory course completed, tie frequenc\ with which a
given student will see or use Adia during the remai|rnder of the .\FIT sta\ i,

variable. Although lan v fac tor,, strongly push for a mo re •Ofl si ste n tLSs
of Ada in the program. parochial interests have continued to Support a-

" 'v %' n' " ., % ,1,,
'-

% '- "''., "- *.~ ". . - ." " * ' "*. " ;i" • •" . ' -":*. " - '. ' " ,, *4' " • " *,* N ' " . '.. ., "

house divided. There are advanced sequences and courses available to
the GCS/GCE students which make exclusive use of Ada in support of the
course materials.

-p
The two sequences which are completely Ada based are in the areas

of compiler theory and computer graphics. As discussed earlier, the
compiler sequence has used Ada as its focal point for several years.
Contemporary offerings have used Ada as the language of implementation
for partial Ada parsers and compilers. The graphics sequence is a recent
addition to the list of courses using Ada as its chosen language for
implementation. It has taken some time to prepare an adequate basis of
device drivers that permit reasonable use of Ada as the programming
language.

Courses which exclusively use Ada are those courses which have
been specifically devised to study Ada related topics. To date, there are
two such courses which have been fully defined. The first, a course in
"Advanced Software Environments". has been immensely successful. This
course examines the STONEMAN (DoD, 19801 model as an example of a
programming environment definition. Students then analyze other
existing environments. Although Ada environments provide the nucleus
for such as study, other environments which have had significant impact in
this area are also examined. A

This course has been offered twice in the past year and each time
has been well attended. Students have enjoyed the course and several
have selected thesis topics based on material covered in the course. Clas,
software projects have resulted in a rudimentary prototype Ada
Programming Support Environment (APSE) which has served to improe -,
AFIT's Ada support. This environment has also provided a basis tor future
research and analysis for class efforts and individual thesis work.

This prototype APSE, called the AFIT Research Concept for an Ada
Development Environment (ARCADE), takes the approach of providing an
easy and uniform interface for accessing AFIT's existing Ada suppOrt
facilities (VADS and the DEC Ada systems). Its use does not requirc
knowledge of the underlying operating system or the Ada support sstem
Thus it has been a useful tool for the latest group of Ada programminc..
students [Austin, 1986a; Braaten, 1986; Linski. 1986a1.

The second advanced Ada course is one in "Real-Time Softvre
Systems"'. This course is scheduled for its debut in 1987. The intent oI thc
course is to focus on the issues unique to real-time processing and to

71

r. r C,, dm.f ., C~~* * ..

analyze how Ada addresses them. Hopefully this course will meet with the
same success as the environments course has. Defining and preparing the
course has been a challenge, so the results from its first offering ire
eagerly anticipated.

There are additional courses throughout the currculum thAt ult" N,.e,

to some extent. The operating systems, data structure,. .nd dita,
courses are beginning to mandate its use for at least 'o,,e prore t o1,rk I !
some classes language choice i, arhitrar, and lctt to the ,ttdc;:
prefere "e. (Other languages are mandated in ,,met .ian,,
rometlmcs for rather arbitrar, reasons It i, thi, area int ,r,,t,, n . .

\,ithin t-ie program that still remain, to he StMIt aCtori ,, adre',,cd

A discussion of the A1:IT curriculum wIMu t h, ,n. oini.,. h
some reference to the research that conilinent, it I heI N r,,'e.1r 1 A
integral part of the AFIT master , Program All , .initId.1t- i
success fulI complete an appro' ed thes,,i effort :in re', . ..

degree Such work must demonstrate the anIddate ,it t'-t
knowledge from ;e,,eral "our;e area, lh- A a re,sr. c i \f 1 .
grown through the 'earI as tht" our-r theItkl e,, I, h
serve, to comiiplirnent. and otterl enhanc. the .', ,

The Value of Ada Research

While it haN heen new .irdini: t r the -' m vA i '.
co erage of .\da and related tCchn, '.i1C N th, m,, .t ,
has been the \da r'cearch)nc , lI , r :. -
research I he n.itur: a ,n d n itur .r h , , ' ',7I. ,' 'r , ,

dramatik .lk ince that Time \ . " ' A i. '"

a.ilable reeear h ha' hraih ict,t 'V r ' '' '
1 i'.: . i ' . *

prac+ tic~iI apl itt .tl 'rN \iu t .r t: ' .. ' :. . • . , .,,

research .indei p 'r f,.rTT 1.1 . Li A\ ', T
,app li ,.t , i rto,,n,1 ,, rl , \ ' * . .,,,--,.

touched ,then .irc.IN *, \l 1 . u, . ..

Iv try) i)! r N

F tl \l t i , l| i Ir' ' i'' h tf . Fr , ,x . ., , . .

sut' r! hal N 't'': ' " ' N+ , , • .

'pec ~il 'ed ~ j ii ti' i'. .. ' .

" "• ? + ' " " ' " *. • . •*~ + '* .. , * " * • *. . . ". -.. . • - * .* .. *••"•"• •" • •-m

These organizations, as well as NFH1 insttut:cn%, ha\.c helped to define the
rudiment% of an Nda tt-earch prograrn that %hould ptoduLtr a tocusced
setie% of research Proircv. for the nev.1 -,e'crai \car,,

A% Ada rece'urcce, hA~ e matured anti h'econic a\ idiable at AFHI the
potential tor research hi\ imrpr&o ci somei ti thr \er\ recent research hA'
dealt with thr most ,ntrrmpotarN of *\JLi i-.uc\ Se e rci it the, topic',

tron thesir Crtort% .11! !rriatd t, the ,,tcs I so,~e I ta ied \&ith , 0t t A I T

support t:- Iron1nicnt\ uc rttott\ ha.v~ done rmich to ,iretiori \1F I
research programn .ind 1.,p' i . UN *OT I Utrr Aorik

t(nc tj,-h ri-i, obkt- I, the ive' l\olt~ed Aith the t ie rtia,
deIIIt Iiri n ~ %,ithit n I AVN % ,r k In ".' %, Ih .ti t II l pa r, 1.
Implementation ot 'hr (om."nor-f \;'e Intrertatr c t (IS, [),A), the,,; rIi
%udent %j .ilc to iniceratir thr (*,\IS ,ith \R(Aol. the prototpe \FPSF
rhit had rrutlirkl trom the en\ irtonnient, lja, Thc stude rn t aI i
tran'pif)(ie thte mritii \ PS t tr'v one Ivprjtinl \ oenr I nix -0 tonothvy

VAS .I~-- rairitainini: jernoti hi ?n.iopv.)ithin -ach %Cr~iotl ihix %ork

tran, portl i h.121 ! *hc f ivtr ta, - mivie iru'i the noi. r dtc i r,, iI,
intror~iti-n -it ptoIk , !htr he --',, F) 11 V r In' ?\I

)thcrr h vn % ! \'ti I I Ii t h t I,-ti I t'' ot \d i 1 11 t(* r t.

pro, Idt. fill, 'J '' 11 1 " ~ I v gra I I,*' 1 re ..1 Ic t'a

~iCi~~totl~ i'.i~i'or he t'a~n~'~huriiar tilptc IT tc r ta A ~ r
.ureca" .Ire, *. i r ca% I r tnirtre t :I, the \da 't 'rid I,, %kork tacr I)If Iit

Iflr% I Ij rah I -w.t'ihtic' he, onle niorr OrnriIOripl,~ c)IC rhe I'
1 ftor.!t riih' ci I,' rrrie -m ~rn A *d p tgrga rlicrtakc I n

Ai n 1k~ i n W I'J * TIu ' 1 1 0 T V \ ' h i I A V t I n e V I' t h C 1 r . 1 t 1 1 , I k e r n e l 's \ \ IC r v . .5

it If 1; 1 111 TI 'i 'riti1 Itso I tc eton ri na In t I ne d

k Sw p t. 11 a d h t~ I .1 '71 i' -1 iv o f t! .vii I n i r .ie h, rIndIn t o t heV
I"K n t I v t pe I 't I % h II I)fne htin I i t tet, IT~ VI,c

re-A ~ e I i Ti ',it 'I~ Iitj, w th ut tei t,4- (, I t the it hi i t i c rY7
1r ~Itt,' it 1C -, t' If.~j ' iJ;,) ., 1)1 1) HN 1) Cr Cr' i t~r it C A i

h I h i l, i I I()'. II I' Ii I~~f o I te 1 1 t .i ,e k ot~ d \1 r t'l TI ITI1

I here ha i er ti Iri c I tee I) uillt. T i r ci t s ot tit \ I Iat
I ar to' riI Y) tit cii .I\ .1 n e h h c i I . 1 T-Ct Cei\ 1112

continued attention in future projects include the environments area,
compiler design and performance issues, graphical applications, hopefully
educational issues, and concurrent and distributed processing with Ada. A
healthy research program should be indicative of the program's overall
health, as the research could not progress without strong course support.

Ada's Future at AFIT

As it is with any growing thing, the future of AFIT's Ada program is
difficult to predict. The last several years has seen the curriculum grow
from its humble beginnings into a stable program supporting the education
of Ada professionals. Both the fundamentals of the language and the
concepts of the intended use and support of the language are emphasized.
Practical use of the language to support traditional computer science areas
is progressing. The progress seems frustratingly slow, but it is progress
that can be measured over time.

The maturation of the program has taken a significant step forward
with the addition of the advanced courses and the improved research.
With the introduction of the environments course, and it is hoped the real- .'
time course, a dramatic cyclic effect has been noted in the interaction of
classroom work and research. The research topics have actually provided
facilities that can be used to support classroom projects and analysis. As
these research facilities are used by classes, improvements are suggested
which have led to additional class projects and thesis topics. This can be a
very healthy cycle if it is managed appropriately.

AFIT's involvement with AJPO activities, most notably the E&V and
ASEET teams, has made AFIT's program and research more visible. This is
important for the continued growth of the program. Faculty members on
such teams are able to stay current with important Ada activities. This
feeds back to classroom material and provides the student with up to date
information in this rapidly growing area.

Overall the growth has been good, but slow. The critical elements in
slowing the introduction of Ada into the curriculum have been
misconceptions over the language, strong adherence to parochial interests,.
and the loosely defined interrelationship between the two department,
responsible for the education of the GCS and GCE students. Until such time.

as the departments can consolidate their opinions, the students \\Ii

continue to see a program that is not as strong as it could be.

74

The departments are moving in the proper direction however. A
new working group, whose principle aim is to define a consolidated
research program, is actively working to open the channels of
communication for the betterment of the entire program. These involved
faculty members are actively increasing the use of Ada in their courses
and encouraging others to do so also.

The future of Ada at AFIT should be bright. The school has made a
commitment to adopt Ada as the language for the computer curricula.
Re'ing a DoD resource, this is not a commitment that can be taken lightly.
i'he increasing research, along with the dedication of the faculty members,
Will keep Ada a viable part of the curriculum well into the next decade,
.ind perhaps beyond.

V

BIBLIOGRAPHY

Austin, Capt Kathy et.al., "ARCADE - System Requirements",
Unpublished report, Air Force Institute of Technology, 1986.

Austin, Capt Kathleen M., Applying Ada Programming Support
Environment (APSE) Concepts for Computer Integrated
Manufacturing Systems (CIMS) Solutions, Masters Thesis,
AFIT/GLM/ENC/86S-2, Air Force Institute of Technology,
September 1986.

Braaten, Capt Alan J. et. al., "ARCADE - Design and Implementation".
Unpublished paper, Air Force Institute -of Technology, 1986.

Cochran, Capt Mark A., A User Interface Toolset for Ada
Programming Support Environments, Masters Thesis,
AFIT/GCS/MA/86D-2, Air Force Institute of Technology,
December 1986.

Craine, Capt David., Toward an Ada Compiler Evaluation Capability,
Masters Thesis, AFIT/GCS/MA/86D-3, Air Force Institute of
Technology, December 1986.

Department of Defense., " Proposed Military Standard Common APSE
Interface Set (CAIS)", 31 January 1985.

Department of Defense.. "Requirements for Ada Programming
Support Environments (STONEMAN)". February 1980.

ENC. Instructor's Handbooks. Course descriptions for classes taught in
the Department of Mathematics and Computer Science. Air Force
Institute of Technology. 199 0

Ferguson. (,apt Scott F.. 4 S ntja Oi re ted Pr,,grrnm in,, " n~ir,,irncit
f.or the 4il Pt ir,,t'ramrmn , ianguage, \1ster lhesis.

APIT/GCS/MA/82D- 1. Air Force Institute of Trechno~logy,
December 1982,

Garlington. Capt Alan R .Preliminarv Design and I/npdementatiu n .9f
an Ada Pseudo- Machine, Masters Thesi%. AITi(i('S/M4A/ I I
Air Force Institute of Technology. March 19491

Gaudino. Capt Richard L. Analhis and IDe'wgn q4 Interai te

DebugginR for the Ada Programming Support Anrionrnent,
Master% Thesis, AFIT/GCY(S/MA/81I) ~,Air bIorie Institute if
Technology. December 1991

Hanson. Capt Markoe S ,An Appli imo~n n d~ant ed Aida 1 andfljk~

Features to Data Structures i a (fah i f'ru jramrnipti
Envirronment. Master% 1-hesi. A[FV/CS%41AiSI) .4 \itI ortf-
Institute of Tec hnology. D)ec einhr 1980~(

Lawlis. Capt Patricia K . ArhjtrarN Pre I lon in j Prehmin~ r. Wrh

Vnit ftor Ada. MlasterN Thetim. AI'I/(1(*SiMA. X2 \t \i I)It v
Institute of rLcchnologN %fr Ii I

[awli%. Mapor Patriua K Slide% for \I[TS-,mpo)iiirii I'll- rfitalI I'll
June 19965

li nski. Lt I).ivid M, 'ARCAI)I- AnIr Depth Arai,,; prupi'10cd

technical report prepared 3% Ai Npe~ tal Stludlv \itlr r ~ I-crt 1tti
of Technology. D~ecembher 1990X

I Jfl%ki. Lt D)id ~ \1 In rv~t omzi' ,j Ote (?,iwri WI',/ /,Ito p.

V4 S), \la,,ter IhjC',I%. \1.1 ((S~f\,Xe~qji \I Ill I ,rj~t

Of I echriohogZ I)cctenher 1 1)86

in A4/(J Pr ,'iP uppn'rt I n i t p 'If c. i M o i-I

S.4

04' t' % N

Ruegg. Lt Raymond S. Ah/T GKS A (;K.S Implementation in the Ada
Programmning Language, Masters Thesis, AF'I"/(jCS/MATHl/84I)
5. Air Force Institute of Technology, D~ecember 1984

1 exci . Putnami P ,Inrodui tor Ada Pa kage.A for Prug alpMi till
Heimtoni. California W'adsworth Publishing (mpi 18

W itt, (api LDwiald J I ',ing' Ada in the Real l ime Atiorw
frn'.iromnment /i.Lue- and (niluion.,~ Masters Ilhesi,
Al-I/(j(*SIM A/ S I) 6 A ii Vrie IFIsillute Of I CC11hnuh g
IDecernher 9i~SA

.

J.

.5,

VP,

VIP.

goS

Applying Formal Specification Techniques in
an Ada-based Software Engineering Environment.

Charlene M. Hamiwka and Laurence J. Latour
Department of Computer Science
University of Maine at Orono

Orono, Maine 04469

Abstract

Of concern in this paper is the application of existing "black-box"
module specification techniques in a practical software engineering
environment, and the integration of these techniques into a university
software engineering curriculum utilizing Ada as the primary design and
implementation language. A three step process is proposed as an aid to
applying these techniques in the design and implementation of a
non-trivial software system. It consists of (1) formal "black-box"
specifications of each internal software module, (2) a specification of
external system behavior, and (3) precise mappings between the two. The
design of a simple line editor is presented as an example.

introduction

Formal specifications of a software module have been the focus of much
attention from the software engineering community. If a module's %
specification is precisely defined both syntactically and semantically,
there should be no errors that occur as a result of either an implementer
or user misinterpretation of the specification. We have been presenting
existing work in formal specifications as part of our software
engineering course, but have encountered some difficulty in applying
these theories to systems developed in class. We observed that modules
interact with each other in one of two ways, regarding the flow of
information between them. We refer to these as 1-way or 2-way
interactions and show that the type of interaction influences the formal
specification approach.

This paper presents both the reasons for teaching formal specifications
as a -art of a software engineering course and some of the difficulties ,1
we have encountered by trying to apply the present principles to complex
systems. It is organized in the following manner. The first section
contains a review of formal specification work done by Parnas, Guttag,
and others. The second section describes our class environment and
objectives. in the third section, we present our experience in applying
formal specification techniques to existing systems and our observations
of module interaction. We propose a method of formally specifying a a

software system that accounts for these interactions. The need for
teaching formal specification theory is discussed in the final section.

IF
79

N ~

1. Review of Formal Specification Theory

According to Parnas Ill, the goals of a specification scheme are as
follows:

I. The specification must provide to the user all the
information that is needed to use the module correctly
and nothing more.

2. The specification must provide to the implementer all
the information that is needed to complete the module

and nothing more.

3. The specification must be sufficiently formal that it
can conceivably be machine tested.

4. The specification should discuss the module in terms
normally used by the user and implementer alike.

The need for formal specification in a software system may not be
immediately obvious. The work done in this area by Parnas (1,2.71,
Guttag [91, and others however, show that semantics of an operation need

to be specified just as precisely as the syntax, otherwise the user may
obtain an unexpected result.

The following is an example of an Ada package specification

package STACK-PACKAGE is

type STACK is private;

procedure PUSH (X : in INTEGER; S : in out STACK);
procedure POP (S in out STACK);
procedure TOP (X out INTEGER; S : in out STACK);

end STACKPACKAGE;

Figure 1. Stack package specification

This appears to be the specification of an unbounded stack, but suppose
it is the syntactic specification of a stack that holds a maximum of 124,

items and overflows by dropping the lowest item (item#l) off the bottom?
(Bartussek and Parnas [21.) Syntactically, the Ada specifications of
these modules are identical, yet their semantics are very different.

English comments have been the usual method of conveying the semantics,
but they are subject to misinterpretation. In using formal
speclfications, we attempt to provide a precise and unambiguous
description of the module's behavior to both the module implementer and
user.

We have chosen here to define the semantics of the overflow stack using

Parnas' assertions on traces. A trace is simply a recording of the
operations performed on a module, in this case a sequence of push, pop,
and top operations.

80

M=D11111

Assertions are typically partitioned into three categories: (1) those

that define a base set of normal form traces, (2) those that define a set
of trace equivalences, allowing us to convert an arbitrary trace to some

normal form trace, and (3) those that define the value of functions

applied after som normal form trace. Together, these assertions provide

a precise definition of the module's behavior. (For a similar "black

box" approach to module specifications, see Guttag (6,81.) Figure 2
illustrates this method. The corresponding specification written in

English would be much more difficult.

package STACKPACKAGE is

type STACK is private;

procedure PUSH (X : in INTEGER; S : in out STACK);
procedure POP (S : in out STACK);
procedure TOP (X out INTEGER; S : in out STACK);

-- Legality: '

F or all T. C (T)

- Equivalences:

U < N < 124 =->

-- PUSH(a,).POP - PUSH'ia,)
-- PUSH(a;).PUSH'a,) PUSHI a,
-- T.TP - T
-- N > 0 -->
_ - POPO. PUSH(a) - PUSH(a) .4-.

Values:
-- V(T.PUSH(a).TOP) , a mod 255

and STACK PACKAGE;

Figure 2. Stack package with formal specifications
t.:

Formal specification theory is still in the development stage in that to
date, most of the work has dealt with small systems. In attempting to

apply the theory to the more complex systems implemented in our class, we
encountered instances where a module's behavior was not. so easily
specified. We will discuss one such example, a line editor, in the
following sections.

If. Class Environment and Objectives

We have developed a series ot software engineering courses as part ot our

undergraduate/graduate program at the University of Maine at Orono. In
them, we present software engineering principles using Ada as both a

design and implementation language, since its package structure is well
suited towards a top-down, informat ion hiding approach to system design.

Ve

811

Since a great deal of attention has been focused on the issues of formal
specification, the course material includes extensive coverage of this
topic. While an Ada specification can be used to abstract away
implementation details from the user, it also abstracts away the
semantics of an operation as well. We present formal specification as a
method of supplementing the Ada package specification. In addition to
the syntax, we attempt to specify the precise meaning of the package
interface.

We assigned a line editor to the class, to be implemented in Ada, as
their software engineering project. After choosing an appropriate system
design for the editor, module specifications were handed out and
implementations of the modules were written for the specifications as
they existed. No modifications were allowed. The editor consists of the
following main packages:

I. COMMANDMODULE - performs a lexical scan of the
input stream and parses it into an abstract data type
(ADT), COMMAND, with a varying number of parameters.

2. DRIVER - calls COMMAND MODULE to get a command then
passes this command to the OPERATIONS package.

3. OPERATIONS - After receiving a command, it calls
COMMAND MODULE to get the various parameters associated
with the command. When these are obtained, it
performs the desired operation on a document. p

A

4. DOCUMENTPACKAGE - contains the file to be edited.

5. TERMINAL - low-level output module.

The layout of the system is illustrated in figure 3. In this and all
subsequent diagrams, we are using the system representation of Buhr [5].
Packages (modules) are represented as rectangles, calls to other packages
are shown by arrows connecting packages, and data flow is the smaller
symbol, O

III. Methods and Observations

Previous work in this area has been applied towards small modules such as
the bounded stack package (Figure 2). However, when developing formal
specifications for our software engineering class, we quickly encountered
instances where a more comprehensive view was needed.

By studying the modules and the relations between them, we observed that
a module and its users have either a 1-way or 2-way interaction. A 2-way
interaction has the users supplying input to a procedure and receiving
some output back. This allows verification that the results received are
in accordance with the information sent in. The stack package referenced
earlier is an example of this type of interaction.

82

Ilia

DRIVER :--------
I- -

I

v OPERATIONS

MODULE ------------------

I V

V --- - - -

- DOCUMENT
TERMINAL '

Figure 3. Line editor package layout

In a 1-way interaction, the users either receive or send information to
the module, but not both. A 1-way interaction occurs in the case of an
I/O package, such as COMMAND MODULE. The package accesses a low-level
input stream and transforms it into an abstract command object, which is
then sent to the user who requests it. Since the user has no access to
the input stream, there is no way to verify that the command received is
the correct result of the input. Furthermore, attributes of this command
may be passed to an entirely different package which then performs an
output operation to a low-level device. Again, there is no way to verify
the output matches that of the input. An example of these interactions
is shown in figure 4.

Our line editor has modules with both types of interactions. Modules
involved in the 2-way interactions could be specified by the techniques
previously discussed; however, these techniques were not adequate when it
came to formally specifying modules with 1-way interactions.

Instead of viewing our editor as a standard, top-down, layered system
depicted in figure 3, we used the idea of a bubble. (See figure 5.) A
bubble is drawn around the modules and the notions of top and bottom
levels are removed. The end-user interface is represented by the outside
edge of the bubble.

83

.:I "' , ... , , ._:.. ,-., .,..

The details of the system are encapsulated by the bubble and unseen by
the end-user (which is a person in our case, but could also be a machine
or another software module). Packages which touch the edges of the
bubble are gateways into and/or out of the system and usually represent
some type of I/O package.

We chose this system representation because it more closely depicts the
actual environment. The end-user receives output from the system which
can only be verified based upon previous user input. Based on this
system representation, we developed a specification technique which can
be broken down into three steps.

Step 1. Specify the end-user interface. This is the only place in our
editor where the total system behavior can be verified, meaning that the
output received is the correct result of the input sent in. The end-user
interface specification should provide an overall view of the system and
state precisely what the function of each operation is. Any packages
that interact with the "I/O" packages must use this specification in
order to fully understand how to utilize the information it receives. .

Step 2. Specify the internal modules of the system (all the packages
inside the bubble). For all modules with a 2-way interaction, specify
their behavior according to the techniques proposed by Parnas or others.
For modules with a I-way interaction, we must assume, at this point, that
all information given to the users of these modules is correct. For
example, in our COMMAND MODULE, we assume the lexical scanner and parser
work correctly in transforming the input stream to a command. What we do
specify is the correct syntactic form of a command. This allows us to
state what parameters are legally called for any command. Figure 6 shows
a partial specification of our COMMANDMODULE. If all modules have been
correctly specified, any errors occurring at this point should be due to V.

one of the "gateway" packages (1-way interactions) operating incorrectly.

Step 3. A mapping is provided between the end-user interface and the
gateway module specifications. Once this is done, we no longer need to
assume these modules work correctly.

Conclusion

People normally have some intuition about a module's function, and formal
specifications are our means of making this intuition precise. By
stating the syntax and the semantics of a module precisely, implementers
and users of a pa2kage are prevented from having different views of the
module's behavior. While the traditional specification techniques work
fine for packages with 2-way interactions, we found they broke down when
trying to apply them to packages with 1-way interactions. To deal with
this, we developed a 3-step approach to formal specification of a system
which seems to work reasonably well for our line editor. We realize this
example, though non-trivial to a student, is still small compared to
existing production software. For this reason, we plan to experiment
further with this methodology on a collection of environment tools

84

".% |

initially proposed in [91 and developed by a senior/master's project
group here at the University of Maine.

Overall, our experience of presenting and applying formal specifications
went well. The need for formal specification was generally well accepted
by the students, especially after they encountered errors due to
misinterpretation of English language specifications of package
semantics. We realize current specification techniques are still in the
early stages of development, but they are useful and will become an
important aspect of system design.

Acknowledgements

The line editor design example used in this paper has its origins in a
software engineering course taught by Tom Wheeler at Stevens Institute of
Technology.

8'.1.'s.

85 ,,.

. -,... -. ,. -... :. .

USER ISER

I

MODULE MODULE

2-way interaction 1-way interaction

figure 4. Package interactions

------ ---- - , DRIVER

I, -a --)

CM ND ---L----- TERMINAL
MODULE',. OPERATIONS

U .. '.e

.- - - - - - - - - - - --l- -It l : i | -- - --- - - - - - - -. .

ShS

package COMMAND-MODULE is
A.

type COMMAND TYPE is (APPENDCMD, CHANGE CMD, DELETECMD, V

(...., SUBSTITUTECMID);

function COMMAND return COMMANDTYPE;

function LINEI return LINENUMBER;
function LINE2 return LINENUMBER;
function LINE3 return LINENUMBER;

function ORIGINAL-PATTERN return STRING;

function NEWPATTERN return STRING;

- - Legality: any command is legal and any series of commands is legal

-- L(COMMAND)
0

-- L(T) ==> L(T.COMMAND)

Equivalence:
-Ji

- - A command followed by any parameters is equivalent to a command
=- by itself (calling a parameter does not change the command type).

-= L(T.F) ==> T = T.F %

- - A command parameter is legal if a valid command type is input and
- - the function belongs to the set of parameters for that command

-= (stated by the FUNCTIONSOF call

-- L(T.COMMAND.F) ==> (V(T.COMMAND) = COMMAND TYPE &
F E FUNCTIONSOF(COMMAND_TYPE)

-- The legal parameters for each command are stated below:

- - FUNCTIONSOF (COMMAND TYPE) ==>

- - L(SUBSTITUTECMD) ==> ORIGINALPATTERN,LINEI,NEWPATTERN,LINE2 A

-- where LINEI and LINE2 represent a range of lines to which the

-- substitute command is applied. All occurrences of
- - ORIGINALPATTERN are replaced by NEWPATTERN.

-" { rest of commands specified here)

Figure 6. Partial Ada specification of COMMANDMODUI.E %

-%

' "!.

