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SECOND WORKSHOP ON AI AND SIMULATION

8:00 - 8:15: Coffee and Donuts

8:15 - 8:30:

INTRODUCTION: Dr. Malcolm R. Railey, Chair

8:30 - 10:30:

IMPLEMENTATION

"ISIM: Towards an Integration of Artificial Intelligence
and Simulation," Roy Masrani and Sheila McIlraith.

"Categorizing Process Abstraction in Simulation
Modeling," Paul A. Fishwick.

METHODS

"Simulations in a Model-world Based on an Algebraic
Approach," Charles Chiu.

"A Time Window Approach to Scheduling Simulation Events
on a Parallel Processor," Alexis Wieland.

10:30 - 10:45: BREAK

10:45 - 11:45:

"QSOPS: An Integrated Knowledge-Based Environment for the
Qualitative Simulation of Physical Systems," Alfred D.

Round.

STRATEGIES

"Goal Directed Simulation," Marc R. Halley and Daniel
Pliske.

11:45 - 1:00: LUNCH, . ..-..
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1:00 - 3:00:

SYNTHESIS

"Intelligent Model Modification," Norman R. Nielsen.

"Modular Model-Based Simulation," Allen S. Matsumoto,
Charles P. Kollar, Gary A. Strohm, and Arvind Sathi.

"Dynamic Planning Under Uncertainty Using Automated Model
Construction and Risk Analysis," Louis Anthony Cox, Jr.
and Richard Blumenthal.

ANALYSIS
a'.

"A Natural Language Interface for Simulation of
Multistage Production Distribution Systems," Behrokh
Khoshnevis and Wanda Austin. -a

"Stochastic Soft Simulation in Geological Exploration,"
Suresh G. Thadani, Francois Alabert, and Andre G.
Journel.

3:00 - 3:15: BREAK .-

3:15 - 4:30: a,-|
"CONFIG Project: A Generic Tool for Qualitative-

Simulation-Based Reasoning about Configurations of
Engineered Systems," Jane T. Malin, Bryan D. Basham, and
Rick Harris. ..

"Fault Diagnosis Based on Quantitative Models," Stefan
Feyock.

"Simulation and Expert Systems for Finding Particle Beam
Line Errors," Lawrence Selig, Scott Clearwater, Martin **"

Lee, and Robert Engelmore.

"Reasoning about Diagnosis and Treatment in a Causal
Medical Model Using Semi-quantitative Simulation and -
Inference," Lawrence E. Widman, M.D., Ph.D.

4:30 - Close:

Panel Discussion:

"What is the value added by combining AI and simulation ".
and where do we go from here?", Dr. Paul Fishwick, Dr.
Ramana Reddy, Dr. Richard Modjeski, Marilyn Steltzner, .

Dr. Ziegler, and Dr. Malcolm Railey.
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SECOND WORKSHOP ON Al AND SIMULATION

[3] "A Natural Language Interface for Simulation of
Multistage Production Distribution Systems," Behrokh
Khoshnevis and Wanda Austin.

(5) "Design of an Automatic System for Failure Analysis in
Integrated Circuits," P. Mauri, M.Piccoli, and P. Mussio.

(7] "Stochastic Soft Simulation in Geological Exploration,"
Suresh G. Thadani, Francois Alabert, and Andre G.
Journel.

(8) "Explanation Capabilities for Intelligent Manufacturing
System Simulation," Peter Floss and Joseph Talavage.

[12] "Developing An Intelligent Knowledge-Based Simulation,
Agent," Joe Dombroski.

(13) "Object-oriented Simulation for Just-in-time Inventory
Management", William Faught.

(15] "A Time Window Approach to Scheduling Simulation Events

on a Parallel Processor," Duke P. Briscoe and Lisa M.
Sokol.

[173 "The Role of Simulation in the Development of an Avionic
Expert System," Sylvia P. Darnall.

[21] "AI and Simulation in Materials Science," Ralph J.

Harrison.

(23] "Intelligent Model Modification," Norman R. Nielsen.

[24] "An AI-Based Tool for Simulation Data Base Integrity,"
Dennis W. Cooper.

U.-

[25] "Modular Model-Based Simulation," Allen S. Matsumoto,
Charles P. Kollar, Gary A. Strohm, and Arvind Sathi.

'_p.

[26] "Automatic Model Generation for Mechanical Devices,"
Andrew Gelsey.
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[27] "Categorizing Process Abstraction in Simulation
Modeling," Paul A. Fishwick.

[31] "Event Horizons in Artificial Intelligence Systems," Tad
Hogg, Bernardo, A. Huberman, and Jeff Shrager.

[32] "Reasoning about Diagnosis and Treatment in a Causal
Medical Model Using Semi-quantitative Simulation and
Inference," Lawrence E. Widman, M.D., Ph.D.

[35] "ISIM: Towards an Integration of Artificial Intelligence
and Simulation," Roy Masrani and Sheila McIlraith.

[36] "Model Generation from Specifications for Machining,"
Arie Ben-David, Leon Sterling, and Josph A. Kovach.

[38] "A Simulation-Based Prediction Mechanism for An Expert
Factory Control System," Szu-Yung David Wu.

[39] "Miniworld Simulator for Machine Learning Systems," Dan
Patterson.

[43] "A Distributed Simulation Environment - The Intelligent
Vehicle Workstation," Kevin J. Lehnert, Daniel M.
Donahue, Stanley K. Hill, Marion Lineberry, and Michael
Sullivan.

[44] "QSOPS: An Integrated Knowledge-Based Environment for the
Qualitative Simulation of Physical Systems," Alfred D.
Round.

[45] "Simulation and Knowledge Systems," Michael Greenberg and
Paul Cohen.

[46] "CONFIG Project: A Generic Tool for Qualitative-
Simulation-Based Reasoning about Configurations of
Engineered Systems," Jane T. Malin, Bryan D. Basham, and

. Rick Harris.

[48] "Knowledge-Based Simulation of Tactical Adversaries,"
Yee-yeen Chu and Azad M. Madni.

[49] "Transformational Approach to Automated Causal Model
Generation," C.N. Lee, P. Liu, M.Y. Chiu, and S.J. Clark.

[52] "Goal Directed Simulation," Marc R. Halley and Daniel
Pliske.

[53] "Parallel Marker Propagation System Construction Set,"
Howard Schneider.

*. . . * . . . , * *°i
1
{~. *



SECOND WORKSHOP ON AI AND SIMULATION

[59) "Simulations in a Model-world Based on an Algebraic
Approach," Charles Chiu.

[60] "Dynamic Planning Under Uncertainty Using Automated Model
Construction and Risk Analysis," Louis Anthony Cox, Jr.
and Richard Blumenthal.

[61] "Fault Diagnosis Based on Quantitative Models," Stefan
Feyock.

[62] "Simulation of Chemical Processes in Preliminary Design:
Model-Construction, Abstraction, and Control of
Information-Flow," Theodore Kritikos, Michael L.
Mavrovouniotis, and George Stephanopoulos.

[65] "Simulating the Behavior of Complex Devices for Model-
Based Troubleshooting," Walter Hamscher.

[66] "Benchmarks for Research in Planning," Thomas Dean.

[67] "Simulation and Expert Systems for Finding Particle Beam
Line Errors," Lawrence Selig, Scott Clearwater, Martin
Lee, and Robert Engelmore.

[69] "Causality in Simulation," Stefan Bernemann and Bernd
Hellingrath.

[72] Problem Solving Coupling Interpretation of Naive Physics
Simulations Based on Analogical Representation and
Logical Inferences," Francesco Gardin and Hadley Taylor.

[77] "New Knowledge Representations for Object Oriented
Simulation," Steven C. Bankes.
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A NATURAL LANGUAGE INTERFACE FOR SIMULATION OF

MULTISTAGE PRODUCTION DISTRIBUTION SYSTEMS

Behrokh Khoshnevis and Wanda Austin
University of Southern California i

Los Angeles, Ca 90089-1452 3
Artificial intelligence and simulation can be combined to provide managers
with sophisticated computer aided systems engineering tools to support system

S analysis and macro 'level decision analysis. This abstract describes a
cognitive simulation environment that has been developed for analysis of
multistage production-distribution systems. It uses a combination of natural
language understanding and expert systems technologies to generate DYNAMO
codes for simulation modeling of systems represented in natural language.

Model formulation is one of the most difficult tasks in building a simulation
model. In most cases, there is a vast difference between how the user
conceptualizes a problem and how the problem will ultimately be represented in
the simulation model. By providing the user with a natural language
interface, emphasis can be placed on problem definition and analysis of
results rather than problem representation or the intricacies of a specific
simulation language. Other advantages for the' user are that more complex
models can be developed by "non-programmers" and the human to computer

5. interface requires no special training because it is natural language.

Simulation is an excellent and established analysis tool but it requires
expertise in experimental design, probability, statistics, modeling,
programming and in the problem domain. Engineers and managers need the
capability to build simulation models correctly and easily without elaborate
training in all of these areas. By combining artificial intelligence andU simulation. an advanced knowledge processing system can be created which
performs goal processing and goal realization by acquiring, analyzing,
transforming and generating information.

An overview of the system is shown in Figure 1. The input to the system is a
narrative description of the production-distribution system to be analyzed.

P The natural language understanding system uses the PhRasal ANalyzer developed
by Hilensky and Arens. The knowledge base of the understanding system is
restricted to vocabulary and pattern-concept pairs which are common to
production-distribution systems. The knowledge base also has embedded
knowledge about simulation for interpreting user plans. The system dynamics
methodology, as developed by Forrester, provides the framework for
representing the complex feedback relationships present in
production-distribution systems. The structures for representing material and
information flow are well defined and well behaved. The result is an object
oriented structured representation of the system and system parameters. This
representation is independent of a specific simulation language but forms the
knowledge base for an expert system which automatically generates DYNAMO
simulation code. The system is implemented in Lisp on a Vax 11/780. Samples
of inputs and processed outputs will be provided at the workshop.

simulation is a good way to study the behavior of complex systems which should
not be manipulated in the real world or which are mathematically intractable.

(*. This cognitive simulation environment is aesigned to address some of the
problems associated with conventional simulation practices. The research has
also provided significant results into generalized systems analysis and

5~,, problem solving. It also demonstrates the importance of building a reasoning
system and knowledge base which support a natural language interface.
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DESIGN OF AN AUTOMATIC SYSTEM FOR FAILURE ANALYSIS IN
INTEGRATED CIRCUITS.

P.Mauri,M.Piccoli- S.G.S. Microelettronica S.p.A.
Reliability Laboratory
Via Tolomeo 1-20010 Corndredo,Italy -;

P. Mussio -Dept.of Physics,Universita' di Milano
Milan,Italy

ABSTRACT. The aim of this paper is to report some exploratory
steps perfurmed in the design of an Automatic Assistant (A.A.)
for Failure Analysis on Integrated Circuits, in particular for
the diagnosis of intrinsic parasitic elements (1).

Failure analysis on integrated circuits is a diagnosis activity
involving a great amount of different knowledge and skills
(electronic, physics, use of microscopes and so on). Goal of
this activity is finding failures sites, causes and
mechanisms.This search is based on typical diagnosis procedure:
definition of hypothesis,experiment design and subsequent
verification.

The AA is designed to help the failure analyst in his activity
of circuit diagnosis, increasing his overall effectiveness as a
human problem solver. The AA has therefore to mimic some
clerical activities usually performed by the analyst in his
model definition and verification. In other words AA has the
task to relieve the analyst from the repetitive analysis of what
is well known or what can be derived by simple inference
procedure from what is well known.

AA exploits three level of knowledge.

First it takes advantage of the surface-level knowledge (2,3),
i.e. knowledge derived from the practical experience in the -1
failure analysis of IC, which is not supported by some explicit
physical or electronic model, even if it has overall coherenceand takes into account implicitly physical laws,

Second, deep-level knowledge is used in which physical models
are exploited in a qualitative approach i.e. the physical
reasoning is based even on non numerical judgments.

% -. .



Last, knowledge at the algorithmic level is used when it is
possible (and necessary) to take advantage of numerical
simulation for example of well defined parasitic elements.This
last knowledge is codified in SPICE database(4,2).

So the main comporents of the system are (see annexed figure):

an expert module based on the production System paradigm
which encodes expert surface level of knowledge about
technological process, physical structure and typical failure
modality.

The output of this module is the definition of parasitic
elements related to physical structure and of degradation
type related to work environment of device.

a module oriented to qualitative physics for qualitative
simulation (7,8,9) employing an archive of models of
deep-level knowledge. It uses as input the information of
former module arid the circuit description to realize
functional analysis in order to select among possible
parasitic elements , for example, the most responsible ones.
The models translate the possible circuit components
behaviours into causal rules. The simulator uses these rules
and expert interpretation of classical physics laws to
perform analysis of damaged circuits.

a module able to execute numerical simulation of some parts
of the circuit (SPICE and a Circuit Modifier) whenever the
qualitative simulator requests it.

r
Purpose of the integration of qualitative and quantitative

simulation is to solve the problem of intrinsic ambiguity
related to qualitative physics interpretations.

7
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Stochastic Soft Simulation in Geological Exploration

Suresh G. Thadani. Standard Oil Production Co
Francois Alabert. Stanford University
Andre G. Journel. Stanford University

Abstract

The characterization of the spatial variation of subsurface (reservoir) properties is a key
problem in geological exploration for petroleum. The problem basically is characterized by
the availability of three distinct types of information. These are (a) a set (usually sparse)
of relatively precise well log measurements: (b) a set (usually copious) of indirect and
less precise seismic trace information that covers the region of interest; and (c) subjective
(expert) geological information about the region. The subjective type (c) information is
available partly as inequality constraints on the property of interest and partly as geological
heuristics that serve to constrain the set of allowable characterizations.

In applications of this type. there is a critical need for quantifiable and reliable measures
of the uncertainty associated with specific characterizations of spatial variability. This
paper presents a stochastic simulation approach to the problem that integrates the three
types of information using a combination of Geostatistical, Pattern Recognition and AI
techniques. In this approach. the spatial property to be investigated (eg. porosity of a
geological unit) is modeled as a realization of a stationary spatial stochastic process. The
first and second order spatial statistics of the above stochastic process model ie. the mean
and spatial covariance. are estimated by using both the "hard" type (a) information and

.J-" the "soft" type (b) and (c) information. More precisely. Statistical Pattern Recognition
techniques are are used to infer distributional bounds on the property of interest at selected
spatial locations in the prospect. These bounds are obtained by statistically calibrating
the indirect and relatively imprecise seismic trace data to the precise and direct well-log
measurements. The "hard' information, distributional bounds. and inequality constraints
provided by the subjective information, are incorporated explicitly in the estimation pro-
cess alluded to above.

Stochastic "soft" simulations consist in generating large numbers of equiprobable real-
izations of the above spatial stochastic process model. Each of these realizations can be
shown to (a) honor the "hard" data , (b) honor the "soft" data. and (c) be consistent
with the first and second order statistics of the stochastic model. The use of "hard" and
"soft" information in the simulation process provides for much more reliable estimation of
the statistics of the underlying stochastic model, while at the same time constraining the
resulting realizations more realistically than if only "hard" information were used. As a
final pruning step. "soft- information in the form of geological heuristics can, if available.
be used to qualitatively filter out realizations that are geologically not allowable - here Al
techniques can be used to implement the qualitative filters.



Tht simulated spatia! realizations are usually displayed in the for~r, of contour maps
As an illustration, (soft) simulated maps for the porosity in a selected geological unit of a
prospect are illustrated in figures la and lb. The map in figure la wa.s generated using
only "hard" information at 12 well locations in the prospect. while the map in figure lb
was generated using both the "hard" information above and "soft- information in the form
of distributional bounds at 20 grid locations (grid size 10 x 10) The differences between
the "hard" and "soft" maps are significant and illustrate the effect of including "soft"
information in the simulation. The analysis of such spatial realizations can provide valuable
information on the uncertainty associated with the spatial variability of the properties
being investigated. For example, the risk associated with property estimates at any given
spatial location can be quantified by constructing emperical histograms of these estimat-e
across. the multiple realizations. In particular. the magnitude of the risk is determined by
the amount and quality of all the available information.

Preliminary results of this research have demonstrated how hard- and -soft- informa-
tion can be successfully integrated into general soft simulation algorithms for characterizing
the spatial variability of subsurface properties. While developed specifically for geologi-
cal applications, soft simulation techniques are general enough to be applicable to other
domains that are characterized by information of varying precision.
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paper.
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Explanation Capabilities t8e3
for

Intelligent Manufacturing System Simulation

Peter Floss and Joseph Talavage ,O

Center for Intelligent Manufacturing Systems

Purdue University
West Lafayette, IN 47907

Extended Abstract

While discrete system simulation is a powerful and widely accepted tool for analyzing

manufacturing systems, understanding the decisions made (e.g., with regard to scheduling) in

complex models is a difficult task even for the user experienced in simulation methodology. A user,

inexperienced in computer simulation, trying to gain insight into a manufacturing systems behavior, ..

especially the complex intelligent manufacturing systems of the future, requires additional

information beyond the traditional simulation trace. This paper describes an explanation facility,

implemented in a Prolog network simulation language, for decisions made in manufacturing system

simulations.

Simulation in Prolog

Network oriented simulation languages simplify the modeling process through their ease of

use, but generally are inconvenient vehicles to model intelligent behavior such as complex decision :'

making. The Prolog network simulation language developed here provides the capability to handle

complex behavior through the logic programming paradigm along with having the usual advantages

of the network orientation.

A network node in the simulation language consists of a set of clauses with the same functor.

The language stores the event calender as an ordered set of facts in the Prolog database. _-

Explanation Facility

The concept of explanation systems developed out of research done in the 1970s on artificial

intelligence and rule based expert systems in particular. The early explanation systems merely

consisted of a trace of each rule used within the reasoning process. While explanation facilities have

,. " •
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been implemented in specific simulation models, this paper generalizes the capability to a simulation

language.

The implemented explanation facility allows an inexperienced user to analyze system model

behavior without extensive knowledge about system simulation. The explanation facility provides

the user with insight into decisions made within the model, including:

1. decisions about part flow within the system

2. decisions which cause a lack of flow for a part in the system

3. decisions about resource allocations

The explanation system stores a partial trace of the simulation run within the Prolog database
and utilizes the relevant portions of the trace to explain the specific decisions being made. The

explanations can be provided continously over the simulation run or only as requested by the user

at simulation interrupts.

Conclusion

Explanation facilities implemented within a simulation language extend the capability of the

language and the power of simulation as a tool for gaining insight into system behavior. This

additional capability is particularly useful for the naive user of system simulation.

LI'



Developing An Intelligent Knowledge-Based Simulation Agent

The MITRE Corporation, McLean, Virginia

Abstract

While current object-oriented simulation techniques are effective in
representing simulation agents as objects, they are often lacking in
facilities that allow the user to understand the behavior of those
simulation agents. A simulation agent's behavior is usually only understood
by tracing the messages that are sent and received by the corresponding
simulation object behaviors. This means that despite the use of the
object-oriented model, an agent's behavior is often spread throughout the
simulation and is thus difficult to capture. We believe that this problem
might be solved by introducing an agent level planning function to carry out
much of the processing done by a simulation agent.

Some past systems have used a planning function to create a mission
* plan and have then executed that plan in an object-oriented simulation.

