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FOREVQBP 

The ■•mi-annual workshop for research and government 
personnel Involved in the DARPA program on Speech Recognition 
was held in San Diego, California on 24-:!6 March 1987. The 
purpose of the workshop was to review progress on research 
efforts undertaken over the past year by the participating 
organizations; Carnegie-Mellon University, BBN, MIT, SRI 
International, National Bureau of Standards, MIT Lincoln 
Laboratory, Texas Instruments, Dragon Systems, and 
Schlumberger. Also participating were representatives from 
DARPA, SPAWAR, NSA, NOSC, RADC, AFWAL, Xerox Research 
Laboratory and Signition, Inc. 

In his opening remarks. Commander Sears, the DARPA 
Speech Recognition Program manager, advised the group that in 
addition to the site progress reports, two important items 
would receive considerable attention; details related to 
performance evaluation and database needs for the October 
demonstration. Other items covered included results from the 
March dress rehersal, update plans for Phase II, and a 
variety of issues including the role of speech understanding 
for future systems and plans for the speech program to 
interact with the strategic computing architecture and 
natural language programs. 

This proceeding consists of technical reports which 
were reviewed by the key individuals for that program at the 
workshop.  The papers are arranged generally in accordance 
with the order of presentation. 

The last day of the workshop consisted of a visit to 
the research facilities of the Naval Ocean Systems Center. 
This site visit was arranged and hosted by Ms. Elaine 
Schiller and Ir. Steve Nunn, members of the NOSC research 
staff.  Several programs being developed for use by Naval 
Forces which utilize speech processing, natural language, or 
knowledge based systems were demonstrated and explained to 
the group by NOSC personnel.  The demos proved to be helpful 
to the group to understand and relate technology developments 
to real world problems. 

The figure used for the cover design was provided by 
Richard Lyon of the Slumberger Palo Alto Research 
Laboratory.  Dr. Lyon states that the figure shows three 
representations of the spoken digit "zero." The bottom graph 
■hows the time domain wave form; the middle section is a 
cochleogram which is a representation of the processing in 
the ear; the top section shows the segmentation and 
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m s 
recognition of the digit using the scale-space tachniqua.* 
Thanks are du« to Mr. TOB Dickarson of the SAIC graphics 
department for the layout of the cover of the proceedings and 
to Ms. Dianne Hilliams for assistanca in putting tha report 
togathar. 

Lee S. Baumann 
Scianca Applications 

International Corporation 
Workshop Organizar 

* Mora information is available in Lyon and Loab's papar 
containad harain. 
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The lexical access component of the CMU continuous speech 
recognition system. 

Alexander I. Rudnlcky, Zong-gt l.l, and Lynn K. Baumeliter 

Department of Computer Science, Carnegie-Mellon University, 
Pittsburgh, Pennsylvanl« 1S213. 

Abstract 

The CMU Lexical Access system hypothesizes words 
from a phonetic lattice, supplemented by a coarse 
labelling of the speech signal. Word hypotheses are 
anchored on syllable nuclei and are generated indepen- 
dently for different parts of the utterance. Junctures 
between words are resolved separately, on demand from 
the Parser module. The lexical representation Is 
generated by rule from baseforms. In a completely 
automatic process. A description of the various com- 
ponents of the system Is provided, as well as perfor- 
mance data. 

This paper describes the lexical access system under 
development at Camegle-Mellon University. The design of the 
hypotheslzer is based on the following principles: 

• Words can be generated bottom-up with a very high 
degree of accuracy. Given a sufficiently accurate 
transcription of the speech signal. It Is possible to use a 
completely bottom-up paradigm to drive word recog- 
nition, without assistance from higher-level constraints, 
such as those that might be provided by a narrowly 
defined task, or restrictive grammar. 

• Multiple knowledge sources are necessary for 
generating high-quality word hypotheses. The infor- 
mation contained in a phonetic transcrlpllon is of itself 
insufficient to guarantee high accuracy, additional con- 
straints on interpretation, either derived from alternate 
analyses of the signal, or from stored knowledge about 
speech characteristics are necessary for accurate 
hypothesizing. 

The word hypotheslzer produces lexical hypotheses using 
the phonetic label lattices produced by the Acoustic-Phonetic 
component of the system 111. Figure 1 presents a schematic 
dlag   m of the hypotheslzer module. The principal functional 
components of the word hypotheslzer are the following: 

• Matching Engine: The matcher generates a lattice of 
word hypotheses. A modified beam-search algorithm is 
used to match a phonetic iransctlpUon against a lexicon 
stored In the form of a phonetic network. 

• Anchor Generator: The matcher does not attempt to 
match words at all possible positions in an utterance, as 
might, for example, a two-level DP algorllhm. Rjther. the 
anchor generator uses a coarse segmentation of the 
speech wave to locate syllable nuclei and to define likely 
word regions ("anchors"). 

• Coarae Labeller It Is capable of producing a robust seg- 
mentation of the speech signal Into silence, noise and 
vocalic regions. Coarse labels are used both to locate 
s\ liable nuclei and as a secondary source of information 
by the matcher. 

In addition to the above components, the lexical access sys- 
tem also includes a Phonetic Lattice Integrator and a 
Juncture Verifier. 

The Phonetic Lattice Integrator combines and transforms 
the independently generated Information contained in the 
stop, closure, vowel, and fricative lattices produced by the 
Acoustic-Phonetic labelling component. The actions per- 
formed by the Phonetic Lattice Integrator Include the adjust- 
ment of boundaries, the resegmentatlon of overlapping seg- 
ments, and the combination of label probabilities from dif- 
ferent lattices. 

The role of the Verifier is to process word-Juncture verifica- 
tion reauests generated at the Parser level. The Verifier 

Figure 1: Word Hypotheslzer system diagram 
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analyses Junctures between words and indicates to the Parser 
whether the words in question can form a phonetically accept- 
able sequence. 

1 Matching Engine 
Words are hypothesized by malchlng an input sequence of 

labels against a stored representation of possible pror.uncia- 
tlons. the lexicon. The matching algorithm makes use of both 
a phonetic lattice and a coarse lattice. The network search 
algorithm used in the current system is based on the beam 
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search algorithm, but has been substantially modlfled to deal 
with the particular demands of the current task. 

Beam-search Is a modified best-first search strategy that 
extends paths with scores within some window of the global 
best score. The width of this window {the "beam") controls 
the scerity of pruning applied to the search. The principal 
difference between a conventional beam-search (as Imple- 
mented, e.g.. in the HARPY system (3|) and the current algo- 
rithm is the ability to simultaneously search paths of different 
lengths. Although search tree is expanded segment by seg- 
ment (I.e.. Is time-locked), paths may begin at a number of 
separate locations In the anchor region (see below). Because 
of the resulting differences in path lengths, the bounds of the 
beam cannot be calculated In a simple fashion. The solution 
used Is to normalize all path scores by their duration. 

The size of the search tree Ls controlled in two ways, by 
modifying the width of the beam and by altering the score of a 
given path through the use of penalties. 

Beam width Is calculated dynamically at each ply and Is 
based on a pre-set width modified by a value based on the 
size of the expansion stack generated at the preceding ply. 
The effect is to relax pruning when there are few nodes on the 
slack and to tighten It when the stack begins to grow exces- 
r.lvely large.  One practical consequence of this Is to allow 
paths that Initially have poor scores to survive long enough to 
accrete positive evidence. Another consequence Is to permit 
more severe pruning later In the search when the number of 
path Is typically the greatest. Dynamic beam adjustment 
speeds the algorithm up by 39%. and reduces the depth of the 
output lattice by 18%. while maintaining match accuracy. 

In addition to pruning based on beam width, the system 
uses several other strategies to control the size of the search 
tree. Since search progresses uniformly through successive 
segments, paths that pass through the same node in the net- 
work at the same segment ("collisions") are compared, and 
only the best path Is kept (work with HARPY has shown that 
although this Is a sub-optimal strategy. It nevertheless. In 
practice, produces near-optimal network traversals. at sub- 
stantial savings in search effort). 

Two additional pruning factors come Into play through 
their ability to modify the cost of a path and thereby place It 
outside the search beam. 

The first of these Is a duration range associated with each 
phonetic label In the lexicon.  Paths that remain in a par- 
ticular state (phone) for either shorter or longer than the 
characteristic range for that phone incur a penalty. For ex- 
ample, the duration range for a /b/ Is [3 30). based on the 
observation that /b/ bursts typically do not exceed 20ma. the 
constraint for an /s/ Is (50 2501. again based on the obser- 
vation that /s/ phones are typically at least 40m3 In duration. 
Similarly, the duration constraint prwides a different range 
for an /ax/ as opposed to a diphthong, such as /a^/.  Exiting 
a state either too early or too late Incurs a penally, this 
penalty Is added to the path score. 

A second type of penalty is osse?aed when the coarse class 
of a phone mismatches that provided by the coarse labeller. 
The assumption here Is that if the two types of label do not 
match, an error is likely. Again, the penalty added to the path 
score makes it a candidate for pruning.  If the match Is al- 
ready poor, this penalty hastens its pruning.  In fact, this 
penalty is most useful for rapidly terminating paths that 
wander across category boundaries, for example, remaining in 
a vocalic state when the segments have become non-vocalic. 
In the current implementation, enforcing cross-lattice consis- 
tency reduces the size of the search by a factor of about 3.  If 

consistency were absolutely enforced (i.e., Inconsistency 
results In Immediate pruning) search would be reduced by a 
factor of 6-7 though with a loss In accuracy. 

The calculation of the path score is performed according to 
the following formula: 

tWtotPl'      l-ofo     ldiPL 
+ q(SF-S) 

M i>l ml 

The formula consists of three terms: the phonetic score, the 
duration penalties, and the lattice mismatch penalties; n Is 
the length of the path. The phonetic score consists of the fol- 
lowing: di Is a segment duration, pi Is a label probability, and 
£ Is a scaling factor (a computational convenience) 

The duration penalty consists of cr, the amount of dis- 
crepancy, and PD, a system parameter controlling the degree 
of penalty. The lattice penalty consists of a system 
parameter, PL. scaled b,, the duration of the segment, df Nor- 
malization Is necessary, as paths of different length need to be 
comparable. The final term in the equation represents a state 
shortfall. Each hypothesis In the lexicon Is required to match 
a minimum number of core phonetic states. Matching less 
than this number Implies that word has been severely 
reduced, a condition which Is penalized in the current system. 

2 The Lexicon 
The lexicon Is stored In the form of a phonetic network. 

The process of creating a net Is as follows:  For the chosen 
vocabulary, a set of base-form pronunciations Is obtained. 
The sources of pronunciations that have been made use of In- 
clude the following: lookup In an on-line phonetic dictionary, 
such as the Shoup dictionary, the generation of pronuncia- 
tions using a letter-to-sound compiler (the Mrralk system), or 
direct construction.  Each approach has Its advantages and 
disadvantages. We have found that automatic generation as a 
first pass, followed by hand correction, generally produces the 
most acceptable result and does so In a reasonable amount of 
time.  Baseforms are further expanded Into pronunciation 
networks In order to take Into account different possible 
realizations of a word, such as those due to rapid-speech 
phenomena and coarticulatory effects.  Possible variations In 
pronunciation are expressed In the form of phonological rules 
that are applied automatically (in an off-line procedure) to the 
baseform pronunciation.  Figure 2 shows a typical rule, 
governing /ly/ desyllablflcatlon. The rule-appUer scans the 
pronunciation string for the pattern specified In the FIF por- 
tion of the rule, binding the elements of the pattern as 
specified. Terms headed by a "+" match 0 or more elements, 
which are bound to the following variable (e.g.. LeftContexc). 
Terms headed by ">" must match a single element, typically 
meeting the constraints specified lr the remainder of the 
clause: constraints are expressed in terms of phonetic fea- 
tures, such as CONS (consonant) or VELAR (a place of 
articulation). The THEN part of the rule has two clauses, the 
first specifies the portion of the pronunciation string to be 
emitted, the second clause the portion to be rescanned with 
the pattern.  Depending on wha' " nut into each clause, a 
rule may be made to apply once, .imltlple times, or iteratlvely 
to a pronunciation. The current CMU lexicon is constructed 
using a base of over 150 rules, covering several types of 
phenomena, including coarticulatory phenomena and front- 
end characteristics. A small number of additional rules per- 
form necessary bookeeplng functions. 
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Figure 2:   A phonological rule 
(lY-syl-losa-a 

(FIF   (   (•♦■  LeftContext) 
(>  Tml   (has  CONS)    ) 
(>  Tar   (haa  VOWEL  HIGH  FRONT)    (lacka   LAX)) 
(>  Tpl   (has  VOWEL)) 
(+ RightContext) 
I 

THEN 
( (LeftContext 

Tml (alt 'Y 'IY) Tpl) 
(RightContext)) 

) 
) 

The above rule applied to the word   COLUMBIA: 

K  AX   L  UH  M  B   IY  AX 

K  AX   L  UH  M  B    (Y   ,    IY)    AX 

Expansion Is performed by adding nodes and arcs to the 
base pronunciation through the application of phonological 
rules. The Individual nets produced in this fashion are then 
merged together into a single network, the representation 
used by the matcher. The merge collapses common Initial 
states to eliminate redundant -latches and produces a net- 
work that fans out from few initial states Into a larger number 
of states, the penultimate states corresponding to individual 
lexical entries. 

3 Anchor Generation 
The structure of speech constrains the possible locations of 

words in an utterance, that is, a word may not begin or end at 
some arbitrary point: permissible end-points are governed by 
the acoustic properties of the signal. To eliminate unneces- 
sary matches, the system uses syllable anchors to select loca- 
tions in an utterance where words are to be hypothesized. 
The anchor selection algorithm is straightforward and Is 
based on the following reasoning. Words are composed of 
syllables, syllable all contain a vocalic center (de-volced syll- 
ables can be treated as a special-case). Word divisions cannot 
occur inside a vocalic center, thus all syllable and word 
breaks will occur in the regions between vocalic centers. The 
coarse labeller provides Information about vocalic, non- 
vocalic, and silence regions, as well as information about 
energy dips within vocalic regions (typically corresponding to 
liquids, glides, and nasals). This allows the utterance to be 
segmented Into two regions: vocalic centers and boundary 
regions. An anchor, as used by the matcher, consists of two 
anchor regions, a beginning and an ending one, separated by 
one or more vocalic centers, the number of centers determin- 
ing the number of syllables that words hypothesized for that 
region should have. Figure 3 provides a schematic diagram of 
the anchoring process. 

The matching algorithm allows words to begin anywhere In 
the beginning region (I.e.. the initial state of the network is 
put on the stack for each phonetic segment In this region). 
Paths may not transition into the the network's final state un- 
til path extends Into the ending region. The algorithm is im- 
plemented In such a fashion that, for a given word in the lex- 
Icon, only a single, "best" hypothesis will be generated, where 
best means the lowest cost traversal through the lexical net- 
work. 

Anchors have been used in the system in two modes 
single-anchor and multiple-anchor.  In the single-anchor mode, 
anchors of different lengths are generated and the matcher is 
irvoked separately for each one. as shown In (b). It should 

be apparent that this procedure, although simple, is in- 
eflldent. There two reasons for this: The entire network Is 
applied to each anchor, thus time is wasted trying to force, 
e,g.. 5-syllable words into 1-syllable anchors. Second, the 
same region of speech Is scanned repeatedly, with the results 
of one scan being unavailable to subsequent scans. The 
multiple-anchor strategy alleviates these problems, at only a 
slight increase In algorithm complexity, by using anchors with 
multiple end regions. In this case, paths for words of In- 
herently different durations can terminate at compatible 
points in the anchor and are not forced into inappropriate 
regions. A multiple-anchor strategy reduces computation by 
a factor of 3, while reducing the number of hypotheses 
generated by 60% (inappropriate mappings of words into syll- 
ables are eliminated). A third strategy is possible, though at 
this time has not been Implemented. This is the use of 
continuous anchors, where each Inter-vocalic region serves 
both as an entry point and and end-region for the search (d). 
The advantage of a continuous anchor strategy is that it al- 
lows the simultaneous comparison of paths that span dif- 
ferent portions of the signal. The quality of input, however, 
determines the success of this strategy. 

4 Coarse Labeller 
The coarse labelling algorithm is based on the ZAPDASII al- 

gorithm [21, modllled to generate additional labels and to 
provide a more accurate segmentation of the signal. The 
coarse labeller codes the speech signal using four parameters 
extracted on a centlsecond basis, these being peak-to-peak 
amplitude and zero-crossing counts for low-passed and high- 
passed portions of the signal (the crossover being at 1 kHz). 
Segments are located by seeking frames characteristic of a 
particular energy type using a strict criterion (an "anchor"), 
then expanding these into a region using a laxer criterlor    In 
addition to the anchor-extend procedure, rules are used to 
apply contextual information to ambiguous regions and to 
perform boundary adjustment. 

The algorithm currently distinguishes the following acous- 
tic events: silence, including "true" silence and noisy silence; 
sonorants, Including vocalic centers as well as inter-vocalic 
sonorant energy dips (such as nasals or liquids): a variety of 
aperiodic signals, corresponding to fricatives, aspirates, etc. 

The algorithm Is robust and speaker-independent, and 
operates reliably over a large dynamic range. Currently, the 
quality of coarse-labelling is such that less than 0.1% of syl- 
lable nuclei are missed. A number of extra nuclei are 
generated, though this does not create dlfllcultles for either 
anchor generation or lattice cross-checking during matching. 

5 Phonetic Lattice Integrator 
The phonetic labels produced by the front-end 11) are 

grouped Into four separate lattices: vowels, fricatives, 
closures, and stops. Moreover, labels both within and be- 
tween lattices may overlap in time. The role of the integrator 
is to combine these separate streams and produce a single 
lattice consisting of non-overlapping segments, each segment 
containing the information from one or more segments in the 
original lattices. The Integrator maps the label space used by 
the front-end into the label space used in the lexicon. For ex- 
ample, the label "stop" Is expanded into the appropriate set ol 
lexical labels ([ptkbdgj). In addition, the Integrator uses a 
confusion matrix to partition the probability assigned to a 
front-end label Into several labels that it may be confused 
with, thus an input iy label will be reflected In not only ihe 
lexical :Y label, but also the :H label. 
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Figure 3:   Anchor region selection 

(J) 

—M—M~-»-"MM-^-*-B— 

(b) 

CD- 

(C) 

(d) 

Notes:   (a) A coarse segmentation of the speech signal. The 
hatched blocks are vocalic centera.   (b) Single anchors for the signal 
In (a i. a total of 20 anchors. Search can begin from any segment In 
the onset region, must proceed through the middle, and can ter- 
minate In the coda region,   (c) multiple anchors, search can begin 
In the llrst region and end at any subsequent region,   (d) con- 
tinuous anchors, search can begin In any but the last region and end 
end at any but the (Irst region. 

The use of a confusion matrix to map the input symbol 
produces an improvement In accuracy, but at the cost of ad- 
ditional search. For the 708 word Shipping Management 
task, first choice accuracy goes from 32% to 42%. while the 
average number of states examined per word rises 2.5-fold, 
from 958 to 2381. We believe that the advantage of this 
transformation is due to the ability of the confusion matrix to 
capture the broad behaviour of classifier labels across dif- 
ferent contexts and thereby supplement the probabilities 
generated for a given classification region (see (U) 

6 Verifier 
Words are hypothesized In Isolation, that is, without regard 

to any sequential constraints between words.  In this sense, 
the system is completely bottom-up, since no syntactic, 
semantic, or task constraints are brought to bear on the 
process of u  ^otheslzatlon. The resulting word lattice con- 
sequently comalns many potential sequences of words. The 
parser |41 attempts to construct plausible sequences, but does 
not have the information necessary to decide whether a par- 
ticular sequence Is phonetically acceptable. The Verifier ex- 
amines Junctures between words and determines whether 
these words can be connected together in a sequence. The 
verifier deals with t.iree classes of Junctures: oijutments. 
where two words Join together without overlap or intervening 

segments: gaps, where the two words are separated, and 
overlaps where the words share one or more segments. In 
general, overlaps that Involve Inconsistent interpretations of 
the speech signal are disallowed, and gaps that contain sig- 
nificant speech events are also disallowed. Figure 4 shows 
the distribution of Juncture types for the Email task 
(considering only correct word sequences), together with 
Verifier accuracy. 

Figure 4:   Juncture types and Verifier performance 

Juncture type Incidence        (rejection) 

Abuts 51% (0%) 
Gaps 20% (1.7%) 
Overlaps 29% (5.9%) 

7 Performance 
System performance was evaluated by calculating the rank 

of the correct word for a known anchor position. This metric 
Is somewhat conservative, since words with the same core but 
with different endpolnts are compared (for example, the em- 
bedded word END competes with the word SEND under the cur- 
rent scheme). Figure 5 gives performance for two types of In- 
put data, spectrogram reading and automatic labelling (using 
the September 1986 CMU system). The task Is the 324 word 
Electronic Mall task. 

Figure B:   Word Matcher performance 

Spectrogram   Automatic 

1st choice 60% 32% 
Top 3 83% 55% 
Top 10 93% 76% 

8 Discussion 
The CMU lexical access system operates as a word-spotter, 

generating all likely hypotheses, anchored on syllable nuclei. 
The design of the matching algorithm demonstrates the ap- 
propriateness of a unified matching strategy, as opposed to a 
strategy that uses coarse-filtering of word candidates followed 
by fine-grain phonetic matching: Coarse-class constraints are 
used as a component of the pruning strategy and do not en- 
tall the use of hard decisions implicit In. e.g., a filter design. 
This approach provides a maximum of flexibility to sub- 
sequent levels of processing. 

Experience with the anchor-based matcher has revealed a 
number of shortcomings in Its design.  For example, the 

benefits of anchoring are only realized when syllables are cor- 
rectly detected. Failure to identify a syllable boundary can be 
catastrophic—one or more words may be lost as a result. 
Similarly, the word-spotting mode in which the system 
operates makes it difficult to make use of constraints that 
could be imposed across word boundaries and, moreover, 
complicates the process of interpreting Juncture phenomena. 
Given these Undings, we have begun 'o explore a different ap- 
proach to w^rd matching. The new algorithm is not based on 
anchoring and it incorporates explicit modeling of Juncture 
phenomena. We refer to the new algorithm as a roIUng 
matcher, as it "rolls" through an utterance rather than jump- 
ing from anchor to anchor. 
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In order to avoid the compromises made in the lattice In- 
tegration step, the system has changed to use input In the 
form of a phone network. A phone network performs the 
same function as the lattice integrator—It coordinates the out- 
put of the four different acoustic-phonetic modules. Specifi- 
cally, it provides segment boundary alignment by coercing 
segment endpolnts. It resolves conflicting overlap conditions 
(I.e.. by providing alternate paths), and It ensures that all 
regions of an utterance can be traversed (I.e.. by labeling 
regions not labeled by any of the primary  lodules according 
to their coarse-class labels). Another benefit of a phone net- 
work representation, from an acoustic-phonetic point of view. 
Is that It allows correct handling of sequential dependencies 
(e.g., the influence of liquids on vowel color). 

In contrast to the compilation process described earlier in 
this paper, network compilation Is now performed In two 
separate passes. The first generates Intra-word variations, 
producing sub-nets for each baseform In the lexicon. After 
these sub-nets are merged Into a single net, a second set of 
rules Is applied to generate correct cross-word connections, 
dealing with such varied phenomena as gemination, insertion 
(e.g., of glides), and deletions (e.g., of closures). 

The matching process consists of "rolling" the (lexical) net- 
work through the phonetic network Successful paths 
through the lexical network (I.e.. traversal from a given start 
node to a given end node produces a word hypothesis. The 
word hypothesis Is placed on the output lattice, and matching 
continues on to all words that can legally follow the word that 
was Just completed. 

Early analyses Indicate that the Rolling matcher differs 
from the Multiple-Anchor matcher In several respects: The 
word lattice produced by the Rolling matcher Is substantially 
denser than the one produced by the multiple-anchor 
matcher. This Is because the latter produces a slncle best 
match for a given region of speech, the former prodnrra mul- 
tiple matches, with different end-points. This propmy is ac- 
tually desirable, as it simplifies the Juncture-validation 
problem—multiple end-points allow the parser to select the 
optimal version of a hypothesis, without the need for detailed 
Juncture analysis. 
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ABSTRACT 

This paper compares the recognition accuracy obtained in forming 
sentence hypotheses using several parsers based on different types 
of weak statistical models of syntax and semantics. The inputs to 
the parsers were word hypotheses generated from simulated 
acoustic-phonetic labels. Grammatical constraints are expressed by 
trigram models of sequences of lexical or semantic labels, or by a 
finite-state network of the semantic labels. When the input to the 
parser is of high quality, the more restrictive trigram models were 
found to perform as well as or better than tho linite-stato language 
model. The more restrictive trigram and network models of language 
produce better recognition accuracy when all correct words are 
actually hypothesized, but strong constraints can degrade 
performance when many correct words are missing from the parser 
input. 

INTRODUCTION 

it is well known that the accuracy of automatic speech recognition 
systems can be greatly improved by the imposition of syntacic, 
semantic, and grammatical constraints. These constraints have 
typically been expressed in the form of finite-state or phrase- 
structure network models [1,2, 3] and second order Markov models 
log. [4]). We would generally expect that more specific domain- 
dependent constraints could provide a greater improvement of 
recognition accuracy, but weaker grammatical constraints may prove 
advantageous if the input to the sentence hypothesizer is noisy or if 
extragrammatical utterances are frequently encountered. 

Carnegie Mellon University is presently developing a largo- 
vocabulary speaker-independent speech recognition system. The 
system includes a feature-based acoustic-phonetic hypothesizer [5], 
an island-driven word hypothesizer [6], and several sentence parsers 
that convert the outputs of the word hypothesizer into sentence 
candidates. 

We have explored several schemes for representing syntactic and 
semantic knowledge in these parsers, including case frames [7] and 
simple statistical models cf sequences of syntactic and semantic 
categories of the word candidates. Most of the statistical grammars 
make use of a second-order Markov model to represent local 
syntactic and semantic phenomena. Our work differs from most 
other language models employing this "trigram" representation (e. g. 
[4]) in that constraints are expressed in terms of probabilites of 
sequences of lexical or semantic labels or "tags', rather than the 
individual words in the vocabulary themselves. In addition to 
providing reasonable accuracy, we also believe that this approach is 
a promising way to reduce the amount of storage and training 
required to effectively model word usage in tasks with very large 
vocabularies. A small number of other groups have also proposed 
tngram models using a reduced number of syntactic or semantic tags 
but these groups have not dicussed the range of language models 
and input conditions that will be considered here. 

The purpose of this paper is to compare the ways in which the 
Hngree of specificity of the grammatical constraints affect the 
recognition accuracy obtained with a deterministic finrte-state 
network representation of the task and with some of the probabilistic 
trigram grammars, considering inputs to the sentence parsers of 
varying quality. 

In 'M following sections we first desenbe the manipulations of the 
input to the sentence parsers. We then briefly describe the different 
parsers that are used in the present study. Finally, we compare tho 
recognition accuracy of these parsers in the presence of the different 
types of degraded input and comment on some of the implications of 
our results. 

WORD LATTICES USED IN EXPERIMENTS 

For each sentence presented to the CMU recognition system, the 
word hypothesizer outputs a large number of candidate words, which 
are each characterized by a begin time, an end time, and an 
acoustic-phonetic plausibility score. This set of annotated word 
hypotheses is referred to as the "word lattice" of the input sentenc«». 

The expected word accurpry of sentences produced by a parser is 
closely related to two major attributes of the word lattice: (i) the 
relative acoustic-phonetic scores of the correct words that are 
present on the lattice, and (2) the percentage of correct words that 
are missing Irom the lattice. 

In order to compare the effects of degraded word quality and 
omissions from tho word lattice, wo prepared six sets of lattices in 
which the relative scores of correct words and percentages of 
missing words wore artificially manipulated. Tho characteristics of 
these sots of latticos, which wore used in our performance 
calculations, may bo summarized as follows: 

• Original lattices - 48 sentences Irom a 325-word electronic 
mail (email) task were recorded by three female and two male 
speakers. TTioso sentences contained a total of 281 words. A 
set of acoustic-phonetic labels was created manually by expert 
spectrogram readers from spectrograms and other visual 
displays of tho digitlzeJ waveforms. This labelling was "blind" in 
that tho labellers did not know the identity of the correct 
utterance. Since these lattices nominally represent "ideal" 
output Irom tho acoustic-phonotic module, they are useful lor 
evaluatinr: iegradations in recognition performance introduced 
by the system's word and sentence hypoihesizers. Word 
lattices were generated from the acoustic-phonetic labels in the 
fashion described in [6|. 

• High-quality lattices - These lattices are the subset ol the 48 
original blind-labelled word lattices that have no correct words 
missing and no incorrectly penalized word junctures (see 
below). Tnere are 31 sentences with 172 total words In these 
lattices. The remaining sets ol word lattices were ootamed by 
anlflcially degrading these word lattices. 

• Degraded-quality 'attlces - Moderately-degradod and 
severely-degraded word lattices were created by adding a 
constant to the acoustic-phonetic scores of words In the 
high-quality latticos.   This had the e'lect ol worsening the 
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scores o( the correct words relative to the scores ot the 
incorrect words. 

• MIsslng-word lattices - Mlsslng-word lattices were created 
by randomly delating either 10 or 25 percent ol the correct 
words ironi the high-quality lattice» 

The overall quality ot these lattice is summarized in Figure 1. Each 
curve ot Figure 1 shows how many words in the lattice per correct 
word need be examined to ensure that a given percentage ol correct 
words Is Included. For example, Figure 1 shows that the 
high-quality lattices and the moderately and i ely-degraded 
lattices contain approximately 100 percent ol the correct words (if 
we are willing to consider a sutticiently large number ol Incorrect 
words as well), while the lattices with missing words contain no 
more than 70 and 85 percent ol the correct words, no how many 
words are examined. (The asymptotes in these three curves dltier 
slightly tram their nominal values because ol dltlerences In the word- 
boundary criteria used by the hand labellers and the automatic lattice 
evaluation algorithms.) 

PARSERS USING TRIGRAMS AND NETWORKS 

We compared the word accuracy ol a number ol dKlerent left-to-right 
parsers in processing the various types ol word lattices described 
above. These parsers make use of the same architecture, differing 
only in the types of knowledge used to evaluate candidate phrases. 
We will therelore first describe the overall structure and then 
describe each individual parser in terms ol Its use ol syntactic and 
semantic knowledge. 

As noted above, each parser receives a lattice ol words that contains 
the begin time, end time, and a score lor each word. It forms phrases 
•mm the words in left-to-right fashion. New phrases are created by 
attempting to add new words to the end of existing phrases. A beam 
search Is used to prune the set ol phrases retained lor further 
expansion so that at any point In the parsing process only the 100 
best-scoring phrases are retained. 

The lollowing types of knowledge are considered when aoding a new 
word to a candidate phrase: 

• Word score - The word score represents the likelihood lor the 
word based on acoustic-phonetic evidence, provided by the 
word hypotheslzer. 
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Figure 1:   Comparison ol quality ot word lattices used in the 
sentence parsing experiments 

• Word-juncture quality • The quality ol the acoustic-phonetic 
juncture between two words is scored by the junction verifier in 
the word hypotheslzer, based on tables ol penalties lor overlaps 
and gaps. 

• Syntactic and samarrtlc Information - Two different methods 
were used to score the syntactic or semantic plausibility a 
finite-state networtc derived Irom a lormal description ol the 
grammar ol the task and tngrams ot Irequencies ol syntactic 
and/or semantic word classes. 

The score lor a phrase Is a linear combination ol the scores provided 
by each ol the above knowledge sources. The weights used to 
combine these scores were determined paramelrically Irom training 
data, and the recognition accuracy ol the parsers is relatively 
Insensitive to their exact value. 

We now describe the various parsers in more detail. 

Allword parser. This parser makes use only ol acoustic scores and 
word juncture inlormation in lorming its phrase hypotheses, so any 
word can lollow any other word. 

Trlgram parsers. The trigram measure is derived Irom the 
conditional probability of observing the syntactic or semantic classes 
of three words in sequence in a set of trainlnq sentences, which in 
tum is used to estimate the joint probability that the syntactic or 
semantic structure ol the sequence ol three words is correct. The 
overall utility ol this approximation depends on the degree of domain 
specillclty ol the training sentences and syntactic classes used. 

For each set ol syntactic and/or semantic constraints, words are 
sorted Into categories ol one or more tags. Special tags are used to 
represent the beginning and ending ol a sentence. When a word is 
added to the end ol a phrase, it is assigned a trigram score based on 
the conditional probability ol observing its tag given the two previous 
tags In the phrase. 

We examined the following trigram parsers, which are identified by 
the types ol syntactic and semantic knowledge that constrain their 
hypotheses. 

• Syntactic trigram parser - In addition to word scores and word 
juncture inlormation, this parser also incorporates syntactic 
information through Irigrams ol sequences ol 41 tags denoting 
lexical categories. These tags were a subset ol the 
approximately 90 lexical tags adopted by the compilers ol the 
Brown corpus (8). They include expanded designations ol parts 
ol speech, complete conjugations of some important verts such 
as be, do, and have, etc. 

• Augmented trigram parser - This parser is similar to the 
syntactic parser, except that a set ol 55 tags is used. This set is 
somewhat more specific to the email task than the tags used by 
the compilers of the Brown corpus. For example, different 
designations are used for nouns representing people, places, 
and things, and there is a greater number ol tags that designate 
classes ol prepositions. Hence these tags describe a modest 
amount ot semantic knowledge. We believe that these lags 
could eventually represent the syntax of a database-query 
system lor an arbitrary task domain. 

• Semantic trigram parser - The semantic tngram parser is 
similar to the syntactic parser, except that a set ol 92 tags is 
used that corresponds to the labels ol the nodes ot the 
semantic network parser described below These tags, and 
their trigram probabilities, are much more domain dependent 

Semantic Network Parser. The deterministic semantic networv 
parser is derived Irom a description of the email task expressed in 
the form ol case Irames and simple phrase structure rules [9. 7] 
These were manually combined into a semantic grammar ol about 
350 rules. The grammar was then compiled into a finite-state 
network similar to a Harpy network [ij. for faster processing This 
type of network can provide a semantic mterürelation of the mout 
utterance as well as mere word recognition There were 92 different 
categories of words in the network, reflecting the semantic specificity 
ot the encoding. The grammar encoding was tigni m the sense that 
only grammatical sentences are accepted 
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EXPERIMENTAL RESULTS AND DISCUSSION 

Each of the parsers was run on each of the sets of lattices. Results 
are expressed by the percentage of correct words detected and by 
the percentage of incorrect words Inserted by the parser. (The 
insertion percentage in this paper is defined to be the number of 
incorrect words found divided by the number of words uttered. Note 
that substitution errors cause both a decrease in the detection 
percentage and an increase in the insertion percentage.) 

Allword 
Parser 

DETECTION PERCENTAGES: 
Original lattices 58 
High-quality lattices     59 

INSERTION PERCENTAGES: 
Original lattices 49 
High-quality lattices     45 

Semantic 
Trlgram 
Parser 

87 
93 

Semantic 
Network 
Parser 

83 
92 

18 
7 

Table 1: Comparison of word detection and insertion 
percentages of three selected parsers, with input from the 
original and high-quality lattices. 

Table 1 compares the percentage of correct words and the 
percentage of word insertions for the three of the parsers using the 
original and high-quality lattices. The two parsers that make use 
of semantic knowledge perform significantly better than the allword 
parser. While the tags for the semantic network parser and the 
semantic trigram parser are identical, the semantic trlgram parser 
obtains slightly greater recognition accuracy because It evaluates the 
likelihood of a sequence. TTie semantic network parser rejects illegal 
sequences of words but performs no reordering of legal ones. These 
results demonstrate that the parsers using trigrams with semantic 
knowledge can equal or bettor the performance of parsers that 
employ a finite-state grammar. 

Effect of the Rank of Correct Words 
Figure 2 shows the effects of reducing the rank of correct words 
when all correct words are in the lattice. As the quality of the lattices 
worsens, all parsers produce fewer conect words in their bet.t 
hypotheses. The application of syntactic and semarrtic constraints 
produces improved accuracy, and the more specific the constraints, 
the greater the accuracy. The output of the allword parser is the 
most severely affected as the lattice quality worsens. 

Effect of Missing Words 
Parser outputs for sets of lattices with missing words are shown in 
Figure 3, and the results exhibit a different trend. When only 10 
percent of the words are missing, the constrained parsers that use 
syntax or semantics produce greater word accuracy than the allword 
parser. This is because a significant number of sentences have no 
missing words and the constraints are useful in parsing these 
sentences. Since the average length of sentences in the email task 
is five words, roughly 60 percent of the sentences have no missing 
words when 10 percent of the correct words are missing from the 
word lattice. When 25 percent of the correct words are missing, only 
about 24 percent of the sentences should have no missing words. In 
this case, the more specific tags produce poor performance. The 
semantic trigram parser proouces worse word accuracy than the 
allword parser, while the use of the more general tags still provides 
some benefit over the allword parser. The more specific tags are, 
the better they are able to ditferentiate between sequences of correct 
and incorrect words. Parsers with more specific tags are more 
disrupied by missing words, however, because there is less of a 
chance that other (incorrect) words that are present could produce 
an acceptable sequence of tags. Hence, the more general tags do 
not provide as much accuracy when all words are present, but they 
still may provide some benefit if many words are missing. 
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Effect of Syntax of Training Data 
We also performed an additional expenment to examine the 
dependence of the parser that used the syntactic tags from the 
Brown corpus on the syntax of its training data. This was 
accomplished by es. .. .Ing probabilities of the Ingrams ot the 
syntactic trigram parser using the (ollowing three dilferent sets of 
sentences as the training text: 

1. 171 examples of email sentences. (50 ol these sentences were 
used as the test set in all experiments.) 

2. 171 sentences from the original Brown corpus.   (These were 
examples taken from articles in newspapers ) 

3. 342 sentences obtained by combining the first two data sets. 
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The word accuracy ol the syntactic Irigram parsers trained on each 
ol the above sets ol example sentences Is shown in Table 2. For all 
sets ol lattices, parser perlormance Increased as the training set 
more closely resembled the email sentences that the parsors were 
evaluated on. 

It Is not hard to imagine why the word accuracy was so low when the 
parsers were trained on only the Brown corpus sentences. Almost 
all ol the Brown corpus sentences are declarative, and the lirst word 
tends to be an article, adjective, or noun. The email sentences, on 
the other hand, are all imperative or interrogative in lorm, and they 
begin with a verb, verb auxiliary, or w/Mype adverb. Since the 
parsing  proceeds  in  lett-to-hght lashion,  the  lirst word in the 

Brown Mixed Email 
Training Training Training 

DETECTION PERCENTAGES: 
Original lattices 58 77 80 
High-quality lattices 61 77 83 

INSERTION PERCENTAGES: 
Original lüttlces 46 27 22 
High-quality lattices 44 24 16 

Table 2: Etioct ol the syntax ol the training set ol the 
syntactic trigram parser on word detection and insertion 
percentages. 

sentence has a great effect on how the rest ol the sentence Is 
parsed. In light ol the profound differences between the syntactic 
forms ol sentences in the Brown corpus and in the email task, the 
relatively good perlormance ol the parser when trained on the 
combination ol the two databases is quite encouraging. We believe 
this may indicate that reasonable perlormance may be obtained Irom 
a completely domain-independent syntactic parser, provided that all 
syntactic sentence forms are included in the training database. 

SUMMARY 

We compared the word recognition accuracy obtained using several 
ditlerent types ol lett-to-right sentence parsers. For the 325-word 
email task, we found that parsers using trigram representations ol a 
small number ol lexical or semantic tags could perform as well as or 
better than the parser using a linite-state grammar. Increasing the 
specificify ol the trigram representation lor a particular task domain 
tended to improve perlormance when the correct words are not 
among the very best word candidates, but it can degrade 
perlormance il correct words are missing completely Irom the imput 
word lattices. The perlormance ol the syntactic trigram parser 
appeared to he relatively insensitive to the specific contents ol its 
training database, provided that tt» training set included the 
sentence lorms that were encountered in the lest sentences. 
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Abstract -- Developing accurate and robust phonetic 
models for the different speech sounds is a major challenge for 
high performance continuous speech recognition. In this 
paper, we introduce a new approach, called the stochastic 
segment model, for modelling a variable-length phonetic 
segment X, an L-long sequence of feature vectors. The 
stochastic segment model consists of 1) time-warping the 
variable-length segment X into a fixed-length segment Y called 
a resampled segment, and 2) a joint density function of the 
parameters of the resampled segment Y, which in this work is 
assumed Gaussian. In this paper, we describe the stochastic 
segment model, the recognition algorithm, and the iterative 
training algorithm for estimating segment models from 
continuous speech. For speaker-dependent continuous speech 
recognition, the segment model reduces the word error rate by 
one third over a hidden Markov phonetic model. 

1. Introduction 

In large vocabulary speech recognition, a word is 
frequently modelled as a network of phonetic models. That is, 
the word is modelled acoustically by concatenating phonetic 
acoustic models according to a pronunciation network stored in 
a dictionary of phonetic spellings. In phoneme-based speech 
recognition systems, it is not necessary for the speaker to train 
all words in the vocabulary; only the phonetic models are 
trained. Assuming the above structure for a speech recognition 
system, the goal of this work is to look for an unproved 
approach to phonetic modelling. 

Hidden Markov modelling (HMM) is one method for 
probabilistic modelling of the acoustic realization of a 
phoneme. Although the HMM approach has been used 
successfully [1,2,3], its recognition performance is not 
sufficiently accurate for large vocabulary continuous speech 
recognition. We propose an alternative and novel approach, 
called a stochastic segment model, with the goal of improving 
phonetic modelling. The motivation for looking at speech on a 
segmental level, rather than on a frame-by-frame basis as in 
HMM or dynamic time warping (DTW), Is that we can better 
capture the spectral/temporal relationship over the duration of a 
phoneme. Evidence of the importance of spectral correlation 
over the duration of a segment can be found in the success of 
segment-based vocoding systems [4). 

A speech "segment" is a variable-length sequence of 
feature vectors, where the features might be, for example, 
cepstral coefficients.  The stochastic segment model is defined 

on a fixed-length representation of the observed segment, 
which is obtained by a time-warping (or resampling) 
transformation. The stochastic segment model is a multivariate 
Gaussian density function for the resampled representation of a 
segment. The recognition algorithm chooses the phoneme 
sequence that maximizes a match score on the resampled 
segments. The training algorithm iterates between two steps: 
first, the maximum probability phonetic segmentation of the 
input speech is obtained, then maximum likelihood density 
estimates of the segment models are derived. 

The paper is organized as follows. Section 2 introduces 
the segment model. Section 3 describes the segment-based 
recognition algorithm, and Section 4 describes the training 
algorithm. Section 5 presents experimental results for 
phoneme and word recognition, comparing the results to HMM 
recognition results for the same tasks. Finally, Section 6 
contains a brief summary. 

2. Stochastic Segment Model 

In this section, we define the stochastic segment model 
for an observed sequence of speech frames X a [Xi X] ... XiJ, 
where X| is a t-dirnensionol feature vector. We can think of 
this observation as a variable-length realization of an 
underlying fixed-length spectral trajectory Y = (y| vj . . . yml 
where the duration of X is variable due to variation in speaking 
rate. Given X. we define the fixed-length representation 
Y = XTL where the L x m matrix TL, called the resampling 
transformation, represents a time-warping. The segment Y, 
called a resampled segment, is an m-long sequence of 
^-dimensional vectors (or a t x m matrix). The stochastic 
segment model for each phoneme a is based on the resampled 
segment Y and is a conditional probability density function 
p(Yla). The density p{\\a) is assumed to be multivariate 
Gaussian which is a bn-dimensionai model for the entire fixed- 
length segment Y. 

Resampling Transformations 

The resampling transformation TL is an i. s m matrix used 
to transform an Z,-length observed segment \ into on m-leneth 
resampled segment Y. We considered several different 
variable- to fixed-length transformations, concentrating on 
transformations which had previously been evaluated in the 
segment vocoder (4|. The best recognition results are obtained 
using linear time sampling without interpolation. Linear time 
sampling involves choosing m uniformly spaced tunes at which 
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to sample the segment trajectory. Sampling without 
interpolation refers to choosing the nearest observation in lime 
to the sample point, rather than interpolating to find a value at 
the sample point. 

Figure I:   Input segment (o) and corresponding 
resampled segment (x). The two axes correspond to two 
cepstral coefficients. 

Figure I shows an input segment with duration six in two- 
dimensional space and the corresponding resampled Y (with m 
= 4) using linear time warping without interpolation. The 
resampling transformation in this case is: 

Probabilistic Model 

As already mentioned, the segment model is a 
multivariate Gaussian based on the resampled segment Y, 
/7(Yla). Recall that resampled segments are *w-dimensional, 
where k is the number of spectral features per sample and m is 
the number of samples. In this work, typically *=I4 andm=IO. 
Consequently, the segment model has 140 dimensions. 
Because of insufficient training, we cannot estimate the full 
phoneme-dependent covariance matrix, so we must make some 
simplifying assumptions about the structure of the problem. 
For the experiments reponed here, we assume that the m 
samples of the resampled segment are independent of each 
other, which gives a block diagonal covariance structure for Y, 
where each block in the segment covariance matrix 
corresponds to the kx k covariance of a sample. The log of the 
conditional probability of a segment Y given phoneme a can 
then be expressed as 

lnlp{\\a)] = ^lnlpJ{yJ\a)l (1) 

where p;(Vjla) is a k-dimensional multivariate Gaussian model 
for the j-th sample in the segment. The block-diagonal 
structure saves a factor of m in storage and a factor of m2 in 
computation. The disadvantage of this approach is that the 
assumption of independence is not valid, particularly if 
resampling does not use interpolation wherr adjacent samples 

may be identical. In the future, with more training data, we 
hope to relax this assumption. It is likely that more detailed 
probabilistic models, such as Gaussian mixture models |5| and 
context-dependent (conditional) models (2. 3|, will yield better 
recognition results than the simple Gaussian model. However, 
due to larger training requirements we did not pursue these 
models in this work. 

Propenies of the Segment Model 

There are several aspects of the stochastic segment model 
which are useful propenies for a speech recognition system. 
First, the transformation TL, which maps the variable-length 
observation to a fixed-length segment, can be designed to 
constrain the temporal structure of a phoneme model so that all 
portions of the model are used in the recognition. We 
conjecture that the fixed transformation will provide a better 
model of phoneme temporal/spectral structure than either 
HMM or DTW. Second, the segment model is a joint 
representation of the phoneme, so the model can capture 
correlation structure on a segmental level. In HMM, frames 
are assumed independent given the state sequence. In the 
segment model, no assumptions of independence are 
necessary, though the model of Y given by Equation 1 is based 
on the assumption of sample independence because of limited 
training data in this study. The model is potentially more 
general than the special case of (I). Lastly, by using a segment 
model we can compute segment level features for phoneme 
recognition. In other words, the segment model provides a 
good structure for incorporating acoustic-phonetic features in a 
statistical (rather than rule-based) recognition system. For 
example, one might want to measure and incorporate formant 
frequency or energy differences over a segment. Section 5 
includes results where sample duration is used as a feature, 
which can only be computed given the length of the entire 
segment. 