- - llill i~iuilO~libl il il~ lii~d~l~~iuF': :: : : : "' -- : -, S [') P' € a.

BIBLIOGRAPHY

1. Parnas, D. L. A Technique for Software Module Specification with
Examples. ACM Communications, vol 15 no. 5, May 1972.

2. Bartussek, Wolfram and David L. Parnas. Using Traces to Write
Abstract Specifications for Software Modules. UNC Rep. TR77-012.
University of North Carolina, Chapel Hill, NC. 1977.

3. McLean, John. A Formal Method for the Abstract Specification of
Software. ACM Journal vol 31 no. 3, pp 600-627. May 1972.

4. Hoffman, Daniel. Trace Specifications of Communications Protocols
IEEE Transactions on Computers. vol c-34, no. 12. Dec 1985.

5. Buhr, R.J.A. System Design with Ada. Prenctice-Hall Inc. Englew .'.
Cliffs, NJ. 1984.

6. Liskov, Barbara and John Guttag. Abstraction and Speciticatir,
Program Development. McGraw-Hill Book Co.
1986.

7. Parnas, D. L. On the Criteria to be used in Decomposing svpmn.
Modules. ACM Communications. Dec 1972.

8. Guttag, John. The Specification and Application to Frogramm.-,0i
Abstract Data Types. Ph.D. Thesis. University of Toronto. Set"

9. Latour, L. J. A Programming Environment for Learning -F' .
Student's Educational Environment. IEEE 2nd Int'l C("ntren,
Applications and Environments. April 1986.

L~ .'

D-RI93 756 ADA (TRADE NAMRIE) SOFTWARE ENGINEERING EDUCATION AND 2i'3
I TRAINING SYMPOSIUM (2.. (U) ADA JOINT PROGRAM OFFICE

NISIED ARLINGTON VA C MC DONALD ET AL. 11 JUN 9? /125 NII~iLO,7IE F G1 / N

jiwA
W L2.2

10

IEIul

'V ~~i ~w .

1-4m

A STUDENT PROJECT TO EXTEND OBJECT-ORIENTED DESIGN

R.F. Vidale
Boston University, Boston, Massachusetts 02215

C.R. Hayden
GTE Government Systems Corporation, Needham, Massachusetts 02194

Abstract This paper describes a project in which five Boston
University students designed, in Ada*, an adaptive routing algorithm
for a data switching network. The 14-week project used R.A.J.
Buhr's object-oriented structured design methodology together with
timing diagrams, Petri nets, control skeletons, and Task Sequencing
Language to develop the design. By the time coding began, the design
had been so thoroughly analyzed that coding, debugging, and testing
took only three weeks.

The project demonstrated that engineering students at the
senior/graduate level, with one course in Ada and one course in
software engineering and using the methodology described below, can
implement a multi-task Ada program for an application with high
deadlock potential. Key factors in the success of the project were
the quality of the students, the design methodology used, the
software engineering principles learned through previous project
experience, adherence to programming style guidelines, and the Ada
language itself.

1. INTRODUCTION

Established design methods for sequential programs, as well as some
recent Ada-specific methodologies, do not adequately deal with the added
complexity of concurrency. General Dynamics [GEND82] found that structured
analysis and design methods, such as Ross and Schoman [ROSS77] and Yourdon and
Constantine [YOUR79], were insufficient for real-time systems with tasking.
Ruane and Vidale [RUAN84] also found the Abbott/Booch [ABBO83], [B00C83]
object-oriented design methodology inadequate. Buhr's System Design with Ada
methodology [BUHR84] addresses the design problems of tasking, utilizing data-
flow (cloud) diagrams, structure charts, and cannonical architectures to
achieve deadlock-free task interaction. However, there are additional
descriptive and analysis techniques, such as timing diagrams [VIDA86], Petri
nets (PETE81], and Task Sequencing Language (TSL) [HELM85], which could extend
Buhr's approach for achieving desired task interaction. The purpose of this
project was to combine these techniques to define an Extended Buhr Design
Methodology (EBOM) and use it in a complex multi-tasking application.

Ada is a registered trademark of the U.S. Government (Ada Joint Program
Office)

89

2. PROJECT OVERVIEW

The GTE Government Systems Corporation, Communication Systems
Division (GTE/CSD) defined an Ada design problem to simulate an adaptive
routing algorithm for a node within a data switching network. The program
required the use of tasking and had a high potential for deadlock. A team of
five Boston University students developed a Requirements Specification which
was reviewed by GTE/CSD. The students were given programming style guidelines
and a preliminary draft of the EBDM.

Before the design of the adaptive routing algorithm was started, the
team exercised the preliminary EBDM on a small-scale problem to test the EBDM
and to develop a monitor task which would later be used in the network program
to monitor and record its execution. The EBOM was revised and served, with
some further revisions, to guide the design of the network program. At this
point the project was about two weeks behind schedule due to the time spent
programming and testing the monitor task. Work then commenced on the design
of the network program, which yielded Preliminary Design, Detailed Design, and
Software Integration/Testing documents, Source Code, Input Files, Output
Files, and a Programmer/User Manual. During the design and testing of the
network program, the students kept records of their effort for later analysis
of their productivity.

Coding and testing of the program went rapidly and smoothly, largely
because of the discipline imposed by the EBDM and the availability of the
monitor task. The two-week slippage of schedule was made up and the source
code was successfully ported to the DEC/VAX Ada environment at GTEICSU on May
8, 1986.

3. PROJECT RESOURCES

The project development team consisted of four seniors majoring in
Computer Engineering, and a graduate student in Systems Engineering who had a
bachelor's degree in Computer Science. All had taken a course in system design
using Ada (SC 465), and a first-year graduate course in software engineering
(SC 511). SC 465 included a group Ada design project which utilized Ada's
tasking features. SC 511 focused more on software engineering, provided a
broad coverage of the software life cycle, emphasized software specification
and testing, and included a large design project using Pascal.

The host machine for this project was the Data General MV/10000
running the Data General/Rolm Ada Development Environment (ADE), version 2.30,
under Data General's Advanced Operating System (AOS/VS), revision 6.03. The
ADE included the following set of software tools: text editor, pretty
printer, compiler, linker, source code debugger, library manager, text
control, and document formatter. All of these tools except the document
formatter were used by the design team. .,

Programring style guidelines for clarity, maintainability, and
portability were provided to the design team. A modified McCabe complexity
measure, developed by one of the design teams in the SC511 course, was used to
specify an upper limit to module complexity.

91) .,1

4. EXTENDED BUHR DESIGN METHODOLOGY (EBIN)

The Extended Buhr Design Methodology used to design the adaptive
routing algorithm begins with a definition of the problem, and proceeds
through software requirements analysis and software preliminary design. The
steps in EBDM which guided the adaptive routing algorithm design were:

1. Identify the objects in the problem, represent the objects by abstract
"clouds" on a diagram, and show data flow between the objects. A master
cloud diagram will typically evolve out of a series of partial cloud
diagrams, each showing a different aspect of the system's function. On
multiple copies of the master diagram, threads of control can be shown as
chronologically numbered data flows.

2. In conjunction with Step 1, develop scenarios of object interaction using
preliminary timing diagrams. These diagrams show data flow, but not the
directions of calls. The timing diagrams can portray more than one thread
of control per diagram, whereas the cloud diagram cannot.

NOTE: Steps I and 2 provide a visual representation of the system, which
informally specifies its static and dynamic aspects, without reference to the
Ada language.

3. Define global Ada data types for the data flow between objects. Compile the
type declarations in a global data types package to check type syntax. y

4. In conjunction with Step 3, transform problem-space objects into Ada
program units. V

NOTE: Steps 3 and 4 transform the system data and objects into Ada data types
and program units.

5. Draw a Buhr-style structure graph showing the program architecture. Add
Buhr's temporal notations to describe local sequencing of entry calls and
accepts. Compile the specifications of the program units to check for
interface consistency.

6. In conjunction with Step 5, add directions of calls to the timing diagrams.

NOTE: Steps 5 and 6 establish caller-callee relationships among the program
units.

7. Identify task sequencing requirements from the timing diagrams and encode
them in Task Sequencing Language specifications. This step forces the
designer to specify task sequencing requirements in general terms.

8. Draw Petri nets to describe local and global sequencing of entry calls and
accepts. Add timing constraints to the Petri nets._",

9. In conjunction with Step 8, write control skeletons for the bodies of the
program units. The control skeletons may be parsed for syntatic errors.

10. Walk through the Petri nets to verify the control skeletons.

This completes the specification of the preliminary design.

91

Z.

5. DESIGN OF THE ADAPTIVE ROUTING ALGORITIU

Problem Description: The problem was to implement in Ada an
adaptive routing algorithm for a node within a data switching network.
Communication between nodes is according to the datagram model [TANE81], in
which the network layer accepts messages from the transport layer and attempts
to deliver each one as an isolated unit. Messages may arrive out of order, or
not at all. A critical requirement of the design is that while user messages
are being routed through the network, parallel computing processes at each
node are computing the minimum delay times to neighbor nodes, and storing the
updated distance table of each neighbor and the updated minimum delay time
table of each neighbor. This presents a challenging problem to the designer
who must correctly design and implement concurrent, multiple threads of data
flow and control.

Requirements Specification: Working from the problem description
provided by GTE/CSD, the Requirements Specification was completed on schedule.
Since the problem description was expressed in Ada terminology, the Require-
ments Specification evolved with a strong Ada orientation. Some preliminary
design was completed during the devElopment of a Buhr-style diagram presented
in the Requirements Specification. When EBDM was applied to the Preliminary
Design Phase, the problem was revisited at a more abstract level, using data-
flow ("cloud") diagrams, from which revised Buhr-style diagrams were drawn.

Preliminary Design: This phase included the development of the
Extended Buhr Design Methodology that would be used in the design the adaptive
routing program. The aim of the EBDM is to specify the required task
sequencing early in the design and specify its implementation with control
skeletons and TSL statements. This specification is progressively refined
through a series of steps which model the system from both structural (static)
and dynamic points of view. To test the EBDM, the design team wrote an Ada
program to simulate the operation of a gas station. The team wrote a monitor
task to record the sequence of task interactions in the gas station program so
that this tool would be ready for debugging and validating the network
program. The preliminary design of the network began a week behind schedule
because of time spent developing and testing the monitor, which was used
during debugging and testing to monitor task interaction. Extensive design
reviews were held during preliminary design, using cloud diagrams, Buhr
diagrams, Petri nets, and control skeletons for describing and evaluating the
design.

Detailed Design: In this phase, the Ada data structures, program
architecture, and control skeletons established during the Preliminary Design
Phase were expressed in a Program Design Language (PDL). The PDL included all
the constructs of the full Ada language, without any extensions, as found in
ANNA, Byron, or TSL, for example. The requirements for task sequencing had
already been implemented in the control skeletons developed during preliminary
design.

92

®r_

Coding and Testing: By the time coding and testing began, the
project was running two weeks behind schedule, due to the time spent
developing the monitor and the extra time spent on the preliminary design.
This extra up-front effort paid off in the testing phase: only one error was
discovered in the entire program during unit testing. Integration testing
revealed three coding errors, which were fixed by local code changes. Another
error resulted from too short a delay in the task TABLE READER, which caused
it to assume the links were all broken. The problem was corrected by
increasing the delay time. During system testing two nodes became deadlocked
because each was trying to send a message to the other. The inter-node
deadlock problem was resolved by adding a timeout to the SENDER task.

6. EVALUATION OF CODE

The Ada source code was analyzed to determine the number of
declarations, statements, and lines of comments. Declaration and statement
counts are determined by counting semicolons which act as terminators. The
results of the counts are shown below.

Table 6-1

Analysis of Source Code Size

Semicolon Count:

Declar- State- Lines of
Compilation Unit ations ments Comments
GLOBALS (spec) 30 0 2
NODE GLOBALS (spec) 13 0 0

NETWURK 18 1 1
MONITOR TASK (spec) 12 0 5
MONITOR-TASK (body) 1 0 0

MONIM'aR 11 46 3
NETWORK CONTROLLER 8 13 1

NETWORK MANAGER 1 4 1
NETWORK-STARTER 4 9 0
NETWORK-SHUTDOWN 2 3 0

NETWORK NUDE TYPE 43 44 4
MESSAGr-ORIGTNATOR 10 25 0
TABLE READER 19 74 69
TABLEUPDATER 16 46 12

UPDITE 4 19 5
TABLE MANAGER 13 50 8
NODE DISPATCHER 5 1 0
RECETVER 9 46 20
SENDER 13 62 10

TOTALS: 231 443 141

Declarations comprise 34 percent of the total number of statements, or about
one declaration for every two executable statements. The high proportion of
declarations is characteristic of a strongly typed language, but also
indicates that full use was made in this project of the data typing features
of Ada.

93

IR % %

7. PROGRAMER PRODUCTIVITY

The students kept a daily record of the hours they spent on the
project, which included all effort such as understanding the problem, writing
the documentation (Preliminary Design Document, Detailed Design Document,
Software Integration/Testing Document, and Programmer/User Manual), coding
(Program Design Language representation and Source Code and Input data files),
compiling and debugging, and testing.

A sumary of the weekly reported effort is shown in Table 7-1 below.

Table 7-1

Hours Worked

Student

Week 1 2 1 3 4 5 Total

3/2 - 3/8 i 6.0 1 6.0
. - .----------.---------- +--------------------.------------------

3/9 - 3/15 8.0 3.0 1 4.0 5.01 6.0 26.0
-- ------ +--
3/16 - 3/22 1 5.0 1 6.0 1 8.0 1 5.0 1 13.0 1 37.0
--- +----------+----------4----------+-------------------------------
3/23 - 3/29 I 10.0 1 7.0 1 9.0 1 20.0 1 10.0 1 56.0

-..----------.---------- +--------------------+------------------

3/30 - 4/5 1 6.0 1 7.0 I 11.0 1 18.0 i 11.0 1 53.0
.- +.----------+----------+----------+----------+----------+--------

4/6 - 4/12 1 6.0 1 12.0 1 17.0 1 7.0 1 9.0 1 51.0
.- +.----------.--------------------+----------+----------+--------

4/13 - 4/19 15.0 15.5 I 15.5 10.0 I 3.0 59.0
.- +.----------.----------+----------+----------+----------+--------

4/20 - 4/26 1 12.5 1 12.5 I 18.5 1 30.0 I 11.0 1 84.5
...- .+.------------------------------+----------------------------

4/27 - 5/3 13.0 13.5 1 7.0 11.0 1 12.0 56.5
- + .------------------------------ +----------+------------------

5/4 - 5/10 3.0 i 5.0 I 10.0 18.0

Totals 78.5 i 76.5 i 90.0 1 111.0 I 91.0 447.0
.-..-------------------- +--------------------+------------------

The total effort reported by the students was 447.0 hours, for an average of
89.4 hours per student. The lowest value was 12.2 percent below the mean; the
highest value was 24.2 percent above the mean. The total effort in
programmer-days was 55.88, obtained by dividing the total hours of effort by
eight. Based on the analysis of the source code, Section 6, and the above
value of total effort, the productivity was 12.1 statements and declarations
per programmer-day.

94

8. PROGRAM IMPLEMENTATION

A test case of the network simulation was run on the Data General
MV/10000. In the run, the node was started up, messages were sent through the
network, and the network was shut down. Some of the messages were not
delivered because the senders in each node timed out when the system could not
keep up with the rate at which messages entered the network.

The source code was ported to a VAX/780 running VMS version 4.2 and
DEC ACS version 1.0 at GTE/CSD on May 8, 1986. The overloading of entry names
with enumeration literals was detected by DEC VAX Ada. After the expanded
entry names were in place, the code compiled without any errors and without
any portability warnings (a feature provided by DEC VAX Ada). On the same
day, the code was ported to an ALSYS environment, which required only changing
the file names to eight characters. Subsequently, the corrected code was also
ported to a VERDIX Ada environment. The only change required was renaming the
extensions of the Ada source files from ".ADA" to ".a".

Program executions were run on four different mainframes, summarized below.

Table 8-1

Program Executions

Operating
Location Compiler Target System

Boston U. DG/Rolm MV/10000 AOS/VS

GTE DEC VAX VAX 780 VMS

MITRE DEC VAX VAX 780 VMS

MITRE VERDIX VAX 8600 UNIX

None of these executions, which included calls to the MONITOR task, experi-
enced any deadlock. The number of messages delivered per execution depended
on the machine and the loading by other users of the system. This project did
not address performance issues, such as message throughput. Designing for
performance is an obvious area for future enhancements of the methodology.

To make certain that calls to the MONITOR task was not a factor in
preventing deadlock, the MONITOR was removed from the code at Boston
University. A series of executions were run, increasing the rate at messages
were injected into the network each time. The rate was increased by
decreasing a loop delay statement in the MESSAGE ORIGINATOR task from an
original value of 5.0 seconds down to the effective-minimum of SYSTEM.TICK.
The only effect was that relatively fewer messages reached their destinations.
No deadlock occurred.

95

N)

E-E

9. STUDENT ASSESSMENTS OF THE PROJECT

At the completion of the project, the students provided written
assessments of their experiences with the EBDM. The major themes of these
responses are summarized below.

(1) The students strongly believed that the EBDM forced them to
specify and analyze the concurrent threads of control early in the design.
They felt that detailed design and testing went rapidly and smoothly because
of the understanding acquired during preliminary design.

(2) The deficiencies perceived in EBDM were:

o There was no clearly defined point at which the preliminary
design was frozen.

o There was no prescribed means of recording design decisions
which would have avoid time-consuming reevaluations of
earlier decisions.

o EBDM does not presently cover absolute timing requirements
or exception handling.

o TSL is difficult to use.

o Drawing and changing the Petri nets is time consuming.
IL

o TSL cannot handle the use of non-message call sequencing, as
in the use of a global flag for shutdown.

o The handling of delays is not presently included in the

method.

(3) The techniques most valued in EBDM were

o Cloud (Data-flow) Diagrams

o Buhr Diagrams

o Control Skeletons

Petri nets and TSL were considered less important. The students felt that
TSL, if properly mastered and supported by automation, could play a more
significant role in design. They acknowledged that TSL motivated a change in
design to entry-driven control rather than a data-driven control, which was
clearer and easier to code. Timing diagrams were considered to be the least i
useful of the six techniques. Once the cloud diagrams were annotated to show
sequencing, it was felt the timing diagrams were no longer needed. There was
a strong desire for automated support of TSL and Petri nets. A requirement to
document why decisions were made should be added to the methodology, along
with the means to control design freezes. Generally, all aspects of the EBDM
could be refined and standardized.

96

(4) The students unanimously agreed that the most difficult aspect
of the project was working with a methodology which was itself evolving as the
design process proceeded. Lack of familiarity with TSL and Petri nets (except
for one student who had previously worked with Petri nets) also caused
difficulty. Understanding the problem was also cited as a difficulty.

(5) Design Changes Forced by the Methodology:

o Using TSL, the design was more expressible if task
interaction was based on multiple entries, rather than on
data values.

o Petri nets revealed a potential deadlock during shutdown.

o Cloud diagrams revealed early in the design that more
efficient operation would result if READNEIGHBORTABLE were
implemented as a task.

(6) The students all felt that time to refine and learn the overall
methodology, as well as the individual techniques, detracted from design and
testing, especially. Prior training in EBDM would have enabled a smoother
application of the methodology.

(7) The students felt the guidelines were easy to use (they had all
been exposed to them previously) and were absolutely essential for ease of
reading each other's source code.

(8) The testing proceeded more smoothly than expected, which was
attributed to EBDM. Errors were more easily discovered because the students
were confident the design was correct. One problem with unit testing was
defining the correct delays so the stubs would function properly, which slowed
some of the unit tests using task stubs.

10. CONCLUSIONS

The project achieved its objective of producing a working design for
an intricate asynchronous event-driven system. The EBDM provided the
framework in which to visualize, design, and verify the task sequencing
requirements before detailed design was begun. The understanding gained
through this process was largely responsible for the rapid and successful
testing of the program. The success of the project also owed much to the
talent and experience of the design team. It was comprised of the best
available students who had practiced modern software engineering methods and
Ada program development on the host system. They were experienced in top-down
modular software development using a team approach. Even with this amount of
training, some aspects of EBOM that were new to most of the students.
Additional training in the use of Petri nets and TSL would have improved
productivity. The students tended to rely on techniques with which they were
most familiar or which were quickly learned and easily applied, such as cloud
diagrams, Buhr diagrams and control skeletons.

This project demonstrated the effectiveness of the Extended Buhr
Design Methodology in guiding the design of a complex multi-tasking
application, thereby providing a basis for refinements of the methodology and
further extensions in the area of performance issues.

97

........ "

11. ACKNOWLEDGMENTS

Grateful acknowledgment is made to the GTE Government Systems
Corporation, Communication Systems Division, for funding this project. Thanks
are also due to the Data General Corporation and the MITRE Corporation for
providing the Ada facilities and supporting the background research which made
this project possible. Finally, the student design team of Steven Gonzalez,
Jonathan Kass, Xwinx Leung, Juan Luna, and Joe Stuber is to be congratulated
for an excellent design.

12. REFERENCES

[ABB083] Abbott, R.J., "Program Design by Informal English Description,"
Communications of the ACM, vol. 26, no. 11, November 1983

[B00C83] Booch, G., Software Engineering with Ada, Menlo Park, CA: The
Benjamin/Cummings Publishing CompanTy,Fc.,Ray 1983

[BUHR84] Buhr, R.J.A., Systems Design with Ada, Englewood Cliffs, NJ: '
Prentice-Hall, 14

[GEND82] General Dynamics, "Ada Capability Study: Design of the Message
Switching System AN/TYC-39 Using the Ada Programming Language," NTIS
No. AD A123304,5,6,7 (four volumes), November, 1982

[HELM85] Helmbold, D., and 0. Luckham, "TSL: Task Sequencing Language,"
Proc. of the Ada International Conference, Paris, France, May 1985

[PETE81] Peterson, J.L., Petri Net Theory and the Model ing of Systems,
Englewood Clai ffs, ,-Fe -i-1 ----

[ROSS77] Ross, D.T. and K.E. Schoman, K.E., "Structured Analysis for
Requirements Definition," IEEE Transactions of Software Engineering,
Vol. SE-3, No. 1, January 1977

[RUAN84] Ruane, M.F. and R.F. Vidale, "Assessing Ada: Implementation of
Typical Command and Control Software Functions," Boston University,
Boston, MA, August 1984

[TANE81] Tanenbaum, A.S., Computer Networks, Prentice-Hall, Englewood Cliffs,
NJ, 1981 A

[VIDA86] Vidale, R.F, P.A. Szulewski, and J.B. Weiss, "Visualization,
Design, and Verification of Ada Tasking Using Timing Diagrams,"
presented at the First International Conference on Ada Programming
Language Applications for the NASA Space Station," University of
Houston-Clear Lake, June 2-5, 1986

[VIDA86] Vidale, R.F. "Extending Object-Oriented Ada Design Methodology," GTE
Government Systems Corporation, Communication Systems Division,
Needham, MA 02194, June 30, 1986

[YOUR79] Yourdon, E., and L. Constantine, Structured Design, Prentice-Hall,
Englewood Cliffs, NJ, 1979

99

-q
V r . W~ Le er .W w W FW ,W, "e ' 'v " , . -. i 'd - . -_ :, ,, -, -- J-* ' ° , ,

An Evolution in Ada Education for Academic Faculty

M. Susan Richman
Ada Education and Software Development Center
Pennsylvania State University at Harrisburg
Middletown, PA 17057

One of the most efficient methods of generating Ada program-
mers is to teach Ada to faculty so that they may then 'go forth
and multiply' by teaching their students and, perhaps, teaching
other faculty.

When designing an intensive Ada course for academic faculty,
with the objective of preparing them to teach Ada at their home
institutions, among the first questions which must be answered
are, *How long should the course be? How much of Ada can be
covered, with reasonable depth, in one week, two weeks, or a
longer period?" The answers to these questions depend in large
part on a number of variables over which the instructor may, or
may not, have some control.

This paper describes and analyzes the observations of the
author based upon participation in three intensive training
programs in Ada for university and college faculty --the first as
a student, and the last two as instructor. These experiences
lead to the conclusion that the most critical factors are:

(1) the preparedness of the students,
(2) the quality/speed of the Ada compiler used,
(3) the extent of the computer support, and
(4) pre- and post-course assignments.

The importance of each of these factors should not come as a
surprise. However, it was gratifying to see that, given suffi-
cient control over each of these factors, virtually all of the
language can be covered, witn relevant programming assignments,
in just one week.

The courses had a significant number of similarities. All
three courses were conducted on a college or university campus.
The students had heterogeneous backgrounds--from computer science
faculty to mathematics, engineering, and business faculty. The
primary languages of the faculty were FORTRAN, Pascal, or COBOL.
In each course some of the students were campus residents for the
duration while others lived within commuting distance. [As a
general rule those living at home did not take advantage of
evening or weekend lab hours.] In addition to the Reference
Manual (ANSI/MIL-STD-1815 A), at least one reference text was
used. The lectures generally used overhead transparencies; the
students were supplied with paper copies to facilitate note-
taking.

Those quantifiable variables observed are summarized in the
following Table. Detailed descriptions of the courses and an
analysis of the results follow the tabular statement.

rJGTI OF COESE 10 Weeks 6 week 1 seek

or IUSTRCTOU 1 2 (1 lecture,1 lab) 1

U OF STUDENTS 15 13 8

COUNP!!. ha/Ed Interpreter Ad/Ed Interpreter 2lom/Data General
production quality compiler

EITENT OF Limited Free acceus Free Acess
COIPUT12 SVPPORT Other users Other users Other users

PRE-COUiE ASSIGI NT Discouraged lone Reading on the
Pascal subset of Ada

POST-COMRSE ASSIMENT No lone Final project

CREDI? VS ION-CREDIT Ion-credit Ion-credit Credit

FEATURES COVERED All except All except All except
II PROGRAIIG Tasking Low-level I1/0 LO-Level I1/0
ASSIGUITS Generic nits

Low- level I1/0

DAILY FORAT a.. lecture a.m. lecture Alternate approximately
p.m. lab p.m. lab 1 hour lecture/l hour lab

9:30 a.m. to 4 p.m. 9 a.m. to 4:30 p.m. 8:30 a.m. to 5 p.m.

COURSE ONE

The first course was ten weeks long. There were no prere-
quisites for the course, other than being faculty in computer
science or a related field. Preliminary reading on Ada was
discouraged.

One instructor had complete responsibility for the class of
fifteen. The class was very loosely structured, meeting from
about 9:30 A.M. to 12:00 N and 1:30 P.M. to 4:00 P.M., Monday
through Friday. Within that time frame, lectures were generally
in the morning with lab in the afternoon.

There was minimal computer support for the first 1 1/2 weeks
of the course (two or three students sharing a single terminal
for about two hours each afternoon). After the necessary commu-
nications were installed, each student had a terminal available
throughout the day; evening access was rarely available. The
frustrations engendered by this limited access was compounded by

i00

the inefficiency of the compiler, Ada/Ed, and the competition for
system resources with other users. Because of the regular users,
the system parameters could not be adjusted to optimize Ada/Ed
performance. It was not at all unusual to have a compilation job
spend one to three hours in the batch queue, before returning
information on the latest set of errors. The final project, a
programming team simulation of a baseball game (without either
tasking or generic units), would not execute with the available
system resources. Thus, the inefficiency of the compiler, coup-
led with limited access to the computer, were probably the great-
est factors in limiting the complexity of programs developed.