Such systems typically monitor executions and report any plan step -

* violations to the user. In this way, simulation action can be interpreted in
* terms of the plan that is being executed rather than as sets of distinct
* actions carried out by object behaviors. However, even with this approach,

it is difficult to relate an individual agents behavior to the plan steps that
are being executed. In order to do this, we need to integrate the planning

* function at the agent level. That is, each agent is modeled as possessing
the planning expertise to act on the set of goals which are in that agent's
domain. Rather than responding to incoming messages with a set of already
defined behaviors, the agent uses its planning mechanism to process goals
set for it by other simulation agents. The aim of agent level planning is to
create a model for an autonomous simulation agent that is able to both
monitor and re-configure its plans relative to a dynamic simulation
environment. This approach has potential benefits for both

* knowledge-based simulation user explanation and control functions since
* the goals that agent processes can be viewed both locally with respect to

the agent and globally by considering how an agent's goals relate to a larger
plan.
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" OBJECT-ORIENTED SIMULATION FOR JUST-IN-TIW_ INVEN-ORY MANAGEMIrNT

William Faught, Ph.D
Director of Advanced Product Development

Intel 1 iCorp
1975 El Camino Real West
Mountain View, CA 94040

415-965-5500

.!ntelliCorp and Unisys (formerly Sperry) Corporation have jointly
'-._veloped a system that allows manufacturing engineers to simulate
.*t>st-in-time JJIT) inventory management techniques in a mainframe
computer manufacturing facility. The system is built in SimKit, a set
,7.f tools that facilitate the development of knowledge-based,
-ject-oriented simulations. SimKit is, in turn, built in and on KEE,
'%IntelliCorp's knowledge-based system development environment.

-storically, simulation has had an important role in the design
.%rocess, yet many times simulation results have been received withLticepticism. While pointing to models as proof of concept, a great
many end-users of simulation results have relied on their own
.edgement and experience for the actual design evaluation. Manual
' % esiqn evaluation is adequate in simple systems, but it likely to
fesult in miscalculations in more complex applications. This is not
to say that the use of simulation is unimportant at many stages of the.sign, implementation, and even use of large complex systems.
Voidance of simulation and discreditation of the resiu ts is more a
commentary on the fact that existing simulation languages are
difficult to use and validate and even more difficult to explain in
.,-onvincing terms to persons not versed in the use of the given
Z.4mulation language.

m imKit addresses these problems by providing a flexible environment for
el construction and modification. Inheritance capabilities allow the

".'eveloper to construct a master template for generic objects which
include the objects' associated behavior. Model construction and
.odification consists of creating and manipulating members of these
'.-eneric object classes, graphically. The requirements for alternative
-Pull and push protocols between queueing stations for JIT are addressed
with an object-oriented method language for behavior. The interactive
-.ature of the language in conjunction with the above attributes provides

-: rapid prototyping power that allows developers and so-called "naive"
& nd users to rapidly generate and test many alternatives and model very
complex behavior.
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A TIME WINI)OW APPROACH TO SCHEDULING SIMU1LATION 
EVENTS ON A PARALLEL PROCESSOR~

Duke P. Briscoe
Lisa M. Sokol

THE MITRE CORPORATION -

7525 Colshire Drive
McLean, Virginia 22102

(703) 883-7855

ABSTRACT
_"

Parallel computers have been successfully used to achieve greater execution speed for
applications which have a simple, regular decomposition into parallel processes. The same
improvements have been more difficult to achieve for complex, irregularly structured
applications. Simulations pose particularly difficult problems for a parallel implementa- , %..
tion because the inherent sequentiality required by causality must be preserved. '

Ne, approaches to discrete-event simulation are needed in order to generate enough
concurrent simulation tasks to efficiently use parallel processors. One way of parallelizing ,,.',

a sequential discrete-event simulation is to relax some of the precedence constraints impli- .
cit in the chronological ordering of simulation events. Inappropriate constraint relaxation
can cause the distortion of causality relationships between events, which will affect the
simulation's fidelity. We have designed a variant of discrete-event simulation which uses a
moving time window (MTW) to control the relaxation of precedence constraints and to
limit the loss of fidelity. MTW is based on the familiar concepts of event-d,,ven and
time-stepped simulations, but it trys to overcome the deficiencies which those two
approaches have for a parallel implementation. It is similar to the event-driven approach
in that time progresses in jumps from event to event rather than by a fixed interval. It
resembles the time-stepped approach in that all events within the interval of the time
windo, are considered to be executable concurrently, except that the MTW adds a
number of constraints on event execution order which act to preserve fidelity and causal-
it,. MTW further modifies the original time-stepped concept in that when the earliest
scheduled event within the time interval of the window terminates, the time window can
be adjusted to begin at the next scheduled event and end some fixed time later. The
advantage of this is that it will bring a steady stream of executable events into the win-
do% if there is not a prolonged quiescent period in the simulation. Those events with
times of occurrence within the interval of the time window can be scheduled for parallel
execution, subject to the previously mentioned set of constraints.

In order to support our simulation work, we developed an object-oriented language.
called Possum, for use with the BBN Butterfly Lisp programming environment. Possum
objects can have read/write locks for their instance variables. A function can be rapidly
mapped in parallel over the descendants of a class; parallel tasks are created in correspon-
dence to the branching of the object inheritance hierarchy. Messages in Possum can be • -.

stated in an English-like format, which should help make the simulation code more read-
able. Possum has been used to implement the MTW algorithm.

REFERENCES

Lisa Sokol and Duke Briscoe, "A Time Window Solution of Scheduling Simulation Events
on Parallel Processors,' unpublished paper
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THE ROLE OF SIMULATION IN THE DEVELOPMENT OF AN AVIONIC EXPERT SYSTEM

Testing a maturing knowledge-based system through increasingly rigorous levels of
simulation facilitates the evolution of a rapidly prototyped system toward a fielded
embedded system. Levels of simulation were developed for validating the expert *,A-
system through its phased development. The particular expert system goal is the
design and development of a real-time embeded avionic knowldege-based system
which recommends the appropriate self-defense countermeasures in response to
threats to the aircraft.

During the very early phases in the development of the expert system, menu-driven
static situations were sufficient to test the rules and knowledge representations. As the
system grew, it became necessary to dynamically model the informational complexity
of an avionic environment. This environment simulator is itself a large Symbolics*
hosted knowledge-based system comprised of multiple cooperating smaller
knowledge-based systems. At this level, the simulation architecture involved
frame-based hierarchical representation techniques with dynamic inheritance
relationships. For our purpose a pure software simulator provided the flexibility and
user friendliness necessary to the early testing and evaluation of system design
concepts, as well as the incremental development of software functionality. The
simulator 'also grew incrementally in order to support the developing expert sytem.
The functionality was as generic as possible to avoid an airplane specific point design
for the testbed. This allowed practical human interface to the prototype expert sytem
for a variety of domain experts. Although this simulation approach is the most flexible
and least expensive, it does lack overall credibility as a validation tool over other
simulation models.

An intermediate test level is the use of a high fidelity hybrid simulation environment in
which flight is simulated in software, but the Electronic Warfare model consists of actual
Electronic Countermeasures (ECM) hardware in the laboratory. This allows testing the
expert system for accuracy and speed in an extremely credible environment. Use of
the knowledge-based simulator provided a straightforward method for defining the
interface requirements for the hybrid simulation environment. The most credible
testing occurs during flight test in which the embedded expert system software is flown
across an Electronic Warfare test area. This is the most rigorous testing approach
since it uses real hardware and a real aircraft. This is the final simulation level before
actually deploying the expert system.

Throughout this project we have investigted the complex problem of validation for
expert systems. We generated requirements for levels of simulation for avionics
testing. We have applied emerging techniques such as cooperative problem solving,
qualitative reasoning, and knowledge-based simulation. The use of a special purpose
knowledge-based simulator was essential in the early phases of the development of
the expert system. A conventional simulation did not possess the flexibility and degree
of user friendliness required for rapid protyping, however as the expert system matured
a high fidelity conventional simulator for validating the expert system was needed.

"Symbolics is a trademark of Symbolics, Inc.
Z1987 General Dynamics Corporation
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AT ANI S!'N'LTlOf IN MA~TERIALS 4SCIFNCE 1[3
U .ry Ralph J. Harrison

U. S. Army Materials Technology Laboratory

Watertown, MA 02172-O001

From the vantage point of one who is interested in both Al as well as
in the simulation of materials behavior, I would like to comment about two
subjects relating to simulation and Al. The first subject deals with two
apparently distinct comparisons between simulation methods and expert system
methodology. One comparison is that probability is treated more simply in
simulation; if the probability distribution of the initial conditions is
known, the simulation itself will compute the resulting probability distri-
bution for the output variables in a straightforward manner. nn the other

.. hand the treatment of probability in expert systems is inherently complex
(1-4). This may look at first like a "plus" for simulation. Ry the same
token the second comparison, which is that expert system production rules
usually go from observeI results to probable causes whereas simulations go

-. the other way and usually cannot be reversed, might he counted as a "minus".
Leaving out the details (5) of what I feel is the resolution of both these
comparisons, one can say that the failure of simulation techniques to solve
the so-called "inverse" problem is not absolute, especially when numerical
approximations are considered, while the success of expert systems in this
regard also has its qualifications. The essence of the resolution however
is that the disparity between the ease of solution of the direct an that of
the inverse problem is directly related to the complexity of the treatment
of probability in expert systems.

The second subject for comment, relating more specifically to materials
simulation, is prompted by the fact that many properties of solids depend
upon fine details of microstructure, from atoistic to macroscopic in scale.
It is not practical to consistently simulate all properties atomistically,
much less to simulate the dynamical motions of all electrons and nuclei in a

qquantum mechanically exact manner. Multiple levels of abstraction in the
simulation are necessary to bridge the many orders of magnitu4e gaps in
scale. This prohle- is perhaps simpler and better defined for materials
than for the general "real world" problem. As illustration, a state-nf-the-
art model of a crack under tension, used to study fracture, is one which
treats the crack tip in ato-istic detail while the stress in more remote
regions is.modeled by a finite element grid (6). Errors in this treatment
arise from the omission of all levels hetween the finest and coarsest in the
hierarchy; a level especially needed is one which describes dislocation
motion, perhaps using elasticity theory. Difficulties in improving the
model arise in interfacing different hierarchical levels while realistically
treating interactions spannin, a large but not well-separated range of time
and spatial scales. Intelligent programs to determine the level of multi-
level simulation necessary to answer particular questions, which can "zoor"
in on some portion of a system to bring out details (7) and which can repre-
sent a hierarchy of production rule sets to simulate processes at several
levels of abstraction (8), (9) have not been applied in materials property
simulations. Spriet and Vansteenkiste (ln) have suggested that for "soft"
systems such as biological organisms where hierarchical separation in space,
scale or time is difficult, qualitative methods for modeling may be appro-
priate. Qualitative methods (11) also tend to be more robust than quanti-
tative models and possibly may be devised to give correct results over
several levels, although not as accurately as would quantitative models
restricted to a given level.

.'. ** . *- *.****.*.***'*******%.%**~~** °*
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ABSTRACT

There are significant opportunities to apply Al-based reasoning techniques in a
simulation. Obvious areas of application include the analysis of simulator
output data, formulation of parameter or characteristic adjustments, and
decision-making within the simulator. However, from the standpoint of the
model user, perhaps the most significant impact lies in the area of intelligent
model modification.

C$4 A useful model is one that undergoes frequent change. However, each change
is also an opportunity for errors to be introduced. The basic model development
process generally includes a significant testing and verification effort. However,

A changes made after a model is ready for use are often untested; such changes
are for the most part "small" and are made "on the fly." As a result, model results
often do not mean what they are thought to mean, because the actual model
used was different from the model that the experimenter thought was being
used.

Techniques are becoming available to reduce the incidence of such errors. For
example, a graphical display of a network model will reduce undetected
configuration errors, as humans are more likely to detect an unexpected change
(or the absence of the expected change) in a visual display than they are in a
text or numerical listing. However, many aspects of a model cannot be

portrayed graphically, so other techniques must be employed.
The application of reasoning capabilities to the model modification process can
produce significant benefits. Making a change to a characteristic of an object
(the attribute of an entity) can be used to trigger the execution of a procedure or
rule-set to infer what other changes might be required as a consequence of the
initial change. In some cases derivative changes can be made automatically,
eliminating the chance that the modeler might make an incomplete set of
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changes and thus preventing the creation of dangling pointers, inconsistent
values between objects, and the like. In other cases, all of the derivative
changes cannot be made automatically, since the complete intention of the
modeler cannot be inferred. However, all of the entities and attributes that may
need modification can be identified to the modeler, along with suggestions, ~
definitions, help text, and so forth as appropriate. Thus, the system can ensure
that all needed changes are made, even though reliance must be placed on the
modeler for decisions.

The main problem in implementing such an approach, in addition to creating
the modification logic, is gaining control for the reasoner. Implementation is
relatively easy to accomplish in a modeling system such as Simkit, because the
underlying object-oriented representation of entities permits changes to be
trapped. However, the technique can also be applied in conventional
languages. For example, the process representation of entities in Simscript 11.5
and Simula can be used to execute the modification logic.

At SRI we have built a model of a telecommunications network that is used for
experimenting with network fault detection and corrective mechanisms.
However, we are also using this model to experiment with the application of
intelligence to maintenance issues. We have identified a set of 10 "typical"
modifications (ranging from a relatively simple change to the bandwidth of a
network link to a more complex change of the congestion detection and
response algorithm) that a modeler might wish to make in the course of
experimenting with a particular network. We are in the process of investigating
the percentage of derivative changes and consistency checks that can
reasonably be handled by:

* Model-dependent logic constructed by the model developer for
application on a model-wide basis

" Generic logic that might be incorporated as a part of the modeling
facility's capability.
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% Historically, preparing input data for a simulation of any complexity
has been a labor intensive process. Much of the labor is devoted to

verifying that all the input has been specified and is consistent. Consistency

means that the simulation data base has objects and/or attributes which

are interrelated. These interrelationships are often times implicit in

supporting documentation, even though they are explicit in the simulation

code. If the input data developer ignores these interrelationships,

erroneous simulation behavior can result, which may be difficult to detect.

One possible solution to this problem is to explicitly capture the

nature of the constraints on the data in English-like rule form. These

rules can be referred to as data integrity rules (DIRs). Anytime a simulation
-' object is defined or modified, the appropiate DIRs can be referenced by

a simple AI rule interrupter to verify consistency. DIRs that fail result

" in the offending object and attribute description being listed along with

the failing DIR. The IF part of a DIR contains one or more clauses

which describe the necessary conditions for the assertion stated in the

THEN part of the DIR to hold. In other words, if any clause in the

IF part evaluates to FALSE, the DIR is abandoned. If all the clauses

in the IF part evaluate to TRUE, the THEN part is evaluated. If it is

J FALSE, the DIR fails and a report is made.



DIRs come in three types: (1) DIRs that assert the legal values that

an attribute can have regardless of anything else, (2) DIRs that assert

a dependency between one attribute and another within an object, and (3)

DIRs that assert a dependency between an attribute of one object with the

attribute(s) of another object. The latter type of DIR introduces an

additional complexity in the rule form. That is, the rule must provide

sufficient information to permit the rule interrupter to reference the

related object.

Up to this point, we have described a tool for verifying the integrity

of the input to a simulation. It has been our experience that many

simulations once instantiated with the input will increase in size by a-

factor of 3 to 5 before reaching a steady state. This means that the

simulation itself creates simulation objects. Can these be verified with

our tool? In a very simple way, they can. A snapshot of the simulation

data base can be taken and another set of DIRs (those pertaining to the

objects created or modified by the simulation code) can be employed.

A prototype tool has been developed for the General Research Corporation

simulation system, SIMSYS. The performance of the tool will be

discussed.
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Abstract
Carnegie Group is currently developing a Model-Based Simulation system to provide a modeling

capability with which users can easily construct models of manufacturing systems. The system contains
a library of extensible components, and models are constructed by connecting them using semantically-

defined relations. The user can view the model using several interconnected perspectives, and consider
them separately or combined. The model can be executed as a discrete-event simulation, which will
provide an approximation of the behavior of the real system.

* ".1 %

Our approach is based on Modular Model-Based Simulation' with components implemented as
Objects2 . The library components have explicit external interfaces to other components, and

encapsulated interiors. The user can connect them with standard well-defined relations to form system
models The set of basic constructs and relations provided were chosen to support factory modeling3and

are augmented by model building and analysis tools.

The basic classes of library components are activities, resources, material, plans, and goals. Activities

are defined by their resource requirements and their effects upon material. Resources are passive

objects in the system which are used by activities. Material are objects which are consumed, modified,

and produced by the system. A plan is a partially-ordered set of activities needed to produce a type of

--'- material from other materials. A goal is a desired performace criterion for the system; for example, an
order is a goal to produce a quantity of material

We use the mechanism of inheritance to define new classes as specializations of existing classes. In

particular, the library components are specializations of the basic classes. Models are assembled by

creating instances of library components and specifying the relations among them. That is, a model is a

semantic network" of instances of library components.

The user can view a model from different perspectives. The Functional view is given by the set of
activities a system is capable of performing. The Physical view is defined by the resources present in the

system. The Operational view consists of the (process) plans of the system The Dynamic view is shown
by orders for material flowing through the system over time. The connections among the model

components are defined by relations. The relations define the combined model, and can be selectively

chosen to project the model into its different perspectives. For example, an activity could be 'before"

another, and would "require" resources These different relations can be separately used to consider

, - activities from either operational or physical views.

After defining the structure of a model, its dynamic behavior can be analyzed by executing it using

discrete-event simulation Statistics are collected by attaching standard instruments to model objects.
Simulation results are collected in a relational data base for later presentation and analysis. Several

% different versions of the model can be run and compared

.. .
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The complete system is an integration of Semantic Modeling and Discrete-Event Simulation techniques
which provides a modeling environment for building and analyzing manufacturing system models The
Knowledge Base has been structured to allow the model to be constructed from components which can
be selectively projected onto separate modeling views The ability to consider the model from these
different perspectives increases the model's understandability. The integrated model is then executed as
a simulation model to analyze the effects of the interactions among the model components.
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[Gelsey 1987] (copy attached) describes a fully implemented program
which produces a kinematic analysis of a mechanism directly from a
representation of its raw physical structure. The following abstract
describes ongoing but not fully implemented research in which the output
of kinematic analysis is used for the automatic generation of models for

~Y. simulation. The kinematic analysis is useful both in step by step
simulation of machine behavior and in the detection of behavioral loops.

Figure 1 shows a CAD/CAM solid model of a gasoline engine. The
kinematic analyzer uses spatial reasoning and knowledge of machine
kinematics to identify the kinematic pairs in the machine and the
mathematical functions relating the position of any one kinematic pair to
any other. Each kinematic pair has only one degree of freedom, so

L~. calculating results of forces acting on the machine is simplified since
only the component of a force acting in the possible direction of motion of
the kinematic pair is significant. Also, the only direction of motion
possible for a kinematic pair is that dictated by its geometry, so the range
of changes that can occur during one step of a simulation is severely

* limited and predetermined.

* ~. The engine in Figure 1, like many mechanisms, has only one net degree
of kinematic freedom. This fact may be automatically determined by
composing the mathematical functions relating positions of kinematic

P pairs to find that for any position of the camshaft (for example), the
position of each other kinematic pair will have a definite computable
value. Thus the only state variables needed to represent the mechanical

* .portion of the system are its position and velocity. For example during the
power stroke of the gasoline engine in Figure 1, at the start of one step of
the simulation the engine has a particular position and velocity. In time
At, the position of the engine (i.e. the changes in values of the parameters
specifying the positions of the kinematic pairs) will change by an amount
Ax which may be calculated. At this point in the simulation, the gas in the
cylinder has a certain pressure. Knowing this pressure and Ax, the energy
transferred from the gas to the engine may be calculated. Knowing the new
kinetic energy of the mechanical system will give the velocity at the end
of the simulation step, and the energy loss and volume change of the gas
will yield new values for temperature and pressure of the gas. Thus the

r information needed for the next step of simulation will be available.

The detection of behavioral loops for this system is straightforward.
Since kinematic considerations will force the engine to go through the
same series of positions repeatedly, the only question Is how the speed



will behave as a function of time. Since frictional losses increase with
velocity while Positive contributions to the energy of the system don't,-
the engine may in general be expected to settle down to a steady speed (if
I doesn't halt). Thus as soon as the simulation returns to the same
position several times with approximately the same velocity (which is
easy to detect), a loop will be identified.