3. Recognition Algorithm 

In this section, we describe the recognition algorithm 
First, we describeconsider the case when the input is 
phonetically hand-segmented. Then, we generalize to 
automatic recognition, that is, joint segmentation and 
recognition of continuous speech. 

When the segmentation of the input is known, we 
consider a single segment X independently of neignboring 
segments.   The input segment X is resampled as segment V. 

The recognition algorithm is then to find the phoneme a that 
maximizes/?(Via): 

a = ar? maxln[p(\\a)p(a)\ 
n 

(2) 

where ln|p(Yla)| is given by Equation I. This decision rule is 
equivalent to a maximum a-postenon rule. 

In an automatic recognition system, it is necessary to find 
the segmentation as well as to recognize the phonemes. In ihis 
case, we hypothesize all possible segmenianons of the input, 
and for each hypothesized segmentation s of the input into n 
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scgtnenis,  we  choose   the  sequence  of phonemes   a  thai 
maximizes: 

As) = f | Ui) Inlpivfapia,] + C| (3) 

where L(i) is the duration of the i-th segment, Yi is the 
resampled segment corresponding to the i-th segment in s, and 

CL is the phoneme that maximizes /n V^u)pm). The cost C is 
adjusted to control the segment rate. An efficient solution to 
joint segmentation and recognition is implemented using a 
dynamic programming algorithm. Note that for joint 
segmentation and recognition, it is necessary to weight the 
segment probability by the duration of thr segment, so that 
longer segments contribute proportionate!; ..".her scores to the 
match score J(.) of the whole sequence. 

4. Training Algorithm 

In this section, we present the training algorithm for 
estimating the segment models from continuous speech. We 
assume that the phonetic transcription of the training data is 
known and thai we have an initial Gaussian model, pQ(Yla) for 
all phonemes. (Phonetic transcriptions can be generated 
automatically from the word sequence that corresponds to the 
speech by using a word pronunciation dictionary.) We assume 
that the phonetic sequence a has length n. The algorithm 
comprises two steps: automatic segmentation and parameter 
estimation. The algorithm maximizes the log likelihood of the 
optimal segmentation for the phonetic transcription, where the 
log likelihood of a segmentation s is given by: 

.v 

»I 
(4) 

where Yj is the resampled segment that corresponds to the i-th 
segment in the segmentation s and a, is the i-th phoneme in the 
sequence a. With t = 0, the iterative algorithm is given by: 

1. Find the segmentation s, of the training data that 
maximizes Us,) for the given transcription and the 
current probability densities (/»t(Yla)|. 

2. Find the maximum likelihood estimate for the 
densities |p|+|(Yla)| of all phonemes, using the 
segmentation s,. 

3. t <-1 + 1 and go to Step 1 

Both steps of the algorithm are guaranteed to increase Ks,) with 
t. If there are at least two different observations of every 
phoneme, then the probability of the sequence is bounded. 
Hence, the iterative training algorithm converges to a local 
optimum. Step 1 is implemented as a dynamic programming 
search whose complexity is linear with the number of phonetic 
models N. Step 2 is the usual sample mean and sample 
covariance maximum likelihood estimates for Gaussian 
densities. 

5. Experimental Results 

In this section we will present results for a phoneme 
recognition task, as well  as word recognition results  for a 

segment-based recognition system and an HMM-based system. 
All experiments use m = 10 samples per segment and £ 3 14 
mel-frequency cepstral coefficients per sample. These values 
are based on work in segment quantization (6|, and limited 
experimentation confirmed that these values represent a 
reasonable compromise between complexity and performance. 
Speech is sampled at 20 kHz, and analyzed every 10 ms with a 
20 ms Hamming window. 

Phoneme Recognition 

The database used for phoneme recognition is 
approximately five minutes of continuous speech from a single 
speaker. The test set contains 270 phonemes. Both the test set 
and the training set are hand-labelled and segmented, using a 
61 symbol phonetic alphabet. In counting errors, an 'AX' 
(schwa) recognized as 'IX' (fronted schwa) is considered 
acceptably correct, as is an 'URT (unreleased T) recognized as 
a T'. All recognition rates presented represent "acceptably 
correct" recognition rates. The acceptable recognition rate is 
typically 6% to 8% higher than the strictly correct recognition 
rate. 

Phoneme recognition results for three different cases are 
given in Table 1. The results illustrate a small degradation in 
performance due to moving from recognition based on 
manually segmented data to automatic recognition. Using 
automatic training does not degrade performance any funher. 

We also experimented with using an additional segmental 
feature to the cepstral parameters: sample duration which 
requires knowledge of the hypothesized duration of the 
segment. Using joint segmentation and recognition with hand- 
segmented training data, performance improved from 74.4% to 
75.9% as a result of using the duration feature. 

Training 
Segmentation 

Test 
Segmentation Recognition Insertion 

Manual Manual 78.5 0.0 

Manual Automatic 74.4 10.0 

Automatic Automatic 73.7 7.8 

Table I:   Recognition results using manually segmented 
speech and automatically segmented speech. 

For reference, a discrete hidden Markov model with 3 
states/phoneme and using a codebook with 256 entries has 62% 
phonetic recognition rate with 12% insertions. The HMM 
recognition performance on this database is higher when 
phoneme models are conditioned on left context. 75% correct- 
with 12% insertions [2|. In the latter eise, 600 left-context 
phonetic models are used in the HMM system while 61 
phonetic models are used in the stochastic segment model. 

Word Recognition 

The segment-based word recognition system consists of a 
dictionary of phoneme pronunciation networks and a collection 
of segment  phoneme  models.     A  word  model  is  built  by 
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concatenating phoneme models according to the pronunciation 
network. The recognition algorithm is simply a dynamic 
programming search (Viterbi decoding) of all possible word 
sequences. For the results in this paper, we assume that words 
are independent and equally probable; there is no grammar 
(statistical or deterministic) associated with recognition. 
Within each word, we find the best phoneme segmentation for 
that word, where the phoneme sequence is constrained by the 
word pronunciation network. 

For continuous speech word recognition, we used a 350 
word vocabulary, speaker-dependent database based on an 
electronic mail task. We present results for three different 
male speakers. Fifteen minutes of speech was used for training 
the 61 phoneme models for each speaker, from which the word 
models were then built. An additional 30 sentences (187 
words) are used for recognition. Analysis parameters are the 
same as for the previous database. Again, "acceptable' error 
rates are reported here, where in this case, homophones such as 
"two" and "to" are considered acceptable errors. Since we do 
not use a grammar, homophones are indistinguishable. 

The initial segment models are obtained on training from 
segmentations given by a discrete hidden Markov model 
recognition system. The results after one pass of training of 
the segment model for the three speakers are summarized in 
Table 2. The HMM recognition results are also given for 
comparison. For the HMM results, five passes of the forward- 
backward training algorithm are performed. The segment 
phoneme system outperforms the phoneme-based HMM 
system, reducing the error rate by one third (including 
insertions). However, the segment phoneme system does not 
quite match the HMM context model system. This suggests 
that context-dependent segment models might be useful. Note 
that in the earlier phoneme results, the segment system 
matched the performance of HMM models conditioned on left 
context only. Here we give results for HMM models 
conditioned on both left and right context. The HMM system 
with context models conditioned on both left and right context 
uses 2000 models, or thiny times the number used by the 
segment system. 

Speaker 
Segment- 

PH 
HMM- 

PH 
HMM- 

PH-LE-Ri 

RS 87/5.3 85/10.2 90/1.1 

FK 83/2.1 75/5.4 88/2.7 

AW 78/3.7 68/7.5 86/3.7 

Average 83/3.7 76/ 7.7 88/2.5 

Table 2:   Word recognition/insertion rates for three 
speakers for the segment phoneme system and for two 
HMM systems: phoneme models and phoneme models 
conditioned on the left and right context. 

modelling of phonemes in continuous speech. Our initial 
results demonstrate the potential of the approach. Of course, a 
practical system requires automatic training and recognition, 
which we demonstrated to perform close to the hand- 
segmented case at the cost of a few insertions For 
comparison, the automatic segment system reduces the word 
error rate by one third over an HMM system on a 350-word 
continuous speech recognition task. 
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6. Conclusion 

To summarize, we feel that the segment model offers the 
potential for large improvements in speaker-dependent acoustic 
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Abstract 

This paper deals with rapid speaker adaptation for speech 
recognition. We introduce a new algorithm that transforms 
hidden Markov models of speech derived from one "prototype" 
speaker so that they model the speech of a new speaker. The 
speaker normalization is accomplished by a probabilistic 
spectral mapping from one speaker to another. For a 350 word 
task with a grammar and using only 15 seconds of speech for 
normalization, the recognition accuracy is 97% averaged over 
6 speakers. This accuracy would normally require over 5 
minutes of speaker dependent training. We derive the 
probabilistic spectral transformation of HMMs, describe an 
algorithm to estimate the transformation, and present 
recognition results. 

I. Introduction 

We have previously demonstrated our techniques for 
robust modeling of phonetic coarticulation for large 
vocabulary, continuous speech recognition [l|. The technique 
combines detailed context-dependent phonetic hidden Markov 
models (HMM) with robust context-independent models to 
improve word recognition accuracy. The BBN Speech 
Recognition System (BYBLOS) integrates many components 
to allow accurate speech recognition with a grammar [2). On a 
350-word continuous speech recognition task, the word 
recognition accuracy was 90% with no grammar, and 
98%-99% with a grammar. To achieve this high recognition 
accuracy, each speaker read 300 training sentences or about 15 
minutes of training speech. 

Some speech recognition applications have a need for a 
new speaker to begin using the system with reasonable 
accuracy without investing a long time to train the sy'stetr on 
their voice. However, as we will see in section 4, the speaker- 
dependent performance degrades dramatically when the 
amount of training speech is reduced using the standard 
training procedure. 

The approach that we consider in this paper is to 
normalize well-trained models from a "prototype'' speaker, to 
model the speech of the new speaker. The normalization 
requires only a few sentences (referred to as "normalization 
speech") from the new speaker. 

In Section 2. we derive and present a procedure for 
estimating a probabilistic spectral mapping from one speaker to 

another. Experiments to test these procedures are described in 
Section 3. The results of the experiments arc analyzed in 
Section 4. 

2. Probahiiistic Mapping 

In this section we present the basis for the probabilistic 
transformation and show it to be equivalent to an expanded 
HMM model for each state of the original HMM. The 
transformation is generalized to be partially dependent on the 
particular phoneme. Finally, we present two detailed 
algorithms for estimating the probabilistic mapping. 

Discrete Hidden Markov Models 

For each state of a discrete HMM. we have a discrete 
probability density function (pdf) defined over a fixed set. iV, 
of spectral templates. For example, in the BYBLOS system we 
typically use a vector quantization (VQ) codebook of size 
^=256 (3). The index of the closest template is referred to 
below 13 the "quantized spectrum" We can view the discrete 
pdf for each state 5 as a probabüity row vector 

ß(i)  =  lp(t|IJ), pikjs)  plkfjs)], (I) 

where pik^s) is the probability of spectral template *, at state s. 

Mapping From Prototype to New Speaker 

If we define a quantized spectrum for the prototype 
speaker as t,, ISiS/V. where i is the index of the spectral 
template and a quantized spectrum for the new speaker as 
*', ISyS/V, then we denote the probabüity that the new 
speaker will produce quantized spectrum k' given that the 
prototype speaker produced spectmm t, is p{k It) for all i, ;. 

We can rewrite the probability for spectrum k' given a 
particular state 5 of the HMM as 

p(*7») = I P^S) pa'^j) a) 
51 

If we  assume  that  the  probability  of f  given  k  is 
independent of f, then 

N 

51 
The set of probabilities pik' for all i and ] form an 

S-xN matrix, T that can be thought of as a probabilistic 
transformation from one speaker's spectral space to another's. 
We can compute the discrete pdf. g'l.tl at state s for the new 
speaker as the product of the row vector. £>(.*) and the matrix. 
T 

pik'ik,) (i) 

('i 

2'(j|   =  pis)   T; T./   ' 
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Expanded HMM Formulation 

The probabilistic transfonnation can also be described in 
terms of an expanded HMM model for the state. Figure la 
shows a single state of the HMM for a new speaker. It 
contains a single discrete probability vector. g'(j). Figure lb 
shows an expanded model in which 'he single state is replace 
hv V parallel paths. 

■) 
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FiRure I:   Expanded HMM. a) single state of the 
HMM; b) expanded model separating prototype pdf and 
transformation matrix. 

The transition probability for path / is/**,!*), the probabUity of 
the quantized spectrum. *, given the same state s for the 
prototype speaker.   The discrete pdf on that path is e(*'U) 
which corresponds to row / of the transformation matrix. 

Careful inspection of the figure will reveal that the 
probability of any new-speaker spectrum, if for the expanded 
HMM shown is a summation of the ;th probability over all N 
paths, as given in (3). Therefore. Figure la represents the left 
side of equation 4. while figure lb represents the right side. 
Now that we have decomposed each pdf for the new speaker 
into us components, we can use the forward-backward 
algorithm to estunate the transformation matrix while keeping 
the prototype pdf fixed. Then, once the matrix has been 
determined, we can replace the expanded HMM by the single 
pdf resulimj from the vector-mauix multiplication in (4). 

Phoneme-Dependent Transformation 

The independence assumption in (3) above assumes that a 
single (probabilistic) spectral mapping will transform the 
speech of one speaker to that of another. However, we know 
that some of the differences between speakers cannot he 
modeled this simply We can define a phoneme-dependent 
mapping: 

N 
pik'/s)  =   £   pikjs) plk'^Ms)) (3) 

where Ws) specifies the equivalence class of states in models 
that represent the same phoneme as s. Since the amount of 
training speech from the new speaker will be small, we could 
not hope to have enough samples of each phoneme to estimate 

a reliable mapping for all phonemes. Therefore, we interpolate 
the phoneme-dependent transformation matrix with the 
phoneme-independent transformation matrix. The weight for 
the combination depends on the number of observed frames of 
the particular phoneme. Thus for those phonemes that occur 
several times in the normalization speech, the iransformntmn 
will depend mosdy on that particular phoneme 

Detailed Algorithm 

The algorithm begins with a VQ codebook and well- 
trained context-dependent and context-independent pdfs 
derived from a prototype speaker A small number of 
sentences are read by the new speaker. The new 
(normalization) speech is quantized using the prototype 
speaker's VQ codebook. (This step may be a source of 
reduced performance, and will be discussed funher in Section 
4.) Then, we use a modification of the standard forward- 
backward algorithm to estimate the phoneme-dependent and 
phoneme-independent transformation matrices. 

To save compulation and storage we use p'(s), the 
compact HMM in Figure la to compute the panial (a and ßi 
terms in the forward-backward algorithm The forw.iH 
backward "counts" are added to a separate count matrix. (Two 
methods for computing the counts are defined at the end of this 
subsection.) Since we have no a priori transformation matrix, 
we must provide an initial estimate. To minimize computation 
we use an identity matrix for the first transformation (that is, 
we just use the prototype pdf as is) However, when we 
compute the counts in the first pass, the transformation matrix 
is a constant value of l/A/ After the first pass, the same matrix 
is used both for forward-backward partial terms and for 
computing the counts. At the end of each pass through the 
normalization data, each row of the count matrix, which 
corresponds to ßU-'ll,), the transformation given one prototype 
spectmm kl is rescaled so it sums to 1 This normalized count 
matrix then becomes the new probabilistic transformation 
matrix After the final pass we transform ail the prototype 
models using (4). 

Computing Counts - Method 1: 

For each alignment of a state with an observed quantized 
spectmm, k'(t)=k'r the prototype pdf vector, pis), is multiplied 
by column ; of the transformation matrix, /7(i'U() /SiSA'. 
This vector product is multiplied by the constants Ot,_i(j-l) 
and ß,(j) (shown in Figure lb) and then accumulated in column 
; of the count matrix. a,.|(j-l) is the probability of the 
observed spectra from frames 1 through t-l given the models 
up to but not including state s. ß,(5) is the probability of the 
observed spectra from the end of the sentence back to time M-l 
given the models after state s. This method corresponds to ne 
standard (maximum likelihood) forward-backward algorithm 
for the HMM shown in Figure lb. 

Computing Counts • Method 2: 

Method 2 is similar to Method I, with the exception thai 
the prototype pdf vector is multiplied by the constants a^s) and 
ß,(J) (shown in Figure Ibi and then added to the corresponding 
column of the count matrix That is the counts are computed as 
the probability of being in state s at tune i. times ihe prototype 
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pdf. We found that only one pass of the algorithm is necessary 
for Method 2, making it preferable in tetms of computation. 
We also found that this method results in slightly better 
perfonnance than Method 1. Therefore all results quoted 
below are for Method 2. 

vocabulary size (350). The grammar used had a Maximum 
Perplexity (5) of 30 and an estimated Perplexity (61 of 20 
(measured on a test set). The recognized sequence of words 
was then compared automatically to the correct answer to 
determine the percentage of errors of each type: substitutions, 
deletions and insertions. 

3. Experiments 

Database 

We have performed experiments on a 350-word subset of 
a naval database retrieval task (FCCBMP). The task has a 
fairly rich structure and allows many different types of 
questions and commands. The prototype speaker recorded 400 
sentences in 4 sessions of 100 sentences each, separated by a 
few days. The first three sessions were designated as training 
data, and the last as test material. At an average of 3 seconds 
per sentence, the total duration of the training material was thus 
about 15 minutes for the prototype speaker. 

Each of 6 new speakers then recorded a subset of the 
training sentences and, in a separate session, the 100 test 
sentences. The 6 speakers included one female, one non-native 
speaker, one experienced speaker, and three inexperienced 
speakers. 

We ronstnicted a dictionary of phonetic pronunciations 
for the vocabulary without listening to either the training or test 
material. With very few exceptions, only one pronunciation 
was chos»n for each word. 

The sentences were read directly into a close-talking 
microphone in a natural but deliberate style in a quiet office 
environment. The speech was lowpass filtered at 10 kHz and 
sampled at 20 kHz. Fourteen Mel-frequency cepstral 
coefficients (MFCC) were computed every 10 ms on a 20 ms 
analysis window. One half of the training speech of the 
prototype speaker was used to derive a speaker-dependent VQ 
codebook. Then all the recorded speech for all speakers was 
quantized using this codebouk. 

Training 

The 15 minutes of speech from the prototype speaker was 
used, together with the phonetic dictionary to estimate 
context-dependent and context-independent phonetic models. 
The speech models for the new test speakers were computed in 
two ways: Speaker-Dependent training and Speaker 
Normalization. In addition to these two models for the new 
speaker, we also performed control experiments using the 
prototype speaker's models without any change. These 
unaltered models are designated "Cross-Speaker" models. 
Prior to recognition, the phonetic models were combined and 
concatenated into word models to facilitate the word 
recognition process. 

Recognition 

We used the time-synchronous search procedure 
desenbed in [4] to find the most likely sequence of words for 
each test sentence. Recognition experiments were performed 
both with and without a grammar. When no grammar was 
used,   the   effective   branching   factor   was   equal   to   the 

4. Results 

We use an error measure that reflects all rhree types of 
errors in a single number. The percent error is given by 

substitutions  +  deletions   t-   insertions %error  =   100 
total   words  +  insertions 

The word accuracy is then defined as 100 - %error. Note that 
this definition is different from the percent correct words. 

Figure 2 below shows the recognition error as a function 
of the amount of training .'.peech (on a log scale) for both 
training conditions. For reference, the results using the Cross- 
Speaker models are also shown. Some of the conditions that 
did not seem to warrant extensive testing (e.g.. 15 second 
speaker-dependent training) were evaluated using a subset of 
the speakers. More critical results (e.g., 15 second speaker 
normalization) were evaluated using .til 6 speakers. 

The recognition error varied lets with the duration of 
speech for speaker normalization than for speaker-dependent 
training - particularly when a grammar was used. The error 
rate with 15 seconds of normalization speech was about the 
same as achieved by the speaker-dependent training method 
with 6 to 10 minutes of training speech. In particular, when a 
grammar was used, the word recognition error with only 15 
seconds of normalization speech from each speaker was 4"??! 
(97% correct words with 1% insenions.) 
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Detail vs Robustness 

We can see from the results with and without a grammar 
that the speaker transformation seems to be much more 
successful when a grammar is used. That is, the error 
decreased by a bigger factor (from speaker-dependent training 
to the normalization algorithm) when a grammar was used than 
when no grammar was used. 

When no grammar is used in speech recognition it is 
important that the models be sharply tuned to make fine 
distinctions. Occassional errors will result from a finely tuned 
model that was inadequately trainea. In contrast, we assume 
that when a grammar is used the number of words allowed at 
each point is small relative to the vocabulary size. In this case 
it is less likely that fine phonetic distinctions will be necessary. 
To get very high performance, it becomes more important that 
the correct word never get a very low score. 

We have observed that the pdfs resulting from the speaker 
normalization procedure are typically broader than those 
resulting from speaker-dependent training. We surmise that 
this effect, combined with the appropriate spectral mapping 
between the speakers, accounts for the large improvement in 
accuracy when a grammar is used. 

Source of Errors 

We performed a series of experiments on one speaker in 
an effort to determine whether the major source of errors is the 
duration of normalization of speech, the normalization 
procedure itself, or the fact that the VQ codebook of the 
prototype speaker is used for the new speaker. We present the 
recognition results (using no grammar) in Table 1 below. 

Condition % error 

15 min spkr-dependent training 167o 

Prototype VQ codebook 24% 

15 min nonnalization 27% 

5 min nonnalization 30% 

2 min normalization 33% 

Table I:   Source of Recognition Errors. 
Each line changes one experimental condition. 

As we see in the table, the largest increase in word error is 
the result of using a VQ codebook tiiat was not designed for 
the new speaker. Our next step, theretore. will be to derive a 
codebook for the new speaker from a combination of the new 
speech and the prototype speaker's codebook. This expanded 
codebook will form the basis for the normalized pdf models. 

5. Summarj 

We have presented a method for transforming the discrete 
HMM models of one speaker so that they are appropriate for a 
second speaker. The procedure uses a small amount of speech 
to estimate a probabilistic spectral mapping from a well-trained 

prototype speaker to a new speaker. The recogniiion accuracy 
with 15 seconds of normalization speech and a grammar (tested 
on a set of 6 diverse speakers) was 97% with 1% word 
insertions. 

The method also makes the HMM models more robust, 
which is most appropriate when a grammar is used. There is 
some evidence that the speaker normalization performance 
suffers because we use the prototype speaker's VQ codebook 
for the new speaker. In future work we will investigate 
speaker-adaptive VQ codebooks for speaker normalization. 
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Abstract designing a large and complex system for continuous speech 

recognition. This paper is organized as follows Section 2 
gives an overview of the BYBLOS system. Section 3 
describes our signal processing frontend. Section 4 describes 
the trainer system used for phonetic model knowledge 
acquisition. Section 5 describes the word model generator 
module that compiles word HMMs for each lexicaJ item 
Section 6 describes the syntactic/grammatical knowledge 
source that operates on a set of context-free rules describing 
the task domain to produce an equivalent finite state automaton 
used in the recognizer. Section 7 describes the BYBLOS 
recognition decoder using combined multiple sources of 
knowledge. Finally, Section 8 presents some figures and 
discussions on BYBLOS recognition performance. 

In this paper, we describe BYBLOS, the BBN continuous 
speech recognition system. The system, designed for large 
vocabulary applications, integrates acoustic, phonetic, lexical, 
and linguistic knowledge sources to achieve high recognition 
performance. The basic approach, as described in previous 
papers [I, 2|, makes extensive use of robust context-dependent 
models of phonetic coarticulation using Hidden Markov 
Models (HMM). We describe the components of the BYBLOS 
system, including: signal processing frontend, dictionary, 
phonetic model training system, word model generator, 
grammar and decoder. In recognition experiments, we 
demonstrate consistently high word recognition perfotmance 
on continuous speech across: speakers, task domains, and 
grammars of varying complexity. In speaker-dependent mode, 
where 15 minutes of speech is required for training to a 
speaker, 98.5% word accuracy has been achieved in continuous 
speech for a 350-word task, using grammars with perplexity 
ranging from 30 to 60. With only 15 seconds of training 
speech we demonstrate performance of 97% using a grammar. 

1. Introduction 

Speech is a natural and convenient form of 
communication between man and machine. The speech signal, 
however, is inherenüy variable and highly encoded. Va;t 
differences occur in the realizations of speech units related to 
context, style of speech, dialect, talker. This makes the task of 
large vocabulary continuous speech recognition (CSR) by 
machine a very difficult one. Fortunately, speech is also 
structured and redundant: information about the linguistic 
content in the speech signal is often present at the various 
linguistic levels. To achieve acceptable performance, the 

recognition system must be able to exploit the redundancy 
inherent in the speech signal by bringing multiple sources of 
knowledge to bear. In general, these can include: acoustic- 
phonetic, phonological, lexical, syntactic, semantic and 
pragmatic knowledge sources (KS). In addition to designing 
representations for these KSs. methodologies must be 
developed for interfacing them and combining them into a 
uniform structure. An effective and coherent search strategy 
can then be applied based on global sion criteria. Practical 
issues that need to be resolved include compulation and 
memory requirements, and how th^y could be traded off to 
obtain the desired combination of speed and performance. 

In BYBLOS, we have explored many issues that anse in 

2. Bybios System Overview 

Figure I is a block diagram of the BYBLOS continuous 
speech recognition system. We show the different modules 
and knowledge sources that comprise the complete system, ihe 
arrows indicating the flow of module/KS interactions. The 
modules are represented by rectangular boxes. They are, 
staning from the top: Trainer, Word Model Generator, and 
Decoder. Also shown are the knowledge sources, which are 
represented by the ellipses. They include: Acoustic-Phonetic. 
Lexical, and Grammatic knowledge sources. We will describe 
briefly the various modules and how they interact with ihe 
various KSs. 

Acoustic-Phonetic KS 

The Trainer module is used for the acquisition of the 
acoustic-phonetic knowledge source. It takes as input a 
dictionary and trjining speech and text, and produces a 
database of context-dependent HMMs of phonemes. 

Lexical KS 

The Word Model Generator module takes as input the 
phonetic models database, and compiles word models phonetic 
models. It uses the dictionary - the lexical KS. in which 
phonological rules of English are used to represent each lexical 
item in terms of their most likely phonetic spellings. The 
lexical KS imposes phonotactic contraints by allowing only 
legal sequences of phonemes to be hypothesized in the 
recognizer, reducing the search space and improves 
performance. The output of the Word Model Generator is a 
database of word models used in the recognizer. 
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Grammatical KS 

More recently, we have been working on representation 
and integration of higher levels of knowledge sources into 
BYBLOS, including both syntactic and semantic KSs. By 
incorporating both of these KSs into BYBLOS in the fotm of a 
grammar into our recognizer, we demonstrate improved 
recognition performance. In Section 6, we describe the 
Grammatical KS in more detail. 

Training 

Speech 

 V 
Text 

Tnlner 

Recognition              V Word  Modall 
7 ^ 

^J  Oftinmir    J 

Speech     ^ 
Input 

Docodor 
^ ^ 

_».   Word 
Sequence 

Figure I:   BYBLOS System Diagram. 

3. Signal Processing and Analysis Component 

The BYBLOS signal processing frontend performs 
feature extraction for the acoustic models used in recognition. 
Sentences are read directly into a close talking microphone in a 
natural but deliberate style in a normal office environment. 
The input speech is lowpass Filtered at 10 kHz and sampled at 
20 kHz. Fourteen Mel-frequency cepstral coefficients (MFCC) 
are computed from short-term spectra every 10 ms using a 20 
ms analysis window. This MFCC feature vector is then vector 
quantized to an ü-bit (256 bins) representation. The vector 
quantization (VQ) codebook is computed using the k-means 
clustering algorithm with about 5 minutes of speech. We 
perform a variable-frame-rate (VFR) compression in which 
strings of up to 3 identical vector codes are compressed to a 
single observation code. We found this VFR procedure speeds 
up computation with no loss in performance. 

4. Training/Acquisition Of Phonetic 
Coarticulation Models 

that we model speech parameters as probabilistic functions of a 
hidden Markov chain, we make use of the Baum-Welch (also 
known as the Forward-Backward) algorithm [3] to estimate the 
parameters of the HMMs automatically from spoken speech 
and corresponding text transcription. For each training 
utterance, the training svstem takes speech and text, and builds 
a network of phonemes using the dictionary. It first builds the 

' 'netic network for the word by using the phonetic 
transcription provided by the dictionary. The phonetic network 
is expanded into a triphone network so that each arc 
completely defines a phonetic context up to the triphone. 
These triphone networks of the word are then concatenated to 
form a single network for the sentence, which in general can 
take into account within word as well as across-word 
phonological effects. The training system then compiles a set 
of phonetic context models for each triphone arc in the 
network. It then runs the forward-backward algorithm to 
estimate the parameters of the phonetic context models. The 
Trainer operates in two modes: speaker-dependent and 
speaker-adapted. Associated with these two modes are two 
distinct methods for training the parameters of the hidden 
Markov models described below. 
Speaker-Dependent 

This is the algorithm used" to find the parameters of the 
HMMs that maximizes the probability of the observed data 
given the model. This method produces HMMs that are finely 
tuned to a particular speaker, therefore in general would work 
well only for this speaker. Typically about 15 minutes of 
speech from a speaker is required for speaker-dependent 
training. 

Speaker-Adapted 

This is a new method of training that transforms HMM 
models of one speaker to model the speech of a second speaker 
|4). This procedure estimates a probabilistic spectral mapping 

from a well-trained prototype speaker to a new speaker Using 
this method it is possible for a new speaker to used the system 
with as little as 15 seconds of speech. 

5. Word Model Generator 

Prior to recognition, word HMMs are computed for each 
word in the vocnuulary. The word model generator takes as 
input two objects: a database of phonetic HMMs as obtained 
in training, and a dictionary that contains piionetic spellings for 
each word. For each phoneme in each word of the lexicon, it 
first finds in the phonetic HMM database all the context 
models that are relevant to this phoneme in its particular 
phonetic environment. It then combines this set of phonetic 
models with appropriate weights to produce a single HMM for 
each phoneme in the word This combination process saves 
computation by precompiling the many levels of phonetic 
context models that can occur for a given phonetic context into 
a single representation. The output of the word model 
generator is a database of word HMMs serving as the input to 
the decoder. 
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The training system in BYBLOS acquires and estimates 

the phonetic coarticulation models used in recognition.  Given 
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Figure 2:   BYBLOS Recognition Results. 
Two task domains (EMAIL and FCCBMP), 
two grammars for each task 
(Command and Sentence), and varying 
amounts of training speech 
(2 minutes and 15 minutes). Also shown are 
maximum perplexity measures for the grammars. 

the language; the Sentence Grammar was designed to cover all 
of the language, which included both command and question 
type constmcts. The maximum perplexity measures of the 
grammars, as proposed in [6], are shown in Figure 2. In both 
tasks, the sentence grammars have a higher perplexity than 
their command counterparts. 

Adaptation Time 

As described in Section 2, The BYBLOS operate in two 
modes, speaker-dependent and speaker-adapted. In speaker- 
dependent mode, 15 minutes of training speech is required for 
a speaker. This mode in general will give word accuracy in the 
98.5+ range. In the speaker-adaptive mode, anywhere from 2 
minutes down to 15 seconds of speech from a new speaker is 
needed to "adapt" the HMM parameters to the new speaker. 
The performance in this case is 97%. 

Speaker Type 

We have tested BYBLOS on several speakers with 
different dialects, including a female speaker, a non-native 
speaker, and 3 naive (uncoached) speakers. The recognition 
results for these speakers showed little deviation typical male 
speakers of standard American dialects. 
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9. Summary 

We have presented BYBLOS, a system for large 
vocabulary continuous speech recognition. We showed how 
we integrate multiple sources of knowledge to achieve high 
recognition performance. In recognition experiments, we 
demonstrated consistent performances across task domains, 
grammars, adaptation time, and speaker type. 

We are currently working to improve various aspects of 
the system, including: a real time implcmemaiion of the 
recognizer, search strategy, acoustic modeling, and language 
modeling. In the future, we plan to work on integration of 
speech and natural language for speech understanding 
applications. 
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Abstract 

This paper presents research into the use of large-scale 
parallelism for a cominuous speech recognition algorithm. The 
algorithm, developed for the BBN Byblos system [1|. uses 
context dependent Hidden-Markov models to achieve high 
recognition accuracy. The multiprocessor used in the research, 
the BBN Butterfly'M Parallel Processor, is a shared memory, 
MIMU machine. The algorithm was implemented using the 
Uniform System software methodology, a system that 
simplifies parallel programming without sacriflcing efficiency. 
The algorithm is described, highlighting those ponions critical 
to an efficient parallel implementation. Some of the problems 
encountered in trying to improve efficiency are presented as 
well as the solutions to those problems. The algorithm is 
shown to achieve 79% processor utilization on a 97-node 
Butterfly Parallel Processor. This is equivalent to a speedup by 
a factor of 77 over a single processor benchmark.1 

i. Introduction 

The introduction'of large-scale parallelism in computers 
offers the potential for greatly increased speed and better 
performance-cost ratios for algorithms that can make use of 
this parallelism. This paper describes the parallel 
implementation of a continuous-speech recognition algorithm 
that successfully uses the speedup provided by a general 
purpose multiprocessor, the Butterfly Parallel Processor. 

The outline of this paper is as follows: Section 2 
describes the Butterfly Parallel Processor and the Uniform 
System. Section 3 describes the BBN word recognition 
algorithm. Section 4 explains the initial parallel 
implementation of the algorithm. Section 5 describes the 
improvements to the algorithm for better processor utilization 
and presents results based on these improvements. The final 
section presents some conclusions from the work. 

2. Butterfly and Uniform System 

The Butterfly Parallel Processor (2) is composed of 
multiple (up to 256) Identical nodes, each containing a 
processor and memory, interconnected by a high-performance 

'This work was sponsored by the Defense Advanced Research Projects 
Agency and was monitored by the Space and Naval Warfare Systems 
Command under Contract No. N0OO39-83-C-0313. 
The authors wouJd like to (hank William Crowther for his assistance on Ute 
binary-tree maximum and for other mformauve discussions. 

switch. The Butterfly architecture is multiple-instmction- 
multiple-data-stream (MIMD), in which each processor node 
executes its own sequence of instructions, referencing data as 
specified by the instructions. Each processor node contains 
either a Motorola MC68000 or MC68020 microprocessor, an 
optional floating-point co-processor, from 1 to 4 megabytes of 
main memory, a co-processor called the Processor Node 
Controller, memory management hardware, an 1-0 bus, and an 
interface to the Butterfly switch. 

The Butterfly switch allows each processor tr access the 
memory on every other node. Collectively, these memories 
form the shared memory of the machine, a single address space 
accessible    to    every    processor. All     interprocessor 
communication is performed using shared memory. 
Instructions accessing memory on the same node as a processor 
typically takr about 2 microseconds to complete, whereas those 
accessing memory on another node take about 5 or 6 
microseconds. Block transfers from one memory to another 
run at 4 megabytes per second. The machines used in this 
project were 16-processor and 97-processor machines, each 
with 1 megabyte of memory and a MC68000 microprocessor 
on the processor nodes. Neither had hardware suppon for 
floating point arithmetic. 

The software for the project w?s written using the 
Uniform System, a programming methodology supported by a 
library of high-level subroutines [3). The benefit of using the 
Uniform System is that it can provide a simple, efficient 
solution to the problem of load balancing for the memory as 
well as for the processors. To balance the load on memory, the 
Uniform System routines spread out the data evenly across the 
different physical memories in the machine. Under the 
assumption that distributed data will also distribute memory 
accesses fairly evenly, this approach can reduce the 
inefficiency that results when many processors attempt to 
access the same memory simultaneously. 

To balance the load on processors, the Uniform System 
treats processors as a pool of identical workers, ail of which 
can execute the same tasks. In this way, tasks can be 
dynamically assigned to the free processors in the machine. In 
a typical program, control starts out in a single processor of the 
machine. To perform tasks in parallel, this processor calls a 
Uniform System "generator" subroutine, specifying a set of 
tasks to do and a task subroutine. The generator creates a 
descriptor of the work to be done and starts ail processors. The 
processors then perform the work in parallel, each taking ihe 
next task data from the desenptor and executing the task 
routine with this data until ail the work is completed. At that 
point, control is returned to the original single processor.   An 
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«ample of a simple generator is GenOnl. The call 
"GenOnl(task_routine. Ntasks)" assigns processors to perform 
the subroutine "taslc_routine" for every integer value in the 
range 1 to Ntasks. 

3. Recognition Algorithm 

The Byblos system has two major components, a trainer 
and a recognizer. The recognition component was 
implemented on the Butterfly Parallel Processor. The training 
component uses the forward-backward algorithm [4] to 
estimate discrete-density Hidden-Markov models of context- 
dependent phonemes. It combines these models to form word 
models that are used in recognition. The context-dependent 
models lead to accurate and robust recognition performance; 
the system has achieved 90% correct recognition on a 335 
word speaker-dependent task with no grammar [5], 

In the recognition process, input speech is analyzed every 
10 ms and then vector quantized with a 256-vector codebook. 
The analysis and quantization are done in real time on an FPS 
array processor attached to a VAX. The quantization codes, 
each representing a frame of input speech, are input in real 
time over an ethemet connection to the search algorithm on the 
Butterfly Parallel Processor 

The search algorithm finds the best scoring sequence of 
words using the trained word models. Each possible sequence 
of words that is considered is called a word sequence theory. 
The search uses the Viterbi decoding algorithm to update 
scores for all word sequence theories at each frame. In order to 
prevent underflow during score updating, all theory scores are 
normalized. To detennine the "normalization factor" for a 
frame, the algorithm computes the maximum score of all states 
in all words in the frame and sets the factor to the score ceiling 
minus the maximum score. 

The major work being performed in the algorithm can be 
abstracted in pseudo-code as follows: 
FOR all input framn ( 

max_score ■■ 0 
best end score := 0 
FOR aU words{ 

update word score 
IF word_ma«_5core > max_score 

max_score := word_max_score 
IF word_end_scor« > besl_cnd_score 

best_end_score := '»ord end score 
) 
determine initial stale scwe for new theories from best end score 
determine normalizalon from max score 

) 
determine and report best scoring theory 

The algorithm computes two maxima: "max_score", the 
maximum over all states of the words scored in an input frame, 
and "best_end_score". the maximum score of all words'/i;ia/ 
states. The first maximum is used for the normalization factor 
mentioned above, and the second is used to determine the score 
for the initial state of all words in the next frame. 

The core of this computation, the word score update, 
entails updating all the phonemes in a word. Each phoneme 
update requires a little less than one millisecond of 
computation, and the average word update time is slightly 
more than 4 milliseconds for the vocaoularies used in this 
work. 

4. Initial Parallel Implementation 

As the first step toward a parallel implementation, the 
speech recognition program was ported from VAX/VMS to a 
single processor of the Butterfly Parallel Processor Both 
versions of the program were in the language 'C The most 
significant change to the program in this phase was the use of 
the Uniform System memory management routines to store in 
global shared memory about 1.5 megabytes of data thai had 
been stored on disk in the VAX version. 

The VAX (and the first Butterfly System implementation) 
used floating-point arithmetic, but because floating-point 
arithmetic is performed in sofrware in our Butterfly Parallel 
Processor, it is substantially slower than fixed point. For this 
reason, the program was switched to fixed-point anthmetic. As 
part of this change, multiplication of probabilities in the 
original version was convened to addition of corresponding log 
probabilities. With this modification, the execution time was 
about two minutes for a 3.5 second utterance from a 120 word 
task. This is about the same speed as our optimized floating 
point VAX 11/780 program. 

Examination of the pseudo-code in the preceding section 
leads to a natural decomposition of the algorithm: the 
fundamental parallel task is to update the score of a single 
word for a single input frame. Using the Uniform system 
generator GenOnl, the pseudo-code for the parallel version of 
our algorithm becomes: 
FOR all frames { 

besl_end_5core := 0 
max_scare :s0 
GenÖnI(updale_word, N_wordi) 
determine iniliafstale score for new theories from best end score 
determine normalizalon from max score 

I 
determine and report best scorinf; theory 

In this version, the subroutine update_word now incluiles 
the calculation of max_score and best_end_score. Note that 
since the processor calling GenOnl waits for all processors to 
finish before proceeding, this mechanism provides a 
synchronization that is needed to ensure that no processor 
begins updating words of a new frame until the initial state 
score and the normalization factor for the next frame have been 
computed. 

Using this simple approach to parallel implementation, a 
first timing experiment was conducted using a 16-proces.sor 
machine and a 120-word vocabulary task. Processor utilization 
was found to be 75%, i.e. the machine was effectively using 
the computation corresponding to 12 of the 16 actual 
processors. (6). This result was judged to be good enough to 
proceed directly to work on a l.irger machme. The first lime 
the program was run on a 97-processor machine, processor 
utilization was approximately 20%. Although this represents a 
factor of 20 speedup of the program, it is an inefficient use of 
the machine. The next section presents several factors thai 
contributed to the inefficiency as well as the methods used to 
improve (hem. 
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5. EfTiciency Improvements and Results 

There are a number of potential obstacles to attaining 
efficient processor utilization on a multiprocessor. Typical 
issues include contention for a common memory location, 
serial code in the program, and processors waiting idly to 
synchronize with other processors. Each of the specific 
problems described below includes one or more of these issues. 

Number of Tasks and Stanup Overhead 

Even before the program was run on a larger machine, we 
had anticipated that it would be haid to obtain high processor 
utilization with a vocabulary as small as 120 words. Since our 
long-term goal is to recognize speech from large vocabularies, 
we switched to a larger task of 335 words. This change 
improved processor utilization to 35% on the 97-processor 
machine. 

The speed of processor scheduling was examined next. In 
the initial parallel version shown above, the generator 
subroutine call starts all the processors at each frame. It was 
found that the overhead of starting up was relatively large for 
the amount of work being done at each frame. To reduce the 
overhead, the program was altered to start all processors only 
once at utterance stan, generating NframesxNWords tasks at 
that point and letting each processor determine its word and 
frame indices from the single task index it receives from the 
generator. Processor utilization improved to about 50% with 
this change. 

Processor Synchronization Issues 

The task generation change had removed the 
synchronization provided by starting up a new generator at 
each frame. To replace this, an explicit synchronization was 
built into the program to be performed after all the words in a 
frame were processed. There were two subsequent changes to 
improve the efficiency of synchronization. The first dealt with 
task ordering. In the early versions of the algorithm, 
processors updated all the words in the vocabulary, with no 
particular ordering of the words. Since words have varying 
numbers of phonemes (from one to 14 phonemes in this task's 
vocabulary), different words took different amounts of time to 
update. If a processor began work on a long word near the end 
of the work for a frame, other processors would finish their 
assigned words and wait idly to synchronize with the one busy 
processor. To reduce this inefficiency, the words were 
processed in order from longest to shortest (in number of 
phonemes). 

In figure 1, we schematically depict the situation before 
and after the words are ordered. The filled rectangles represent 
time when processors actively work on tasks and the white 
space represents tune between tasks when no work is being 
accomplished. In the right hand pan of the figure, idle 
processor time is substantially reduced by soning. 

The second change to synchronization efficiency 
concerned the point in the program at which . iironization 
was done. As mentioned, the purpose of the synchronization 
was to ensure that no processor proceeded to the next frame 
until the staning score for words and the normalization factor 
were computed. Since the normalization factor was only to 
avoid score underflow, it could be estimated a frame or more 
earlier. The only remaining synchronization constraint was the 

word-staning score. This score, however, is used only at the 
beginning of the/inf phoneme of each word. Considering this, 
the order of the update of a word was reversed so that the last 
phoneme was updated first, and the first phoneme updated last. 

Synch   Point 

Unsorted   Words 
Synch   Point 

Sorted   by   lenglh 

Figure I:   Ordering Tasks by Length 

This change allowed a processor to finish work on one frame 
and immediately begin work on updating a word from the next 
frame, synchronizing only when it got to the first phoneme. In 
this way, time that had been previously spent by processors 
wailing for others to finish a frame was now being used to 
perform useful work from the next frame. 

Figure 2 depicts the situation for two frames of an 
utterance before and after this change. Tasks for time T+l are 
shown in two shades. The darker ponion represents the part of 
the task that depends on the previous frame's work being 
finished. On the right, with the the order of the computation 
reversed, the idle processor time is reduced. The effect of the 
synchronization changes was to increase processor utilization 
to approximately 72%. 
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Finding Global Maximum 

Finally, the efficiency of finding the maximum value was 
also improved. A straightforward computation of the 
maximum value requires that all values be compared with a 
single memory location, but this approach results in contention 
for that location. As a first improvement, the program was 
altered to make each processor maintain its own local 
maximum of the scores of all the words that it updates in a 
frame. At the end of the frame, the global maximum of these 
values over all processors was determined. In initial versions, 
this was accomplished by having processors sequentially 
compare their value to the global location and replace it if 
necessary. Although on a sixteen processor machine, the time 
for processors to mm in values in this way is negligible, with 
97 processors, the inefficiency of the approach becomes 
noticeable. 

An alternative to this approach was to set up a "binary 
tree" of locations for taking the maximum. In this approach, 
the processors' local maxima axe the leaves of the tree and the 
maxima are propagated up through the nodes of the tree. This 
approach reduces the asymptotic time for finding a global 
maximum from 0<N) to 0(log N), where N is the number of 
processors. More bnponanüy in our case, efficiency improved 
because memory contention was reduced. 

The total effect of all the improvements described above 
was to improve processor utilization on a 97-processor 
machine from 20% to 79%. Figure 3 is a graph of processor 
utilization for 1 to 97 processors on the 335 word task. The 
actual speed of the speech recognition improved accordingly. 
After the optimizations are included, a one-processor Butterfly 
Parallel Processor requires 128 times real time (128 seconds to 
process one second of input speech) and a 97-processor 
machine requires about 1.7 times real time. 

100 

NUMBER 
IFfECTIVE 
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20 40 M M 
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Figure 3:   Butterfly Processor Utilization, 335 words 

6. Conclusions 

This work has shown that the Butterfly architecture is 
suitable for continuous speech word recognition. The 
algorithm was implemented efficiently without changing the 
type or amount of computation performed. Some ingenuity 
was required to obtain an efficient realization, but once the 
obstacles were undentood, solutions presented themselves 
fairly readily. The memory and processor management 
functions of the Uniform System made initial parailelizaiion of 
the algorithm quite easy and provided several alternatives for 
improving implementation efficiency when requued. 

We draw several broad conclusions about efficient 
parallel programming as well. Most obviously, and perhaps 
most importantly, it is crucial that sequentially executed code 
be eliminated wherever possible. Similarly, much of the 
inefficiency in our original multiprocessor program was due to 
processors waiting for each other. Synchronizing processors 
only after all other possible work is done was found to be a 
good strategy to avoid this. Additionally, it can be very 
important to minimize the overhead of parallel constructs such 
as staning processors 
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A NEW MODEL FOR THE TRANSDUCTION STAGE 
OF THE AUDITORY PERIPHERY* 

Stephanie Seneff 
Research Laboratory of Electronics 

Masfachusett« luititute of Technology 
Cambridge, Maasachiuetts 02139 

ABSTRACT 
A new model is proposed for the transformation in the coch- 

lea from Basilar membrane vibration to nerre fiber responses 
in the Vlllth nerre. The model has been incorporated into 
a system for speech processing that we are currently using as 
a front end in a speech recognition system under derelopment. 
We have found that spectral representations based on this model 
show certain advantages over traditional methods for spectral 
analysis for particular applications. 