An extensive list of programming exercises was supplied at
the beginning of the course, and students were expected to work
through the list, as time and resources permit; they were not
expected to turn in their programs for grading. The abundance of
exercises focusing on the Pascal subset of Ada may have contri-
buted to the class, as a whole, not doing much programming with
the advanced features of Ada.

Three texts were supplied as reference reading. No specific
reading assignments were made:

Programmina in Ada, J.G.P. Barnes, Addison Wesley
Software Enaineerine with Ada, G. Booch, Benjamin Cummings
Ada for Experienced Programmers, A.N. Habermann, D.E. Perry,

Addison Wesley
Ada An Advanced Introduction, N. Gehani, Prentice-Hall

Guest lecturers [including Grady Booch (Rational), Norman
Cohen (SofTech), Maj. Richard Bolz (U.S. Air Force), Georgio Y
Ingargiola (Temple Univ.), and Edmond Schonberg (New York Univ.)]
provided insights on specific topics.

No tuition was charged; in fact, the students received a
stipend for attending the course. Credit was available upon the
taking of a written exam at the end of the course, however, only
a few of the students chose this option. Consequently, for most
participants any pressure to achieve was strictly through person-
ally set goals.

COURSE TWO

The second course was designed and presented by a team of
three faculty who were students in Course One; one was responsi-
ble for the lectures, one for the lab, and one for the computer
system and the course logistics. A number of changes were made,
but we did not have the freedom to make all the changes we might
have wished.

Thirteen faculty in computer science or a related field were
accepted into the program. Although experience with Pascal was
desirable, it was not required. A set of articles on the history
of the development of Ada were sent to the participants with the
expectation that they would be read prior to the beginning of the
course.

I1.' 1

This course was six weeks long, as long as the budget would
support it. The day was fairly structured, although not rigidly
so. For the first three days, lectures began at 9:00 and con-
tinued (with breaks) until the material scheduled for that day
was covered, usually about 2:00. The remainder of the day was
spent on programming. In response to the students' request,
this schedule was changed so that both morning and afternoon had
lab periods as well as lecture sessions.

The computer used was, as in Course One, a DEC VAX 11/780
with the Ada/Ed compiler. Each student had a terminal, the
system was fine-tuned to optimize Ada/Ed performance, and any
system problems were dealt with promptly. The excellent system
support contributed greatly to the students' programming accom-
plishments. While compilations could spend quite some time in
the job queue, this became a significant problem only with the
lengthy programs written toward the end of the course. Inter-
spersing lab periods with lecture periods allowed the student to
submit jobs to the batch queue and have the results waiting at
the beginning of the next lab period. The lab was frequently
open in the evening and on weekends; the primary users of this
extra lab time were those students living away from home for the
duration of the course.

The lab exercises were designed so that the lecture topics
were promptly reinforced with programming assignments. Although
the course was four weeks shorter than Course One, the class was
able to do more advanced programming assignments: all the fea-
tures of Ada, except Low Level 10, were covered in these exer-
cises. As in Course One, the final project was a team effort.
The assignment was to simulate an air-traffic control for take-
offs and landings, incorporating tasking, exceptions, and instan-
tiating a generic queue (developed as a previous assignment) for
each runway. Because of time constraints, rather than system
constraints, the final project was not completed by any of the
teams, although sections of it were completed to the point of
being tested.

In addition to the class notes and the Reference Manual, two
texts were supplied and Specific readings were assigned to sup-
plement the lectures: tf

An Introduction to Ada, S.J. Young, John Wiley ?
Software Enaineerinc with Ada, G.-Booch, Benjamin Cummings%

A collection of 20-30 Ada texts and related materials were
assembled for the use of the class. This enabled the students to
examine the Ada texts available for use in their future classes.
Additionally, various Computer Aided Instruction courses and the
Barnes, Firth, and Ichbiah tapes were there for use and examina-
tion in the periods of waiting for a job to work its way through
the batch queue. One observation of this experience is that, in
an intensive course, it is valuable to have various types of
exposure to the concepts. These exposures supplement each other
and reinforce concepts that might otherwise be difficult to *.

102

absorb. Another observation is that, no matter which Ada book
you read first, the second is always easier to read and, probably _
for that reason, generally preferred. The moral of this is,
don't allow your students to talk you into changing texts too
easily, just because they have read other books that they prefer.

The guest lecturer program was continued with:
Roger Lipsett (Intermetrics) -- Ada as a Hardware Design Language
Grady Booch (Rational) -- Tasking, Generics, and Ada Style
Norman Cohen (SofTech) -- Identifiers, Exceptions, Derived Types ,
Edmond Schonberg (N.Y.U.)-- Ada/Ed and Ada versus other Languages
Brian Scharr (U.S. Navy, AJPO) -- The role of the AJPO
Genevieve Knight (Hampton Institute) -- Setting up an Academic

Ada Program
Richard Bolz (U.S. Air Force) -- Educational Issues with Ada
These presentations were considered a valuable component of the
course.

No tuition was charged and the students received a stipend
for attending. None of the participants chose the option of
receiving credit for the course. However, all students were
expected to hand in their programming assignments and an examina-
tion was given to the class. In this way performance objectives
were clearly set for the entire class.

COURSE THREE

The third course was designed under major restrictions: the
course had to be self-supporting, could be only one week long,
and could have only one instructor. This was not considered to
be ideal; nevertheless, the goal was set to accomplish as much as
possible within the week.

No specific language was required as background, but Pascal
was recommended. In order to optimize the one week of class time
(a significant part of which was to be lab time) a pre-course
assignment was made: to read those chapters in the primary text
that dealt with the Pascal subset of Ada. Unfortunately, this
assignment didn't reach the students in time for them to do , A
anything with it. Had they received it earlier, much of the
pressure felt by both the instructor and the students might have
been relieved. Nevertheless, quite a lot was accomplished in the
week.

The day was structured with one-hour lectures interspersed
with lab periods at least one hour long. This permitted prompt
reinforcement of lecture topics with programming assignments (a
new assignment was completed virtually every lab period) and the
frequent changes of pace helped alleviate the stress of the
highly intensive experience.

Each student had a terminal to a Data General Eclipse
MV/lO000, equipped with the Rolm Ada compiler. This was the
first of the three courses to have the use of a production qual-

.V.

103
WIS.-

ity compiler; this system went a long way towards making up for
the vastly-reduced time available for the course. Compilation
turnaround time, even for the later more complex programs, was
rarely more than five to ten minutes. For smaller programs it
was usually one to two minutes. While the system was not dedica-
ted to the Ada students, the other users did not have a signifi-
cant impact on the performance of the compiler. The lab was
available in the evenings and on the weekends (for completion of
the final project.)

Each of the topics covered in the lectures (including tasks,
generic units, and exceptions) was used in the programming
assignments. Because of the time constraints, the later projects
were somewhat simplified. For example, a sample specification
for a generic queue package was supplied, and the student was
expected to complete the package and instantiate it in a main
procedure. With more time available, the student would have been
required to design the specification as well as complete the
package. The time constraint also precluded having a team pro-
ject. Instead, the student was given one month following the end
of the course to complete the final project.

A single text was used in addition to the Reference Manual,
An Introduction to Ada, S.J. Young, 3. Wiley,

and specific reading assignments were made in coordination with
the lecture topics. Time did not permit the use of either a
classroom library or CAI materials which were available on the
system. While a CAI package can be a valuable supplement to an
extended course, the fact that it is rather time-consuming makes
it's use incompatible with a brief, intensive course. Moreover,
the guest lecturer program could not be supported within the time
and budgetary constraints.

Unlike the previous two courses, there was a tuition charge
(the standard tuition for a three-credit course) and the students
were not reimbursed expenses or paid a stipend for attending.
The tuition was the same whether the course was audited or taken
for credit, and most students chose to receive credit. Even
those auditing the course were expected to hand in the completed
assignments -- and they did.

RECOMMENDATI ONS

Prereouisites: Familiarity with Pascal, or preliminary reading
on the Pascal subset of Ada, are highly recommended but not
absolutely necessary. Without the students having such know-
ledge, you run the risk of either losing some of class or boring
others. N

Number of Instructors: If it is an intensive course, and it is
the first time you are teaching it, try to have an assistant.
Any class is likely to require adjustments in midstream to meet
specific needs of the students and possible system problems. if
you are experienced and have all your class materials ready %

10I

%i

104

Ni

before the class begins, you will probably be able to cope with
minor adjustments as you go along. Otherwise, both you and the
class will be under stress which might otherwise be avoided.
Longer courses proceed at a rather more relaxed pace so it is
less important that the instructor have regular assistance.

System and Compiler: If you have a production quality compiler
and good system support, a surprising amount can be accomplished
in a short time. Otherwise it probably will require upwards of
three weeks to cover the most important language features.

It is critical that educators learn Ada using compilers
that

support the entire language. A subset compiler that does not
support generics, for example, should not even be considered for
a course of this nature. It may be appropriate to teach under-
graduates a subset of Ada, using a subset compiler, but educators
should not learn Ada this way.

Lab exercises: The more intensive the course, the more important
it becomes that the exercises be designed to provide experience
with the key features of Ada, in synchronization with the lecture
topics, and with minimal repetition. Emphasize the reusability
and maintainability of Ada code by requiring them to use, modify,
and amplify code written for earlier exercises.

Use of texts: The Reference Manual is indispensable, not only
for this type of course, but for any Ada course that includes
programming. One or more other texts should be used, with
assigned readings coordinated with the lectures, to provide at
least a slightly different point of view and more detail than the
lectures.

Guest lecturers: These contribute significantly and should
certainly be included if time and resources permit.

Tuition/Credit: Tuition is a factor that we rarely have control
over, but appropriate credit should be offered if possible. In
any case, definite performance expectations should be set.
Examinations are not necessary, but programming assignments
should be required. %.

Software Enoineerino: You should be able to expect that your
students (they are faculty, after all) have good programming
style and follow the principles of software engineering. How-
ever, whenever appropriate, the principles of software engineer-
ing should be reiterated in the lectures, demonstrated in the
classroom examples, and the students should be expected to in-
clude them in the design of their programs. If necessary, learn-
ing some of Ada's features should be sacrificed in order to
concentrate on good design.

105

:ZpA A, -A V~ ,

CONCLUSIONS

Under the right conditions, i.e.
1. the students are familiar with Pascal or have the oppor-
tunity to do preliminary reading on the Pascal subset of Ada
2. the class has good computer system support and the use of
a production quality Ada compiler,
3. the days are structured with interspersed lecture periods
(50 minutes to 1 hour) and lab periods (1-2 hours)
4. lab exercises are designed to provide prompt reinforce-
ment of lecture topics
5. programming assignments are expected to be completed and
turned in to the instructor

you can teach, in as short a time as one week, an Ada course that
will be of significant value to the participants. At the end of
the week the students will be exhausted, and you may be also, but
they will have the foundation necessary for them to teach Ada to
their students.

1s06

106 "e

Software Engineering

and its Ramifications to the

Ada® Programming Language

Training Environment

June 11, 1987 4.0

Second Annual
Ada Software Engineering Education

and Training (ASEET) Team Symposium

Presented by:

Jerry F. Berlin
Harris Corporation ,%
2101 West Cypress Creek Road
Fort Lauderdale, Florida 33309
(800) 245-6453

® Ada is a registered trademark of the U.S. Government, Ada Joint Program Ofice.

107

- *IV%" W

* I'ARRI Education Center p

ABSTRACT

This paper discusses Software Engineering principles and their ramifications to the

success of students in an Ada Programming Language training program. Information

on how the Ada Programming Language exemplifies, characterizes, demonstrates and
enforces good Software Engineering principles is discussed. Suggestions are presented

for the instruction of Ada Programming Language students in Software Engineering

principles and methodology along with concrete examples of Software Engineering in

Ada Programming Language training.

%

108
45

.5 .

108 'v ..

• • . . . ,- -, -. i, . i. .,. .'4'- d '.- .. '.'. .- ',b'J'.' ¢ "#-. o','..'. -
•

. .o =.-4 " -. " ,5

3IHARRIS Education Center

Background

Harris Corporation is a two-billion dollar a year company that manufacturescomputers, semiconductors, office equipment, communication equipment and

supporting software. The Computer Systems Division manufactures supermini
computers used in data processing and real-time applications. One of the software
products is the Harris Ada Programming Support Environment, HAPSE®.

HAPSE is an Ada Programming Support Environment (APSE). In addition to the
Minimal Ada Programming Support Environment (MAPSE) requirements of a
compiler, symbolic debugger, editors, configuration control/configuration management,
link loader and job control interface that are described by the Stoneman standard,
HAPSE also provides a library manager, optimizer and several extension packages.

The Harris Education Center

The Harris Education Center is a profit center that is responsible for the training of
both customers and employees. Our customers come to us from the government,
industry and educational institutions. They employ Harris computers in office
automation, engineering, data processing and real-time applications. Students who are
Harris employees range from new hires to experienced analysts, technical writers,
programmers and engineers.

The courses that we offer cover all aspects of the hardware and software for Harris
computers and their components. The majority of training takes place at our Fort
Lauderdale, Florida, Education Center; however, for large groups, the training can
take place on-site, at the customer's location.

The Ada Programming Language Curriculum

All of the Harris Education Center's courses are developed by its staff of instructors.
Throughout the development of a course, comments and suggestions are solicited from
groups in product development, marketing and the field offices to insure that the
course is designed to satisfy as many of our customers' requirenients as is possible.

The Ada Programming Language curriculum is designed to instru't prograImezrs in
the Ada Programming Language and Software Engineering. The Ada Programming
Language curriculum is comprised of four courses. The reconilnen(led sequence for tle
courses is:

1 tlAPSE is a trademark of Harris Corporation.•%

e_-. .

3HARMS Education Center

1. Introduction to the Ada Programming Language (5 days): Software Engineering
principles and the Ada Programming Language are introduced.

2. Advanced Ada Programming Language (5 days): Advanced features and topics of
the Ada Programming Language are presented, and how Ada enforces good
Software Engineering is discussed.

3. Harris Ada Programming Support Environment (3 days): All HAPSE tools,
utilities, implementation dependent details and packages are covered.

4. Ada Programming Language Workshop (5 days): Program maintenance, life-cycle
support and applications are taught.

Description of Software Engineering

Software Engineering methodology is a process that can be implemented in varying
degrees with virtually all programming languages. For maximum effectiveness,
however, it should be implemented with a programming language such as Ada, that
provides all of the necessary features and abilities required to properly utilize Software
Engineering.

Software Engineering principles include the concepts of: modularity, abstraction,
information hiding, localization, uniformity, completeness and confirmability.

Ab.qtraction keeps the underlying details of a program unit away from the programmer.
All that should be known about any program unit is the means to interface with it.

Information hiding requires that the underlying details be made private and
inaccessible from higher levels of the abstraction.

Modularity is the top-down decomposition of program function into small, easy to
maintain, discrete program units or modules. Ada subprograms and packages are
designed with this this concept in mind. .

Localization goes hand-in-hand with modularity. When programs units are organized
into discrete modules, local parameters in each module can provide a greater degree of
independence. These local parameters will not interfere with or change the meanings
of values in other parts of a program, nor can any other part of the program interfere
with the local variables.

Uniformity requires all program units to be written in the same, consistent style.

Completeness ensures that all important items of a program unit are accessible.

Comfirmability allows a program unit to be decomposed for testing.

All of these Software Engineering methodology concepts, when followed, enable

11. 1ii%

HA RI Education Center -

programmers to update and modify programs previously written by themselves or
others in a timely manner with a minimum of expense.

Meeting the Needs of the Students

The degree of enlightenment among organizations on Software Engineering
methodology varies significantly. Most organizations are familiar with and enforce
good Software Engineering practices. However, there are organizations that either are
not acquainted with Software Engineering or do not encourage its use. This variation
among organizations also extends to their employees. Not all employees are familiar
with Software Engineering methodology. Fortunately, some employees have had
courses while attending college or while on the job that have exposed them to Software
Engineering methodology; however not all students have had this opportunity.

Many students do not care for a theoretical approach while learning Software
Engineering, but are more interested in obtaining practical information. They have
projects to complete, code to produce and deadlines to meet. Frequently, they have
specific project requirements and problems that go beyond the scope of the objectives
of the course. Furthermore, each organization has its own reasons and needs for
sending their people to a course, and on occasion, these can deviate from the published
course description and objectives.

Each student has his own method of learning. Some students learn best by listening
to the lectures while viewing the associated visual aids. Others experience their best
learning when reading through the manuals and books that are given to each student
as part of the course. Still, other students gain the most from the practical experience
provided by the student exercise assignments, It is the instructor's responsibility to be
aware of the various methods that students employ to learn the material and to
provide an environment that enables all students to have their best opportunity to
learn.

The approach that we take closely integrates the three methods of learning. We
provide a Student Guide containing the lecture notes for the appropriate course, the
Reference Manual for the Ada Programming Language (ANSI/MIL-STD-1815A) and
Software Engineering with Ada by Grady Booch. After presenting an overview of
Software Engineering, we provide practical and complete example programs that stress
good Software Engineering. All Software Engineering is integrated with Ada syntax
and examples. Since students are not equally capable of understanding a top-down
approach for learning Software Engineering or the syntax of Ada, some explanations,
descriptions and examples are started on the component level and then build up to tie
the components together. All lectures must be long enough and detailed enough to be

,icX

.' .4

111

?:;:;:~~~~ ~. ::::::::::

W HARRI Education Center

complete, yet not so long as to allow boredom to set in.

Lecture and Theory

The student guide is a tool for learning the Ada Programming Language syntax.
Additionally, example programs are provided. These are complete programs rather
than a segment or a portion of a program. They are brief, clear and to the point. All
example programs follow good Software Engineering methodology and in many cases,
build on one another.

One lecture is dedicated to the usage of the Reference Manual for the Ada
Programming Language. The students are taken through it section-by-section. The
table of contents, annex, appendix, index, syntax diagrams and cross reference are
explained and the section and paragraph numbering is stressed. During the lectures,
the Reference Manual for the Ada Programming Language is used to provide extra and
optional information and to supply complete answers to questions that come up during
the class.

Laboratory Orientation

Before starting on the first laboratory exercise, students are provided with an
orientation to the computer system. Not all students are familiar with Harris
computers. Since the Ada Programming Language courses are designed to be portable,
all system information is provided in a separate, short lecture.

During this orientation lecture, students are provided with information on basic
operating system job control, compiler, linker and editor commands. Students learn
how to invoke the compiler with an option for error processing to make their
debugging of programming assignments easier. This error processing provides feedback
to the students that enchances the learning process. When an error in a student's
source code is detected by the compiler, the appropriate error message is embedded in
the source code file and the editor is then called. The majority of the embedded error
messages cross reference to the Reference Manual for the Ada Programming Language.
This error processing feature allows the students to get immediate feedback to assist
them in learning from their mistakes. When all errors are corrected and the file is
recompiled, the student can then link and execute the program.

For students that do not have the need or the desire to learn the Harris job control for
HAPSE, there is a "compile" script to assist them in the compilation, error handling,
editing and linking process. The script allows these studpnts to first concentrate on
Ada programming without the inconvenience of an "information overload". They can

112
k', :" :" ,"".....-.,..-.....-.....""..-' ..-":-- --'-.'-:.:- :.:."..:.":.:.:i

HARRS Education Center

learn Ada first and then, later on, they can learn the details of job control.

Student Exercises and Practical Applications

Just as it is important for students to have the opportunity to learn new concepts, _

they must also have the opportunity to reinforce their knowledge. A sufficient amount V
of time is built into the course schedule for students to learn and review the
information. Students are given enough time to solve problems properly without the
pressure of having to rush to finish. Students have time to "play" with the their newly
learned information, to improve their programs, and to experiment with "what if"
scenarios. For the more proficient, faster students, optional work and ideas to
research are made available.

The first programming assignment provides students with an opportunity to be
accustomed to the editor and compiler. Students are provided with a short, poorly
designed program to debug and correct. The program contains a bubble sort
algorithm which is reviewed in class before starting the assignment. This program
requires no input, and when successful, instant feedback is provided through the
output of a properly sorted list. This program is then used in virtually all of the
following exercises. In each student exercise, something from a program written in the -:
previous student exercise is modified. This continual reuse of the previous program
simulates the life cycle of a software project. Students are encouraged to follow
Software Engineering methodology to allow them to make more effective use of
laboratory time.

After the students get the bugs and logical errors out of their program, the nexL step
is to improve the code. The original program as provided, is in' ,ntionally written
using very bad programming style. Students must improve the program by
implementing Software Engineering methodology. The students must improve the loop
control structures and institute the use attributes.

The next step is to make the program interactive. Also, students modify the type
definitions of the items to be sorted from the predefined integer type to records that
contain a string type and an integer type.

In the next assignment, students modify the program to improve the modularity with
subprograms. The sort program's comparison test code used to determine the ordering
of the records and the code to swap records are both placed into subprograms. In
addition to these two subprograms, an overloaded Getjline procedure and an
overloaded Putjline procedure are created by the students to handle the input and the r

output of the records.

The next modification the students make to their sort program is to place the four
subprograms from the previous assignment into a package. Students should soon
realize that they now have software that can be reused on future assignments.

113, :.'.O

P , -L JL . .°% °. % "% -%

SHA MIS Education Center

In next modification of their sort program, the students write and instantiate generics.
The modifications to the sort program now take two separate branches. First, the
students modify the sort program from their "subprogram" assignment to be generic
subprograms. Second, the pack-,ge from their "package" assignment is modified to be
a generic package.

The students now modify the program to use TextIO for file manipulation. Input is
from a file and output is either directly to the printer or to a file.

In the final modification of their sort program, students change the code in the bubble
sort algorithm and implement the DirectJO package. Rather than storing the records
in an array in memory, records are stored in a disk work file. The program must be V
modified to directly read from and write to records on disk. Students are encouraged
to use the packages that they wrote in earlier lab exercises.

For variety, to encourage creativity and to provide for the more capable students,
several additional program assignments are provided throughout the course. These
include programs on exception handling, the Calendar package and access types.

The exception handling assignment is a short program written early in the week X
requiring the use of raise statement and user defned exceptions. 2

The Calendar package is used in a "speed typing test" program. Students write a
program to display a line of text and to then time how long it takes for the user to
type in an exact duplicate of that line. The Calendar package supplies the timing
functions.

The access types program is supplied to the students in a partially written form. The
program prompts for and reads in records comprised of strings and integers. These
are then added to a list. Students must write a procedure to print out a list of all
records entered.

In the final exercise, students write a program to calculate the Fibonacci number
sequence. This is an open assignment where the students use whatever they require
from Software Engineering and the Ada Programming Language. If the class is
running short on time then this assignment is optional.

The students are constantly encouraged to use the Software Engineering principles
that are being taught in conjunction with the Ada Programming Language concepts.
By having programs build on one another, an emphasis is placed on good Software
Engineering. Students that abide by these principles accomplish their projects in a
more efficient manner.

Throughout the entire course, during both the lecture and the lab exercises, the
advantages of Software Engineering are constantly being taught,, discussed, 4-J.

114

HAWRS Education Center

encouraged and utilized. During the lecture, when each new topic is introduced, the
appropriate Software Engineering principles are discussed and reviewed. Throughout
the student lab exercises, alternate solutions reflecting the Software Engineering
principles are suggested by the instructor.

Conclusion and Summary

Each student has his own method of learning and must be assisted through the
educational process accordingly. Students cannot be rushed; they need time to learn
and to become comfortable with their new knowledge. The course and the instructor
must be flexible to accommodate the widely varying learning styles of all students.

Each organization's motivation for sending their employees for training is also unique.
Students attend class not only to learn but to get help and advice. Practical
information is just as important as learning the theory of Software Engineering and
the syntax of the Ada Programming Language.

The majority of the cost in a program's life cycle is in the modification of the program
after it is originally written. Any Software Engineering training course should
simulate real world, practical situations as accurately as possible.

Software Engineering is a process, while the Ada Programming Language provides
results. The Ada Programming Language was designed to readily support Software
Engineering principles.

A properly designed training course for Software Engineering principles and the Ada
Programming Language must integrate the information so it can be presented in a
relevant and realistic way.

6%

115

38BS Edu n Cefter

BIBLIOGRAPHY

Booch, G. Software Engineering With Ada, Second Edition. Menlo Park:
Benjamin/Cummings Publishing Company, Inc., 1987.

Reference Manual for the Ada Programming Language, Ada Joint Program Office,
Department of Defense, Washington, D.C., February 1983, ANSI/MIL-STD-
1815A.

J.

I

116

ADA* TRAINING:

A DEVELOPMENT TEAM'S PERSPECTIVE

BY

R.J. VERNIK

Prepared for

Second Annual Ada Software
Engineering And Training (ASEET) Team Symposium

Prepared at
Standard Automated Remote to AUTODIN Host (SARAH) Branch

COMMAND AND CONTROL SYSTEMS OFFICE (CCSO)
Tinker Air Force Base

Oklahoma City, OK 73145 - 6340
COMMERCIAL (405) 734-2457/5152

AUTOVON 884 - 2457 / 5152

* Ada is a registered trademark of the U.S. Government
(Ada Joint Program Office)

117

ABSTRACT

This paper addresses training requirements for
Ada development teams as seen from a development
teams perspective. As such, this paper provides
a more practical view of Ada training than is
often proposed by educational institutions.

The first section covers introductory material.
Some background information is provided on the
scope of the paper and the basis for evaluating
training requirements. In addition, this section
covers the purpose of the paper and outlines some
assumptions and constraints.

The second section describes Ada training needs.
This section argues that to obtain the full
benefits of Ada related technology, the training
program should include training in software
engineering, development methodologies, support
environments, and language syntax. The necessity
to train managers is also discussed.

The third section describes training experiences.
This section is based largely on the Standard
Automated Remote to AUTODIN Host (SARAH) project
training program. As such, it should provide
practical information to organizations who are
contemplating developing Ada based software
systems.

The last section summarizes the major points and
makes recommendations on a possible approach to
Ada training.

S

ADA TRAINING: A DEVELOPNT TEAN'S PERSPECTIVE

1. INTRODUCTION

1.1. BACKGROUND

Software development using the Ada language and associated
software engineering technology requires a higher degree of
training than was required for older languages. There have been
many articles outlining the benefits of using the Ada language
[i ,3,4]. Through Ada and associated software engineering
technology we can gain significant cost benefits through code
reuse, transportability, lower maintenance costs, and increased
productivity. Managers are quick to point out these benefits,
yet many do not understand that without the correct engineering
approach, extensive use of tools, and a high level of managerial
support, these gains will not be achieved. If development teams
are to successfully develop Ada software in this very complex
environment, they must receive training in a number of areas. In
addition to training in Ada syntax, team members require training
in software engineering, development methodologies, and
programming support environments.

So that potential Ada developers could gain a practical
insight into what was required to successfully develop Ada
software, the Air Staff tasked the Command and Control Systems
Office (CCSO) with evaluating the Ada language while developing
real-time digital communications software. The evaluation
reports were to consist of a number of papers, one of which was
to deal with training requirements. This paper is derived from
the original paper on training.

CCSO chose the Standard Automated Remote to Automatic
Digital Network (AUTODIN) Host (SARAH) project as the basis for
this evaluation. SARAH is a small to medium size project (approx.
40,000 lines of source code) which will function as a standard
intelligent terminal for AUTODIN users and will be used to help
eliminate punched cards as a transmit/receive medium [8]. The
development and evaluation environment for SARAH consists of a
Digital Equipment Corporation VAX 11/780 which hosts the SOFTECH
Ada Language System (ALS), several IBM PC-ATs which host the
ALSYS Ada compiler, a Burroughs XE550 Megaframe, and several IBM
compatible PC-XT microcomputers. The SARAH software targets are
the IBM compatible PC-AT and PC-XT microcomputers. Since the PC
environments do not support many of the Ada Programming Support
Environment (APSE) tools required to maintain a stable software

baseline (such as configuration management), the ALS was to
provide these features.