Figure 2, which portrays the escapement mechanism of a clock or
watch, presents a more difficult simulation problem because the
mechanism has more than one kinematic degree of freedom. An escapement
regulates the speed of a timepiece by allowing the drive wheel powered by
the mainspring to advance by only one tooth for each oscillation of the
balance wheel. When the mechanism of Figure 2 is processed by the
kinematic analyzer, it is revealed to have three degrees of freedom, as a
result of having three kinematically independent subsystems each with
one degree of freedom: the balance wheel and its spring, the lever, and the
drive wheel and the entire rest of the clock. Thus at each step of the

* simulation it is necessary to determine how each of the three subsystems
* will move, and what forces each will exert on the others.

The more difficult part of the problem is to determine what forces are
exerted, but once again kinematics simplifies the problem significantly.
Typically, the strength of a force matters very little, and accuracy to the

* nearest order of magnitude is adequate. Direction of the force is more
important, but an approximate value is generally acceptable. Consider the
lever in the escapement, which is part of a revolute pair having one degree
of freedom. The lever is relatively light compared to the forces exerted on

* it by either the drive wheel or the balance wheel. Typically, if the
direction of the force exerted is such as to cause the lever to experience
revolute motion, then it will move until the geometry of the situation
changes. The details of the forces applied don't matter, -and the only 7

question is which of two possible directions the lever will go.

Since kinematic analysis allows us to turn large amounts of geometry.
into a few numbers, loop detection is simplified. If during a simulation the
position and velocity parameter values for the three subsystems return to
values they had earlier, then a loop has been found. Since the drive wheel
and lever spend most of their time at zero velocity in one of two
positions, finding matching points in parameter space to detect the loop
becomes fairly straightforward.
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Abstract
Rcasoning about the physical world has recently be- _=_ .

come an important AI research topic. but the spatial rea-
soring aspects have tended to be ignored. I present work I
on the application of spatial and geometrical reasoning to I
the problem of reasoning about mechanical devices. My
program takes a CAD/CAM solid model of a mcchani-
cad device and from that produces a kinematic analysis . ._
of the device. I illustrate the kinematic analysis process
with two examples: a piston/crankshaft mechanism and 'N. ."

a differential. .

Much recent Artificial Intelligence research has con- -
cerned reasoning about the physical world ([lorbus 1984"
[Deileer and Brown 10841, JKuipers 10841). However. lit-
tie of this research has involved a sig-nificant ambunt of ge--
ometrical reasoning (but see [Stanfill 1083!) My research Figure I Pston and Crankshaft Mechanism
focuses on spatial and geometric reasoning as applied to therefore must have the same form in both objects. Ex-'

the domain of reasoning about mechanical devices. amples of lower pairs include the revolute or turning pair.

My program takes a geometric representation of a me- the prnsma:ic or sliding pa.r.and the screw. Only a few

chanical device as input and uses that to produce a -kine- lower pairs are geometrically possible. Higher pairs are.'.

matic analvsis' of the device which describes what mo- kinematic pairs in which contact between the elements-

tioas the various parts of the machine undergo and the takes place along lines or points of contact rather than

relationships between these motions. Kinematics is the over a full surface. The most prevalent higher pairs are

study of .he motion of objeas without considering the lean.
forces that cause the motion. In the design of a mec-hani- Though the possible variety of higher pairs is much ' -'
cal device, the primary means by which the motions of the greater than that of lower pairs, in actual machinery lower

device are constrained to be those the designer wi.hes is pairs are more common. The reason for this phenomenon.-.
by appropriate specification of the geometry of the mech- is physical rather than geometrical. Consider Figure 1. If "
anism. Thus, given appropriate Ikowledge of the machine the piston were a triangular prism rather than a cylinder.'-' "

domain, we may determine the kinematics of a device just the mechanism would behave is exactly. the same manner.

by examming its geometry. but an implementation of it in real metal would wear out.-.

Reuleau-x !1871 defined a number of concepts which much sooner since all contact would be along three lines*
we shall find usedul, such as the kinematic pair - a pa r of instead of an entire surface. And in general it is clear that

parts which constrain each othess motion. For f-nample. given a choice between a higher pair and a lower pair to -

in Figure 1 the cramnkshaft is paired with the frame in such do a specific job, one would always prefer the lower pair.-.
a way that its only psm'ble motion -sdative to the *ame because it would have a much longer working life. How- &.L
is rotation about a single axis. ever, such a choice is not always possible. For example.

Typically a part will be a member of more than one no lower pair will do the job a gear does So we might .- -

kinematic pair. so that kinematic pairs will be linked into consider lower pais to be the glue which holds mecha.'-'",

a knermatic chain, as is the case in Fig-tre 1. Reuleaux nisms together. with an occasional ligher pair inserted to

classified kinematic pairs into two categories: lower pairs do a job that a lower pair cannot perform.

and hAqierpaiirs Lower pain are kinematic pairs ii whidi Many CAD/CAM 5ohd modeling systerns use a rep-. % .,

contact betwecn the two clcunnts of the pair take-, llace re-entation known as Construicti\e Solid Geometry 1ife- *
coiitiiiuou-sly at all points on a srface of contact which qicha 1980, which i tih, input rcprbczctation that my

(This research was supported by a grant from ITT)
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program expects.* In the CSG representation, each part analysis program is the following:
in a machine is represented as a closed subset of three- * Identify lower pairs by the symmetries of the common
dimensional Euclidean space which is formed by apply- surfaces shared by the elements of the pair

." ing the Duoleazi set operatioiL-, of union. intersection. aJd e Identify higher pairs (particularly gears and cams) by
difference to a small set of primitive subsets of three- noticing appropriately intersecting motion envelopes
dimensional space such as the block. cylindcr. sphere. a Find constraints on the relative and absolute positions

cone, and torus. For example. a square plate with a hole and orientations of kinematic pairs
in it might be represented as the difference of block and * Detect relationships between the motion of one pair
a cylinder, where the block would be appropriately sized and that of another due to relative geometric config-
and positioned to represent the plate, and the cylinder uration5 of the pairs
would have the correct diameter and position so that the 0 Compose these relationships to form new relation-
difference operation would create the desired hole in the ships
plate. The actual representation is a binary tree who-e

- internal nodes are set operation, and rigid motions and The first step for kinematic anal'sis is to identify the
." whose leaves are primitive solids, lower paits, which we do by examining the geometry of

CSG is an appealing choice of representation for sev- their shared surface area. If the machine is represented
era] reasons A machine design can be specified in a natu- using CSG. a lower pair must meet four requirements:
ral and straightforward way using a CSG representation. * Each of the two parts of the machine which are the
and most parts of typical machines can be specified in a elements of the pair must have a subpart (typically
relatively simple and compact way using CSG See Fig a CSG primitive) which shares a common symmetry
ure 2 for an example of a CSG tree for the mechanism with a subpart of the other element. Since the sym-
in Figure 1. CSG is also a good representation to use metry of a mechanical part represented in CSG comes
w'hen sy-mmetry is an important issue. a~s it is in the ma- from the symmetries of the primitives in the CSG tree ,whe s .mt- isa motn su.a ti ntem-frth at n yia ati aefo ml

chine domain, because the possible symmetries of a part for the part, and a typical part is made from a small
with a CSG representation may be computed easily The number of primitives, it is straightforward to find all z

"- five CSG primitives mentioned earlier have clearly defined the possible symmetries in a particular part, and to
symmetries, and the symmetries of combined primitives find other parts in the mechanism with common sym- "

may be calculated simply For example, two solids with metties.
ao"prllae"llobn o The primitive or set of primitives with the symme-

., prismatic symmetr' along parallel axes will combine to ,-
form an object with the same prismatic symmetry The try must be solid in one of the two parts and hollow
!square plate with a hole in it described ear'r (as a result of a difference operation) in the other.

squae patewit a olein t dscrbedearieris n eam-For example, in Figure 1 the CSG tree for the pistonpie of such a combination Both the block and the cyhin-
contains a solid cN linder which fits inside a hollowder have prismatic symnmetry along parallel axes and the coli nder he frme a hus a

combination does ago cylinder i the CSG tree for the frame and thus a
The top level algorith mn emploed bv mv kinriatv cylindrical pair is formed.,-]
T"t-lel by m- i The primitive or set of primitives in the two parts

T.€'..A h mwst be identical except for possible differences in
* * Th. a'.t m = ~ m ', * th,' E.~, .le ng th along the &Ls of svrninetrv. and must have

',e,'A ,

di r iuoo -- s.°n r ,. t U ( a i.-qt I Ro r ne
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t I.,- samr.a . :o- r ex:cpz fc a po,S. , off-et Thf" ax:- of a c.hndr::a: :. :. ristr, and fra.,.
a:; t ax- of n.t r , , I in Figure I is albo w% deP:!! ahltouI?,. the cyla:drica
the piston and t.e cyliindica; hcie In the frame irto pa:: is di.fferen: from t!:c thre- pa:r d:!cussed aLove IA?,
wich it fils howl have th-e same cr-.:- section but that it has two degrees of freedom (Note that in Figure I
diffc. mn length. and their positions correspond except the piston's rotational freedom is eliminated by externa'
for a relative offset along the axis of s-y m ret'y onsetrits. eff'ectvelyv reduc.'ng it to a prismatic pair. .,,.

oThe hollow space which forms one half of the pa:- So the position of a cyl*I ndrical pair muwt by represen-ec " "
must be surrounde] by solid material. For e-ampe, by two param,-nete. instead of one.

in Figure 1 the piston and frame would not form a The ahstrac-ion of a highcr pair is frequently Ies-j

lower pair if the cylindrical solid which was subtrated straightforvard than that of a lower pair. but it is t'pioe"
from the frame was not subtracted in an area where cally less important Consider a kinematic pair consist-

there were othxer solidi primitives to make a hole in. in; of two gears. There will always be a third part in
the machine with which both gears form revolute pairs .. ,

The second step in the kinematic analvsis is the idea- The existence of the gear pair will impose a constraint ont-'

The teeth of a gear typically have a profile curve that is the parameters values of the two revolute pairs. which is
eitherthat one value must be a constant multiple of the other.,

It would be possible to define a convention to associate."-'.
rectl- from the simpler CSG primitives listed earlier, but some parameter with the gear pair, but that would bemust have an additional geometric modifier specifying theI

superfluous because that information is already included

in the values of the parameters for the two revolute pairs.."-*.'

Cams similarly imposecosritontepamervl.in contact and are both connected by revolute joints to a Cm iial"ips osrit nteprmtrvJ,''

ues for lower pairs
thipartAly teonati if the igars o'te her mton The third step in the high level kinematic analysis al--.prcs• in cotc in th orgnlC te.termto

envelopes (which will be cylindrical) may be formed and gorih. is to find constraints on the relative and absolute ".,

checked for intersec-:on Note that a gear will always be a position.s and orientations of kinematic pair. such as: "

mcmber of a (lower' revolute pair as well as of a (higher ,  9 Constraints inposed by the properties of rigid bod-
gear pair. ies. For example, if one part is an element of two,.-%:

Cam pairs are identified by a two step procedure. different kinematic pairs (the usual case), and in the"
First. pas which are elements of revolute pairs'are exam- original CSG tree the axes of those two pairs have

ined to find subpar.s without the appropriate rotational some interesting geometric relation like being paral- -

symmetry. i.e. "suspic:ous bulges". The motion envelopes le! or perpendicualar or a certain distance apart. then

of these poterntial cam are then formed and checked to the program may conclude that this relation will hold'-

see if they intersect any part which is not known to be regardless of what motions the mechanism makes. be-

kine=atically paired with the part containing the cam. cause the part is a rigid body

(For exampie. the crankshaft in Fig-ure I has suspicious e A typical macline will have an element called the'.::"

bulges whose motion envelopes intersect the connecting -frame" which will never move and will serve to pro-

rod. but the two pars form a revolute pair so they could vide a global coordinate system- A simple but impor-

not also have a cam reiationship.) Typically a cam's mo- tant constraint on any a.rs of a pair which includes -

tion envelope will intersect a part which is an element of the frame as an element is that the axis will alwayt''.

a prismatic join,. which is then pushed when the cam is have the same position.

in the right position. The ca relationship may then be * The existence of certain constraints may imply the.-.

determined from the relative position of the cam and the existence of other constraints. For example. in Fig-

prismatic pair it pushes. ure 1 the crankshaft/frame axis is parallel to the
For the purpose of reasoning about interactions be- crankshaft/connecting rod' axis and they will always

tween kinematic pan, we represent a kinematic pair as stay parallel, and the crankshaft/connecting rod a-xis 'J,

is parallel to the piston/connecting rod axis and they ..

lute. screw, or cylindrical pair. the axis is just the axis of will always stay parallel, so we may conclude that the

revolution while for a prismatic pair the axis is any line crankshaft/fra-me axis will aJlways stay parallel to the.

parallel to the direction of prismatic motion. For revolute piston/connecting rod axis
and screw pairs. we will make use of the convention that When a kinematic analysis program analyzes the

the parameter value for the pair will be the number of mechanism in Figure 1. we would like it to -undcr stand-

degrees that the solid element of the pair has moved. rel- that when the crankshaft turns the piston will move back

ative to the hollow element of the pair, from its position and forth. In concrete terms, this requirement means

in the initial CSG representation of the machine that was that the program should discover what the relationship

input to the kinematic analysis program. For prismatic is between the parameter describing the position of the ,

joints, the pasanieter value will be the number of distajice crankshaft ifrme revolute pair and the parameter de-

unir the soljl P-e-zenti hi.a moved relative to the holl),% scr:bizq the position of the pisroti/franiv prismatic pair

elcilicri.t This relation!hp is clearly not a one-to-one function since

YI
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any one ot of tli' piston can corre.-pond tc, two dif-R f ZmeMs.-€ Pir.
frent o f tbJ* cranksliaft A naturai "a, to e%- 'LnA".r u:sP: tv t,*':k:
press th- re.a:-ioi-hl, i, ias a -set of -monotonic segtment' 6. - C; r-o.t& Is I f

sets of tht- relnonshij in which both parameters to - Leon L"a:"a' P

var. monotonically and where a precise function relating Ma V

them can therefore be given. The output of my kine- 4 l.M Lu , (tip. ErViTame a (2. O 0 [3 T.91 ratio " 0

matic analysis program is a set of relationships between PUL =. -on s -' , .PAZ = to , LC.I ,U %=

parameterizations of kinematic pairs, expressed in terL i. • 'cn La •
of monotonic segments 3iuICz e. io 4t am Io

The fourth step of the kinematic analysis process is to 4 L n "79TON, b(I. * VULrMh so
find these relationships. Most of the elementary mecha- was - -0 6.0.0.0 t.oti 0

nisms found in typical machine- are either gears. carns. or P,,,= to 4Ln Ums
linkages ISuh and Radcliffe 1078' They are formed from O5sts,¢t.4 Ln um ." ~ ~ P~ M I n"L to 4 ,JLF"W4 LPIMNi

the kinematic pairs whose identification we have discussed t won W b (type -VOU..
above, and they impose the relationships we wish to find. was (26 aA2.-e..1 ,at. . 0 ".-

* The presence of a gear pair imposes a very simple hn- sIit te t. eon iPioi S-

ear algebraic relationship on the revoiute pain which PLI.:rM to 4 LIIJ L= 5
I3TA1CK to 4EM L al - 4allow the gears to turn. The parameter value (as de- £-,-...sip. C

scribed above) for one of these revolute pairs will al- S*Ets UP"t,
ways be a constant multiple of the parameter value ' LM" LFIM ge frt, a to -
for the other revolute pair. and this constant multiple amtLt, U bo" I to % **

may be computed by comparing the diameters of the , m z tPtIru, gs... ree -14 to .
two gears. Figure 3 Kinematic Analysis of Crank Mechanism

e A cam pair imposes a relationship between the pa- example. if in Figure I a gear on the crankshaft were to
rameter value for the revolute joint of the canL af, drive a camshaft, then given the position of the camshaft *. -

(i.e. the angle through which it has turned! and the we would know the position of the crankshaft, and given
parameter value of the prismatic pair which the cam the position of the crankshaft we would know the post-
pushes. An approximate version of this relationship tion of the piston, so therefore by composing these two
which suffices for many putrposes is a mapping taring functions we would get a new function such that given
one range of camshaft angles into the maximum dis- the position of the camshaft we would know the position
placement for the prismatic pair and the complemen- of the piston.
tary range of angles into the minimum displacement Thus, following classic tradition, we have reduced the

o Transformations of frame of reference also yield rela- problem of reasoning about geometric relationa to the
tiouships between parameter values. For example, if simpler problem of reasoning about algebraic relations.
oze part is an element of two coaxial revolute pairs A We can expect this techni-ue of kinematic analysis to
ax. B then the motion of the other element of pair A extend to very complex machines with large numbers of
a. seen from the frame of reference of the otier ele- parts, because we will use geometric reasoning to discover
ment of pair B is the (vector) sum of the parameters relationships between the motions of parts and their near
of :he two pairs. neighbors. and since these relationships will be expressed

* The relationships imposed by linkages may often be as one-to-one mathematical functions we may compose
found by simple reasoning about triangle "geometry. them to an arbitrar-y extent, producing relationships be-
since knowledge of trigonometry and triangle geom- tween the motions of parts and far distant other parts.