We believe that this model represents the auditory periph- 
ery much more accurately than previous models that we have 
used. The most important change is that a new adaptation 
model is used, one that was originally proposed by Goldhor [l|. 
With this adaptation model it is possible to obtain reasonable 
matches to the equal-incremental-response criterion imposed by 
the Smith and Zwisiocki data [2|. Parameters of the system 
were adjusted so as to match this criterion as well as possible. 
In addition, the model was compared with auditory data in four 
other experimental categories as well, a« discussed in the paper. 
These categories were selected because we believe they reflect 
important aspects of the response for speech applications. Ex- 
amples are given of outputs of the system for speech signals in 
order to illustrate how the nonlinearities in the model affect the 
responses to speech. 

INTRODUCTION 
The peripheral auditory system ia typically modelled 

by a bank of linear filters which resemble available data 
on the shapes of auditory filters, followed by a nonlinear 
stage that attempts to capture the dynamics of the trans- 
formation from Basailar membrane vibration to nerve fiber 
response. This part of the model incorporates such non- 
linearities as dynamic range compression and half-wave 
rectification, »"d also captures effects such as short-term 
adaptation, rapid adaptation, and forward masking. It is 
very difficult to devise a scheme that will accurately repro- 
duce diverse aspects of auditory response, yet we feel that 
it is very important in speech processing for these r.spects 

•This research »as supported by DARPA under Contract N00039-S5- 
C-02S4. monitored through Naval Electronic Systems Command. 

to be more-or-!ess cor-ect. An enormous amount of data 
is available from measurements made from auditory nerve 
fibers for a number of different experimental paradigms. A 
useful goal is to attempt to reproduce gross features that 
emerge from such experiments. We selected auditory data 
from five different categories of response measurements to 
be compared with the model. These demonstrate the de- 
gree of success in capturing the detailed wave shape in 
steady state conditions, the dynamics of onset response, 
the degree of forward masking, the extent of loss of syn- 
chrony at high frequencies, and the incremental response 
characteristics at onset and steady state. 

MODEL DESCRIPTION 
Figure 1 shows a block diagram of our current auditory- 

based front-end system. The initial stage is a bank of 
linear filters, which is followed by the "hair-cell/synapse" 
stage that introduces the nonlinearities. A bifurcation 
of the outputs leads to two spectral-like representations, 
the 'Envelope Spectrogram' and the 'Synchrony Spec- 
trogram." The only part of this model that has been 
changed since previous reports (3| is the hair-cell/synapse 
stage. The new model for this stage consists of four sub- 
components, u shown in Figure 2: a half-wave rectifier, a 
short-term adaptation circuit, a lowpass filter, and a rapid 
Automatic Gain Control (AGC). We will discuss each of 
these components in turn. 

All of these components except the lowpass filter are 
nonlinear, and therefore the final output is affected by the 
ordering of the components. A particular ordering can be 
justified in part by forming associations with elements of 
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Figure 1: Block diagram of our computer model 
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Figur« 3: Block disdain of the subcompoorats of Stage II with 
suggested auditory system affiliations indicated at right 
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Figur« 3: Plot of input-output response of the half-wave rec- 
tifier used in the model. This mapping resembles the hair cell 
current response as measured for frogs [4| 

tes 

the actual auditory system. Such links can also aid in the 
design of each individual component. To the right of each 
component in the figure is proposed a corresponding af- 
filiation with the auditory system. The hair-cell current 
response as measured for amphibians shows a distinct di- 
rectional sensitivity [7]. It is not clear that the current is 
a direct link in the response mechanism; nonetheless, it is 
tempting to assume that half-wave rectification first occurs 
in the hair cell, and hence this is the first component in 
the model. There seems to be no evidence for short-tenn 
adaptation in hair cell current or voltage responses; there- 
fore it is generally assumed that this effect is introduced 
in the synapse between the hair cell and the neuron |5|. 
The logical ordering is therefore to place this component 
second. 

The AGC is assumed to be affiliated with the refrac- 
tory phenomenon of nerve fibers; therefore, this compo- 
nent should be placed late in the series. Such aa affiliation 
implies that the rapid adaptation component of responses 
to onsets is due to the refractory phenomenon, a theory 
that has been proposed by Johnson and Swami [6|. It is 
difficult to know where to place the lowpass filter. It is as- 
sociated with the gradual loss of synchrony in nerve fiber 
responses as stimulus frequency is increased. The locus 
(or loci] of such synchrony loss has not yet been deter- 
mined. The lowpass filter must follow the half-wave rec- 
tifier, because it only makes sense after signal energy has 
been preserved through a DC component. The solution 
adopted was to try placing the lowpass filter in all three 
of the remaining positions, and choose the one that yields 
the best behavior in the final response. 

The model for the half-wave rectifier, whose response 
function is shown in Figure 3, is defined mathematically 
as follows: 

1 + A tan-1 flx i > 0 
e*** x<0 

(by a 'spontaneous* rate of 1) for small positive signals, 
and compressive for larger signals, saturating at l + Av/2, 
It is based on the measured hair cell current responses as a 
function of a fixed displacement of the cilia as determined 
in frogs by Hudspeth and Corey [7]. 

The model for short-term adaptation is very similar 
to one proposed by Goldhor [I|. It consists of a simple 
nonlinear circuit, as shown in Figure 4. The input is the 
voltage source, V,, and the output is the current through 
the conductance Gl. Gl is in series with a diode, which 
serves to lock out this branch of the circuit whenever the 
voltage across Gl becomes negative (the "off" condition). 
There is another conductor, G2, in parallel, in addition to 
a capacitor. The capacitor accumulates a charge whenever 
the signal V, is sufficiently positive, and discharges through 
G] when the stimulus voltage falls below the capacitor 
voltage. 

Goldhor showed that such a circuit, when applied us- 
ing the envelope of the stimulus as the input V„ obeys the 
equal incremental response property of short-term adap- 
tation |2|, and also appropriately exhibits a longer time 
constant for recovery after signal offset than for adapta- 
tion after signal onset. The latter property holds because 

gj OUTPUT CURRENT 

y.-y. 

(i) 

It is thus exponential for negative signals, linear but shifted 

Figure 4: Goldhor's (1] viaptation circuit. lu our model, the 
output of (he half-wave rectifier of Figure 3 \f tuen a» V',. the 
input to the adaptation circuit. 
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during recovery the diode is turned off, and the capacitor 
discharges only through G,, whereas after increments the 
diode tends to be on, and current can flow through both 
conductors to charge the capacitor more quickly. 

Ou: model uses the same circuit, except that the de- 
tailed cycle-by-cycle behavior of the input signal is pre- 
served in Vi. The consequence is that the diode turns on 
and off for each period of the stimulus, and an adapted re- 
sponse is obtained only after the capacitor reaches a steady 
state condition in which the amount of charge gained dur- 
ing the time in which the input voltage level is higher is 
exactly the same as the amount lost during the remaining 
portion of the cycle. One consequence is that the effec- 
tive time constant for adaptation lies somewhere between 
the "on" time constant, r,, and the "off" time constant, 
rj. The time constant for recovery, on the other hand, is 
equal to fj. 

The current through the diode branch of the adap- 
tation circuit is next processed through a lowpass Alter 
that achieves two important effects: it reduces synchrony 
to high-frequency stimuli and it smooths the square wave 
shape encountered in the half-wave response for saturat- 
ing stimuli. The lowpass filter was realised as a cascade of 
nLr leaky integrators, each with an identical time constant 
TLp. The two parameters, fit/, and TLr were adjusted to 
match available data on synchrony loss [8|. 

The final component is the rapid AGO, which is defined 
as follows: 

'II-.^W m 

where KäGC i« a constant and <> symbolises 'expected 
value of," obtained by processing x(n| through a first-order 
lowpass filter, with time constant lUoo« This equation 
resembles in form the formula obtained theoretically by 
Johnson and Swaml [6| as a steady-state solution for a 
simple model of the refractory effect, where it is assumed 
that a response is locked out for a time interval A after a 
spike occurs: 

Tim« cipondtd 

y(0 m 
l + /     x(a)da 

(3) 

Figure 5 shows the outputs of intermediate stages of 
the 2000-Hz channel in response to a high-amplitude tone 
at CF. The envelope of the response over a long time inter- 
val is shown on the left, and the detailed waveshapes near 
tone ^ -et are shown on the right. Part a shows the re- 
sponse after only the linear filter of Stage I. Part b shows 
the response after the Instantaneous half-wave rectifier. 
The square wave shapes introduced here are lost after the 
lowpass filter. The effects of the short-term adaptation 
component are apparent in the envelope response on the 
left in part e. The final AGC further alters the dynamics 

Figure S: Rrsponses at intennediste stagn of the 
hair-cell/synnpse model for 2000-Hi tone nl CF at hi?b siifnal 
level: (a) after critical band filter, (b) after half-wave, (c) .ifter 
short-term adaptation and lowpass filter, and (d) after AGC 

of the onset, to produce a trend quite typical of auditory 
nerve fibers, as shown in part <L 

COMPARISONS TO AUDITORY DATA 
The above system has a number of parameters that 

can be adjusted according to some criteria based on rele- 
vant auditory data from the literature. At the same time, 
the degree of success in the matching process can help 
to evaluate the model's adequacy for capturing auditory 
phenomena. The following data were selected as responses 
that should be matched, in part based on a judgment of 
which aspects of the auditory response are likely to be 
significant with regard to speech analysis. 

• Envelope response characteristics at tone onsets as 
a function of tone level, 

• Forward masking effects as a function of masker level 

• Period histogram respom ra in steady state condi- 
tions for one-formant vowel stimuli, as a function of 
stimulus level, 

• Equal incremental response characteristic, and 5:2 
omet-to-steady-state ratio, and 

• Synchrony falloff characteristics as a function of tone 
frequency. 

The parameters of the system were adjusted to match 
ail of the above criteria as well as possible. Several it- 
erations through the matching process were necessary for 
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TabU 1: Fixed parameter values used for experiments 

convergence. Some surprising results emerged from the ex- 
ercise; most remarkable was that r3 for the Goldhor adap- 
tation circuit had to be set to a much larger value than 
was anticipated in order to match the forward masking 
data. Another discovery was that, although the short-term 
adaptation component and the AGC component interact 
in a complex way, it is possible to set their paramatera so 
that the equal-increment criterion imposed by the Smith 
and Zwislocki experiment is reasonably well matched. We 
will discuss each of the above criteria in turn, in each case 
showing a plot of the auditory data and the correspond- 
ing model response. The output of the half-wave rectifier 
was multiplied by a gain term, GHW, which was adjusted 
to yield a final output that could be equated with a firing 
rate. In all cases, the various time constants of the model 
were set at fixed values, according to Table 1. 

Ton« Onsatat 
Delgutte [9| plotted the envelope« of responses of cat's 

ear nerve fibers to tone bursts as a function of eight dif- 
ferent tone levels, as shown here in Figure 6a. The experi- 
mental paradigm was reproduced for the computer model, 
and the resulting responses are shown in Figure 6b. On- 
set response characteristics are largely dominated in the 
model by the parameters of the rapid AGC component. 

Forward Maaking: 

Delgutte's [9| plots for a fonvard masking experiment 
are shown in Figure 7a, along with the results of the com- 
puter model in Figure 7b. The plots are given as a function 
of adapter level, with the teat tone level held fixed. The 
main controlling factor of forward masking in the model 
is f] of the short-term adaptation circuit. 

Period Hiatograma: 
Delgutte's [9| plots of the period histograms of responses 

to a one-formant vowel stimulus are shown in Figure 8a, 
along with the model results in Figure 8b. In both the au- 
ditory data and the model data, the formant bandwidth 
in the response appears to become larger (more rapid de- 
cay with each period) at Ir' mediate amplitudes, and 
much smaller at large amplitudes, when saturation effects 
are dominating the response. The half-wave rectifier is 
the controlling factor in this steady-state phase-locked re- 
sponse characteristic, although the short-term adaptation 
circuit also plays a role. 

n« 
Figure A: (left) Response patterns of an auditory nerre fiber 
to a tone bunt as a function of signal level (from Delgutte 
|9|). The 180-ms burst has a rise/fall time of .25 ms, and a 
frequency, 770 Hz, approximately equal to the fiber CF. The 
poat.stimulus-time (PST) histogram was computed with a bin 
width of 1.4 ms and then smoothed with a three-point smoother. 
Figure 7: {left) Response patterns of an auditory nerve fiber 
to a 20-ms test tone preceded by a 200-ms adapting tone (from 
Delgutte |9|). Both tones have a rise time of 2.5 ms. and a 
frequency, 1220 Hz, approximately equal to the fiber CF. His- 
tograms are computed with a 1-ms bin width, and three-point 
smoothed. {right) Response patterns for the computer model for 
the same stimulus conditions, using a 3-ms Hamming window 
for smoothing. 
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Figure 8: [left] Response patterns of an auditory nerve fiber 
to a stngle-formant synfhethir stimulus as a function of signal 
level (from Delgutte [0)), The stimulus has an 800-Hz formant 
frequency, approximately equal (o the fiber CF. Formant band- 
width is 70 Hz. and the fundamental frequency of voiring is 100 
Hz. The lO-ms period histogram, computed with a SO-^is bin- 
width, is repeated twice in each case, to show two pitch penods 
of the response, {right) Response patterns for the model for 
the same stimulus conditions. The responses in th;- case are 
unsmoothed. 
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Incremental RaaponaMi 
Smith and Zwislocki [21, using tone pedestals as stimuli, 

mr lured rate responses of guinea pig auditory nerve fibers 
as a function of time. The stimuli consisted of sudden- 
onset tone bursts whose amplitudes, /, were incremented 
by an amount 51 at a time r = 150 m^ after initial onset. 
A PST histogram of the response was computed, and a 
difference between the response just before and just after 
the amplitude increment constituted a 'steady state in- 
cremental response." This incremental response, defined 
by IR = Sf - R~, was then compared with an "onset in- 
cremental response," defined as the difference between the 
response to an onset tone at level I + 61 and one at level 
/. Two important observations were: 1) The steady-state 
and onset IR's were nearly equal for stimuli of intermedi- 
ate range, but the steady-state IR was somewhat larger for 
stronger stimui, and 2) the ratio of the response Rn at on- 
set to the response R~ at steady state wa» approximately 
equal to 2.5, regardless of the onset intensity level. 

This was the most dilticult experimental paradigm to 
match with the model. The rapid AGO and the short-term 
adaptation circu't tend to impose opposing constraints on 
the outputs. It was possible to obtain a fairly constant 
ratio of onset to steady-state response, but this ratio was 
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Figure 9: (a) Plots of onset firing rates versus steady-state fir- 
ing rates, in response to tone pedestals at CF, for two auditory 
neurons {left, from Smith and Zwislocki [2j). and for the com- 
puter model {right). Model response is for the 2000-Hz channel. 
(b) {left) Plots of median normalized 3-dB incremental responses 
for 10 auditory neurons (ffm Smith and Zwislocki |2|) at on- 
sets (open circles) and at steady-state conditions, (righ. .ots 
of normalized 3-dB incremental responses for model, at onsets' 
(open circles) and at steady-state conditions. 

consistently too large (3.0 instead of 2.5), as shown in Fig- 
ure 9a. For the parameter settings shown in Table I, the 
3-dB onset incremental response of the model was slightly 
larger than the 3-dB steady-state incremental response for 
weak signals, but became significantly smaller for stronger 
signals. This result is in close agreement with the data, as 
shown in Figure 9b. 

Synchrony Falloff: 

Johnson |8| gave a specific definition for a 'synchro- 
nization index9 that he applied to the period histograms 
of the steady-state responses of nerve fibers to tone stim- 
uli. This index was defined as 

5, = A{Ft)/A{0) (4) 

where 5/ is the synchronization index, A{f) is the ampli- 
tude of the spectrum of the period histogram at frequency 
/, i. d Fa is the tone frequency. Johnson measured S; 
for a large number of fibers, for tones not necessarily at 
CF, and obtained the plot shown in Figure 10. Superim- 
posed as large triangles on the plot are points obtained by 
applying the same definition for synchrony to the mod.d 
outputs. The main factor controlling the synchrony falloff 
in the model is the lowpass filter. 
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Figure 10: Scatter diagram of synchronization index (from 
Johnson [8|) as defined in equation 4, as a function of tone fre- 
quency (339 measurements from 233 units), with model results 
superimposed as large triangles. 
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OUTPUTS OF THE MODEL FOR 
SPEECH SIGNALS 

Figure 11 shows an example of the Stage 11 outputs for 
a short segment of a male speaker's voiced speech, during 
the /e/ of the word "make." Part a gives the wideband 
spectrogram of the word, with a vertical bar indicating the 
time at which channel outputs are shown in part b. The 
50 ma time window includes about five pitch periods. The 
peaks are skewed slightly to the left for low frequencies, a 
feature that ha« been observed in auditory data as well [8|. 
Part c of the figure shows the output of the channel whose 
CF is at F: of the vowel. A prominent component at the 
formant frequency is evident. Such formant periodicity is 
utilized by the synchrony algorithm in Stage III. 

Figure 12 compares Stage I outputs with Stage II out- 
puts for the word 'description* spoken by a female speaker. 
Each waveform is the smoothed output of one of the 40 
channels as a function of time, with low-frequency channels 
at the bottom. It is essential to represent Stage I outputs 
by a log magnitude rather than a magnitude; otherwise 
the vowel peaks are overwhelmingly larger than the rest 
of the data. Log magnitude also corresponds to traditional 
analysis methods. Because of the saturating nonlinearity 
in the half-wave rectifier as well as in the final AGO, a log 
representation is not appropriate for Stage II outputs. The 
phonetic transcription has been superimposed, to help in 

judging where segment boundaries should be detected. 

All segment boundaries, with the exception of the /n/, 
are well delineated in the Stage II representation. The clo- 
sure intervals for both the /k/ and the /p/ are flat valleys 
in the Stage II representation; there is clear evidence for 
forward masking here, particularly in the low-frequency 
region for the /p/. The vowel /i/ has masked Ic 're- 
quency noise not only during the /p/ closure interval but 
also during the subsequent ///. Such masking pi ^nomena 
should enhance the contrast between vowels and fricatives. 
The boundary between the /i/ and the final /n/ is very 
difficult to see in the Stage I representation, but there is a 
much greater hope of detecting it after the Stage II non- 
linearities. The stop burst onsets for the /d/ and the /k/ 
are also much sharper after Stage 11. 

SUMMARY AND CONCLUSIONS 
This paper describes the nonlinear component of a rel- 

atively simple model for auditory processing of speech sig- 
nals, which attains a reasonably good match to measured 
auditory responses for a number of different experimen- 
tal paradigms. The model offers the hope of elucidating 
further the nature of auditory response to speech. In ad- 
dition, we anticipate that representations obtained from 
such a model will be well-suited to applications in com- 
puter speech recognition. 

(a)    e (a) Aftar Stage I (b) After Stage I 

3sec 
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Figure 11: (a) Wideband spectrogram of the word "make." 
spoken by a male speaker, (b) Stage II outputs of 40 channels, 
with the loweit frequency channel at the top, for five pitch pe- 
riods during the vowel /e/ at the time of the vertical bar in 
part a. (c) Output of the single channel at the frequency of the 
second formant at the same time as in part b. 

Figure 1' ;a) Log magnitude response of Stai?e I outputs 
for the word "description" spoken by a female speaker, with the 
/oioejf frequency channel at the bottom, lb) Magnitude response 
of Stage II outputs for the same word. The phonetic transcrip- 
tion is superimposed on the plots, and the original waveform is 
shown below in each caae. 
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The Smith and Zwiilocki data showing a coutaat ra- 
tio of onMt to steady-state response, and a clo»o-to-«qual 
incremental response characteristic for onset and steady- 
state conditions, have led to the hypothesis that the adap- 
tation process might be linear in nature. A possible alter- 
native explanation, based on the results from the model 
described here, is that this apparently linear feature may 
be attributed to a cascade of an enhancing nonlinearity 
with a compressive nonlinearity, such that the two effec- 
tively cancel one another under certain conditions. 

The model used for the AGO is a poor approxima- 
tion of the refractory effect aa it is currently understood. 
First, equation 3 is only valid for steady-state conditions, 
and only exact for signals that an periodic with A. Sec- 
ond, a leaky integrator yields an averaging window for' 
< x > that is exponential in shape, whereas a rectangular 
window is a much better approximation to the recovery 
function. Nonetheless, the value for KAGC that was deter- 
mined experimentally to best match auditory data is .002.' 
This value corresponds to a 2-ma lockout period, which it 
a little long but at least the correct order of magnitude. 
Perhaps a more realistic model for the refractory effect 
that would be appropriate during onsets as well as steady 
states would result in a better match to the dynamics of 
the onset envelope response. 

It is still premature to sumest that an auditory-based 
speech analysis system will pay off in speech recognition. 
There are emerging, however, strong indications that auditory- 
based representations are interesting and worthy of further 
study. Onset and offset enhancement properties an partic- 
ularly effective in sharpening segment boundaries, aa dis- 
cussed in [10|. The forward masking phenomenon should 
be effective in reducing noise in stop bursts and enhancing 
low/high frequency contrast in strong fricative«. We an 
now becoming more confident in the validity of the com- 
puter models, such that thay may reveal interesting effects 
in auditory speech processing, which may lead the way to 
appropriate later-stage speech recognition strategies. 
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ABSTRACT 
A new approach to vowel recognition is described, which 

begins by reducing a spectrographic representation to a set of 
straight-line segments that collectively sketch out the formant 
trajectories. These 'line-fonnants" are used for recognition by 
scoring their match to a set of histograms of line-formant fre- 
quency distributions determined from training data for the 16 
vowel categories in the recognition set. Speaker normalization is 
done by subtracting fb .'mm line-formant frequencies on a Bark 
scale. Although the formants are never enumerated or tracked 
explicitly, the frequency distributions of the formants are the 
main features influencing the recognition score. Recognition re- 
sults are given for 2135 vowels extracted from continuous speech 
spoken by 292 male and female speakers. 

The outcome is that a spectrographic representation is re- 
duced to a skeleton sketch consisting of a set of straight- 
line segments, which we call "Une-formants," that collec- 
tively trace out the formant tracks. The recognition strat- 
egy then involves matching all of the Une-formants of an 
unknown segment to a set of templates, each of which 
describes statistically the appropriate line-formant config- 
urations for a given phonetic class (which could be as de- 
tailed as "naaalued /a/" or as general as "front vowel"). 
Usually the number of line-formants for a given speech seg- 
ment is considerably larger than the number of formants, 
because in many cases several straight-line segments are 
required to adequately reflect the transitions of a single 
formant. 
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rNTPODUCTION 

The formant frequencies are probably the most impor- 
tant information leading to the recognition of vowels, as 
well as other sonorant and even possibly obstruent sounds. 
Therefore, researchers have spent a considerable amount 
of effort designing robust formant trackers, which attempt 
to associate peaks in the spectrum with -mant frequen- 
cies, using continuity constraints to aid in .-8 tracking of 
the formants. Once the formant tracks are available, it 
then becomes possible to identify directions and degree of 
formant movements, features that are important in recog- 
nizing diphthongs, semivowels, and place of articulation of 
adjacent consonants. 

It is impossible to design a "perfect* formant tracker. 
The most serious problem with formants is that when they 
are wrong there are often gross errors. Therefore, we have 
decided to adopt a somewhat different approach, one that 
can lead to informativ. ..bout formant movements with- 
out explicitly labelling the formant numbers. The method 
also collapses the two stages of formant tracking and track 
interpretation (e.g., "rising formant") into a single step. 

"Thij rufarch was s'ipportfd by DARPA under Contract iN00039-8&- 
C-02S4. monitor«! through Naval Electronic Systems Command. 

SIGNAL PROCESSING 

Spectral Representation 

The system makes use of two spectrogram-like repre- 
sentations that are based on our current understanding 
of the human auditory system |1{. The analysis system 
consists of a set of 40 critical band filters, spanning the 
frequency range from 160 to 6400 Hz. The filter out- 
puts are processed through a nonlinearity stage that intro- 
duces such effects as onset enhancement, saturation and 
forward masking. This stage is described in detail in a 
companion paper |2|. The outputs of this stage are pro- 
cessed through two independent analyses, each of which 
produces a spectrogram-like output. The "Mean Rate 
Spectrogram" is related to mean rate response in the au- 
ditory system, aud is used for locating sonorant regions 
in the speech signal. The "Synchrony Spectrogram" takes 
advantage of the phase-locking property of auditory nerve 
fibers. It produces spectra that tend to be amplitude- 
norm?lized, with prominent peaks at the formant frequen- 
cies. The amplitude of each spectral peak is related to the 
amount of energy at that frequency relative to the energy 
in the spectral vicinity. The line-formant representation is 
derived from this Synchrony Spectrogram. 
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Line-formant Processing 
The line-formants are obtained by first locating sono- 

rant regions, based on the amount of low frequency energy 
in the Mean Rate Spectrogram. Within these sonorant re- 
gions, a subset of robust peaks in the Synchrony Spectro- 
gram is selected. Peaks are rejected If their amplitude is 
not sufficiently greater than the average amplitude iu the 
surrounding time-frequency field. For each selected p.iak, 
a short fixed-length line segment is determined, whose di- 
rection gives the best orientation for a proposed formant 
track passing through that peak, using a procedure as out- 
lined in Figure 1. The amplitude at each point on a rect- 
angular grid within a circular region surrounding the peak 
in question is used to update a histogram of amplitude 
as a function of the angle, 9. Typic?! sizes for the circle 
radius are 20 ms in time and 1.2 Bark in frequency. The 
maximum value in the histogram defines the amplitude 
and corresponding 9 for the proposed track, as marked by 
an arrow in Figure le. 

At each time frame several new short segments are 
generated, one for each robust spectral peak. A short 
segment is then merged with a pre-exist ng partial Une- 
formant whenever the two lines have a sin ilar orientation, 
and the distance between each endpoint ? \d the other line 
is sufficiently small. The merging process is accomplished 
by creating a weighted-average line-formant that incorpo- 
rates the new line. If a given new segment is sufficiently 
unique, it is entered as a new partial line-formant. 

The resulting Skeleton Spectrogram for the /a/ in the 
word 'shock'is illustrated in Figure 2a, along with a Schema- 
tized Spectrograr   in Figure 26, included to facilitate vi- 

Flgur« 1: Schematic illustration of'process used to deter- 
mine an orientation for a formant passing through a peak. (a| 
Synchrony Spectrogram with cross-ba« indicating a referenced 
peak, (b) Schematic blow-up of region around the peak, outlin- 
ing procedure to generate a histogram of amplitude as a function 
of angle, (c) Resulting histogram for the example in part a. 

sual evaluation. The latter is constructed by replacing 
each line-formant with a time sequence of Gaussian-shaped 
spectral peaks with amplitude equal to the line's ampli- 
tude. The corresponding Synchrony Spectrogram is shown 
in Figure 2c, with line-formants superimposed. For direct 
comparison. Figure 2d shows a Synchrony Spectral cross 
section at the time of the vertical bar, on which is super- 
imposed a cross section of the Schematized Spectrogram. 
For this example, we see that peak locations and amlitudes 
in the vowel are accurately reflected. In addition, formant 
transitions appropriate for the palatal fricative on the left 
and the velar stop on the right are also captured. 

RECOGNITION EXPERIMENT 
Thus far, we have focused our studies on speaker-inde- 

pendent recognition for 16 vowels and diphthongs of Amer- 
ican English in continuous speech, restricted to obstruent 
and nasal context. The semivowel context is excluded be- 
cause we believe that in many cases vowel-semivowel se- 
quences should be treated as a single phonetic unit much 
like a diphthong. 

Speaker Normalisation 
Our first task was to devise an effective speaker-nor- 

malisation procedure. Many investigators have noted the 
strong correlation between formant frequencies and Fo |3|. 
The relationship is clearly nonlinear - the second formant 

Bark        20 

Figure 2: Sample line-formant outputs; (a) Skeleton Spectro- 
gram for word "shock,* (b) Corresponding Schematired Spec- 
trogram, (c) Synchrony Spectrogram with line-formants super- 
imposed, (d) cross-sections from h and e it the cursor, super- 
imposed. 
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for female /!/ is higher on average by several hundred Hz, 
whereas the F» difference is on the order of 100 Hz. How- 
ever, on a Bark (critical band] scale the male-female dif- 
ference in F: for /!/ becomes much more similar to that in 
Fo. Thus we decided to try a very simple scheme - for each 
line-formant, subtract from the line's center frequency the 
median ?« over the duration of the line, on a Bark scale. 

We found this normalization procedure to be remark- 
ably effective, aa illustrated in Figure 3. Part a shows a 
histogram of the center frequencies of all of the lines for 
35 male and 35 female /ae/ tokens. Part b shows the same 
data, after median Fo has been subtracted from each line's 
center frequency. The higher formants emerge as separate 
entities after the Fo normalization. The normalization is 
not as effective for Ft, but the dispersal in F, is due in 
part to other factors such as vowel nasalization. 

A valid question to ask is the following: if it is sup- 
posed that speaker normalization can be accomplished by 
subtracting a factor times Fa from all formant frequen- 
cies, then what should be the numerical value of the fac- 
tor? An answer can be obtained experimentally using au- 
toregressive analysis. We defined F^ = F„ - otFo to be 
the normalized formant frequency for each line. Using 
vowels for which the formants are well separated, we as- 
sociated a group of lines with a particular formant such 
as Ft. The goal was to minimize total squared error for 
each remapped formant among all speakers, with respect 
to a. The resulting estimated value for a was 0.975, pro- 
viding experimental evidence for the validity of the pro- 
posed scheme. 

Figure 3: Histograms for center frequencies of all line-formants 
for 35 female and 35 male tokens of /ae/, (a) without Fo nor- 
malization, and (b) with Fo normalization. 

Scoring ProcrdnrcB 

Our goal in developing a recognizer for the vowtls was 
to emphasize the formant frequency information without 
ever explicitly identifying the formant numbers. We wanted 
to avoid traditional spectral template-matching schemes, 
because they depend too heavily on irrelevant factors such 
as the loudness or the overall spectral tilt. On the other 
hand, we did not want to specify, for example, the dis- 
tance between F: and a target F], because this relies on 
accurately enumerating the formants. 

We decided to construct histograms of frequency dis- 
tributions of spectral peaks across time, based on data 
derived from the line-formants. The scoring amounts to 
treating each histogram as a probability distribution, and 
matching the unknown token's line-formants against the 
appropriate distributions for each vowel. To construct the 
histograms for a given vowel, all of the line-formants in a 
training set were used to generate five histograms intended 
to capture the distributions of the formants at significant 
time points in the vowel. All lines were normalized with 
respect to Fo, which was computed automatically using a 
version of the Gold-Rabiner pitch detector |4|. Each line- 
formant's contributions to the histograms were weighted 
by its amplitude and its length. 

Only left, center and right frequencies of the lines were 
used in the histograms. The left frequency of a given line- 
formant falls into one of two bins, depending upon whether 
or not it is near the beginning of the vowel. Right frequen- 
cies are sorted similarly, with a dividing point near the 
end of the vowel. Center frequencies are collected into the 
same histogram regardless of their time location. Such a 
sorting process results in a set of histograms that reflects 
general formant motions over time. For example, the F; 
peak in the histograms for /e/ shifts upward from left-on- 
left to center to right-on-right, reflecting the fact that /e/ 
is diphthongized towards a /y/ off-glide, as illustrated in 
Figure 4. 

To score »^ unknown token, the left, center, and right 
frequencies of all of its lines are matched against the ap- 
propriate histograms for each vowel category, which are 
treated as probability distributions. The score for the to- 
ken's match is the weighted jum of the log probabilites for 
the five categories for all of the line-formants. The ampli- 
tude of the line does not enter into the match, but is used 
only as a weight for the line's contribution to the score. 
This strategy eliminates the problem of mismatch due to 
fact      inch as spectral tilt or overall energy. 

Recognition Resnlta 
The vowels used for recognition were extracted from 

sentences in the TIMIT database [5|. The speakers rep- 
resented a wide range of dialectical variations. A total 
of 2135 vowel tokens spoken by 20G male and 82 female 
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Table 1: Distributions of vowels in recognition experiment 

speakers were used as both training and teat data, using 
a jackknifing procedure. The distributions of vowels are 
shown in Table 1. Each speaker's vowel tokens were scored 
against histograms commuted from all of the llne-formants 
except those from thv t speaker. The scoring procedure 
was as discussed above, with histograms defined for six- 
teen vowel categories. The endpoints for the vowels were 
taken from the time-aligned phonetic transcription. 

A matrix of first-choice confusion probabilities is given 
in Table 2, in terms of percent correct in the phonetic 
category. For the most part, confusions are reasonable. 
We feel encouraged by this performance, especially con- 
sidering that multiple dialects and multiple contexts are 
included in the same histogram. 

Figure 5 summarizes recognition performance in terms 
of percentage of time the correct answer ir in the top N, 
for all speakers, and for male and female speakers sepa- 
rately. Recognition was somewhat worse for females, who 
represented only 25% of the population. Alsc shown are 
the recognition results for female speakers when the Fa- 
normalization scheme is omitted, both in collecting the 
histograms and in scoring. Significant gains were realised 
as a consequence of the normalization. The performance 
for the male speakers without Fo normalization however 
(not shown) did not change. 

u i ~r e a a' ■1 a i 5 ■>' 0 u u 7 

u 40 IS n S 1 4 8 3 

1 11 70 5 8 1 2 1 
11 10 n IS 11 S 6 S 2 
S 9 J eo 8 1 1 3 2 
3 1 12 M 37 18 1 1 2 3 1 4 
I 1 1 10 SO 4 7 1 I 2 1 

13 30 9 13 7 2 7 3 2 
7 4 58 IS 1 8 2 2 
3 7 IS 40 27 S 

1 1 1 7 9 2 S 17 39 2 2 5 8 5 1 
3 3 20 48 4 12 1 1 1 

1 1 10 1 3 87 8 8 2 
4 •   1   1 S 14 4 53 5 • 1 

u 20 1 11 4 1 1 3 3 9 28 11 4 
u 11 2 2 2 1 1 1 1 2 1 2 9 IT 40 3 
J 5 \ 3 3 1 1 1 1 1 S 5 3 82 

Table 2: First choice confusion matrix for the TOWCIS 

Row = Labeled Cateifory, Column ■ Recognized Category. 

Plffur« 4i Hbtoffnnu for (a) left-oa-left, (b) ceater, aad (e) 
rifbl-oB-rigbl liae-formaat {requencie* for 128 tokeos of /«/, fo nor- 
maliied. 

Figur« Si Recognition resnlli exptmcd a* percent of time correct 
cboice is in top N, for tbe foUowing conditluu: (a) all speaken. (b) 
males only, (c) (cmaies only, and (d) females wilbont fo normalization. 
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FUTURE PLANS 
We believe that recognition performance can be im- 

proved by extensions in several directions. One is to divide 
each vowel's histograms into multiple subcategories, based 
on both general features of the vowel and coarticulation ef- 
fects. General categories, useful for th' ^-nter-frequency 
histogram, would include "nasalized," "Southern accent,* 
or fronted." Left- and right-context place of articulation, 
such aa "velar,* could be used to define corresponding his- 
togram subcategories. We also plan to explore an alterna- 
tive recognition strategy for explicitly matching each line- 
formant against a set of template Une-formanU describing 
a particular phonetic category, instead of reducing the line 
to three "independent* points. We believe that such an 
approach will better capture the fact that a given left fre- 
quency and a given right frequency are connected. Finally, 
we plan to gradually expand the scope of the recognizer, 
first to vowels in all contexts and then to other classes such 
as semivowels. 
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ABSTRACT 
As part of our goal to better understand the relationship 

between the speech signal and the underlying phonemic rep- 
resentation, we bar' developed a procedure that describe* the- 
acoustic structure 01 the signal, and have determined an acous- 
tically mociTated set of broad classes. Acoustic events are em- 
bedded in a multi-lerel structure, in which information ranging 
from coarse to fine is represented in an organised fashion. An 
analysis of the acoustic structure, using 500 utterances from 100 
different talkers, shows that it captures 0Ter94% of the acoustic- 
phonetic events of interest with an insertion rate of less than 
i%. Acotutic classification is accomplished using a hierarchical 
clustering technique. Our evaluations of the results show that 
with a small number of clusters, we are able to obtain a robust 
description of the speech signal and to provide a meaningful 
acoustic-phonetic interpretation. 

INTRODUCTION 
The taak of phonetic recognition can be stated broadly 

as the determination of a mapping of the acoustii. <ignal 
to a set of phonological units (e.g., distinctive feature bun- 
dles, phonemes, or syllables) used to represent the lexicon. 
In order to perform such a mapping, it is often desirable 
to first transform the continuoru speech signal into a dis- 
crete set of segments. Typically, this aegmerUation process 
Is followed by a labeling process, in which the segments 
are assigned phonetic labels. While this procedure is con- 
ceptually straightforward, its implementation has proved 
to be immensely difficult [4|. Our inability to achieve 
high-performance phonetic recognition is largely due to 
the diversity in the acoustic properties of speech sounds. 
Stop consonants, for example, are produced with abrupt 
changes in the vocal tract configuration, resulting in dis- 
tinct acoustic landmarks. Semivowels, on the other hand, 
are produced with considerably slower articulatory move- 
ments, and the associated acoustic transitions are often 
quite obscure. To complicate matters further, the acous- 
tic properties of phonemes change as a function of context, 
and the nature of such contextual variation is still poorly 

'This research was supported by DARPA under Contract NOOOSO-SS- 
C-Ü2S4, monitored through Naval Electronic Systems Command. 

understood. As a result, the development of algorithms 
to locate and classify these phonemes-in-context, or allo- 
phones, typically requires intense knowledge engineering. 

We are presently expbring a somewhat different ap- 
proach to phonetic recognition in which the traditional 
phonetic-level description is bypassed in favor of directly 
relating the acoustic realisations to the underlying phone- 
mic forms. Our approach is motivated by the observation 
that a description based on allophones is both incomplete 
and somewhat arbitrary. Phoneticians traditionally iden- 
tify a certain number of important allophones for a given 
phoneme based on their examination of a limited amount 
of data together with introspective reasoning. With the 
availability of a large body of data [5|, we are now in a 
position to ascertain whether these categories are acous- 
tically meaningful, and whether additional categories will 
emerge. Rather than describing the acoustic variations in 
terms of a set of preconceived units, i.e. allophones, we 
would like to let the data help us discover important reg- 
ularities. In this line of investigation, the speech signal 
is transformed into a set of acouatie segments, and the 
relationship between these acoustic segments and the un- 
derlying phonemic form is described by a grammar which 
will be determined through a set of training data. 

This paper describes some recent work in acoustic seg- 
mentation and classification, as part of the development 
of a phonetic recognition system. Ideally, we would like 
our system to have the following set of properties. The 
segmentation algorithm should be able to reliably detect 
abrupt acoustic events such as a stop burst and gradual 
events such as a vowel to semivowel transition. More im- 
portantly, there must exist a coherent framework in which 
acoustic changes from coarse to fine can be expressed. The 
classification algorithm should produce an accurate de- 
scription of the acoustic events. Phonemes that are acous- 
tically similar should fall Into *.i.. same class. If, on the 
other hand, a phoneme falls into more than one acoustic 
class, then the different acoustic realizations should sug- 
gest the presence of important contextual variations. 
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ACOUSTIC SEGMENTATION 

The purpose of our acoustic segmentation is to delin- 
eate the speech signal into segments that are acoustically 
homogeneous. Realizing the need to describe varying de- 
grees of acoustic similarity, we have adopted a multi-level 
representation in which segmentations of different sensi- 
tivities are structured in an organized fashion. 

Determining Aconstic Segment« 

The algorithm used to establish acoustic segments is 
a simplified version of the one we developed to detect 
nasal consonants in continuous speech [2|. This algorithm 
adopts the strategy of measuring the similarity of each 
frame to its near neighbors. Similarity is computed by 
measuring the Euclidean distance between the spectral 
vector -«f a given frame and the two frames 10 ms away. 
Movi in a frame-by-frame basis from left to right, the 
algorithm associates each frame in the direction, past or 
future, in which the similarity is greater. Acoustic bound- 
aries are marked whenever the association direction switches 
from past to future. By varying the parameters of this pro- 
cedure, we are able to control its sensitivity in detecting 
acoustic segments in the speech signal. We have chosen to 
operate with a low deletion rate because mechanisms exist 
for us to combine segments if necessary at a later stage. 

Signal Representation 

The algorithms for both acoustic segmentation and clas- 
sification use the output of an auditory model proposed 
by Seneff |7]. The model incorporates known properties 
of the human auditory system, such as critical-band fil- 
tering, half-wave rectification, adaptation, saturation, for- 
ward masking, spontaneous response, and synchrony de- 
tection. The model consists of 40 filters equally spaced on 
a Bark frequency scale, spanning a frequency range from 
130 to 6,400 Hz. For our application, we use the output of 
the filter channels after they have been processed through 
a hair-cell/synapse transduction stage. The envelope of 
the resulting channel outputs corresponds to the "mean 
rate response" of the auditory nerve fibers. The outputs 
are represented as a 40-dimensional feature vector, com- 
puted once every 5 ms. 

We find this representation desirable for several rea- 
sons. The transduction stage lends to enhance the onsets 
and offsets in the critical-band channel outputs. Forward 
masking will greatly attenuate many low low-amplitude 
sounds because the output falls below the spontaneous fir- 
ing rate of the nerve fibers. These two effects combine to 
sharpen acoustic boundaries in the speech signal. Further- 
more, due to the saturation phenomena, formants in the 
envelope response appear as broad-band peaks, obscur- 
ing detailed differences among similar sounds, an effect we 
believe to be advantageous for grouping similar sounds. 

In a series of experiments comparing various signal repre- 
sentations for acoustic segmentation, we found that, over 
a wide range of segmentation sensitivities, the auditory- 
based representation consistently produced the least num- 
ber of insertion and deletion errors [3], 

Mult: Liovcl Description 

Ou. si experience with acoustic segmentation led us 
to the conclusion that there exists no single level of seg- 
mental representation that can adequately describe all the 
acoustic events of interest. As a result, we have adopted 
a multi-level representation similar to the scale-space pro- 
posal by Witkin [9]. We find this representation attractive 
because it is able to capture both coa.-se and fine informa- 
tion in one uniform struct jre. Acoustic-phonetic analysis 
can then be formulated as a path finding problem in a 
highly constrained search space. 

The procedure for obtaining a multi-level representa- 
tion is similar to that used for finding acoustic segments. 
First, the algorithm uses all of the proposed segments as 
"seed regions". Next, each region is associated with ei- 
ther its left or right neighbor using a similarity measure. 
When two adjacent regions associate with each other, they 
are merged '.ogether to form a single region. Similarity is 
computed with a weighted Euclidean distance measure ap- 
plied to the average spectral vectors of each region. This 
new region subsequently associates itself with one of its 
neighbors. The merging process continues until the entire 
utterance is described by a single acoustic event. By keep- 
ing track of the distance at which two regions merge into 
one, the multi-level description can be displayed in a tree- 
like fashion as a dendrogram, as illustrated in Figure 1 for 
the utterance "Coconut cream pie makes a nice dessert". 
From the bottom towards the top of the dendrogram the 
acoustic description varies from fine to coarse. The re- 
lease of the initial /k/, for example, may be considered to 
be a single acoustic event or a combination of two events 
(release plus aspiration) depending on the level of detail 
desired. 

We found this procedure to be more attractive than 
the scale-space representation which we and others have 
investigated |C,8|. The scale-space procedure produces a 
multi-level description by uniformly increasing the scale 
through lowpass filtering, without regard to local context. 
As a result, at low scales it tends to eliminate short but 
distinct acoustic events such as stop releases and flaps. In 
contrast, our procedure merges regions using a local sim- 
ilarity measure. As a result, regions that are acoustically 
distinct are typically preserved higher in the dendrogram, 
regardless of their duration. Finally, by representing each 
region by a single average spectral vector, our procedure 
is computationally more efficient. 

Evaluation 

We have evaluated the effectiveness of our multi-level 
acoustic representation in several ways.   First, we devei- 
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ACOUSTIC CLASSIFICATION 
Once a signal has been segmented, each region in the 

dendrogram is assigned an acoustic label using a pattern 
classification procedure described in this section. Ideally 
the classification procedure should group similar speech 
sounds into the same category, and separate sounds that 
are widely different. While we did not know how many 
classes would be appropriate, we suspected that the num- 
ber of classes would be small so that the results would be 
robust against contextual and extra-linguistic variations. 

Hierarchical Clasgification 
In order to classify the acoustic segments, we first de- 

termined a set of prototype spectral templates based on 
training data. In our case this was accomplished by using 
a stepwise-optimal hierarchical clustering procedure [1]. 
This technique, which is conceptually simple, structures 
the data explicitly. In addition, the number of clusters 
need not be specified in advance. We used an agglomer- 
ative, or bottom-up procedure because the merging crite- 
rion is easier to define than the splitting criterion needed 
for the divisive procedure. The agglomerative technique 
is also computationally less demanding than the divisive 
technique. Pilot studies performed using several databases 
containing many talkers indicated that the agglomerative 
procedure produced relatively stable results, provided suf- 
ficient training data is available. 

In the interest of reducing the amount of necessary 
computation, we took several steps to reduce the size1 of 
the training sample used in the hierarchical clustering pro- 
cedure. First, all of the frames within a dendrogram re- 
gion were represented by a single average spectral vector. 
Second, rather than using all regions in the dendrogram 
for training, we included only those regions that the path 
finding algorithm had used for alignment with the phonetic 
transcription. These two steps were found experimentally 
to reduce the data by a factor of fifteen, with no noticeable 
degradation in clustering performance. 

Further data reduction was achieved by merging similar 
spectral vectors with an iterative nearest neighbor proce- 
dure, in which a vector is merged into an existing cluster if 
the distance between it and the cluster falls below a thresh- 
old. Otherwise, a new cluster is formed with this vector, 
and the procedure repeats. In the end, all clusters with 
membership of two or less are discarded, and the data are 
resorted. The value of the threshold was determined ex- 
perimentally from a subset of the training data, and was 
set to maximize the number of clusters with more than 
two members. This final step was found experimentally to 
reduce the size of the data by a factor of thirty. 

We used the same 500 TIM1T sentences to train the 
classifier. These data comprised over 24 minutes of speech 
and contained over 290,000 spectral frames. Restriction to 
the time-aligned dendrogram regions reduced tne data to 
just under 19,000 regions. The [■ re-clustering procedure on 

these regions produced 5C0 clusters covering nearly 96% 
of the original data. All of the data then were resorted 
into these 560 seed clusters. The distribution of the clus- 
ter sizes was a well-behaved exponential function with a 
mode of 6, median of 16, and an average size of 34. The 
hierarchical clustering was then performed on these seed 
clusters. 

Cluster Evaluation 

The hierarchical clustering algorithm arranges the clus- 
ters in a tree-like structure in which each node bifurcates at 
a different level. The experimenter thus has the freedom to 
select the number of clusters and the associated spectral 
templates for pattern classification. We have performed 
several types of analysis to help us make this decision. 