The SARAH team required training in several areas. These
included training in software engineering, the Ada language, the
latest design methodologies, the ALS environment, and staff

ll% ie <

management and analyst training. Since none of the team members
had previous Ada development experience, management was quick to
realize that the training overhead would be high. Indeed, the
amount of training procured for the SARAH project was far in
excess of that procured for projects developed in other
languages.

Several methods were used to provide the required training.
Formal training was obtained from both commercial and government
sources. In-house training was conducted using a Computer Aided
Instruction (CAI) package, instructional video tapes and
lectures. The SARAH team also gained a great deal of practical
knowledge through their involvement in the local and national Ada
communities.

1.2. PURPOSE

The aims of this paper are to:

Outline training needs for Ada software development teams.

Provide practical feedback on Ada training to prospective
Ada developers.

Make recommendations on a possible approach to Ada
training.

1.3. ASSUMPTIONS AID CONSTRAINTS

The assumptions and constraints are as follows:

A major constraint is the size of the SARAH project.
Since the SARAH project team is small (14 persons), some
of the experiences reported in this paper may not be
appropriate for training larger development teams.

The SARAH team members had a variety of previous
experience. Some members had very little software
experience, others were well versed in assembly language
programming, and some were experienced Pascal
programmers.

120

2. ADA TRAINING lEEDS

This section outlines Ada training needs as seen from a
development teams perspective. Ada development teams must be
properly prepared if they are to design and develop high quality
Ada software. Experience with the SARAH project has shown that
development teams must be trained in modern software engineering
practices, be able to select and design with a mpthodology that
is suited to Ada, use environment tools to increase productivity
and maintain a stable software baseline, and have a good command
of the Ada language. In addition, if the project is to be
successful, then managers must have a good understanding of what
is required to produce good quality Ada software within budget
and time constraints.

2.1. SOFTVARE EIGIIEKRIIG TRAINIIE

Software engineering must be stressed if software
development using the Ada language is to be successful. The Ada
language was designed by software engineers who based their
design on modern software engineering principles [i]. Ada
supports many of the features of modern software engineering. For
example, Ada provides facilities for structured programming,
strong data typing, separate compilation, information hiding,
data abstraction, and procedural abstraction. These facilities,
when properly applied by designers and programmers, can reduce
maintenance costs, promote transportability, and improve
reliability and survivability. These benefits are realized only
when those facilities are used in the manner intended by its
designers, otherwise the major benefits of the language will be
lost.

Since many of Ada's features relate directly to modern
software engineering, the language is easier to learn if it is
presented in a manner that facilitates the implementation of
these engineering principles and goals. The size of the Ada
language has often been criticized; some authors have indicated
that it would be beyond most programmers to ever gain a working
knowledge of the language. Many of these comments were made in a
comparison of Ada to traditional languages such as FORTRAN and
COBOL. The comments are well founded if the same approach to
teaching these second generation languages is used to teach Ada.
Unlike traditional high order languages, Ada provides the "'
engineer with language capabilities built in to facilitate the
solution of a complex array of problems not available in other
languages. Educators need to introduce each of these capabilities
and explain their purpose. For example, an apprentice builder
must be told that a saw is used for cutting wood and then shown
the correct way to use the saw. Similarly, an Ada software
engineer must be introduced to the concept of the package and
then shown how this can be used for data abstraction. Students
should understand that the Ada language itself does not solve

%I,'

problems. They should learn the purpose of each Ada engineering
tool and how each can be used to successfully develop software
systems. If Ada is taught in this way, students will more easily
remember the syntax of the language because of its relationship
to software system engineering.

In addition to introducing students to the facilities of
software engineering, software engineering training must cover
many other aspects of software development. For example,
instruction should be given on software maintenance,
configuration management, documentation, testing, software reuse
and the use of programming support tools. As discussed, through
software engineering we can effectively teach Ada syntax;
however, the success of a project is determined not by the code
alone. The scope of software training should cover the full
software lifecycle. The student must be made aware of the impact
that a bad design will have on software maintenance. Similarly,
if the configuration of a software product is not carefully
controlled, the student should realize that the software could be
made useless. If students are taught fundamental software
engineering principles and techniques, organizations can gain
significant long and short term cost savings. These gains will be
realized because productivity is enhanced by software reuse and ,
reduced maintenance efforts, software systems will be more
easily transportable to different hardware, and software
engineering-Ada trained personnel will quickly become productive
when transferred to new Ada projects due to standardization of
the software development process.

2.2. DEVELOPIE|T METHODOLOGY TRAIIIIO

Development methodology training should cover the different
analysis/design methodologies as well as the use of program
design languages (PDLs) [9]. There are many methodologies
available for software development. Those most applicable for the
development of Ada software are covered in the Methodman I [0]
documents. Since no one methodology currently covers the full
software lifecycle or all design paradigms, students should be
introduced to a number of the methodologies so that they can
select the features of each which would best suit their needs.
For example, Object Oriented Design (OOD) [12] provides a
powerful method for design but does not effectively address the
analysis phase. Also, OOD is largely ineffective for the design
of real-time process driven systems. In these cases a methodology
which supports process abstraction is required and so the
designer may chose a methodology such as Jackson System
Development (JSD) [13] or the Process Abstraction Method for
Embedded Large Applications (PAMELA) [14]. Some cases may call
for a multi-paradigm approach [15] which requires the inclusion
of the concepts of two or more methodologies. Clearly, courses
teaching a single methodology do not prepare students for the
variety of design and development problems that exist.

122

Software engineers must be able to stay current with
advances in software development technology. The next few years
will bring many new methodologies, many of which will be superior
to those used today. Students should be introduced to the
different design methods such as procedural, type and process
abstraction so that they have the background for understanding
the scope of these new methodologies. In addition, new
methodologies will be developed which will more effectively cover
the testing, integration and maintenance phases of software
development. The limitations of existing methodologies should be P
highlighted so that future software engineers can more readily
identify methodologies which will support full lifecycle needs.

Educators should cover the arguments governing the use of
PDLs [9] and provide an introduction to the types of PDL
currently in use. Students should be able to determine whether a
PDL is required and if so what type of PDL would best suit their
needs. The whole area of PDL is being hotly debated. There are v
some who believe that a PDL is not required for Ada development.6

They suggest that the language itself can be used as a PDL. Those

arguing for PDLs are in disagreement over what form it should
take. If an organization elects to use a PDL, or a contract U.

specifies that a PDL will be used, the training requirement
should be assessed and the training budget should be adjusted
appropriately [7].

2.3. SUPPORT EIVIROUNEUT TR&INIG

Training in the use of Ada Programming Support Environment
(APSE) tools is required if an organization is to achieve
productivity benefits. Software engineers cannot be expected to
fully utilize these environments unless they are trained in their
use. For example, the Stoneman model proposes the use of many
complex tools for the development of Ada products 16]. The tools
provide functions such as configuration management, symbolic
debugging, frequency and timing analysis, and code formatting.
This type of environment is very complex and users require a
high level of training if they are to use the tools effectively.

Students should first be given an overview of the
environment. The overview should provide an introduction to the

command language, database organization and file administration.
In addition, the overview should cover basic operations such as
invoking tools, compiling programs, exporting, and linking. After
the students are familiar with these basic operations they should
be given a more advanced user course which covers the tools in
detail. Educators should introduce each tool, demonstrate its use
and show how the tool could be used to improve quality and
productivity. There is little doubt that significant
productivity gains can be made through the use of automated
tools; however, managers must understand that training is
required if these tools are to be used effectively.

123

- - ~ ~ .;-~-Z-2~>%~ ~ .. * .5. - - - - -- ~ ---. --.

APSE administrator training will be required for effective
use of the overall APSE system. The APSE administrator position
on a development team is enormously important. The administrator
is responsible for controlling access, transmission/reception of
reusable library modules, providing incremental updates and
database administration/maintenance. If these tasks are rot done
properly, the whole development effort could be placed in
jeopardy. APSE administrator training is therefore an important
part of an overall training program for Ada development teams.

2.4. LANGUAGE TRAIIING

Language features should be taught in conjunction with
software engineering principles and goals [91. As discussed
earlier, Ada is the product of software engineering and supports
many modern software engineering features. If the Ada language is
broken up into the logical partitions which correspond to
engineering building blocks, students will find it easier to
understand and use the entire language. Moreover, the language
was designed to be used in conjunction with development
methodologies and programming environments [2]. Students should
be introduced to these areas prior to being submitted to language
training so that they can understand how different language
features apply to the overall development process. If the full
benefits of Ada are to be achieved then language training cannot
be conducted in isolation.

The curriculum for Ada language training can quite
effectively be divided into two separate areas: basic and
advanced topics. After completing a basic course, the student
should be able to:

Declare and use Ada objects and types,
Understand and formulate Ada statements,
Code and call Ada subprograms,
Design and use Ada packages,
Raise and handle exceptions,
Perform input/output.

The basic course should give the student a working knowledge of
sequential Ada.

An advanced Ada course should cover the concurrent aspects
of Ada and low level features. The course should stress important
design features such as the use of generics for software reuse.
Upon completion, students should be able to design, code, and
test Ada programs that use generics, low level features, and
tasks. Moreover, the course should allow students to apply sound
software engineering principles to produce well-designed Ada
systems.

The length of time required for formal Ada language training
is dependent on the students' previous experience, the amount of

124

' ~ ~ff - . . . V V .' "-

pre-course preparation, and the requirement for practical
training. Several organizations (e.g. Softech Inc. and the US Air
Force Air Training Command (ATC)) suggest that at least six weeks
are required if this type of training is to be successful. These
courses include a high degree of practical training and assume no
previous experience in structured programming.

There are other training organizations that believe that
the Ada language can successfully be covered with two 40 hour
courses; however, several considerations need to be made if this
training is to be effective. First, students should have at least
some knowledge of the Ada language prior to commencing formal
training. This could be achieved through the use of a CAI
package, video tapes and self-study. Second, since a large amount
of material needs to be covered in a relatively short time,
practical training should be limited and structured towards
reinforcing the major concepts. Third, consolidation time of at
least one week should follow each course so that students can
have the opportunity to consolidate their knowledge on practical
exercises.

Student assessment should be provided by the training
organization. These assessments are beneficial for a number of
reasons. First, students are generally more motivated towards
retaining information if they know that they will be tested at
the end of a training period. They tend to compete more with
their fellow students and do not like to see unfavorable reports
sent to supervisors. Second, through student assessments,
managers are given an insight into the effectiveness of the
training program by monitoring student progress. Managers should
be provided with a copy of the assessment scheme and results so
that they can use the information to more effectively manage
their software projects.

In summary, formal Ada language training could be covered in
as little as 80 hours; however, the training must be intense,
practical training must be well organized, time must be allocated
for consolidation, and the students must be very motivated.

2.5. XAIAGREKIT TRAIIING

Software development using the Ada language and associated
software engineering technology will only be successful if full
support is provided by management. To do this, managers must have
a firm understanding of the technology being used and they must
be introduced to some of the problems that may be encountered
during development. Managers at all levels within an organization
should receive Ada technology training. The initial investment
for Ada development is high and there are a number of potential
pitfalls. Managers must be educated in this new technology so
that they will have the ability to support development teams when
problems arise. As with any new technology, there are many
problems yet to be overcome and the organization will benefit

125

aA e.

p

only if management works together with development teams to solve
these problems.

Managers should be introduced to the Ada community and
provided with information on where they can find additional
information and help. There are many sources of Ada related
information available to managers. For example, the Ada Joint
Program Office (AJPO) operates the Ada Information Clearinghouse
which distributes Ada related information. Moreover, various
organizations have been formed to act as forums for Ada
discussion (e.g. SIGAda and AdaJUG). Management training should
cover this type of information so that managers can keep current
with new advances in Ada technology.

The major benefits of Ada based technology should be covered
so that the manager understands what can and should be
achievable. Managers should be shown how the Ada language and
associated software technology can lower maintenance costs,
improve software transportability, and improve reliability.
Software reuse should be covered. Managers should be shown that
by designing software with reusability in mind, significant cost _

savings can be made. In addition, managers should be aware that
libraries of reusable software such as SIMTEL-20 [18] now exist.
If managers are made aware of how Ada based technology can be
used to develop quality and cost effective software products,
they will be in a better position to help introduce this new
technology into their organization.

Managers should be informed that with Ada there is a high
initial investment and that some of the benefits will only be
realized in the long term. The capital investment is
significantly different from what was required for older
languages. For example, to obtain many of the productivity
benefits associated with Ada, automated tools are required.
Software maintenance cost will only be reduced if a proper
development methodology is applied and so this translates into
higher training costs. In addition, the length and cost of
language training will be higher than for older languages.
Software personnel will be more highly trained and so key
personnel will most probably be more expensive to hire. The
manager must be shown that the cost savings through less
retraining, higher productivity and less maintenance will far
outweigh the high initial investment.

126

3. TRAINIING KPERI9IC9S

This section discusses the Ada training experiences of the
SARAH project. The SARAH team received both formal and in-house
training which covered a broad range of topics required for Ada
development.

3.1. FORMAL TRAINING

Members of the SARAH team received the following formal training:

Development Methodology Training: Basic training in
development methodologies was provided by EVB Software
Engineering. In addition, team members attended a t .
number of tutorials on Ada design at local and national
SIGAda conferences.

Language Training: Language training was provided by
Intellimac Inc, Rockville MD. Two courses (each of 40
hours) were provided and covered basic and advanced
language features.

Management Training: Management training was provided
by the U.S.A.F Air Training Command (ATC). The course
was one week in duration.

Environment Training: The SARAH team received three
courses on the SOFTECH ALS. The courses consisted of a
two day introduction, a one week users' course, and a
three day administrators' course.

No formal software engineering training was provided for the
SARAH team. However, the chief designers all held professional %
computer science and engineering qualifications. In addition,
they were well versed in modern software engineering practices
through their participation in advanced workshops and tutorials.
Many of these tutorials dealt with how Ada can be used to satisfy
the principles and goals of modern software
engineering.

3.1.1 Selection

Training Sources. One of he best sources for providing
details of currently available Ada training is the Catalog of
Resources for Education in Ada and Software Engineering
(CREASE). This publication is available for distribution through
the Defense Technical Information Center (DTIC) and the National
Technical Information Service (NTIS). The accession number for
this document is AD A156 687. Further information on CREASE can
be obtained by contacting the Ada Information Clearinghouse'1
(AdaIC). In addition to CREASE, the AdaIC provides training

127

information in their periodic newsletters.

Research. CREASE can provide information on training
courses; however, managers should do additional research to
determine whether a particular course will be applicable for
their project. One of the best ways of achieving this is to talk
to others who have recently undergone training. The national and
local SIGAda conferences are a good place to do this type of
research. Apart from being able to discuss training needs with
the many experienced people who attend, many of the training
organizations are available to discuss their training
curriculums.

Specify Training Needs Precisely. Since there is a large
range of Ada training currently available, organizations need to
correctly specify their training requirements or the training
received may not cover training needs. For example, when
outlining the requirement for practical training, the
specification should indicate that the training must be conducted
with a validated Ada compiler. Several training organizations are
currently using JANUS Ada compiler hosted on IBM-PCs for
practical training. The cost of this training is generally lower
than comparable training using validated compilers. However,
since JANUS does not provide the advanced features of the Ada
language, the practical exercises are limited to basic features.
An organization considering vendor training should research the
market well and provide a precise specification of their needs.

3.1.2 Some Problems

High Training Costs. Ada training can be expensive.
The SARAH development team received development methodology,
language, and environment training through commercial sources.
Acceptable quotes for 80 hours of Ada language training for 20
personnel ranged from $20,000 to $77,000. For this amount the
vendor was required to provide equipment in-house for the
practical sessions. To obtain training in current design
methodologies, CCSO sent personnel to the vendor's site. The
training cost was $1,125 per week for each student. Travel and
lodging costs increases this amount considerably. CCSO found that
it was far more economical to have the vendor train in-house if
more than six personnel required training. However, if the
training is conducted in-house, it must be segregated from the
work environment, otherwise the training program could be
severely jeopard ized. f

Specify Training Needs Precisely. Since there is a large
range of Ada training currently available, organizations need to
correctly specify their training requirements or the training
received may not cover training needs. For example, when
outlining the requirement for practical training, the
specification should indicate that the training must be conducted
with a validated Ada compiler. Several training organizations are

N".

123

MUMq

currently using JANUS Ada compiler hosted on IBM-PCs for
practical training. The cost of this training is generally lower
than comparable training using validated compilers. However,
since JANUS does not provide the advanced features of the Ada
language, the practical exercises are limited to basic features.
An organization considering vendor training should research the
market well and provide a precise specification of their needs.

Evaluation. The lack of student and instructor evaluation
is also a problem. Most training organizations will not volunteer
to administer student tests and provide results. As previously
described, there are definite benefits to providing some form of
assessment. If student assessment is required, then this must be
stated in the training requirements.

Procurement Problems. For government agencies there is a
long lead time for procurement. This must be taken into account
in the project schedule. CCSO found that it took seven months to
procure training. No doubt this time could be shortened if the
requirement received higher priority; however, there are fixed
lead times associated with competitive acquisition. Managers must
take this into account, otherwise the lack of training could
severely affect the development schedule.

129

5%

o 129 " -

3.2. Il-HOUSE TRAINING

The SARAH team received in-house training through informal in-
house lectures, Computer Aided Instruction (CAI), video tapes,
and self-study. The relative merits of each approach, and the
problems that were encountered are covered in the following
paragraphs.

3.2.1 Informal In-house Lectures

Informal in-house lectures can be effective if Ada
experience already exists in the development team and the
organization has a large number of personnel to be trained. CCSO
attempted to establish an in-house informal lecture program for
the SARAH project team but found that it was not cost effective.
The main reasons for establishing this type of program were to:

provide team members with a good insight into the Ada
language prior to formal training.

provide a means of Ada technology transfer between the
SARAH project and other branches at CCSO.

The main reason for failure was that CCSO did not have
personnel available with sufficient Ada experience to conduct
this type of lecture program. Since the amount of time used for
preparation adversely affected team productivity, the SARAH
managers canceled the in-house lectures and placed more emphasis
on self-study, use of the CAI package, and the viewing of video ft

tapes.

Organizations should be careful in establishing an in-house
lecture program if there is insufficient Ada and software
engineering experience available. During an early experience with
Ada, CCSO developed this type of program to train a team involved
in evaluating the Ada language for use in digital communications
applications. The personnel involved in developing the course had
never received formal Ada training and based their instruction on
traditional language technology. As such, the Ada software
produced by the team resembled FORTRAN code. Since the team did
not use any of the advanced features such as packages, generics,
or tasks, the software was unstructured and difficult to
understand. Moreover, the benefits of using the Ada language were
not recognized since the team did not apply modern software
engineering practices.

3.2.2 Computer Aided Instruction

A CAI package is very beneficial for teaching Ada syntax and
for consolidation during and after formal Ada language training.

130

~ N

The SARAH team used the ALSYS "Lessons on Ada" CAI package. This
package provided a high level of training in Ada syntax. The
extensive use of examples and problems make this package very
effective. The interactive nature of the package also allows
users to review specific areas and so it serves as a good
reference source. IBM-PC compatible microcomputers were used to
host the package. The package was used extensively prior to
formal Ada language training so that the students could gain
maximum benefit from the instructor's experience. Since they were
already familiar with much of the Ada syntax, they were able to
concentrate on how the language could be used to develop the
SARAH system. The ALSYS CAI package has been used throughout the
SARAH project to allow software personnel to revise certain areas
of the language.

The CAI package allows for training flexibility; however,
usage must be controlled so that all personnel benefit from the
package. Members of the SARAH team were able to organize training
to suit their other work commitments. Enthusiasm for the package
remains high; personnel spend a great deal of their own time
training with the package. During work hours, a schedule was set
up for CAI training. This was necessary so that team members 0
could schedule their training times and so ensure that the entire
team received training. An invitation was open for other members
of CCSO to train with the package and so allow for technology
transfer across the organization.

3.2.3 Video Tapes

Video tapes were found to be effective but were time
consuming and did not allow for training flexibility. The
SARAH team viewed several different series of tapes. The tapes
varied in both quality and effectiveness. Time was allocated for
viewing the tapes and attendance varied depending on the workload
of the individual team members. The University of Houston video-

taped a complete semester course on software engineering and the
Ada language. Elements of this course were very benefictal;
however quality was poor and it took some time to cover the major
language features. A series of tapes named "The World of Ada"
provided good background on the Ada language and were useful for
manager education. The SARAH team also previewed "Ichbiah, Barnes
and Firth on Ada". These tapes provide an in-depth introduction
into Ada language syntax and could be used very effectively in an
overall training program.

Tapes should be previewed and only the most appropriate
tapes should be used for overall team training. To make effective
use of video tapes, they should be used in conjunction with
other training. Only those tapes which provide good support for
particular topic areas should be viewed. A great deal of valuable
time can be wasted by subjecting the entire development team to
videos that do not necessarily support the overall training
approach.

131
N

N. tp.

3.2.4 Self-Study

A library of Ada books and materials should be provided for
self-study and research. In addition, the development area should
have a "quiet area" where people can study without being
disturbed. A project library was established soon after the
commencement of the SARAH project. Team members set up a data
base to control library inputs. The library consists of a
collection of Ada articles, catalogs, regulations and books.
Today, the library is a very valuable asset to both the SARAH
team and CCSO. Team members use the library to remain current
with Ada technology advances and to familiarize themselves with
various Ada features.

Access to an Ada compiler is necessary if self-study is to
be of value. The SARAH team used the self-study method to learn
the basic features of the Ada language. There is little point in
learning features of the language if they cannot be reinforced by
practical exercise problems. A TELESOFT compiler on a Burroughs
XE-550 computer was used extensively for this purpose. The self-
study method proved to be very effective as a prelude to formal
training.

3.2.5 Attendance at Conferences

Attendance at conferences and seminars provided team members
with training in the practical application of Ada technology. The
SARAH team was active in national and local Ada organizations. "
These organizations provided a good forum for discussion and
allowed members to gain a good insight into some of the problems
and pitfalls encountered during software development. The
benefits of first-hand experience are not always achievable
through formal training alone.

In addition to benefits gained through active participation,
conferences often provide free tutorials. The SARAH team has
benefited significantly from the tutorials. Topics covered are
generally applicable to practical Ada design and implementation.
The knowledge gained can help speed software development and
enhance software quality.

,'.

132

''1 ~ ~'.7w .v * ..1A

4. SUMIARY AID RECOMEINDATIOIS

4.1. SUMMARY

Software development using the Ada language development
environment requires a high degree of training in order to
achieve the full benefits designed into the system. Potential
Ada developers must gain a practical insight into what is
required to successfully develop Ada software. This includes the
need to understand and apply the facilities of the Ada language,
the various new design methodologies, the Ada Programming support
environment tools, and the high startup cost.

Those desiring to become Ada developers should be prepared
to take full advantage of the language facilities.These
facilities enhance the software engineering concepts for
structured programming such as strong data typing, data
abstraction, and procedural abstraction. Educators can
prudently and reasonably include them in their course structure
by properly partitioning the language facilities into coherent
training blocks. Other aspects of the software lifecycle such as
configuration management, improved documentation techniques,
testing, software reuse, and the Ada programming support
environment, should be included in a structured training
program.

The development methodology selection is based on an
analysis of individual needs. Software engineers must be
cognizant of related methods and maintain an awareness of current
and new efforts in order to take full advantage of improvements
in lifecycle application techniques.

The Ada programming support environment provides
productivity benefits and will become increasingly significant as
more environments become available. The understanding of the
environment and its applicability are important for ensuring
lifecycle integrity of software.

Ada language training can be acquired from many different
places. Training in the Ada language and its associated
environment is available through commercial contractors,
government, and through self-taught in-house programs. Risks
associated with each must be carefully considered. High training
costs, the possibility of inadequate or improper training, and
procurement problems have been addressed. Care must be taken to
ensure the training acquired is worth while and cost effective.
In-house training must be undertaken with the greatest of care.
The Ada language environment is designed to support the most
current and best software programming techniques in use today.
These advanced techniques are beyond the capability of previous
languages such as FORTRAN and COBOL. For example, in-house
training may only teach the Ada syntax and semantics.
Programmers will likely recreate FORTRAN or COBOL code in Ada

133

. e 0

which may not be as efficient as the original code. In-house
training can be effective when using a combination of computer
aided instruction, video tapes and self-study to supplement
formal qualified training programs.

The Ada language and associated software technology can
provide significant benefits in terms of maintainability,
software reuse, and programmer productivity. However, managers
must be aware that language syntax alone will not provide these
benefits. If the Ada language is used without an emphasis on
software engineering and without productivity tools, the software

produced may be less maintainable and of poorer quality than that

developed using older programming languages. Managers must be
educated in this new technology if their project teams are to
successfully develop Ada software. They must understand that the
initial capital investment will be high. Development teams
require education in the areas language training, software
engineering, development methodologies, and support environments.

4.2. RECOKKKEDATIOIS

Recommendations are:

Base Ada training on sound Software Engineering
principles.

Provide up front training for management. -.

Research the proposed training organization for
instructor experience and approach.

Ensure that the training investment is sufficient to
cover all training needs eg. design, environment,
language, management, and software engineering training.

Provide the development team with CAI packages to help
consolidate language training.

Provide quiet self-study areas. Time should be allocated
to allow team members to consolidate their training and
to keep current with Ada technology.

Support the Ada development team. Members will be
required to make a significant personal effort if they
are to become fully educated in Ada technology.

134
S %'*'****6' *% %V * i * * .- , , \'. \ ' %~%~\ ~. % \.-jin%' %, %. % l\J .% \\.J-'.

A. BIBLIOGRAPHY

[I] DRUFFEL L.E., "The Potential Effect of Ada on Software
Engineering in the 1980s", North Holland Publishing Company,
1983.

[2] CARLSON W.E., DRUFFEL L.E., FISHER D.A., WHITTAKER W.A.,
"Introducing Ada", Proceedings of ACM 80, pp 263-271, 28-30
October 1980.

[3] "Packages Spawn Ada's Growth", Software and Systems, April

1985, Pp 93-100.

[4] STANLEY R.A., "Whither Ada?", DS&E, March 1985, pp 60-64

[5] BOOCH G., Software Engineering with Ada, Benjamin/Cummings
Publishing, Menlo Park CA, 1983.

[6] JUDGE J.F., "Ada Progress Satisfies DOD", Defense
Electronics, June 1985, pp 77-87.

[7] "Ada as a Design Language", Ada as a PDL Working Group,
IEEE Computer Society, 18 September 1985.

[8] "SARAH Operational Concept Document", US Air Force, 20
December 1985.

[9] WAGNER P., "Ada Education and Technology Transfer
Activities", ACM Ada Letters, Vol II No 2.

[10] "Methodman", Ada Joint Program Office, National Technical
Information Service (NTIS), accession number AD A123 710.

[12] BOOCH G., "Object Oriented Development", IEEE Transactions
on Software Engineering, Vol. SE-12 No. 2, February 1986.

[13] CAMERON J.R., "An overview of JSD", IEEE Transactions on
Software Engineering, Vol. SE-12 No. 2, February 1986.

[14] CHERRY G.W., "The PAMELA Designer's Handbook", Thought
Tools, Reston Virginia.