* etry may be applied not just to points but also to The output from my program in analyzing the mech-
distances between sets of parallel axes For example. anism in Figure 1 appears in Figure 3 The first stage
in Figure 1, the three parallel axes discused above of the analyss is to find lower pain from local geomet-

* may be projected onto a perpendicular plane, and the oftealsiisofndoerprsrmlolgom-ric properties using the algorithm discussed earlier. Theresulting points will form a triangle whose proper-
ties will impose additional constraints on the mecha- program finds four cylindrical pairs and then uses local

geometry to show three of the four are actually revolutenism, "This transformation is important in the analy- pirs. by showing that prismatic motion of the paus is "P'
sis of linkages, because the majority are planar link-b y shn ta p ic mi of t par i-
ages whose revolute joints have mutually parallel axes. becod sta e f a isecond stage of analysis,. "
The fifth and final step in doing the kinematic analv- The third stage of the analysis looks for constraints ,.

sis is to compose the relationships found in order to form on the interactions of the pairs Since this mechanism
new relationships The relationships between parame- is a linkage, most of the constraints have to do with
ter values of kinematic pairs are expressed as one-to-one relations between axes such as parallelness and perpen- %
mathematical functions (which are split into monotonic dicularitv After using transitivity to conclude that the
segments if necessary) The composition of two one-to- crankshaft 'frame axis will always stay parallel to the pts- "s.11
one function, yield: yet another one-to-one function For ton,/ronlectiig rod axis, as dLscussed above, the program
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uses this new con.tramt to conclude that th pistoin frame f<
pair is actually a prismatic pair rather than a cylindrical I ,-*-,---

pair. I .-' " -.
The fourth stage of the analysis applies basic trian- c -. ,...

gle geometry to the triangle formed by the always par- I ',-

allel crankshaft/frame. crankshaft/connecting rod. and Q .. I'
piston/connecting rod axes The previous stage of anal- J4 'rVS' i fl /

ysis showed that two sides of the triangle had unchang--~i~ m~
ing lengths. Therefore., if the position of the piston is
known it determines the length of the third side of the l / J '
triangle and thus by the side-side-side theorem uniquely /
determines the triangle and therefore the position of the
crankshaft. Similarly, if the position of the crankshaft is
known it determines an angle of the triangle and by the
side-side-angle theorem (where the angle is by the shorter Perspet- vie.

side) determines the triangle.
Therefore a strict relationship between the piston and

crankshaft parameters has been shown to hold. The tri-
angle inequality shows that the two extreme points of the
piston's motion will occur at distances which are the sum
and difference of the lengths of the other two sides of the
triangle. When the extreme points are reached the three
parallel axes are coplanar and their projections are col- " ' ,-"a
inear, at which point the triangle is no longer a triangle
since one of its angles is 0 or 180 degrees. Since there are
two ways to place a triangle in a plane if the positions
of two of its points are fixed, there are two ways for the
mechanism in Figure I to make the transition between Par-,iti .

its two extreme points. so the relation between the piston Figure 4 Differential Mechanism

and crankshaft has two monotonic segments. at a constant frequency.
The precise function relating the positions of the pis- Now let us consider the process which my program

ton and crankshaft in the two monotonic segments is a uses to create a kinematic analysis of the differential in
fairly complicated combination of trigonometric functions Figure 4. Note that in Figure 4 the gears are displayed
and their inverses. The above analysis gives us enough in- as cylinders, due to a limitation in our CAD/CAM solid
formation about the triangle to find the exact function, modeling program. Als& note that the differential has ,
but in many cases this is unnecessary, and what we re- only one pinion connecting the two half axles. rather than
ally want is just the definition of the monotonic segments four as a real differential would. This simplification is
of the relationship in te s of their extreme points and irrelevant to the behavior of the program since the four
the fact the the relationship is monotonic within the seg- pinions behave in an identical fashion. and the program /

ment. For example, if we want to know the average turn- would produce exactly the same analysis , ith four pinions
ing speed of the crankshaft given a certain driving rate as with one.
of the piston the precise form of the function is irrele- The output of the kinematic analyzer when working
vant as long as we know that when the piston goes back on the differential appears in Figure 5. The first two
and forth once the crankshaft makes exactly one corn- steps of the kinematic aalalysis process proceed by the
plete turn. Thus in Figure 3 the internal details of the standard methods described earlier and identify both the

functions in the monotonic segments are not specified. lower pairs and the higher pairs (which are all gears in

Note that the result of the kinematic analysis process this case). The constraints found an the third stage of

is a mathematical relationship between the position of the processing turn out to be irrelevant to the final analysis

crankshaft and the position of the piston in the form of here, and the important work is done in the fourth and

a mapping. This mapping is independent of what partic- fifth steps. Note that the program determines that the - _

ular motion the crankshaft is subjected to. that is, from pairs formed by the differential box and the two half axles

the parameterization of the crankshaft's position with re- are actually revolute pairs rather than cylindrical pairs

spect to time. For example, if the crankshaft was turning since both the differential bx and the two half axles form

at a constant speed, its position would be a linear func- revolute pairs with the frame.

tion of time, and we could compose that function with the In the fourth stage of the analyss, the local relation-

mapping our kinematic analysis gives us to get an expres- ships are found. Each gear pair yields a simple linear '.,

sion for the piston's position as a function of time which relationship: the parameter of one revolute joint is al-

would show that the piston was oscillating back aid forth ways a constant multiple of the parameter of another rev-
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tls.; Petro to determine whether it could actuall" do the jol Pat
axis itse 76. 0 . ,0.0) ratio - 0 of the output of the kine mnatic analysis is that the to- 1k if

4 Lr cra. ttri, * UVO.UTC tal angular dix,tazice through which one half-a.xh, turn, v.

ftMrLA m1 w (type UVO0' ti) equal to the angular distance through which the diffcren-
woo* (is T.o.0. 51.•.03 tii. * 0 tial box has turned plus the dustance through whic" the

, -rato.o..0 - a middle pinion gear has turned, and the total angular ds-
UAW tZA . 0g-e - tance through which the other half-axle turns is equal to

4 ma in. - MA aUn "VGLM the angular distance through which the differential box
was. ratO.-i. O.-.@1 rt* 0 has turned minus the distance through which the middle

WO -i2.t0. - * -a pinion gear has turned. B% dividing all these angular dis-
c 1Mt AILP (tr°pe * SOLUiE) tances uniformly by a time parameter we see that exactly

zatarrevltieft,•, the same relationships hold for the angular speeds. At
Macteal Segment the kinematic analysis level the differential mechanism
• 50, : GKA P - -*4 1001 : G.AIUP

- emueet has two degrees of freedom so its motion is determined
f l A U P ., 1 " et .1 i I. *, LriAI Vsv both by the speed at which the differential box is turned
mN 0 et lc Sement

a iLrila "- V . -1-4 C6*3 Mal , •., Lflhl §101, by the drive shaft and by the speed at which the middle
"Wetc Seguect r.

,tt * -. * mLb - 1 U% pinion gear turns.
..,,t seg.,t The hypothetical designer program knows that to
-,s4 s$&"St avoid slipping the ratio of the speeds of the two half axles

4ecei oMet i--- e L~• man Dl so ) - - 0. 1 o~ozAL, must be the reciprocal of the ratio of their turning radii.

M .ti 0 ) . .4 n and that this ratio will be enforced by the friction of the

Figure 5 Kinematic Analysis of the Differential (edited) 'heels with the road unless overcome by brute force as in
the case of a single rigid axle. This additional constraint

olute joint, with the constant factor being the gear ratio combines with the output of the kinematic analysis men-

Frame of reference transformations also yield linear reia- tioned above to restrict the entire system to a single de-

tionships: for example. the angular displacement of the gree of freedom - the speed of the drive shaft. The three ..
right gear relative to the frame is simply the sum of its (linear) equations of constraint may be combined using
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ment of the gear box relative to the frame. axle will equal the speed of the differential box plus a

The relationships we are really interested in are gener- fully determined speed, and the speed of the inner half
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Since the relationships found in the fourth stage are of the same speed, and therefore that the differential mechanism
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Categorizing Process Abstraction in Simulation Modeling

Paul A. Fishwick
Department of Computer and Information Science

University of Florida
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Gainesville, FL 32611
(CSNET: fishwick@ufl.edu)

Abstract

Large and complex simulation models often require some method for abstraction or sim-
plification; models are better comprehended and manipulated when they are defined over
multiple abstraction levels. Within the general bounds of simulation modeling, there has
been a considerable amount of work in many different disciplines concerning methods
for representing abstract models. Figure 1 depicts some of these areas. Many of these
disciplines, however, do not address issues concerned with multiple abstraction levels
and the mapping problem among levels.

Computation Theory Mathematics
(Discrete Structures, (Algebra.
Numerical Approx., Qualitative
Graph Analysis) Geometric Methods)Graph nalyss) s)Systems Theory'"

(System Equivalence)

PROCESS ABSTRACTION Social/Management

(Loop Models,
System Dynamics)

Artificial Intelligence Simulation Theory Econometrics/Statistics
(Naiive Physics, (Model Simplification) (Aggregation Theory)Qultative Reasoning) .%

Figure 1 - Applications using Process Abstraction

There has been substantial work dealing with formalisms for simplification [Zeigler 76)
and abstraction in scene animation [Fishwick 86) but much further research needs to be
done to study tradeoffs between complexity and sufficiency in modeling. We propose a
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theory of process abstraction jFishwick 87] which attempts to categorize fundamentally
different types of abstraction. We will present formalisms for valid methods of abstraction
(see figure 2) and show their application using an example process. The process is de-
fined as a partially ordered awtraction network whose nodes represent abstraction levels

and whose arcs represent valt abstractions.

I Mapping /No Mapping"

Morphism '-"

Representation Induction Reduction Sensory Cerebral

Partial Total

Figure 2 - A Taxonomy for Process Abstraction

The primary motivation for t work is to create a formal foundation as a step to better
understanding the nature of Imcess modeling - in many instances, the simulationist be-
gins with "intuitive models" mh as those defined using sensory and cerebral abstraction

as shown in figure 2. It is them natural to progress to more formal methods once there is a
greater understanding of the Frocess. A tenet of process abstraction is that we should

endeavor to maintain each aleraction level (from intuitive to formal) in an abstraction
network rather than to immedutely dispose of older, less accurate models once a deeper

model has been found. We wA still continue to validate models and dispose of incorrect

models but not at the expens of correct, qualitative models.

Workshop Issues

The research in artificial intefgence (including naive physics and qualitative reasoning)
provides useful concepts whew looking for the more intuitive modeling methods. For in-

stance, confluences [de Kleer 841 can be used as a language for qualitative modeling;

however, some important queions should be posed. What are the constraints on defining

valid "mental models?" Mamy different modeling methods have been proposed - are

there any benefits to using me method over another? What are the relationships and

differences between the Al am of qualitative physics and other areas such as system

dynamics and qualitative modlling [Puccia 85]? Also, can formal theories developed in

systems and simulation theory be used to place qualitative modeling (i.e. mental model-
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ing) on firmer ground? The Al & Simulation Workshmq will provide the proper forum for

discussing some of these key issues.
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Event Horizons in Artificial Intelligence Systems

Tad Hogg, Bernardo A. Huberman and Jeff Shrager

Intelligent Systems Laboratory
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Palo Alto, CA. 94304

Abstract '"

Cognitive models and large scale artificial intelligence systems undergo

sudden phase transitions from disjointed parts into coherent structures as their

topological connectivity increases beyond a critical value. This provides a dramatic

instance of global behavior which is not readily apparent in small-scale simulations.

These situations, ranging from production systems to semantic net computations, are

characterized by event horizons in space-time that determine the range of causal

connections between processes. At transition, these event horizons undergo explosive -.

changes in size. This provides a general methodology for analyzing associationist

models of memory and the behavior of large scale computation. The theory is

experimentally tested in spreading activation networks.
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REASONING ABOUT DIAGNOSIS AND TREATMENT IN A CAUSAL MEDICAL MODEL
USING SEMI-QUANTITATIVE SIMUYLATION AND INFERENCE

Lawrence E. IWidman, M.D., Ph.D.
Division of Cardiology, Department of Medicine
University of Texas Health Science CenterK2

San Antonio, Texas 78284

This project seeks to develop improved knowledge representation and
simulation-based reasoning algorithms for domains dealing with time-
varying phenomena.

Improvements would allow expert programs to (1) perform model-based
diagnosis using obser-vable signs and symptoms, (2) recommend treatments
based on a global understanding of hypothesized disorder(s), (3)
evaluate the outcome of treatment to refine the initial diagnosis and
detect new concurrent faults, and (4) communicate symbolically with the
user when explaining its reasoning and acquiring new information.

The fundamental approach consists of (1) hypothesizing initial
conditions in the "present" time by constrained propagation of available
information, then (2) reasoning forward in time by simulation.

Simulation using a symbolic model can be done by defining functional
* building blocks for describing the expert domain in symbolic terms,

translating the domain into a set of first order ordinary differential
* equations on the basis of the building block definitions, establishing

initial conditions for the equations by constraint propagation (see
below), and integrating the equations numerically by standard
techniques [1]. This approach combines the descriptive power of
mathematics with the symbolic reasoning power of expert system technology.

The approach has been tested in the medical domain. A symoolic model of
the human cardiovascular system was built from well-established causal

*relationships. Very few of the relationships were specified
quantitatively: most were specified qualitatively by direction of
influence (positive or negative) only. Time delays were specified by
order of magnitude. Slopes of relationships between variables were
specified when necessary to resolve ambiguity of conflicting
interactions; all data were taken from standard domain textbooks.

* The medical model contained 46 variables, of which only 14 did not
* participate in feedback relationships with other variables in the model.

The approach was tested in two ways: inference of possible faults from
limited obser-vations of a test case with an unknown fault, and forward

* simulation of a known fault.

Inference of possible faults was tested by presenting the value of a
single model variable to a constraint propagation algorithm and
requiring it to generate sets of self-consistent model states which
included the given variable value [2]. *This algorithm used a search
strategy in which the relationships between variables specified in the
model were interpreted as constraint equations.

% 1



Constraint propagation was performed by domain independent rules which

recognized morphologic patterns in the model. The algorithm identified

single faults properly. Interestingly, its semi-quantitative value

assignments, when mapped onto a numerical space, achieved correlation

coefficients up to 0.9 with the values produced from the same faults by

* forward simulation (Fig. 1).

Forward simulation was tested in sixteen classic cardiovascular
disorders, such as decreased contractility, increased pulse rate,
decreased systemic vascular resistance, and decreased gravity [1]. In

all cases, the output of the simulation was qualitatively correct: all
variables changed in the appropriate direction on the proper time scale

with semi-qualitatively correct magnitudes of change.

* Symbolic model-based simulation using symbolic functional building *-

blocks for describing the expert domain may be useful in a variety of
physically realizable domains. The symbolic form of the model also

lends itself to simulation at multiple levels of abstraction and
automatic analysis of simulation results.

Figure 1: Scatter plot of steady-state simulated values versus values
A inferred by constraint propagation, for decreased Contractility.
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ISIM: Towards an integration of artificial intelligence and simulation 353
Roy Masrani, Sheila Mcllraith

Advanced Technologies Department
Alberta Research Council

Calgary, CANADA

This paper outlines work in progress at the Alberta Research Council aimed at integrating reasoning and representation
techniques developed in Artificial Intelligence with discrete-cvent simulation. The paper describes ISIM (Intelligent
Simulation): a discrete-evcnt simulation environment built on KnowledgcCraft (KC). ISIM investigates two avenues for
intcgrating Al and simulation: V

" a goal directed expert system that determines the appropriate simulation parameters for achieving presated objectives
" an exploratory system that experiments with the simulation model to find interesting relationships between different

components in the model

The first step in achieving either of these goals is to enhance KC to make it more suitable for simulation problems. We take
concepts from a well-known simulation environment called DEMOS (Birtwistle, 1979) and implement them in KC. The
resulting system imposes a DEMOS-like framwork on the simulation model, forcing its description in terms of entities,
resources, queues and events. A monitoring system automates the data collection and statistical analysis tasks to provide the
expert system with a behavioral description of the model. The expert system can, in turn, react to the statistics by manipulating
the model in some way. Figure 1 illustrates the interrelationships between the three modules in ISIM: the model representation,
the monitoring system and the expert system. This paper continues with a discussion of these components after an overview of
the salient features of KC. KC is a Lisp-based schema (aka frame) representation language combined with Ops5 and Prolog for
forward and backward chaining, agendas, contexts, and various window and user-interface tools (Pepper & Kahn, 1986). The
paper will refer to the simple simulation scenario described in Box 1.

A coal transportation system comprises a number of trains that move coal firom mines along the railway to a port-
Ships then aransport the coal to an island-the final destination. Mines produce coal and deposit it on stockpiles for
the trains to pick-up. Similarly, the trains deposit coal on stockpiles at the port.

Box 1. Sample simulation scenario

KnowledgeCraft,". '

A standard schema represenation language is augmented by demons, user-defined relations and object-oriented programming -
facilities. Demons are lisp functions that can potentially mediate interactions with any frame in the system. Depending on
how it is defined, a demon can "fire" before or after a value in a slot is affected (either accessed or modified). The demon can
change the value or have a "side-effect" like updating some statistic collected for the SIOL Relations in KC (such as is-a,
instance) can be programmed to suite the needs of the application. Some aspects of relations open to customization include the
specification of which slots to inherit (or not) from the the parent schemas, the path to take for finding slots and actions to
perform when the relation is created. Finally, object-oriented programming is implemented by treating values in slots as
methods to be invoked when called to do so. For example, the schema polygon can have a slot draw and the value draw-
polygon-fn. The function

(call-method 'polygon 'draw)
will execute the method specified in the draw slot for polygon.

Integrated with this representation scheme are various programming utilities typically used in Al applications. Forward and

L.% ,%,"
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Figure 1. ISIM components
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backward chaining deduction is implemented by Ops5 and Prolog respectively. Four types of agendas are available: simulation
queue, scheduled queue, manual queue and imperative queue. The crucial difference between these queues lies in how events on
them are executed. For instance, events on the imperative queue take precedence over all queues. Events on a schedulcd queue -

are executed in real (absolute) time. Simulation queues are ordered according to the time on each event. Executing events on
this queues advances the global simulation time. Manual queues. finally, do not have any automatic agenda mechanisms built
in. All events on these queues must be dealt with manually!

A simple and elegant facility is available for implementing some form of "hypothetical" reasoning. Essntially, all frames .
in the system are associated with a context (a default is provided if none is specified). By creating a new "child" context, the
system saves the current context and makes modifications only to the child context This provides a form of non-determinism
where a line of reasoning can be tested and adopted if the results are promising, or abandoned if not. Several contexts can be
saved during the course of execution to compare the results of various hypotheses.

Model representation "
Although the representation language in KC is powerful and expressive, it lacks the appropriate mechanisms for building
simulation models. To rectify this, we develop a discrete-event simulation adopted from DEMOS in KC. DEMOS is an idea ' "
candidate because it is an established simulation environment built on Simula (Binwisfie et al, 1973) - an object-oriented
programming language with features similar to frames and semantic nets in Al.

ISIM is restricted in scope to problems that can be modelled as discrete-event simulations where discrete objects (active and - ,*
passive entities, resources, queues) have behaviors describable in terms scheduled events. All appropriate statistics are collected '
by the system and represented in frames.

Entities

An entity is an identifiable object in the simulated world. All entities have attributes and behaviors (represented in frames) that
can be invoked by sending the entity the appropriate message. ISIM distinguishes active entities from passive ones. Active . .
entities are those objects in the simulation that do most of the processing and whose behavior is of interest. In a bank, tellers -
could be modelled as active entities. Passive entities on the other hand flow through the system as the objects processed by the
active entities. Customers in the bank can be viewed as passive entities. In the coal transportation system the coal is modelled - .

as passive whereas mines, ports and trains as active.

Generic methods associated with active entities are inherited by any object described as an active entity. Specialized objects
can define methods that either override their generic counterparts or augment them. Thus, a description of a mine may augment .

the generic "start-operations" method by adding an event on the event list to produce coal.

Resources

In addition to entities, ISIM defines resources as objects that are used by other objects and are available on a competitive basis.
Objects requiring resources may be put on wait-queues until the resource becomes available. An example of a resource in the
coal transportation scenario is the loader/unloader required at mines and ports for the trains. All resources have methods for
dealing with requests like 'acquire", "release", "put-on-wait-queue" and so on. Resources also have wait-queues and can break
down.

Queues and distributions

There are two types of queues defined in ISIM to augment the event-lists already available in KC: first-in-first-out and last-in-
firSt-out Methods associated with queues include "add-to-queue" and "remove-from-queue-. Queues can have a maximum length
and current length specified as local variables.

ISIM implements various statistical distributions with appropriate methods: get-value, initialize, reset. Examples of
distributions include: poisson. negative-exponential, uniform, constant.

Monitor System
The monitor system in ISIM automatically collects statistics at three levels: system, group and member. System stats descnbe -

the behavior of the system as a whole. This may include the mean throughput time for passive entiues, the total number of
passive entities processed by the system, mean queue length, overall utilization factor for the system and so on. Group stats
describe groups of entities. For instance, a set of statistics can be collected for all mines in the system, another set for all trains, -. '
one for all coal units to name a few. Statistics interesting at this level include mean idle, active and down time, utilization, total
number of passive entities served, average queue length, number of zero-length queues and so on. Statistics at the member level • .
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include the member counterparts of the group staistics: total idlc, active and down time. total queue length, utilization factors.

All statistics are stored in separate frames accessible by the expert system. When frames are made instances of simulation
objects (like queues, entities, resources), the appropriate stausucs modules are automatically attached to the correct slots. The.
behavior specification for enltitics thus need not include an), extra overhead for managing satisucs.

Expert System

This module i_ the least developed of the three. There are three programming tools available for use here- Ops5, Prolog, and . .

contexts. We speculate on the use of these mechanisms for achieving the two goals outlined above. %

Expert system for running the simulation

When considering ways of integrating Al and simulation technologies, using an expert system that runs the simulation is the
obvious one. When a real-world problem cannot be solved analytically, it may be amenable to a simulation approach. Human
experts run the simulation (which has presumably been validated against actual system performance), manipulating one or more
of its parameters, to create the desired behavior. Recommendations are then made about the real world problem based on the
simulation parameters. For instance, in our case study, the simulation of the coal transportation system may be run over 1000
hour- of simulated time to frind bottlenecks in the system or underutilized resources. The knowledge used by these experts can,
in ptinicipal, be encoded in an expert system. Such a system would incorporate knowledge about simulation experiments in
general with domain specific rules to control and interpret the simulation model.