First, the set of clusters should be acoustically robust. 
By performing the clustering experiment on several databases 
and examining the phonetic contents of the clusters, we 
observed that the top three or four levels of the tree struc- 
ture are quite stable. For instance, the top two clusters 
essentially separate all consonants from vowels. The vowel 
cluster subsequently divides based on spectral shapes cor- 
responding to different corners of the vowel triangle. The 
obstruent cluster divides into subgroups such as silence, 
nasals, and fricatives. From these observations we decided 
that the number of clusters for reliable pattern classifica- 
tion should not exceed twenty. 

We also measured the average amount of distortion in- 
volved in sorting the training set into a given set of clus- 
ters. For a given number of clusters, the set with the 
minimum average distortion was designated as the best 
representation of the data. Figure 3 illustrates the rate of 
decrease in the average distortion as the number of clus- 
ters increases from one to twenty. From this plot we see 
that the most significant reductions in the average dis- 
tortion occur within approximately the first ten clusters. 
Afterwards the rate of decrease levels off to around I/o. 

Figure S: Average Distortion versus Number of Clusters. 

••' 

i.i 
1UBIE«   OF   CLUirCM 

41 



Figur« 4: Phonetic Hierarchical Structure with Ten Clusters 
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We also judged the relative merit of a set of clusters by 
examining the distribution of phonetic information within 
each set. This -was done by performing hierarchical clus- 
tering of all phones using their distribution across the set 
of clusters as a feature vector. This procedure is very help- 
ful in facilitating visualization of the data structure cap- 
tured by a set of clusters. A qualitative analysis of these 
structures showed that after ten clusters the hierarchical 
organisation did not change significantly. The structure 
for ten clusters is shown in Figure 4. 

Finally, we compared the resulting phonetic distribu- 
tion for the clusters obtained from the training data to 
that from a new set of 500 sentences spoken by 100 new 
speakers. We found that the percentage difference for a j. .. 
given cluster and phoneme is, on the average, around 1%, 
suggesting that the results did not change significantly. 
Closer examination reveals that the larger differences are " 
mostly due to sparse daiv !*• 

Based on the results of these analyses, we concluded |" 
that, by sele-ting approximately ten clusters, we are able ■ • 
'o capture a large amount of the variability in the data, 
as well as a large amount of phonetic information. Fur- 
thermore, because the number of clusters is fairly small, 
we are more confident that this result is acoustically ro- 
bust in the face of contextual and extra-linguistic effects. 
The ten clusters produced by the clustering experiment 
are illustrated in Figure 5. 

Figur« S: Spectra of Ten Clusten Qlustretin; the Average and 
DeTiBtion. 
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DISCUSSION 
Acoustic Segmentation 

The segmentation algorithm uses relational informa- 
tion within a local context. As a result, we believe that it is 
fairly insensitive to extra-linguistic factors such as record- 
ing conditions, spectral tilt, long term amplitude changes, 
and background noise. Because these procedures require 
no training of any kind they are also totally speaker-inde- 
pendent. In the future, we plan to examine in more de- 
tail the behavior of this algorithm under varying recording 
conditions. 

The results of our experiment on acoustic segmentation 
suggest that a multi-level representation is potentially very 
useful. The combined segment insertion and deletion rate 
of 14% is much beUer than the best result we were able 
to obtained previously (25%) with a single-level represen- 
tation, using essentially the same segmentation algorithm 
and signal representation [3|. Analysis of the errors indi- 
cates that most of the deletions occur when the acoustic 
change is subtle. When a boundary is inserted, it is often 
the case that significant acoustic change exists, such as 
within a diphthong or between the frication and aspiration 
phases of stop releases. Since our objective is to provide an 
accurate acoustic description of the signal, some of these 
insertions and deletions perhaps should not be count-d as 
errors. 

The dendrogram produces valid boundaries as well as 
invalid ones, and the distributions of the heights for these 
two kinds of boundaries are well separsted, as shown in 
Figure 2. The separation becomes even moie pronounced 
when the distributions are conditioned on the general con- 
text of the boundary. This type of information lends itself 
naturally to a probabilistic framework for finding the best 
path through the dendrogram. 

Aconstic Clasaiflcation 

We are also very encour.kged by the results of our acous- 
tic classification procedure. It appears that we can reliably 
assign each segment to one of a small set of acoustic cat- 
egories, each having a meaningful phonemic distribution. 
In other words, phonemes that are acoustically similar by 
and large fall into the same acoustic class. As a result, 
we believe that these acoustic labels can help us discover 
the relationship between phonemes and their acoiutic re- 
alizations. For example, we found that the phoneme /9/ 
predominantly falls into acoustic categories F and H shown 
in Figure 5. We plan to examine these data more closely 
to try to understand the context in which each of these 
realizations is preferred. 

The phonetic :.! cture we obtained from our results is 
also attractive because it provides a totally acoustic moti- 
vation for a set of broad classes. Previous research on lexi- 
cal constraints has shown that knowledge of the broad pho- 

netic categories of the phonemes can be extremely helpful 
in eliminating unlikely lexical candidates [lO]. We believe 
that the set of acoustic labels that we have determined can 
potentially aid in the recognition of phonemic classes. 

SUMMARY 

In summary, we have reported some initial work with 
acoustic segmentation and classification which we believe 
can provide a foundation for an eventual phonetic recog- 
nition system. By representing the speech signal with a 
multi-level acoustic description, we are able to capture, 
and to organize in a meaningful fashion, the majority of 
acoustic-phonetic events of interest. Our work with acous- 
tic classification indicates that, with a small number of 
spectral templates, we are able to obtain a robust descrip- 
tion of the speech signal, and also to provide a meaningful 
phonetic interpretation. In the fut- • we will combine 
these two results and begin to descrio. .n more detail the 
relationship between the acoustic signal and the underly- 
ing phonemic representation. 
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ABSTRACT 

The RULE software system is a scries of tools that allows one 
to construct recognition lexicons. The tools run on a Symbolics 
3600 computer, and allow a user to: 

(1) Easily construct and test linguistic rules 
(2) Automatically compile and apply ruin to probabilistic 

networks 
(3) Graphically display pronunciation networks of words or 

sentences 
(4) Observe the pronunciation networks as they are modified 

by the linguistic rules 
(5) Transcribe speech by selecting one of the possible paths 

through a pronunciation network 
(6) Test if a set of phonological rules can explain observed 

forms 

A previous paper (Bernstein etal. 1986 DARPA Speech 
Recognition Workshop) described an earlier version of these 
tools. This paper describes new algorithms that apply 
phonological rules to pronunciation networks. Significant 
recent developments in RULE include: (1) phonological rules 
are applied to probabilistic pronunciation networks, and (2) 
generation of interword phonological effects when phonological 
rules are applied to individual word models in a lexicon. 

1. INTRODUCTION 

The object of this research is to construct recognition lexicons 
that can be used in a speaker-independent continuous-speech 
recognition system. Each word in the vocabulary is rodeled by 
a separate probabilistic pronunciation network. The set of all 
pronunciation networks, and the algorithms that dev-rminc 
which paths of one pronunciation network can follow which 
paths of a different pronunciation network constitute the 
recognition lexicon. 

A recognition lexicon should consist of probabilistic pronuncia- 
tion networks that accurately model the variations in phonetic 
pronunciations observed in continuous speech. A pronunciation 
network of a particular sentence (1) should contain all allowable 
pronunciations of that sentence, (2) should not contain any 
pronunciations that are unreasonable, and (3) s.'.^i .d contain 
probabilities that accurately reflect the true pronunciation 
probabilities. 

The RULE system was designed to generate pronunciation 
networks by applying a set of lexical rules to a bascform 
network. In an earlier version of the RULE system (described 
in the paper presented at last year's DARPA meeting), when the 

phonological rules were applied to the baseform networks of a 
single word, the resulting network described the possible 
word-internal pronunciations of that single word. When the 
phonological rules were applied to the baseform networks of 
whole sentences, the resulting network described the variations 
in pronunciation of that whole sentence. Since the phonological 
rules were applied to a known sentence, particular word context 
effects were easily handled. We have extended the RULE 
system to apply a set of linguistic rules to individual word 
baseforms, and generate a pronunciation network of that word 
that represents all significant interword effects. We have also 
extended the RULE system to apply probabilistic phonological 
rules to a pronunciation network. The new algorithms keep 
track of the pronunciation probabilities and the identities of the 
rules that generated which pronunciation paths. We will 
describe these facilities, as well as the algorithms that can be 
used to automatically train the probabilities of a set of 
phonological rules. 

In addition to the above extensions of RULE, other recent 
developments include: (1) a set of algorithms to convert a 
pronunciation network into a minimum deterministic network, 
and (2) an improved interactive graphical display to manipulate 
and inspect networks. These algorithms will not be described in 
this paper. 

2. DEFINITIONS 

A pronunciation network is a directed graph that RULE 
represents as a list of nodes and arcs. Each network has a single 
start-node and a single end-node. Each path through the 
network (from the start-node to the end-node) represents a 
possible pronunciation of a word or sentence. Since the 
pronunciation network does not contain loops, each network 
contains a finite number of different pronunciations. 

The arcs of a network contain all the relevant information about 
the allowable pronunciations. Each arc contains the following 
information: 

(1) Arc-Label: (e.g.'T "D^TT "A" NULL-ARO AU the 
arc labels in the final version of a pronunciation network 
(after the rules have been applied) correspond to specific 
phonetic events. As we have implemented our rule set, 

ndary labels such as '&.","%", and computational 
constructs such as NULL-ARC can exist at intermediate 
stages of rule application, but are removed from the 
network by the application of lexical rules that delete 
these arcs. 

(2) Arc-Features: (e.g. SYLLABIC CONSONANTAL 
STOP NASAL) These features represent the linguistic 
properties of this arc. 
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(3) Arc-Probabilities; These are used to represent the 
probability of different pronunciations. The sum of the 
probability of all arcs that leave each node should be 
equal to 1.0. 

(4) Arc-lntcrword-Boundary-Constraints: Path constraints 
determine which of the pronunciation paths through the 
network are allowable. Whether or not a path is 
allowable depends on the preceding arid following word 
context. Each arc that leaves from the start-node 
contains a LEf -INTERWORD-BOUNDARY- 
CONSTRAINT. Each arc that arrives at the end-node 
contains a RIGHT-INTERWORD-BOUNDARY- 
CONSTRAINT. Other arcs in the network do not 
contain path constraints. When the right-interword- 
boundary-constraint of the last arc in one network is 
COMPATIBLE with the left-interword-boundary- 
constraint of the first arc in another network, the 
pronunciation paths aie compatible, and are allowed to 
follow each other when parsing a sentence. 

(5) Arc-Rule-Bookkecping-Information: This information is 
u'xd to keep track of which rules generated different 
pronunciation paths. This information allows the system 
to use hand-transcribed data to compute the probability 
of different rules. 

FIGURE 1.    Sample Pronunciation Network of the word 
"HAUPTMAN'S" 

(Note: ";" implies that this arc is nasalized, ")" implies: the 
previous word context determines whether this pronunciation 
path may or may not be taken, "(" implies: tlv following 
word context determines whether this pronunciation path 
may or may not be taken, AW is AW with primary stress.) 

We have constructed i dictionary of baseform representations 
for 3412 of the words in the TI-AP database. The baseform 
representation for each word is a network, and need not be a 
single string of symbols (i.e. it could be a multipath network). 
Each baseform network begins with an arc whose label ("&" or 
"%") represents a word boundary. Some sample bascform 
networks arc shown in figure 2. 
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The interactive RULE facility allows a user to write a sequence 
of phonological rules. The cuntnt rule set consists of 45 rules. 
To illustrate the properties of phonological rules, an example is 
shown below. Rule V5 is automatically compiled (by the RULE 
system) into a list of rule clauses (figure 4). Each rule clause 
consists of: (1) a test that must be satisfied to match the clause to 
a single arc in the pronunciation network, (2) the action that is to 
be taken on the copied arc, and (3) a word boundary identifier 
which is used to determine where the rule can be broken up 
across word nctwo'ks. The third clause of rule V5 is an 
optional morpheme-boundary test that was automatically 
inserted by the rule compiler. The insertion of the optional 
morpheme-boundary clause allows rule V5 to operate across 
word boundaries. Since this rule clause is optional, the rule 
application algorithm may or may not be match this clause to a 
network arc. 

(defmle 
:name V5 
:nile-documei5tation "W-GLIDE Vowel becomes 

SCHWA W" 
xore (feature W-GLIDE) 
:left-environment NIL 
:right-environment (feature-and SYLLABIC 

VOCALIC) 
: action ((replace-phoneme "AX") 

(insert "W")) 
:rule-type MIT 
xopy-matching-arcs ''* 
:nile-probability 3 
:application-order-number 2050 
) 

FIGURE 3.    A sampl emle 

TEST TO MATCH ARC COPIED ARC ACTION         WORD 
BOUNDARY ID 

1,(FEATORF.W.GUDE) (REPLACE-PHONEME 
AX)                            NONE 

2. NONE (INSERT W)                     NONE 
3. (OPTIONAL (FEATURE 
MORPHEME-BOUNDARY)) (DO-NOTHING)               VJ-i 
4. (FEATURE-AND 
SYLLABIC VOCALIC) (DO-NOTHING)               NONE 

FIGURE 2.    Baseform networks for (a) the isolated word 
"RUDN1CKY". (b) the sentence "SEND A 
MESSAGE" 

FIGURE 4.   The set of rule clauses that rule V5 is compiled 
into. 

The word boundary identifiers are used (1) to indicate to the rule 
application algorithm where the rule clauses can be split across 
individual word networks, and (2) in the interword boundary 
constraints that determine which pronunciation paths of one 
network can follow the pronunciation paths of the previous 
network. All rule clauses that can match the initial word 
boundary symbol of a pronunciation network are "possible 
break points" where a phonological rule can be split ncross 
networks. Since each baseform pronunciation networ'c starts 
with a word boundary symbol (either an "&" or an "%"', those 
rule clauses that can match these arcs are given a UNIQUE word 
boundary identifier. In rule V5. the third clause is given the 
unique interword boundary idennfier V5-1. Each rule can be 
split across pronunciation networks at the location between the 
clause with an interword boundary identifier, and the previous 
clause. In rule V5. this is between the second and third clauses. 
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Each initial arc and each final arc of a word pronunciation 
network contain an interword boundary constraint These 
interword boundary constraints detennine whether a pronuncia- 
tion path that begins one individual word network is allowed to 
follow a pronunciation path that ends another word network. 
The pronunciation paths of the two word networks can follow 
each other if the two interword boundary constraints (of the last 
arc in network-1, and the first arc in network-2) are 
COMPATIBLE. Each boundary constraint consists of a list of 
single boundary constraints. Each single boundary constraints 
contain two lists: a list of OPTIONAL word boundary identi- 
fiers, and a list of OBLIGATORY word boundary identifiers. 
For two boundary constraints to be compatible, each obligatory 
word boundary identifier in one interword constraint must be 
contained in the list of either the obligatory or the optional word 
boundary identifier of the other interword constraint. 

3. PROBABILITIES 

The pronunciation network of a word initially consists of the 
baseform network. Each of the phonological rules are applied 
sequentially to each baseform network. To apply a rule to the 
network, the application algorithm searches the network for a 
series of arcs that satisfy the list of rule clauses. When a series 
of arcs are found that match the rule clauses, the matching 7rcs 
are copied, and the (1) labels, (2) features, (3) interword 
boundary constraints, and (4) path probability of these copied 
arcs are modified. The path probability of the matching arc 
sequence is multiplied by the probability of the rule. The new 
arcs represent an alternate pronunciation path. Since the rules 
are applied sequentially, the pronunciation paths generated by 
previous rules may be used to match the rule clauses of 
following phonological rules. 

To illustrate how a rule is applied to a network, we can look at 
figures 5 and 6. The purpose of sample rule RULE-1 is to 
allow the alternate pronunciation "E" to a series of arcs ("A" 
"C"). The 4 stages of rule application are illustrated in figure 6: 
(1) the network is exhaustively searched for all scries of airs 
that match the rule; for each of those series of arcs that match, 
the following steps are taken: (2) the matching arcs of the 
network are broken out into a separate linear path, (3) the 
matching arcs are copied and subsequently modified by the 
actions of the rule clauses, (4) the network is converted into a 
minimum deterministic graph. The algorithm is described in 
much greater detail in Appendix 1. 

(dcfrule 
:name 
irule-documentation 
xorc 
: left-environment 
:right-environment 
:action 

:rule-type 
xopy-matching-arcs 
:rule-probability 
lapplication-order-numbcr 

Rll-E-l 
"illustrative example" 
((phoneme "A") (phoneme "C")) 
NIL 
NIL 
((replate-phoneme      'E") 
(delete-phoneme)) 
TEST 
T 
.5 
1 

) 

FIGURE 5. A sample rule that will be used to demonstrate 
how rules are applied to the pronunciation 
network. 

6a 

ob 

A .5 

B .5 

C .5 

D .5 

A .2.5 

B .125 ((RULE-1) NIL 1.0 

6c 

6d 

E .125 ((RULE-1)) 

.333^ 

FIGURE 6. The sample rule 
network. 

in figure 5 is applied to a 

6a: The original network. 
6b: The clauses in RULE-1 have been matched against the 

network, and the matching path ("A" "C") has been 
expanded into a linear path. 

6c: The matching path ("A" "C") is copied, and the 
appropriate actions are taken on these arcs. The network 
probabilities are modified, and the rule bookkeeping 
indicates which rule generated this new path. 

6d: The network is converted into a minimum deterministic 
graph. 

After the rule clauses have been successfully matched to a 
sequence of arcs in the network, the network is expanded into a 
series of linear arc sequences (see figure 6, top right). This 
network expansion is necessary so that the pronunciation 
probabilitieü can be modified in a correctly. The original 
matched arcs are ttvn copied, and modified by the actions 
specified in the rule. The path probability of the newly modified 
arc sequence is equal to the probability of the original matched 
arc sequence multiplied by the rule probability. The path 
probability of the original matched arc sequence is multiplied by 
(- 1.0 rule probability). Finally, the network is convened into a 
minimum deterministic graph, maintaining the correct path 
probabilities and rule bookkeeping information. This algorithm 
is described in more detail in apnendi.r 1. 

To compute the probability of each phonological rule, a database 
of hand transcribed speech is necessary, For each utterance in 
the database, a set oi phonological rules is applied to a sentence 
baseform network to create a pronunciation network for that 
sentence. Using the hand transcribed data, the pronunciation 
path through the network is computed.    Beginning at the 
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start-node, RULE travcn.es the pronunciation network along the 
observed path. At each node along this path, RULE can 
compute a list of all the different phonological rules that 
generated any of the arcs that leave from the node. For each of 
the rules that are in this list, we increment their POSSIBLY- 
AFPLED-COUNT by I. We then increment the ACTUALLY- 
APPLIED-COUNT of all the phonological rules that were used 
to generate the traversed arc. When we have finished 
processing all the utterances in the database, the probability of 
each phonological rule is equ. (// ACTUALLY-APPLIED- 
COUNT   POSSIBLY-APPLIED-COUNT). 

4. INTERWORD RULE APPLICATION 

To allow phonological rules to apply across words when each 
word is stored in a lexicon as a separate virtual network, two 
major changes were made. These changes consisted of (D a 
new rule application strategy, and (2) the addition of .in 
interword boundary constraint that determined which pronuncia- 
tions of a word were possible, based on the previous/following 
word context 

Each rule consists of a series of tule clauses. During rule 
application, each rule clause needs to be matched against an arc 
in the network. In order to deal with interword effects, the new 
rule application algorithm needs to allow partial sequences of 
rule clauses to be matched against a series of arcs in the 
network, with the remaining clauses to be applied to the 
previous/following word. Since each baseform pronunciation 
network of an individual word starts with a word boundary 
symbol (either an "&" or an "%"), only rule clauses that can 
match these arcs can split a rule across a network boundary. 
Therefore, each rule clause that can match these arcs is given a 
unique word boundary identifier. Rule clauses that cannot 
match a word boundary symbol, cannot be locations where a 
rule is broken up across word boundaries. Each rule can be 
split across pronunciation networks at the location between the 
clause with an interword boundary identifier, and the previous 
clause. In rule V5, this is between the second and third clauses. 
An example of how rule V3 (see figure 3) can be broken up 
across word boundaries is shown in figure 7. 

&             HH            AW 
• « • • -.V.- 

vvv 

TEST TO MATCH ARC COPIED ARC ACTION WORD 
BOUNDARY ID 

1. (FEATURE W-CLIDE)      (REPLACE-PHONEME 
AX) NONE 

2. NONE (INSERT W) NONE 
"• BREAK ACROSS NETWORKS HERE ••• 

3. (OPTIONAL (FEATURE 
MORPHEME-BOUNDARY))        (DO-NOTHING) V5-1 
4. (FEATURE-AND 
SYLLABIC VOCALIC) (DO-NOTHING) NONE 

FIGURE 7. How the clauses of rule V5 can be rplit across 
word boundaries. To apply this rule across network bound- 
aries, the first clause matches the last arc in network-1, while 
the third clause matches the first arc in network 2. Since the 
second clause is an insertion, it does not need to match 
anything in either network. The chances in pronunciation 
(both the AX and the W) will be as-xiatcd with network-1. 

The rule application algorithm was modified to allow partial 
sequences of rule clauses to be applied to networks. When the 
rule application algorithm (in appendix I) reaches the end of a 
network, and also encounters an interword boundary identifier 
on the next clause to match the network, it allows the rule to be 
split across networks. An example of rule V5 being split across 
network boundanes is shown in figure 8. 

FIGURE 8. Top: The baseform network for the word 
"HOW", Bottom: After rule V5 has been applied to the 
network. The new pronunciation path that has been added is 
highlighted. The "(" of the "W(" means that this pronuncia- 
tion path can only be taken if the following word satisfies 
certain conditions, in this case that the beginning of the 
following word network has a syllabic vocalic arc just inside 
the word boundao' as specified by the last two clauses of 
rule V5. 

The new pronunciation path ["AX", "W"] of the word "HOW" 
in figure 8, may only be traversed if the following word satisfies 
the interword boundary constraint. This is because the new 
pronunciation path is conditional on the features of the word that 
follows it. The new pronunciation of the word "HOW" may 
only be used if the next pronunciation network stans with a 
morpheme boundary followed by an arc that is both syllabic and 
vocalic. This interword boundary constraint indicates where the 
rules were split across network boundaries, and which 
word-edge paths are consistent with each other. 

5. BASEFORMS AND PHONOLOGICAL RULES 
IMPLEMENTED IN RULE 

For CMU's Electronic Mail Task, SRI implemented a 
recognition lexicon that recognizes multiple pronunciations of 
most vocabulary words. The variant pronunciations (e.g. 
"decision" with or without a tense first vowel, or "capacity" 
with flap or an aspirated [t]) can be directly represented in the 
baseform list or they can be derived by rule from single 
baseforms. In SRI's work thus far, we have maintained an 
intuitive, but principled split between irregular or lexical 
variants, and general regular, rule governed variation. By this 
criterion, the forms of "exit" with voiced [gz] or voiceless [ks| 
are explicit in the baseform list; while the flap and [t] forms of 
"capacity" are handled by rule. This kind of split is possible in 
RULE but not required. 

As of this writing, the rule set that SRI has implemented 
consists of about 45 rules that are separated into eight groups. 
The rules within a group apply more or less in parallel, while the 
members of lower numbered groups apply before members of 
higher numbered groups. The groups are: 

0: Expansions - Convenient redundancies like insertion of 
silences and glottal stops as appropnate at word boundanes. 

1: Lexical and Dialectal Variants - Regular dialectal and free 
variant forms such as /w/ or /wh/ in "where" etc.. or 
initial-syllable tense-lax alternations in words like "demand'' 
and "deny". 

2: Fyllal Nucleus Core -- Deletion of unstressed initial 
■ owels and the re-coding of diph'hongs into schwa-glide 
•.equences. 

3   H and Glide or Liquid Core 
certain environments. 

Deletions of Ihi and  1/ in 
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4: Nasal Cores -- Assimilation of certain nasals. 

5: Fricative Core — Epenthetic stop insertion, and several 
assimilations. 

6: Plosive Core -- Several kinds of lenition, including deletions, 
assimilations and cluster reduction. 

7: Phonetic Alternates and Patches -- A catchall for covering 
regular (non-phonological) correspondences created by the 
logic of the Acoustic-Phonetics module, and for the deletion 
of diacritics such as boundary marks. 

A final note: There are several types of phonological rules that 
arc often used in linguistic descriptions and would be convenient 
for building a recognition lexicon that are not easily implemented 
in the RULE system. One example is "alpha" rule notation in 
which a variable, alpha, is bound in one clause of the rule and 
referred to in another. Alpha rules are useful in handling 
assimilations and geminate reductions. A last example is the use 
of abstract phones in cross dialectal baseforms; that is phones 
that are not realized in either dialect but are convenient ways to 
represent a regular correspondence between forms. Abstract 
phones and alpha rules can be done in RULE but they are not 
natural to its formalism. 

6. SUMMARY 

The RULE software system is a set of tools that allows one to 
construct recognition lexicons. This paper describes new 
algorithms that apply phonological rules to pronunciation 
networks. The novel aspects of the algorithm involve: (1) rule 
application to probabilistic pronunciation networks, and (2) 
generation of interword phonological effects when phonolopicaJ 
rules are applied to individual word models. With a hand 
transcribed database, we can automatically train the probability 
of each of the phonological rules, and use these phonological 
rules to create accurate probabilistic pronunciation networks for 
each word in the vocabulary. 

APPENDIX 1: ALGORITHM FOR APPLYING A SET OF RULES TO 
THE NETWORK 

FUNCTION: APPLY-SET-OF-RULES-TO-NETWORK 
(lisl-of-ordered-mla.networic) 

Get (tie first rule of the list-of-ofdertd-rules 

Determine rules to apply in parallel with this rule -> 
PARALLEL-RULE-LIST 
REMAINING-RULE-LIST contains rales thai remain. 

RULE-APPLICATION-PASS f 1: 
Loop for each rule in parallel-rule-list 

Loop for each node in the network. 
If this is the start-node of the network, 

THEN 
Loup for each rale clause that has a word 
boundary idennfier 

CALL: MATCH-CLAUSE-LIST-TO- 
NETWORK 

(remaming-ru le-dause- lisunode) 
ELSE 

CALL: MATCH-CLAUSE-LIST-TO- 
VETWQRK (rule-dause-lisuiode) 

Collect the arc sequences successfully matched by rule clauses. Expand 
network so that all matched arc sequences are separated out 

RULE-APPLICATION-PA SS » 2; [same loops and calls as pass »2] 

Convert the network into a minimum deterministic graph. 

If there are any rules remaining, 
THEN CALL: APPLY-SET-OF-RULES-TO-NETWORK 
(remaining-rale-list.network) 

FUNCTION: MATCH-CLAUSE-LIST-TO-NETWORK 
(rale-clause-lisuiodc) 

If (OR [ rale-clause-list is empty 1 
(AND     [ node is the end-node of the network | 

[ the next rule clause that has an arc test 
also has a word boundary identifier) 

)) 
THEN 

CALL:MODIFY-NETWORK-BY-APPLYING-RULE 
ELSE 

Loop for arcs that leave this node 
If arc sadsfles flrst remaining rule-clause, 

THEN 
CALL MODIFY-NETWORK-BY- 
APPLYING-RULE 
((cdr rale-clause-list),(to-node an:)) 

ELSE 
If rule-clause is an optional clause, 

THEN 
CALL MODIFY-NETWORK- 
BY-APPLYING-RULE 
((cdr rale-cIause-Iist),node) 

FUNCTION: MODIFY-NETWORK-BY-APPLYING-RULE 
(networkjuie-application-pass-number, 
unmatched-left-rale-clauses,matched-n:le-clauses, 
unmatched-right-rale-clauses) 

If first pass, then collect matched arcs into a temp data structure. If this is 
the second pass of the rule applicatirn, 

THEN 

If there are no unmatched left or right rule clauses, 
(rule does not apply acros: networt boundaries.) 
THEN 

If the rule copies the tr.atching arcs, 
then copy the arcs, modify the probability and 
bookkeeping of this path. 

Apply action to each copied arc (typically modify 
die label or features). 

ELSE 
((here are some unmatched rule clauses, 
rale that applies across network boundaries.) 

Loop through matched rule clauses. 
If clause xtion modifies the network. 

THEN 
If the rule copies the matching arcs, then copy the 

arcs, modify (he probabiIi(y and bookkeeping of 
(his path. 

Apply acaon (o each copied arc Kypically 
modify arc label or features) 

Modify interword constraints of copied arcs (o contain 
obligatory mierword idenufier. 

ELSE 
Modify interword constraints of the ma(ched arcs to 

contain opoonal interword idenufier. 
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STUDIES FOR AN ADAPTIVE RECOGNITION LEXICON 

Michael Cohen, Gay Baldwin, Jarcd Bernstein, lly Murveit, Milche! Weintraub 
Speech Research Program 

SRI International 
Menlo Park, CA 9-1025 

ABSTRACT 

In the past year, SRI has undertaken a series of empirical studies of 
phonological variation. The goal has been to find better lexical 
representations of the structure and variation of real speech, in order 
to provide speaker independence in speech recognition. Results from 
these studies indicate that knowledge of probabilities of occurrence 
of allophonic forms, co-occurrence of allophonic forms, and speaker 
pronunciation groups can be used to lower lexical entropy (i.e., 
improve predictive ability of lexical models), and possibly, therefore, 
achieve rapid initial adaptation to a new speaker as well as ongoing 
adaptation to a single cpeaker. 

INTRODUCTION 

As the number of words in the lexicon grf.ws, the speech recognition 
problem gets more didkult. In a similar way, as more possible 
pronunciations for each word are included in the lexicon, the recog- 
nition problem gets more dilTicult because there are more competing 
hypotheses and there can be more overlap between the representa- 
tions of similar words. 

One important goal of a lexical representation is to maximize cover- 
age of the pronunciations the system will have to deal with, while 
minimizing overcoverage. Overcoverage adds unnecessary difliculty 
to the recognition problem. One way to maximize coverage while 
minimizing overcoverage is to explicitly represent all possible 
pronunciations of each vocabulary word as a network of allophones. 
An example of such a network is shown in figure 1 for the word 
"water" This network represents eight possible pronunciations, 
some of which are fairly common (e.g., (W AO DX ER|), and others 
somewhat rare (e.g., |W AA T A\|). Experience suggests that, to 
assure coverage, it will be necessary to include many pronunciations 
for each word, including those which happen relatively rarely 

In reality, speech is more highl) organized There is more predictive 
knowledge available than in a model that simply represents indepen- 
dent equiprobablc choices with no interaction or influence between 
different parts of a model and with no ability to use information 
from other parts of an utterance or previous utterances by the 
current speaker. In current systems which use allophonic models, 
each node represents an independent set of equiprobable choices. 

'This rawweh ««a soonsored by Defense Advanced Rntirch Projfct» Agency 
Contrtct N0OO30-8&-C-O3O2. The view» and conclusions contained in this document 
are those ot the authors and should not be interpreted as representing the official pol- 
icies, either expressed or implied, of the Defense Advanced Research ProjecU Agency 
or the US Government. 

The goal of the research described in this paper is to explore ways in 
which a lexical representation can better reflect the structure of real 
speech data, so that the representation will have more predictive 
power, and thus improve recognition accuracy. A better under- 
standing of the issues involved may lead to methods for rapid adap- 
tation to a new speaker, as well as ongoing adaptation to a single 
speaker during a single session. 

In order to explore these issues, we chose to model (as a »ingle utter- 
ance) a pair of sentences containing 21 words for which we had a 
large data set. The patterns of variation found for this '21-word 
microcosm should indicate what kinds of structures will be needed in 
a larger lexicon. The data used were transcriptions of the two 
dialect sentences for the 630 speakers in the TI-AP database. 

We have performed a ?eries of four studies that explored four types 
of phonological structuie, and ways of representing this structure in 
a lexicon. In the firat study, we simply looked at the gain in predic- 
tive ability of a phonological model which incorporates knowledge of 
the probabilities of the various possible word pronunciations. The 
second study explored the co-occurrence of allophonic forms, and 
ways in which knowledge of these co-occurrences can be automati- 
cally compiled into a phonological model. The third study explored 
the possibility of grouping speakers into a small number of pronunci- 
ation dusters, and looked for demographic and other predictors of 
these pronunciation clusters. The fourth study was designed to 
compare intra-speaker variation to the variation within the pronun- 
ciation dusters defined by the third study. 

To evaluate our data, and compare representations, we used entropy 
as a measure of the predictive power of a representation, or 
didiculty of the recog-.ition task given a particular representation. 
The entropy of a representation, developed from or "trained" on 
some large set of data, reflects both how well the representation cap- 
tures significant structure in the data and how much predictive 
power is gained by modelling this structure 

The four studies are described in ihc following four sections, fol- 
lowed by a general discussion and conclusions. 

PRONUNCIATION PROBABILITIES 

The goal of the first study wa.- to determine how much speech recog- 
nition accuracy could be improved by incorporating knowledge of 
pronunciation probabilities into a phonological language model An 
important goal of any lexical representation is to provide coverage 
of the pronunciations that the system will have to to deal with, 
including relatively rare pronunciations. This makes the recognition 
problem more difficult because there are more competing hypotheses 
and can be more overlap between word models. One way to deal 
with this problem is to include probabilities for pronunciations in 
the lexical model In this way, including somewhat rare pronuncia- 
tions will  increase coverage without hurting  performance.    It will 
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allow recognition of these unusual pronunciations, avoiding confu- 
sion with other more common pronunciations of similar words. For 
example, consider the allophone string 

[DH OC B IH G W AA DX AX B IH L Z| 

This string contains, as a substring, the sequence [W AA DX AX|, 
which corresponds to one of the paths through the network for the 
word "water" shown in figure I. This is a relatively infrequent 
pronunciation of the word "water" An alternative hypothesis for 
this same substring could be the pair of words "wad of, for which 
this pronunciation is relatively common. (Suggesting the phrase 
"The big wad of bills" rather than "The big water bills".) Appropri- 
ate probabilities associated with these pronunciations could allow a 
system to make a more intelligent choice. Such a model should help 
recognition accuracy significantly, provided that the probabilities 
used are accurate for the domain in which the system will be used, 
and especially if the probability distributions are significantly 
dilfcrent from the default equi-probable models. 

2a 
o/ur   i\ 
ichwa e% 
•r   69% 

\ 

14X »uril giul  V 
34X  11,0 a  V 
19X no bum glol V 
11%  wbviu 9101 N 
'•-   bwoi V 

04% burn glut N 
0.2% 4 I 

wanh S% 

\ 
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She had your dark suit in greasy wash water all year. 
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Figure  1.     Allophone network for the word 
"water". 

Figure 2. 
a) observed  percentages  of  allophonic  forms. 
b) 18 node utterance model. 

The data used in this study were transcriptions of the two dialect 
sentences for the 630 speakers in the TI-AP database. Originally, 
the allophonic forms used for each of 58 phonemes in the two test 
sentences as produced by the 630 speakers were transcribed by Mar- 
garet Kahn, Jared Bernstein, or Gay Baldwin. The transcriptions 
were done carefully using a high fidelity interactive waveform editor 
with a convenient means to mark and play regions in a high resolu- 
tion image of the waveform. Spectrographic and other analytic 
displays were also easily available, though most of the work was 
done by ear and by visual inspection of the waveforms Subse- 
quently, a subset of 18 of these segments was chosen which we felt 
we could transcribe accurately and consistently; the 18 are dispro- 
portionately consonantal. This subset of 18 segments in the original 
030 transcriptions were then re-checked and corrected by one indivi- 
dual (Gay Baldwin) The transcriptions of these 18 
segments/utterance were compared to a subset of 156 speakers 
whose sentences had been independently transcribed at MIT as part 
of a related project. For this subset of 156 speakers, the number of 
transcription disagreements between SRI and MIT wa:, about 5-10% 
for a typical phoneme. 

Figure 2a shows the two dialect sentences, indicating the segments 
included in this study, along with the distributions of allophoncs 
found for each of these phonemes. Figure 2b shows the 18 node 
allophone model used to represent the possible pronunciations. 
Among these 18 phonemes, at the level of transcription wr used, 
there are 14 two-way splits, two three-way splits, and a six and a 
seven-way split The distributions vary from a l%-09% split for 
canonical /'./ vs. Hap in "water" to a 60%-i0% split for the 
affricated vs non-alfricated /dy/ juncture in "had-your" to a 47%- 
53% split for a glottal gesture at the beginning of "oily" 

The seven-way split for the juncture in "suit in" is the most 
unpredictable. The potentially variable events are the burst of the 
/t/, the occurrence of a glottal onset to "in" and the presence or 
absence of the vowel in "in".   A third of the readers produced a v>.ry 

clear form that exhibited a t-burst and a glottal stop or glottaliza- 
tion at the onset of the /I/ in "in". A quarter of the readers flapped 
or produced a short /d/ into t'ie vowel in "in". Nineteen percent of 
the utterances showed no burst for the /t/ but a glottal gesture into 
the /I/, while 18% showed the same buntless /t/ with glottal ges- 
ture, but released the gesture directly into the nasal, deleting the 
/I/. Three percent of the readers (19 people) released the /t/ with a 
burst right into the /!/, 3 speaker (0.6%) had a clear t-burst, but 
the glottal gesture goes right into the nasal with the /I/ deleted 
One speaker (0.2% of the sample) produced the "suit in" juncture as 
a /d/ with a velic release into the nasal (as in a word like "sud- 
den"). The distributions are surprising only as reminders of how lit- 
tle quantitative data on the relative frequency of occurrence of allo- 
phones is available. What experienced phonetician could have 
estimated the proportion of these forms in reading? It's no wonder 
that speech recognition lexicons would have whatever allophonic 
options they allow unspecified as to relative likelihood. 

The approach used in this study was to compute the probabilities of 
each of the transitions in the 18-node allophone model (figure 2b) 
from a large database of speech. The entropy of this model was 
computed, and compared to the entropy of a similar model without 
probabilities estimated from data, in which case all transitions from 
a node are considered equiprobable. Information theoretic entropy, 
H, of an arbitrary string, S, in the language was computed as: 

//(^--SS/'Oiog^«) (|| 

where n ranged over all of the the nodes in the utterance model, t 
ranged over all of the transitions from the current node, and P(t) is 
the probability of transition I.   This is the same as: 

2) 

where s ranges over all of the strings in  the language  [McElicce 
1977|. 
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The entropy measured for the model with equi-probtble truuitioiu 
i« 22.8 biti, and for th« model with empirically estimated probabili- 
ties is 13.0 bits. This represents an increase of 42.4% in predictive 
ability (knowledge or source of constraint) for the model with 
trained probabilities. Presumably, this further constraint should 
translate into improved recognition accuracy. 

CO-OCCURRENCE OF ALLOPHONIC FORMS 

The goal of the next study was to explore co-oceumnce relation- 
ships in ailophonic variation. A co-occurrence relationship is one in 
which the probability of the occurrence of a particular variant is 
conditioned on the presence or absence of some other variant in 
another part of the utterance. Knowledge of such co-occurrence 
relationships can be used to increase predictive power about 
ailophonic variation. 

The data used in this study was the same as that used in the previ- 
ous study, except that the reaiixation of /k/ in 'dark* was excluded, 
since we decided w- had insufficient confidence in our transcriptions 
of that phoneme. All poaaible pairings of the remaining 17 
phonemes (130 pairs) were tested for co-occurrence re'ationships. 
The two examples in figure 3 demonstrate the technique. For each 
pair of segments, counts of all combinations of variants for the two 
forms wer« entered into a matrix. Chi-square tests were performed 
on these matrices at the 97.5% confidence level. 

The example in figure 3a illustrates the analysis of glottal (or no 
glottal) at the beginning of "all" and "oily".  The table shows that, 
of the S30 speakers, 230 used a glottal gesture (either a full glottal 
stop or a weaker gesture seen as several irregular glottal periods, 
both symbolised here as |T|) at the beginning of both "all"  and 
"oily*.  One hundred eighty-four speakers didn't use (71 before either 
word, 65 speakers put |7| just on "oily", and 151 just on "all*.  The 
chi-square is significant at the 97.5% level, indicating that this pat- 
tern of co-occurrence of glottals at the beginning of "all* and "oily" 
is rather unlikely to happen by chance if we assume that the two 
events  are  independent.    In  other words,  speakers  who  used  |f| 
before "all" were more likely to use |?| before "oily" as well.   Simi- 
larly, if [7| was omitted before "all", it was leas likely to be found 
before "oily"    This case of co-occurrence is not surprising, because 
both forms could be considered to result from the same phonological 
rule. 

The co-occurrence matrix in figure 3b shows a dependent relation- 
ship between forms that are phonologically heterogeneous. In this 
case speaken who uac |tj rather than flap in "to* show a strong ten- 
dency to use (rather than omit) |T{ before *an*. This might b« 
interpreted as evidence for a higher level fast-speech (or lax style) 
* macro-rule*, which increases the likelihood of several types of pho- 
nological rules. One goal of our work is to establish a method by 
which such functional rule groups can be found (or dismissed). For 
now we just present preliminary data that show non-independence 
between pairs of forms over this sample of utterances. 

Figure 4 shows which of the 136 possible co-occurrences actually had 
chi-squared values that indicated non-independence. The confidence 
level for the chi-squared value was 97.5%, meaning that of the 136 
chi-squares calculated, one could expect about four artifactually 
non-independence between co-occurring forms. Of these 37, about 
IS involve pairs that have a clear phonological relation, (r-lessness In 
"your", *diuk*, *water*; [?] in *ill*, "an", "oily"; flapping in 
"water", *to", "don't ask", "suit in"; etc.). Most of the remainder 
show dependencies between variants in more remotely related pho- 
nological contexts. The number of dependencies is obviously consid- 
erable, and suggests that macro-level relationships — dialect region, 
utterance speed, style, sex-linked vanaiion - are pervasive enough 
to be useful in improving predictions of forms for automatic speech 
recognition. 

3a all-? 
0 ? 

oily-? 
65 230 

184 151 

an-? 

? 0 
3b 

burst 
to-t 

flap/d 

Figure 3.     Co-occurrence  Examples: 
a) onsets in "ail" and "oily". 

b) onsets for "an" and "to". 

Chi-squares for ail forms 

39 129 

28 434 

m 
Figure   4.     Significant   Chi-squares   for 

form pairs. f 
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There could be significant advantage in nnding a way to compile 
Icnowledg« about the co-occurrence of allophonic forma into the pho- 
nological model. Thii would allow a form of withio-utterance adap- 
tation to take place automatically. An example of how thii might 
be done is shown in figure 5. Figure 5a shows a probabilistic 
language model for a language consisting of strings of two symbols, 
the lint symbol being "A" half the time and "B" the other half of 
the lime, and the second symbol evenly divided between "C" and 
"D" There is additional structure to this language, in the form of 
co-occurrence. When the first symbol is 'A", the probability is 90% 
that the second symbol will be "C", and 10% that it will be "D" 
When the first symbol is "B". the distribution is reversed. The 
entropy of such a model can be calculated ai 1.47 bita. When a 
model representing the same language is configured ai in figure Sb, 
without representation of the co-occurrence, the entropy is two bits, 
one bit for the choice at each node. Configuring the model to reflect 
co-occurrence knowledge has resulted in more than 25% lower 
entropy. Clearly, the model in 5a can do a better job uf predicting 
incoming strings in the language than that in 5b. 

^OSC DOOOC 

5a 

1.47 bits 

5b 

2 bits 

Figure  S.     Alternativ«  models  for a  simple 
language. 

We performed a clustering study to determine whether we could 
compile co-occurrence knowledge into a phonological model, hence 
lowering entropy, using an automatic procedure. Considering each 
sentence pair from a speaker to constitute one utterance, we 
clustered the 630 utterance* into the loweet entropy '{roup* we could 
find. Each group could then be used to estimate •l,9phone probabil- 
ities for an independent path through the uooel (see figure 9). 
Grouping together utterances with similar allophonic realisations in 
this manner allows the phonological model to capture (^-occurrence 
knowledge by isolating co-occumng allophones in the same paths. If 
there is significant co-occurrence m the data, this new model should 
have lower entropy, and hence greater predictive power, than the 
previous model. 

The clustering technique used was a combination of hierarchical 
clustering and the iterative Lloyd algorithm Duiia and Hart, 19731. 
For fach specific number of clusters desired, the data were clustered 
into that number of groups using an agglomerative hierarchical du»- 
tenng technique, and then these dusters were used as the seeds to 

=©BC DOGOOCO 

,C2SC ÜCCDCDC #^ 

-zso: 

Figure  6.     Allophone  network for the 
2-sentence utterance, showing 

clusters as separate paths. 

the Moyd algorithm. Each step of the hierarchical clustering algo- 
rithm involves merging the nearest pair of distinct clusters. Ini- 
tially, each utterance forms a singleton cluster, and the procedure 
continues until the desired number of clusters is reached. At each 
step, the nearest pair of clusters was defined as that pair whose 
merging would result in a model with the lowest conditional entropy 
H(S|c), which waa computed aa: 

H{S I c)ml.±M(i)H(S \ i) (3) 

wAsrs   V - io/a/  nsmler of   »lUrtnea  in  the  tamplt  (630), 

n — carrcnl  nrnnicr  of   elutliri , 

AY (i )—n«m6er  of   ttttranen in cluster i , and 

H{S  |   i )- Tilropy   of   t   Itnnf   S  in   clutter   i. 

Hence, H(S|c) is dfSned as the weighted average (weighted by clus- 
ter sise) of the entropies of the individual clusters, which is the same 
u the entropy of a string, given that you know which cluster the 
string falls into. Though the real objective of this procedure was to 
minimif« H(S) rather than H(S|c), computing H(S) for the compoeite 
model at each iteration of the algorithm is computationally too 
expcnatve. Though H(S|c| is not guaranteed to be monotonically 
related to H(S), it should be in moat cases. 

In the second phase of clustering, the clusters found by hierarchical 
clustering wer« used as a seed to the iterative Lloyd algorithm. 
which continued until the improvement for one iteration was Ins 
than a threshold. Each Iteration of the Lloyd algorithm involved 
the following: 

1) For each utterance: compute H(S|c), as in equation i. with this 
utterance aa a member of each current cluster - remember the clus- 
ter for which H(S|c) is minimal. 

2) Once the new cluster is chosen for all utterances, actually make 
the switches. 

Typically, the Lloyd algorithm continued for 5-10 iterations, and the 
amount of reduction in HIS) over the clusters output from the 
hierarchical clustering procedure was another 1-2% lower than '.he 
unclustered model. 
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The rtiulu of the clustering study are shown in figure 7. The higher 
curve H(S) is Tor the composite model given 10, 20, snd 30 cluster«. 
The result« show that the entropy of « pbonologicsl model can b« 
lowered 10-15% by modelling the co-oceumnce of sllophonic forms. 
Furthermore, this co-occurrence can be modelled for any sufficiently 
'arge data set by running a standard clustering algontbm, without 
the need to explicitly determine what the co-occurrences are. The 
significance of the lower curve (H(S|c)) will be discussed below in the 
section on speaker groups. 

15 
14 H 13.0 
13 
12 H 
11 
10 
.1 
8 
7 H 
6 
sH 
4 
3 H 
2 
1 
0 

a. I H(s|c) 

10 20 

Number of Clusters 

—i 

30 

Figure 7.    Entropy of utterance model as a 
function of the number of clusters. 