[15] HAILPERN B., "Multiparadigm Languages and Environments", 'V
IEEE Software, Vol.3 No.1, January 1986.

[16] "Requirements for the Programming Environment for the
Common High Order Language", Stoneman, Department of Defense,
Washington D.C., November 1979.

[17] "MIL-STD Common Ada Interface Set (CAIS)", National _
Technical Information Service (NTIS), accession number AD A157-
589. Z

135 '-

[18] CONN R., "Overview Of the DoD Ada Software Repository", Dr
Dobbs Journal, February 1986.

136

Ada* for the Manager
A Texas Instruments Perspective

Freeman L. Moore
Texas Instruments Incorporated

Plano, Texas 75086

ABSTRACT

Technical managers are concerned with the management of
people and resources necessary to accomplish a task.
They are not concerned with the implementation details
of a programming language. However, their work is
impacted by the selection of a language, the tools
involved, and the subsequent impact of these and other
items on the budget and schedule. With the
introduction of the Ada programming language comes the
challenge to keep informed about the impact of this
language and implications of its use. Since 1983, .1
Texas Instruments has been developing its Ada
curriculum to be able to respond to the needs of the
engineering staff within the company. This paper
examines some of the needs of Ada training from the
perspective of a technical manager.

!NTRODUCTION

Texas Instruments is a multi-faceted corporation, with one
segment devoted to defense related business, the Defense Systems
and Electronics Group (DSEG). While other segments of the
company are involved in various activities related to the
computer industry, it is the Defense Systems and Electronics
Group that will be most heavily impacted by any requirements
invnlving the use of the Ada programming language. Even before
language standardization in 1983, Texas Instruments was involved
in some of the Ada language definition activities and continues
to be involved in developing applications utilizing the Ada
language.

Ada is a registered trademark of the U.S. Government, AJPO

137

Within Texas Instruments, the Computer Systems Training group has
been charged with the development and delivery of Ada training
products and services since early 1983. Since then, several
courses have been developed which address the Ada training needs
of the software design engineer implementing solutions using the
Ada programming language, and related software support tools. In
addition to serving the software engineer, it was recognized that
training for program managers would be necessary, but on a scale
different from that required by the software engineers. Our
current efforts involve working towards integrating the Ada
curriculum to address various activities across the entire
software life cycle.

THE PROBLEM '!

"I'm not a programmer" is a phrase commonly encountered when
talking with managers about Ada. These are technical people who
are involved in the management of programs which are now, or will
be, using the Ada programming language and related tools. Some
of the early training efforts were directed towards individuals
who were involved in software development and implementation. It
was noted that a different approach was required when dealing
with technical managers. They want to know and understand how
this language affects their current method of operation, and what
to expect from its use. As a result, the usual programming
courses about Ada and software engineering are usually
inappropriate for this audience. Most of the programming courses
available from commerical training sources appear to be up to
five days in length. We have discovered that managers are very
stringent about their time, and reluctant to spare more than what
is absolutely necessary. We must maximize any training
activities within the alloted time available.

Some of the DSEG managers took the introductory programming
course and commented on its inappropriateness for their needs.
Based upon discussions with these and other managers, the
framework for a training program for managers was developed.
They agreed that some training to prepare for the introduction of
Ada was necessary, but they did not want a programming course,
they wanted a "help me understand its impact" course.

138
N NIN-%V:. N'l '.'.%55

TOPICS

It quickly became apparent during our development efforts that
certain topics were needed while others could be down-played in a
manager's course. Briefly, the topics included:

- Minimal History: Awareness of the history does not affect
the proper use of the language, nor how to effectively use
the language in the future. However, some material
detailing why Ada was developed helps to explain some of the
rationale of the Department of Defense (DoD) in requiring
the use of Ada.

- Standards: Even with a minimal background about Ada being
presented, it is necessary to understand the various DoD
Instructions and Directives and their rationale, that are
fundamental to the mandate to the use of Ada.

- Terminology: The terminology that is appropriate to the Ada
environment must be presented. As a general rule managers .-4
must be able to speak the language of their peers, and to be
able to effectively communicate using the proper terms.
Thus an awareness of the "vocabulary of Ada".

- Capabilities: A brief overview of the capabilities and
features of the language is needed. Managers don't want to
be compared with programmers, but they want to understand -

what their people are doing. An overview of the language
provides the opportunity to reinforce the vocabulary of the
language, while giving a high level understanding of the
language's features and capabilities. As such, an overview
of the features of the language is necessary, but only when
presented from the point of view of a non-programmer. In
general, identify what is new and different about this
language, and in particular, how it differs from the
languages that are already in use.

- Proposals: Submitting proposals in response to a Request for
Proposal (RFP) is a detailed proceE-. and it requires
technical expertise in a variety of li :iplines. When Ada
is called for in an RFP, the proposal writer must be
informed ot the risks and challenges presented by the .-,
introduction of this new technology. Proposal writers need
help in knowing how to effectively respond to RFP
requirements.

- Design: With project requirements now including the use of a
program design language (PDL), guidelines to understand the

139

distinction between designing and coding are needed.
Technical managers are being exposed to Object Oriented
Design and questioning the usefulness of this approach when
compared to other approaches, such as functional top-down
decomposition. Assistance can be provided in the area of
understanding designs, and being able to identify the
characteristics good Ada design. Understanding designs
should be oriented to the manager and should help to
identify what additional training might be needed, how DoD
documentation is affected, what tools might be available to
support the software development (analysis and design
phases).

Computer Systems Training makes available two courses in its Ada
curriculum that would benefit the technical manager: (1) a brief
seminar introducing the language and its impact and (2) a
workshop to help proposal writers respond to Ada requirements.

SEMINAR

To provide an introduction to the impact of Ada, a two hour
seminar highlighting the background and capabilities of the
language was developed. This has been available to any group
that is interested in learning more about Ada, and the resources
available within Texas Instruments. This seminar presents some
of the reasons on why DoD felt the need to develop a new
language, and is augmented by identifying areas where Texas
Instruments was involved in the early stages of the language
development. A collection of Ada resources at Texas Instruments
is also provided.

The history portion provides some reassurance that Texas
Instruments has been involved and continues to be active in using
this new software technology. By providing a history of Texas
Instruments' involvement, attendees also get names and contacts
of people / projects that have worked with the Ada language.

Current resources available to projects are identified, including
the names of the software support organizations, publications
available both internally and externally, and other training
possibilities for software engineers. This seminar has been
conducted several times, each time further refining the
objectives that must to be satisfied, which we continue to
incorporate into our evolving curriculum.

I1A~

RESPONDING TO RFPs

Because of the size and diversity of Texas Instruments, various
internal organizations are responsible for developing responses
to an RFP. Software managers are typically involved with the
software portion, and generally accept all the help they can get
on writing the response to an RFP.

RFPs represent a unique challenge to the managers. It is here
that they exercise their business skills in addition to their
technical skills. When responding to an RFP requiring the use of
Ada for implementation or design, the proposal writer must locate
resources which can be applied in this situation. Some companies -
provide management and business courses which address the
business portion of proposals, but generally overlook the
technical aspects of a proposal, deferring the material to the
technical staff.

We determined that specialized training was needed to respond to
the technical issues raised in an RFP specifying the use of Ada.
These issues might include finding out about similar or related
efforts within the company, knowing what compilers and software
support environments exist, finding out about the impact of Ada
code on size/time problems, understanding how the lifecycle could
be impacted, and in general, knowing the resources of the company
that are available.

Our response to fulfilling these needs has been the development
of a two day workshop addressing the technical issues of
proposals, as viewed from an Ada perspective.

Other Training Activities

Internal newsletters provide an additional means of keeping
people up-to-date with respect to the current resources available
within the company. Newsletters also provide a means of letting
other groups know of Ada related activities that are taking place
within the same company. However, some material which may be
candidates for newsletters may be competition sensitive,
resulting in a limited distribution.

141

STATUS

Texas Instruments responded to the need for training by initially
providing a seminar oriented for managers. This training has
been supplemented with an internally developed workshop which
addresses the needs of proposal writers responding to Ada
requirements.

This paper has identified some of the needs of the software and
technical managers at Texas Instruments. These people, because
of the types of projects they manage, have been or will be
affected by the DoD directives requiring the use of the Ada
programming language. The internal training division has
responded to their needs by making various types of training
available internally, along with efforts for providing continuing
education.

REFERENCES

Baskette, H., "Life Cycle Analysis of an Ada Project", IEEE
Software, January 1987.

Booch, G., Software Engineering with Ada, 2nd ed., Benjamin
Cummings, 1986.

Castor, V., "Issues to be Considered in the Evaluation of
Technical Proposals from the Ada Language Perspective",
AFWAL-TR-85-1100.

Softech, "L201: Ada for Technical Managers", Softech Inc., 1983.

Al?5~

142

Ada in the MIS World

by

Eugen VasilescuPh.D.
GNV Associates
35 Chestnut St

Malverne NY 11565

Introduction.

The place of Ada in the MIS world is in a state of

flux. There is no doubt that many of Ada features are appealing

for the commercial marketplace. The applications programmer or

the systems analyst will find the concept of package an essential

design tool. This concept allows abstraction of data structures,

separates the specification (roughly the interface) from the body

(the actual implementation), and gives the designer the

possibility to encapsulate objects and the related operations.

Ada's other novel features, like separate compilation, tasks,

exception handling, are clearly significant for systems design

practitioners or managers of information systems.

These features make important contributions to the writing

of portable, reusable software cutting down on the most onerous

data processing activities: maintenance and conversion efforts.

The question, though, is whether Ada is ready for the commercial

world, and, conversely, whether the commercial world is ready

for Ada.

The answer to this question depends lo a large extent on what

Ada has to offer to the many MIS departments using COBOL and/or

143

various DBMS in conjunction with some fourth-generation languages

(46L-).

Ada and Cobol.

To the COBOL practitioners, Ada proponents can always point

to the many Ada features already mentioned, and one can add

of course all the reasons why Ada as a language is a better

breed. The COBOL practitioner can point though to a number of

weak spots: Until recently, one could find very few textbooks and

other training materials focusing on commercial or business

applications of Ada, but this situation is beginning to change

(see [VasiB6]). The lack of significant experiences in using Ada

in a MIS environment was another weak spot. However, some recent

experience with the UNITREP Ada prototype involving the conversion

of an existing COBOL application to Ada shows that the lines of

code were reduced by a five to one ratio, the resulting application

was running faster, the effort in rehosting the Ada application is

minimal, and it runs using any of five different compilers. Compare

this with the effort in porting a COBOL application from one type

of hardware to another, or even from one version of a COBOL compiler

to another on the same system. S.

Finally one can point to the lack of efficient file handling 4

packages in Ada, as opposed to COBOL's established indexed sequential

file handling. The Ada I/O packages SEQUENTIAL_10, DIRECT_10, TEXT_IO,

hardly qualify for building blocks in any demanding commercial

application. The glaring ommission of an INDEXED_IO package in

the predefined language environment forces the language vendors

to supply equivalent implementation dependent packages. This si

144

situation has predictable effects on the portability and

maintainability claims. This ommission was noted early by the

Ada community, and attempts to repair this situation are being made.

For instance, in [KurbB6] one can find the specification of an

INDEXSEQUENTIAL_I package together with a partial

implementation of it using B-Trees. It follows closely the

specification if DIRECT_ID, with the stated objective to

preserve as much upward compatibility as possible (namely, the

effect of using the INDEXSEQUENTIAL_10 with natural keys, should

be the same as the use of DIRECT_ID). It does not provide for

several indexes, even though the paper mentions this possible

extention. Also, In [WiedB6] there is the specification of an

INDEXED_10 package that handles several indexes and arbitrary

kinds of records.

Ada and 4GL.

There is considerable talk, however, about Ada versus 4GLs.

While there is no agreed upon definition as to what a 4GL is,

one can list among its expected features:

1. It is non-procedural.

2. It is user-friendly.

3. It is used in conjunction with a Database Management

System.

4. It aims to integrate several functions (like report %

preparation, communications etc.)

As there is no standard 4GL, contrasting Ada with any

particular 4GL is not a straightforward process.

145
4

The following observations, however, seem to apply to all

48L. Software developed with a 46L is not generally portable from

one system to another, while Ada was designed specifically with

portability in mind.

A 48L is best used when a one-time application has to

be developed in a short time frame using an existing Database

System. The efficiency of a 46L relates to the speed of

developing code. A 46L, on the other hand, seems less concerned

with the running speed of the applications, or the tightness of code

generated. A 46L seems even less concerned with issues that

account for the largest cost in the software life cycle:

reliability and maintainability. In contrast, Ada design goals

emphasized maintainability, reliability, efficiency in using time

and space resources.

A 48L has no explicit requirements for software tools useful in

managing the complexity of large systems: data abstraction,

information hiding, etc. Some kind of informal and implicit

information hiding is achieved by a 4GL because in a non-

procedural language the user is relieved of specifying how

to perform the desired work. Instead, the user concentrates on

defining what work is to be performed. However, one can achieve

the same division of labor (and the associated gain in

productivity) by designing in Ada appropriate package specifications

and bodies for the problems at hand. It is here that one has to

look closely and make a reasoned decision. If the situation at

hand requires, let us say, rapid prototyping, a 4GL might be

chosen. If, on the other hand, one has to deal with a host

of similar or related problems, then the cost of developing (or

146

buying off the shelf) of the necessary Ada packages can be easily

justified.

It seems that a 4GL and Ada do not have to compete, but instead

they might complement each other.

Ada and DBMS.

The field of Database Management Systems is dynamic. The Relational

approach is now coming to dominate the world of commercial offerings.

The relational approach has known advantages due to its theoretical

clarity and flexibility, and recently appeared a number of robust and

efficient implementations. While new DBMS applications will probably

choose a Relational approach, there is a tremendous investment

in past and current implementations that use a Network or

Hierarchical approach. In addition one can see the first

appearances of products using the Entity-Relationship model, and

there is considerable work in progress dealing with topics like

Knowledge-Based Databases, Semantic Data Models, et al. As far

as Data Manipulation is concerned, the recent ANSI SQL standard

[SQL86] is used by virtually every major Database vendor.

There is a clear recognition though of the need to deal with "

both flat structures (standard in the Relational approach) and

hierarchical structures (naturally represented, say, in IMS).

For instance, in [Dada86] one can find the description of a

SQL like language able to integrate flat and hierarchical

structures because it allows relations to occur as attribute

values of tuples in relations. Also, another perceived need

by some DBMS practitioners (as, for instance, in CBune86]) is

147
i-N N

- ' I I I II S 5IS'I. * [

the need for a "class construct", tnat would be persistent (that

is, it survives from one program invocation to another). This

"class construct", in fact includes the concept of type, as

defined in [AdaB3].

It is interesting to point out that the Ada/SQL

prototype under development at IDA chooses an approach which will

answer the concerns and needs expressed in [Dada86] and [Bune86]

in the following manner: by allowing as attributes any object of

a particular type, the compiler will take over many chores

associated with expensive maintenance operations; by representing

database columns as components of Ada records, one can choose as

components other Ada records, and one can have this way a handy

mechanism to conveniently represent hierarchical data models.

It is clear then that the use of Ada in the DBMS world can

have far reaching and beneficial applications. In fact,

in EWied87] the question is raised whether a DBMS should be

written in Ada, and the answer is an emphatic "yes". In EWied8b]

and again in EWiedB7], it is advocated the writing of a WIS DBMS

entirely written in Ada. It is further argued that the one time

development cost of an Ada DBMS cannot exceed the costs related

to the modification and tuning of a multitude of commercially

available DBMS. Instead, it is proposed a layered product that

would be carefully modularized and could be taylored to a variety

of configurations. The contemplated modules would be designed

around six layers, each layer encapsulating a given level of

abstraction and functionality. In particular, the first layer

is concerned with Operating Systems services, the second layer N

deals with file access methods, the fifth layer includes data

148 7

manipulation languages like SQL, the sixth and last layer is

concerned with applications-oriented packages. In CWied87] it

is further argued that the proposed Ada DBMS would incorporate

the Relational, Network, and Hierarchical Models, with other

modules reserved for Knowledge-Based Processingp Logic

Programming, et al.

On the other hand, one clearly needs to learn more from real

implementations of Ada projects having DBMS relevance.

Unfortunately, the list of such projects is not long. One may

quote here ESprB7], which discusses a large scale embedded system

providing DBMS functionality, including a Data Definition

Language, a Data Manipulation Language, a Query Language Capability S

and an Access Control Scheme.

Conclusion.

Ada can be used and is used right now in a MIS

environment, as can be seen from the UNITREP prototype and the

experiences reported in [SprB7]. Ada could be an immediate and

powerful contender in a MIS environment if two critical areas are

addressed. One area is the developing of a powerful indexed

sequential I/O package. The second area is the developing of

an Ada/SQL interface that would take advantage of the strong

typing and abstraction building mechanisms of Ada. Once these two %
&0

areas are covered, one can say that Ada is ready for the commercial

world, that it can easily blend and wrap-around existing

applications, the long term benefits of using Ada will come

into focus, and finally all the elements of a winning strategy

149~

im. . % .

for Ada in the MIS world are in place.

Beyond the immediate horizon* one can see the whole DBMS

world coming to appreciate and use features best embodied in Ada.

In fact, the arguments for building an Ada DBMS point to a

product ideally suited to accomodate present and future Data Modeling

approaches.

References

[Ada83]
Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815AUnited States Department of Defense,
Washington DC, January 1983.

[Bune86]
Buneman,P. and AtkinsonM.," Inheritance and Persistence
in Database Programming Languages ",Proc. of SIGMOD'86,
SISMOD, Volume 15 Number 2, June 1986

[Dada86]
DadamP.,et al.,•A DBMS Prototype to Support Extended
Non First Normal Form Relations: An Integrated View on Flat
Tables and Hierarchies"v Proc. of SIGMOD'86, SIGMOD Volume 15
Number 2, June 1986

[Kurb86]
Kurbel,K. and Pietsch,W•"A Portable Ada Implementation of Indexed
Sequential Input-Output", Ada Letters, Volume VI, No. 2,3, 1986.

ANSI Database Language SQL, American National Standards
Institute, Inc., NY, NY, 1986.

[Spr87]
Springer,M.L. and LawsonR.L." The AFATDS Data Management ,
Software System", Proc.of Joint Ada Conference Fifth National
Conference on Ada Technology and Washington Ada Symposium,
March 1987.

[Vas188]i 6
VasilescuE.,"Ada Programming with Applications",Allyn and Bacon,
Newton, Mass., 1986.

[Wied86]
Wiederhold,G. et al.,"Software Requirements for WIS Database
Management System Prototypes".

15) 7)

[Wied87"
Wiederhold,6p"DBS System Requirements and Ada",STARS Briefing,
Washington, March 1987

N

'4.

:V

V,.

This page left blank intentionally

152

Teaching COBOL Programmers to be Ada* Software
Engineers

by
Major Charles B. Engle, Jr.

Major Colen K. Willis

INTRODUCTION

Although the title of this paper may seem "slightly" pejorative, it is not our
intention to denigrate COBOL (Common Business-Oriented Language). Like an old
dog, it has served us well and should be remembered for what it was and what it did
for us, not what it doesn't do or can't do for us. Therefore, let us concentrate on a
problem which will be a major one for DoD and perhaps, to a lesser extent, to those
outside DoD. The problem is how do we convert programmers with long careers in
COBOL to the mindset of software engineering with Ada. The United States Military
Academy at West Point has been involved in Ada education and training since 1979.
Besides offering an advanced level elective in Ada to cadets majoring in computer
science, the Military Academy also offers an annual Ada Summer Workshop for DoD
and military programmers. The Ada Summer Workshop is designed to expose
participants, primarily trained and employed as COBOL programmers, to Ada
through an intensive two week course. The syllabus used in our Ada Summer
Workshop is found in Appendix A. The focus of this paper will be the lessons we
learned in two different iterations of the workshop. It is our intention to help those
that follow us avoid the pitfalls that we experienced and capitalize on the successes
that we enjoyed.

THE SETTING

The number of participants in this course was limited to twenty DoD civilian and
military programmers. Their programming experience was rather limited. However,
the range of experience was rather large. It extended from a participant that had a ,.,.
Bachelor of Science degree in Computer Science to a junior military programmer who
was newly graduated from the fourteen week Army programmer's school. The
observations made in this paper are based on the performance of the "center of mass,"
not on any particular student. The main facility used was the Digital Equipment -,

* Ada is a registered trademark of the U.S. Government, Ada Joint Program Office

153 '1

N_ N d' N

-% IA N! .iW

Corporation VAX 11/780 operating under the VMS operating system. The Ada
compiler was the DEC VAX Ada compiler, version 1.0. In addition, some selected
students were assigned to IBM PC/AT microcomputers operating under DOS 3.1.
These students used the Alsys Ada compiler, version 1.0. No significant difference
in learning was detected for students using either of these configurations. Each
student was provided with a copy of the textbook, Programming in Ada, by J.G.P.
Barnes, and with a copy of the Ada Language Reference Manual. Instruction
consisted of both classroom discussion as well as lab periods and exercises. The
students were required to complete six out-of-class programming assignments.

15 4

LESSONS LEARNED

Lesson # 1 - Mindset

While we had anticipated open minds and receptive attitudes, we found that the ,i,
COBOL programmers arrived with preconceived notions about Ada (generally bad)
and a strong, almost religious devotion to COBOL as THE programming language.
Their approach to programming often included a great deal of dependence on the
operating system and a heavy integration of the COBOL language and facilities in the
operating system command language. From a systems point of view, their approach
was that of a programmer and user, not an engineer and synthesizer. We found it to
be one of our fundamental tasks to transition this mindset to a regard for the costs of a
program throughout its life cycle. There appears to be no clear way to prevent this
mindset, but we found that it may be countered by always discussing Ada concepts in
terms of their rationale so as to provide a clear understanding of the reasons behind
the concepts. This appeared to work because we noticed a change in the mindset at
approximately the half way point in the course. Students were more receptive to new
ideas and seemed to appreciate the power of the language and the software
engineering concepts behind the language. By the end of the course, there was only
one remaining 'Doubting Thomas!"

Lesson #2 - Fundamental Computer Science Concepts

It became obvious early in the course that the majority of the students, especially
the enlisted military programmers trained in a fourteen week course, had learned a
"comfortable" subset of COBOL through rote memorization. These students
displayed a lack of knowledge about even the most basic of computer science
concepts. This is attributable to the background of these particular participants, but is
reflective of DoD COBOL programmers in general. This extends to their knowledge
and use of Job control languages, which demonstrated that they knew how to set up
Job Control Language (JCL) processes, but did not understand why they were doing
so, or even what they were doing in particular. By the end of the third day, we
found that we had to
divert from the planned syllabus to provide the students with these rudimentary
concepts of computing. One might consider providing this instruction "up front" in
future courses to save time and prevent disruption of continuity during the course Z %
caused by this sidelight instruction. This initial instruction might include such simple
concepts as data structures, algorithm analysis, and simple numerics. These are
basic issues which are integral to the design and use of Ada as a language and are
fundamental to the software engineering context in which we design and use Ada ,
programs. S

Lesson # 3 - Scope and Visibility

In common practice, a COBOL program is a large monolithic entity which has a
very flat program structure. All variables are global and must be uniquely named.
Therefore, when COBOL programmers are exposed to a language in which the

155

meaning of an identifier depends upon its location in a program, they are initially
confused. The idea of potential visibility (scope), and whether or not reference may
be made to a variable (visibility), is foreign to these students and needs careful
explanation and numerous examples. In our two week course, this was the first area
in which there was not a directly analogous concept in COBOL. In order to
overcome this COBOL mindset, we tried to draw the analogy between scoping in
Ada and record levels in COBOL. Although these are similar ideas, the analogy is
not clean. However, it does provide the student with a basis in something that is
familiar to begin to understand these new concepts.

Lesson # 4 - Data Types

The overall philosophy underlying the concept of data types was a new one to
these students, yet they had relatively little difficulty in comprehending this concept.
The idea that a type was a set of values that an object may take and a set of operations
upon those values was almost intuitive for the pre-defimed types. The concept of
strong typing and name equivalence for types was similarly grasped without great
pain on the part of the student. The predefined types were explained by referring to
the picture clause in COBOL. The student understood that when they described an
identifier with a picture clause they were specifying the "kinds" of values that could
be stored in that identifier. The various "kinds" of data were referred to as types.
The predefined types all have equivalent types in COBOL, so the student readily
accepted and understood these Ada terms. The user defined data types caused a great
deal more difficulty. The concept of enumerated types, and the ability to manipulate
user defined identifiers as "values" of objects declared to be on an enumerated type
proved to be a rather perplexing idea. There is no analogous concept in COBOL.
Similarly, when we introduced the structured data types, the students seemed
intimidated. Although the idea of one-dimensional arrays is exactly the same in
COBOL as in Ada, most of our students had not programmed with COBOL's tables
and thus, had considerable difficulty with this concept. Further, in practice,
COBOL programmers rarely use (need?) multi-dimensioned arrays. Therefore, when
this structured data type was introduced, we were required to put our planned
syllabus on "hold" and explain this data structure from the beginning, i.e., we had to $,
justify the need for multi-dimensions and relate them to matrices. The Record is
another difficult data type for the student to comprehend. The COBOL programmer
treats records as I/0 facilities, whereas in Ada they are treated as data structures. We
found that we were required to be very precise in our handling of this data structure to
minimize confusion. Needless to say, discriminated records and variant records were
introduced, but could not be adequately explained in the short time we had for this
course. The lesson to be learned here is that structured data types and, indeed, the
whole concept of data types, are new concepts for COBOL programmers. In
hindsight, it would have been more appropriate and effective to include the ideas
underlying these data structures in the computer science concepts instruction which,
as already mentioned, should have been required prior to the introduction of Ada
syntax, semantics, and philosophy.

156

Lesson # 5 - Building Programs

We found that our students learned the "art of engineering programs" through the
use of simple examples. Once we felt that the students understood the basic
ingredients of a "module", we immediately began to form programs using
modularity. In order to accomplish this the programmer needed to understand the
concept of modularity through packages. Students were encouraged to "stepwise
refine" their program designs, even in small programs, into functional modules. We
found that the "center of mass" was not experienced in "independent compilation" of
COBOL units, however, surprisingly, most of the students had little difficulty in
understanding Ada's separate compilation and library management. The lesson we
learned is that these concepts build upon one another and should be introduced in a
logical order culminating in the student's understanding of reusability, modularity,
and library management. This topic is the one which seemed to start to "win their
hearts and minds" over to Ada.

Lesson # 6 - Input/Output

The students had little difficulty with the differences in input/output facilities
between COBOL and Ada. The concept of overloading was not found to be a
difficulty, when presented from the point of view that a put with a data type was like
a move in COBOL with any data type. The idea of using the same name for a series
of different, but similar operations, and having the compiler determine which of the
various meanings of the operation was desired from the types of the arguments,
seemed to cause little consternation. In fact, the student's major complaint about 1/0
was the requirement to instantiate a generic package for any form of numeric I/O
(using 'Image is cheating!). Their next biggest concern was the lack of built-in
facilities for Indexed Sequential I/O. The lesson learned here is that I/O can be
presented in a rather straightforward manner without difficulty.