We are in the process of eliciting heuristic rules from simulatiob experts to test this general notion. So far, a simple expert
system module has been implemented in ISIM to maintain coal stockpiles at a constant threshold by using a simple set of rules
to speed-up or slow-down mine production depending on current conditions. The rules test the current stockpile levels and train
destinations. If the stockpiles are below threshold but there are no trains headed for the mine, production is not affected. If
trains are expected to arrive soon, the expert system increases production to raise the threshold.

The forward chaining mechanism in Ops5 is well suited for interpreting the behavior of the simulation. Prolog's backward
chaining mechantsm can be used for performing experiments aimed at producing the desired results. One can imagine a prolog - -

program running the simulation to find the operational parameters that can maximize utilization of the trains while, at the same
time, minimizing cost increases.

An exploratory expert system for finding relationships between simulation components

The expert system here is also goal directed with the crucial difference that the goal is to find relationships between different
pars of the system using sensitivity analysis techniques on the variables in the model. Given the set of parameters that the
expert system can manipulate (speed/capacity of trains, production schedules of mines, stockpile thresholds), the expert system
will experiment with these parameters and find statistically significant effects. At one end of the spectrum, the experimentation
can be sen as random permutations of the possible parameters while at the other end the experimentation can proceed in an
orderly manner, guided by general rules provided by an expert. Success in this project will be gauged on whether the expert
system can find "interesting" rules in the transportation model like

fast, small capacity trains are more effcient than slow, large capacity trains
an intermittent operating schedule for mines closer to the port is better for maintaining a constant coal supply

Whereas the first expert system can be seen as a 'black box", this approach is more like an advisory system capable of
suggesting relationships to the human expert that may not be immediately apparent from examining the model.

Birtwistle. G. M., O-J. Dahi, B. Myhrtaug and K. Nygaard. (1973). Simula Begin.. Studentlieratur, Lund, Sweden.

Birtwisule, G. M. (1979). Discrete-event modelling on Siruda, MacMillan Press, LTD, London.

Pepper, 1. & G. Kahn. (1986). "KnowledgeCraft; An environment for rapid prototyping of expert systems." Proc: Society of
Mechanical Engineers Conference on Artificial intelligence for the automotive industry, Detroit. Michigan. March 12-13,
1986 .
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Abstract.

We describe an implementation of an expert system capable of successfully
performing the tasks of process design optimization and troubleshooting
superalloys grinding operations from process specifications.

The system, named DT, partitions a design by automatically generating
and solving several empirical models. Later it synthesizes the partial solu-
tions by generating and solving a non linear optimization model. Several
feedback paths are available and corrective actions are taken by the system
if necessary.

DT incorporates various types of domain knowledge: Physical princi-
ples, state of the art empirical mathematical models, heuristics and text-
book data. The process design optimizer and the troubleshooter are tightly
coupled. Each modules cannot perform its task properly without activat-
ing the other. The troubleshooter includes knowledge which is beyond the
scope of the empirical models and is capable of resolving any combination
of multiple faults in any degree of severity. During its operation the system
assigns values to fifteen process variables.
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Synthesis of the design is done as follows: A unique model is generated
for each process specification, taking into account the propagated partial
solutions. In order to avoid, as much as 'nossible, being stuck in a local
optimum, the system generates an approximate solution for the optimiza-
tion model. An initial guess is generated using heuristics and textbook
data. Usually this guess violates some constraints and a description of the

* resulting problems is sent to the troubleshooter which resolves the conflicts
with respect to all the constraints. Conflicts resolution is done using gen-
erate and test strategy and the 'best' point is selected as an initial search

* point for optimization. Both generation and evaluation of a new point are
done by applying domain knowledge. The optimization model, some hints -

regarding ad~quate problem solving techniques and the approximate solu-
tion are sent to a commercially available optimization package. The final
solution is checked using heuristics and corrective actions are taken should

* it not satisfy the criteria.
About 120 real world cases of surface and feed creep grinding have been

tested already. The results of more than 95 percent of them were very.
good in the sense that experts would have chosen the same initial machine
settings. The system is written in Prolog. The conflicts resolution requires
about 20 iterations, and a typical process design takes about 120 seconds,
excluding process specification input) on an O.6M IBM AT. Using the same
machine, models and optimization package, it takes the domain experts(
who have developed the empirical models ) about 3 hours per design to
generate and solve 80 percent of the cases without using DT, mainly due
to the time consuming tasks of manually generating the proper models and
estimating an acceptable initial search point by trail and error.

The approach taken in DT seems to be adequate for solving similar
problems in other machining domains like turning, ECM etc. Further en-
hancements of the system will be focused on giving it some ability to learn
from its own failures by correcting the empirical models it builds.
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ABSTRACT

Expert systems are currently being touted as a mean of
resolving manufacturing scheduling problems. However, most
of the existing design philosophies for expert systems do not
lend themselves to real-time control environments. Hence that
the expert systems developed to date are neither generic nor
are they responsive enough to be used for on-line system
control.

In this paper, an architecture is outlined which takes
advantage of both expert system technology and discrete event
simulation. The simulation is used as a prediction mechanism
to evaluate several possible control alternatives provided by ...
the expert system. A performance measure is obtained from - .
the simulation for each of the suggested alternatives, the
control decisions are then made based on the measure. This
performance measure is worth a great deal of domain-specific
knowledge that otherwise would have to be included in the
knowledge base.

The integration of the expert system, the simulation,
and the control effectors forms a system called "Multi-Pass
Expert Control System" (MPECS). MPECS is designed to control
automated manufacturing systems. Key elements of MPECS
include:

1 . An Expert System, which generates potential scheduling
alternatives based on real-time shop information and
scheduling knowledge.

2. A simulation-based predication mechanism, which allows
the system to evaluate alternative schedules based on
the system performance (i.e., use the simulation model
as a source of feedback for system decision making).

3. A real-time control mechanism, which affects the
control on a variety of automated machining systems.

In this paper, the frame work of MPECS is defined and
the simulation-based prediction mechanism of MPECS is
described in detail.
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MINIWORLD SIMULATOR FOR

MACHINE LEARNING SYSTEMS

Dan W. Patterson
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Abstract

The problem of building special training systems and
environments for machine learning and other knowledge-based
systems has, to date, received little attention. To gain more
insight into this problem a MiniWorld Simulator is now being
developed. This system will serve as a research tool in
providing training scenarios for autonomous learning systems and
will assist in evaluating the performance of various learning
paradigms.

The area of machine learning has taken on increased
importance as an automated method of collecting or eliciting
expert knowledge. Autonomous learning is particularly useful
when a large body of knowledge is needed or when systems must
function in dynamic environments.

A number of impressive systems have demonstrated an ability
for some degree of autonomous learning such as INDUCE [Hof-83],
CLUSTER (Mic-83], ID3 [Qui-83], LEX [Mit-83], GIDES (Pat-87], and
Meta-DENDRAL [Buc-78] to name a few. All of these systems
require some form of "training" as well as feedback on the
quality and extent of the knowledge "learned." In the past these
functions have been provided manually by the designer or through
the use of programs that have been developed specifically to test
a given paradigm.

Figure 1 illustrates the major components of the MiniWorld
Simulator and a typical learning system. The Simulator can
provide a variety of training knowledge to a learner system. The
training information is passed to the learner in incremental
chunks or as a complete file. Depending on the scenario chosen,
the information can be random or well-ordered, labelled or not,
positive examples only or a mixture of both positive and negative
examples. The examples are generated from predefined attribute
domains and relations specified among the attributes or from
given functions evaluated on specified domains.

For example, concept learning can be accomplished through the
evaluation of descriptions of positive (or positive and negative)
examples of the concept. Thus, to learn the concept "expensive
objects", the simulator should generate specific examples (e.g.
descriptions of gold coins, sleek cars, diamond rings) or non-
examples (bread, water, potatoes, etc.) of the concept. For
this, the Simulator requires a "definition" of the target concept



plus attribute descriptions for training objects, not necessarily .
all relevant.

If the learning task is predictive (e.g. predicting the
trajectory of a target), the Simulator may be required to provide
time/position examples, possibly corrupted with noise. In this
case, the Simulator must be given the target "concept" and other
parameters related to the environment such as the trajectory
function(s) and noise desired.

The system currently has the ability to provide a variety of
training examples and to evaluate the learning performance of
many inductive learning systems. It can also be used to create
background domain knowledge for a knowledge base. Further
capabilities now under development include: (1) the storage and
indexed recall of complete descriptions of objects, (2) problem
solutions for analogical learning systems [Car-86], (3) general
problem solutions (step-by-step examples), (4) training data for
cooperative learning paradigms, and (5) the generation of
simulated stimuli for many system environments.

It is also expected that training information comparable to
that found in instruction textbooks can eventually be generated
in a uniform format for learner systems. All of the knowledge,
whether training examples or domain knowledge, is stored in a
flexible frame-like structure.

The MiniWorld Simulator has already proven itself useful in
testing and evaluating certain types of inductive learner
systems, and it is believed the added capabilities now under
development will add much to our understanding of training
vehicles for a variety of other autonomous learning systems.
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Abstract:

The goa! of th,- Intelligent Vehicle Workstation IVW\, is to provide a realistic.
distributed simulation environment for the prototyping of intelligent vehicie systems By"
simulating vehicle behavior, the user can develop systems of superior fidelht;. thus reduc-
ing the ditficulty of the transition fromn simulated to actual systems An object-oriented
approach to simulation has beer adopted to achieve these goals The currently operationa"
system i see DonahueS6. Sullivant'7 uses a time-driven simuiation paradigm Conversior. tu
dis -ete-event simulation (see Lehnert7 iis underway

The underlying phvsica architecture of the sirj:at;on system cons:sTs o: a :,twor-
of software modules interfacing to a centrai communication system (See Figure 1 The
specific structure of the simulation system design is mapped onto this arch:tecture !See
Figure 2!. Each box in Figure 2 corresponds to a module instance in the physical domain
The flexibility ot the physical system is such that very few constraints module are imposec
on the internal structure of the simulation subsystems A single simulation could contair"
modules implemented in a variety of ways, from FORTRAN subroutines to knowledge-based
expert system shells A simple interfacing procedure translating messages passed over the
communication system to function calls in the target module is all that must be provided

Every simulation environment consists of a world, a set of-pTatforms, and a-sihm-ula.
tion manager controlling interactions (See Figure 3). The world is a set of data representing
the true state of the simulation milieu as terrain surfaces, weather conditions, and static
and dynamic world objects A platform is any object in the world capable of independen:
action, that is, capable of posting events. A vehicle is one type of platform. The interac-
tions between separate platforms, as well as those between a piatform and the world. ar, -.

constrained by physical principles and uncertainty. The role of the sirulation manage r is
enforce real world interaction constraints. The interactions take the for., *f t~me-stamp-d
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are:; prvde!o

the user at eve.-Y leve: of' deve.Upnri, -1' :,C use-r corntri~utiori can be limited to those !acets,

of the domnain which are of parl!cular interves- Libraries of individual vehicle suosYst-ems
and proceaures for crt-a-irg new su .bs; s:eis are avaiiabli- for 'he internal conrigurat ion
o; a vehicle The exis,!nq, 1VW ias op- ex- end-f If provjiP th. simulatiftn cl! multiple

P1 at for ms over a seri es of in acI nPs S-F: g ui:.- 4 -TIIs e x IPn sin n-Ias al lowed us-. to e xamIn e
issues involved with PnvSIca&lv dis~ ri utingi, t:ie simulawed ag-rlt s. such as comniunicatiun
packet Irequencv and size. pertorriaitco !Mpruve.ments. And svnchronuus cut'nroi In a unifleu

Re fe rences

D)onahue. D .4 .-l!. A A~ AI .r Kt p~c:'u ;i..\ \)k AlI an d S, Tn-.iat ,r
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QSOPS: An Integrated Knowledge-Based Environment

for the Qualitative Simulation of Physical Systems

Alfred D. Round

Knowledge Systems Laboratory

Stanford University

701 Welch Road, Building C

Palo Alto, California 94304 U.S.A.

Telephone: 415-725-3849 '

E-mail Address: round&sumex-aim.stanford.edu

Abstract

Much of the recent work in the qualitative simulation of physical systems focuses on the

prediction of future states by applying constraints or "influence relationships" between objects, _

or by running "propagation/prediction cycles" on the current system state[1,2,3). Implicit in

these paradigms is the notion that a simple physical system can be described in terms of ":

qualitatively distinct stages. The traditional approach to simulation of more complex physical

systems is through mathematical modeling, often resulting in a set of differential equations that -

is difficult to solve and whose parameters are not intuitively rel,2ted to the system being

simulated. The major research issue addressed here is how to combine the best features of

both approaches so that the states of complex physical systems are continuously variable and -

expressible in precise quantitative terms, while the relationships that generate these states retain

a simple, heuristic, intuitive flavor.

The QSOPS system addresses this issue by providing an intelligent environment for the -"

qualitative simulation of processes in the domain of bacterial molecular genetics. Using

QSOPS, a molecular biologist can interactively describe the processes and objects of interest

5* .*J*. 5 .* .. * 5 *..'... ... * .. .. . * .N,,.. .,-



and predict the futrestte of th reutn molecular systems by simulating these processeS.

QSOPS consists of three components whose integration pr-vides a unified simulation

environment:

A Description component that allows the user to tell the computer about the

processes to be simulated, the objects that these processes act on, and global

information about the state of the system. The User description of a process is

converted into a representation that captures the specific ways that objects interact

while undergoing the process, the temporal relationships among sub-processes, and

* the number of simultaneous occurrences of the process. The representation of an

object reflects the spatial relationship of its sub-objects as well as attributes such as

concentration and lifetime; several different graphical representation types for

objects are also supported.

*A Simulation component that predicts future states of objects when the processes

* that act on them are simulated. The theory of simulation used by QSOPS is a

simple one. A given process creates new objects and/or destroys old objects at a

certain frequency. In addition, each object has a (usually finite) lifetime. An

object is thus created by a process, and is either destroyed by a process or expires at

% the end of its lifetime. The simulation of a process then consists of tracking the
creation and destruction of the input and output objects of the process based on the

process frequency and the object lifetimes. The process frequency and object

lifetimes are determined by rules which dynamically compute them as functions of

object attribute values.

*An Animation component that dynamically renders the motion of molecules

undergoing a process, using object images and interaction types specified in the

Description component and process frequencies computed in the Simulation

component.

A set of experiments using the QSOPS environment has been conducted to predict the
bacterial concentration of the amino acid tryptophan over time by simulating the transcription,

translation, and repression of the genes responsible for its synthesis and regulation. Simulation

of these processes under normal conditions as well as with perturbations such as mutations

* yields results which are consistent with bacterial molecular genetic theor)y[4.S].
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Simulation can be used to assist problem solving processes in knowledge systems.
Three important roles for simulation are prediction, providing a source of "deep knowl-
edge," and evaluation. For example, in the context of fighting forest fires, simulation
can predict the movement of a-fire and the effects of building a fire break. As a source
of deep knowledge, simulation can be used to determine how actions interact and find
unanticipated side effects. As a tool for evaluation, simulation can provide many test
cases. A forest fires' behavior can be easily represented as a simulation, but not easily
with rules--especialy when knowledge about specific terrain is taken into account.

We are exploring how knowledge that can be easily represented in a simulation can
be used by a knowledge system. To this end we are building a simulation-based forest
fire fighting system. The task of this system is to plan and execute actions for fighting
a forest fire. Simulation is used to

* model the actual fire and to keep track of the effects forest fire fighting efforts
Ir (i.e. fire breaks and location of crews),

* provide the planner with predictions about the fires' behavior,

* anticipate the effects of proposed actions,

* provide a test-bed for different forest fire fighting strategies and tactics, and

* generate test cases for evaluating performance.



As part of our overall goal of understanding the role of simulation in knowledge-
systems, we are currently exploring several research issues.

" How can simulation technology integrated with knowledge system technology?
What does a system which combines the two look like?

" What functionality should the simulation provide? How much control of the
actual simulation is necessary? Can the knowledge system control the granularity
of the simulation?

" What knowledge about the simulator must the knowledge system have? Does it
have to know about the strengths and weaknesses of the simulation? Does it need
to know about the disparity between the simulation model and the real world?

* How does the quality of the simulation affect the performance of the overall)
system? Is there enough knowledge in a simple simulation to benefit a knowledge
system?

" Is there less work involved in implementing a knowledge system plus a simulator,
or a knowledge system alone? If simulations are easy to implement, we may find
that knowledge system development time is reduced.

During this presentation, we will discuss the roles of in knowledge systems and the
of our simu lat ion- based forest fighting system.
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COFGProject: A Generic Tool for Qualitative-Simulation-Based
Reasoning about Configurations of Engineered Systems
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Designing, testing, and operating engineered devices requires analysis of the
effects of failures and procedures as they propagate through device configu-
rations. Such analysis is required in development of failure management
expert systems, and in failure modes and effects analysis (FMEA). Information
about device configuration and operatino modes Is used to predict effects of
local changes in components on the device as a whole, and to plan how to
diagnose failures and recover from them [11. Early in design and testing,
many of these analyses are performed mentally by engineers on the basis of
qualitative information.

The purpose of the CONFIG pro.iect is to develop a generic device modelling
tool for use in discrete event simulation, to support such analyses. The tool
permits enqineers to graphically model device configuration (components and
connections) and qualitatively specify local operating modes of components.
Computation and specification requirements are reduced by focussinq the level
of component description on operating modes and failure modes, and specifying
qualitative ranges of component variables relative to mode transition
boundaries. Using an approach similar to Pan [21, discrete events are defined
at the level of changes in operating modes. A time-step approach is avoided, _
and simulation processing need occur only when modes change or variables cross
qualitative boundaries.

As in the work of Towne et al [31, the tool supports the development of
graphical libraries of component models, and permits an author to build
device models graphically. A model is built by using component objects
from a library, and connecting them at ports with graphical relations that
define data flow between components.

The core of a component model is its state-transition diagram, which
graphically specifies modes of operation (both normal and failed) and the
transitions among them. State transitions and within-state variable trans-
formations are specified by process statements. Process statements have
three parts: invocations (preconditions for effects execution), effects
(executed if all invocations are satisfied), and delays corresponding to
each effect (effect completions scheduled at increments to the current
time).

A key capability is a process lanouage constructor and interpreter that
permits process statements to be written with an array of qualitative and
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quantitative syntaxes, including table lookups. Component variables can be
specified quantitatively or qualitatively, but a small number of qualitative
ranges is desirable (e.g., abnormal-low, low, medium, high, abnormal-high).

The event structure controls the propagation of behavior changes among
components. Scheduled events pass data between ports, change variable
values, and make state transitions. The primary event is the update of a
component, which is triggered by a change in an input variable, local
variable, or component state. In such an event, appropriate processes are
inspected, and the effects of invoked processes are scheduled with
corresponding delays. Updates originating from many components can be
scheduled at the same time on the discrete event clock.

CONFIG is implemented on a LISP machine, using a discrete event simulator and
object-oriented knowledge engineering software. CONFIG has been used to build
device models in two domains, digital circuits and thermal systems.
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KNOWLEDGE-BASED SIMULATION OF TAC71CAL ADVERSAR:ES

Yee-yeen Chu, Ph.D.
Azad M. Madni, Ph.D.

Perceptron ics, Incorporated
21111 Erwin Street

Woodland Hills, CA 91367
(818)884-7572

ABSTRACT*

Current implementations of simulated tactical adversary do not offer the

modeling flexibility or contain sufficiently deep knowledge to produce
realistic adversary decision making behavior. To address this deficiency,

knowledge-based expert systems technology is proposed to model and emulate the

behavior of an adversary.

The tactical environment under consideration is characterized by time-varying

data and event-driven tactical strategies and decisions. Such a tactical

decision making environment can be characterized as a real-time problem that
requires continuous reasoning in the face of time-varying, uncertain data,

with changing constraints and evolving objectives.