We also tested whether demographic factors and speech rat« could 
be used to predict allophonic forms. These result« an shown in 
figure 8. Chi-square« (at the 97.5% confidence level) were computed 
to test for independence between region (each speaker was identified 
with one of seven geographic regions or as an "army brat"), age (by 
decade), race, sex, education (HS, BS, MS, or PhD), and speech rau, 
vs. form. As can be seen, the reault« show significant non- 
independence between all of the demographic factors vs. form and 
rate vs. form. This indicates that ail of these factors are significant 
predictors of allophonic occurrences. For example, people from New 
England tend lo say r-less "your", and people from the South tend 
to say "greasy" with a (l|. 

Chi-squares for forms vs. demographics 

dy 
your 
dirk 

suIMn 
groosy 

wash 
waler-i 
wator-r 

• II 
don't 

ask 
to 
an 

oily 
like 

lhat-th 
that-t 

region   duration    age-d    ract   sax   «due. 
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Figure   8. 

SPEAKER GROUPS 

The lower curve in figure 7 shows the conditional entropy of the 
model given the cluster, computed as in equation 3. This result 
indicates that if the appropriau cluster for the incoming utterance is 
known in advance, entropy can be lowered 30-50% from the 
unclustered model. The question Chen arises of how well can we 
predict the cluster for an incoming utterance. This question, in 
turn, raises a number of additional questions: 

1) What explicit predictors of cluster membership are available? 
(e.g., sex, region of origin, speech rate, etc.) 

2) How consistently does a speaker stay within one cluster? (i.e., If 
a speaker stays in the same cluster with reasonable consistency, then 
rapid adaptation to a new speaker may be accomplished by choosing 
the appropriate cluster after some experience with this speaker, or 
choosing an appropriate weighting function over the clusters.) 

3) How can we classify a speaker into the appropriate cluster, or 
choose the appropriate weighting function over clusters for this 
speaker at the current time? 

4) When during a recognition session should a new cluster be chosen, 
or a new weighting function be computed? (e.g., when speech rate 
changes, when performance drops, only when a new speaker comes 
along, etc.) 

The studies described in this section were designed to address the 
first two questions. 

In order to lest for predictors of cluster membership, we performed 
chi-squares at the 97.5% confidence level, testing for non- 
independence between cluster vs. form, cluster vs. all of our demo- 
graphic factors (age, race, region, sex, and education), and cluster 
vs. speech rat«. There wss significant noo-independrnce between 
cluster and all allophonic forms except for the /t/ in "water", as 
well a« for all demographic factors and rate. The lack of 
significance for /t/ in "water" is not surprising since, out of our 
sample of S30 speakers, only five of them aspirated the /t/. 

In order to test the consistency with which speakers remain in clus- 
ters, we gathered a new set of data, consisting of speakers repeating 
the same sentences many times. Four speakers were recorded in 
thr»' jc^mns each, with recording sessions for the same speaker a 
week apart. The recordings were made In a sound-treated roon. 
using a close talking microphone and a Nagra tape recorder Each 
recording session consisted of eight readings of the same two sen- 
tences used in the experiments described earlier, interspersed in a set 
of seven filler sentences. The first five repetitions were unins .ructed 
(i.e., 'normal reading"). At the sixth repetitio;'. the subjects were 
instructed to read very quickly, at the seventh slowly and carefully, 
and at the eighth normally From listening to the recordings, it is 
our judgement that the fast readings were, indeed, extremely fast. 
and the slow and careful readings were extremely slow and careful 
Since the uninstructed readings were fairly fast, the differences 
between the slow and uninstructed readings were more dramatic 
than those between the fast and uninstructed readings, iba tinal 
data set consist« of 96 repetitions of the two sentences, 24 from each 
speaker, with 72 repetitions uninstructed or "normal". 12 fast, and 
12 slow and careful. 

The same 18 phonemes used in the earlier experiments were phoneii- 
cally transcribed, with the aid of the tools described earlier, by 
Michael Cohen, and checked by Jared Bernstein and Gay Baldwin 
Each of the 98 utterances were then classified into the clusters based 
on the S30-speaker data, as described in the previous section We 
chose to classify them into the 10-cluster version «o that each cluster 
would be based on a large number of utterances (approximately 63) 
Each utterance was classified into the cluster with the oentroid with 
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minimal Euclidean dutancs to the uUerance. Tabls I shows the 
number of utterance« for each speaker daasified into each cluster. 
As can be seen, moat of the utterances for each speaker tend to be 
classified into two or three clusters. Eleven of the 12 slow uttar- 
uices were classified into cluster two. The fast utterances did not 
tend to fall into any one cluster. 

Table 1.    Classification of speaker 
according  to  preexisting  clusters 

uttersnees 

Speakers 

JB 

Clusters 

0     12    3    4    5    6 7    8    9 

0    0    3    0    12    3 1    0 14 

JK 0    2    6    15    0    0 1    9    0 

KC 0    12    12    0    1 0    0 17 

PR 0 11    8    0    0    0    3 2    0    0 

These results indicate that although speakers fall into the same ell» 
ten with some consistency, choosing a single cluster for a speaker is 
inadequate. A more reasonable approach may be to choose a 
weighting function over all of the clusters. Furthermore, cluster 
membership seems to be somewhat dependent on speech rate. 

INTRA-SPEAJCER VS. INTRA-GROUP VARIATION 

The results of the previous section suggest a method of adaptation 
by choosing appropriate sets of (or weights for) dusurs for a 
speaker. The study desenbed In this section sddresses the question 
of whether or not it Is useful to try to further adapt to the Indivi- 
dual speaker once the clusten are chosen We have addressed that 
question by comparing the amount of variation within a single 
speaker to the amount of variation within a single cluster. If there 
is considerably less variation within a speaker than within even a 
single cluster, then there may be ways to further adapt to the indi- 
vidual speaker. 

The data used for this experiment included both the 830-speaker 
data desenbed earlier, and the four speaker multi-repetition data 
desenbed in the previous section. We compared the entropy of a 
model trained for a single speaker in the multi-repetition data set to 
ti. • entropy of a cluster from the SSO-speaker MI. Only the 18 unin- 
stnioted utterances for each speaker were used from the multi- 
repetition data, because the S30-speaker data were recorded without 
instruction. The comparison was made with the 10-cluater version 
of the 630-speaker data so that each duster would be based on an 
adequate amount of data. In order to be able to make a fair com- 
parison, it was necessary to compare the entropy of models trained 
on the same number of speakers, so we sampled the large clusten 
from the 630 speaker set by randomly choosing a cluster, and then 
randomly choosing the appropnate number of speakers from the 
.luster. This was done 1000 times, and the mean entropy of the 
13-member dusters were computed. The mean entropy of the 18- 
member dusters from the aSO-speaker data was 8.3S, and for a sin- 
gle speaker from the multi-repetition data was 8.89. approximately 
19% lower. This suggests the possibility of significant individual 
«peaker idaptation beyond the choosing of appropnate dusters. 

DISCUSSION 

The studies desenbed In the previous four sections have demon- 
strated some types of structure in Che phonological vanation 
observed In a data set consisting of two sentences (21 words) read by 
many speakers. In addition, we have shown some types of lexical 
representations that might be used to capture this structure. 
Representations were compared by measuring iheir entropy, or 
predictive ability. It is assumed that lower entropy can lead to 
Improved recognition performance. In the near future, we intend to 
test this assumption in a series of recognition performance studies. 

The results desenbed above have a number of Implications for sys- 
tem design. The first study suggested that a significant advantage 
in recognition accuracy can be gained by Incorporating pronuncia- 
tion probabilities in a lexical model. The major problem in incor- 
porating such knowledge into large voeabularv systems is finding 
suSicient amounts of training data to adequately estimate allophone 
probabilities for the segments of each word in the vocabulary. A 
possible solution to this problim is to use knowledge of phonological 
rules, rule groups, and the co-oecurrence of allophonic forms to 
reduce the number of independent nrobabilities being estimated. 

The second study showed co-occurrence relationships between allo- 
phonic forms. In addition, an automatic dustenng technique was 
demonstrated that could be used to model this co-occurrence for a 
■iat« set without explicit knowledge of what these co-occurrences 
an. This result suggests that lexical representations can be 
Improved by including a small number of sets of word models, each 
trained on an appropriate cluster of ■ large data set. When sconng 
sequences of word proouneiation hypotheses for an utterance, each 
sequence would only include one set of word model probabilities. 

The last two studies suggest methods of adaptation to a new 
speaker, as well as ongoing adaptation within a session with a single 
speaker. In figure 7, H(S|c) Is shown to be considerably lower than 
HIS). This suggests that predicting the appropnate duster for an 
utterance can reduce entropy considerably by allowing the search to 
be confined to the model of a single duster. 

The third study, which explored the consistency with which a 
speaker remains In a duster, suggests that predicting '.he duster for 
an utterance cannot be achieved solely by speaker adaptation, since 
a speaker will not stay in a single duster consistently However, the 
third study does suggest that H(S|e) can be approached by choosing 
an appropnate weighting function over all the clusters, given some 
experience with a speaker. Furthermore, these results suggest that 
knowledge of speech rale ca-i be used to Improve prediction of the 
approphata cluster for an utterance. Ongoing adaptation might be 
achieved by penodically recomputing the weighting function. We 
have not explored the queatiou of when, or how often, should this 
weighting function be recomputed. 

The results of the fourth study, companng mtra-speaker to mtra- 
duster entropy, show greater consistency withm a single speaker 
than within the clusters found in the previous studies. This suggests 
that speaker adaptation can be improved beyond the choice of clus- 
ten by further refinement of model parameters, based on extended 
expenence with a speaker. The major problem with individual 
speaker adaptation is that model parameters have to be estimated 
from a small amount of data for the speaker. The advantage of 
adaptation by duster choice is that the duster could be well trained 
on large amounts r' 'a. The problem of insulTicient data for indi- 
vidual speaker adaptation can possibly be handled by exploiting 
knowledge about phonological rules, rule groups, the co-occurrence 
of allophonic forms, and implicational rule hierarchies, in order to 
decrease the number of parameters being estimated, is well as 
increase the number of samples for each parameter We intend :o 
explore methods for doing this in future work. 
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CONCLUSIONS 

W> bkv« performed » Miiti of four studin, with tht following 
refulti: 

1) Incorporating cmpirieftlly determined probabilities of allophomc 
formt into s phonological model cut significantly reduce model 
entropy, and possibly improve recognition accuracy. 

2) There i* significant co-occurrence of allopbonic forma within an 
utterance, and automatic clustering proeedun* can be used to com- 
pile knowledge of these co-occurrences into a phonological model, 
without need to explicitly determine what the co-occurrence« are. 
Incorporating these cooccurrences into the phonological model can 
significantly lower entropy and allow a form of within-utterance 
adaptation, possibly improving recognition accuracy. 

3) Speakers tend to fall into phonological group*. Rapid adapution 
techniques might work by choosing either a set of clusters or weight- 
ing function over all cluster« for a speaker given a small amount of 
experience with that speaker. Ongoing adaptation may poasibly be 
achieved by periodieally recboosing a cluster set or recomputing the 
weighting function. 

4) Individual speakers vary less than speaker cluster«, and therefore, 
further adaptation to an individual sneaker could be useful. This 
may require the exploitation of knowledge about phonological rule«, 
rule groups, implicational rule hierarchies, and the co-occurrence of 
allophonic forms. 
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ABSTRACT 

This paper describe* alternative approaches to lexical access in the 
CMU ANGEL speech recognition system. One approach explores 
scoring alternatives within th« Traineworic of the CMU module. In 
another approach, the asynchronous phonetic hypotheses gsnersled 
by the acoustic-phonetics module an converted to a dineted graph. 
Tins graph is compared to a pronunciation dictionary. Performance 
results Tor the approaches and th* original CMU approach w«ra 
similar. An error aoalyais indicates promising diractujos for further 
work. 

OVERVIEW OF THE 
CMU LEXICAJ^ACCESS MODULE 

(circa summer I98S) 

A lexieo-centric block diagram of the ANGEL speech recognition 
system is shown in Figur« t. The acoustic-phonetic module -! ouu 
puts a set of phonetic hypotheses (see Figure 2) to the lexical-access 
module. These lattices contain "firings" that give the estimated 
probabilities of segments occurring in particular time intervals. 
However, the relative probability of one 6nng versus another is not 
estimated, even if th* two flrings overlap it in time. Thr is because 
th* acoustic-phonstic module ia mad* up of a s*t of independent seg- 
ment iwators and claasiAcrs. 

OVERVIEW 

A lexical access subsysum can be dividtd into two major com- 
ponenu. On* compon*nt is a /sn'ean; a .i»u struetun that contains 
a list of words and a repreaentatioo of th* allowabl* pronunciations 
of those words. Thos« pronunciations may hav* associated probabilt- 
ti*s and th* probabilities may b* dynamic in nature That is, thsy 
may chaag« du* to ntw estimstions of speakcr-typ«, speech styl*, 
and so on. 

Th* other component is th* «sreA tnd itorinf nuetsntsm. Tins 
compares the output of an acoustic-phonetics module, with the lexi- 
con and determines the word sequence that with highest probability 
corresponds to those outputs. In doing so, the search and scoring 
module must take into account th* cbaraetenstics of the AP output, 
such as insertion, deletion, and substitution probabilities. 

This paper evaluate* alUmativ* March and scoring mechanisms in a 
lexical access module. 

GOALS 

This is a progress report on work at SRI International in cooperation 
with Carnegie-Mellon University (CMU) and sponsored by DARPA 
SRI is exploring alternative approaches to lexieal-scces* in the 
framework of a speech recognition system (ANGEL) being developed 

at CMU 111. The ANGEL system is designed to recognise a larg* 
vocabulary from American English continuous speech. Our goal ia 
to devise an approsch to lexical access that b< i takes advantage of 
ii\ information available from other knowledge sources in the speech 
recognition system (particularly the acoustic-phonet-- 'nowledge 
source), 3iid .ilso is resilient in the face of errors made by those 
other knowledge sources. 

lThit riMirtb wt* tpoatortd by DtftDM Advuetd Rtsnreb Proiteu Ajtncy 
Coairsct N00039-S^C-0302. Tht vitws ud TOticluitoas ronuioid in tbu documtnt 
u* tboM of th« sutbon ud sbould ooi b« mtcrpmtd u rvprntntiai tb« otfieiai pot- 
icin. fitbir «broud or unplltd ol lb« Orfiai« AdTuc«d RaHveb Proiteu A»«ncr 
or lb« US OartronMii. 
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Zso-Coars* 

X \ 

Anchor 
G«rw*raIor 

Leiicoo 

MATCHER 

Acoustic 
Phonetics IntSQTMor 

Figure  1. 

A  lexlco-cencrlc block diagram of  ehe ANGEL 
speech recognldon  system 

The 1980 version of CMU's lexical-access module converted this lat- 
tice structure into an inltfrattd Itltiet. The lattice integrator 
created boundaries where acoustic-phonetic segments began ir.d 
ended and, in particular, created new boundaries where segments 

-' lapped. It collapsed information from the scoustic-pnonetic lat- 
tices by combining the probability estimates from overlapping 
acoustic-phonetic segments to derive likelihoods of the newly created 
segments. An example of this integrated-lattice data is shown tn 
Figure 2. 
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Figure  2. 
Acoustic phonetic lexical-access Interface 
data structures 

The iotcgrUed lattice waa matched to a dictionary network that 
reprcaented all allowed proDuociatiooa of worda. The match alpy 
rithm allowed one or more iDtegrated-lattice segmeota to match a 
particular dictionary segment. A scoring algorithm computed the 
coata of matching paths in the dictionary and the integrated lattice. 
The scoring waa baaad on the integratcd-iattice likelihooda, com- 
pariaona of expected durationa of dictionary segmenu with durstions 
of correaponding concatenated integrated-lattice segmanta, and com- 
pariaona of the integratad-lattict segmenu with an independent 
coarae labeling of the Input speech (baaed on the ZAPDASH coarse 
labeler |3|). 

The lexical-acceas module alao computed anchor regiona (aee Figure 
2) from the waveform. Anchor regiona define poaaible syllable and 
word boundariea sa tht cooaonantal regiona between vocalic regiooa 
specified by the ZAPDASH coarse labeling routine. 

The match routine searched for words between all (reaaonable) pain 
of anchor regions. The match routine did so by looking for patterns 
in the integrated lattice that matched patterna in ita lexicon. The 
match routine paased matches and their likelihooda to the syntactic 

module. The syntactic module hypothesised senlcncea, verifying the 
word junctures with the lexical-icceaa module. 

MODIFICATIONS TO THE CMU SYSTEM 

SRI decided to explore a number of alternative »coring and search 
algorithms lo determine how to make the best use of the inform»- 
uon contained in the integrated lattice. We limited our search of 
alternative lexical sconng/seareh algorithms lo variations of the fol- 
lowing CMLMexical-acceaa characteristics. 

1. Lexical phonemes were required lo begin and end at the boun- 
daries of the integrated littice. 

2. Phoneme scores were weighted by the duration of the phoneme 

3. Phoneme scores included penalties if the duration was below or 
above a preset minimum/maximum duration. 

4. Phoneme scores included penalties when their phoneme type did 
not agree with the coarse-labeling information. 

Our  goal  was lo see  how well  a lexical scoring  algontlim  could 
hypotheane words if you knew where ihe words begin and end.   The 

search of alternative lexical scoring algorithma tried to maximise the 
rank of the correct word given the known begin and end times of 
that word.   Our beat algorithm of this type is described below: 

1. Phoneme scores were not weighted by iheir duration. Therefore, 
the score of a word candidate was the average of the indmduaJ 
phoneme scores. (In the CMU algorithm, the word score is the dura- 
tion weighted average of the individual phoneme scores.) 

2. Lexical phonemes were allowed to begin or end every 10 msec. A 
minor degradation in performance was observed when phonemes 
were required to begin and end at the boundaries of the integrated 
lattice. 

3. The preset minimum/maximum duration constraints were used as 
hard limits on the allowable duration of a phoneme. 

i. The coarse labeling Information was not used to modify the 
phoneme scores. 

Evaluation and Testing Data 

The matcher and lattice integrator portions of the CMU lexical- 
accesa module were compared with the alternative routine desc.ibed 
above. These modules were tested on 100 "Electronic Mail" sen- 
tencea, part of a larger databaae collected it CMU. In this data. 
each of 10 speakers said ten sentences composed from a 339 word 
vocabulary. An example sentence is "Stnd t menage lo Smith at 

CMU." The data waa hand-labeled at CMU and the outputs of ihe 
CMU acouatic-phonetic module and CMU's anchor generator module 
were sent to SRI. All CMU modules for this study arc circa mid 
1080. All testing waa done on this continuous-speech database in a 
speaker>iiidcpcndent manner with no grammatical constraints 

The results shown in the tables below are the percent correct words 
in the text set for the lexical access algorithms given correct anchor 
regions and hand-set endpointa. 

.LoUMJAggeaa Perfttunmi«.wJlh_Hjji«j:g<a_Eiuli>ointa 
Rank 

Correct 
Top 3 
Top 10 

Alltrnate C\tL' 5y<Igfn Sitnnlatton 

55 
79 

15 
71 
88 

Lexical Access Performance Ueina Anchor Resiona 1 
Rank Altcmatt                 CMU Rtfortti Remit» 

Correct 
Top 3 
Top 10 

30                                        32 
.55                              sa 
81                                        76 

As our results show, the performance advantages gained on known 
endpoinu did not translate into an advantage when endpomt inter- 
vals were used. However, we believe that this iconng algorithm 
might result In an improved word accuracy if sentence hypotheses 
»re constructed from the individual word hypotheses. Our current 
research has therefore been aimed at generating sentence 
hypotheses 

CO, ..^CTED LATTICES 

SRI also explored a modification to the mid-1986 CMV system 
which eliminated the integrated-lattice component and hypothesned 
words directly from a structure more similar to the acoustic- 
phonetic output. 
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We felt thai a aigniflcuU amount of information waa being lost by 
the integraled-Uttice component. For initanee, segmentation deci- 
sions made by the acouatie-phonetic module weie in effect over-ruled 
by the matcher using the integrated lattice. Similarly, decisions 
about relative likelihoods of overlapping acoustic-phonetic firings 
were made by the integrated lattice, when such decisions should 
have been made by the acoustic-phonetics module. 

However, the acoustic-phonetic output without the lattice integrator 
waa not amenable to direct lexical access. Often the string of 
correct phonetic hypotheses were in the lattice, but either one 

correct phonetic segment overlapped with the next correct one or 
«as separated from it by a small interval of time. Thia problem was 

I )lvcd when using the lattice integrator by splitting segments at all 
overlap points and by allowing single dictionary segments to match 
a scries of integrated lattice segments. 

A new representation of the acoustic-phonetic data was chosen (the 
eonncclcd fillict) that retains the information in the acoustic- 
phonetic lattice such aa duration of segments and reduces the possi- 
ble search space by not introducing additional boundaries at seg- 
ment overlaps. 

Conversion to thn Connected Lattice 

An algorithm that transforms UM acoustic-phonetic lattice to the 
connected lattice works as folio1 r 

The acoustic-phonetic lattices are converted to a simple directed 
graph, the connected lattice. There are two types of arcs in this 
graph. AP ARCS are created by replacing each aeouatic-phonetic 
Aring with an arc going from t node representing lb« start time of 
the firing, to a node rpr .-senting the end lime of the firing. CON- 
NECT ARCS are create I between all nodes that hare incoming AP 
arcs and all nodes within 100ms of these nodes that have outgoing 
AP arcs. Connect arcs are necessary beeaua« without them there 
typically would not be a connected path between the start and end 
of a sentence. 

Output probabilities are aaaigned to the AP arcs. These probabili- 
ties are the product of a vector and a matrix. The vector consists of 
the probabilities of phonetic segments as aaaigned by the acoustic- 
phonetic module in the time interval corresponding to the AP arc 
(or acoustic-phonetic firing). The matrix is a segment^onfusion 
matrix corresponding to the observed performance of the acoustic- 
phonetic module. Probabilities an also aaaigned to the connect :J — 

in a context dependent manner that makes more reasonable con- 
nects more likely.  This ia described below. 

Search of the Connected Lattice 

A search is performed to compare the system's lexicon (stored in a 
pronunciation graph) with the connected lattice. Tuples consisting 
of the initial lexicon node and all initial nodes in the connected lau 
tice (corresponding to all permissible word starting points given the 
anchor regions) are placed on a list of active paths. The items in 
the list are called partial paths. The search algorithm proceeds by 
taking a partial path off of the list, extending the path in all possible 
ways2 (the product of every lexicon are leaving the lexicon node at 

the end of the partial path, and every AP or connect are leaving the 
connected lattice ■ ■ at the end of the partial path). These new 
paths are placed back in the list. Paths that are complete (that end 
m the end anchor region) are also placed m a list of complete paths. 

Partial paths (sets of associations of dictionary segments and con- 
nected lattice arcs) are scored as the sum of the log-probabilities of 

■The iftreh uiorubm doei not lilow putu u> 'oop, nor  -an palhl have two 
toniecuuvf connect arei or brfjn wtth or fnd -itfi ranntet ut%. 

the components of the path. A component probability for an con- 
nected lattice ia the probability of the dictionary segment in the set 
of output probabilities of the aasocialed AP arc. The component 
probability for connect ares, which have no associated dictionary 
segment, is a function of the length of the connect arc relative to 
the lengths of the AP arcs that jurround them. For instance two 
long AP Arcs connected by a short connect arc would have a much 
higher probability than two short AP arcs connected by a long con- 
nect arc. 

It is the function of the connect arcs to permit AP arcs to connect 
reasonably without affecting the score of the paths, however unrea- 
sonable sequences of AP arcs are inhibited by the scoring of the con- 
nect area. The connect arcs also, in effect, lessen the effect of 
premature segmentation decisions made by the acoustic-phonetic 
module. 

Evalume.ion 

The above algorithm waa evaluated using CMU's 100 electronic mail 
sentences described above. The results are summanied in the tables 
below. 

rtani 

Lexical Aeceaa Performance 
Uaing Anchor Regions 
_l£M.lLrcported resulaj  

correct 
Top 3 
Top 10 

CMU 
(9t£ wordi) 

Conntttti Lttlict 

32 
55 

.78 

35 
52 

.74 

Lexical Aeceaa Performance with Hand-Set Endpointa 1 
(CMU ^vstem was 'imuUted at SRIl 

Rtnk CMU                        Ctnncclcd Lattice 
IU0 wordsl                          IU0 worHti 

correct 45                                         83 
Top 3 71                                         70 
Top 5 .80                                           84 
Top 10 88                                           92 
Top 20 90                                           01 

DISCUSSION 

The recognition results above show similar performance for the two 
modules. A closer examination of the data revealed that the con- 
nected lattice module tended to have catastrophic errors Such 
errors typically occurred -»hen one of the proper segments was 
deleted by the acoustic-phonetics modules. This version of the con- 
nected lattice search algorithm waa not equipped to deal with such 
problems. For instance, of th: 17 words not in the top 20 choices 
for the connected lattice system with hand-set endpomls, 16 were 
caused by the AP-module's failure to spot one or Tiore segments in a 
word. One error was due to a speaker's mispronunciation of that 
word. Of the words that were in the top 8 through 19. the 
overwhelming majority had the segments there but with low probv 
bilities. 

In order to soften the effect of AP deletions, yet continue to taice 
advantage   of   the   acoustic-phonetic   data,   new   con d   lattices 
being designed should include insertion, deletion, and substitution 
probabilities (separate from phonological insertion, deletion and 
substitution! for segments based on a model trained with icoustic- 
phonetic module output. Probabilities for connect arcs will be 
estimated from similar data, however, in later systems it is hoped 
that the acoustic-phonetic module will also provide some informa- 
tion about the reasonableness of mtcr-segment junctures. 
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A propoul that deacriba t Dtw interfact b«tw*tD the icoiuuc- 
phonelie module ud the Itxieal-acccM module is included in the 
appendix to thia paper. 
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APPENDIX 

Propoaad New latarfaca batwaao 
Acouatic-Phonetica and Lexical Acer, 

(tikrevitttd form of s memo 
eireaitUW Fail 1988) 

OVERVIEW 

The goal of thia proposal is to define an interface between the 
Acoustic-Phonetics (AP) module and the Lexical-Acceaa (LA) module 
that will improve overall system performance. 

The main theaia of thia proposal is that some hard decisions (typt- 
eally segmentation decisions) that are made in the AP module are 
better left to the LA or even syntax modules, using probabilities 
assigned by the AP module. For instance, an acoustic-phonetic net- 
work that provides probabilities for different segmentations might be 
used to avoid many of the problems of deleted or split segments, 
after dictionary and syntactic constraints are applied. 

The second thesis of this proposal is that the performance of the AP 
module should be evaluated in the context of the LA module and 
vica versa. This implies that to improve system performance a light 
feedback loop should be established for developing the two modules. 
For example, a new network-based AP module should be frequectly 
precented (perhaps even in half-baked form) to the LA group, who 
should then evaluate word hypotheses, discover specific areas in the 
AP data as well as in the LA algorithms that need the most 
improvements, and feed this back to the AP people for further 
refinements. 

GENERAL DISCUSSION 

1) PHONE DELETION EHRORS 

The AP module often combines adjacent phones into a single phone 
with no competing two-phone hypothesis. This can cause a fatal 
error for word hypothesis routines that do not account for AP seg- 
ment deletion, since the lexicon only accounts for phonological 
deletions and for some generalizations about AP deletion. In fact, 
phone deletion and insertion are the major causes of words missing 
from the (non-lattice-integrated) word lattice in our experience. 

The lattice integrator deals with phone deletion errors by overseg- 
menting, that is by creating extra boundaries on all overlaps. By 
creating extra boundaries, the word network can be traversed in 
cases where it could not be without a lattice integrator. Tins allows 
the correct word to be included in the top 20 words hypoihesned 
more often, but often permits incorrect words to achieve better 
scores than the correct word. 

Ideally, the AP module would hypothesne many segmentations. 
though some might have low probabilities. It is Inevitable, however, 
that some deletions will occur. Therefore, statistics for estimating 
the probability of deleted phones are necessary for the LA module 
Firauorder statistics such as "the probability that an /ih/ is deleted 
anywhere' can be computed on a large data base such ss the one 
that will be used to estimate phone confusion probabilities. 
Second-order statistics, such aa probability of deleting an /ih/ after 
an /iy/ (as in the word "ceeceeing"), may be more desirable. In this 
example, although the general probability of del-ting a vowel may 
be low, deleting a vowel in the context of another vowel may be 
much more likely. Higher-order statistics, such ss the probability of 
deleting segments in particular words, may be even more helpful for 
certain high frequency words. 

2) PHONE INSERTION ERRORS 

The AP module often splits phones oi inserts spurious phones which 
süects the LA module in ways similar to phone deletion. Error 
statistics can b« computed for phone insertion similar to those for 
phone deletion. Furthermore, a AP post-processor might examine 
the AP data for consecutive similar segmenu and creates an addi- 
tional AP segment if it decides that there is positive probability that 
these two segments represent one underlying segment. 

3) ANCHOR ERRORS 

The current lexical access algorithm uses anchor regions bssed on 
ZAPDASH analysis tn propose regions where words may start 
Although the claiu has be -n made that 08?ö of all words are found 
by this analysis, the boundaries proposed by ZAPDASH are not 
necessarily even close to the appropriate phone boundaries produced 
by the AP module. Clearly, anchor generation must be syncliron- 
iied with the phone alignment! Our lexical-access analyses for sys- 
tems without lattice integration do not UM anchors, but rather 
hand-marked times corresponding to AP lattice output that may 
then be "funified." 

i) ERRORS OF PHONE ALIGNMENT 

i 

Sä 

I m 
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We have come to the conclusions that performance of the top word 
hypothesis mode by the lexical access module is best without a lat- 
tice integrator. However, without such an integrator, AP errors air 
more serious causing a higher percentage of words not to be included 
in the lop 20 words hypothesized by the LA module. The proposed 
interface between the two modules is expected to help solve this 
problem. 

The following problems are listed in order of senousness of »nor 
(those causing the most problems to those causing the least) based 
on an analysis of errors mode by our current LA aigoruhms: 

The proper phones may be loerted and classified but they may be 
erroneously aligned. This is shown in the figure below for the word 
"TV" — > l iy v iy 
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Figurr 3. 
AJignmenl problem« ia the AP module 

Adjuitiog the alignment of segmenu it important when recogniiing 
from current AP lattices. BetUr alignment can be accomplished by 
requiring locators for different segmenti to use common information 
(such as a coan« labeling of the input speech) when making align- 
ment decisions. 

One current SHI lexical acceai algonthm use* heuristics to solve this 
problem. This is not the most desirable solution, but in the absence 
of acoustic-phonetic information to determine the goodness of align- 
ment choices, it is an expedient choice. OveHapa or gaps wet« 
penaiiied more with an increased ratio of the length of the overlap 
or gap to the sum of the lengths of the segment connected by the 
overlaps or gaps. 

In contrast, the lattice integrator solved the phone-aligr.mcnt prob- 
lem bv creating new AP boundaries at overlaps and by ignoring 
gaps if there were no lat tied segmenu in the gap. 

Any alignment scheme should aim towards allowing phones to follow 
each other reasonably, while disallowing incorrect phones with too 
much overlap or gap. Since absolut« decisions can not be mad« with 
100% certainty, alternative segmentations should b« provided. 
When alternative segmentations are provided, probabilities of these 
segmentations shoulH be estimated as well. It is more appropriate to 
have the AP module to apply acoustic-phonetic information to 
evaluate the junctures between segmenlal hypotheses, than to have 
the LA module make these decisions. 

5) ERRORS OF PHONE SUBSTITUTION: 

With phone substitution errors, the correct region for a phone is 
found, but the correct phone is labeled with little or no probabihty. 
This can be overcome by charactenxing the phone-substitution pro- 
babilities of the AP module over a large data base, and using this 
'phone confusion matrix* in lexical access. This is currently b«ing 
don« by the AP module. Of cours«, the estimation of 
I11 phone, \ label.), the confusion matrix, should take into account 
the a priori probability of label, 

PROPOSAL 

One possible interface is outlined below. This interface starts with 
an AP module similar to the current CMU module, but with better 
phone alignment (perhaps bssed on the ZAPDASH segmentation 
scheme). This system, however, also explicitly rates the probabilities 
of lattice phones following each other which has the effect is of 
doing "phone-juncture verification" for all nearby phones. Also, the 
probabilities for merging similar labels ar« explicitly computed by 
the AP module. This system is then statistically chiroctemed in 
terms of phone substitution probabilities, phone deletion probabili- 
ties, and phone merger probabilities. All this information is 
represented in a directed-graph data structure. 

INTERFACE SPECIFICATION 

A directed graph data structure is output by the AP module with 
the following characteristics: 

1. Each node in the graph represents a particular point in time. 
There may b« several nodes corresponding to the same point in 
time. This may happen, for instance, if a particular AP event ia 
dependent on another event. For instance, a vowel may be depen- 
dent on a following nasal. Then the hypothesis is only connected to 
things consisunt with its hypothesis. 

2. There are arts laaving each node in the graph. These arcs 
correspond to one of two possible things. 

(a) The firing of a locator for a given type of phone (an AP arc). AP 
arcs always lead to other nodes, (b) The possibility that a locator 
did not fire for a given phone (an insertion are). An insertion arc 
always leads to the node it came from. 

3. There arc two probabilities associated with each AP arc (above): 

(a) the probability that the locator firing corresponding to the arc 
was valid, P(AP-are | node), the transition probability for the AP- 
«re. (b) the set of output probabilities of phones given the AP arc is 
valid, P(phone | AP-are). 

i. Similarly, there an two probabilities associated with each inser- 
tion are: the probabili:y that any phon« can b« inserted at the node, 
which is P(ins«ttioo-arj | node); and the probability of a particular 
phone being inserted at this point given that there was an insertion, 
which ia P(phons | insertion-are), the output probabilities of the 
insertion ares. 
S. For a given node, the sum of th« transition probabilities for the 
ares leaving that node, in other words ail the AP arcs plus the inser- 
tion are, should equal 1.0. Similarly, for a given are, the sum of its 
output probabilities should b« 1.0. 

FINAL CONSIDERATIONS 

PROBABILITIES AUTOMATICALLY ESTIMATED 

All of these probabilities should be automatically estimated from the 
outputs of th« AP modul«, so that systrm changes will not require 
the tweaking of many parameters. 

Further, higher order probabilities are desirable wh.-n there is ade- 
quate data. Thus, for example, the deletion of phone in context (or 
in word) for high frequency contexts (or words) would be good infor- 
mation. Output statistics showing probabilities of evenu and the 
number of evenu used to estimate these probabilities would be use- 
ful to th« LA group. With this information, higher order probabili- 
ties can be used when there is enough training data to make them 
reliable, and lower order probabilities can be used otherwise. 

ALGORITHM READJUSTMENT WILL BE NECESSARY 

Although this proposed interface should ultimately improve perfoi^ 
mance, there will be some initial problems with it. These oroblems 
should be worked out in the context of the lexical-access module. 
We propose that the AP group initially output both the finish 
product graph and intermediate statistics that lead to that graph. 
These include the Initial locator/classifier decisions, statistics, such 
as the confusion matrix, that lead to the ultimate graph, and inser- 
tion and deletion statistics. Information on the methods used to 
assign probabilities to new arcs should uso be presented to the lexi- 
cal access group. 
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The NBS Fast Formant Tracker 

A Progress Report 

William J. Majurski and James L. Hieronymus 

National Bureau of Standards 
Gailhersburg, Maryland 20800 

Abstract 

This paper presents a progress report on the develop- 
ment of a fast formant tracker. Our present effort is 
focused on extracting formants 1, 2, 3 and 4 and their 
amplitudes from voiced speech. Our goal is to produce 
formants which can reliably drive the recognition of 
vowels and semivowels in the context of speaker 
independent continuous speech. The algorithm is based 
on peak picking and a data reduction technique which 
analyzes peak frequencies and amplitudes as a function 
of time. A side product of the tracker is segmentation of 
voiced regions of speech that shows promise for use in 
segmenting some phonemic classes. Evaluation of the 
tracker on 350 utterances from the DARPA Acoustic- 
Phonetic database indicates that 00% of all phonetic 
segments are trucked correctly. This is based on visual 
evaluation of the formant tracks overlayed on spectro- 
grams. Phonemically, a large portion of the errors cluster 
arourd /r/. We are in the progress of adding a 
rctroflexion detector developed at NBS (Gengel, Majurski 
and Hieronymus 1087) to aid the tracker in these areas. 

Front End Signal Processing 

The formant tracker uses pitch synchronous dfts as its 
signal processing front end. We are currently using a 
pitch tracker and synchronous dft routines developed at 
CMU. During voiced speech (areas where pitch tracker 
fires) a variable width hamming window is centered on 
the pitch period. The window size is taylored to the 
pitch period length. This tends to produce spectra in 
which the formants are represented clearly. For peak 
picking this appears to be an optimal windowing of the 
waveform. Including a second pitch period or overlap- 
ping two pitch periods in a single analysis window would 
add components that are out of phase thus diminishing 
the clarity of the formant structure. Preemphasis of 6 
db per octave is used. 

Peak Picking 

Spectral peaks are selected by locating the negative- 
going zero-crossings of the first difference of the pitch 
synchronous spectra. Zero-crossings which occur during 
negative excursions of the second difference mark the 
locations of spectral peaks. The pitch synchronous spec- 
tra are used unsmoothed. 

• • • ■ 

■v - - 

Introduction 

This paper gives an overview of our current algorithm 
for tracking formants in continuous speech. We want to 
use formants to assist in machine recognition of vowels 
and semivowels. At the outset of this project no 
sufficiently acurate formant tracker existed for our use. 
This algorithm produces formant frequencies and ampli- 
tudes for the first four formants. 

Our goal was a formant tracker which was accurate, fast 
and structured to extract as much information from con- 
tinuous speech as possible. The formant tracker employs 
a peak-picking algorithm followed by a peak- 

combination algoritlm. The peak-picking algorithm 
parameterizes peaks by both their frequency and ampli- 
tude. The peak-combination algorithm develops initial 
tracks, called ridges, which are found by combining 
peaks which aic similar in frequency and minimally 
seperated in time. 

Each peak is parameterized by its quantized height, 
frame, and bin. Within a sonorant region the range of 
peak amplitudes in db is quantized into ten levels by a 
simph linear function. Frame refers to the pitch period 
the peak was extracted from. Bin is a frequency measure 
corresponding the dft bin number (0-127) of the center of 
the peak. Only peaks in the frequency range 0 - 4000 
Hz.  are used in the tracker. 

Peak Combination - Simple Ridge Construction 

The algorithm groups together peaks that will eventually 
belong to the same formant. In this first pass, the 
combination-algorithm is very conservative, grouping 
peaks that are very similar in frequency and very close in 
time. For each peak in a region of voiced speech, left 
and right (earlier in time and later in time) neighbors are 
sought. Only peaks within 2 time frames and 2 fre- 
quency bins are considered as neighbors. A simple dis- 
tance measure is used when multiple choices are avail- 
able. 
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The matcher produces groups of linked peaks called 
ridges. In the simplest case, a steady state vowel, simple 
ridges represent the formants. This leaves undone only 
the assignment of ridges to formant slots. More compli- 
cated speech patterns require more sophisticated algo- 
rithms utilizing more context. A segmentation-algorithm 
aosists here by splitting up speech in places where clear 
breaks in ridge patterns occur. 

Once a ridge is found most decisions concerning it, use a 
small number of parameters. Its frequency is parameter- 
ized as minimum, maximum and average frequency. Its 
amplitude relative to other ridges is parametsrized as 
strength and density. Strength is calculated by sum- 
ming the quantized height of each peak in the ridge. So 
it is a function of both the relative amplitude of the 
ridge and the length of the ridge. Density is calculated 
as the average quantized peak height in the ridge. So it 
is a function of only the relative amplitude of the ridge. 
In the remainder of this paper, the terms strength and 
density refer to these definitons. 

three for the ambiguous areas in between. An assign- 
ment algorithm is used to select, from the candidate 
ridges, four first choice formants and four second choice 
formants. The second choice formants are used in a 
later pass of the tracker. In the assigner, each ridge is 
parameterized by its average frequency and its strength. 
The top candidates (by strength) from each of the seven 
ranges are collected and formant assignments made - 
stongest ridge first. Ridges in ambiguous frequency 
ranges contend for two formant slots. 

Basic Segmentation 

The segmenter subdivides voiced regions in a way that 
assists in the assignment of ridges to formant slots. For 
some phoneme groups, this corresponds roughly to a 
phonemic segmentation. Specifically, it attempts to seg- 
ment nasals, voiced stops, voiced fricatives, and (laps, 
from the surrounding voiced areas. We have found these 
locations to harbor a majority of the discontinuities in 
formant frequency. 

Choosing Formants From Ridges 

Ridges are assigned to formant slots based on both fre- 
quency and strength. Frequency ranges for each of the 
formants are determined by speaker pitch. In voiced 
regions the average pitch (1/average pitch period length) 
is used to declare the region as having low (below 150 
Hz.), high (above 170 Hz.) or medium pitch. Formant 
ranges are then taken from one of 3 tables. For each 
formant the table contains a range of frequencies that 
are unique to that formant. It also contains ranges of 
frequencies for which the formant choice is not clear. A 
formant with frequencies in one of these ranges is con- 
sidered ambiguous and its assignment must be deter- 
mined in the context of the other formant candidates. 
Seven ranges exist, four for the first four formants and 

Formant Frequency Ranges • 

Low Pitch Mediun Pitch Hi^h Pitch 

Range" From To From To From To 
Freq Freq Freq Freq Freq^ Freq 

n 100 700 140 825 175 1000 
ri2 700 1200 825 1250 1000 1300 
f2 1200 1500 1250 1630 1300 1775 
ßS 15U0 2500 1630 2850 1775 3000 
ra 2500 2800 2850 3200 3000 3500 

tS4 2800 3200 3200 3600 3500 3800 
f4 3200 4000 3600 4200 3800 4400 

•  Uses average ridge frequency 
•• fl,f2,f3,f4 refer to frequency ranges unique to that formant 

fl2 refers to frequency ri.-jes which could hold fl or f2. 
f23 refers to frequency ranges which could hold f2 or f3 
f34 refers to frequency ranges which could hold f3 or fl 

Figure t - Pitch dependent, formant frequency ranges used in 
formant slot assignments.  Low pitch is below 150 Hi  High 
pilch is above 170 Hz. 

The segmenter uses as input a select group of ridges 
called important ridges. Ridges are selected by there 
dominance in a region, using several criteria. 

Ridges that occupy one of the first three formant slots 
(first and second choice) are used; although, in most 
cases the second choice slots are empty. Other ridges 
may be included based on their density measurt or on a 
measure called overlap. The density measure is used to 
include ridges which have very high amplitudes but do 
not have sufTicient duration to win a formant slot. The 
overlap provision finds ridges which (1) overlap first 
choice ridges in time, (2) are minimally seperated from 
the first choice ridge during the overlap and (3) have a 
higher density during the overlap. This overlap provi- 
sion thus, finds places where the initial peak matcher 
may have failed to follow the formant correctly. 

Segmentation clues are extracted from the important 
ridges. The begining and end frame of each ridge is 
labeled as a clue. Sudden changes in amplitude are 
labeled.   Sudden changes in Fl frequency are labeled. 

Segmentation clues associated with Fl tend to mark 
obstruent boundries such as nasals, flaps and voiced 
stops. Since these phonemic events tend to harbor for- 
mant discontinuities, a segment boundry is created for 
this type of clue without further confirmation. Segmen- 
tation clues associated with higher formants are less reli- 
able. They involve more variation in frequency and 
amplitude. They also are more heavily influenced by 
neighboring frication. Segment boundries are only esta- 
blished where two or more clues are found. 
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Recursive Segmentation 
The segmenter drives the search for formants recursively. 
Each voiced region is initially labeled aa a single seg- 
ment. Basic ridges and important ridges are recomputed 
and new segment boundries are searched for. New boun- 
dries cause the segmenter to subdivide and operate on 
each resulting piece. The process ends when no further 
subdivisions can be found. 

counted if any of the three formants were not within the 
dark bands on the spectrogram or if the wrong formant 
was assigned. In total there were 6716 segments exam- 
ined. The results of this analysis are shown in Figure 2. 

Upcoming Changes 

S 

Use of Bark Scaled Spectra 
An attempt was made to use Bark scaled spectra as 
input to the formant tracker. (Seneff 1986) We had 
hoped it would help in tracking diffuse upper formants 
and upper formants inQuenced by fricatives. While Bark 
scaling did help in these two cases it hurt in ways we 
were less willing to cope with. Upper formants that are 
close in frequency to start with, such as high front 
vowels, and retrodexion, tended to be merged. We found 
merges very difficult to handle. Therefore we no longer 
use Bark scaling of the spectra for formant tracking. 

Performance Analysis 

The CMU and NBS formant trackers were run on a sub- 
set of 350 sentences of the DARPA Acoustic-Phonetic 
database. The formants were overlayed on spectrograms 
and examined. Only the voiced phonemes weie con- 
sidered as valid segments for statistics.   An error was 

Development of the algorithm is not yet complete. Per- 
formance in several areas can be improved. We have 
learned much from our first pass at creating a segmentcr 
based on formant data. We will soon start a complete 
rewrite of the segmenter which will use many new rules 
and clues. An evaluation and more complete description 
will be published later. An energy based retroflex 
detector(Gengel, Majurski and Hieronymus), already run- 
ning in our lab will be used to help make decisions dur- 
ing /r/, where F2 - F3 merges are common, during 
retroflexed vowels. Since this algorithm is based on for- 
mant continuity, tracking the high frequency formants 
during and near fricatives is a special problem also 
requiring solution. 

Implementation 
The peak picker and formant tracker are written in C 
and run on both Unix and the Symbolics Lisp Machine 
using the Zeta-Soft C cross compiler. All development 
work on the tracker was done on the Lisp Machine using 
Spire. The Unix version has been delivered to CMU to 
be evaluated for use in their system. 

y> 

Formant Trarxing Error« 

Formani S«                lei CMU NT3S 

AJI m         i       ul 8S-0 9% 
f ul 25% 7% 

m vl 9% 11% 
f vl 31% 14% 

m v2 9% 10% 
r y2 28% 12% 

Fl m ul 1% 0% 
f ul 5% 0% 

m vl 1% 1% 
f vl *% 2% 

ID v2 1% 1% 
f v2 4% 2% 

F2 m ul 5% 5% 
f ul 20% 4% 

m vl 5% 8% 
f vl 23% 8% 

ID v2 7% 8% 
r v2 20% 7% 

F3 m ul 4% 8% 
f ul 12% 3% 
m vl 4% 9% 
f vl •   20% 9% 

ID v2 5% 7% 
r v2 JO'T- 9% 

Figure 2 - Percent errors in voiced phonemes. Performince 
on 350 sentences from the DARPA Acoustic-Phonetic 
Data Base. 

Execution speed on our Vax/750 averages 50 seconds per 
utterance. On CMU's Vax/780 it averages 20 seconds 
per utterance. This implementation uses fixed point 
arithmetic only. 