Lesson # 7 -Abstraction

We separated abstraction into data abstraction, using packages and private types,
and procedural abstraction, using procedures and functions. The concept behind the
private type, in both of its forms, is new to the student, but is not difficult to explain
if suitable examples are used. Thus, data abstr,-.tion was not found to be a problem
area. Procedural abstraction was a more complex idea for the student to grasp.
Procedures were contrasted to paragraphs and the analogy helped to explain their
purpose. However, the idea of parameters to procedures was new and it proved to be
a difficult concept for the students to grasp. Several of the classic approaches to
introducing parameters (suggested by several authors from both the Ada and Pascal
worlds) were used. Nonetheless, the students struggled with this concept. Functions
were likewise very difficult for most of the students to understand. There is nothing
in COBOL analogous to function subprograms, so the idea of a "subprogram within
an expression" was doubly difficult. The lesson we learned here is that an effective
method of teaching procedural abstraction is to contrast procedures to paragraphs and
to attempt to explain parameters as arguments to the Call Using statement in COBOL.

,P

157

The usual difficulties encountered in teaching the subject of parameters at the

introductory level should be expected.

Lesson # 8 - Dynamic Data and Recursion

As might be expected, the subject of recursion caused the students confusion
because their is no parallel in their programming experience since COBOL does not
allow recursion. Dynamic data such as access types was also beyond the level of
most student's understanding. Those that were able to get their lab program on
access types operating, were using their notes by rote and getting inordinate amounts
of additional instruction from the instructors. The lesson we learned is that these
concepts are perhaps too advanced for this type of student, without formal
background, to grasp in a two week course.

Lesson # 9 - Ada's Advanced Features

Surprisingly, the concept of generics did not prove to be one that caused the
students any difficulty. The ideas are new and, when adequately explained, are
readily used by the students. The fact that all non-textual I/O must be instantiated
caused the student to become familiar with the instantiation portion of generics
throughout the course. Thus, when the students were shown how to design and write
generic units, they had an appreciation of how to use them, which made it easier for
them to visualize and use the concept. Exceptions were also new to the student, but
also did not pose any problem for the students. Perhaps because of their analogy to
the COBOL On End statement for 1/O, the idea was readily accepted by the students
and easily grasped. Tasks posed a problem because of the students' unfamiliarity
with the concept of concurrent processes. Also, this concept was presented late in the
course and was not given too much in detail. Students did not seem to be able to
understand the basic problems, so Ada's elegant solutions to these problems were not
grasped at all. The lesson to be learned is that exceptions can be made analogous to
the COBOL On End statement. This facilitates the student's understanding of the
new concept. The other two area, generics and tasks, are completely new and need to
have extra time devoted too them. Generics will be more easily grasped and used by
the students then will tasking.

Lesson # 10 -Advance Assignment

The lesson that we learned which proved to very valuable was to send out the
final Ada programming assignment in advance. We required each student to
program their solution to the assignment on their home station's computer, using
whatever language they felt most comfortable in using. We then had the students
hand this assignment in prior to the start of the instruction and planned our
programming labs throughout the course so that they built up to the final
programming lab. After the students handed in the last lab, we critiqued it and
handed back their advance assignment to compare and contrast the two versions
Students felt that they gained most from a comparison of "before and after."

158

SUMMARY

This was a very unscientific listing of the fun and folly that we had in our two
iterations of teaching Ada philosophy and programming to COBOL programmers. It
is not intended to be an exhaustive comparison of the languages, but rather a listing of
the way we taught the course and some of the lessons that we learned. We sincerely
hope that instructors in similar courses might find some value in the suggestions that
we have made.

.*' ..

III

;. - .. , .

* . .-

.~ .A

* ,,. -.. ,

757

159

-:-C - VV

.-'

APPENDIX A

USMA 1986

ADA SUMMER WORKSHOP

SCHEDULE

------------------------------ 16 JUNE - MONDAY---------------------------------

TIME GROUP LOCATION TOPIC INSTR ASSIGNMENT

0800-0830 All 6004 1.1 Introductory Remarks K N/A

-',°, 0830-0900 All All Tour of Facilities E/W/G N/A

0910-1000 All 4086 1.2 CS/Data Structure Review E B: Ch 1
Ada Language Overview
"A Software Crisis"

1020-1130 1 4086 1.3 Introduction to Ada W B: Ch l&2
Introduction to LRM DoD: Ch 1
"An Ada Program"

2 5038A 1.4 Introduction to G N/A
USMA Computer Systems

LAB 1

1130-1300 ALL O-Club Lunch

1315-1420 1 5038A 1.4 Introduction to G N/A
USMA Computer Systems

LAB 1

2 4086 1.3 Introduction to Ada W B: Ch l&2
Introduction to LRM DoD: Ch 1
"An Ada Program"

1430-1520 1 4086 1.5 Lexical Style E B: Ch 3,4
B: App 4
DoD:Ch 2-4

2 5038A LAB 2 (Lexical Style) G

1530-1630 1 5038A LAB 2 (Lexical Style) G

2 4086 1.5 Lexical Style E B: Ch 3,4
B: App 4
DoD:Ch 2-4

" 1630-1700 5038A Independent Study
5038B

160

I .q r" . ,

-------------------------- 17 JUNE- TUESDAY-------------------------------

TIME GROUP LOCATION TOPIC. INSTR ASSIGNMENT

~jA 0800-0830 All 4086 Admin -Facility Tour W N/A

0830-0920 All 4086 2.1 Simple File I/0 W B:15.1-15.
DoD: 14.3

0930-1030 1 4086 2.2 Control Structures W B: Ch 5
DoD: 5.3-

5.9
2 5038A LAB 3 (File I/O) G

1040-1140 1 5038A LAB 3 (File I/O) G

- .2 4086 2.2 Control Structures W B: Ch 5
DoD: 5.3-

5.9

1315-1400 All 4086 2.3 Composite Types 1 E B: Ch 6
.-. DoD: 3.6-

3.7.4
5.2.1

S1410-1500 1 4086 2.4 Composite Types 2 E (See 2.3)

1510-1600 2 4086 LAB 4 (Complex Types! G
Control Structures)

<' 1510-1600 1 5038A LAB 4 (Complex Types/ G
Control Structures)

2 5038A 2.4 Composite Types 2 E (See 2.3)

1600-1615 All 4086 Admin E

* 1615-1645 All 4086 Quiz 1 E

1645-1700 All 5038A Independent Study

5038B

APP A

161

----------------------- 18 JUNE -WEDNESDAY--------------------------

* ~ TIME GROUP LOCATION TOPIC INSTR ASSIGNM4EN

S0800-0900 All 4086 3.1 Subprograms 1 W B: Ch 7
-. DoD: Ch 6

*0910-1000 1 4086 3.2 Subprograms 2 E B: Ch 7

DoD: Chi 6

2 5038A TEC Center Tour W

.1000-1100 1 5038A TEC Center Tour W

2 4086. Subprograms 2 E B: Ch 7
DoD: Ch--6

*1100-1145 All 5038A Independent Study
5038B

.1315-10 l 4086 3.3 Packages 110 l W B: Ch 8
DoD: Ch 7

1415-1505 1 4086 3.4 Packages 2 W B: Ch 8
DoD: Chi 7

2 5038A LAB 5 (Packages) G

1515-1605 1 5038A LAB 5 (Packages) G

2 4086 Packages 2 W B: Ch 8
DoD: Ch 7

1605-1620 All 4086 Quiz 2 W

*1715-2030 All South Boat -Trip N/A
Dock

APP A

162

---- --- --- --- --- --- --- --- - 19 JUNE - THURSDAY - - - - - - - - - - - - -

TIME .GROUP LOCATION TOPIC INSTR ASSIGNMEN

-, 800-01 L 4086 Admin E N/A

0815-0905 4086 4.1 Library Units W B: Ch 8
DoD: Ch 1

0915-1005 1 4086 4.2 Exception Handling E B: Ch 10
DoD: Ch 1

2 5038A LAB 6- G
(Comprehensive)

* 1015-1105 1 5039A LAB 6-1 G
(Comprehensive)

2 4086 4.2 Exception Handling E B: Ch 10
DoD: Ch1

S1105-1145 All 5038A Independent Study

1351-1415 All 4086 4.3 Private Types w B: Ch 9
DoD: 7.4

S1430-1500 All 4086 Quiz 3 E

*1510-1610 All 5038A LAB 6-2 G
5038B (Comprehensive)

1 -1700 All
605038A Independent Study

5038B LAB or TEC Room

APP A

163

-- 20 JUNE- FRIDAY-----------------------------

TIEGROUP LOCATION TOPIC INSTR ASSIGNMENT

0800-0900 All 4086 5.1 Advanced Types 1E B: Ch 11.1
11.2

DoD: Ch 3.

0910-1000 1 4086 5.2 Advanced Types 2 w B: Ch 11.3
11.6

DoD: 3 .2 ,3.

3.6.3
2 5038A LAB 7 G

(Discriminated Records)

1010-1100 1 5038A LAB 7 G
-~ ~ (Discriminated Records)

2 4086 Advanced Types 2 W B: Ch 11.3
11.6

DoD:3.2,3.
3.6.3

1100-1145 All 5038A Independent Study
5038B

S1315-1405 All 4086 5.3 Advanced Types 3 E B: Ch 11
DoD: 3.8

1415-14 l 4086 Quiz 414 l E

S1545-1700 All 5038A LAB 6-3 G

5038B (Comprehensive)

APP A

164

1 % ?Z. . % *'.* % %'%\ ,

- ---------------------------------- 23 JUNE - MONDAY----------------------------

- TIME GROUP LOCATION TOPIC INSTR ASSIGNMENT

0800-0850 All 4086 6.1 ARRAYS AND RECORDS E/W B: Ch 6
DoD: 3.6-

3.7

- 0900-0950 1 5038B TEC ROOM W
2 5038A LAB 6 (Comprehensive) G

1000-1050 1 5038A LAB 6 (Comprehensive) G
2 5038B TEC ROOM W

1100-1130 All Independent Study

1315-1405 All 4086 6.2 Access types E B: Ch 11.3
11-5

DoD: 3.8

1415-1430 All 4086 Issue/Explain LAB 8 E
.1430-1700 All 5038A Independent Study

.°€ , .-

APP A

165
...... 165

-------------------------------------- 24 JUNE- TUESDAY----------------------------

TIM4E GROUP LOCATION TOPIC INSTR ASSIGNMENT

S0800-0850 All 4086 7.1 Numeric Types E B: Ch 12
DoD: 3.5.4

3.5.1

0900-0950 1 4086 7.2 Files W DoD: Ch 14
Advanced Format
Techniques

2 5038A Lab 8 (Access Types) G

1000-1145 All 5038A Independent Study

S1315-1405 1 5038A LAB 8 (Access Types) G

2 4086 7.2 Files W DoD: Ch 14
Advanced Format
Techniques

1405-1700 All 5038A Independent Study

APP A

166

-- 25 JUNE- WEDNESDAY--------------------------

TIME GROUP LOCATION TOPIC INSTR ASSIGNMEN

-.. ---------------- --............

0800-0850 All 4086 8.1 GENERICS 1 E B: Ch 13
DoD: 12.1

12.3

0900-1000 1 4086 8.2 GENERICS 2 E B: Ch 13
2 5038A LAB 9 (Generics) G DoD: 12.1

12.3

1000-1130 All 5038A Individual Study
5038B

1315-1405 1 5038A LAB 9 (Generics) G

2 4086 8.2 GENERICS 2 E B:Ch 13
DoD: 12.1-

12.3
1405-1430 All 4086 Quiz 5 E

1430-1700 All 5038 Independent Study

APP A

167

-;

---------------------- 26 JUNE THURSDAY--------------------------

TIME GROUP LOCATION TOPIC INSTR ASSIGNMENT

. 0800-0850 All 4086 9.1 TASKING 1 W B: Ch 14DoD: 9.1 -

9.12

0900-1000 1 4086 9.2 TASKING 2 W B: Ch 14

DoD: 9.1 -

9.12
2 5038B LAB 10 (Tasking) G

1000-1130 All 5038B Individual Study

1315-!405 1 5038B LAB 10 (Tasking) G

2 4086 9.2 TASKING 2 W B: Ch 14
DoD: 9.1 -

9.12

1405-1430 All 4086 Quiz 6 W

-; 1430-1700 All 5038 Independent Study

- 1800-???? All TBD Farewell Dinner E/W/G

v '- ..

APP A

168

.- - - - - - - *.-\

- ----------------------------- 27 JUNE - FRIDAY----------------------------

. tIME GROUP LOCATION TOPIC INSTR ASSIGNMENT

..7" 0900-0950 All 4086 10.1 Language Discussion E W G TBA

1000-1030 All 4086 10.2 REVIEW E W G TBA

1030-1050 All 4086 10.3 Course Critique E W G N/A

1100 All 6004 Graduation K

- 1200 All WORKSHOP ENDS

INSTRUCTORS

MAJ Chuck Engle (E)
MAJ Colen Willis (W)
LCDR Al Gary (G)

REFERENCES

Barnes,J.G.P; "Programming in Ada"; 2nd Edition; (B)
(Addison-Wesley Publishing Co, London,1984)

United States Department of Defense; ANSI/MIL-STD-1815A-1983; (DoD)
"Reference Manual for the Ada Programming Language"

APP A

169

K.: K-!

This page left blank intentionally

17

A4 A. -f

TEACHING SOFTWARE ENGINEERING IN A FIRST ADA COURSE

Robert C. Mers

North Carolina A. & T. State University

At ract

The author has been teaching an Ada language course at North Carolina A. &
T. State University for five consecutive semesters beginning in spring 1985.
From the very beginning, this course has assumed a complete knowledge of Pascal
as a prerequisite, including knowledge of pointers and variant records. This
course gives a complete overview of the Ada language, covering elementary topics
In depth and topics such as tasking, generics, and user defined real types
somewhat hurriedly. Within the past year this course has been upgraded from CS
290, erogramming in Ada . to CS 490, Software Engineering Using Ada . as part
of the upgrade of the Computer and Information Science program to meet
accreditation standards of the CSAB (Computer Sciences Accreditation Board) of
the ACM and the IEEE. An additional prerequisite of data structures is now
required. The purpose of his paper is to describe the development of this
course and the use of program assignments to (1) teach software engineering
concepts such as program design, modularity, data abstraction, encapsulation of
related data Into packages, separate compilation, data Integrity, information
hiding, generics and reusability, and exception handling, and (2) develop the
Ada language constructs themselves.

1. rintrocuction and Context

This paper could be considered a sequel to the author's paper (5] titled
Experiences of Pascal Trained Students in an Introductory Ada Course Whereas

the emphasis there was on student experiences, the emphasis here is on teaching
methodology and upgrade of the course. An overview of the course is given,
focusing on the progression of topics. The utilization of progranning
assignments to teach students software engineering concepts and methologles Is
then described. The culmination of the course is a team project that challenges
the students to use many of the software engineering methodologies in a single
app)ication, and some examples of projects are given. Resources are also
described. The author's evaluation of his efforts to upgrade follows,
mentioning difficulties and limitations as well as successes so far. Finally
conclusions and recommendations are mentioned, and an open invitation is given
for colleagues to offer suggestions to further enhance such a course.

The course described Is In the context of an environment where Pascal Is the
main language, and proliferation of languages Is discouraged. The Department of
Mathematics and Computer Science gave the author permission to teach Software
Engineering using Ada, not Ada as a language. Thus the Issue of Ada being the

171

- •- . € - € > ", , . ..- " .. ." .- - .- -.. ,- ..' .-' * -'

primary language Is not addressed. Limitations such as a shared VAX 11-780 and
an error prone New York University Ada Ed Compiler are dealt with, for these
have prevented the instructor from implementing this course to Its maximum
potential.

2. Overview of Course Content

The first part of the course Is an overview of software engineering
principles designed into the Ada Language prior to giving of nitty gritty
details of Ada. Rationale of the Ada language is given along with a brief
description of the major goals and features of Ada (see Barnes [2]). These
include data abstraction, separation of specification and implementation,
packages and separate compilation, data integrity, generics, and parallel
processing. A history of the Ada language is presented from the beginning to
current developments. Then a fairly detailed treatment of packages,
subprograms, generics, and TEXT_1O is given so that students can understand
simple Ada code in its larger context and the use of the TEXTO package.
Illustrations of Ada code are given, for these students have the programming
background to read such code without much difficulty.

Since this is a first Ada course, the rudiments of the language are covered
next, Including such topics as control structures and discrete types. Because
of their programming background, the students have little difficulty with
declarations, operations, and enumerated types. Subtypes, derived types.
attributes, and type conversion come next. The emphasis on software design
continues as detailed features of subprograms, such as named and positional
notation, recursion, default parameters, and overloading of subprogram names and
operations, are covered.

The course now makes the transition from simple to compound data types.
flazj blocks are introduced here because of their application to creation of
array objects at run time. Both constrained and unconstrained array types are
introduced, as are array attributes, assignment using aggregates, slices, array
operations, and strings. Records without discriminants are covered in detail.

Emphasis is now shifted to the use of external packages and separate
compilation. Compilation units and order of compilation are covered. Data
integrity is made concrete with the introduction of private and limited private
types. Scope and visibility are covered in depth, as is dot notation, the Um
clause, and the features of renaming.

At this point the students appear to have enough confidence in themselves to
handle higher level software engineering concepts such as generics and exception
handling. Predefined and 10 exceptions, exception handling, and propagation are
covered in some detail, and students are encouraged to use exception handlers in
programs from this point on. Generics are covered In depth, the students being
made very aware of reusability of code through examples such as generic sort 0
subprograms and generic stack packages.

The advanced typing features covered next. such as discriminated records and
access types, build on the previous treatment of types. Students are then

172

Introduced to user defined floating point and fixed point types, including their
hardware Implementations. The author has tried Introducing generics and
exception handling both before and after these advanced typing features. He
feels that covering generics and exceptions first Is more In tune with the
software engineering tone of the course.

Tasking gets covered last due to its uniqueness and unfamiliarity. The
concepts of parallel processing, rendezvous, entry and accept statements.
select, delay, and terminate statements do get covered. However this topic and
user defined real types do get short changed. The author feels that in-depth
tasking may be more appropriately covered in an advanced systems course and that
real types can be explored further In a numerical analysis setting.

3. IndivicSal Program Assignments

The author has found that the hands-on aspects of a programming course teach
a student far more effectively than lecture or discussion, for the student is
involved in the. dgjg dynamic. And as we all know. programs work perfectly in
our minds but will not compile or run when put In the machine. Programming
assignments are intentionally created to gradually develop the student"s ability
to use the software engineering features of the Ada language. A major objective
of the Individual programming assignments is to prepare the students for a team
project using almost all of the advanced Ada features and software engineering
concepts.

The first program assignment develops the student's ability to do TEXT_IO,
work with various scalar types, and do separate compilation from libraries.

Normally a package is provided for a student, and he or she examines it and
writes a driver program to Implement its resources. In Fall 1986 the instructor
provided a package with Sine and Cosine and had the students compute all
trigonmetric functions of angles from 0 to 360 degrees in Increments of 10
degrees and handle the cases where the trig functions are undefined. Later on
the students could enhance the program by writing exception handlers for
undefined functions and using generics on user defined floating point types. In

Spring 1987 the students had to apply Exponential and Logarithmic functions
provided them to solve problems Involving compound Interest. They used
Enumeration types to Imput the frequency at which Interest was compounded.

If the pace of the course goes rapidly enough, the students may be ready to
handle array types, including unconstrained arrays, and simple records in a
second programming assignment. Otherwise, another assignment can be given on
scalar types, emphasizing attributes of discrete types, followed by an
assignment involving compound data types. By the second or third assignment the
students are required to design their own packages containing low level routines
and reflecting the levels of abstraction In the program. In Fall 1986 the
instructor had the students develop the operations of addition, scalar
multiplication, and dot and vector products on unconstrained arrays and provide
error handlers when the operations were undefined. This assignment provided
them the chance to use overloaded operators. In Spring 1987 the students had to
process an unconstrained array of records, including updating of information and

sorting on various fields of the record.

173 P

The instructor has found that students have not developed the sophistication
to handle private types, rigorous exception handling, or generics until late In
the semester and after at least the above mentioned assignments are completed.
Although the emphasis Is on software engineering concepts, this is a first Ada
course, and It takes time to integrate all the major concepts of the language
Into a single programming assignment. If another individual assignment Is
given, it may focus on access types or discriminated records and emphasize
exception handling and data Integrity.

4. IijmEPrjt

Approximately one month before the end of the semester, the students form
groups of two or three for their major team project. Teams may choose their own
topics subject to instructor approval or select from a list the instructor
provides. All the projects require extensive use of software engineering
principles such as data abstraction and Information hiding, data integrity,
reusability, and robustness. Careful design into external packages and use of
separate compilation units is required, as is exception handling. Use of
generics and private types is encouraged if feasible for the project chosen. At
the time of completion, the team must give an oral presentation to the
instructor, enabling him to determine the level of understanding and
contribution of Individual team members. The projects generally Involve 200 to
400 lines of code. However, the level of expertise with software engineering
principles Is a more important criterion In the project than length or
complexity.

So.,e of the projects done by students and evaluation of them are now
described.

(1). A generic transecendental function package which works on any floating
point type. The students wrote correct algorithms for square root, natural
logarithm, and exponential functions, raising and handling exceptions when the
functions are undefined.

(2). A queue package using access types and consisting of procedures to
locate, *insert, remove from front, and remove from any position In the queue.
Exception handlers were provided for items not found in the queue or removing
from an empty queue. The program was innovative and worked well; however a
compiler bug prevented it from being executed as a generic package.

(3). A generic numerical analysis package that Included integration by the
trapezoidal rule. Functions used Included transcendental functions, and various
exception handlers were provided. Execution was successful in the non generic
case; however a compiler bug prevented execution using this generic package.
which had a subprogram as a formal parameter.

(4). A binary search tree package using access types which included a
recursive Infix traversal and Iterative insert and delete routines that

174 A

preserved the sorted structure of the tree. The delete procedure was especially
innovative.

(5). Processing of a circular doubly linked list, again using access types.
Nice exception handlers were provided for deleting from empty list, deleting
Item not in list, and avoiding duplicate insertion.

(6). A matrix operations package involving standard operations such as
addition, multiplication, determinant, and inverse. This package allowed the
user to choose operands from an array of matrices, and was quite detailed.
However, it lacked robustness in failing to handle undefined operations and did
not use the power of recursion for the determinant.

Among other projects attempted, with less success, were a generic quicksort
procedure, a singly linked list package, a postfix expression evaluation
program, nested linked lists, and a polar coordinate complex number package.
These projects were not completed because these students did not exhibit a high
enough level of understanding to get rid of compilation and other errors.
Differing levels of success is not surprising due to varying levels of ability
and commitment among the students.

4. Resources

It is necessary to mention the resources and environment, especially the
textbook and compiler, for the quality of these has greatly affected the success
of teaching software engineering concepts in this course.

The compiler used was the New York University Ada Ed version 1.7 for the
Digital VAX 11-780, which was much faster than versions 1.1 and 1.5 previously
used by the Instructor, yet full of errors. Some of the errors discovered were
(1) failure to handle EndofFile on input done from the VMS editor, (2) failure
to sort strings correctly, and (3) run time aborts when formal generic
subprogram parameters were attempted. Such errors caused frustration and
hindered giving of an adequate number or quality of programming assignments.
Breakdowns of the VAX 11-780 also prevented the course from achieving its
desired objectives, for the students did not get adequate hands-on time needed.

Due to a proposal coauthored by Dr. Mers and Mrs. Gloria Phoenix of North
Carolina A. & T. State University, an almost dedicated VAX 11-785 system and a
Digital VAX Ada compiler will be available for future offerings of this course.
These improvements will greatly enhance the quality of this and other Adaofferings.

The primary text In the course Is Young [7]. Although Booch [3) may have
the most comprehensive treatment of software engineering from an Ada
perspective, the instructor feels that the Ada features themselves are buried V.

too deeply In the text and that the approach is too advanced for a first Ada
course, even for senior level students. Another excellent Ada software
engineering text is Bray (4), which uses a bottom up approach. The instructor
feels that although this book is very readable and in the spirit of software

175

JorvocWIPWIVV UXW9V UUJEN"IkW

engineering, it covers many topics In a sketchy manner and tries to do too much
too soon (e.g. all types In one short chapter). Although Young's text does not
explicitly mention "software englnering", the author feels that it is the best
Ada text available from the standpoint of completeness, style, readability,
consistency in clarity of presentation, and applications.

Use of the Beference Manual for the Ada Programming Lanauage [I] is

encouraged, and students are given the opportunity to purchase copies. Much of
the course material is from the instructor's lecture notes. much of which are
compiled from SofTech's notes for the U.S. Army Summer Faculty Research Program
of 1983 (6] and the Advanced Ada Workshop sponsored by ASEET in January 1987.

5. E _aluation, Conclusions, and Recommendationp

The Instructor of the course feels that, with a high level production

compiler such as Digital VAX Ada and a dedicated machine that does not have
frequent breakdowns, that students experienced in programming who have had no
prior Ada experience can develop both conceptual understanding of software
engineering principles and ability to apply them in hands-on programming. The
compiler and hardware limitations mentioned in section 4 above have prevented
current Implementations of the course from fully achieving its objective of
making students familiar with the major software engineering principles of the
Ada programming language because the students have not developed sufficient
hands-on proficiency. However, the lecture portion of the course has provided
the students in-depth exposure to the major software engineering principles of
the language except for tasking and real types, and students have demonstrated
understanding of these through examination performance.

The author makes the following conclusions and recommendations based on his
experiences teaching software engineering is a first Ada course.

(1). The syntax of the Ada language cannot be slighted when teaching
software engineering principles. A primary or secondary text must be used which
gives a complete. elementary treatment of the language.

(2). Use of packages and separate compilation in programming design shouia
be taught from the very beginning and be the framework in which ail programming
assignments are done. Data abstraction and information hiding should be
emphasized also. Robustness should be encouraged by doing exception handling
early.

(3). Private types should be introduced at the time applications to data
strutures (e.g. stacks. queues) are Introduced so that students can experience -

data integrity. Perhaps students should write parallel code using private and
non private types and then try to see the effects of compromising the data
structures used.

(4). A spiral approach to the course should be used. Students could be
exposed to enough of packages. exception handling, generics, and private types ,

so that they can apply these software engineering principles in early simple

176 be

0.1

-A a..

programming assignments, then apply them In more depth later.

(5). The team projects should be given no later than two thirds of the way
through the semester, giving the students adequate time to do them. The topics
that are Implemented in the projects can be taught In parallel with project
development. With the spiral approach, the students have had some program
experience with the major software engineering principles by project time.

The author welcomes constructive suggestions from others experienced in
teaching similar courses. View graphs of this presentation and sample student
program listings are available on request.

(1]. ANSI/MIL-STD-1815 A, Reference Manual for the Ada Proarammina Languaae

1983.

(2]. Barnes. John. Programming in Ada , 2nd edition, Addison-Wesley. 1984.

(3]. Booch, Grady, Software Engineering with Ada . 2nd edition,
Benjamin-Cunmings, 1986.

(4]. Bray, Gary and Pokrass, David, Understanding Ada. A Software
Enaineerina Approach , John Wiley, 1985.

(51. Mers, Robert C., 'Experiences of Pascal Trained Students in an
Introductory Ada Course', Proceedinga of the 4th Annual National
Conference on Ada Technology , 1986.

(6]. Softech Inc: C.NTACS Summer Program , U. S. Army (CENTACS), 1983.

(7]. Young, S.J., An Introduction to Ada . 2nd edition. John Wiley. 1984.