To address these characteristics, a cognitive model was developed in support

of the simulation. A key feature of the model is to simulate tactical
decisions and actions with a group of active "specialists" function. These

specialists conduct, as their special assignments, the situation assessment,
objective formulation, planning, and control functions. In response to

changes in tactical environment, each specialist monitors a variety of events
and takes warranted actions. Given the real-time coordination and

communication constraints, the critical problem in this environment is

orchestrating the execution of the various specialists that perform distinct

but related subtasks.

Submitted to the Second Workshop on Al and Simulation, AAAI-87 Conference.



To this end, a "cooperating expert" architecture is developed that allows the

specialists (in the form of knowledge sources) to co'mmunicate via a comhior

knowledge base that includes the adversary's global objectives and

constraints. The architecture as shown In Figure 1 is based on the blackboard

model (Ermlan, et al, 1980; Hayes-Roth, 1983) framework. On top of this frame-

work is the execution and scheduling module which, under the purview of a

Modified Petri Net (Madni, et al., 1984), models the task execution at the

level of abstraction where there is a high degree of concurrent task-related

activities and tactical decisions.

Based on the model described above, a prototype intelligent adversary

simulation was developed (Chu, et al, 1985; Chu and-Shane, 1986), which was

implemented on the Symbolics 3670. The prototype simulation system has demon- .

strated some basic tactical simulation and control capabilities including -

those summnarized in Table 1. Specifically, the automated adversary has total

control of its tactics, maneuvers and the various subsystems including

sensors, weapons, and countermeasures. The manner in which the adversary

controls these assets can be modified interactively by an experimenter/

operator in the knowledge base browsing/editing mode. It thus appears that

the rule-based representation of specialist functions has provided a

convenient basis for constructing the interface for modifying tactical rules.

This interface provides the necessary flexibility for the experimenter to

modify the expertise and rules used by the simulated tactical adversary.

The prototype intelligent adversary system is upward compatible to future..

simulation. Future research will involve additional work in regards to three .

major areas: the simulation of multiple coordinated adversaries, the

simulation of supporting teams, and the graphical interface that experimenter/

operator were to specify, modify, and manipulate tactical targets. At

present, the prototype knowledge-based adversary simulation system provides a

flexible experimental tool for assessing the suitability and capabilities of *:

expert system techniques in the tactical simulation environment.

2
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TABLE 1

CURRENT CAPABILITIES OF INTELLIGENT ADVERSARY SIMULATION

o User Controls

- Tactics
-Maneuvers
- Subsystems, including sensors, weapons, and countermeasures

o User Monitors

- Geopolitical Situation Display
- Subsystem Status
- Commnand Messages

o Computerized Adversary Controls

- Tactics
- Maneuvers
- Subsystems, including sensors, weapons, and countermeasures

o Tactical Environment Simulates

* - Effects of tactical moves, maneuvers, and deployment of
assets

- Effects of decisions and non-decisions

o Experimenter Controls

* - Operation modes, including browse/edit/execute and simulation
modes

-Situation variables and initial conditions
-Active rule sets

o Experimenter Monitors

- Audit trails for the user's and adversary's decisions and
* actions

- Rationale and explanation related to the adversary's moves

4
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Transformational Approach to Automated Causal Model

Generation

C. N Lee. P. Liu. M. . Chiu and S. J. Clark

Siemens Research and Technology Laboratories 'A
105 College Rd. East, Princeton N.J 08540

ABSTRACT

Causal models have been widely used in qualitative reasoningT 1'2 to explain the
behavior of physical systems. Such applications of causal models have limitations due to the
static nature of the models. Once models are designed considering the teleological aspects and
knowledge representation of a model, the reasoning capability of model is limited by the model-
ing scheme to certain problem domains and to certain levels of abstraction in reasoning. .

This research studies a transformational approach to automated causal model generation -

This approach relaxes the static nature of models by dynamically constructing them and thus
facilitates different reasoning schemes for different levels of abstraction '3*. The causal modeling %
process is analyzed to see how the reasoning capability is related to model representation !4'
and what variables should be considered in the modeling process to enhan-e reasoning capabili-
ties. In this paradigm, the qualitative model for causal reasoning is regarded as a sequentially
transformed object from the functional hierarchy of a physical system. The part of the system
functional hierarchy, which is related to observed symptoms. is transformed into an initial
causal model and the model is modified by successive transformations Each transformation is S,"
matched to a functional level change of the system hierarchy and an abstraction level change in -,
reasoning. The variables are qualitatively transformed, keeping the causal relations in the
model transformations.

This strategy is successfully applied to our robotic assembly cell diagnosis system 5. The
functional hierarchy of a robot cell is obtained from the cell design information. i.e. by automat-
icallv translating the cell control program and functionally representing the physical devices in -
the robot cell. For cell diagnosis, part of the cell functional hierarchy is transformed as a basic .,

causal model with the aid of cell failure symptoms. The causal network is automatically con-
structed from the system functional hierarchy and causal reasoning is performed on the causal
network. During the reasoning process, backtracking may occur through the causal relation of
functional hierarchy. i.e. a diagnostic test is performed to verify the suspected functional failure

and proves the diagnosis to be incorrect. If diagnosis fails, then the symptom list is updated
with the test result and a new causal model is generated. %

The results show that this strategy can be generalized for physical system diagnosis and 7'

that various reasoning schemes can be supported for diagnosis of comple:; physical systems The . .. :
functional hierarchy- of the ystem automatically makes the diagnostic knowledge base hierarch-
Icallv arranged and reveals functional causal relations clearly for diagnostic system design

Ho'ttver. s4ce the modeling boundary is defined b,, the transformational operators instead of "

model itslf. the initial functional hierarchy should be generated carefully and the design of
a-,rropriate transformational operators :s required.

a,
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Goal Directed Simulation i'

Marc R. Halley and Daniel Pliske

Center for Machine Intelligence
TASC - The Analytic Sciences Corporation

McLean, Virginia 22124

ABSTRACT:

For the past three years, we have been involved in research on a
combination of simulation and artificial intelligence that we call goal
directed simulation. Many researchers have noted that simulations have
been limited in their usefulness because they are only able to answer
"what would happen if" questions (Rothenberg 1986, Halley 1987). Our
research interests lie in expanding simulations so that they are able to -" " ,
answer questions about goals. A goal directed simulation is given a
desired goal and produces the parameters necessary to satisfy that goal.

,,.** .."

Goal directed simulation is both pragmatic and theoretical.
Pragmatically, many previous simulations have been rejected by -. -

operational users. The simulations, supposedly useful for enhancing
decision making, went unused because they were too difficult to modify,
needed an intermediary to run the simulation, and provided answers that
had to be translated into operational terms. Goal directed simulation
would allow the operator to enter his goal and would prescribe a
recommended way to achieve it, eliminating much time consuming
analysis.

Theoretically, goal directed simulation is an area to study the
relationship between "predictive" simulation and "prescriptive" knowledge
based decision systems (Reddy 1987).

.N
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We have built three goal directed simulation environments the CM
ADVISOR , SONAR PLEXUS, and the QUJEUEING LAB. CM ADVISOR and
SONAR PLEXUS are command and control object oriented simulations,
while the QUEUEING LAB is a workflow simulation system. The CM
ADVISOR has been installed in an operational facility and provides daily
resource allocation recommendations (Halley, 1987). SONAR PLEXUS is an
experimental simulation system for underwater surveillance systems
which enhances a conventional object oriented simulation with reasoning
(Halley et a]. 1987). Operators enter system surveillance goals and SONAR
PLEXUS produces recommnended resource allocations using simulation and
reasoning.

The QUEUEING LAB is a systemr for simulating workflow problems
which are common in computer communications and factory design (Pliske

* 1987). Artificial intelligence techniques of direct manipulation interfaces
and knowledge representation are used to explain and represent the
system model. QUEUE[NG LAB, however, uses queueing theory to calculate
system statistics rather than discrete event simulation. Research is now

* underway to turn this conventional simulation system into a goal directed
simulation. Instead of entering changes in transaction arrival rates or
station service times to answer questions about the system, the operator

* will enter a system production goal and the simulation will determine the
operating parameters necessary to reach the goal.

The next two sections will give brief overviews of goal directed
simulation as developed in SONAR PLEXUS and as researched in the

* QUEUJEING LAB.

I.7
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SONAR PLEXUS: A Goal Directed Command and Control Simulation

We have developed a simulation environment,
called SONAR PLEXUS, whose operational goal is to solve a real world
command and control problem and whose research goal is to extend
simulation technology. Specifically, SONAR PLEXUS extends the "what
would happen if' simulation paradigm to answer 3 questions:

1. What should bedone to accomplish a goal?
2. What states cannot exist?
3. What alternatives might improve the outcome?

SONAR PLEXUS simulates the command and control
situation in a hypothetical ocean surveillance scenario which was
developed from information from the open literature (Tucker 1985). A
human operator is in charge of configuring the network of hydrophone
arrays in the North Atlantic Ocean so that the hydrophone arrays are
collecting signatures from the highest priority ships in the area. SONAR
PLEXUS simulates the collection environment and provides the operator
with configuration change recommendations.

SONAR PLEXUS includes four basic modules plus
specialized interfaces for each module (Figure 1). The environment
simulation holds and displays the current status of all resources,
connections, and ships under surveillance. The resource model has an
explic.. description of the characteristics and constraints of the resources.
The reasoner contains rules and procedures for reconfiguration decision
making. Finally, the ship database has a large set of ships and
characteristics with a gatekeeper which services database queries.

The surveillance system is modeled as a
combination of a frame hierarchy and a database. The frame hierarchy

3
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Figure I. The Sonar Plexus environment consists of a
simulator, a resource model, a reasoner, and a
ship database with an access gatekeeper. A
separate interface was designed to reflect the
functionality of each module.-
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contains an explicit description of the surveillance resources and the
network of connections between them. Each hydrophone array, relay site,
processing station and processing channel is represented as a frame in a
taxonomy of resources.
Each frame's attributes include the capabilities and constaints, of the
resources, the linkages to other resources, and the current configuration.4
The characteristics of the ships to be monitored by the surveillance
resources are modeled in a standard record database.

alterative andSonar Plexus' reasoning module can determine
altrntivs ndrecommendations on how to reach collection goals. This

determination is based on the hydrogeography of the area between the
ship and the resource, the current network configuration, and the priority
of the ships already in the area. The solution proposed by each resource ,W
calculated by a combination of rules and procedures, may range from a
retuning of the array to a reconfiguration of the network.

The QUEUEING LAB - Goal directed simulation of workflows

The QUEUEIING LAB is a queueing system model developed on a
Xerox 1109 lisp machine which combines artificial intelligence and
queueing theory to produce an interactive queueing model environment
for an analyst designing factories or computer communications networks.
The interface is similar to other Al based simulation systems in that
objects are directly represented and manipulated on the Screen and the
underlying model is contained in a frame taxonomy (Figure 2). QUEUEING ~v
LAB differs, however, in that the calculations of workflows and statistics
are determined by a closed system queueing model rather than discrete
event simulation. In design analysis, order of magnitude results are
acceptable when design parameters can only be guessed. In this situation,
queueing theory offers tremendous advantages in speed but slightly less
model detail than offered by a full simulation language. QUEUEING LAB
has been used to identify bottlenecks and design flaws in the initial designs

4



'. O

Model Structure Model 1ModSiuatoMode Stuctue MdelRepresentation Experiment
Parameters Interface

service____ Untefac Nersnain

transations I "
QueueingO

CalcuationGeneration

VI

Access to selected methdds Graph requests

Goad . Increase productivity
by 20%

Goal analy sis ""

Queueing Lab is a goal duected envuonment for
Figure 2. analysis of workflows. Models ae entered using the

mouse on a Xerox 1109 lisp machine. Workflow models
axe stored in a semantic networks which contain the
objects and their interconnecuons. Queueing
calculations axe performed to obtain workflow
statistics Two research modules are now being added
which will allow the operator to enter a goal and have
the mmulation analyze and plan the way to achieve
the goal.

.'-4.'

J• %' ,

2 "P% ^J

* 4"

. . . -.. .... 4 ' :



has been used to identify bottlenecks and design flaws in the initial designs
for a factory of the future project at TASC (Pliske, 1987).

Research has just been initiated to enhance QUEUEING LAB into a
goal directed simulation. We are investigating the possibility
of developing a planning module that would be capable of accepting a goal
specification consisting of a set of constraints or performance requirements.
Based on this specification, and a problem specification consisting of a
generalized description of the system in question, the simulation would
generate a core model at an appropriate level of detail. Using the core
model, along with goal information, the simulation would develop a plan
for achieving the stated goal. T1he plan would entail the construction of a
search space of parameterized models, each model being a plausible
variation on the core model. Given this plan, the simulator would proceed
to execute selected variants in the search space, and finally recommend a
variant that satisfies the goal specification.

Currently, the research is focused on the most appropriate way to *..

structure the plans generated by the simulator. Even given a simple
system, there are several general strategies one could take in specifying its
parameters to achieve a particular goal. At the same time, interactions
between elements of the problem frequently exist, and must be dealt with. p~

Finally, the plan must contain the detailed knowledge needed for execution.

d.6
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Parallel Marker Propagation System Construction Set

Howard Schneider
Department of Psychiatry
Citd de la Sant& de Laval 2

Laval, Qudbec H7M 3L9 CANADA

Since described by Quillian (1968) parallel marker
propagation systems, also known as semantic networks, have
interested AI researchers. The parallel marker propagation
system allows knowledge to be represented in such a way that a
database can be quickly searched for items with desired qualities
regardless of the size of the database.

Many different types of parallel marker propagation systems
are possible. For example, what constitutes an NE
intersection? Should nodes pass on all markers? How should the
links propagate markers? Since the hardware to build systems of
large numbers of interconnected nodes is not readily available
much of the design and analysis of parallel marker propagation
systems has been done by intuition, ie, using those features that
seemed to do the job. However, over the last few years
formalizations of these systems have been developed and it has
been shown that intuition is not always correct, eg, Etherington
and Reiter (1983), Touretzky (1986).

Another approach towards the development of parallel marker
propagation systems is simulation. The experimentation allowed by "
the simulation of various types of parallel marker propagation
systems is useful in both the development of new classes of such
systems as well as in assessing the validity of various
theoretical approaches. While previous parallel marker
propagation system simulators have tended to simulate only very
specific systems, eg, Fahlman's (1979) LORIS simulator, or a
narrow range of systems, eg, Levenick In (1985) NAPS simulator, a
simulator I have been working on, the Parallel Marker Propagation
System Construction Set or PMPSCS, is designed to allow
simulation of a large variety of marker propagation systems.

The key to building a simulator capable of simulating a wide
range of parallel marker propagation systems is the adoption of a
suitable classification scheme for such systems. The
classification scheme used by the PMPSCS specifies parallel
marker propagation systems by node type, link type and external -
controller type. A low-level functional, almost structural, basis " :
is chosen for the classification of various nodes, links and A.
external controllers. Some examples of these are shown in
Figure 1. h



The p:PSCS (Parallel Marker Propagation System Construction
Set) is given the specification fbr a desired parallel marker
propagation system. From this information the selected
propagation system is constructed and the PMPSCS then awaits
input data. Input entries cause simulated nodes to become
activated and cause simulated markers to be propagated from one
node to another. A sample run from a simulation of a parallel

Tmarker propagation system consisting of the node architecture
shown in Figure 2, simple passive links and a general type of
external controller with several predefined 'behavior' rules is
shown in Figure 3.

The PMPSCS is coded in ADA. A library of ADA packages
represents different components which in varying combinations can
be used to construct a specific type of node, link or externalcontroller. By filling in certain parameters in a given ADA
package, various sub-types of the desired node, link or
controller are created. The PMPSCS essentially translates
the specifications for a given parallel marker propagation system
.nto a combinatlon of ADA packages.

The two limiting factors in performing simulations of
parallel marker propagation systems have been memory and time. In
almost all simulations performed the number of links tends to be
much greater than the number of nodes so that storage
requirements and processing time can be expressed in terms of the
total number of links. For simulations involving less than one
million nodes approximately four bytes of memory are required per
link. It is interesting to note that the simulation time is less
than linear with respect to the number of links in the
system. Apparently as there occur more links and nodes in the
system, the probability that a given link will not be used during
a set of marker propagation cycles increases.

Etherington, D.W. & Reiter, R. 1983. "On Inheritance Hierarchies
with Exceptions." Proc. AAAI-83, Pp. 104-108. Available from
Morgan Kaufmann, Los Altos, CA.

Fahlman, S.E. 1979. NETL: A System for Reoresenting and Using
Real World Knowledge. Cambridge, MA: MIT Press.

Levenick, J. 1985. Knowledge Reoresentation and Intelligent'..Systems: From Semantic Networks to Cognitive Maps, doctoral
dissertation, University of Michigan.a'.%

Quillian, M.R. 1968. NSemantic Memory. In Minsky,
M. (ad.) Semantic Information Processing, Cambridge, MA: KIT
Press. Pp. 227-270.

Touretzky, D.S. 1986. The MatheMatics of Inheritance Systems, Los0'%Altos, CA: Morgan Kaufmann.
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Figure I - Classification of Parallel Marker Propagation Sstems
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Simulations in a model-world based on an algebraic approaclV

Charles Chiu

Department of Physics aid Artificial Intelligence Laboratory

University of Texas 78712

April 25. 19S7

[Submitted to the second workshop on Al and simulation.]

Keywords Al-based simulation tool. ab,>tractioiis at qualitative and quantitatiP le~eV e\' r

reasoning in simulation. automatic aal' -i- of simulation results.

ABSTRACT: A useful \,a. to denioi-t rat' the working of a set of physics principles is to incc,.I

porate them into a model-\korld and to simulate processes in this world. In a prex iou+ worh \,,

considered an algebraic approach to simulate processes. such as collisions. recoils and explosioin,

in a world governed b\ the principl, of coi,,ervation of momentum [Chiu S7a. S7b. Preset> ,"

investigate the %orld of constraint motioni to further develope our approach. Examples here at.

motion, along a roller coaster track. motions of an object attached to a string etc. For det 1
- l o:

present work see ('hiu S7c.-

Various components in our frame\%oik and their interrelationships are depicted in Figure 1

1. Define-world: It states basic prilicplv.s of the model-world. For present case the-, ar. ,

" the conservation of energ,.

" the presence of centrifugal accelhiatnit in an. curved motion.

e the presence of a tow-ard acceleration pressing against the path. which ensures tha. h#

motion sta\'s on the constrait path".-.

"Thit research %a-, supported r part b the NationJ Scipnre Foundano through grant DVH ' " 4 4.] ,i4

DCR-5512779
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2. Define-model: It contains tltos' d\ naniical and geonietric staterneits speil~fic to, iix'

latiol, svst eni A typical roller coa~ie,, niode] i , shokii III Figure 2.

0These principles and statemients of the miodel are expressed in term5 of simple agla

relations. These relations are directly passed onto the Math Handler. which interface- tli,

simulation sy~stemi with a Math Package.

3. Asirulaionreasoner: It contiols simulations and justifications.

In constrast to the conv-entional numerical simulation and the qualitativ-e envisionmexi a, -I

'd Ieice TT7. we do an algebra-based siniulation. For the rOllr coaster model. ~

*the reasoner first instantiates Ili,, algebraic expressions of v-elocity and the tow,,ard accel-

eration in a giv-en segment of tie track.

" I, theni examines the instanitiated expressions based on the propertiet of the tnig-fuict oi-

and inequality relations and deduces the appropriate motion for the next step.

" The reasoner provides a qualitative description of the simulation. See Figure 3.

" Upon request. the reasoner wi also furnish an explanation to justify the six~lulo;.

belia\ ion at an\ point. Thxi' Juz~llfca-,Io shows that the local quantitative belia. I(,

precise!Y what one deduces fiomx Laiic principles.

-4 Analytic reasoners: They facihxti ahstractions of the next lev-el result>.