Conclusion 
We have presented an overview of our current algorithm 
for tracking formants in continuous speech. We have 
described the general algorithm for tracking and for seg- 
menting. The segmenter is currently in a rudimentry 
state but we believe it holds much promise for segment- 
ing voiced speech. Since we believe that formant 
analysis is critical to the paramaterization of continuous 
speech. We will continue working to improve the perfor- 
mance- of this algorithm. 
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An Energv-Ratio Baaed "Retroflexion"' Detector: 
Current Status and Performance 

Roy W. Gengel, William J. Majurski and James L. Hieronymus 

National Bureau of Standards 
Gailhenburf, Maryland 2Ü809 

Abstract 

Results are described for a "retroQexion" detector 
designed to locate the acoustic manifestations of /r/, /J/. 
and 131 in the continuous speech of male speakers. A 
SEARCH analysis indicates 80 percent correct detections 
for a false alarm rate of 14 percent. Missed retroflexed 
tokens fall into three groups: (1) low F-l. which is also 
close to F3; (2) "diminished retroSexion," attributed to a 
phonotactic rule; (3) F2 and FS are relatively high and 
straddle or exceed the specified cutoff for male 
retroflexion. 

Introduction 

We are developing in automatic "retroflexion" detector 
based on energy ratios. It is designed to locate the 
acoustic manifestations of the phonemes /r/, /37. and /j- 
/ in continuous speech. The detector will not be 
described in great detail here. It is based on the idea 
that a third formant below 2000 Hz for males and 2300 
Hz for females is a correlate of retroflexion. A set of 
energy ratios has been formulated and tested to detect 
this event. In its current form, it is designed to detect 
waveform segments that generally meet the following 
three criteria: 

1) relatively high energy between 1000-2000 Hz coupled 
with relatively low energy between 2000-3000 Hz (Energy 
Diff 6); 

2) relatively high energy between 1400-2000 Hz coupled 
with relatively low energy between 2000-3000 Hz (Energy 
Diff 20); 

3) relatively high energy between 120-1100 Hz coupled 
with relatively low energy between 2200-2800 Hz (Energy 
Sum 4+5). 

The current version of the detector, called Energy Sura 
R. was developed for males voices. A modified version of 
the detector is also being developed for use with female 
speakers. Only analyses based on male voices will be 
reported here. 

Figure 1 shows analyses of two sentences from the data 
base that may be used as "canonical" representations of 
/r,]\J/< and can be used to illustrate the underlying logic 

of Energy Sum R. Note that when the criteria are 
closely met, the peak in the Energy Sura R display is 
relatively high. This generally occurs (1) during produc- 
tion of /rS,f/, (2) soraetiraes, during production of cer- 
tain other phonemes coarticulated with /?,$,*/, and (3) 
sometimes, during transitions of other phonemes (see /a./, 
/Jf and /k/.) 

Corpus and Method 

The corpus used for analysis consisted of sentences in a 
subset of the DARPA Acoustic Phonetic Data Base that 
are spoken by males speakera. There were 126 sentences 
which contain a total of 4405 tokens. The breakdown of 
tokens according to number per phoneme is shown in the 
upper portion of Figure 2. 

In order to perform the test we used the SEARCH Pro- 
gram developed at MIT (Randolph. 1986). The phonetic 
labels used were the labels provided by the MIT Group. 

The SEARCH program was set to find all labeled 
phonemes which contained values of Energy Sura R 
greater than a specified threshold value. Thus, included 
in this search are all phonemes having Energy Sura R 
values above threshold, regardless of how much or how 
little was the value above threshold, or how much or 
how little of the segment contained the suprathreshold 
value. 

Results 

The results of one SEARCH analysis is shown in the 
lower portion of Figure 2. Max Energy Sum 30 
represents an arbitrary, but reasonable threshold: reason- 
able in its trade-off between correct detections and false 
alarms. 

Note that the analysis reduces the corpus to be examined 
further to 20 percent of the original. Contained therein 
are 80 percent of the target phonemes /r.V.j/. These 
"retroflexed" phonemes compriöe 32 percent of the 
reduced corpus. 

In the remainder of this paper, we describe some charac- 
teristics of the /rStff tokens that were "missed" by the 
combined detector. In a companion paper, we describe 
some of the "false alarms" due to coaniculation 'tfects 
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and other phenomena. 

Thirty four "retroflexed" tokens were "missed" by the 
analysis: 25 /r/s, 4 /i/s, and 5 ff/s. These 34 tokens 
were further analyzed to determine whether they pos- 
sessed characteristics different from the 270 tokens that 
were correctly detected. 

We call the "normal" retroflexed token, one in which the 
energy in Fl, F2, and F3 is located below 2000 Hz, while 
F4 remains above 3000 Hz. (See Figure 1.) In 15 of the 
25 "missed" /r/ tokens, F4 dropped below 3000 Hz. 
This relatively low frequency F4 caused the denomina- 
tors of the energy ratios used to calculate Energy Sum 
R, to become large. This, in turn, resulted in low values 
of ES R that did not exceed the threshold for 
"retroflexion" detection. Figure 3 shows some dramatic 
examples of F4 downward movement in parallel with F3. 
However, the movement is not always in parallel with F3 
nor as dramatic. The characteristics of both F3 and F4 
of the adjacent phoneme determine, in part, the type of 
F3 and F4 movement into the retroflexed waveform 
region. Presumably, these tokens show "retroflexed 
alveolar articulation," as contrasted to "retroflexed pala- 
tal articulation" (Fant, p.28, 1073). The former are also 
referred to as "revoked, continuant, apical" (op.cit., p. 
63). This phenomenon requires more detailed investiga- 
tion since it is not restricted merely to the 15 tokens just 
mentioned. It also occurred in two "missed" ffi and in 
three "missed" /£/ tokens, as well as in tokens where 
Energy Sum R exceeds threshold during a portion of its 
waveform duration. The latter condition can be seen 
clearly in the upper portion of Figure 1 where F4 paral- 
lels the diminution in the amplitude of Energy Sum R. 
(We are currently developing an F4 tracking program to 
more efficiently identify th's phenomenon.) 

A second phenomenon which is evident in six "missed" 
tokens we have tentatively labeled as "diminished 
retroflexion." This occurred in five /r/s, and in one /$. 
It is evidently due to a phonotactic rule employed by 
some persons living along the eastern seaboard that 
states: When /r/ (or other retroflexed token) is preceded 
by a vowel, delete the /r/. This rule is also used in 
areas of Great Britian (Bristow, 1984) and in some varia- 
tions of Black Dialect. Acoustically, it is manifested by 
a relatively high F3 (above 2000 Hz), and a relatively 
low F2 (below about 1400 Hz). Perceptually, it does 
seem to differ from the preceding vowel, at least to the 
untrained ear. We recommend it be given a different 
token-label, since it is not a retroflexed phoneme. 

Finally, a third phenomenon accounts for the remainini; 
"missed" tokens. In these instances, (five /r/s, two /f/s. 
and one /£/) both F2 and F3 are relatively hii;h: i.e.. 
they straddle, or are above, the 2000 Hz criterion for a 
male retroflexed token. These tokens are in the fre- 
quency regions that we presume are more usual for 
female   voices   (or   higher   pitched   voices   generally). 

Nevertheless, they currently are classified as "true 
misses." However, we are relatively confident they will 
be detected when the modified version of Energy Sum R. 
designed specifically to analyze higher pitched voices, is 
fully developed. 

In conclusion, the current retroflexion detector seems to 
offer great promise. When the "diminished" retroflexion 
tokens are deleted from the target corpus, the correct 
detection rate is about 91 percent. Assuming the suc- 
cessful incorporation of an F4 tracking program into the 
present analysis scheme, the "low F4 misses" should also 
be detected. Then the hit rate will reach about 97 per- 
cent. Finally, the modified Energy Sum R (F) detector 
might detect the remaining three percent of "missed" 
retroflex tokens, thereby bringing overall performance to 
near 100 percent correct detection. This would be its 
performance capability tempered by a current estimated 
false alarm rate of about 14 percent (572 incorrect detec- 
tions/4158 nonretroflex tokens). 
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Figure 1. Two examples of the output of Energy Sum R indicating retroflexion 
of /r/ allophones and coarticulated neighboring phonemes. 
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Figure 2.    Results of a SEARCH analysis based on a threshold 
value of 30 for Max Energy Sum R.    See text for 
explanation. 
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An Analysis of Some Coarticulatory Effects of /r/ on Preceding Vowels: 
Initial Findings 

Roy W. Gengel, William J. Majuralu and James L. Hieronymus 
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Gktlliinburi, Mirylind 20899 m 

Abatract 
SEARCH and a retroflexion detector identified vowel- 
tokens that (1) were classified as retrofiexed, and (2) 
shared a boundary with /r/. The vowels /a./, /£/, /j/, 
and /l/, among others, show strong coarticulatory 
effects. Data supporting this conclusion are presented. 

Introduction 
A pilot study of coarticulation effects in vowels due to 
post-vocalic /r/, was made for a subset of the DARPA 
Acoustic Phonetic Data Base. Using the SEARCH Pro- 
gram, the technique was to find where the retroflexion 
detector fired inside vowel- tokens that shared a boun- 
dary with /r/. We have found the vowels /n/, /£/, fo/, 
and /i/ are among the labeled nonretroflexed tokens that 
are strongly retroflexed. (See Figure 2, Gengel, Majurski 
and Hieronymus, these Proceedings.) We conclude that 
strong retroflexion is indeed present in these tokens; i.e., 
F3 is below 2000 Hz, for various portioLS of their total 
duration. Histograms of coarticulation extent are 
presented below. 

Method 
The corpus of sentences used in this analysis was the 
same sentences described in Gengel, Majurski and Hiero- 
nymus (1087, these Proceedings). However, in order to 
increase sample size, additional sentences from the 
DARPA Acoustic Phonetic Data Base were also included. 

Figure 1 shows the layout used for analysis. The 
displays are an Original Waveform Window, a Wide 
Band Spectrogram, a Wideband Spectral Slice, an LPC 
Spectral Slice, and a Phonetic Transcription Window, all 
of which are part of MIT-Spire (Cyphers, 1085); a Vax 
Psdft Spectral Slice, a display of the CMU-Darpa- 
System- output; and F2 and F3 formant tracks, a part of 
the NBS system developed by Majurski and Hieronymus 
(1087. these Proceedings). The goal is to determine the 
time in the vowel preceeding /r/ where F3 drops to a 
value of 2000 Hz or less. As the figure shows, there is 
often good agreement among the various indicators, as to 
the frequency of F3. (When there is not. the value 
determined by the Wideband Spectral Slice Window is 
used.) When the 2000 Hz F3 pitch period has been 
located, the cursor in the Original Waveform Window is 
automatically  aligned in  the  same  time  frame in  the 

Phonetic Transcription Window. We then measure to 
determine whether the cursor is in the first, second, third 
or fourth quartile of the vowel (or whether it is actually 
in the token even preceeding the vowel; or alternatively, 
whether it is within the /r/-token boundary itself). 
Thus, for example, in the top panel of Figure 1. F3 Is 
below 2000 Hz in the /w/ that preceeds the /£/ that 
preceeds the /r/; i.e.. a relatively long coarticulation 
effect. And in the lower panel, F3 drops below 2000 Hz 
in the second quartile of the vowel preceeding /r/; i.e.. a 
relatively shorter coarticulation effect. 

Results 
A summary of the retroflexion analysis is shown in Fig- 
ure 2. Note that the duration at the vowel preceding /r/ 
has been divided into quartilca As the quartile value 
increases from one to four, the longer if F3 below 2000 
Hz prior to the phonemic (perteptuaJ) onset of /r/; and 
thus, the longer is the duraiioo of the coarticulatory 
manifestation of retroflexion. {Recall Figure 1.) 

Note that most of the sampled loweb show the coarticu- 
lation effect: 04 % for /or/, 94% for ^r/. 8303 for hr/. 
and 88% for /ir/. The dumion of the coarticulation 
effect, for all four vowels varies from relatively short 
(first quartile) to relatively iaag. For the fir/ coarticu- 
lated tokens, 61 percent of the /a/ durations are 
retroflexed for over half of tkär total durations: for fcr/. 
similarly, 41 percent of the /{/ durations are retroflexed 
for over half their total dun 

,--.■ 

From the amount of data analyied so far it is difficult to 
reliably fit a gaussian to the taogram data. So the reli- 
able means and variances of lie coarticulation durations 
will be determined in subseqem work. 

Based on these initial findinpuwe conclude that many of 
the retroflexion "errors" yignairt by the detector are not 
errore but rather reflect the r5f« of coarticulation. For 
example, fur»..-. analysis of ti» 44 /a/ "errors" (Figure 
2. op. cit.). indicate that 25 fafn preceded ir/. 6 followed 
/r/. and 13 were not articulated in u /r/ environment. 
The 25 pre-/r/s and the 6 po8t-/r/s all showed coarticu- 
lation effects. The post-T/ effects were small, never 
beyond the first quartile. The 13 "true error" detections 
have not yet  been analyzed fdly.   However, three  ire 
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associated with /dk"/ coarticulation, the "velar pinch" 
described by Zue, (1988), whereia F2 and F3 in faj, and 
other, front vowels, "pinch" together at the /k"»/ boun- 
dary. 

These strong eoarticulations occur across word boun- 
daries 33 well as within words. Therefore, it is impor- 
tant that the effect of /r/ on nearby vowels be taken 
into account in the DARPA Speech Recognition Systems. 
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Shown is the duration-quartile within a vowel preceding 
/r/ where F3 drops below 2000 Hz. 
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ABSTRACT 

This paper describes test procedures 
that were to be used In conducting 
benchmark performance tests prior to the 
March 1987 DARPA Meeting. These tests were 
to be conducted using selected speech 
database material and Input from "live 
talkers", as described In a companion 
paper. 

INTRODUCTION 

At the Fall 1986 DARPA Speech 
Recognition Meeting, plans were discussed 
for implementing benchmark tests using the 
Task Domain Speech Database. There was 
additional discussion of the desirability 
of developing and implementing "live 
tests" using speech material provided by 
speakers at the contractors' facilities, 
emulating in some sense the 
Inputting speech material 
demonstration of real-time 
Following the Fall Meeting, 
Domain Speech Database was recorded at TI 
and significant portions of it were made 
available for system development and 
training purposes through NBS to both CMU 
and BBN. Another port ion was selected for 
use in implementing these benchmark tests 
[1], and this test material was 
distributed to CMU and BBN during the last 
week of February, 1987. This paper 
outlines test procedures to be used to 
Implement these tests prior to the March 
1987 Meeting. 

process of 
during  a 

performance. 
the  Task 

A number of Informal documents have 
circulated within the DARPA Speech 
Recognition community that outline 
proposed test procedures. A Strategic 
Computing draft document dated Dec. 6, 
1985 [2] identified key issues in some 
detail. Portions of this were heavily 
annotated and distributed to several sites 
durino June 1986 and were the subject of 
discussions Involving the author and 
representatives  of  CMU,   BBN,   Dragon 

Systems, MIT and TI during visits during 
June and early July 1986. These 
discussions were valuable in developing an 
outline of benchmark test procedures [3] 
that was discussed at the Fall 1986 DARPA 
Meeting, and which was structured after a 
model for performance assessment tests 
outlined in an earlier NBS publication 
[4]. Thus the present proposed test 
procedure represents the most recent and 
specifically focussed in a series of 
documents outlining test procedures for 
the DARPA Speech Recognition Program. 

EXPERIMENTAL DESIGN 

There were to be two distinct types 
of tests conducted prior to the March 1987 
DARFA meeting: 

(1) Tests based on use of a subset of 
the Task Domain (Resource Management) 
Development Test Set Speech Database. This 
subset was to include use of 100 sentence 
utterances in either th** Speaker 
Independent or Speaker Dependent portions 
of the database. The process of selecting 
speakers and the specific utterances is 
described in Reference [1]. In each case, 
there was coiislderable freedom to choose 
system-dependent factors such as the 
amount of training material for Speaker 
Dependent technology and the most 
appropriate grammar. All 
specified test sentences 
processed and reported on at 
"Spell-mode" material 
representations of tne letter strings for 
items in the lexicon) was available for 
use, but it processing this material was 
not required. 

These sentence utterances were to be 
processed both with and without the use 
of imposed grammars. In the case of using 
no grammar, the perplexity is essentially 
to be nominally 1000. Comparaoie detailed 
results are to be reported for both 
conditions. No other parameters are to be 
changed for these comparitive tests. 

of the 100 
were to be 
the meeting. 
(spelled-out 
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Optionally, the same data may be 
processed using the "rapid adaptation" 
sen' ences for system adaptation. There Is 
to be no use of adaptation during 
processing of the test material. 

(2) Tests based on input provided 
from "live talkers". The test talkers 
visited both CMU and BBN prior to the 
March meeting. Each of the talkers spoke 
the "rapid adaptation" sentences and read 
a script containing 30 sentences drawn 
from the task domain sentence corpus. Data 
derived from the input from "live talkers" 
was to be analyzed and reported on at the 
March meeting. 

LIVE TEST PROTOCOL 

The microphone was to be the same as 
that used at TI for the Resource 
Manegement database, the Sennhelser HMO 
414-6. This is a headset-mounted noise 
cancelling microphone similar to the Shure 
SM-10 family of microphones. The headset 
is a su;. ra-aural headset that allows the 
subject to be aware of nearby conversation 
or instructions for prompting. The test 
environment was to be a conference room or 
computer lab. There was to be no 
background speech at the time the test 
material is provided. Test utterances 
could be rejected (and the subject asked 
to repeat the sentence) if in the 
judgement of the person(s) administering 
the tests there was some noise artifact 
(e.g. coughs or paper-shuffling noises) or 
severe mis-articulation of the test 
sentence. Evidence of this could be 
obtained by play-back of the digitized 
utterance. 

For systems that require time to 
develop speaker-adaptive models, the 
subjects were to provide the 10 "rapid 
adaptation" sentences prior to the tests 
(e.g. the evening prior to the tests). 

10  words   randomly  chosen 
"spellmode" vocabulary subset. 

PROCESSING OF LIVE INPUT 

from  the 

The systems were to process the test 
material in a manner similar to that used 
for the Resource Management database test 
material. Statistics comparable to those 

100 sentence subsets were to be 
and  reported on  at  the March 

for the 
prepared 
meeting. 

ADAPTATION 

Although the use of the "rapid 
adaptation" sentences was to be permitted, 
it appears that the only use made of the 
rapid adaptation sentences was in adapting 
the Speaker Dependent system at BBN for 
the "live test" speakers. 

There was to be no use of any of the 
test material to enroll, adapt or to 
optimize system performance for the test 
material through repeated analyses and re- 
use of the test material. Intended 
allowable exceptions to this prohibition 
against re-use of the test material 
include demonstrating the effects of using 
different grammars, different strategies 
for enrollment, different algorithms for 
auditory modelling, acoustic-phonetic 
feature extraction, different HMM 
techniques, system architectures, etc. It 
is recognized that the breadth of these 
exceptions in effect limit the future use 
of this test material, since such 
extensive use of test material to 
demonstrate parametric effects constitutes 
training on test material. 

Since a finite set of task domain 
sentences was developed at BBN, and the 
entire corpus of task domain sentences was 
made available to both CMU and BBN, in 
some cases the granmars used for these 
tests have been adapted to this finite set 
of sentences. Including the test material. 

i 

For one of the speakers, the 30 test 
sentences were to be read in and 
processing (automatic recognition) could 
take place "off-line". For the other two 
speakers, the test sentences were to be 
read in, one at a time, waiting for the 
system to recognize each sentence before 
proceeding to the next sentence. At the 
end of 30 minutes, if all 30 sentences had 
not been read in and recognized, the 
remaining sentences were to be read in 
for "off-line" processing. In practice, 
only three to five sentences were 
recognized interactively within the 30 
minute period, and the remaining sentences 
were then read in. The elapsed time for 
each speaker providing the test material 
in this manner was typically 45 minutes. 
If requested,  each speaker was to read in 

VOCABULARY/LEXICON/OUTPUT CONVENTIONS 

The task domain sentences in effect 
define the vocabulary. Internal 
representations (lexicon entries) may be 
at the system designer's choice, but for 
the purposes of implementing uniform 
scoring procedures, a convention was 
defined, drawing on material provided by 
CMU [5], BBN and TI. This convention 
includes the following considerations: 

Case differences are not preserved. 
Ail input (reference) strings and output 
strings are in upper case. 
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There is no end-of-sentence 
punctuation. Nor is there any required 
special symbol to denote silences (either 
pre-pended, within the sentence utterance, 
or appended) or to indicate failure of a 
system to parse the reference string or 
input speech. 

Apostrophes are represented by 
plusses. Words with apostrophes (embedded 
or appended) are represented as single 
words. Thus "it's" becomes "IT+S". 

Abbreviations tv .ome single words. 
All periods indicatl j abbreviations are 
removed and the wore is closed up (e.g. 
"U. S. A." becomes "USA"). 

Hyphenated items count as single 
words. In general, compound words that do 
not normally appear as separate words in 
the context of the assumed task domain 
model are entered as single, hyphenated 
items. The exception to this rule are 
compounds that include a geographic term, 
such as STRAIT, SEA or GULF. Thus entries 
such as the following count as single 
"words": HONG-KONG, SAN-DIEGO, ICE-NINE, 
PAC-ALERT, LAT-LON, FUGET-1, M -RATING, C- 
CODE, SQO-23, etc. However, BQ'ING STRAIT 
is to count as two words s Ince this 
compound includes the geographic tern 
"STRAIT", and it is not to be hyphenated. 

Acronyms count as single words, and 
the output representation is not the form 
of the acronym made easier to interpret or 
pronounce (e.g. "FACFLT", not FAC-FLEET or 
FAC FLEET). 

Mixed strings of alpha-numerics are 
treated as acronyms. Thus, "A42128" is 
treated as a one-word acronym, even though 
the prompt form of this Indicates that 
this is to be pronounced as "A-4-2-1-2-8". 
Strings of the alpha set are also treated 
as acronyms (e.g. "USA"). Strings of 
digits are entered in a manner that takes 
into account the context In which they 
appear. Thus for a date such as 1987, it 
Is represented as three words: "NINETEEN" 
"EIGHTY" "SEMEN". If it is referred to as 
a cardinal number It would be represented 
as "ONE" "THOUSAND" "NINE" "HUNDRED" 
"EIGHTY" "SEVEN". 

SCORING THE TEST MATERIAL 

For results to be reported at the 
March meeting, the use of different 
scoring software will be acceptable. Each 
contracter was free to use software 
consistent with the following general 
requirements: 

Data are to be reported at two 
levels: sentence level an' word level. 

At the sentence level, a sentence Is 
to be reported as correctly recognized 
only if all words are correctly recognized 
and there are no deletion or insertion 
errors (other than inset-».ions of a word or 
symbol for silence or a pause). The 
percent of sentences correctly recognized 
Is to be reported, along with the percent 
of sentences that contain (at least one) 
insertion error(s), the percent of 
sentences that contain (at least one) 
deletion error(3) and the percent of 
sentences that contain (at least one) 
substitution error(s). The number to be 
used for the denominator in computing 
these percentages is the number of Input 
sentences in the relevant test subset, 
without allowing for rejection of 
sentences or utterances that may not parse 
or for which poor scores result. 

At the word level, data that are to 
be reported include the percent of words 
in the reference string that have been 
correctly recognized. For these tests, 
"correct recognition" does not require 
that any criterion be satisfied with 
regard to word beginning or ending tlines. 
It is valuable, but not required, to 
report the percent of insertion, deletion, 
and substitution errors occurring in the 
system output. 

For 
sentence 
should be 
hypothesis 
alternativ 
provided 
comparable 
hypothesis 

Syste 
should be 

those  systems  that  provide 
or word lattice output,  scoring 
based on the top-ranked sentence 

Additional passes through the 
hypotheses  are   acceptable, 

the  data are  compared  with 
data  for   the   top-ranked 

m   response 
reported. 

timing  statistics 

Data resulting from these tests is to 
be provided to NBS following the March 
meeting for detailed analysis and in 
evaluating alternative scoring software. 

DOCUMENTATION 

Documentation on the characteristics 
of the Imposed grammar(s) must be 
provided. This information should describe 
any use of the material from which the 
test material was drawn (i.e. the set of 
2200 task domain sentences developed at 
BBN and used by TI in recording the 
Resource Management Speech Database). 

The system architecture and hardware 
configuration used for these tests should 
be documented. 
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ABSTRACT 

This paper describes considerations 
in selecting test material for the March 
'87 DARPA Benchmark Tests. Using a subset 
of material available from the Task Domain 
(Resource Management) Development Test 
Set, two sets of 100 sentence utterances 
were identified. For Speaker Independent 
technology, 10 speakers each provide 10 
test sentences. For Speaker Dependent 
technology, 4 speakers each provide 25 
test sentences. For "live talker" test 
purposes, three 30-3entence scripts were 
identified, using a total of 70 unique 
sentence texts. The texts of all of these 
test sentences were drawn from a set of 
2200 sentences developed by BBN in 
modelling the (resource management) task 
domain. 

INTRODUCTION 

In order to implement benchmark tests 
of   speech  recognition  systems  to   be 
reported at  the March "87  DARPA  Speech 
Recognition  Meeting,  it was necessary to 
specify selected test material.  This test 
material  is drawn from two sources:  (a) 
the  TasK Domain Speech Database  recorded 
at Texas Instruments (also referred to  as 
the "Resource Management" Database),   and 
(b)  the  use of "live talkers"  in  site 
visits.  In each case,  the texts of  the 
sentences  were  drawn  from a  set   of 
sentences developed by BBN.  Selection  of 
test   material   using  the   Resource 
Management  Database Includes two separate 
components,    a    Speaker   Independent 
component  and   a   Speaker   Dependent 
component. This paper outlines the process 
of  defining  these  subsets  of   speech 
material. 

At the time the Resource Management 
Speech Database was designed, it was 
intended that approximately equal volumes 
of material would be available for  system 

development (research) purposes and for 
two rounds of benchmark tests. 
Consequently, approximately half of the 
available material is designated 
"development" or "training" material, and 
the remaining portion ir designated for 
test purposes. The test material is 
designated as "Development Test" or 
"Evaluation Test" sets, each including 
1200 test sentence utterances in each 
portion (Speaker Independent or Speaker 
Dependent). 

The design and collection of this 
Task Domain (Resource Management) Speech 
Database is described elsewhere in this 
Proceedings in a paper by Fisher [1]. 

Thus, as originally intended, two 
sets of 1200 sentence utterances were to 
be available for the March '87 tests. 
During January 1987, discussions involving 
representatives of CMU, BBN, MIT, NHS and 
the DARPA Program Manager determined that 
use of this large a volume of test 
material was not necessary to establish 
performance of current technology when 
pragmatic considerations of processing 
times and expected performance levels were 
made. Consequently, it was agreed that 
subsets of 100 sentence utterances were to 
be defined for these tests, and that NBS 
would specify the appropriate subset. 

To complement the use of the recorded 
speech database material, a test protocol 
for the use of "live talkers" emulating in 
some sense procedures to be used in future 
demonstrations of these systems was 
defined, and texts were selected for this 
purpose. 

RESOURCE 
MATERIAL 

MANAGEMENT SPEECH DATABASE  TEST 

Speaker Independent Test Material 

For the March'87 tests, a set of ten 
speakers was identified, drawn from 
matfrial recorded at TI and made avaiiaoie 
to  NBS in December '86 and  January  '87 
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Zach speaker provided two "dialect" and 
the ten "rapid adaptation" sentences in 
addition to a total of thirty test 
sentence utterances. For each speaker, a 
unique subset of ten sentence utterances 
were specified to be used for the March 
'87 tests, amounting to 100 sentence 
utterances in all (10 speakers times 10 
sentence utterances per speaker). 

Seven male speakers were selected and 
three female speakers, reflecting the 
male/female balance throughout the 
Resource Management Speech Database. 

To aid in the selection of individual 
speakers, a set of approximately 16 
speakers was identified. SRI was asked for 
advU • on whether any of these would be 
regarded as anomalous on the basis of the 
"dialect" sentences obtained in the 
acoustic-phonetic database. SRI performed 
a clustering analysis and advised us that 
most of the speakers clustered in three 
groups of similar speakers with three 
other individuals categorized as 
exceptional in some sense (e.g. unusually 
slow rate of speech) [2]. The ten speakers 
Identified for inclusion in the test 
subset include one of these "exceptional" 
speakers, the others being drawn from the 
three clusters to provide some degree of 
coverage of regional effects. 

Table 1 provides detailed information 
on the individual speakers' regional 
oackgrounds, race, year of birth and 
educational level for the ten selected 
speakers in the March '87 Test Subset. 

Analysis, by Tl, of the lexical 
coverage provided by this subset of the 
test material indicates that 348 words 
occur at least once in this test material, 
and the total number of words is 836, for 
a mean length of each sentence of 8.36 
words. 

Subject SM »eqion Race Year of Birth Education 

OXB "ALE NEU ENGLAND WHT '62 B.S. 

IWT -ALE SORTHERN .HI '21 B.S, 

3LG -ALE NORTH HIOLANO WHT '«2 (?) 

CTT MALE SOUTHERN imr 62 3.5. 

JFC -ALE NEW YORK CITY «HT 69 B.S. 

JTH -ALE WESTERN VHT '62 B.S. 

»Wf :E-ALE 'CUTHERN «HT ■58 =..:. 
BCG FEMALE "ARJ1Y BRAT- (?) 59 B.S. 

£AM ^E-ALE NEW ENGLAND WHT '46 a.s. 

JFS -ALE .ESTEHN «HT 39 «.5. 

"aole '..    Soeaner  :naeDefiaent 'est Suoset 

Speaker Dependent Test Material 

For these tests, a set of rour 
speakers was identified, also drawn from 
material recorded at TI and made available 
to NBS during December '86 and January'87. 
In this case, selection of the specific 
Individuals was strongly Influenced by the 
availability of training material. BBN 
expressed concern that the entire set of 
600 sentence utterances Intended for 
system training should be available for 
any test speakers. At the time of 
selection of test material, not all of the 
12 speakers for this portion of the 
database had completed recording their 
training material. With this in mind four 
speakets were identified. 

Each speaker had previously recorded 
the ten "rapid adaptation" and "dialect" 
sentences, and the Development Test 
material Included 100 sentence utterances 
for each speaker. From this, unique sets 
of 25 sentence utterances were identified 
for each of the four speakers, amounting 
to 100 sentence utterances in all for this 
portion of the test material. 

Three of the speakers were male and 
one was female. 

Table 2 provides additional data on 
these speakers. 

Analysis, by TI, of the lexical 
coverage provided by this subset of ehe 
test material indicates that 832 words 
occur at least once, with a total number 
of words of 832, for a mean sentence 
length of 8.32 words. This Is quite 
similar to that for the Speaker 
Independent material, although the details 
of the distributions differ slightly. 

Region    Race Tear of Birth Eaucation 

l    NORTHERN     WMl      '51       M.S. 

NORTH MIDLAND WHT      '52       »h.D 

Subject Se« 

CMR: FEMA 

BFF: MALE 

Jhi: MALE 

RKM: -ALE 

SOUTH MIDLAND WHT 

SOUTHERN     BLIC 

i0 

c6 

B.S. 

B.S. 

Table Speaker Deoendent 'tit  Suoset 

LIVE TALKER TE3T MATERIAL 

For the "live tests", it was 
necessary to select sentence texts that 
would be read by the test speakers. It was 
thought desirable to use three speakers, 
each speaker reading a total of 30 
sentence texts in addition to the 10 
"rapid adaptation" sentences. Ten of the 
thirty  sentence texts were to be the same 
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for all speakers, so that of the 90 
sentence utterances to be used for 
testing, there would be three productions 
of each of the ten sentences, and 60 other 
sentences (20 for each of three speakers). 
A total of 70 unique sentence texts was 
thus required. 

No analysis to determine the 
representation of the basic sentence 
patterns In the test material has been 
conducted to date. 

REFERENCES 

The sentence texts were selected frc 
a subset of 2200 Resource Management 
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The prompt form of each of these 
scripts was to be made available to ttie 
"live talkers" in site visits to be 
conducted In March '87. Each of the test 
speakers was to use the Sennhelser HMD 
414-6, the same microphone used at TI for 
the Resource Management Speech Database, 
and the test environment was to be a 
computer lab or conference room with no 
corapetinq conversation. A portion of the 
test material was to be provider* in an 
Interactive manner (i.e. while waiting for 
system processing of the data) and the 
remainder was to be processed off line. 

GRAMMATICAL COVERAGE 

At the time that BBN developed the 
set of approximately 2800 sentence texts 
modelling this task domain, no explicit or 
formally defined grammar was used. 
Rather, a set of prototypical sentences 
was Identified to provide coverage of the 
task, and the subset of vocabulary 
occurring in these sentence "patterns" was 
then expanded to approximately 1000 words. 
There were a total of approximately 95C 
sentence patterns [3]. By incorporation of 
the expanded vocabulary, the 2800 
sentences were generated by including 
approximately three exemplars of each 
pattern. From these, 600 were designated 
to be used for speaker-dependent training 
material, leaving a remaining subset of 
2200 sentences. All of the test material 
was randomly selected from this subset of 
2200 sentences. 
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ROBUST HMM-BASED SPEECH RECOGNITION:  AN UPDATE 

Clifford J. Weinstein 

Lincoln Laboratory, Massachusetts Institute of Technology 

Lexington, Massachusetts 02173-0073 

INTROOUCTION 

Lincoln Laboratory »ork in robust spotch 

r'coijn 11 ion through Ftbruary 1986 is sueainzed in 

the Procaadinqs of th* prior DARP» Spaaeh 

»•cognition Workshop [ 1 ]. The papers tncludad in 

thest proctt(*ings [2-}] provide an updstt on aajor 
ttchmctl accoapl isheenta over the past year. 

This sueeary provides an overall introduction to 

tha accoepanying papers, and itotee soae current 
• rrorts md soae additional accoapl isheenta of the 
Lincoln progrsa in robust speech recognition. 

OVERVICW OF TECHNICAL APPROACH 

TO ROBUST RECOGNITION 

Our spproach to achieving high-perforaance 

recognition of speech produced under stress and in 

noise has been to develop techmquee for anhanctng 
the robuatnaas of a baseline Hidden Nerkov Model 

(HHN) recognizer. The trsming and recognition 

«odulaa of a baseline isolsted-aord HHM systsa sre 
depicted in Tig. 1, «hile Pig. 2 indicates ths 

robustness snhsnceaents «hich hsvs been developed 
end  tsstsd.     Description»   of       ths  vsrious 
• nhsncensnti md thsir er'fsct ivsnsss sre descnbsd 

in  ths  sccoapsnying  pspsrs.     Hsny of      ths 
• nhsncsasnts, such as grsnd vsnsncs or tsaporsl 

difrsrsncs psrsastsrs, srs in the srss of laprovsd 
aodslling and trsming in the Prsaeoork of the 
bssic HMH systsa.  Othsr snhsnesaente, such as ths 
• scond-stsgs discnainsnt snslysls systsa, srs 

outsids ths bssic HMH frsaevork. 

DATA BASES OF SPEECH PRODUCED 

UNDER STRESS AND IN NOISE 

isols 

dsvsi 
vocso 

st res 
««pos 
"Line 

simul 
Lo«.. . 

IS.ea 
i i -i i : 

Addit 

"Tl-I 
VOCSO 

Too pnasry dsts bssss hsve been ussd for the 

tsd-«ord robust recognition slgontha 

opasnt -oik: (1) ths ■Tl-strsss" lOJ-oord 

ulsry dsts bsss [i], including siaulstsd- 

s through tslksr style vsristion snd noiss 
urs (Loabsrd condition); and (2) the 

oln-strsss" dsts bsss [2], including 

• ted-strsss vis tslksr-styls <s' ''.jn, 
.d condition, and aorkiosd 

rd  vocsbulsry  coapossd 

strsss, »ith s 

of scoust icslly- 

•r subssts oi the TI I05-«ord vocsbulsry. 
ionsl eipsrinsnts hsve bssn conductsd on 
WO," • jtsndsrd, nornslly spoken 20-aord 

ulsry dst s bsss [7 ]. 

TRJUNINQ Of WOSO MOOILS 
*«I«»V» 

ACOUVTIC     j 
SIONM        L 

Mtociiao« j 
•icooNini» «MOIl 

■ I ISTIMAftOM 

"oMi loom un cmirawiTi 

SiCnOMTKM 0' NIW umSANCIS 

«K0OMU1M 

Pig. 1.  Hiddsn Msrkov Modsl isolstsd-aord 
recognition systsa. 
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Fig. 2.  HHH lao*atvd-Mord rtcoqnicion syitv« 

* i th robustness »nhsneemsnt. 
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HIGHLIGHTS   OF   ACCOMPANYING   PAPERS   (2-5] *    "J"     '""•    of    0ur    cur"nt    •"<»"•     »•    to 
• xttnd   tn«   robuit    recognition   «ork   to   optntt   with 

Tht          bl.te          robu.t          HHM          i.ol.t.d-ord r,19h    p.rfOf..nc.    on   coot inuouilr-ipok.n   ..qutnc.t 
r.cognw.r,       .nd      ..p.ri.ont.      .nd       r..ult.      on of   -"<"•    und,r    condition,    of    .tr...    tnd    not... 
ri.ttrtM    .nd    ri-IWD,    .r.    d..criP.d    in    (2).       A "ur     .ork     i.     dir.ct.d     •pteirieally     .t     li«it.d- 
«•rUt«    of    robiittn...    t.chn.qut.    .r.    dt.cnb.d, .octbul.ry,   r..trict.d   t..k   do-.in.   r.pr.t.nt .t i,. 
■ nd    th.    ro.ult.    on    tht    .f f.et i..n...    or    v.nou. or   th»   ,,llot',   »••OOlati   .pplie.t.on   of   th.   OARP.                       ^ 
t.chniqu..          .r.          co-p.r.a          .nd          dl.eu...d. Str.t.qic     Co.puting     Proqr...          To     tht.     .nd.      .                       Vft 
R.coqnttion     .ecur.cy      r..uU.      r.port.d      for      TI Prototyp.       continuou.         .ch       HHN       tnlntr       .nd 
.tr...     .r.     98.05»    -ith     tr.inin,     r..trict.d     to r.coqmi.r    n..    b..n    brought     into    op.r.tion    .nd 
nar..l    .p..ch    only,    .nd    99.12«    «ith    tr.tnmg   on .ubj.ct.d   to    initi.I    tt.ting.       Th.   .y.t..   tr.in. 
-uliipl.   .p..ch   .tyl...     Th...   r.pr.*.nt   .or.   th.n 0"     continuou.     .p..ch,     c.n     u..     .ith.r     .ub.ord 
■n    ord.r-of-.gmtud.     i.pro«.a.nt     r.l.tlv.    to    . •»<>•»•   <"   -"ol.-ord   .od.l.,   .nd    inciud..   r.l.v.nt 
b...l>n.    HHM,    ..    .all    ..    .igmftc.nt     i.proV.a.nt robu.tn...     t.chniqu..    u..d     in    th.     i.ol.t.d-ord 
r.l.ti«.   to   raaulta   r.port.d   in   [11.      In   »ddition. .y.t...        Th.    cont inuou.-.p..ch    r.eoqmtion    (CSR) 
th.   b..t    raaulta   known   to   d.i.   for   .ny   .y.t*.   .r. •»•*•■        '•        »„ftxnq       «ith       good       prtltainary 
r.port.d    for    TI-IWOi        99.9A»,    fir.t    t..t|    100». raaulta.           Th.     n«.     CSR     .y.t..     hat      .l.o     bttn 
b..t      tttt.           Thi.      .ho..      th.t      th.      robu.tn... inl.rf.c.d   to    our    liv.-input    front    .nd    (...    [2)) 
t.chniqu..     .pply      .ff.ctl,.Iy     to     nora.l     tpttth •od   u"d   •"••"»•»»    '"   nu..rou.   d..on.t r.t .on,. 
variation.,    ..    M.11    ..    to    th.    .tr...    v.n.tion. 
for   «hich   th.y   ..r.   d.«.lop.d. Anoth.r    i.port.nt     focu.    of    our    current    -ork 

i.  .d.pt.tion  of  th.  robu.t  r.coqmz.r  to  tne 

Th. focu. of [J] I. . p.fticul.r robu.tn... .n»iron..nt .nd to th. l.Ik.r. b, .od.fy.nq th. 

it t.chniqu. ah.r.ln th. b..lc p.r.a.t.r.   of    th.    r.cognn.r    (».q.,    th.    HHM    «ord 
... i .od.l.)     during     op.r.tion, Ad.pt.tion    »ork    h.a r.eoqmtion   p.r.a.t.r.   (..I-f r.qu.ncy   c.p.tr.)   .r. »■■»•*     ourm^    »»>.. 

b..n       conduct.d       .o       f.r       in       th.       cont.it       of .odifi.d    .d.ptiv.ly    to    co.p.n.at.    for    v.n.tion. 
du.     to     .tr.... Thi.     adaptation     i.     .ho.n    to 
co.p.n.at.     for     apactr.l      tilt      and      to     produc. 

, ._..     ,..      _..„ throuqh    .d.pt.tion    of    th.    b..ic    HMM    .y.t*.    .no •iqnific.nl    p.rfor.onc.     i.proy»..nt.     for    (y.t... ••»» K 

i.ol.tad-.ord r.cognition. Cncour.ginq 
pr.ll.inary       r.ault.      ha«.      b..n      obt.in.d      botn 

tr.in.d   aith   nor.al   .p.ach. 
through .d.pt.tion of th. ..cond-.t.g. 
di.cr l.in.tor.       A   v.n.ty   of   t.chniqu*.    .r.   b.ing 

Nulti.tyl.      iraimng.      and      .«p.na.nt.      and dav.lopad       and       co.par.d,        r.ng.ng        fro.       full 
r.ault.    on    th.    L mcoln-.t r...    d.t.    b.aa,    art   th. r.tr.inmg    of    th od.l    to    .i.pl.    .d.pt.tion ',.^ 
focu.   of   [»).       Th.    .ff.ctiy.n...    of    training   on of   t".   c.p.tr.l   ..ana. ..•-. 
aultipl.    talkar     .tyl..     in     laprovinq     r.eoqmtion ,•,•' 
parfor.anc.      for      .tr...      .nd      noi.a      condition. fin.lly,    .inc.    on.    of    our    t.rg.t     go.l.     .. ,•-.; 
(workload,    Lo.b.rd)    not    includ.d    in    th.   training r.cogmtion      in      th.      .ircr.ft      cockpit,      -.     ara 
data       la      raport.d       .nd       di.euaaad. Ov.r.U d.».loping    .    .i.ulatad    .ircr.ft     .c.n.no     for     . 
r.cogmtion     .ccur.cy     of     99»     on     th.     difficult d..on.t r.t ion    .y.t...        Th.    go.l     t.    .    rt.li.tic. 
Uincoln-.tr...    data    la    raportad,    achi.,.d    .la    . atr...ful     flight     t.ak     for    »oic.    control     on     an 
coibination     of     .ulti-.tyl.     tr.inmg     and     othar aircraft.     Curr.ntly,   .  prototyp*   flight   .i-ul.tor 
robu.tn.o.   .nh.nc.nl.. ""    »••"    «•••»opad     on    .    SUN    -ork. t .t i on. Th. 

.i.ulator    provtd..     .pproiia.te    «odels     for     tnr.r 

A   ..cond-.t.g.    di.cn.m.nt    an.lyai.    .y.t.a, .ircr.ft     typ..--.     C.n.     150.     an     F.15.      .no     . 
da.alop.d   to   atraa   at   .   poat-procaaaor   to   lha   HMH h igh-alt itud.      po..r.d      glid.r. A      nu.b.r      of 
r.eogmz.r,    in   ord.r   to   r.aol,>   confuaion   b.t...n i.pro,...nt.     to     th.     .i.ul.tcr     (..g.,      taprevad 
acouatically.ai.U.r    -orda.     It    daaenbad    in    [»J. -aath.r   .od.l   and   navigation   .id.)   ara   pl.nn.d   for 
Thi.    di.cn.m.nt    ayat.a     la    trainad    by    paaamg th.    n..r     futur.i     Ut.r,     th.    .i.ulator     -ill     b. 
...pla.    of    .v.ry    .ord    in    tha    vocabulary    through mtarfacad      to      th.      .p..ch      r.cognu.r.      .nd      . 
th.   HMH  .od.l.   of   .vary   .ord   in   tha   vocabulary,   to »uit.bl.    control     languag.    -ill     b.    d..ign.d     .no 

.xplicitly      aod.l       .cou.tic      diff.r.nc      b.t...n i.pl...nt.d. 
»ord*.       A    .1.1i.tic.lly-b...d    lifting    t.chniqu.. 
i.    d..cnb.d    »hich    ..l.ct.    only    tho.a   p.r...t.r. REFCRENCES 

.hich   art   likaly   to   ba   affactiv.   in ^j  D> Bi ptuli   R- 9    Lippaann,  r. Ch.n, C.J. 
diacn.ination.  P.rforaanc. iarov...nt. r.l.tlv. Kainataln,   -Robu.t   HMM.8...d   T.chniqu». 
to th. robu.t .ingl.-.t.g. HMM art r.port.d for for  R,coqnltlon  of  sp„ch  produc,q  under 
tha Lincoln-air... data baa.,  contributing,  for Sir...  .nd  in  Noi.e."  Proceeding.  DARP* 
....pi.,   to   th.   ov.r.ll   995   (...   .bov.) 5peech  R,coqnl,loni  rebru.rv   1986:   ilso 
r.co,nition .ccur.cy on th.t d.t. b.... publi.hed  in  Speech  Tech  86  Conference 

CURdk : EFFORTS 
Proceeding., April 1986. 

[2] 0. 8. P.ul. 'A Spe.ker-Stre.. Resistant HMM 
A nu.b.r of curr.nt efforts in proqre... .nd isol.ted .ord Recognizer.- these proceeding,! 

recent   .cco.pl i.h.ent,   not   covered   in   th. ilto gKlbll,nt<s      in  Proc„dlnq,  ICASSP  37. 
.cco.p.nying p.p.r., «r. outlined here.  More -ill Aoril 1987 
b. r.port.d in this «ork in th. futur.. 
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K SPEAKER-STRESS   RESISTANT  HUM  ISOUTED  WORD  RECOGNIZER 

Oouglai  B.   Paul 

Lincoln  Laboratory,   Haitachui«Ct*  InscltuCa of Technology 
Lexington,  Haatachutacci 021/3-0073 
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ABSTRACT 

Hoat currant tpaach racoTiltlon ayataaa tra aanaltlva 
to varlatlona In «paakar atyla. Tha folloalng la tha 
raault of m tflort to aaka a Hidden Hirkov )todal Of«) 
laoleted Mord Recognlnr (IM) tolerant to auch apeect) 
cfiaogi«     ceuaed    by    apeekar     atreae. Nora     than    an 
ordar-of aagiiltuda reduction of the error rate aae eeMeved 
far a TOV-tord alailatad-e^reee data baee and a IB error 
rete aae ecnleved for the TI 20 leolatad-aord data baee. 

tNTROOUCTION 

Current recognition •! pr'! ■«• ere generelly fer eore 
eeneltlve to verlatlone In opt Inq atyle tnd cofMlltlone 
then are h«aen Uatenera. Ma , faetore een ceuae aich 
changee In apeeklnq atyle In an operetlonel emlronaent. 
Tor Inetence, typtcel ceueee are tla (a ■••*• or ■or»), 
rteaal congaatlon, eaotlonal etete, eivreeelon, and 
teek-lnduced atreae. Mi are epaeirtcally Intereeted In 
teek-lnduced atreee, but the ecouetlc chengee appeer to be 
alallar for eeny ceueee. Typlcel effeete of etreea ere 
chengee In apectrel tilt, foraent poeltlon, energy, tlelng, 
end phonetic content. The folloalng deecrlbee «orv rfiicn 
hee yielded aore than «n ordar-of-aagnltude reduction In 
the error rate of an WM IWI over e aultl-epeech-etyle 
deta baee aa «all ae alTilflcent laproveeente for noraelly 
•pokan apaech. 