177 ~~.N

This page left blank intentionally

178

ADA&O EDUJCATION AMD THE NOI-CONPUTER SCIENTIST

Dr. Charles C. Kirkpatrick

and

Dr. Paul B. Knese

PARKS COLLEGE

OF

SAINT LOUIS UNIVERSITY

Cahokia, Illinois 62206

May, 1987

SEWED ANNUA ASSET SYMPOSIUM

9-11 June 1987

Dallas, Texas

179

ADA6 EDUCATION AND THE NON-COMPUTER SCIENTIST

Dr. Charles C. Kirkpatrick and Dr. Paul B. Knese

Parks College of Saint Louis University

ABSTRACT

Numerous lessons have been learned during the startup and offering of an
Ada@ course at Parks College of Saint Louis University. Major obstacles to be
overcome during startup include securing hardware and a compiler which are
compatible, selecting a text, and promoting the language as more than just
another computer language. The first offerings of the course indicate that
students are frustrated with long compilation times and with the use of a
compiler which has not been validated. Pascal does not seem to prepare a
student for learning Ada any better than does FORTRAN. After overcoming an
initial bad "name" the course has become very much in demand. Finally, it is
recommended that Ada should not be reserved for computer scientists, but
should be considered as a first language for everyone who learns to program.

Ada is a registered trademark of the U.S. Department of Defense.

180 %

' N-

I. INTRODUCTION

This paper relates the experience of starting an Ada® course at Parks
College of Saint Louis University and the lessons learned during the first two
offerings. The first section of the paper provides a description of the
institution and the experience encountered during course start-up. Readers
who simply desire a summary of the lessons learned may begin reading
immediately in Section V with only a minor sacrifice of continuity.

II. PARKS COLLEGE AND RELATED CURRICULA

Parks College, located in Cahokia, Illinois, was founded by Oliver L.
Parks in 1927. It is the oldest certified institution of aviation in America.
In its early years it boasted an aircraft factory in addition to students.
During World War II Parks College and its subsidiaries trained one of every
ten pilots and thousands of aircraft mechanics. In 1946 Parks College was
given to Saint Louis University in order to provide future aviation leaders
with a broad and more academic education. Today, Parks is one of eleven
colleges and occupies one of the three campuses which comprise Saint Louis
University.

Parks offers nine bachelor's degree programs ranging from Aerospace
Engineering to Transportation, Travel and Tourism. The curricula all have as
their theme aerospace technology and management of aviation facilities. The
coursework is designed to educate the students in the rich history of aviation
and to provide training in the most current technologies in the aviation
industry. Representative of the latter goal is the fact that every student
who receives a Bachelor of Science degree from Parks must complete at least
one computer science course.

For most major disciplines, several courses in computer hardware and
software are required. Computer science courses at Parks include FORTRAN for
Aerospace Engineering, BASIC for Aircraft Maintenance Engineering, and Pascal
for Avionics. No person taking these courses (or any other computer science
course) at Parks is a degree candidate in Computer Science. However, this
does not detract from the course content, as all course syllabi are designed
according to the ACM curriculum recommendations for Computer Science. All of
the courses include numerous programming assignments to acquaint the student
with the computer and its use as a problem solving tool. -.

III. INTEREST IN ADA

From the time Ada first became a real possibility for the aerospace
industry several of the professors at Parks had expressed sincere interest in
offering that capability. With the introduction of the Avionics curriculum in
1983 the need became even more pronounced. In January, 1985, a proposal for
development of an Ada course at Parks was prepared. The course was to become I

181
- - * ~ . ~ ~ *.".* .

? *'*

part of the Bachelor of Science in Avionics curriculum, and was given formal
approval in June, 1985. The language appeared to be appropriate for students
in avionics, who work with real-time embedded computer systems in aviation
electronics. The need for such a course was well known and appreciated since
most of our avionics graduates seek employment with aerospace companies who do
business with the Department of Defense.

A course syllabus was developed and the certified Telesoft Ada compiler
was purchased to run on a Codata 3033 (Unix, 68000). For reasons which are
still unknown, the Codata-Telesoft Ada combination would not function
properly, and the initial course offering had to be cancelled. In addition to
usurping most of the time of several faculty members, this experience gave Ada V
a bad "name" on the campus which proved to to be very difficult to remove.

IV. COURSE START-UP

In June, 1986 the Janus Ada compiler, version 1.5.2, was purchased. It
was understood that this compiler did not implement the complete ANSI/MIL-STD-
1815 Ada, but after the previous frustration, it was our opinion that any Ada
was better than no Ada. The compiler was run on an IBM PC with two floppy
disk drives.

The first offering of the course began the following September. Four
senior-level avionics students and one faculty member were active participants
in the course. Additionally, one student and one faculty member audited the
course. The text chosen was Programming in Ada, J. G. P. Barnes, Second
Edition, Addison-Wesley Publishing Company, 1984. A copy of the course
syllabus is found in the Appendix.

The computer knowledge and experience of the class covered a broad spec-
trum. Several had only limited BASIC and FORTRAN experience, while others had
some Pascal programming in their background. Regardless of previous experi-
ence, all were familiar with simple programming topics such as looping and
conditional statements. For some it had been years since their last computer
science class. The class grades were determined by programming exercises
only. No tests or quizzes were given. A term project served as a replacement
for a final exam. .,

The philosophy of the instructor was to teach effective programming
techniques within the context of how the students could use the computer, and
Ada in particular, to solve problems which were related to their interests.
Principles of software engineering such as structured programming were
discussed as the means to develop correct and efficient problem solutions.

The first course was well received and the students' enthusiasm generated
interest in a repeat performance. The course was offered again in January,
1987. This time several students from disciplines which included Aerospacee
Engineering and Meteorology took the course. The course syllabus and textbook
remained the same as in the first course offering. Grading was based on
program assignments, a final project, and weekly quizzes. The quizzes were
beneficial to the students and the instructor, as the students' interest in
all topics was higher than in the first offering. We propose that using
quizzes as a means to encourage students to study and participate in class is
a general phenomenon and not unique to Ada education. The final projects in

d
182 %*- .. 4

.* .4

the second course offering were generally of higher quality than those in the
first course, which probably reflect a better overall knowledge of Ada and
software engineering as a result of better study habits by the students.

Due to faculty scheduling problems the third offering of the Ada course
was cancelled during pre-registration for the Spring, 1987 trimester at Parks
College. However, students petitioned the Chairman of the Department of
Science and Mathematics and the course is being offered again. The conclusion
to be drawn is that the bad "name" of Ada has been forgotten and it is now a
class which students demand.

V. LESSONS LEARNED

This section of the paper is divided into two parts. The first part
deals with the experience of starting an Ada course, and the second deals with
course maintenance and related issues.

Course Start-Up Lessons

Lesson I. Ada needs a strong advocate. Administrators and faculty who are
not familiar with current developments in computer science see Ada
as just another language, and an expensive one as well. If hard-
ware purchases are required in addition to the compiler, the
investment per student is often considered too large from an admin-
istrative view.

Lesson 2. Selection of a compiler is difficult. We have one machine (Hewlett
Packard 3000) which serves our other academic needs, but no Ada
compiler that will operate on the Hewlett-Packard is available now
or in the near future. This means that a compiler purchase must be
accompanied by a hardware purchase.

Lesson 3. Text selection is difficult. Most Ada textbooks are very readable
if a computer science background is assumed. However, for the
computer science novice these texts are confusing. Specifically,
most texts do not give complete program examples. To fill this
void, programs written by the instructor were distributed at each
class meeting.

Lesson 4. Some deals are too good to be true. It is highly recommended that
before a compiler purchase, the quality of the product be verified
by another user. Parks was courted as a possible test sight for a
compiler by a major vendor, but we quickly backed out when we heard
from other users of the compiler that the product was not reliable.

Course Maintenance Lessons

Lesso 5. Non-validated compilers give students too many excuses. Rather
than take an in-depth look at their code, students will too often
blame the compiler for errors they do not understand. This is
especially true if it is not always clear what subset of Ada is
employed and what changes from the standard have been made. When

183

the next release became available, we immediately purchased Janus/

Ada version 1.6.1. While the upgraded version was more complete,
compilations now took even longer than before.

Lesson 6. Long compile times discourage student experimentation. When
learning a language, students need to have the opportunity to
experiment and "see what happens" when a section of code is changed
and executed. This activity does not and will not occur when the
compilation time is too long.

Lesson 7. Make no compiler changes during a course. During the first
offering we upgraded to the next version as soon as it became
available. This happened early in the course and the students
adapted readily. This version also removed many of the annoying
bugs of the earlier version. Expecting a similar improvement
during the second course offering, we immediately upgraded to
version 1.6.2. This upgrade required several other subtle changes 4.

to the techniques that the students had adopted, and, in general,
caused more troubles than it alleviated. Treat any upgrade as you
would any other major change. Check it out thoroughly and
implement between course offerings.

Lesson 8. Inexperienced students catch on quickly. Based on our experience,
students with little background in computer science have no more
trouble learning Ada than those with more extensive experience.

Lesson 9. Pascal is not a prerequisite language. FORTRAN programmers
struggled only slightly more than Pascal programmers to learn
syntax. Knowledge of enumerated types, records, and other topics
found in Pascal did not appear to be an advantage. As a matter of
fact, it does not appear now that there is any "best" prerequisite
language; Ada is complete in itself.

Lesson 10. BASIC and FORTRAN programmers are sometimes more responsive than
Pascal programmers. Having been frustrated with a limited set of
data types and programming with GOTOs, these programmers were
excited about the Ada strong typing and control structures.

Lesson 11. Learning to program in Ada is more than learning a new syntax. Ada
forces the programmer to organize ideas before the program is
compiled. As a result, Ada becomes part of the solution to the
problem rather than becoming another problem in itself.

Lesson 12. Students need tests to learn. Without the testing process,
students tend to learn only what they need to know in order to
complete their programming assignments.

Lesson 13. Ada education is not only for computer scientists. Students in S.

this class use the computer as a tool to solve problems. Their %
knowledge of Ada allows them to be experts in using the tool. %o%"

184

.'.. . . .

AD-A±03 756 ADA (TRADE NAME) SOFTWARE ENGINEERING EDUCATION AND 3/3
TRAINING SYMPOSIUM (2..(U) ADA JOINT PROGRAM OFFICE
ARLINGTON VR C MCDONALD ET AL. 1t JUN 87

UNCLASSIFIED F/G 12/5

Ehhhhimhhml
Iilllllililu

* J 136L

2 11.

-r -o w rl. W V V

VI. CO-NSIOE -

Although there were many initial obstacles to be overcome in the develop-
ment phase of the Ada course at Parks College, the course has been well
accepted by the students. Interest is high enough among other students to
offer the course nearly every trimester. In the immediate future, there are
two major priorities: 1. Decrease the compilation times of Ada programs, and
2. Work towards the goal of obtaining a validated compiler. To achieve both
of these goals, funding for hardware is required. The means to reach these
goals will most likely be part of a larger solution to the academic computing
needs at Parks College.

At the First Annual ASEET Symposium in June, 1986 attention was focused
on Ada and what it could do for computer scientists. We have demonstrated
that Ada is for anyone who wants to program. There is nothing in the language
that makes it any more difficult to learn as a first language than Pascal.
Often, BASIC and FORTRAN are taught as first languages. It is generally
accepted that Ada makes program development easier and less error-prone than
these languages, so it makes no sense to teach the "hard" language or teach
the "wrong" language, and then teach Ada later. We postulate that Ada is
suitable for instruction as a first language, not merely a language reserved
for the privileged use of computer scientists.

If Ada is to be accepted as a major language on the order of FORTRAN or
COBOL, we must educate as many people as possible. Ada should not be reserved
for the computer scientist simply because it can be complex. All languages
deal with complex topics which are best addressed in upper-level computer
science courses, but this does not prevent us from using them on the elemen-
tary level. We propose that Ada be used as a language to show students that
they can master the problem of software development, and use this result to
promote the use of computing as an effective and efficient problem solving
tool in all disciplines of study.

185

APIU

186

952-200 SOFTWARE ENGINEERING FOR EMBEDDED COMPUTERS

I. Introduction

A. Software Engineering

B. Software Lifecycle

C. Development of ADA®

D. Principles of Software Engineering

E. Design Methodologies

1. Top-down

2. Data Structure

3. Object Oriented

F. Object Oriented Design

II. ADA Concepts

III. Lexical Style

IV. Scalar Types

A. Declarations and Assignments

B. Scope of Objects

C. Types, Subtypes, and Expressions

1. Integer

2. Natural

3. Positive

4. Enumerated

5. Boolean

187

V. Control Structures

A. If

B. Case

C. Loop

VI. Composite Types

A. Arrays

B. Array Operations

C. Records

VII. Subprograms

A. Functions

B. Operators

C. Procedures

D. Parameters

E. Overloading

F. Scope and Visability

VIII. Program Structure

A. Packages

B. Scoping Rules

IX. Private Types

X. Exceptions

A. Handling

B. Declaring and Raising Exceptions

C. Scoping Rules

188

XI. Other Types

A. Discriminated Record Types

B. Variant Parts

C. Access Types-Pointers

D. Derived Types

XII. Numeric Types

A. Integer

B. Real

C. Float

D. Fixed Point

XIII. Generics

A. Need

B. Declaration and Instantiation

C. Type Parameters

XIV. Tasking

A. Parallelism

B. Rendezvous

C. Timing

D. Select

E. Other Topics

XV. Input/Output

189

w%

1 %

This page left blank intentionally

190

MA1 IN _ a n In m j r. (mw Wz

Victor A. Meyer
Department of Mathematics and Computer Science

Saint Mary College
4100 South Fourth Street

Leavenworth, Kansas 66048-5082

Saint Mary College is a small liberal arts college situated on one of
the many gently rolling hilltops that surround the community of Leavenworth,
Kansas. Founded by the Sisters of Charity of Leavenworth, the college has
served the educational needs of northeast Kansas continually for over sixty
years. Since its founding, the college has tried to maintain a curriculum
that net the needs of the students in an ever changing environment.

The computer science program was added to the college curriculum in 1977
with just a single course being offered. In 1981, the computer science major
was offered for the first time. Today the Department of Mathematics and Com-
puter Science offers eighteen computer-related courses. Principle to these
courses is the Ada programming language.

The primary goal of the computer science program at SHC is to provide
quality programer/analysts to the commity through its graduates. Wile
junior colleges and technical schools taught the rudiments of programming, it
was felt that these programs did not teach the skills necessary to design and
implement well structured, documented, and maintainable computer programs.
To this end, SMC emphasizes software engineering principles from the first
day of the introductory programming courses. In the upper-level courses,
critical thinking is emphasized to bring out the student's own creative
abilities in designing and implementing computer software.

A second goal of the computer science program is to use state-of-the-art
hardware and software whenever possible so that the computer knowledge of our
graduates is not obsolete the day they graduate from SNC. Attempting to ac-
complish this goal on the limited budget available to a small liberal arts
college has been an interesting challenge, but not without successes. The
college administration, realizing that state-of-the-art equipment and soft-
ware is necessary to maintain a competitive edge with other schools teaching
computer science, has released sufficient funds to outfit a computer sciencq
laboratory. With these funds, the department was able to purchase IBM PC/XT

% '*

'Ma is a registered trademark of the United States Government
(Ada Joint Program Office)2IBPC and IBN XT are registered trademarks of International Business

Machines Corp.

191

microcomputers, WordStar 1 professional wordprocessing software, R-Base 40902

relational database software, and a site license for the JANUS Ada "DR-Pak

A final goal of the computer science program is to provide for the needs
of the local area in terms of computer science professionals. With the pres-
ence of Ft.Leavenworth, there are many government contractors searching for
good Ada programers. Many businesses in the area, including SMC, have a
need for good BASIC programers. Area high schools look to SMC to provide
Pascal during the summer for their teachers. To accomiodate these varying
needs, the department allows students to concentrate in any one of these lan-
guages at the lower-level. Then, in the upper-level courses, algorithms are
taught in pseudocode and the students are expected to apply this pseudocode
to their own specific language.
Whby Ada? '

A fundamental question that needs to be answered is why Ada was chosen
as an introductory language in the undergraduate computer science curriculum
at SMC. Two of the reasons have already been stated - the desire for
state-of-the-art software and the Ada programming needs of nearby
Ft.Leavenworth. But are these sufficient reasons to run counter to the cur-
rent thinking in the academic comrunity which states that Pascal should be
the language taught in colleges and universities?

In the 1970's, FCR1VAN was the language taught in most colleges and uni-
versities. As a result, the work force was flooded with FORTRAN programmers.
These programmers recommended to management that FORTRAN be used to develop
new software systems. It is only natural for people to recommend a language
which has already proved itself capable of being used in large systems and
which the programmers feel comfortable using. In fact, it takes a special
breed of person to recommend a language which theoretically should be right
for the task, but which the person has little knowledge or practical experi-
ence.

The result of teaching FORM in the colleges and universities, there-
fore, was a great proliferation of large software systems written in FORTRAN.
The lesson to be learned is that if Ada really is the language for developing
large systems, then it is up to the colleges and universities to teach Ada so
that programmers have experience in the language and feel comfortable using
the language. V,'

Another reason for teaching Ada in colleges and universities stems from
the evolutionary development of programming languages. In the early days of
computer science, FORMAN and COBOL were taught as introductory languages be-
cause they were the only standardized high-level languages available. They
were the "abacuses" of programuing. But just as abacuses have evolved into

SWordStar is a registered trademark of MicroPro International Corp.
S-Base 4000 is a registered trademark of Microrim, Inc.

JANU Ada "D"-Pak is a registered trademark of R.R. Software, Inc.

192

-_4

mechanical calculators and then into electronic calculators, so have program- .
ming languages evolved into bigger and better languages. As the saying goes,
we learn from our mistakes. After each new product is built, we begin to see
problems with it which ultimately leads us to build an even better product.

Our experience from writing FORTRAN programs showed us a need for struc-
turing programs so that the algorithms could be understood by other people.

The principles of "structured programuing" were developed to counter bad pro-
gramming style in languages such as FORTRAN. Attempts were made to change
F(RBRAN to meet the principles of structured programming (e.g. FOFMAN77),
but to maintain compatibility with the earlier standard (i.e. FORMAN66), it
was necessary to leave in undesirable features of the language. The best the
educators could do was teach the principle of structured programming and
force the student to use these principles when writing class projects. How-
ever, once programmers graduated from school, there was no longer a force
which kept programmers using structured programming and many programmers re-
verted back to poor style because they were only interested in getting the
program to work.

Nobody doubts that Pascal was a vast improvement over the earlier FOR-
TRAN language. The structure of Pascal itself forced programmers to write
good structured programs. This pleased educators because they now felt com-
fortable students would continue to write structured programs well after
their college years.

Years of writing Pascal programs, however, showed the need for more im-
provements. "Data abstraction", "modules", "information hiding" became the
new buzzwords of computer science. Pascal did not support these features.
Hence there was a need to develop another new language - Modula-2. Still
more programming concepts were discovered (or re-discovered) such as "excep- -.

tion handling', "generics", and "concurrent programming'. It became evident
that Modula-2 was becoming out-of-date and that another new language needed
to be developed. The Department of Defense, in response to years of haphaz-
ard programming, filled this need by developing the Ada language.

But what does this evolutionary process have to do with teaching Ada at
the undergraduate level? Many colleges and universities teach Pascal in the
lower-level and then go on to teach concepts such as data abstraction, excep-
tion handling, and concurrent programming in the upper-level courses. The
student, however, cannot properly implement these concepts in class projects
because Pascal does not support them. At best, the student can only simulate
concepts such as information hiding. Some schools respond to this problem by ,%
making the student learn a second language, such as Modula-2. But the re- 11
rainder of the Modula-2 language is so similar to Pascal that one has to ask
why Modula-2 wasn't taught from the beginning at the introductory level.

At SMC, the decision to teach Ada was based on this very problem. We
wanted the student to learn state-of-the-art programming, including all of
the modern programming concepts. We were not satisfied with just teaching
the principles on a theoretical level, but we wanted the student to get ac-
tual hands-on experience employing these concepts in their class projects.

193

• ° -' ... KK2 z . -:v .' .

I I . I I IVt -q . . .V-

This is the only way we could feel comfortable that students would continue
to eRPloy these concepts after they left SMC. The only standardized language
available which supported these modem concepts was Ada.

Does this mean that Ada is the perfect language to be used on the under-
graduate level? Definitely not. It only means that Sc has found no better
language which incorporates all the current programming concepts. The evolu-
tionary development of programming languages will continue. Ada is only the
next stepping stone. Already in the classroom, we are seeing ways that the
language can be inproved (see "Lessons Learned"). When the next new program-
Ming language is developed, SMC will again have to examine the merits of the
new language and decide whether a change is in order.

Some of our critics argue that we should not be teaching Ada because
very few "help wanted" ads are for Ada programners - most are for BASIC, CO-
BoL, RPG, and FCRNAN. Our response to this criticism is that a graduate who
knows Ada is going to have a much easier time learning to program in FORTRAN
(or even Pascal) then vice verse. Most of the programiming concepts employed
in FOR7AN and Pascal are employed in Ada, however there are many new con-
cepts inpleMented in Ada that are not present in either FORTRAN or Pascal.
Hence a graduate who knows Ada does not have to learn any new progranining
concepts - he only has to learn the syntax and features of the older lan-
guage. n

Mnother criticism for teaching Ada on the undergraduate level is that
- Adia is such a complex language that students cannot couprehend all the fea-

tures of the language. We agree that Ada is a coplicated language, but this
is only one more reason for starting the student early in learning Ada. In
]Rthenr, dcoycuss we make no attempt to teach the entire language.

Rather, we teach a subset of the language that is roughly analogous to
Pascal. Now, as the student progresses to the upper-level courses, his un-
derstanding of Ada can continue to grow as the higber level concepts are pre- ,
sented and the Student writes software tbat uses these concepts. By the timre
the student graduates, he has had many opportunities to practice the various
features available in Ada.

For the critics who say that Arda should be taught as a second language,
our resx.'Ase is that students should only learn more than one language when
the languages are significantly different from each other. It is important
for students to learn the differences between procedural languages (e.g.
Ada), functional languages (e.g. LISP), low-level languages (e.g. "C-),
fourth generation languages (e.g. Natural), and assembly language (e.g. IBM
360). But to make a student learn Pascal, Modula-2, and Ada in different
courses is putting an unnecessary burden on the student. We would prefer to
see the student learn one language well, then know bits and pieces of many
simSijar languages.

One criticism of Ada on the undergraduate level that does make sense is
that hundreds of students trying to conpile Ada prograns can bring a large
ainframe computer to a standqtill. For this reason, large universities may

need to limit the use of Ada to their graduate students where class sizes are

194

-v-

smaller. For SZ4C, as well as other small colleges, this situation does not
occur. We have, at most, twenty students in any one computer science class.
We have one IBM XT microcomputer (with 640K of memory and hard disk drive)
dedicated to Ada compilations. Six other IBM microcomputers are available
for editing and testing Ada programs. So far, we have had no problems with
overtaxing the systems.

In conclusion, the reasons why SMC decided to teach Ada on the under-
graduate level are straight forward. There is a need for Ada programers in
our community because of Ft. Leavenworth. Teaching Ada on the undergraduate
level allows us to teach a state-of-the-art language which employs all the
concepts of modern programing. As the student moves from lower-level to
upper-level courses, the student can continue to learn features of the Ada
language as the higher level concepts are taught. Our Ada graduates can eas-
ily adapt to other languages because most other languages in use are not as
sophisticated as Ada. And finally, the small size of SMC makes it feasible
to use Ada in the undergraduate curriculum.

The Ada Curriculum

As mentioned earlier, not all computer science majors are required to
study the Ada language. A student can get a computer science degree from SMC
knowing either Ada, Pascal, or BASIC. Obviously, we would not reconhlend to
anyone planning to go on to graduate school that they study only BASIC, but
there are many area businesses and school systems that are looking for good
BASIC programmers. As it turns out, most computer science majors recognize
the power of the Ada language and study it at some point during their years
at S4C.

There are five primary courses in the curriculum which allow the student
to gain experience in writing Ada software. General Programming I & II are

"-.%

lower-level courses which serve as our introductory Ada programming courses.
On the upper-level, Data Structures and File Constructs are
programming-intensive courses required of all majors which move the student
to an intermediate level of programming. These courses are taught uoing
pseudocode and the students are allowed to inplement their programming
projects in either Ada, Pascal, or BASIC. Software Engineering is also an
upper-level course where groups of students must work as a team to develop a 4.

software system. The teams are free to implement their projects using either
Ada, Pascal, BASIC, COBOL, or the R-Base 4000 relational database system.

As mentioned, General Programming I & II serve as our introductory Ada
programming courses. However, we deliberately named the course "General Pro-
graming" because we did not want to permanently attach any specific program-
ming language to the course. The purpose of the course is to teach program-
ming concepts independent of any specific language. However, since this is
often the student's first exposure to computer programming, we do apply the
concepts to a specific programming language and all examples are written in
that one specific language. When the courses were originally developed,
Pascal was the specific language used to demonstrate programming concepts.

195

% -..

In the last two years, Ada has been used. In the future, it is very possible
that some other language may be used.

General Programming I is designed to take a student who has no progranm-
ming experience and teach that student the control structures of modern pro-
gramming (i.e. sequence, decision branching, looping, procedures, functions,
and exception handling). Only the elementary data types (i.e. integer,
floating point, boolean, character, and enumeration) are taught, but proper
declaration of types and subtypes are fully covered. Flowcharts are used to
design the simple algorithms that are taught at this level and the students
are introduced to the use and purpose of the various libraries that are
present in JANUS Ada.

Programing projects in General Programming I are designed to introduce
the students to the principles of software engineering. The project is az-
signed in the form of a small requirements document and users manual. Nor-
mally the requirements document is organized as a set of functional require-
ments followed by a set of non-functional requirements. The simple users
manual is normally in the form of a sample run. Great emphasis is placed on
accurately following the stated requirements and sample run.

Normally, students have one week to complete each project. A flowchart
showing the design of the project is due by the next class meeting. During
the remainder of the week, the students must implement the design. If the
design is correct, but the student's program does not accurately follow the
design, then points are deducted. Experience has shown us that it is not a
good pedagogic practice to allow the student to turn in the design and the
project togetter. Inevitably, the student will first write the program and
then draw the flowchart based on the completed program.

The nuiber one factor for grading a student project in General Program-
ming I is how well the finished program can be understood by someone else.
Internal program comments, conscientious naming of identifiers, and simple
algorithms through modularization are deemed very important to accomplishing
this goal. Efficiency is considered important, but not as important as writ-
ing a program that is "readable". Once exception handling is introduced,

then proper error checking is also emphasized on student projects.

In General Programming II, the student is introduced to the data struc-
turing Pechanisms of modern programming (i.e. records, arrays, pointers, and
files). Modules are introduced as a neans for accoplishiig9 data abstraction
through the principle of "information hiding". Pseudocode becomes the prin-
ciple vehicle for writing algorithms. Classroom examples show how a properly
written program can be quickly modified to meet the needs of a changing envi-
ronment.

The nature of student projects also change. Projects are significantly
larger with fewer projects assigned and more time allotted to each product.
Students are required to design the projects using pseudocode. Emphasis is
now placed on writing programs that are "universal" in nature and maintain-
able.

196

. -. - " - "./ i L 'I-T'

General Programming II is given a 300-level nuber in the college I
catalog. This means that the course is taught as a lower-level course, but
that a student can get upper-level credit by coupleting some extra work that
is worthy of upper-level credit. For General Programming II, a student is
given upper-level credit if he successfully designs and impleiments a practi-
cal addition to the Ada library. Normally, this involves writing an Ada
package which allows other students to interface with a new terminal or
printer. However, if the student wishes to try for "honors-in-course', the
project can easily be expanded to involve irplementing an exotic abstract
data type.