An example would be the determiiatilox of the range of the initial height In Si. so that \%Ii

a ball begins from this range. it wIll trav-el through the entire track. One could deternijMe ti.!-

by trial and error. i.e. making miax'. run> . However, a more pow~erful approach is- throiiL

algebraic consideration. Present tool- for the analytic reasoners are. f
* The algebraic solv-er: It separ ates, out intermediate v-ariables from unkiocwis . ai;.! V

the aid of Math haxndler it proceed>, to solv-e for the unknowns.

" The critical point locator: It deternmes parameter v-alues which lead to tho- '

sfpcified by the user. '

* The monotonic function \-erifC'r. For instance this tool mnakes inpec(tI Oil oxS0ti11,

iii order to determine whet hpr t lie corne-spondixxg end points are ext rexinurn pul it . *



Some typical questions fot the t),(,( ana!v' ic reasoner are showi, in Figu 4.
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differentiation
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Figure 2 A\ I% jICa! roiler coaster model.

Spiecifications of tfie rolle- coacter track foi the sample runs Oven:

* The junctioi, bet, %%efii segniexit- S I and 5*2 i at A. where the vertical coordinate I.,1 '

* Segme-nt S2 is a circular arc ha'iiig a rad;us R Tlhe peak- of S2 is al P. %khere Y=2R

" The- juct ici, Se ~ e 2 and S3 i at 11. \kliert. 9 ~R

S 4 is a circular loop witi, a radius- R'2V

*S5 is a hnr~zowia] sezm'n



Q> (outcome' (stimes 3 t) SI)

Begin iz SI from rest moving to right, initial height

3.1-

Pass through path SI

F17 away at start of S2 eeeeegnd of run

Q) (outcome' (stimss 2.4 R) S1)

begin in S1 from rest moving to right. initial height %

2 4*it

Pass through path SI

Fly aswy at start of S2 eseeseEnd of run

Q> (outcome' (stJes 2 2 1) SI)

Begin in SI from rest moving to right, initial height .0

2 2*R

Pas through path SI

Pass through path S2

Pass through path S3

Pass through path S4

Pas through path S5 eoeoecEnd-of-Trackceee

Q> (outcome' (stxnes 1 8 1) SI)

Begin = SI from rest moving to right, initial height
1 *elt *

Pags through path Si

Slide back in 52 *e*eeEnd-of-rur

Q> (outcome' (stImes 1 S I) SI)

Begin in S1 from rest moving to right, initial height

I 5cR

Slid* back in St see...End-of-run

Q> (outcome' (stimes 0 3 A) 53)

Begin in 53 from rest moving to right, initial height

0 3o"

Pass through path. S3

Slide back in S4 eseenzd-of-xun.

P) (outcome' (stiNes I I) S3)

Begin in S3 from rest moving to right, initial height

IoR " " "'

Pass through path S3

Fall off in S4 eecccc~nd-of-r"n

Figure 3: Sample simulation ru~ib. SYltax: Q> (Outcome? initial-height path-namei.
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A list of question categories and sample questions:

1. The Wthat - is? category:

" What is the initial height ini S1 if the fall-off occurs at y = 3R/4 in S4?

" What is the toward acceleration when the ball begins to slide back at y = R/3 i, ,-4.-

2. The monotonic function category:

" Verify a negative monotonic function relation between the initial height in SI alid 11,,

toward acceleration at the junction between S and S2.

" Verify a positive monotonic function relation between the toward acceleration and ti,.

height in S2 for a giver initial height in SI. %

3. The critical point category:

* Find the, range of the initial height in S1. such that the ball will travel through tile eil,.I, .5.

track.

* Find the range of the initial height in S3, such that the ball will fall off in S4 re,: ..

before it reaches the height y = 3R/4.

Figure 4; Typical questions for the analytic reasoners. ".'

.

,:-:.-.

,. *.



Title: Dynamic Planning Under Uncertainty Using Automated Model E ]
Construction and Risk Analysis

Authors: Louis Anthony Cox, Jr., Ph.D). and Richard Blumenthal

Affiliation: US WEST Advanced Technologies

Address: 6200 S. Quebec St. Englewood, CO 80111, Suite 170

EXTENDED ABSTRACT

1. Introduction and Problem Statement

* This paper describes the results of research on automatic model building

and analysis being carried out at US WEST Advanced Technologies as part of,,.,

a larger effort aimed at integrating A.I. and Operations Research methods

for solving reliability, optimization, and planning problems. An

* Important variety of applications, ranging from on-line management of

research and development (R&D) projects to intrusion by an intelligent

attacker into a secure data processing system or facility, can be

formulated as stochastic logic-network optimii.ation problems where an

intelligently planning agent seeks to reach a goal while learning along

* the way whether he is able to successfully complete certain activities

that can help him reach it. Formally, a set of nodes, representing ,-

states, activities, or events, is partially ordered by logical precedence ::

constraints, representable (possibly after the introduction of extra

nodes) as labelled arcs between nodes. Each node has associated with it :
both a vector of expected resource costs (e.g., time and money) for

attempting to resolve It -- expected costs that may depend on whether the

attempt Is successful -- and a conditional probability of being

successfully completed, given that It has been reached. In the resulting

probabilistic AND-OR graph, the planner's goal Is to reach and complete a



goal activity (or to discover that It can not be reached) at minimum

expected total cost. Within the context of this optimization problem, the

Sgoal of an advisory system Is to dynamically Identify optimal strategies

for proceeding as uncertainties are resolved, and to assess when to give

up.

2. Solving the Problem: A Hybrid A.I./Simulation Optimization Program

We will describe a methodology that has been developed to automatically

formulate and solve stochastic logic-network optimization problems by

Scombining techniques of knowledge representation. A.I. problem solving via

~'network abstraction (using a modular decomposition heuristic) and

conventional Monte Carlo simulation. An early version of this methodology

has been applied to security risk assessment in the Air Force.

USubstantially enhanced versions for reliability analysis of complex

-~engineering systems (e.g., communication networks, industrial facilities)

'have been rapidly prototyped and are now being developed further at US

SWEST Advanced Technologies.

SThe program uses artificial intelligence in two places: to automatically

Smodel a system or situation in terms of a stochastic logic-network (along

with an associated fact-base of instantiated predicates), based on a

.. dialogue with the user; and (Ii) to simulate the choice behavior of a

forational" planning agent trying to dynamically solve his planning problem 7

Sover time. This problem-solving routine is then embedded within a

..'Monte-Carlo simulation to generate a "risk profile" (cumulative

probability distribution function) of the remaining resource expenditures

,required to reach the goal (or to show that it is unreachable). The



decision whether to continue is based on this risk profile. The

(heuristically) "best" next node to try, If a decision to continue is

made, is automatically identified by an efficient heuristic path-search

algorithm. The agent then tries the prescribed node, discovering whether

he succeeds or fails at It. This Information is fed back into the

program, which dynamically "replans" In response to it. It turns out that r~l

no replanning is necessary until a failure Is encountered at some node,

since solving the problem of which node to try next automatically

generates a partial strategy (a "best path") for reaching the goal node

that should be followed as long as possible.

We will discuss (i) the knowledge-acquisition and representation program -

(US WEST's proprietary "KRIMB" package) used to formulate stochastic

logic-network models by intelligent questioning of the user; (1i) the

design and implementation of the simulation portion of the program; (iii)

the problem-solving subroutine for intelligent planning in probabilistic .

AND-OR graphs; and (iv) some example risk profiles generated by the

intelligent simulation program for some example Air Force facilities, ~

where it has been used to study the sensitivity of facility vulnerability ~~

to physical intrusion as a function of the presence of access controls,

the frequency of patrols, etc.j

.4

V V1



Key References

Alexander, J.H., et al, "Knowledge Level Engineering: Ontological
Analysis," Proceedings, AAAI-86, 963-968.

Alterman, R., "An Adaptive Planner," Proceedings, AAAI-86, Vol. 1, 65-69.

Ben-Dov, Y., "Optimal Testing Procedures for Special Structures of
Coherent Systems," Management Science, 27, 12, 1981, 1410-1420.

Brachman, R., and Schmolze, J.G., "An Overview of the KL-ONE Knowledge
Representation System," Cognitive Science, 9, 2, 1985, 171-216.

Cox, L.A., "A Probabilistic Risk Analysis Program for Analyzing Security
Risks," Proceedings of the 1986 Society of Risk Analysis Annual Meeting,
Plenum Press, 1987 (forthcoming.)

Cox, L.A., "Intruder Risk Assessment and R&D Planning in Stochastic Logic
Networks," invited paper presented at Joint ORSA/TIMS Meeting, Miami Beach
Fontainebleau Hilton, October 27-29, 1986. (Currently under review by
Operations Research.)

Cox, L.A., ATAM Knowledge Base Methodology, Final Report to the Department -

of Transportation, Arthur D. Little, Inc., Cambridge, MA, December, 1986.

Kadane, J.B., and Simon, H.A., "Optimal Strategies for a Class of
Constrained Sequential Problems," Annals of Statistics, 8, 2, 1977,
237-255.

Kaczmarek, T. et al, "Recent Developments in NIKL," Proceedings, AAAI-86,
978-985.

Sidney, J.B., and G. Steiner, "Optimal Sequencing by Modular
Decomposition: Polynomial Algorithms," Operations Research, 34, 4, 1986,
606-612.

Simon, H.A., and J.B. Kadane, "Optimal Problem-Solving Search: All-or-None
Solutions," Artificial Intelligence, 6, 1975, 235-247. 4V

.. , °-

-. .1

° N°%

%''O

e. -



FAULT DIAGNOSIS BASED ON QUANTITATIVE MODELS

Stefan Feyock '

Deparment of Computer Science
College of William and Mary

Williamsburg, VA 23185

Reasoning about physical systems from first principles, whether for purposes of explanation, prediction,
or fault diagnosis, requires the reasoner to have available a model of the subject system; the model, in a
sense, is the first principles.

The motivation for the research to be described was the requirement on the part of workers at ,.
NASA/Langley Research Center for model-based fault diagnosis techniques that could deal with physi-
cal systems such as jet engines and avionics subsystems. Such systems have a predominantly continuous V,"

character, and are thus best represented by continuous models; since they are usually too complex to be ...
mathematically tractable, continuous simulation models (CSMs) are the representational vehicle of
choice. The present paper describes the use of CSMs as the basis of an automated reasoning system,
and in particular the application of such a reasoner to fault diagnosis. The justification for using a
quantitative rather than a qualitative model lies in the fact that the quantitative description of the system
of interest allows an innovative application of a technique familiar from the field of software engineer-
ing and program proving: the use of Dijkstra's concept of predicate transformers [Dijkstra] to establish
weakest preconditions for the model to exhibit the behavior seen in the actual system. -"

The basis of our approach to model-based fault diagnosis is to observe the actual system in action, and
then pose the question "how do we make the model behave like that?" It was noted that in most cases
faults corresponded to unexpected changes in CSM model parameters. Thus, given a set of actual sys-
tem behaviors, we ask what parameter values have to hold in the model to produce the observed results.

This formulation of the problem provides the link to the weakest precondition approach, which poses a
similar question about programs: given any predicate, the program acts as a predicate transformer that
maps the given predicate to the (weakest) predicate that had to be true before the program was exe-
cuted, in order for the given predicate to hold after execution.

A number of problems arise as a result of attempting to apply predicate transformers to CSMs in the "
manner indicated. Simulation models we unlike non-simulation programs in that the latter engage in
runtime behavior to produce a result; in a simulation, the runtime behavior is the result. A number of ".-.'. ,,
modifications to the weakest precondition approach were required to produce appropriate results.

The techniques described have been applied to a number of systems, including an Aerobee rocket con-
troi system, a relay servo, and an aircraft arresting cable mechanism; CSMs describing these systems
were drawn from (Chu]. The models furnished to the reasoner are thus not based on if-then rules or any
other sort of expert system or qualitative model, but rather are quantitative CSMs of the actual system.
This fact has a number of interesting implications, including the integration of qualitative and quanuta- -

uve simulation, and the extraction of information not only from the simulation output, but from the
structure of the simulation model itself.

Chu. Yaohan, Digital Simulation of Continuous Systems, Mcgraw-Hill, New york, 1967. r
Dijkstra, J. E., A Discipline of Programming Prentice-Hall, Englewood Cliffs, New Jersey, 1976.
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Preliminary Design Simulation -
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Simulation of Chemical Processes in Preliminary Design:
Model-Construction, Abstraction, and Control of Information-Flow

by Theodore Kritikos, Michael L. Mavrovouniotia, and George Stephanopoulos

1. Preliminary Design
In the design of chemical processing systems, the designer must make a preliminary

judgement on the profitability of a proposed process, based on some initial flowsheet. This
flowsheet, which may be only partial or inconsistent, must be developed very quickly, and with very

limited available data. Thus, the simulation needs during this phase are quite distinct from those at
the detailed design stage. Extra flexibility and versatility in the models and the simulation methods
is essential.

The Design-Kit graphic interface [2] (Figure 1) was developed on Symbolics 3640 and 3650

Lisp computers, and allows the construction and manipulation of process flowsheets, construction

of flowsheet models, and preliminary steady-state simulation with simplified models. All these
operation can be carried out through easy-to-use menus of different types The facilities include

Newton-Raphson equation solving, symbolic differentiation, and degrees-of-freedom analysis

In this work we discuss issues of design-oriented simulation and specific solutions we have

developed within the Design-Kit framework.

2. Automatic Modeling of Equipment
The equipment units that can be used in the design are classified in a hierarchy. Units are

classified based on characteristics such as input-output topology (e.g single-input-double-output), -"

internal homogeneity (e.g. homogeneous-composition equipment are well mixed internally), heat

behavior (e.g, isothermal, adiabatic, or externally heated), pressure behavior (e.g isobaric), etc.
To create a new type of unit, the designer may simply state what existing classes are

superclasses of the new type. The inheritance mechanisms of the classification can then

cooperate with special methods to construct automatically a data-model for the equipment unit,

such that the implicit specifications imposed by the classification are met

3. Connection Streams
When the units are connected, special connection streams are created Thus, the input-

output ports of two equipment pieces do not communicate directly, but rather through the

connection streams. The simulation takes place in a constraint-propagation manner [1], with
information passed from unit to unit via the connection streams The presence of the connection .. ,>.

streams caters to two particular needs of preliminary design simulation

Control of Information Flow. Even though the connection would eventually represent ..

material flow, so that all the properties of the fluid would have to match between the two connected

equipment ports, it is often desirable to postpone this stage until the basic structure of the
tlowsheel has been established The designer does not want to take into account the heat needed '. ,.

T. Kritikos, M. L. Mavrovouniotis, and G. Stephanopoulos
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Preliminary Design Simulation .3-

to raise the temperature of a stream between units, but rather postpone heat integration until a later
detailed-design stage As the connection is made, the designer simply specifies what kind of
information is to be conveyed through the connection, and can thus explicitly control information
flow for hierarchical design. For example, to avoid heat considerations, the designer excludes
temperature from the 'matched" properties, allowing the stream to have different temperatures at
each end The kind of information conveyed through the connection streams can be changed at
any time.

Multiple Levels of Abstraction. The designer often views a certain section of an artifact at
two different abstraction levels simultaneously [1, 3] For example a series of distillation columns is
viewed at both the detailed level and more abstracted as a 'product recovery section" on which
specifications may be posed. In order to accomplish simultaneous simulation at different levels of
abstraction in our system, the designer need only construct the alternative views and then indicate ,.
their correspondence by stating pairs of connection streams as "overlapping", ie as being one and
the same stream

4. Strict Modelling Abstractions
Some of the models are too complex for the automatic modelling mechanism to handle

because of the complexity and internal structure of the unit In conjunction with the abstraction
mechanism described above, we plan to provide facilities to construct such models from high-level
specifications of the conceptual parts of the equipment unit and their interactions
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Simullating the Benavior of Comnplex Devices :

for Nlode1- Ba' ed TroubleshootHig

Walter Hamscher
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Troubleshooting programs based on models of structure and function 1.2.3.4
scale poorly. They perform adequately or, simple devices without internal slate.
such as combinational circuits. but complex devices- present a serious pragmatic
drav. back: the troubleshooter must be able to simulate the operation of the device
being diagnosed. perhaps several timres- under diffcreni fault scenarios. Moreover..
the Toubleshooler Must record man\ intermediate results that ordinar% simnula- ..

tors discard. The difficult\ and cost of making predictions from the de~ ice model
s\,%amp, the troubleshooting lta. Yet. ironicall\. niN failure- in comnplex de' ices
ha\,e catastrophic effects. nianife~ling theni,-l~t in A~axs that should be predictable
x ithout recourse to detailed simulation at all. Sicmrodel-based troubleshootino,
otherx% ise has important advantage- relative to rinore traditional approaches to au-
tomated diagnosis (e.g. N1~cirn. Internist 6 ),. t, \,\ish to model complex de' ices
using al)mtract ions that make trouble~hooting feasible. In other vords. 'Ae propose
t o a'oid the dra\% backs. not bN changing the wa\ the troubleshooter \'orks. but
rather b\ modeling the target de\ ice Aith the ultimate goal of doing troubleshoot-
ing explicitl\ in mind. In particular. we % ish to make eveni as complex a device as
a computer board appear to behave like the kind of simple static dex ice that the
methodolog\ handle- best.

The important abstract ions to rnake, are thost, that reduce the number of dis-
tinguis-hable de\ i(c states under consideration. i.e.. that abstract wav\ temporal
detaill An exampjle, of such an abstraction w&ould b(, to model only the rates at
which e~ ent,, occur, rat her than the ind1\ dual e~ ents,. This i5 quite natural for

cont in uou- s% -1 FtI ri. for e\amrple. t he be~avi]or of an osc illat or ca h be expressed in

.40



terms of a number of cycles per unit time. while it would be impractical to model its
behavior crcle-b. -cycle. event-bx-event. The abstraction also applies to sequences
of discrete events such as the transmission of characters o~er a serial line, where
knowing onl% the aggregate rate may be sufficient for the task at hand. We pro-
pose to simulate a computer board using a representation that suppresses most of
its components" internal states and instead models behavior in terms of the rates
at which events occur. This simulation will then be used for troubleshooting the
board.