Since It la difficult to obtain lerge amatta of data 
froa atreeeed «ubjecte, ae heve ueed e atltl-etyle 
alaulated-etreee deta baee genereted et TI [1]. Thle 
dete baaa hee 8 apeehere ()N * T), e 10S-«rd elrcreft 
vocabulary and, for aech apeeker, a (nonally apoken) i 
token per aord trelnlng aectlon end 6 atyle aactlone of 2 
tokene per aord aech for teetlng. The apeech nee digitized 
■1th e * Mz audio bandeldth. The all condition, arai 
nonael, feet, loud, Loabard (nolae preeented In 
hee4>honee), eoft, «id «tout. The ahout condition la ao 
different froe the other condition, thet It hee been 
lergely Ignored. The nrk hee focueed on the other "> 
condition, «ith their overall averege aubatltutlon error 
rete (evgS) oa the prlaery «eeure of perforaence. 

The obeervatlona ueed by thle syatae are centlaacond 
aal-cepetre [2]. Theee aal-cepetre are co^Mtad froa the 
dtgltLzed aperdi by the follralng proceaalng aequencei 

1. 20 meec Heaalnq «Indo«. 
2. 256 point ffT ( —♦ coaplax  aoectrua). 
3. Magnltuda tquarad (-4 power tpectrua). 
*.    PreeaohHtat    S(f)  • S(f) •  (U( f/JOOHz)2). 

).    Triangular aal-bendpeee auMatlona (—» »«l power 
apectrua).    Conetent  area flltarai    100 Hi •pacing 
between .1  and 1  kHz,   1QX abovei  width i U 
apaelng. 

6. Convert ml power epectnia to dB. 
7. fedtfled coelne trenefora [2J (—> ael-cepatriM). 

Slallar aal-cepetrel obeervatlona have been ueed 
•ucceeefully In e nuaber of rwcognltlon lyatne. See, for 
»nmQi; [)]. 

The beelc ayetea le e dlegonel-coverlence-aetrli 
aultl-varlete Ceuaalen proOeblllty denelty contlruoua- 
obeervetlon [a] leolatad-word MW recognizer v-'.ng the 
•bov» al-cepatral obeervetlone. (The abeoluta energy 
tena,    cO,     le    not    ueed. The    tyataai    augaented    with 
dlfferentlel obeerv.tlone (eee below) Include a 
dlfferentlel energy ta'a.) Only one aodel la ueed per 
aord. The     ayetea     la     trained     by     the    Beua-aelcn 
(foraerd-feeefcwerd) algorltha. Since the data fllea contun 
a faa fxjndr.d ■■ of beckground nolae at tach and, thu flrat 
and leet nodee of the aodel ere dedlceted to aodellng the 
beckground. (Both the trelnlng and recognition are open 
andpolnt). The teralnetlon of the obeervatlona la «deled 
by a traneltlon to a dagenerete node. The racognizer ueee 
e Vlterbl decoder. All ayeteae reported here uaa "linear'' 
natworke—I.e., there ere no nodel iklp tranaltiona. 

A variety of training condition« end 'KM syiteea «era 
teeted. The training condition« ere "nornel'' training, 
rf>are only the noraelly apoken trelnlng aectlon of tne 
dete beee wee ueed for training, and '■ultl-atyla' training 
■here the flrat token of eetfi word of each atyla ••« added 
to the training aet and the eecond toten «ae ueed for 
teetlng. Verletlone In the ayataaa are of teveral faraa: 
naber of nodee per «ord, obeervatlon anhanceaenta, tha 
•ethod of obtaining tha verlencea, the training start 
itate, uae of edeptlve beckgrouid nodes during recognition, 
the duration aodel, and aodlfIcatlona to laprove paraaetar 
aetlaetee In tre fece of aaell aaounta of training data. 
Unleee otheralee atated,  all ayeteae heve 10 active nodea. 

NORMAL   TRAINING 

Tha norael training ayataaa uaad ^ normally spoken 
token« per «o>d for (speaker-specific) training and » total 
of 1680 /ne per atyle (8400 per avqi) for teetlng. Eacn 
■yatea will be Identified by • code. The error ratea 
quoted are the avg) percent error. More detail «ill Oe 
found  in  Table  I   and figure  1. 

The beeellne syatae ueed trained nodal variances 
(baaellne, 1?t 20.49?). Lower bounding the venance« 
(vertanee   1 mit lug),   «ucn   reduced   tne  effects   of   limited 
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training data, radurad tha arror rata to (vl.lOi 1S.92S). 
Augaantinq tha obaarvatlona with 20 aa temporal differences 
of tha iml-capatra further reduced tha arror rata to 
(v1,d2,1Q:   10.508). 

The above ayatana all used Individually trained 
variance vectors for each node. Tha foUowing ayatens uaa 
tha Sana variance vector for all node». An L2 nom (all 
variances a 1) performed poorly (L2, 10) 13.588). Fixed 
variancea equal to tha variances of all tha training speech 
of all Speakers (Fig. 2) yielded (ra«, IOI 8.76S). A 
perceptually-beaed fixed variance (aaa below and Fig. 2) 
reduced tha error rata to (gfv.lO: 6.175). Adding 20 «a 
temporal differential paraaatara (gfv, d2,10i 4.998), 
incraaalng tha nunbar of nodes to 1ft (gfv, dZ,14t 2.548), 
modifying tha fixed variance yielded (qofv,d2,14t 2.268), 
and finally, adding an sndpoint-based training atart state 
and adaptive background ost trust ion to tha rocognlnr 
reduced the error rets to (gafv,d2,b,Ut 1.958). A trained 
"grand variance* (Fig. 2) coaputed in tha Baua-Melch 
reeatiiutlon procedure, in Wilch the variann is tied over 
all nodes of all xorda, approached tha fixed variance 
(grandv. d2,b,U: 2.958). 

MULTI-STYLE  TRAINING 

The nultl-atyla trained ayateas added 1 token fron 
each non-shout teat atyla to tha training sat for 10 tohena 
par «ord (mtaa). (Similar raaulta «sra obtained even «hen 
a shout token Mas included in tha training.) This left MO 
teat tokana per style and 4200 tokens for the avg5. Nona 
of the tsat tokana Kara uaed for training. 

In general, tha reaults  Improved significantly! 

normally trained multl-atyla treined 
v1,d2,b,14t 7.718 mtee,v1,d2,b,14i 1.128 
garv,dZ,b,14t 1.958 mtaa,gafv,d2,b,14i .938 
grandv, d2,b,14i 2.958 mtaa,grandv,d2,b,14i .888 

Multl-atyla training, by praaanting more legltiiaete 
variation to the training algorithm than does tha normal 
training, appaera to causa the training to find a batter 
modal for the word [5]. In addition, psrforaanee on tha 
normal style usually iaprovaa as s result of the 
multl-atyla training. 

l-.Sa 

THE PERCEPTUALLY MOTIVATED FIXED VARIANCE 

Voasl perception experiaanta [6] haw indicated that 
fornant poaition la «re Important than spectral tilt in 
vowel Identification. Our investigatlona aleo showed large 
spectral tilta to be one of the affects of speeker streaa 
and style [7]. However, spectral tilt ia aleo a strong cue 
for dlatlngulahlng between voiced end unvoiced speech. 
Therefore, a wei^itlng (inverse variance) uhlch 
deeavhaslzsd, but did not totally ellainete the low-order 
mel-capatral terms, -was applied in tha distance measure 
(i.e., «aa uaed to poetulata a fixed variance in tha 
Gaussian probability density function). The wel^iting 
function «ea choaan to be (Fig.   3)i 

wti]a 2  \1-.8a 

1<i<d (normal mal capatra) 

Q<l<d  fdifferffitisl mal  cfpstra) 

otherwise 

varti] » 1/wCi] 

where   i    ia   the   n«l-capatral 
ofaaarvation orders. 

index   and   d   and   dd   are   the 

This weighting, if interpreted aa a signal proceaaing 
operation on the «1-spsctru«, la a dynamic range 
oonpreasor and local feature enhancer vary similar to tha 
homomorphic dynamic range oompraaalon and contraat 
ertiancaiaent tachnlquee used in picture proceaaing [8], It 
aleo provides e degree of tolerance to changes in the audio 

channel  (ssa below). 

STRONGER DURATION MODELS 

The Ferguson full duration model [9], which models the 
duration as a vector of duration probabilitiaa rather than 
the dying exponential of the standard HHM, yielded mixed 
reeulta Wien applied to some of the above systems. It is 
such mrs coaputstlonslly intsnaive then the standard 
Systeme and has not bean adequately explored. It also 
appears to require sore training dsts than wss available 
for these experiaanta. 

A double-node aubnet ia much simpler and 
coaputationally more efficient than the full duration 
model. Each node la replaced with a network coneieting of 
2 serlee-connected nodes constrslned to have the same 
obaarvstion probability density functions and the seae 
aalf-trsnaltlon prabsbllltlsa. With no increase In the 
nuriier of pereaeters and only a minor Increase the total 
coaputetion (the coaputational load ia dominated by tha 
probability density functions), ths duration modal is 
changed froa the ueual exp(-at) to a t*exp(-at) form. This 
syataa haa not been adequately explored, but the reaults 
are      encoureqlng» froa      (gafv,d2,10:      3.698)      to 
(dn.qafv.dZ.IO:   3.428).     Similar  duration modele have  bean 
exaalnad elsewhere [10]. 

«OOITIONAL RESULTS 

This ayatea, which wee developed uslnq the TI 
simulated-etreaa data base, haa been taeted on tw other 

'data bases «id in nuasrous live-input demonstrations. The 
syetaa has shown similar results on a locally-generated, 
simulated, and workload streaa data base [5,11]. The 
syetaa haa aleo been teeted using the TI 20 iaolated-mrd 
data baaa (16 speakers, 20-word vocabulary) [12]. The 
arror ratae were ae followei 

First teet: 

tl-iwdi    gfv,d2,iat (3/5120) 
-'i 
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Beet  reeult: 

ti-iwdi    gfvx,d2: .005 (0/5120) 

The beet  reeult  reported  in [12]   is  .205 (10/5120). 
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Llva-lrput tnt» of th« noraally tralnad, fbwd- 
varlanca syat« hava conflnad th* robustne«» to speech 
style «id have Indicated additional tolaraneaa. This 
ayaten has been trained over a local dlaled-up talaphona 
line and teated over dlaled-up long-distance telephone 
Unea. A teat waa performed «hen the speaker had a cold. 
(The training data had been recorded nontha earlier.) 
Under both of thaaa conditions, the syaten haa continued to 
perform wall. With the exception of th* adaptive 
background nodes, the syatea did not adapt in any way to 
th~ taat environaant. 

The aysto« haa been formally taatad or deaonetrated 
over bandwidtha ranging from 3.2 km to 8 kHi. (In each 
caaa the tooting and training bandwidtha Mara identical.) 
A variety of mlcrophonea, audio ayatama, and background 
noise levels hava been used and system haa tolerated them, 
all within reasonable limits. 

DISCUSSION 

The improvement» reported hare are tha raault of 
several philoaophiaai the aodal auat be trainabla, «at 
hava aufflclantly detailed obaarvationa, and mmt ba 
tolerant of unanticipated Changs». Any paramatera uaad 
ntist ba trainabla on realistically available amounta of 
data. Thua, tha variance limiting, grand varianc*, and 
rixod-variance systeaa outperformed tha baaalin* system. 
Augmenting the obaarvationa with tlma-dlfferentlal 
psramatera provided more information to tha syste« and 
thua yielded further improvement». Hidden Markov »dale 
are fairly inaanaitiva to tha exact number of nod**, but 
th* incr**ae from 10 to 14 nodaa genarally proved their 
ability to modal tha given vocabulary. 

A "fully trained" modal can only modal th* training 
data—it cannot actively anticipate <*iat it haa not seen. 
Ma provide a priori information to th*a* ayate** in »everal 
ways. Tha number of node» end the allowable tranaition* 
between the« are one form of euch e^ priori Information. 
The fixed variance la another way of providing uaeful a 
priori knowledge. Tha normally train*d grand variance 
system only knowa about speech varlationa found in ita 
training data. The fixed variance informa tha ayate« about 
the kinda of variationa which may ba encountered in speech 
and, therefore, outperfon« tha grand varianc* for normal 
training with style toating, and givea equivalent 
parforanc* for normal training with norm*! t**ting and 
multl-atyla training with atyla teating. Fro« another 
viewpoint, the application of a priori knowledg* haa 
reduced the requiremanta for training data by anticipating 
the variation in tha taat data. 

The techniquea deacribad hare increaaa tha tolerance 
of the recognizer to speech variationa. Another approach 
uaad a fixed variance, normally trained system, modified to 
compenaate for tha spectral tilta Airing recognition [13). 

CONCLUSIONS 

Several techniquea for improving the treining «id 
speech imdeling of a "textbook" (beaeline) rt« recognizer 
with good normel speech performence have been combined to 
significantly improve recognition results in the face of 
speech-style variation and small amounta of training data. 
Results have improved from a 20.5S avg5 error rate to 1.955 
if normal training data is used, or to .885 If samploe of 
the     expected     speech     stylee     are     sveilable. Theee 

enhi ante hava also improved performance on normal 
shown by the .245 error rate achieved for normal 

speech, and the .065 and .005 error ratee achieved on the 
TI 20 laolated-word data baae. 
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TABLE I 
SUBSTITUTION ERRORS FOR TI-SIMULATED STRESS AND TI-IWO DATA BASES 

normal avq5 
Normal Tralnlnq: 

individual nodal varianeaa: 

basalins 1.90 20.49 
v1,10 1.07 15.92 

»1,«12,10 .65 10.50 
v1,d2,U .48 8.57 
v1,d2,b,U .43 7.71 

•a«* rixad variance far all nodaa I 

1.2,10 2.08 13.58 
raw, 10 .95 8.76 
gfy,10 .65 6.13 

grv,d2,10 .36 4.99 
grv,d2,U .36 2.54 
garv,d2,U .48 2.26 
garv,d2,blU .36 1.95 

aaiaa tralnad variance for all nodea: 

grandv td2,b,14 .36 2.95 

Hultl-Styla Training: 

Individual nodal varianeaa: 

■taalv1,d2,b,14 .71 1.12 

aaaa fixed varlancoa for all nodaai 

■taa,gaCv.dZ.b,14 .48 .93 

aaa« tralnad variance for all nodaai 

■taa,grandv>d2>bl 14 .24 .88 

TI-IWO (20 word) 

gfv,d2 
firat test:    .06 

best:          .00 

i 
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30, 

25 _ 

20 

ZBasolinu, 10 
Avl,d2,b,14 
-grandv, 12,b,14/ 
x gafv,d2,b, 14 

□ 43 

avgS=20.49 
avg5= 7.71 
avg5= 2.95 
avg5= 1.95 

Oiii1:as,vl/d2,b,14    avgS= 1.12 
vmtas,grandv,d2,b,14 avg5=  .88 

15 -Bmi:as,gafv,d2,b,14  avg5= 

10 _ 

loud Lombard   soft 

rig, 1.  Percent substitution errors Tor TI siaulatsd 
stress dats bass.  See text for systsa codes. 

0.9L 
0.8. 
0.71 

0.6. 
fc 0.5. 

a 0-4- 
* 0.3. 

0.2. 
0.1. 

0. 

fixed variance [i]   =  l/weight[i] 

0      1       2       3       4      5      6       7       8       9    10    11    12 13 
Mol-Cepstral   Index 

Fig.   3.      The   perceptually-«otivated   weighting. 

This       psper       appears       in       the       Proceedings      of 
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vgrandv,   multi-style tnalnlng 
O fixed var 
x RAW,   normal   training 

mel-cepstra 
differential 
mel-cepstra 

0.1 „ 
12345678   9101112  012345678  9101112 

Mel-Cepstral   Index 

Fig.   2.      Variances   for   several   training   techniques. 
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CEPSTRAL DOMAIN STRESS COMPENSATION FOR ROBUST SPEECH RECOGNITION 

Yeunung Chen 

Lincoln Laboratory, MassachuseCCs Institute of Technology 
Lexington, Massachusetts 02173-0073 

ABSTRACT 

Automatic speech recognition algorithm« generally rely 

on the assumption that for the distance waaure used, 

intraHord variabilitiea are aaallar than interword 

vanabilitiee so that appropriate separation in the 

neaauremnt space ia foaaible. Aa evidenced by degradation 

of recognition performance, the validity of auch an 

asatnption decreasea from simple taaka to complex tasks, 

from cooperative talkers to casual talkers, and from 

laboratory talking environmenta to practical talking 
environmanta. 

This paper preaanta a study of talkar-atrsaa-induced 

intrword variability, and an algorithm that compenaatea 

Tor the systematic changes obaerved. The study ia baaed on 

Hidden Markov Hodala trained by fpaech tokens in varioua 

talking styles. The talking styles include normal speech, 

fast speech, loud apeach, soft apaech, and talking with 

noiae injected throu^i earphonaai the atylea are designed 

to simulate speech produced under real stressful 

conditiona. 

Capatral coeffieienta at* used aa the parameters in 

the Hidden Markov Hodala. The atraaa coapenaation 

algorithm compenaatea for the variationa in the capatral 

coeffieienta in a hypothesis-driven manner. The functional 

form of the compensation ia shorn to correspond to the 

equalization of spectral  tilts. 

Preliminary experiments indicate that a substantial 

reduction in recognition error rate can be achieved with 

relatively little increase in computation and storage 

requirementa. 

INTR0OUCTIGN 

Currant apaech recognition aystema generally degrade 
significantly in performance if the aystema are not both 

trained and teated under similar talking conditiona. A 

major reason for performance degradation when teating and 

training conditions differ ia that people apeak differently 

under different conditiona. Deapite the knowledge that 

speech patterns change in stress and in noise, little 

speech recognition research has been directed at modeling 

systematic changea obaerved and at developing recognition 
systems that are resistant   I     such changes. 

This paper presents a study of talker-stress-induced 
variations in speech cepstrsl coefficients, and an 

algorithm that compenaatea for systematic (but unknown) 

changes obaerved. The study is Liaaed on isolated-xord 

Hidden Markov Model speech rscognizer [1] trained by speech 

spoken in varioua talking conditiona. The recognizer [1] 

ia a continuous-observation HH1 syatem using moi-frequency 

cepatral parameters. The Mirk reported in this paper is 

described in more detail in [2]. 

The experimenta conducted in thia research «ere based 

on the 'simulated atraaa" [3] speech data baae collected by 

Texaa Inatrumanta. 

In thia data baas, stress-like degradationa of the 

speech signal «ere elicited by asking the speaker to 

produce apeach in a variety of styles (normal, fast, loud, 

soft, and shout) as wall as with 95-dB pink noise exposure 

in the ear to producs the Lombard affect. The vocabulary 
conaiated of IDS worda, including monosyllabic, 

polyayllabiu, and confusing worda. 

The data baaa was divided into training data and teat 

data. Training data conaiated of five samples of each of 

the 105 worda collected in a random order under normal 

talking conditiona, and teat data conaiated of two samples 

of each word under each aimulated-atrsss condition. Data 

wars collected from five adult Mlaa and three adult 

females.    The total number of teet word tokens wss 10,080. 

AN EXPERIMENT ON HULTISTYLE-TRAINED 

HIDOEN MARKOV WORD «DELS 

Hultiatyle training [A,5j ia a technique used to 

improve speech recognition performance under streaa. In 

multistyla training a raco^iizer ia trained using wird 

tokene spoken with different talking stylea instead of 

using words all spoken normally. It has been found to be 

eaay for a talker to change to atylea auch aa feat, slow, 

loud, aid soft, producing changea in speech characteristics 

that an similar to changea that occur under streaa. 

An experiment on multiatyle-trained Hidden Markov 

Model word recognition was performed. In thia experiment, 

11 speech tokens ware used to train each word modal: 5 

tokens from the training data baae, and 6 tokens, one per 

talking style except normal, from the teat data baae. The 

recognition error ratea are listed in Table I. for 

companaon, the error rate of the baseline mi system is 

also included. 

Front Table I we obaerve that there is dramatic 

performance degradation «hen the baseline recognizer ia 

teated with styled data; and that multistyls-trsining has 

considerably improved system performance for speech oata of 

all stylea. 

It appears that the WH word models were able to 

assimilate the data  from the multiple stylea and to capture 
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statistically the mn invariant faaturaa of each Mord. In 
the next section wa investiqate the gross ctiangee of nodal 
parsaatsrs resulting fro« iwltistyls training ss «all ss 
fron styls training  (as opposed to nonwl training). 

CCPSTRAL DCHAIN STRESS  COMPENSATION-DRIVEN 3Y  OBSERVATIONS 

The auccsaa of the nultiatyla training sxpariaant 
activated a coapariaon of the aodal parnati..^ trained 
under various talking stylea to daterainc «hether it «ould 
be possible to coopenaate for the cepatral changes through 
simple transformations on the cepatral aaana and variancea 
obtained using nonaal training. Such tranafonsation, if 
effective, «ould simplify the training procedure. 

The differences aaong normally trained, single- 
style-trsined, end aultistyls-trained word models are 
partially reflected in the average shifts of the mean 
valuea and in the average scaling of the variancea of the 
cepatral coefficients. To study esch difference, seven 
different ssts of xord nodala «ere exaained. Six of the 
models mre trained under six individual conditions 
(normal, fast, loud, Lombard, soft, and shout 
respactivsly) while the seventh xea trained using a 
compoeite of all these conditiona (multi-etyle). The 
cepatral aaana and variancea, averaged over all «orda in 

over all speech nodes in each Mord, and 
»ere   computed   for   each   of   the   models 

the TI vocabulary, 
over all talkers, 
above. 

The mean cepatral shifts (i.e., cepatral aaana of the 
given model minus the cepatral aaana of the normal modal) 
for each of the cepatral coefficients are platted in Fig. 
1. Figure 1(a) plota mean cepatral shifts for four caaeat 
soft; shout; svsnge of faat, loud and Loabard; and 
multiatyle. Figure Kb) plota the corresponding spectra of 
these assn shifts, contraating the effecta of spectral tilt 
of Ion vocal effort (soft) va hitter vocal effort (faat, 
loud, Lombard, and ahout). Increeaed vocal effort 
increases the relative hi^i frequency content, Hhareaa the 
opposite occurs Mith  low vocal effort. 

It ia well known that spectral tilt exhibits Isrgs 
variation    when    a    talker    speaks    under    stress. Such 
variation ususlly contaminates the distance measure and ia 
one of the moat significant causes of recognition 
performance degradation. It appears that the effect of 
spectral tilt could be compensated, to some extent, by 
applying the approprists cepatral compensation to normally 
trained word models. 

Becauae variance eetimation ia leea reliable than mean 
estimation, we have only compared cepatral variancea of 
multiatyle-trained models which used 11 training tokens 
with     the     normally     trsined     models. Their     rstioa 
(multistyls/normal) are- plotted in Fig. 1(c). U appeara 
that the major style-induced venations occur in the moat 
slowly varying spectral components (corresponding to lower 
order cepetral coefficients), and in most rspidly varying 
spectral componenta (corresponding to the hi^ier order 
coefficients)   . 

or mars sate of cepatral differences. The word oodela were 
talker-dependent, but the modifications were the same for 
all «orda and all talkera. 

(a) Single Model Compensation; The set of cepstral 
mean differences and variance ratios observed in 
multiatyle-trained models [represented by filled 
squsres in Fig. 1(a) and (c)] was applied as 
compensation in recognition tests on all styles. 

(b) Hultiwadel Compenaatiom Three ssts of cepatral 
mean compensations corresponding to the soft, the 
loud, «id the shout-trsined medals, were applied 
to generate three new word models. The variances 
in these models were scsled according to 
Fig.1(c). In recognition, the four models 
(including the originsl normal model) were 
treated independently and equally; in effect, the 
computation for HMM recognition wee quadrupled. 

The recognition error ratea of theae experiments are 
liated in Table II. The error rate reductions relative to 
the beeeline system seem quite promising given the 
simplicity of the compensation technique. 

The next section discusses a variation of the above 
technique—the hypotheaia-drivan stress compensation. 

CEPSTRAL DOMAIN STRESS COMPENSATION  - 
A HYPOTHESIS DRIVEN APPROACH 

It ia the hi^i cost of incressed computation and the 
uncertainty about training-atyl« sufficiency and efficiency 
that proapted ua to sssrch for alternatives. Aa a reault 
of this effort, the hypothesis-driven cepatral mean 
compenaation technique, whidi adapta to the input speech 
and to the hypathssized reference word, wme developed. 
Fixed multistyls variance compenaation haa been found 
beneficial for all stylos and will be used in conjuction 
with the adaptive mean compensstion. 

In deriving this technique, we model the talker as an 
information source (Fig. 2) that puts out a sequence of 
deterministic cepatral vectors {ct} . Before the vectors 
are received by the decoder, we assume that they undergo 
two atsgea of contamination. 

Stage 1 

A sequence of independent identically distributed 
(i.i.d.) random vectors jfij is added to the cepatral 
sequence [c^] to creste a new sequence |u^) 

(1) 

The sequence {i^} models the randomness of speech 
cepstral parameter outputs; its elements are assumed to be 
normally distributed with zero mean vector and diagonal 
covanance matrix. 

m 

The following cepatral compensation experiments were 
performed, in which new word models were generated by 
modifying normslly  trained Hidden Markov word models by one 

In    a    different    data    base    we    have    observed    inflated 
variance scaling only  in the  low order coefficients. 

'The subscript t  is an index of time. 
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Stag» 2 

A    deterministic    but    unknown    vector X i*    added    to 
the     sequence juj.} to    create     the    observation     sequence 

N 

IT     »    I    T 
"n       L      n 

i»1 
rfn 

(7) 

vt = ut+X (2) 

The  vector x *■   the  additive  "stress"  couponent.     It 
is assumed to hove the functional  form [see Tig. 1(a)]i 

*vnK-Tr (8) 

then  Tn   and   Yn   are   independent   and   the   expectation   can 
be approximated by 

Xi = '9 
-b(i-1) 

(3) 

and   is   further   assumed   to   remain   unchanged Mithin  a  «rd 
interval. 

Given a sequence of observations v^, txl^,...,! we 
have developed a procedure for eatination, baaed on maximum 
likelihood principles, of the parameters a and b in 
Equation (3). 

The procedure consists of two stepai 

Step 1   (Eatinating Xi) 

The probability denaity function of vj, the Ith 

component of the obaervation vector,  la given by 

f(v )s ——   exp ;  (4) 
» 

ttiBtt c and Xar9 the ith componenta of the capatral vector 

and the  "stress" vector,   respectively. 

Given a sat of independent obaervationm (v^}, 
tal,...^, the naximuai likelihood sstiaate of xl '• given 
by 

t=1 

T 

I 
t2l 

h-j iK^J-i i**Tl**     (" 
T 

I 
t=1 

Me replace the aample average of Oj, which ia not 
obaervabls, by the expected average value, derived from the 
word hypothesis! 

c    = E 
i 

L»   m 

T  c 
n in 

It 
■ m    mJ 

(6) 

E[^n.irn)]-«(t-n.Yn)*i *T 
2   LaL.J Ln 

n    or n oY 
n n 

T    ♦ Y 
n       n 

TO2     -Y«2 

n Y n T 

(^ * V3 

with the means and variances given by 

n     P 

N 
r        1 

^n3 ^ r 
mal     m 

ii#n 

fi-O 

H    (l-P) 

»2.    I     « 
Y 2 n    ml      P 

i#n 

The eatination formula (S) becomes 

*n ' I   * 
tsl 

nt -I    E[g<T    Y )] c n   n       n 
nil 

(9) 

(10) 

(11) 

In Equation (11) the first sua ia over the observed 
capatral coefficient sequence, and the second sum ia over 
the node« of the hypothesized model. Therefore, we refer 
to this technique aa a hypothesis-driven technique. 

Step 2  (Smoothing xO 

-AM 

where the Tn
,s are a sat of mutually independent discrete 

random variables whose values represent the dwell tin» in 
each of the n nodes, and the summt ions are over all speech 
nodss. 

Since a cloaed formula for E r-   haa not been found, we uae 

an approximation using up to the second-order mocmnts.    Let 

After Xli"-Xl2 ■rs estimated, we fit Equation (3) to 
them. A least-maan-squara fit requires numerically solving 
a set of nonlinear equations. • A leaa computationally 
intenaive and yet more robust fit (i.e., one which is less 
susceptible to the effect of outlying data), ia given by 
fitting e' inential functiona to all pairs {XiiXjf» ^J, or 

a subset of these pairs, and then by averaging magnitudes 
and time constants of the  fits.     We have chosen to   fit  the 
fiairs   that   contain Xl   and  one  of X2>X3iXi»  and X5>   namely, 
Xl,Xj},  j=2,3,4,5.    Therefore, mm 
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Spectr«! tilt has bMn found to vary significantly for 
speech spoken in stressful talking snvironaanta. Ns 
studied the statiatieal variations of cspatral coefficients 
embedded in the frsaemric of Hidden Markov «dels sod that 
the observed changes in cepatral aaan values, froa normal 
exponential type of spectral tilt. A ample and efficient 
coapenaation technique, the hypothesis-recognition 
experiments yielded significant  reduction in error rate. 

V 

j 

-ln-i 
•   X1XJ * 0 ' 

otherwise 

b * 0 

otherwise. 

N>W 
(12) 

a and b are the average of non-zero aj's and bj's. 

Given  the  cepstral vectors   of   a   test   token  and the 
Hidden Markov word nodal for a reference,  the procedure for 
the adaptive cepstral compensation and recognition is 
described aa follows: 

Step 1I Compute a set of stress components [c.f.  Eq.   (11)]. 

Step 2;   Smooth   the  stress  components  by   fitting an expo- 
nential function to them [c.f. Cqa.  (3) and (12)]. 

Step   it   Subtract   ths   values   of   the   exponential   function 
from the cepstral vectors of the test token. 

Step 41   In  recognition,   perform likelihood tests using the 
compensated test tokens. 

In Table III we summarize the recognition error ratea 
when the hypothesis-driven stress compensstion is applied 
to the "simulated stress" data bsss. For compsrison, the 
error rates of the baseline and of aultisodsl compensstion 
are also included. This technique has also been applied to 
a «ore advanced U-node, fixed-variance HHM system [1] 
whose psrsasters contain cepstral coefficients aa wall ss 
differentisl    cepstral    coefficienta. Because    cepatral 
variances are fixed in thia ntcognizsr, ..J variance acaling 
ia performed. The recognition results, with and without 
cepatral coapenaatlone, are liatsd in Table IV. 

A confidence intervsl analysis indicatea that the 
improved error rates in Tables III snd IV, ö.25 and 1.95, 
lie well outside the 9SS confidence intervale of the 
unimproved error ratea, 13.95 and 2.5S. Therefore, our 
experimental reaulta are statistically significant. 

cmausioN 
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TABLE I 

SUBSTITUTION RATE (PERCENT) i  A COMPARISON OF NORMAL- 

AND MULTISTYLE-TRAINED HMM RECOGNIZERS 

Condit ion Norm Fast Loud Noise Soft Shout 

• *• 
Avq5 Avg6 

Basel Ina HMM« 1.0 6.1 29.1 19.6 13.5 86.4 13.9 25.9 

Multistyle»» 0.5 5.6 5.1 2.1 5.8 43.6 3.8 10.5 

• The baaallne syatea waa trained with 5 nomally spoken word bokena 

per talker and tsatsd on 10,080 test tokens. 

••The multIstyle-trained systea »as trained on 11 style speech tokens 

per tslker and taated on 5,040 teat tokena. 

•••The AvqJ is an average of the error ratea of all styles except shout. 

TABLE II 
SUBSTITUTION RATE (PERCENT)i 

A COMPARISON OF FIXED STRESS COMPENSATION 

Condit ion Norm Fsat Loud Noiss Soft Shout Ayg5 Avg6 

Single Model 

Multimodel 

1.2 

1.0 

4.6 

4.2 

15.2 

12.1 

12.2 

6.7 

15.4 

5.5 

79.5 

68.7 

9.7 

5.9 

21.4 

16.4 

TABLE III 

SUBSTITUTION RATE (PERCENT) i 

A COMPARISON OF MULTIMODEL FIXED STRESS COMPENSATION 

WWH HYPOIHESIS-ORIVEN STRESS COMPENSATION 

Condit ion Norm Faat Loud Noiss Soft Shout Avg5 Avg6 

Baseline HMM 1.0 6.1 29.1 19.6 13.5 86.4 13.9 25.9 

Multimodel 1.0 4.2 12.1 6.7 5.5 68.7 5.9 16.4 

Hypotheaia-Drivsn 0.9 4.7 12.7 7.0 5.7 72.4 6.2 17.2 

15 

TABLE IV 

SUBSTITUTION RATE (PERCENT)i 

AN ADVANCED HMM RECOGNIZER 

Condit ion Norm Faat Loud Noise Soft Shout Avg5 Avg6 

Without Compensation 

With Compensation 

0.4 

0.4 

1.7 

1 .7 

3.4 

3.» 

2.9 

1 .4 

4 .4 

2.4 

49.8 

45.3 

2.5 

1 .9 

10.4 

9.0 
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fig» 1« V«riitlan« of cepstral coefficient compared to 
normelly spoken word». (a) Difference of mean (style 
minus normal), (b) spectra of differences of mean, 
(c) ratio of variance (multistyle normal). 
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MULTI-STYLE TRAINING FOR ROBUST ISOLATED-WORD SPEECH RECOGNITION 

Richard P. Lippmann, Edward A. Martin, Douglas B. Paul 

Lincoln Laboratory, Massachusetts Institute of Technology 
Lexington, Massachusetts 02173-0073 

<M 

ABSTRACT 

A ne» training procedurs called multi-style 

training has bsan daveiopad to improva porformanco 

«hen a recognizer is uaad under stress or In high 

noise but cannot be trslned in these conditiona. 
Instead of speaking normally during training, 

talkers use difTerent, essily produced, talking 

styles. This technique »as tested using a speech 

data base that Included stresa speech produced 

during s workload task and when intense noise »as 

presented through earphones. A continuous- 
distribution tslker-dependent Hidden Markov Model 

(HMM) recognizer »as trained both nornelly (3 

normally spoken tokens) snd with isultl-style 

training (one token each fron normal, fast, clear, 

loud, and question-pitch talking styles). The 

average error rate under »tress and normal 

conditiona fall by more then a factor of two with 

multi-style trsining snd the average error rets 

under conditions sampled during training fell by a 
factor of four. 

INTRODUCTION 

The performance of current recognition 

systems often degrades drsmstlcslly aa a talker's 
speech cheracterist les change with time, when a 

talker is under normal levels of workload or 

psychological atreaa, and when c talker Is In a 
high noise environment. New techniques to prevent 

thia degradation have been developed and teatad 

with a number of data bases, Including s new 
Lincoln stress-speech data base. In this paper we 

first review results obtained with this speech 

deta base and then provide detailed information on 

the effects of multi-etyle training. Other papers 

in this proceedings describe discriminant analysis 
[1] and capstral strssa compensation [2] and 

present results obtained with another speech data 
baae [3]. 

Lincoln Stress-Speech Data Baee 

The Lincoln stress-speech data base includes 

words spoken with eight talking stylos (normal, 

slow, fait, soft, loud, clear enunciation, angry, 

question pitch) and under three stress conditions. 
A difficult motor-workload task [4] wee used to 

crests essy (cond50) and more difficult (cand70) 

«orklosd stress conditions thst emulste the type 
of workload stress experienced when driving a car 

or flying an airplane.  A third stress condition 

was crsstsd by presenting 83 dB SPL of speech- 
shsped noise through ssrphones. This produces the 

so-callsd Lombard effect [8] where a talker speaks 
louder snd often more clearly when In noise. This 

Is the main cauae for recognizer degradation In 

noise in situations where sn scousticslly-shie Idsd 

cioss-tslking microphone minimizee the effect of 
additive noise. The dsts baae vocabulary 

contained 33 difficult aircraft words with 

scouatically similar subsets such aa go, hello, 
oh, no, and zero. A total of 11,340 tokens were 

obtained from 9 male talkers during three sessions 

par talker spanning a four week period. 

HHM Recognizer 

The baseline continuous-distribution HMM 

recognizer described In [4] was used for all 
experiments. It is a left-to-rIght Isolated-word 

recognizer with multivarlata Gaussian distribu- 

tions and diagonal covarlancs matrices where 
observations consist of centlsecond mel-scaie 

capstral parameters. Unless otharwlss ststsd, all 

rsaulta were obtained using 10-node word models 
created ualng five training tokene per word with 

the forward-backward algorithm [3] and using the 

Vltsrbl algorithm [3] during recognition. 

RESULTS WITH LINCOLN STRESS-SPEECH DATA BASE 

Figure 1 presents an overview of reeults in 
rough chronological order obtained using s number 

of different techniques with ths Lincoln stress- 

speech data baee. The Initial error rats, 
avereged over all conditions excluding the most 

difficult angry condition, wee 17.3S. A similar 

high error rate was obtained with a new, high 
performance, commercial recognizer.  Poor perfor- 

mance for the Initial Lincoln system and ths 

commercial system wae caused by the difficult 
vocsbulsry and strsss conditions and by the fact 

thst only normally-spoken speech was used in 
training. The Initial Lincoln recognizer was the 
baseline system with variance limiting [4] which 

limits the variance estimates obtained during 

forward-backward training to be above a specified 
lower limit.  The high Initial error rate was more mor 

q. In than halved to 6.95 using multi-style training, in 
thia case, the five tokens ussd during training 

wore taken from the normal, fast, clear, laud, and 

quest ion-pitch talking styles instead of only from 
the normal styls.  Multi-style training halved t 

& 
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error  rate 

requirenenta. 

with  no  increase  in  computation 

The next large reduction in error rate (fro» 

6.95 to J.Z5) waa obtained by douhling the number 

of parameters uaed in the obaorvatlon vector. The 

original »ector of 16 cepatral parameters xaa 
supplemented with 16 additional differential 

parameters «hlch were the differencee between the 

current 16 parameters and the parameters computed 
20 ma earlier. Thia differential parameter 

technique was alao recently uaed by [6]. It 
reduces the error rate, but alao doublea the 
recognition computation requirements. The next 

large decreaae In error rate (from 3.25 to 1.65) 
waa obtained by uaing grand-variance eatlmates. 

Instead of estimating the variance of each of the 

32 observation parameters separately for each node 

of every word model, the grand variance of each 
obaervetion parameter waa . eetimatad once acroae 

all word models and all nodea during training. 
Using grand variancae reducea the degradation in 
performance caused by uaing a atatistical model 

that la too complex for the amount of training 
data. This result reinforces paat reaulta that 

demonstrate the neceaaity of matching the 

complexity of a model to the amount of training 
data [7]. Using grand variancea halved the error 

rate while aimultaneoualy decreasing rscognitlon 

computation rnquirementa. The final large 

reduction in error rate (1.65 to 1.05) waa 
obtained uaing the two-atage discriminant snalyaia 

system described in [1]. Thia ayatem focuaas 
attention on thoae parta of often confused words 
thst are moat different and reducea the error rate 

with only a slight Increaae In recognition 

computation requIrementa. The final ayatom with a 

15 error rate acrosa many stress/style conditions 

is a usable, practical, robuat rscognizsr thst 
could be ueed for a variety of speech-recognition 

taaka. 

EFFECTS OF MULTI-STYLE TRAINING 

More details on the effects of multi-styls 

training from the experiments deecrlbed above are 

preeonted In Figs. 2 to 4. Figure 2 comparea 

results with normal and multi-atyle training for 
the aix novel condltlona not sampled during 
training aa well aa for normally-apoken apeech. 

Theae are ropreeentatIve reeulta for the altuatlon 

where a recognizer cennot be trained under live 
strees conditions. The percentage error rate 

averaged over all nine talkers is presented for 
normal speech, for speech spoken slowly, for the 

saay (condSO) and the more difficult (cond70) 

workload taak, for aoft epeech, for apeech 

produced in >)ise (Lombard) and for angry speech. 

Multi-style training reducee the error rete 

substantially for all condltlona. The average 

error rate over all conditions fell by more than a 
factor of two from 20.75 to 9.85. The drop in 

error rate Is large ( " to 2.95) even for 
normally spoken words and greatest for the Lombard 

and angry conditions. 

Figure 5 shows the results when the 

recognizer was tested under the same conditions 

sampled during training.  Here, the average error 

rate over all condltlona fell by a factor of four 

from 18.45 to 4.65. It should be noted that in 

theae and other experiments, training word tokens 

were never uasd during testing. 

Further experiments were performed to 

determine whether more effective subsets of five 
styles could be found and whether fewer than five 

different styles could provide large improvements. 

These experiments suggest thst the five styles 

selected are more effective than other subsets of 

the eight styles in the st resa-apeech data base 
and that all five different styles are required 

for beat performance with multi-style trsining. 

Further experiments have also been performed to 
explore the effects of multi-atyle training with 
more advanced HMM isolated-word talker-dependent 

recognizers. We have found that multi-style 

training alwaya improves overall performance. For 
example, the error rate for an advanced recognizer 

with differential parsmeters, grand-variance 
estimates, 14 nodes, snd five training tokens, 

drops from 3.25 to 1.45 with multi-style training. 

One surprising result evident in Figs. 2 and 

3 is that the error rate dropa for normpi speech 

when the recognizer la trained on non-normal 
trsining tokens. This la caused by day-to-day 
variability in normal apeech as demonstrsted in 

Fig. 4. Figure 4 presents the error rate with 

normal and multi-atyle training for normal speech 

recorded In the first, second, and third recording 

aaaaions. As csn be seen, multi-style trsining 
end normal training produce similar results in 

aaaslon one, but multi-style training is superior 

In sessions two and three. These results 
demonetrate that multi-style training can 

compensste for variability In normal speech over 

time, and that five normal training tokens 
recorded in one session sre lees representative of 

normal tokana recorded one to three weeks later 

than five multi-atyle tokena. 

DISCUSSION 

Multi-atyle training improves performance for 

the novel stress conditions because: (1) the 

forward-backwK.d training algorithm and statisti- 
cal decoding focuses attention on spectral/ 

temporal regions that are consistent across styles 

and (2) speech ssmplea are presented during 
training that are similar to those thst occur 

during teeting. For example, loud speech is 

similar In many ways to spe.ech produced under the 

Lombard condition. The improvement In performance 
with condltlona sampled during training was 

greater than the improvement with novel untrained 

condition for thia second resson. 

A careful analysla of differences between 

word models obtained using normsl and multi-style 
training and of recognizer confusions indicated 

that improvements are caused by two main 

mechanisms. First, estimates of the mean and 
variance of the cepatral parameters used in HMM 

word models are more representative of those 

observed during testing with multi-atyle 

training. This is illustrated in Fig. 5. The 

left side of this  figure presents the difference 

m 
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betHeen multi-style and nornully trainod capstral 

laaan •atlnataa md tha right alda praaanta tha 

ratio of aultl-atyla ovar nornally trained 

capatral varlanea aatiaataa. Data ara avaragad 

ovar all talkers and all word modele. AB can ba 

seen, the lower-order cepatrai mean estimates are 

reduced with nultl-atyle training. This 

compensates for spectral tilt (presumably caused 

by narrower glottal pulses) which la characteris- 

tic af auch af tha streaa speech in the Lincoln 

data base. Variance eatinataa for lower-order 

cepatrai coefficients are alao higher with multi- 

style training. Thia waighta theaa capatral 
coefficients less heavily during recognition 

becauaa they are more variable acroas stress and 

style condltlona. 

A second nechaniaa that leada to batter 

performance with multi-style training ia that word 

models ara richer and provide a batter deacription 

of perceptually important acouatic aventa that ara 
praaant acroaa talking styles. Thia mechanism wee 
discovered by examining spectroqrsme created from 

normal and multi-style HMM word modele for thoae 

models that caused major confusions. Spectrograma 

were created by plotting the average spectrum at 

each node with duration equal to tha average node 
residency time. Tor example, Fig. 6. containa 

spectrograma genereted from HHH word modala for 

the word "breek". Tha left spectrogram waa 

generated f'rom a normally-trained word model and 

the right one waa generated from a multi-style 

model. Numbers indicete the HHN node number uaed 

to generate each apectra. In theaa and all 
experiments, the end nodea (nodes numbered 0 and 9 

in Tig. 6) are anchors that match background 
noise. The large ticka in Fig. 6 are et 100 ma 

intervals, the lower curve plot» overall energy, 

and the frequency scale extendo to roughly 6 kHz. 
As can be seen, tha multi-style word modal 

containa the optional releaae for tha final A/ 

and provides a cleerer description of formant 

transitions. Examination of many other word-model 
spectrograma showed thet multi-style ward modele 

generally contain more of the Important acoustic- 

phonetic cuee used In spectrogram reading than 

normally-trained models. 

SUMMARY 

A new training procedure ceiled multi-style 

training wee developed and teatad with a 

stress-speech data baaa. It iaprovaa performance 

subatantiaily under stress and with different 

talking stylee, and cen be ueed when e rncogn'.xer 
cannot be trained under live streaa conditions. 

It also improves performance under normal 
condltlona by compenaating for normal day-to-day 

speech variability. 
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Fig.    1.       Substitution   errors   with   Lincoln   stress- 
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TWO-STAGE DISCRIMINANT ANALYSIS FOR IMPROVED ISOLATED-WORD RECOGNITION 

Edward A. Martin, Richard P. Llppaann, Douglas B. Paul 

Lincoln Laboratory, Massachusetts Institute of Technology 
Lexington, Massachusetts 02173 

ABSTRACT 2. OVERVIEW 

This pspsr describes a tao-stsge Isolstsd 
word spaach racoqnltlon aystea that uaes s Hidden 
Markov Nodal (HHH) recoqntxer In the rirst ataqe 
and a dlaerleinant anelyela systea In the aecend 
atage. During recognition, «hen the rirat-ataga 
recognizer la unable to clearly dirferentlata 
betaeen aeouatlcally aiailsr oorde auch as "go" 
and "no" the seeond-etage diacrlainator la uaed. 
The seeond-ataga ayataa rocuaaa on thoaa psrta of 
the unknonn token vhieh are aost afreetive at 
diserialnatIng the eenfuaed aorda. The eyetea «es 
taated on a J5 «erd, 10,713 token etreee speech 
Isolstsd word data base created st Lincoln 
Laboratory. Adding the aeeond-atage dlaeriainat- 
ing ayataa produced the beat results to dete on 
this dsts bsas, reducing the overell error rets by 
acre than a factor of  tae. 