As the student moves into the File Constructs course, he now coes into
contact with students from varying programing language backgrounds. No
longer are lessons geared to only one language. The principles of sequential
and direct file accessing are presented in pseudocode and students are ex-
pected to apply the pseudocode to their own specific language. Projects are
much larger in nature. For many students, the course can be a rude awakening
because, for the first time, the instructor is not telling them how to imple-
ment the projects directly in their own language.

The next course encountered by the student is Data Structures. In the
department, we have decided that this course will be the one where critical
analysis skills are euphasized. Again, lessons are taught using pseudocode.
But now, the students are not given cookbook style algorithms for solving
problem. Instead, students are given examples of some of the algoritmis
necessary for impleenting abstract data structures such as stacks, queues,
and trees. Then, the students are expected to develop the reuaining algo-
rithms on their own. What we hope to accouplish is the awakening of the stu-
dents own creative ability for developing algorithms in new and challenging
situations.

The student projects for Data Structures are similar in length and coni-
plexity to those of File Constructs. Students writing their projects in Ada
are expected to write their abstract data types using generic packages with
appropriate information hiding. A major enphasis of these projects is to
write ncdules that can be replaced easily by inproved versions of an abstract
data type without having to make changes in the rest of the system.

Software Engineering is a course where students can gain additional ex-
perience writing Ada programs. In this course, the enphasis is placed on
group interaction. The entire class is divided into groups of three to five '.4

students each. The groups are required to interact with a user (usually the
instructor) and write a Software Requirements Document, a User's Manual, a
Design Document (which includes data flow diagrams, structure charts, IPO
charts, and pseudocode), and then inplenkit the design in the language of
their choice. Even though the class is open to students withi any programming
language background, much of the textbook [Sonrrerville, 1985] and course con-
tent is geared to the Ada language.

One last course rounds out the Ada part of the curriculum. Special Top-

197

ir

ics is a senior level course that can be used to teach other aspects of con-
puter science not covered by any other course. There are plans to occasion-
ally use this course to teach concurrent programiung concepts to the students
using ida's tasking mechanism. Unfortunately, our JANUS Aa compiler does
not currently support tasking and there is no indication when tasking will be
implemented in JANUS Ada.

Lesson Learned

Since the teaching of Ada in the undergraduate curriculum is only in its
second year, it is not yet possible to determine if our long range goals are
going to be successful. Students are just beginning to enter the upper level
courses after having taken Aa in General Programing I & II. However, since
the use of Ada in the curriculum is new, there are many opportunities to
learn what works and what does not work. The following is a compilation of
some of the lessons that we have learned.

So far, we have had no major problems with having adequate equipment
available for our Ada students. With one IBM XT cont[iter dedicated to Ada
com piles and six IBM PC couputers available for editing and testing Ada pro-
grams, there have been few people waiting to get on a computer. Again, this
is the advantage of a small college. Ada compiles take about three minutes
on the IBM XT and students have accepted this amount of tine as a fact of
life.

Since Pascal has not become widely accepted outside of educational in-
stitutions, very few graduates with baccalaureate degrees in computer science
are actually finding Pascal jobs. Only one SMC graduate is known to have
landed a Pascal programming job. Many of our better students are actually
erployed writing Modula-2 software for Department of Defense contractors. A
couple of our graduates have returned to SMC after graduation for the purpose
of upgrading themselves to Ada to inprove their job prospects (one of them
was advised by an employment agency to learn Ada). The lesson to be learned
is that graduates who know Ada are in a better position to find jobs than
graduates who know Pascal.

To date, we have taught the General Programming I course twice with Ada.
We have found that students comprehend Ada the sane as they comprehended
Pascal. Even though Ada is a more complex language, not one of the students
felt that Pascal should still be taught in the course. In many cases, class
examples were actually sirpler and easier to comprehend by the students be-
cause of the features available in Ada. Cbviously, a major part of this suc-
cess is due to the fact that we do not try to teach every detail of the Ada
language. The lesson to be learned is that Ada is eminently suitable as an
introductory language.

Since the concepts presented in General Programming I are implemented
similarly in both Pascal and Ada (exception handling being the major excep-
tion), we allow students who have bad a semester of Pascal programming to go
directly into General Programing II. The first two weeks of General Pro-

198

,1J

. . . .,. ." "."." ,"-""" "-'- v~v"."'"-." ".''.'""':"-"-%';,.' '-' .* -

granming II are spent reviewing the concepts learned in General Programming
1. The students who took General Programming I find the review useful and
the Pascal students get a good orientation into the Ma language.

While this option has only been tested once, we have learned that the
option works. Pascal students had no problems adapting to Aa at this level.
In fact, these former Pascal students became our strongest supporters of Ada
and encouraged other students to learn Aa instead of Pascal. Those students
who went on to take other programming-intensive courses chose to do their
programing projects in Ada.

The only problem that we encountered with these former Pascal students
was that they tended to write Ada programs with a strong Pascal dialect (e.g.
always exiting out of a loop at the beginning or end rather than exiting the
loop where it was most appropriate). The lesson to be learned is that stu-
dents continue to use the techniques that they learned in their first lan--
guage and have to be retrained to think in the new language.

This situation is not unlike a person who learns a foreign language. It
is not difficult to identify a person whose native language is not English-
their accent gives them away. In fact, their accent often identifies that
person's native tongue (i.e. we can tell that a person is French, German,
Italian, etc.). Any language teacher will tell you that in order for an
American to speak French properly, he must think in French and not just
translate between English and French.

The same principle is true in programming languages. A person whose
first programming language is Pascal learns to think in Pascal. If the per-
son then tries to write Ada programs, the syntax will be Ada, but the thought
process will still be Pascal. This situation will continue to exist until
the person divorces himself of Pascal and learns to think in Ada. The bottom
line is that Ada should be taught as the student's first programming language
rather than as a second language. We do not see where a student gains any-
thing by first learning Pascal and then learning Mda.

The problem of people learning Aa after they have learned Pascal
manifests itself in Mda textbooks. Most Ma textbooks are prefaced by the
statement that they are intended for students who have already learned a
high-level programming language such as Pascal. Also, the authors bias to-
wards Pascal often comes through in the examples used in the textbook. An-
other problem is that Ma concepts that are significantly different from
Pascal are often relegated to the end of the book. Our current textbook
[Saib, 19851, for example, teaches exception handling in chapter nineteen of
a twenty-one chapter book. Exception handling is not a complicated process
and students should learn the proper way to do error checking much earlier in
the course.

Another problem resulting from people with Pascal backgrounds is that
they take the attitude that Pascal contains everything that is really impor-
tant in modern programming and there is no need to teach any other language
at the introductory level. This problem surfaced when SMC applied for a Na-

199

.

tional Science Foundation grant to upgrade their equipment and software to
include Aa as the introductory language. Five of the seven reviewers of the
proposal stated outright that they did not feel Ada should be taught at the
introductory level - most cited Pascal as the better choice. The remaining
two reviewers questioned the feasibility of teaching Ada from the standpoint
of hardware availability. Needless to say, SMC ignored the recommendations
of the reviewers and the college administration came through with the neces-
sary funds to put Ada into the curriculum.

No language is perfect and Ada definitely has its problems. BASIC and
FORTRAN programmers must be taught to discipline themselves to write good
structured programs. The beauty of the Pascal language is that it's features
force the programmer to use good structure in the program - but this was only
learned by years of bad programming in BASIC and FORTRAN. Now Ada is trying
to implement new programming concepts. At SMC, we are finding that we must
again teach the students to discipline themselves to use these new features
properly as Ada does not force proper usage of them.

A primary example of this problem is Ada's feature for declaring "new"
types (e.g. new integer) for establishing incopatibilities between variables
of similar types. We believe the concept to be a good concept and we
strongly emphasize proper declaration of types and ranges. However, students
quickly learn that programming in Ada is much easier if they ignore this fea-
ture and declare all their whole number variables to be of type "integer'
irregardless of whether the real world entities represented by these vari-
ables are compatible with each other or not. As a result, we find ourselves
trying to make the student discipline himself to use the feature properly.

Someday, hopefully, someone will discover a better way to set up incom-
patibilities between similar data types which will force the programmer to
use the feature properly. At least da pioneered the concept and we can
teach the concept in the classroom and have the student practice the concept
in their programming projects. If Pascal was used in the classroom, we would
only be able to teach the concept. But this would be like teaching a math-
ematics course and not requiring the student to do any homework. Experience
has shown us that a student really doesn't learn a concept until he has to
sit down and apply the concept himself in a homework or test situation. With
Aa as our introductory language, we can make the student apply the concept
in a homework project.

One final lesson learned from adding Ada to the curriculum is that col-
lege instructors often have to teach themselves how to program in Ada.
Courses in Ada are not readily available in universities and corporate work- :--
shops often put a significant financial burden on instructors from small lib- V

eral arts colleges. At SMC, one of the two principle computer science in-
structors is self-taught in Ada and is teaching Ada to the other instructor.
Being that JANUS Ada is not a validated compiler, there are some important
features not yet implemented which make it difficult for the instructors to
practice writing true Ada programs. Even though we have been continually ex-
panding SIC's library collection of Aa literature, there is no substitute
for actual experiemce in writing Ada software.

200

,,-

1p

At S, we are convinced that Ada can and should be taught on the intro-
ductory level. Despite warnings to the contrary, S forged ahead and added
Ada to the curriculum. So far, the warnings have proven to be inaccurate and
experience is showing us that we made the right decision.

In our opinion, the only good reason for not teaching Ada on the under-
graduate level is the problem that a mainframe ccputer will have when sud-
denly besieged by large nubers of students simultaneously compiling Ada pro-
grams. Hopefully, the future holds the promise for smaller and more
efficient Ada compilers which will alleviate this problem. rrtil then, the
future of Ada in the undergraduate curriculum may very well be limited to
small colleges, such as Saint Mary College, where student numbers are low and
the faculty realizes Ada's potential for state-of-the-art computer science
education.

B.i.egraphy

[Saib, 1985] Sabina Saib, Ada: An Introducti c , CBS College Publishing, New
York, NY (1985).

[Somerville, 1985] 1. Somuerville, Software Engineering, Second Edition,
Addison-Wesley Publishing Co., Reading, MA (1985).

2

'V,

',, 'V

1*

\

- -"-

~" NVV&. .b

This page left blank intentionally

202

THE PROGRAMMING TEAM AND THE ACCELERATED COURSE AS METHODS FOR TEACHING ADA

David L. Barrett
Department of Computer Science
East Texas State University

Commerce, Texas 75428

Abstract

Results obtained by a one semester Ada programming project demonstratedI
that an accelerated short course in the elementary features of the Ada
programming language could be incorporated into an existing survey of
programming languages course, and produced a number of other observations and
conclusions applicable to the development of more extensive instruction in
Ada and the principles of software development.

I. Introduction

The definition of limited and, therefore, widely attainable objectives for
education in Ada may present challenges equal to those faced in implementing
more extensive programs. Universities, which include schools of engineering
and which conduct large programs of research in defense and aerospace fields,
have introduced extensive curricula in Ada and software engineering. The
strategies that those universities have adopted for the introduction of Ada
and related areas of study may not always be appropriate for other
institutions, which may be smaller, have commitments which must take
precedence over Ada instruction and research, or have facilities and
budgetary limitations which preclude the rapid, large-scale introduction of
instruction in Ada and software engineering into their computer science
curriculum.

In 1986 the Department of Computer Science at East Texas State University.r
initiated a program to expand and enhance its curriculum and computing
facilities. The primary objective of the Computer Science Department was to
attain full compliance with the CSAB criteria for accrediting programs in
computer science at the earliest feasible date. Another objective of the
department was to develop additional courses in specific topics relevant to
the professional interests of its students.

In recognition of the growing importance of the Ada programming language,
a decision was made to incorporate instruction in Ada into the computer
science curriculum at the earliest feasible date. As a provisional measure,
a compiler which supported a subset of Ada was purchased to permit students
and faculty to begin to familiarize themselves with Ada pending the
acquisition of a validated compiler. During the fall semester of 1986 a
special topics course on Ada was organized for a limited number of graduate
students by Visiting Professor L.C. Harrison, who was then the faculty member
provided to East Texas State University by E-Systems. Toward the end of the
semester, the department initiated action to obtain a validated compiler,

203

which had been identified by a study undertaken as part of the special topics
course to be suitable for use in instruction and in program development.

Although steps had been taken to obtain a satisfactory Ada programming
environment, concern about the eventual date of acquisition of the Ada
compiler and short-term limitations on the number of possible users of the
computer on which the compiler would be run led to the realization that
conducting a lecture course in Ada would not be possible during the spring
semester of 1987.

The department concluded that it would be expedient to continue the study
of Ada on the basis of work in special topics courses, which would be made
available to undergraduate as well as graduate students. Suggestions for the
conduct of study in Ada for the spring were requested by Professor Harrison
from his graduate students, and the concept of organizing the students
enrolled in the classes into a programming project was adopted. The project
was to be primarily a student undertaking. Management of the project and the
preparation of project documents, including the final report on project
activities were assigned to the author of this paper, a graduate student.
Overall evaluation and supervision of project activities would be undertaken
by Professor Harrison as instructor of the two courses.

II. Project Goals

The organization of the special topics classes into a programming project
created the opportunity to investigate a number of topics of interest to the
department.

First, the project would provide data which might be applicable to the
design of a course or a sequence of courses of instruction in Ada. A
software design and development course, based on ACM recommended course CS
14, is planned for introduction in the spring of 1988. The course outline
specified for CS 14 provides for a team project involving the organization,
management, and development of a large scale software project by students
working in teams. Experience gained through the activities of the
programming teams during spring, 1987, would contribute to the decision as to
whether Ada, or another language, should be employed in the projects course,
and it would provide a test of the validity of the programming team as a
vehicle for instruction in the effective use of the Ada programming language.

Second, as none of the undergraduate participants in the software project 0
had previous experience in Ada programming, it would be necessary to give
them instruction in the fundamentals of Ada syntax before the commencement of .,
the software development phase of the project. Experience gained by the
graduate students, who participated in the special topics course during fall,
1986, indicated that a short course, which covered a Pascal-like subset of
Ada could be completed successfully in a period of from three to four weeks.
Although such an accelerated course could not provide a complete knowledge of
Ada, it would provide the students with a foundation sufficient to
participate effectively in software development as members of programming
teams. The development of an Ada short course for the project also would

204

f ln " P TE N oh MIL~ u , N J . = ' _ , ft 4 v

facilitate the introduction of Ada as one of the languages covered by an

existing undergraduate level survey of languages course, which compares the
features of several programming languages to illustrate the significantfeatures and underlying concepts of algorithmic languages.

Third, although no immediate plan for the replacement of Pascal as the
principal language of instruction for introductory courses was contemplated,
the development of an Ada short course during the spring semester of 1988 and
its implementation as a component of the existing survey of language course
would provide the beginnings of a body of experience in instruction in Ada
that support such a transition if, subsequently, it were deemed to be
desirable.

Fourth, the conduct of the project exercise and the introduction of Ada as
a part of the undergraduate survey of languages course would begin the
development of a group of students with a knowledge of Ada sufficient to So..
permit them to participate in future projects or more advanced courses
involving the Ada programming language and the techniques of software
development which Ada supports.

III. Project Organization N

The graduate and undergraduate classes followed different tracks. During
the first four weeks of the spring semester, undergraduate students attained
an elementary knowledge of the Ada programming language through participation
in the Ada short course. Graduate students worked to improve their knowledge A
of Ada and were assigned roles in the project organization. After the
completion of the Ada short course by the undergraduate students the graduate
and undergraduate groups were merged into the unified project organization.

Initially, a project organization with one graduate and two undergraduate
teams was projected; however, it became apparent before the beginning of the S
spring semester that several of the graduate students would be needed to
perform roles other than that of programmer.

The organizational structure of the project finally adopted for the
project was hierarchical. Three programming teams consisting of several
undergraduate students and one graduate student were organized. In each team
the graduate student was assigned the role of lead programmer. One graduate
student was assigned the role of configuration manager for the project and
another the role of project analyst, both of these positions, particularly
that of configuration manager proved to be extremely helpful to the design
and development of the software produced by the project. The project also
had to provide its own system operator for the MicroVAX on which its Ada "
compiler would be installed, and a system operator was named from among the
graduate students.

As the organizational structure adopted in January, 1987, proved to be
adequate, it was retained throughout the semester, although several of the
programmers were redistributed among the programming teams in March according
to the assignments that were given to each team at that time.

205 ..

p.*

IV. Conduct of Project Activities

Concern over the date of availability of the department's validated Ada
compiler had been a significant factor in the decision to proceed with the
programming project as an alternative to a standard lecture course. That
concern proved to be well founded and it was not until March, after much
uncertainty, that the compiler was delivered and not until early April that
the programmers were able to use the compiler effectively. As a result, most
of the programming undertaken by the project was dot.; using the subset
compiler. The original software development goal of the project to develop a
multi-tasking package for possible subsequent use in implementing concurrent
multi-processing of signal data was not pursued during the spring semester,
and the final programming activity of the programming teams was largely a
minor extension of an earlier exercise which had been utilized to familiarize
the programmers with Fourier transforms in anticipation of developing the
multi-tasking package. Although the limitation of the scope of project
software development was disappointing, the more important goal of the
project to explore methods of instruction for Ada was not considered to have
been compromised.

The conduct of the short course in Ada was not severely affected by the
necessity of utilizing the subset compiler. The progress of the short course
was observed by the instructor of the undergraduate survey of languages
course and, as the results of the short course were good, she decided to
incorporate it as a part of her course and taught it to her students later in
the spring semester with favorable results.

In addition to the testing and validation of a short course in Ada,
insight was obtained into the usefulness and validity of the programming team
as a method of instruction for the Ada programming language, which were
submitted to the Department of Computer Science in the project final report.

V. Observations and Conclusions

Several limitations concerning the reliability of data from the
observation of team programming activities were accepted in the initial
planning of the project. The fact that a scientifically valid experimental
or quasi-experimental design for the measurement and evaluation of student
performance would not be implemented was accepted as unavoidable. "One-shot"
case studies have been stigmatized as being subject to misinterpretation and,
therefore, having little scientific value. Reliance on such studies as a
minimum reference point may be dictated, however, by external factors which
exclude the possibility of utilizing designs which are more valid, but much
more complex and difficult to execute. Another factor in evaluating the
reliability of the project data is the fact that observation and evaluation
of the project's results were conducted by persons participating in the work
of the project. Participant observation is not considered to be desirable
because of the possibilities of the otserver influencing the course of the
study or adopting a biased interpretation of its results. As the
availability of the validated Ada compiler was delayed, the development of
statistical data on the project was not attempted and evaluation of the work
of the project was based on subjective criteria.

206

I~ %"

Because of the recognized limitations of the project study, its
conclusions are considered preliminary and subject to subsequent revision.
The results of subsequent software development and instruction in Ada will be
monitored by the department and correlated with the project results.

The incorporation of limited instruction in Ada into the undergraduate
survey of languages course was successful and its success provided the first
confirmation of a conclusion derived from the work of the project.

Other observations and conclusions of the project, which have been
submitted to the Department of Computer Science but which have not yet been
confirmed by additional research are that

I. Although the suitability of Ada for introductory computer science
instruction was not directly investigated, the relative ease with which the
Pascal-like subset of Ada was taught as an accelerated short course to
computer science students with a previous introduction to Pascal suggests
that it could be taught successfully in a semester-long introductory course
in computer science, provided that introductory texts based on the Ada
programming language were available.

2. The validity of the programming team as a means of instruction in the
advanced features of Ada depends upon the computer science background of the
students participating in the programming project. Although the features of
Ada which resemble Pascal in their syntax and operation can be taught rather
quickly, it appears that advanced features will be learned more slowly.
Based on a single trial involving instruction in the rudiments of tasking, it
would appear that a course of study lasting at least one semester is required
to prepare students for software development that involves the use of the
more complex features of the Ada programming language. If a participant in a
project oriented course already is familiar with the principles of software
development, then his, or her, time may be devoted to studying the features
of the Ada programming language, which implement those principles. Without
such a background the student's time will be divided between learning Ada and
the techniques of software development. Possible solutions might be to
provide students with a greater exposure to software development techniques
in introductory courses, to limit the project to the use of a subset of Adaand emphasize software development techniques, or conversely to emphasize Ada

and so structure the project that the participants would need to have only
limited knowledge of software development for the completion of their work.
The most desirable solution would be to offer an advanced Ada course of three
or four semester hours in addition to the project oriented software
development course based on CS 14, instruction for which would be exclusively
in the area of software development principles and techniques.

3. The conduct of project oriented instruction in Ada would be facilitated
by the existence of toolsets which would support instructional projects. The
development of standardized, reusable, project oriented instructional modules
also would contribute significantly to the effectiveness of instruction in
software development. Such toolsets and modules could be developed by
individual institutions for their own use; however, the most effective use of

207

r, r

such modules would be achieved if they were developed by a national
institution such as the Software Engineering Institute and made available to
any institution which would benefit from their employment.

4. The limited experience obtained through the activities of the Ada
software development project conducted during the spring semester, 1987,
indicates that many texts and other publications assume a level of
cooperativeness and social consciousness among the members of programming
teams, which may not always be present in reality. The personnel and
management aspects of software development may present challenges more severe
than those of software design and implementation, and they represent an area
for research, which is potentially as important as that concerned with
technical aspects.

Acknowledgement

The author wishes to express his appreciation to Visiting Professor L. C.
Harrison and to Dr. David Elizandro, Chairman of the Department of Computer
Science of East Texas State University for their guidance during the course
of the team programming project and in the preparation of the foregoing
paper.

'N.. .

%%

208 %of

.- -.- -,- -.- "e' - " ." r , , ."" " ." " "'S' . '.2 ,' ,. 4

INDEX

A
Adams, Ms. Karyl 63

B
Barkowitz, Paul 3

Barrett, Mr. David 203
Berlin, Mr. Jerry F. 107

C
C

D
Dominice, Lt. Tony 19 "C"

E
Engle, Maj. Charles 19, 153

F "3

Fowler, Ms. Priscilla 11
V

G

H
Hamiwka, Ms. Charlene 79
Hayden, C.R. 89

KJ

Kirkpatrick, Dr. Charles 179 s
Knese,Dr. Paul 179

L
Latour, Mr. Laurence 79
Lawlis, Maj. Pat 63
Linton, Dr. Darrell 43

209

M
Meeker, Dr. Michael 47

Mers, Dr. Robert 171
Meyer, Mr. Victor 191
Moore, Freeman L. 137

N
Nino, Mr. Jaime 51

p

Q
-

R Richman, Ms. Susan 99

S
.,.

T
Texel, Ms. Putnam P. 25

U

V
Vasilescu, Eugene 143 .-
Vernik, R.J. 117

w
Willis, Maj. Colen 153

x
p/

Y

2m 0

2101

AdaIC
3D!39 (1211 S. FERN, C-107)
The Pentagon f AdQC
Washington, D.C. 20301-3081
(703) 685-1477
(301) 731-8894

Ada% INFORMATION CLEARINGHOUSE
Ada Joint Program Office

NET Mail: Ada-information @ Ada-20

The Ada Information Clearinghouse facilitates the transfer of timely

information between the Ada Joint Program Office and the Ada User Community.

The Clearinghouse...

o coordinates the collection, integration and distribution of
documentation on all aspects of the Ada language and associated
aspects of DoD's Software Initiative

o announces recent activities and general information on Ada via Ada-
Information, an on-line file accessible via MILNET or TELENET

o provides recent updates on Ada conferences, seminars, classes and
textbooks

CURRENTLY...

The Ada IC is seeking active input from the Ada User Coiunity to expand
our base of knowledge on current Ada activities in the private sector.

If your organization would like to announce an activity update on:

o compilers
o courses/in-house seminars
o conferences
o publications

Or would like to obtain information on

o How to obtain MIL-STD-1815A (1983)
o CAIS Status
o Compiler Validation Updates
o Education and Training

Contact the Ada Information Clearinghouse at either address listed above.

Form G02-0885

The Ada Information Clearinghouse is contractor operated for the AJPO.

Ada is a registered trademark of the U.S. Government (Ada Joint Program Office).

- 211

This page left blank intentionally

212

-' . : " ' " " ' , , , " " .e " " . ' e ' " " " . - " , ' " " " " . - " -?

AdaIC
3DI39 (1211 S. FERN, C-107)

The Pentagon EAld R:]Washington, D.C. 20301-3081
(703) 685-1477

1-1
(301) 731-8894 I

Ada® INFORMATION CLEARINGHOUSE

Ada Joint Program Office

Ada INFORMATION CLEARINGHOUSE REQUEST FORM

Name:()Mr. ()Ms. ()Other

Company:

Address:

City: State: Zip:

Country: Telephone:()

Autovon: _ __

Type of Information Requested

[General Information Packet

This packet includes general information on Ada compilers, Ada related
documents and publications, Ada events, and other services of the AdaIC.

[] Education and Training Packet

This packet contains a listing and description of upcoming Ada classes and
seminars, conferences and programs, Ada textbooks and other related publications,
and reprints of general articles on the Ada language.

Historical Information
This packet contains old issues of the AdaoC newsletter, information on the history
of the Ada programming language, and bulletins archived from the "Ada Today"'
ile of items of interest to the Ada community.

[] Newsletter Mailing List

The AdaIC Newsletter is produced quarterly and is sent free of charge.
[] CREASE Survey

Please include me for the next survey for the Catalog of Resources for
Education in Ada and Software Engineering (CREASE).

SEND ALL REQUESTS TO:
Ada Information Clearinghouse 0 3D139 (1211 S. Fern. C-107) * The Pentagon *

Washington DC 20301-3081
71"v Ado Injormation Ckaringhouse is contractor operated jor the AJPU.

Ada s a retistered trademark of the U.S. Government (Ada Joint Program Office).

213
et , ., <: :: . ,. .- ,-.- ,- ,-., -.. ,......,,1..,

This page left blank intentionally

4 %

ro
, N

214

AdaiC
3D139 (1211 S. FERN, C-107)
The Pentagon
Washington, D.C. 20301-3081
(703) 685-1477

Adas INFORMATION CLEARINGHOUSE
Ada Joint Program Office

NET Mail: Ada-Information a Ad.20 g

Public Access to the Ada Information Bulletin Board

The Ada Information Bulletin Board is a publicly available source of
information on the Ada language and Ada activities. Sponsored by the
Ada Joint Program Office and maintained by the Ada Information
Clearinghouse, this Bulletin Board is used to announce current
events, general activities and indicate the status of various Ada
compiler efforts. Access to the Bulletin Board requires a computer
terminal and modem or a personal computer and modem.

The Ada Information Bulletin Board system can be accessed by dialing
(202) 694-0215, using a 300 or 1200 baud modem. Users should set
their telecommunications package with the following parameters:

Baud rate - 300 or 1200
Parity = none
data bits = 8
stop bits =1

After you are connected, the bulletin board waits to receive three
carriage returns so that it can match your telecommunications
parameters (The bulletin board initially answers at 1200 baud, no
parity, 8 data bits, and I stop bit). %

Currently, the only directory available is <Ada-Information>. Within
that directory, "FILES.HLP" contains an alphabetical listing of all
information files available, descriptions of their contents, and an
Ada IC point of contact for further information.

T/t Ada Information Clearinghouse is contractor operated for the AJPO.

Ada is a rehisered rademark of the U.S. Government (Ada Joint Program Office).

215

NOTES

216

NOTES

217

NOTES

.1nV

218 4

0000