The intuition that supports the use of such a model for troubleshooting is that
humans can often tell a great deal about the possible fault, in a misbrha\ ing system
merel\ bN considering the rate at Nhich events occur. without concerning themsel\es

ith the nature or timing of the individual events. For example. one expects the
rate at which characters appear on the screen of a computer terminal to be ver\
close to the rate at which characters are typed on its ke\ board Different distortions
of that rate can suggest different kinds of failures - for example. if the output rate
is much lo %er than expected but non-zero. the problem is probably in the host
computer and not the terminal itself. For a model-ba-ed troubleshooting program
to dra\% the same simple conclusion without undue effort. its behavior model of the
host and terminal should be simple, too. The model should onl\ make predictions
about the expected rates of events. it should not be necessar\ to pa\ the o\erhead of
modeling individual characters being transmitted a( ro-, t :i \re-. 'uch an abktract
le\e'l of simulation will clearl] not alka\ s be adequate. in parlicular. certain events,
ma\ cause a system component to change its internal Ftatc in such a \a\ that its
subsequent responses are significanlI different from before. A character stream sent
to a terminal. for example. may contain an escape sequence that put, it into graphics
mode. Hence. the simulator and the beha\ ior model, for the s\stem must be able
to make use of information at different levels of temporal deiail and integrate them
smoothly, in much the same wa\ that mixed-mode logic simulators must integrate .

results derived at different le~els of abstraction.
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Benchmarks for Research in Planning

Thomas Dean'

Departme.ni of Computer Sciencc
Brown Unit'crsity
Box 1910, Provzdcncc, RI 02912

Abstract

The aspirations of researchers in planning have advanced significantly beyond the blocks
world domain of the 1970s. The need to build robot planning systems capable of dealing
with uncertainty and responding to situations in real-time has prompted a variety of new-.
approaches to planning and control problems [1] [2] [31 [4] [5] [7]. Evaluating the relative
merits of these approaches has. however, proved difficult. There are no real benchmarks
for planning programs. Each program is tested on a separate robot or robot simulator
thus making detailed comparisons impossible. We have set out to correct this deficiency by
providing a complete simulated environment for developing and testing planning systems
for applications in robotics. Our system, called BR!E 2, provides all of the tools. including a
solid modeler and an agenda-based simulator, necessary to simulate a variety of industrial
environments. We provide a one complete environment that models an appliance warehouse
with one or more automated forklift trucks and various, means of specifying the arrival times '
of incoming orders and deliveries (i.e.. trucks to be loaded and unloaded). The important
aspects of mechanical devices and their controllers are modeled by a discrete real-time
simulator. Global parameters can be adjusted to vary the accuracy of sensors and servo
operated machinery. A stereo depth profiler and an infrared range findei are but two of the
simulated sensors provided, In the warehouse environment, all mechanical devices are con- -"

trolled by direct memory access devices, but it is straightforward to simulate programmed
1/O type devices and a speed controller is provided in the package as an example of how
such devices can be implemented. Each simulated forklift truck is equipped with a variety
of computational devices including a special CPU that controls all of the robot hardware
and serves as an interface to the sensors. Lisp programs implementing planner routines are
handled using standard real-time simulation techniques. We provide examples illustrating
how to insert hooks into existing code to control timing and allow planning routines to
handle interrupts and suspend and resume computations. The simulator allows for simple

tThis work was a collaborative effort of the Brown Unversit\ Planning Group whose members include
John Arnold. hen Ba-ye. Gerr. Boetje, Tone Engel, Timothy \ Good. Moises Lejtey. and Scott Meeks 4

2 BR11 stands for the Brown Robotics Implementation Environment
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linear speedups or slowdowns of planning routines. The preferred method for controlling
the simulated hardware involves downloading special programs to the CP" designed for 6
controlling the hatdware. A library of useful subroutines is provided for constructing these
special programs. The solid modeling routines are used to keep track of the simulated
environment, but they can also be used to support rudimentary spatial reasoning and path
planning.

Our system provides a flexible environment for developing and testing planning pro-
grams that are designed to cope with uncertainty, spatial complexity, and real-time con-
straints. BRIE is as portable as Common Lisp is.' We provide two options for graphical
output: a set of routines built on the x-window system and a general scene rendering.
representationi for animation [6 . The system is currently being used for research and edu-
cational purpose- at Brown and it is our intention to make the code available to the general
research community. Within the context of the warehouse domain, we will be develop-
ing a number of scenarios involving warehouse event sequences (deliveries and orders) and
fixed forklift parameters. It is our hope that these scenarios will serve as benchmarks for -. a-.

rescarchers. We think that our work represents a viable approach to both assessing and
furthering progress in the field.
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Simulation and Expert Systems
for Finding Particle Beam Line Errors*

Lawrence Selig, Scott Clearwater,t Martin Lee," Robert Engelmore

Knowledge Systems Laboratory, Stanford University, Stanford, California 94305

Particle accelerators are complex facilities costing up to a billion dollars. A

beam transport system of a particle accelerator is a lattice of electromagnets that

bend and focus the beam through a vacuum pipe to a fixed target or another

beam. Proper operation of the beam line depends on the correct alignment and

calibration of these magnet elements. At thousands of dollars per hour just for

electrical costs, there is a strong desire to quickly find any errors in the elements.

We have developed a knowledge based system, ABLE"' ! ,to find errors in a

beam line. ABLE couples rule based problem-solving knowledge with numerical

simulation and optimization techniques to achieve expert-level performance. On

dozens of test cases using simulated problem data, ABLE finds errors as well as

an expert accelerator physicist.

Trajectory problems represent a large and important class of problems found

in beam lines. Well-understood physical models' $' can predict a beam trajectory

through a magnet lattice. ABLE interfaces with a Fortran modelling and opti-

mization program, PLUS'"' , to generate a simulated beam trajectory (monitor

readings) for a given set of magnet errors. Using the mouse-oriented, graphics

interface (see figure 1), the expert can thus manually find errors by playing with

the beam line and comparing the simulated beam trajectory with the reference

beam trajectory.

* Work performed under the auspices of the U. S. Department of Energy and supported by
the U. S. Army Strategic Defense Command, by the Department of Energy under contract
number DE-AC-03-76SF00515. and by the Defense Advanced Research Project Agency ",
under contract N00039-6C-0033.

t Los Alamos National Laboratory, Los Alamos, New Mexico USA 87545 and visiting scholar
at the Knowledge Systems Lab, Stanford University.

tt Stanford Linear Accelerator Center, Stanford, Califormia USA 94305.
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The optimal value of an error can be found by conducting an optimization

dexperiment. The optimisation variables ame the error. for a specific set of mag-

nets and the fit points are the reference monitor readings. The results of the .%4

optimisation are numeric and require interpretation by the expert to determine

if the hypothesized errors do in fact provide a good model of the problem. Our

approach of coupling symbolic reasoning with numerical modelling and optimiza-

tion may be applicable to processes other than accelerator control.

ABLE automates the expert's error-finding process. It plans and executes op-

timization experiments, then interprets the results to plan new experiments until

the entire beam line section has been analyzed. (Figure 1 shows a solution found

by ABLE superimposed on the input problem.) These experiments constitute

an experiment tree, (see Figure 2), where the child experiment's monitors and

magnets are supersets of those of its parent. ABLE also includes mixed initiative

that allows the physicist to modify results, and delete, plan, or modify planned

experiments as well as more usual capabilities such as plotting, explanation, etc.

The level of automation offered by ABLE is so far advanced over existing

systems that the expert physicist can now rapidly formulate and test new prob-

lmsolving strategies and augment his expertise. ABLE is helping develop new

techniques wihipoetestate-o-te-atifndgerosnabamU s

well as automating these procedures. ABLE has been used to analyze real beam

data and saved a great deal of the expert's time.

2
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Figure 1I Using Simulation in ABLE - The actuator bar at left was used

to define large errors at elements (correctors) 1 and 11. The simulated monitor

readings are plotted above. Also shown superimposed on the plots is the solution

(monitor and error values) found by ABLE.

91* ~~~~1 1----6 f-0* ----- 3*1NW 619 1-6---J99 1*-

19 .i ~ A 1 6614*-4 ------P.ANI1. 166 1-6

Figure 2 - Experiment Tree for Problem in Figure 1 - Experiments are named

by their plan, variable elements and fit monitors. Planl#1.11&l-9 means that

elements 1 and 11 are used to fit monitors I throught 9. Planl#l.ll&1-9 is the

only solution found for this problem.
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Abstract:

In this paper we present some ideas on how and where techniques and
methods of artificial intelligence can be used in the field of simulation. Based
on the conceptual similarities of expert and simulation systems we describe
our view of an integration of simulation and knowledge based systems, where
the expressive power of modem representation languages can be used in the
modelling process. We describe the features of such an integrated knowledge
based simulation environment in the steps of modelling, simulation and
analysis.Especially in the area of analysis a representation of causal/temporal
relationships seems to be important. We describe two ways how to integrate ,0.,
such relationships into a simulation system.

Introduction

Both expert and simulation systems use model based problem solving. That
means that the solution of the problem is not obtained by performing the steps of a
predefined algorithm (a controlled - but fixed - sequence of steps or elementary
actions). The solution is moreover derived by interpreting a model about the problem
domain. However the kind of questions asked to such systems differ: In simulation
the next state of the modelled system or the state after n time units is asked for
whereas expert systems mainly deal with the task of interpreting a given system
state.

Now if we consider to use an expert system to help us in performing a
simulation study (How such a help could look like is described later) we see that the
models underlying both systems overlap significantly. That's why we want to
integrate a simulation and an expert system to work on one comprehensive model. "

Integration of AT and Simulation "*

The idea of using a comprehensive model does not help much if we don't know
how we want to represent it! We must use some formalism to describe the model so
that for all the different questions the answers can be derived from that
representation. In building expert systems there shows up a trend to use so called
"hybrid systems". These are programming environments where different
programming styles (rule based, object or frame oriented, procedural and logic) can
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be used in an integrated manner. We feel that these hybrid repre.;entation languages ,.-,_%

are adequate for a modelling language that can be used for simulation.

In the following table we have listed up some formalisms, how they are used in
expert systems and how they can be used in such a modelling language. Especially
the object oriented approach has a long tradition in simulation; one of the first object
oriented languages "Simula" is a language designed and used for simulation. In the
literature other approaches have been presented, where Prolog [1] or rules [2] are
favored to be used as a Simulation language. But using only one of these formalisms
mostly leads to an inefficient realization or to a description

Formalism Used In XPS Used In Simulation

heuristic and
rules associative complex control

knowledge _______

frames/ taxonomies and objects of the %%%
objects structural simulation
ob__ets knowledge

knowledge about behavior of the
procedures object behavior, simulation objects

elementary tasks

relations relations between relations between
(horn clauses) the objects and facts simulation objects

Table 1: The use of different formalisms

of the model that is not very readable. A detailed example of how these different
formalisms can be used in describing a simple model of a transportation system can
be found in [3]. For some of the commercially available representation tools that
incorporate the use of different programming styles packages are already available
that support the user in using these tools for simulation. (SimKit based on Kee from
Intellicorp and Simulation Craft based on Knowledge Craft from Carnegie Group.)

The main novelty of these packages is that the knowledge engineer can use the
power of the underlying representation tool to build an expert system that has access
to and uses the structures of the simulation system. In the KBS project at the
Robotics Institute [4], based on the Language SRL (whose heir is CRL), it was tried
to build such an intelligent support. Simulation is an objective-driven process . In
general the goal is the optimization of one or several system parameter or to detect
relations between system parameters. That goal plays an important part in the
process of modelling, how the experiments are set up and how to analyze the
results.

The following list of some features of an Integrated Knowledge Based
Simulation Environment is ordered according to the steps modelling, performing the
experiments and analysis:

€" ' f" . .A5,a" @ k . . . . .-," . . -
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MQdeline

- Modelling language close to expert's way of thinking (e.g. concepts like
"throughput" should be part of the language!)

. Design model according to objectives of simulation study
- Storing models, parts of models, and domain knowledge in a data

(knowledge) base
- Support the user by giving him guided access to this data (knowledge) base
- Interactive modelling by using an elaborate user interface (e.g. windows,

mouse, icons, menus, "intelligent" editors for the modelling language and -

the graphical representation of the models, help facilities, on-line
documentation, ..

- Static analysis of the model, using heuristics to detect weak points which
(might) cause missing the objective. These heuristics are gathered from
experts of the problem domain.

Simulatoon

Designing Experiments

- Propose instrumentation of the model according to the objective of the
simulation

- Propose which data to gather during the experiment
- Propose initial parameter values of the model according to experiences of

experts and performed experiments -

Running Experiments

- Interactive execution of the experiment, giving the possibility to stop the e.:
execution, inspect and change parameters of the model or of the experiment

- Visual feedback of important parameter values and evaluated data
- Hiding of unimportant data (that means a qualitative interpretation of the

data!)
- Notification of interesting events relative to objective

Analysis

- Supporting the expert in analyzting the gathered simulation data, to determine7
whether the objectives are met

- Making suggestions how to change the simulation parameters. to meet
objectives

Causal Models

In examining the task of analysis of simulation data one realizes that very often
knowledge about causal/temporal relationships between events and simulation
objects is required Experts analyzing simulation data not only use heuristics but also
very often a causal model of the simulated system to detect e.g. the reasons for a
system breakdown through a causal line of objects and events, Let's make this clear-
with an example out of our working area:

Il
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08 0 % )- -' '
source 

sink-.,

sw itch buffer-I machine switch'- -

(20 ?.)

buffer-3 air buffer-2

-W
Fig. I A simple model

In Fig. 1 a simple model is shown where items enter the system from the source,
go through a switch into a buffer, are processed by a single-server machine and
leave the system in the sink behind the switch. 20% of the objects however are lead
back through a buffered repair cycle to the switch after the source. We monitor the
number of objects in the buffer and see in Fig. 2 a sudden rise of the buffer
utilization. v -

-.- - - -

,7~~~~~----- ---- ......u ......l.l'-..

0 o00 0 1200 0 180 0 2,00 0 3000 0 3600 0

LFuf (6) f ufer [25:15, 2j:10I, 20:20, (0.2)]

Fig. 2 Curve showing the number of items in buffer-I over time

Our question is: Why does that happen' Was the cause of inhomogenity the
distribution of the source or of the switch behind the machine?

Therefore it seems to be very useful to make causal relationships between objects ......-

explicit in the simulation model and to have a 'history' of the events and effects that
have happened during the simulation, if the analysis of simulation data should be
supported by a knowledge based system..

For a few years now an area of Al research, 'Qualitative Reasoning' is
concentrated on developing methods to incorporate causalltemporal knowledge in Al
systems to enlarge their area of application and to make them more robust. We have
tried to adopt two approaches to get an explicit representation of causal/temporal
relationships into a simulation.
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Structured Events

In this approach we are using a system which works with an object-oriented
description of the simulation system as described above. The general method for
executing the simulation is event-scheduling. Normally the scheduling of new events
is part of the state transition function, which describes what state changes in the
system occur after a specific event. In our system we have tried to make these
implicit relations between the events more explicit by tracing them back to state
changes of the system. Therefore a set of rules is specified which describe under
what conditions a new event will be scheduled. Through this the scheduling of new
events can be described more explicitly independent of the state transitions caused by
an event. The system takes care for an evaluation of the rules as soon as the state of
a simulation component has changed. With such an event scheduling it is possible to
record the temporal course of the simulation and the causal relationships on the level
of events.

The resulting history network looks like this:

C E

Fig 3: T a

Inotnewr (i.3 we stinuis thre type o"F noes stt"oerl oe

,v n Value P

1., 1 j --!-F 11 EH

Fig'. 3: The causal netw ork

In out network (Fig. 3) we distinguish three types of nodes: state nodes, rule nodes-i'

and event nodes. These nodes are connected by two types of links:

-7
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Temporal links (predecessor and .uccessor) connect rule- and event nodes
according to their creation time. A similar list sorted by creation time is built for each
state variable in the components and consists of state nodes, which represent the history
of state changes at that particular state variable. These temporal links are shown in Fig.
3 by the arrows in the P- and S-fields. .*

Causal links connect nodes of different types by Cause and Effect relations, which
are inverse to each other. These links are built up as follows:

A new state node is created whenever a state variable changes its value. Because of
this change in state, the set of event rules is applied to the component to check if there
are any events to be scheduled. If a rule fires a rule node is created and linked to the
state node (the link labeled (1) in Fig. 3). The action part of the rule will lead to the
scheduling of one or more events, which in turn are represented by new event linked to
the rule node (labeled (2) in Fig. 3). When the event fires, it causes one ore more state 2.
changes leading to new state nodes (links (3) in Fig. 3) and so forth.

By tracing back these causal links one can show for example that the sudden rise in
Fig. 2 is caused mainly by the distribution of the source and not by many items from
the repair loop.

Processes

This approach is closely related to Forbus' 'Qualitative Process Theory' [5]. The -
simulated system is seen as a collecton of passive objects with specified properties and
a number of processes, which cause every change in the system. An example for a
process in a material flow system would be:

Process Transition

O biects: -.
From.Component
To Component

Preconditions ,.

From .Component,
Exiting.Qblect nil

To.Component
State = idle

Changes:
Start:

From. Coronert
Exiung.Object :: nil
Nunm5er.Objects := Number.Objects - 1
State := idle

To.Component
Number.Objects := Number.Objects + I
Sta:e := busy
Arving.Object := Object.x

End:
To.Componient

Arriving.Object := nil
Content := Content + Object.x

- . ..'. .

% " % al 1o% % " %1 % '. "1 ". .° l it 
.

% ' ' % ' " " ' ' • ° . - - " . .. . . ... . .. ,..
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This description is similar to Weld's discrete processes [6]. Because of the
complexity of the simulated systems it is often not sufficient to use a qualitative
simulation, an event-oriented simulation is still necessary. In this case events are
generated only by processes to continue their activity or because the preconditions of a
process are met. Similar to the QPT a history can be built to gather the information
about temporal/causal relations between object states and processes. With this history it
is possible to answer questions about the reasons for the behavior of the system.

Shortcomings

The main problem within these approaches is the microscopic view of the system
dynamics. To obtain useful results for analysis purposes it is necessary to generate
abstractions. In [6] Weld described the use of aggregation techniques in a similar
application, but he also pointed out some limitations. The question is if these techniques
can support knowledge based analysis of complex models. Future work in our group -.
will be directed to this problem.
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Abstract
The ability to reason about the physical world requires a model of the world itself. The model -.

proposed is based on Naive Physics using an analogical representation formalism, in a fashion "-

similar to mental images. Such a model is used to run simulations whose results, collected via an % %

interpreter module, are passed to a reasoning system used as feed-back for the simulator in a

continous loop. The use of the interpreter allows also the description of a somehow quantitative

simulation in qualitative terms. The interpreter is described in detail as well as its role within the

problem solving system formed by the simulator, the reasoning system and the interpreter itself.

Four applications implemented on a Symbolics 3600 are presented in the area of Robotics,

Economy, Process Control and Diagnosis.

1.0 Introduction

A large number of problem solving tasks requires the capability of reasoning about physical

processes. This implies the existance within the problem-solver of some model of the physical

process which can be used to make predictions, deduce functionalities, understand misbehaviours,

etc.

For such a model, although ordinary physics, employing equations can be used, there are

nevertheless serious limitations to this way of modelling the physical world, the most important

ones being: the need for quantitative values of the variables used in the equations, the capability to

solve equations when analytic methods fail, the capability to express boundary conditions '

(especially spatial ones). (also use of abstract rather than common sense concepts).

A number of qualitative models have been proposed (De Kleer 84), (Forbus 81), (Forbus %

1 1
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New Knowledge Representations for Object Oriented Simulation
Steven C. Bankes

The RAND Corporation

This presentation will discuss knowledge representation issues that
are critical for the application of knowledge-based/object-oriented .

simulation to a variety of domains. At RAND we are interested primarily
in systems used for warfare modeling, however the same issues are
important for other problem areas (e.g. civilian command and control
situations such as fighting large forest fires).

We will begin by describing the critical shortcomings of current
simulation techniques and how the RAND research program is addressing
these problems through the application of emerging technologies. Among
the problems being investigated at RAND are: varying the aggregation
level within a simulation, inferencing over objects with multiple
relations, improved support for sensitivity analysis, the use of %

interactive graphics, and improving simulation performance through
concurrent processing.

In this presentation we will focus on one problem area which we
have come to view as being of major importance in making object based
simulation technology useful to a wide class of potential users. This ,

problem is the representation of various real world phenomena which are
not modeled well using current knowledge-based/object-oriented
paradigmns. Terrain, roads, rivers, political boundaries, weather and

smoke defy easy representation as objects. It is known that some
objects require special consideration in discrete event simulations in
order to faithfully model continuous events such as movement or sensing
that have spatial, temporal, and other physical characteristics.
Phenomena such as terrain, roads, and rivers exhibit spatial continuity
with respect to their graphic representation. They are difficult to
represent semantically because they have many characteristics that may
vary with the level of resolution required in different context-

Modeling these phenomena in a natural way requires the introduction

of knowledge representation methods not provided in current languages
and systems. What is needed is not only ways of representing these
kinds of "phenomena" but also clean interfaces between various
representational forms. Many entities need to be accessed in both
object-like and non-object-like fashion. For example, one may wish to r .
treat a road both as an object which can be queried about traffic which '-" .
is on it, and as part of a map which has elevations at each point along
its length. Even an object such as an airplane can require infcrmation JAW
about its gecgraphical relation to other objects and thus need to be
treated as embedded in a map. The fashion in which these prctlems are

•.1
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handled has implications for both the execution-time performance of the
simulation and the interface to supporting databases.

In this presentation we will report our analysis of user's needs in
this area, describe the approaches we are taking in addressing these
issues, and hopefully engage others in an exchange of views.

%I
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