1. INTRODUCTION 

A t« 
been developed to addrees aoae of the prebleae 
generelly encountered in current Hidden Nerkev 
Nodal (HNN) leolatad aord recognition ayateas. 
Thoee problaaa ineludat (1) the affacts of Halted 
training data are net oaplicitly taken into 
account; (2) the eorraletion betaeen edjecent 
obaarvatlon fraaea la incorrectly aedeledi (3) 
duratione of aeeuatie events sre peerly aadoladi 
and (♦) featuraa which eight be lapertant in 
diacriaineting only aaong apaeific aord pairs, or 
seta of aorda, are net eesily ineorporeted into 
the systea althout degreding overell perforaenee. 
The tao-atage systea ueee nea ststisticsl 
tschnlquee that eaplicitly account for the liatted 
aaounta of training date evailable for talker- 
dependant recognition. The aecond-atage systea 
facusee its sttsntion on thoee persastsrs in ths 
aodels ahlch sra aoet affective in diaeriainating 
betaeen aorda which achieve aiailar acoree in the 
firat-ataga HNN ayataa. A aiailar tao-atage 
■yataa aae developed by Rebiner and Nilpon [9]. 
That ayataa aae developed in the contest of a 
Dynaaic Tiae Narping (OTW) rather than an HNN 
ayataa, and alao did not asplicitly take into 
»»-nunt the affaeta of Halted training data. 
Another approach to the focua-of-attention problaa 
In diacriaination la preaented in [«]. The nea 
tao-atage diacrlainant ayataa deacribad here aea 
developed ae part of a larger effort aiaad at 
reducing the sffaet» of atraea on robuat apaech 
recognition ayataaa [1,4,7,8]. 

The atructure of the tao-atage ayatea is 
ahoan in fig. 1. Each aord eodel in the firat- 
ataga HNN recognizer ie creeted uaing foraard- 
baekaard training and training tokene for that 
aord [3]. A deteiled deecription of the HNN 
recognizer ahich la uaed ie given in [A,7,8]. The 
recognizer ueee a continuoua-diatrlbution epesker- 
dependent 10-nade HHH eodel aith 1« cepetral 
eoeffieientc thet are eeeuaed to be Jointly 
Geuesisn and independent. The HNN aedel la 
trained ueing five tokene per aord aith 
eultl-etyle training [A,7] and varience Halting 
[7,8]. 

The aecond-atage diacriainent aystea 
esleulstss atstistles, on the eepetrel pereaetera 
and on aal.cted additional pereaetere (aae beloa), 
for eeeh aerd aedel, voeebulery aord, and node by 
decoding trelning tokene of all aorda uaing the 
Vlterbl algorltha aith HNN aerd aodele for all 
aorda. This "eross-aord training* providss 
■ddltionel ststisticsl inforaation ahich is not 
availabls in etenderd HNN trelning, where eech 
aord aodel ie t reined only on eeaplee of thet 
aord. During recognition, dieeriainent decieione 
ere baeed en likelihood-retlo coaperieone aaong 
all aerd pslrs in the top N words froa the HNN 
ayatea. The coaperieone eeeuao thet dieeriainent 
«tatiatics are Jointly Ceueeien end independent. 
In addition, e nea teehnique celled "sifting" ia 
applied, ahlch ueee e etetietlcel •T" teet to 
feeue attention only on dieeriainent atatietice 
thet aero Judged froa the training data to be 
atatietieelly different, for epeeific aord peirs. 

Ths discriainsnt ayatea aae teeted ueing the 
Lincoln Leberetory atreee-epeech deta beee [A,8]. 
Thle ineludee 10,710 aorde froa nine teikera 
producing 35 seoueticelly-eiailer aircraft aorda 
apokan noraally, under workload streea, in noiae 
preeented over eerphonee, and aith aeven different 
talking stylee. 

3. OISCRININANT TRAINING 

Figure /. lluetretee the flea of deta for the 
dieeriainent trelning proceee. During trelning, 
all tokene of ell trsininq words were decoded by 
all of the firat atage HNN word eodela. Each 
decode reeulted in a aegaentetion. Froa thia 
procedure a atatiatieal deecription w^a obtained 
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characterizing the distribution of obiervations 

thit «are ■■■ignad to aach node of each word 
model, givan a specific input word. Each 
estimated distribution «aa modeled aa Gauaslan. 

This information waa then atored as two four- 
dimensional srraysi s mean and variance array 

indexed by word model, input word, node within the 

model, end parameter. Given a token segmented by 

a word model, these statiatica were then available 

to be used, during recognition, to cslculat.^ a 

likelihood-ratio between any two hypothesized 

input worda. 

4. DISCRIMINANT RECOGNITION 

During recognition, unknown tokens were first 

passed through the HHM systea. Likelihood scores 
froa the Viterbl algorithm ware calculated for 

each word model. In caaea where acorea for two 

models, ssy for words A sod B, ware clearly batter 
than all other models yst ware very similar to 

each other, the second stsgs systea waa uaed. 

During the HHH paas, ssgaantation by each word 
model assigned esch input observation to a 

specific node In that model. Par-node observa- 

tions warr; uaed with the diacrlainant training 
atstlstics to separately calculate the likelihood- 

ratio between the inputa being A and B given the 

segmentation froa both ths A snd B word aodsla. 

An effort wea made to aaparata ths scoring 

bssed on durstlon Inforastion froa other aapacta 
of the scoring. To impleaent thia, likelihood- 

ratio scores for sny input token were calculated 

on s par-node basis rather than on a 
par-oboervation baais. This waa achieved by first 

calculating the likelihood-ratio baaed on all 

obaarvationa in a node, than noraalizing thia 
acore by tha nuabar of obaarvationa aaaignad to 
that node. The advantage of thia achaaa wea 

two-folds first, it reduced the weighting of 
certain nodes which might doainate in the final 

score becaueo of the large nuaber of observation^ 

aasigned to thoss nodes, snd secondly, it 
eliminated the assuaption made with 

per-obaervatIon scoring thst sll obsarvetione are 

'otatletically Independent. On the contiary, thia 
"par-node" echeae sssuasd s very stronj corrsla- 

tion between obeervationa assigned to the ssae 

node. 

It should be obssrved thst this per-node 

scoring technique reaovee durstion Inforastion 
from the scoring. This waa desirsble since It 

ensbled the durstion inforastion to then be 

explicitly modeled and Included ss s separate 
feature into the scoring mechsnisa. To fscllitste 

this, two more arrays were genereted during the 

discriminant trslning procedure deecribed above. 
A mean and variance array were generated modeling 

the number of observations assigned to each node 

by a word model ven each input word. This 

Information was stored as two three-dimensions 1 

arrays indexed by word model, node in the model, 

and input word. 

5. EXPERIMENTS 

Since two likelihood-ratio scores were 

calculated for each pair-wise discriminstion, 

corresponding to the segmentation arising froa the 

psir of word models, a scheme had to be devised to 
account for poesible disagreement from these two 

scores. For Initial experiments it was decided 
thst If discriainsnt scores diasgreed, the 

decision would simply be deferred back to the 

original scorss froa the HHH eystem. 

A decision slso had to be made on criteria 

for deciding when the second-etsge should be used, 
snd how msny of ths top csndidsts words should be 

considered. To simplify initial experiments a 

hard threahold wai eetsbllshed on the difference 

between the top two HHH word scores. If the 
difference between the two leeding scores exceeded 

the threahold, the second stsgs wss not used. It 
wss later found that results were relatively 

insensitive to changea In this threshold. 

Diacrlainationa were Halted initially to consider 

only tha top two candidate words. 

The HHH systsa selected ss the first stage 
wss st tha tiae, the beet system tested on the 

Lincoln database, schisving sn error rate of 

7.7S. A aers detailed deecription of this system 

ia included in [4] and [7]. 

5.1  Eatiaated Variance 

Tha first experiment with the two-stage 

systsa used all tha capstrsl parameters, as well 
ss ths durstion snd snsrgy psrsaetsrs, in the 

second-stage discriminator. Performance of this 

systsa waa aadiocra. The overall error rate fell 
froa 7.7» with tha basic HHM systsa to 7.4S with 

ths two-stsga ayatea. It waa suspected thst psrt 

of ths rssson for the dissppointing performsnce 
might be thst only s subsst of the parameters 

contributed positively to discrimi-ation. To 

invsntlgats the effectiveness of individual 
parameters aa discriminstors another experiment 

wss psrformed which used only e single parameter 

in sll second etsgs discriminstions. This 
experiment waa repeated for each available 

paraaatar. Theee included the sixteen cepstrsl 

cosfficlsnts froa the HHM system, a relative 
energy messureaent and a node duration 

maasursaent. Results using only the two best 

parameters (duration and relative energy), each 
Indlviduslly, showed improvements over the 

previous experiment, where all parameters were 

ln;luded In the discrirainetion. .In partial 
explsnstion of this result, it should be noted 

that when a very complex model is made for a 

system snd very Halted trslning dsta is available 

to charscterize it, statistical noise from poor 

estimation can degrade performance. In the above 

experiment, the model was simplified to better 
match the amount of training data available. Less 

statistical noise was then introduced to the 

scoring, and becauae of this, overall system 

performance improved. The 'jverall error rate 

dropped from 7.4S to 7.Q5 uatng only a single 

parameter (the durstion parameter) in the second 

stsgs. 
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5.2 Grand V»rlance 

The naxt experiaent ittanptsd to «xtsnd this 

concept. Ineteed of using the large variance 

array generated during training for the obaerve- 

tion paraaaters, grand variance eatlnatea «ere 

used [4,7]. The grand variance is a variance 

estimate for a single cepstral coefficient 
parameter sampled over all word models, nodes, and 

Input words. By Including grand variance 

estimates, the second-stage model was simplified 
and the number of samples uaed to characterize 

each variance eatlnate wea greatly Increaaad. The 

error rate dropped with this schema from 7.0% to 

6.3S with the single beat parameter (the duretlon 

parameter). Uaing grand variance eatlmatea, the 

second-etage system waa modified to once again 
include all cepstral parameters in the 

discrimination. This change reeulted in the error 

rate dropping from 6.3S to 4.6S. This -reeult 

suggests that the poor performance found with the 

original second-stage system waa due to poor 

variance eatlmatea based on a vary small number of 
samples. 

5.3 Sifting 

When an unknown token is compared to two word 

models of acoustically similar words, thoae parta 
of the models which correepond to Identical 

acouatlc evente ehould make no contribution to a 

discrimination between the modele. However, when 
limited training data la available to characterize 

these models, there will be slight differences In 

the eatlmated models for identical acouatlc 
events. These differences can have an accumuleted 

effect large enough to overwhelm the more 

important differences in the modele which 
correapond to different acouatlc evente. The 

statistical T-teat provides a technique for 

eetimeting the probability that two estlmeted 

distributions heve identical underlying maena 

[2]. A technique beeed an the T-teat, which will 

be called "sifting," wee used in the second stsge 

to eliminete parameters from discrimination when 

the training data did not indicate significant 

differences in the underlying dietrlbutlona of 
those paraaatera [5]. 'he effect of this procaaa 

is to focus the dlecriainatIon on thoae paraaatera 

and nodee which correapond to the acoustical 
differencea in the two models. Appllcttion of 
this technique reeulted in a slight decrease in 

error rete from 4.65 to 4.55. But more signifi- 
cant than the reduction in error rate achieved waa 

the decreeee in computation provided by the 

sifting technique. Approximately 505 of all 

parameters were excluded from the discriaination 
in thia axperiment, thue decreesing coaputation by 

a factor of two. Figure 3 illustrates the effect 
of sifting by indiceting which peremeters for a 

specific word pair are included in discrimination. 

5.4 Added Teaturea 

This technique of sifting parameters enables 
features to be added to the system, which might 

only address a few specific confusions. These 

features can be added without dngrading 
recognition for inputs where the features are not 

useful, since for thoae cssee the sifting process 

should eliminate them from the scoring. To 

llluutrata thla, a new sat of paraaatera wee 

Included In the diacrimlnant scoring. These 

paraaetere were choeen to «eke uae of longer term 
spectral changea In the speech signal. The mean 

value of all cepatral parameters were calculated 

for each node. The differences in these mean 

valuea between adjacent nodes were then included 

in the aet of feetures uaed for diacr iminat icn. 

This effectively doubled the number of parameters 
uaed In the discriminant system from 18 to 35. 

Thla aet of paraaatera waa used along with 

T-teetinq, In another recognition experiment. 

Again, T-taating eliminated approximately half of 

the paraaaters from the scoring; and the error 

rate waa slightly reduced from 4.55 to 4.45. 

5 .5  Top Three Candldatee 

A flna.. experiment which was performed 

Included diecrlmlnatIon on the top three 

cendldatea i« oppoaad to the top two ae in 
previous experiments. The decision scheme waa 

modified to account for this chsnge and to lessen 

the incidence of the aecond-etage deferring back 
to the original HMM scores. This experiment 

reeulted in the beet performance at the time with 

the two-atage ayataa reducing the error rete to 

3.55. A detailed look at the laproveaants this 
syatea showed over the HHH system alone is 

presented in Fig. 4. The discriminant system 

provided Improved performance for all at the 

varloua apeaklng atylea and stress conditions. 

5.6  Teeta with Advanced HMM Syatem 

After the aarlea of experiments deecribed 
above, an advanced first-stagr HHH system [7] 

becaaa available which produced an average error 

rete of 1.65 on the Lincoln etreee speech data- 
base. Application of the beet second-stags 

discriminator (ss in Section 5.3) to this more 

advanced HHH systsm reduced the average error rate 
from 1.65 to 1.05 (see [4]). 

5 . 7  Otsciieslon of Confusion Ststietiea 

Many of the arrora froa the first-stage 

syatea were s result of confuaiona between similar 

sounding words such aa "eighty" and "eight," "fix" 

and 'six,' and 'white' and "wide". Presumably 

these errora were attributable to the probleme 

discuaaed earlier in thie paper. Although some of 
these confuaiona paraiated after implementing the 

aacond-staga syatea, most were elimineted, and the 
remaining errora ware mostly scattered across msny 

word palra. 

6. SUMMARY 

A new two-stage recognition syst.*:« haa been 

developed which substantially reduces overall 

error rates and aaeists a recognition system in 

discriminating among scousticaiiy similar words 
without compromising performance for the remainder 

of a vocabulary. Key characteristics of the 

syatem are thet it specifically addresses problems 
csusad by limited training data, and poor duration 
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nodsls. The syatea also applies a atat latIcally- 
bassd "sifting" tachnique tp focua Ita attention 

on paraaatara which «oat effectively bring out 

difference» In the Horda being dlacrlalnatad. 
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ABSTRACT 

This paper documents the DARPA 
Resource Management (RM> Task Domain 
speech data base, which is intended to be 
used in the evaluation of speech recogni- 
tion systems that may incorporate a 
higher-level language model. The prompts, 
contributed by BBÄN, were taken from a 
specific sub-language model. In addition 
to full sentence utterances, "spell mode" 
word spellings were recorded. For use 
primarily with speaker-independent recog- 
nizers, 57 utterances were recorded from 
each of 160 speakers; a speaker-dependent 
set of data is provided by recordings of 
1012 utterances from each of 12 speakers. 
The speakers were selected, with the help 
of SRI, from among the 630 speakers re- 
corded previously in the pan-dialectal 
TIMIT Acoustic-Phonetic data base. 
Recording formats and facilities were the 
same, with the exception of an improvement 
in suppression of background noise. 

1. INTRODUCTION AND BACKGROUND 

The RM task domain data base was 
designed during 1986, in collaboration 
with NBS, CMU, BBÄN. and SRI. Both 
speaker independent and speaker dependent 
phases were segmented into training, de- 
velopment test, and evaluation test 
recordings. Digital tapes of the 
recordings were shipped to the National 
Bureau of standards (NBS), for further 
distribution to users, during the course 
of the data base collection. 

The original plan was to give the 
speaker independent recordings priority, 
substantially completing them before 
starting on the speaker dependent 
recordings. Recording of the speaker 
independent part began on 10/16/86; its 
training phase was completed 11/20/86 and 
its development test phase ffas approaching 
completion in early December when the 
decision was made to deliver speaker 
dependent data and speaker independent 
data to users at about the same rates. 
Speaker dependent recording began on 
12/10/86 and was given priority.  Speaker 

independent development test data 
recording was finished on 12/17/86. 
training and development test sentence 
recordings for the first four of the 
twelve speaker dependent recordings were 
completed on 2/10/87; final completion 
date of all recording was 3/25/87 for 
speaker independent data and 3/26/87 for 
speaker dependent. 

The purpose of the task domain data 
base is to provide speech data limited by 
a languige model. The language model, 
developed at BB&N, covers utterances 
appropriate for a specific naval resource 
management task. TI received 2835 
sentences generated from this model as a 
pool from which to draw prompts. A subset 
of 600 of these sentences had been hand 
picked at BBftN as training sentences; in 
the following explanations these may be 
referred to as the PJSENT1 sentences. The 
other 2235 RM sentences are the PJSENT2 
sentences. Ten sentences from the same 
language model were selected at SRI as 
peculiarly appropriate for rapid phonetic 
adaptation. At TI these sentences were 
formatted to normal orthographic standards 
and used as prompts. 600 words from the 
vocabulary of the language model were 
selected and made into prompts for 
"spell-mode" readings. Subjects also 
re-read the two SRI "dialect" sentences 
that were used to calibrate dialect usage. 

Subjects were recruited from the 
sample of 630 who had given speech earlier 
for the TIMIT Acoustic-Phonetic data base. 
Selection was guided by an analysis of the 
subj ects' observed phonetic 
characteristics, made at SRI. 160 
subjects were used in the speaker 
independent phase and 12 subjects in the 
speaker dependent phase. 

2. STRUCTURE 

The macrostructure of the data base 
is exhibited in the two figures below, 
Figure 1 for the speaker independent phase 
and figure 2 for speaker dependent. 
Subjects are arrayed vertically and 
utterances or sentence productions 
horizontally. 
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Figure 1.   Speaker Independent Task Domain Data Base Layout 
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Figure 2.   Speaker Dependent Task Domain Data Base Layout 

Sentence I.D. 

SR001 - SR600 
ST0001- ST2235 
SA1 - SA2 
SP001 - SP600 

Significance 

600 training RU sentences i, -a PJSENTS1 
2235 other RM sentences from PJSENTS2 

2 SRI dialect sentences 
600 Spell-mode word sentences 

Table 1. Sentence I.D. Key. 
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In the speaker independent training 

phase, each of 80 speakers read 40 RU 
sentences, 2 SRI dialect sentences, and 15 
spell-mode words. In all, 1600 distinct 
RM sentences (sentence types as opposed to 
tokens) were available in this part, 
resulting in each sentence type having two 
tokens, being read by two subjects. The 
distribution of sentences to speakers was 
arbitrary, with the exception that no 
sentence was read twice by the same 
subject. Both SRI dialect sentences were 
read by each subject. Each speaker read 
15 spell-mode words, yielding (80x15) 1200 
productions, which were covered by a 
selection of 300 words. Each spell-mode 
word was thus read by 4 speakers. 

The speaker independent development 
and evaluation test sets have identical 
form factors. In each, 40 speakers each 
read 30 RU sentences, the 10 rapid 
phonetic adaptation sentences, the 2 SRI 
dialect sentences, and 15 spell-mode 
words. 600 RU sentence types were 
randomly selected for each test and 
assigned to the 1200 available 
productions, as in the training phase. 
Similarly, 150 spell-mode words were 
selected and assigned to the 600 available 
spell-mode productions. 

For speaker dependent training, each 
of the 12 subjects read each of the 600 
PJSENT1 RU sentences, the 2 SRI dialect 
sentences, the 10 rapid phonetic 
adaptation sentences, and a selection of 
100 spell-mode words. The 1200 spell-mode 
word readings thus produced were covered 
by a selection of 300 word types, 
resulting in four productions per word. 

In the speaker dependent development 
and evaluation test sets, each of the same 
12 speakers read a selection of 100 RU 
sentences and 50 spell-mode words. Two 
random selections of 600 RU sentences were 
made from the PJSENT2 sentences, one for 
the development test and one for the 
evaluation test. Distributing these over 
the (12x100) 1200 productions available in 
each gives 2 utterances per sentence. 
Simarly, two random selections of 150 
words each were made from the pool of 600 
spell-mode words,  for development  and 
evaluation tests. Distributing these over 
(12x50) 600 readings available yields 4 
subject productions for each word. 

3. SENTENCE IDENTIFICATION 

Each sentence that was read has an 
identifying name. This sentence i.d. 
appears as a sub-field in the name of 
speech files holding recordings of the 
associated sentence. Table i is a key 
showing the significance of the different 
sentence i.d.'s. 

4. LEXICON 

In order to have a uniform and 
repeatable scoring, there is a need to 
specify each of the RU sentences in terms 
of a string of recognition units from a 
standard lexicon. It seems best to derive 
these representations from the prompts 
actually used in the collection of the 
data base instead of some other phase of 
the language model, since they axe the 
most sure representation of what was 
probably said. 

Dave Pallett (of NBS), who is 
organizing the scoring procedures, after 
soliciting and considering the opinions of 
interested parties, issued a memo giving 
rules for converting our prompts from 
normal orthography into strings of these 
lexical units. We call such 
representations SNOR's, for standard 
Normalized Orthographic Representations. 
In this kind of representation, the 
lexical units (or "words") are strings of 
non-blank characters separated by a blank. 
We wrote a set of lexicalizing rules in a 
quasi-linguistic format implementing 
Dave's rules but making explicit choices 
where there was some vagueness in his 
formulation. These rules are presented 
below as Figure 3. 

of  the  rules   is 
In the symbol-defining 
variables axe    defined 
specified strings of 
used in the later 
In the rule-defining 

The  format 
straightforward, 
section,  certain 
that  range over 
characters, and are 
definition of rules. 
section, a list of rules for transforming 
character strings is given, of the form: 

[Al ~> CB] / CC] CD]; "comments" 

The algorithm for rule application is 
simple. The rules apply to map an input 
buffer of characters into an output buffer 
of characters; the input, left 
environment, and right environment fields 
of each rule match to the input buffer, 
and if the rule applies, the output field 
of the rule is added to the output buffer. 
A cursor is initiated to point to the 
first character in the input buffer; at 
each cycle, the list of rules is searched 
from top down until either a rule is found 
that applies of the end of the list of 
rules is reached. If a rule is found that 
applies, the output of the rule is added 
to the output buffer and the input buffer 
cursor is advanced beyond the part of the 
input buffer that was matched by the input 
field of the rule. If no rule applies, 
the single character that the input buffer 
cursor points to is copied into the output 
buffer and the input buffer cursor is 
advanced by one. 

. 
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# = 
■CAN+> 

C FILE TTPSN0R2.RLS 
C SET OF RULES TO CONVERT T.I. PROMPT SENTENCES INTO 
C STANDARD NORMALIZED ORTHOGRAPHIC REPRESENTATION (SNOR) FORMAT. 
* INPUT : PCODEFILE=UD: [SPEECH.PH]CPASCII.DAT 
* OUTPUT: PCODEFILE=UD:[SPEECH.PH]CPASCII.DAT 
C RULE FAILURE ACTION = 'PASS' 
«     ***** SYMBOL SECTION BEGINS HERE ***** 

i/t    tit    i i tft / t \ t 11 . >/t .tfntH/tnt 

_    t    tit    tit    t i fft / t \t j t . t j t ,t j t ^t 

SANUM =  'T'/'N'/'R'/'S'/'H'/'D'/'L'/'F'/'C'/'M'/'G'/'P'/'W'/ 
+       'B'/'V'/'K'/'X'/'J'/'Q'/'Z'/'E'/'A'/'O'/'I'/'U'/'YV 
+       'iV'2'/'3'/'4'/'5'/'6'/'7'/'8'/'9'/'0'/'ZERO' 
* ***** RULE SECTION BEGINS HERE ***** 
* RULE FORMAT B 
[S'] => [S+S3 /   [#] ; weird possessive plural formation rule 
['] => W ; "apostrophes become pluses" (for exception see TTPSNOR1.RLS) 

"abbreviations become single words, no end-of-sentence 
punctuation" 
"no end-of-sentence punctuation" 
delete multiple blanks 
delete multiple blanks 

[.] => G 

[?] => G ; 
[ ] => [ ] 

] => [ ] [ 
C special hyphenated idioms: 

[ ] => [-] / ' 
=>   [-] 
=>   [-] 
=>   [-]   / 
=>   [-3  / 

[-] 
[-] 
[-] 
[-] 

=> 
=> 
=> 
=> 

[#DIEGO] 
[#H0NG] 
[#ICE] 
[»LAH  " 
[#NEW] " 
[#NEW: ' 
[#PAC] 
[#SAN] 
[#SAN] 

[GARCIA] 
~[K0NG] 
'[NINE] 
[LONG] 
[YORK] 
[ZEALAND] 
[ALERT] 
[DIEGO] 
[FRAN] 

C correct spelling of~ü in some alphanumeric strings: 
[ZERO] => [0] / t-] _ 

C supply weird spellings for some acronyms 
[CROVEL] => [CROVL] / [#] 
[PACK] => [PAC]    / [#] "~" 
[TACKIN] => [TACAN] / [#] "~ 
CTASSEM] => [TASM]  / [#] 

[LANT] 
[PACK] 

C alphanumeric strings spellecf without hyphens: 
[-] => [] / [■CAN+>$ANUM]   [$ANUM<AN+>] 
[-] => [] / [.]    [$ANUMTSN+>] ; "D.D.D.-2-4-3" 

C NOTE: THE RIGHfENVIRONMENT IS NEEDED IN THE ABOVE RULE TO PREVENT 
C IT FROM APPLYING TO. FOR INSTANCE, "S.Q.Q.-23", WHICH SHOULD BE "S(lQ-23" 
C NOT "SCl(i23". 

Figure 3. Major Rules for Lexicalizing Prompts. 

[-FLEET] => [FLT] / 
[-FLEET] => [FLT] / 

The rules shown in Figure 3 are 
preceded by passes of rules, not shown, 
which capitalize all letters, delete the 
apostrophe in such abbreviated dates as 
"'87", and convert numeral strings -• o 
English words. 

In brief, the rules: 1. eliminate 
punctuation; 2, convert letters to all 
capitals; 3. replace apostrophe with "+"; 
4. combine certain "words" into single 
lexemes, using hyphens; 5. split up 
certain alphanumeric strings by inserting 
blanks. 

TI has run a program to apply these 
rules to all prompts used in this data 
base and can supply the resulting SNOR 
strings and an alphabetical listing of the 
SNOR lexicon of these sentences to any 
interested parties. 

i 

:■-; 
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5. RECORDING CONDITIONS 

Recording conditions were nearly the 
same as has been reported at earlier DARPA 
workshops; in brief: subjects were seated 
in a sound-isolated recording booth; the 
director placed a Sennheiser SN 414 
headset microphone on the subject and, 
using a template, positioned a B&K 
pressure microphone about 30 centimeters 
away from the subject's mouth, 20 degrees 
to the left; the subject was instructed to 
read the prompts appearing on a CRT screen 
in a "natural" voice; and speech was 
digitized directly onto disk at 20 ksps 
per channel. The automatic recording 
software system STEROIDS was used. Each 
recording was listened to by both the 
recording director and the subject to 
check for errors. 

Before this data base recording 
began, the sound booth was retrofitted 
with a steel I-beam subfloor and air 
spring suspension system which reduced 
low-frequency <<100 Hz.) noise by about 
20-25 dB. 

The raw recordings were split into 
separate files for each channel, filtered, 
and down-sampled to 16 ksps as before and 
these versions of the speech were sent 
along with the original 20 ksps 2-channel 
files to NBS. 

6. ERRATA 

After a large amount of speech had 
been sent to NBS, they discovered that 
some recordings apparently had final words 
clipped off; this problem was called the 
"zero-tail" problem. Some investigation 
determined that the original recording was 
all right and that the problem was caused 
by a bug in general speech file software 
that was introduced with a program change 
in October. It was a "magic number" 
problem; only about 2% of the recordings 
made with the buggy software were 
affected. Recordings that had not been 
yet shipped by the time the bug was fixed 
were corrected before shipping. The 
recordings that had already been shipped 
were handled in a different manner: two 
"errata" tapes have been prepared, which 
contain corrected versions of 
already-shipped files that were found to 
have zero tails. These errata tapes are 
delivered with the data base, clearly 
marked, and users should make sure that 
the files on the errata tapes are used in 
place of the corresponding files with 
matching name. 
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An Architecture for Multiple Knowledge Sources 

by James K. Baker 
Dragon Systems, Inc. 

90 Bridge St. 
Newton, MA 02158 

(617) 965-5200 

Introduction 

To achieve high performance continuous speech 
recognition, we need to bring to bear a wide variety of 
sources of knowledge. To achieve real-time continuous 
speech recognition, we must implement these knowledge 
sources working cooperatively in a very high speed 
computing environment, probably with many processors 
running in parallel. This paper discusses one approach to 
achieving these goals at a reasonable cost in the 
environment of a single workstation. It is furthermore a 
prime goal of Dragon Systems' project to provide an 
environment in which knowledge sources of many 
different types may be implemented. 

The architecture, as seen by the knowledge source 
software, should be capable of mixing stochastic knowledge 
sources with deterministic knowledge sources. It should be 
capable of combining rule-based knowledge representations 
with pattern-matching based knowledge. It should provide 
for. both parametric and non-parametric statistical 
procedures. Finally, it should facilitate the independent 
development of separate knowledge sources, possibly at 
remote sites. 

Of course. Dragon Systems is not alone in working 
towards these overall goals. It is not claimed that we are 
anywhere close to a complete solution to the problem of 
many different knowledge sources cooperating in a real- 
time environment. Rather, the opposite is more nearly 
true—research on different knowledge sources cooperating 
in a real-time environment is likely to be of value 
specifically because of the current fragmentary state of our 
knowledge. Getting different kinds of knowledge sources 
to work together is still very much an exploratory activity. 
In this light, the current project is not trying to find an 
optimal multi-procesor, multi-knowledge source 
architecture, but merely an adequate one. 

An important objective of this project is to develop 
techniques which apply not only to a substantial variety of 
the algorithms that we know today, but also to the 
algorithms that we might invent in the future. Therefore, 
both the hardware architecture and the software 
architecture must be general purpose, not tailored to a 
particular class of algorithm. 

Hardware Architecture 

The software architecture, discussed in more detail 
below, is specifically designed to be compatible with many 

of the existing parallel processor architectures. To meet 
the goal of fitting in a single workstation at moderate cost, 
however, the architecture shown in figure I has been 
chosen. The general framework is a simple tree: the host 
processor in the workstation itself with several clusters of 
processors, with each cluster implemented on one or two 
boards that plug into the peripheral bus of the workstation. 
Each cluster has a local system bus with a memory that is 
shared by the host and all the processors in the cluster. 
Each processor in the cluster also has a substantial amount 
of local memory of its own. The 'knowledge' of the 
individual knowledge sources is stored in these local 
memories. 

This architecture is not intended as a great 
innovation, similar architectures have been done before. 
Rather, it is a simple and reliable means of fitting a large 
amount of general purpose computation in a small space. 
With the multi-processor board that Dragon has designed, 
it is possible to fit up to 7 general purpose 2 MIP 
processors in a single slot of a personal computer. Over 50 
MIPS could be available in a workstation. Even more 
computational power is feasible with more specialized 
processon. 

In any multi-processor, multi-knowledge-source 
architecture a prime consideration is the communication 
between the knowledge sources and the communication 
between the processon. As will be discussed later, the 
software architecture that Dragon has adopted provides for 
a flexible, but very structured and controlled 
communication between the knowledge sources. The 
principal strategy which is used to reduce the amount of 
communication between processon, is to have each 
processor have sufficient processing power and a sufficient 
amount of local memory to implement one or more 
complete knowledge sources. 

Choosing an architecture in which knowledge sources 
and processon are somewhat loosely coupled leads to 
different issues and different research questions than a 
more tightly coupled architecture. Thus code vectorization 
or convening scalar code to parallel code, which might be 
critical in a tightly coupled architecture, are insignificant 
in this architecture. On the other hand, partitioning the 
knowledge into separate local memories, which is 
unnecessary in an architecture in which every processor 
has immediate or near-immediate access to every memory 
location, is a critical issue in this hierarchical architecture. 
However, since it is a prime concern of this research 
project to study how knowledge sources of different r-nes 
can work together, it is entirely appropriate to choose a 
hardware architecture in which the most important 
implementation issues occur at a similar level to the 
important issues in the functional architecture. 

no 
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Note also that with each knowledge source located on 
a single general purpose processor, it is practical to do 
much of the development work for a knowledge source 
independently in a stand-alone environment, and still 
easily link the knowledge source into the rest of the 
system. 

The specific implementation that Dragon Systems has 
designed uses up to scv . 80286 processors on a mother- 
daughter board combination in a single slot in a high-end 
MS-DOS personal computer. There is 876K of local 
memory for each processor and also 64K. of memory 
shared by all processors on the board and also by the host 
processor in the personal computer. The local system bus 
is essentially a standard Multibus restricted to the local 
board. Dragon's multi-processor board and its interface to 
the host CPU is described in much greater detail in the 
sep&rate document "Multi-Processor Board.' 

Code written for this design should be upward 
portable to a design using 80386 processors with no 
recoding at all. It should be portable to workstations using 
other peripheral buses (Multibus, VME-bus or Unibus) and 
other operating systems (UNIX or VMS) with only 
moderate redesign and recoding. All of the knowledge 
source code, in particular, runs independently (within the 
specifications of the software architecture) on a single 
processor. An individual knowledge source is implemented 
independently of the higher-level hardware structure. 

Since MS-DOS is not multi-tasking and not re- 
entrant, we have implemented a multi-tasking monitor to 
handle the low-level communication and synchronization 
between the processors and to simulate multi-processon on 
a single processor. Detailed specifications for these 
routines are available, but they will not be discussed 
further in this paper. 

It also should be pointed out that although the multi- 
processor design has been completed, only a one-processor 
prototype has been constructed so far. Also, the 
benchmark software development has been done in a 
personal computer environment with limited memory, so 
even though the software architecture is intended for a 
multi-processor, multi-tasking environment, the current 
implementation runs non-real-time on a single processor 
without simulating the low-level communication details. 

Software Architecture 

The overall architecture of the multi-knowledge 
source system requires ?■ <*!••; distinction between the 
concepts 0/ 'knowledge* and of 'data.' 'Knowledge' 
should be thcusht of as permanent ^formation, such as 
properties of speech or facts of linguistics. 'Data* is the 
information that has been computed about a particular 
utterance. 'Data' is passed around among the knowledge 
sources and is used in the recognition process, but unless it 
is converted to 'knowledge,' it is not permanently stored. 
'Knowledge,' on the other hand, is not shared. All 
knowledge is local to a particular knowledge source. 

It is important to notice that these definitions are not 
merely definitions to distinguish the two kinds of 
information. Splitting all information into these two 
categories deliberately imposes very significant limitations 
on the overall system. "Knowledge" cannot be shared 
among knowledge sources; "data* cannot be saved 
permanently. Although seme exceptions are allowed for 
efficiency, the distinction between 'knowledge" and "data" 
is deliberately enforced to enhance the modularity of the 
knowledge sources. 

For example, if two different knowledge sources 
both need models for the "expected" formant frequencies 
of each steady-state vowel (say one that is recognizing 
consonants from the formant transistions in adjacent 
vowels, and one that is recognizing the vowels themselves), 
then they should each have their own local copy of that 
knowledge. They can share the "data" about the formant 
frequencies estimated during a particular utterance, but 
they must each have their own local copy of the permanent 
"knowledge." If they each have their own local models, 
each knowledge source would still work if the other 
knowledge source were replaced by another knowledge 
source that used a completely different modeling method. 

A knowledge source cannot directly call a function in 
another knowledge source. All communication is done by 
posting data on the 'bulletin board.' The system enforces 
a very strong degree of modularity on the knowledge 
sources. 

In these restrictions, however, training is logically 
separated from recognition. Training, if necessary, can 
run offline using data that has temporarily been saved to 
files. Related knowledge sources that might be executing 
on separate processors at recognition time can be put on a 
single processor and can make direct calls to functions in 
other knowledge source modules. This mechanism should 
be used sparingly and not abused, but it is open-ended 
enough to allow any training algorithm implementation that 
is consistent with good structured program practice-. 
Training does not have to follow the stricter discipline that 
is necessary for real-time computation on parallel 
processors. 

How to do global training in a system that has many 
different kinds of knowledge sources is a very complex 
and intriguing question. In particular, it is an open 
research question as to how to combine knowledge sources 
that use fully automatic training with knowledge sources in 
which the training process involves interaction with a 
human expert. However, our investigations are still at a 
very preliminary stage. So, even though dicussion of this 
issue would be very welcome, it is not covered in this 
paper. 

The discusion will now focus, therefore, on the 
loading of knowledge and the communication of data at 
recogaition time. Five functions are specified for the 
communication of knowledge and data: three entry points 
that the knowledge source provides to the system (ks_load, 
ks^call, ks_unload, where 'ks" would be replaced by a 
unique character string identifying the particular 
knowledge source) and two system functions 
(load_get_knowledge and post_get_data) that the 
knowledge source calls to get the actual knowledge or data. 

The parameters and calling specifications for these 
functions is given in the Appendix. 

From the point of view of an individual knowledge 
source, activity is divided into three pans: I) loading and 
initializing the knowledge source, 2) the actual processing 
of utterances, and 3) cleaning up, freeing memory and 
unloading. Loading and unloading are mainly used in 
experiments in which not all of the knowledge will fit in 
available memory. In the multi-processor configuration, 
with a sufficient number of processors, ail knowledge 
sources will be loaded at system initialization and would 
not need to be unloaded. The discussion, therefore will 
focus on ks_call and the processing of utterances to be 
recognized. 

ft 

m 

in 

m 

wmmmmmmmmmmmmmmmmmmmm tfM 



jT^^w^r^TTTOTTTTT^TTTf^^ 

When a knowledge source is called, the only input 
parameter is "time." The parameter "p_post_Iist" is a 
pointer that the knowledge source sets to point to the first 
item in a iist of items to be pc.ited on the bulletin board, 
and "p_done_time" is an output value that the knowledge 
source sets to tell the system that it is finished up through 
the indicated time. The central data structure is called a 
"bulletin board" rather than a "blackboard," because 
previously posted items cannot be modified. 

The knowledge source gets its actual input data by 
calling the function "post_get_data." This "input data on 
demand," lets an individual knowledge source request only 
the data that it needs rather than all the data the system 
has available, reducing the inter-processor communication. 
The system keeps track of the data sources that provide 
input to a given knowledge source. The system does not 
issue the "ks_cair for a particular value of "time" until all 
the input data is ready. Thus the knowledge source knows 
that it can call "post_get_data" for any of its input data 
sources for any time up to and including the current value 
of "time." 

It is immediately apparent that this manner of calling 
the knowledge sources imposes a timewise "left-to-right" 
order on the processing of each utterance. This is one of 
the compromises that has been made to keep the system as 
simple as possible in some ways in order to make it as 
flexible and general as possible in others. Note that, since 
"p_done_time" may lag behind "time," each knowledge 
source may internally create a look-ahead buffer of 
arbitrary duration. Although there are some potential 
knowledge sources which might be very inefficient given 
this constraint of timewise processing, it is a reasonable 
constraint for a real-time system. The main limitation 
imposed by this processing method is in the possible 
implementations of syntax control, semantics, and language 
modeling generally, since any context dependence of 
duration less than a couple words can be easily handled 
with a look-ahead buffer. There are at least some parsing 
and language modeling method: that can work well within 
this constraint, with !> limited look-ahead. 

For the input data, a strict "timewise" sequence is 
imposed on a knowledge source. Once a knowledge source 
has called "post_get_data" for a particular time, it cannot 
go back, to any earlier time. If it wants to reuse an item, 
it must buffer it internally. The output is not as 
restricted, the knowledge source can post data for any 
"post_time" greater than any previous "p_done_time." 
The system is responsible for buffering the output of the 
knowledge source until other knowledge sources have used 
it. 

The constraints of this functional architecture thus 
are as follows: 

1) Knowledge is local, not shared 
2) Data is temporary, not saved 
3) Utterances are processed timewise 

Implicit constraints include: 

4) Each knowledge source should use only a small 
fraction 

of  its  computation  time  communicating 

5) Each knowledge source should operate in real-time 

a single 2 MIP processor with 876K of 

Lhta 

on 

local 
memory 

6)  To   minimize   response   time,   knowledge  sources 
should be 

designed to use data as soon as possible 
after 

it becomes available. 

The "fraction" in constraint (4) must be smaller (in 
the range 5-10%) for this architecture than for some 
architectures, to prevent the local system bus from 
becoming a bottleneck. However, communication between 
several small knowledge sources clustered on a single 
processor doesn't count against this constraint. Since 
Dragon Systems has demonstrated real-time large 
vocabulary, natural language isolated word recognition on a 
single I MIP processor, it is believed that constraint (5) is 
not too great a limitation on the complexity of an 
individual knowledge source. 

A knowledge source that requires a lot of processing 
but that doesn't use too much memory can be easily be 
partitioned to run on more than one processor simply by 
making duplicate copies of the local "knowledge." The 
greatest design constraint is for knowledge sources that 
need more than 876K of local memory for program code 
plus their "knowledge."   Such knowledge sources must be 
partitioned to run as separate knowledge sources on more 
than one processor, without the ability to share knowledge 
among the partitioned knowledge sources. 

It is easy to see that the constraints are all very broad 
and not specific to the kinds of knowledge sources 
involved. In this framework a "knowledge source" is any 
module of subroutines that satisfy the necessary constraints 
to be local to a processor. The module need not deal with 
what would conventionally be called "knowledge." Thus an 
FFT routine would be a "knowledge source" as long it 
followed the calling conventions and received and sent all 
its data by posting on the bulletin board. The FFT routine 
would have an empty set of "knowledge," even in the 
formal sense, unless the coefficient table was loaded as 
"knowledge." Thus a "knowledge" source need not actually 
have any "knowledge." 

On the other hand, a knowledge source could be very 
complex. It could be a complete rule-based phoneme 
recognizer or a complete hidden Markov model word 
recognizer. Some knowledge sources could be "translators" 
that would allow knowledge sources of different types to 
cooperate with each other. With this functional 
architecture it will be possible to run "plug-and-replace" 
experiments with several different versions of the 
knowledge source that does a particular taak. The other 
knowledge sources will not need to be explicitly aware L " 
which of the experimental knowledge sources is in the 
system. 

As a matter of good programming practice, it is 
generally preferable to break the recognition task up into a 
larger number of simpler knowledge sources. Thus 
different knowledge sources might specialize on different 
phoneme classes rather than being combined into a single 
knowledge source. Each knowledge source should be only 
a few hundred lines of code in a higher level language. 

Current work is proceeding on two fronts: within this 
software architecture Dragon is implementing a complete 
connected word recognizer as a feasiblity proof of the 
knowledge source partitioning and the timewise processing 
and as a platform for studying communication and 
performance bottlenecks Dragon is also implementing 
"benchmark" versions of a variety of novel algorithms, e. g. 
neural networks, to see how they might be incorporated 
into this framework. Dragon also invites other DARPA 
sites to submit knowledge sources in either source code or 
object code form. The greater the variety of knowledge 
sources    that    can    work    together    in    a    cooperative 
environment, the greater will be the benefit for the whole 
speech recognition research community. 
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i 
Appendix 

BOOL ks   load(ks,data   size,data_handle) 
7* Returns YES if already loaded */ 

uns 16 ks;       /* The unique handle the system has assigned to 
this knowledge source, used when calling 
load   get   knowledge. */ 

V 
int32 data_size; /* The size in bytes of the block of 

knowledge that the system has available to 
pass to this knowledge source •/ 

intlö data_handle;       /* A handle that the system has assigned 
that the knowledge source should use when calling 
load_get_knowledge •/ 

BOOL ks   call(time,p_post,p_done_time) 
7* Returns YES for end-of-data condition similar to EOF 

V 
uns 16 time; /* Current time as measured by the system.   Being 

called with this value of "time" tells this 
knowledge source that any input data that it 
all knowledge sources that send input data to 
this knowledge source have reported to the 
system that they are done posting up through this 
value of time. */ 

struct POST_LIST •♦p_post;     /• A pointer to a list of items 
to be posted on the "bulletin board" */ 

unslö •p_done_time; /* The knowledge source tells the system 

that it has finished posting all items to be 
posted at time up to and including p_done_time. 

i 
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struct POST^LIST { 
unslö size; /* actual size of the data in this item */ 
uns 16 post  time;   /* the time slot on the bulletin board 

at which this item is to be posted •/ 
struct POST_LIST *next   post;  /* pointer to the next item 

to be posted, if any V 
char data[MAX_DATA_SIZE]; 

/• The actual data, which may 
have any kind of information, but whose internal 
structure is only known to the knowledge sources that 

); 
use it. */ 

BOOL ks_unload() 

int32 load   get_knowledge(ks,data_size,data_area,data_handle) 
/T Return the actual number of bytes sent •/ 

uns 16 ks;   /* Knowledge source handle •/ 
int32 data_size; /• Size of buffer area in which to 

put a portion of the knowledge. */ 
char •data_area; /• Pointer to buffer area •/ 
intl6 data_handle;      /• A handle for the knowledge data_area, 

comparable to a file pointer. */ 
/• (In the current implementation load_get_knowledge is 

functionally similar to a 
read(data_handle,data_area,data_size) ) */ 

BOOL post_get   data(handle,post_time,ship_to,ship_size,remain, 
complete,eof) 

/• Returns YES if there more to come for the current 
post_time */ 

unsl6 handle; /* Handle identifying the the data source •/ 
unsl6 po$t_time; /• The posting time for which data is 

requested.   Any knowledge source for which ks_call has 
called with a particular value of "time", may call 
P0't_get_data if any value of post_time<-time. •/ 

char 'ship^o; 
the data. */ 

uns 16 'ship   size 

/* Buffer in which to put a block of 

/* On input the size of the ship_to 
buffer 
On output the actual number of bytes 
sent •/ 

uns 16 'remain; /• Number of bytes remaining in the 
data that was posted for the current time. •/ 

BOOL «complete; /• This buffer includes the end of a 
complete item */ 

BOOL »eof;   /• YI;S if there is no more data (for this or 
any greater value of post_time */ 
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Experiments in Isolated Digit Recognition 
with a Cochlear Model—An Update 

Richard F. Lyon and Eric P. Loeb 

Schluicberger Palo Alto Research 
3340 Hillview Avenue 
Palo Alto, CA 94304 

Abstract 

We have conducted speaker-independent isolated digit recog- 
nition experiments using vector quantized cochleagrams. With- 
out the use of time order information, we were able to achieve a 
recognition rate of 98.3%. With a modified Viterbi algorithm we 
achieved a rate of 99.1%, in a test with a larger talker popula- 
tion. Since these accuracies are not far apart, we must call into 
question the effectiveness w:th which the Viterbi algorithm uses 
time order information. These results demonstrate that the au- 
ditory sprectrum approach leads to high performance even with 
simple non-parametric techniques and phoneme-level word mod- 
els. The results presented here update the results presented at 
ICASSP 87 [Loeb et al. '87); they verify the prediction that ac- 
curacy would be significantly improved by doubling the training 
and testing talker populations, and by using two repetitions of 
each digit from each talker in training. 

1    Introduction 

We have -.onducted a number of isolated digit recognition ex- 
periments in an effort to evaluate the potential of an auditory 
model front end. The experiment« emphasize non-parametric 
approaches and techniques that use little or no time order infor- 
mation. We wished to set high performance standards for future 
experiments while estimating the relative importance of the var- 
ious sources of information in the data. 

Although the front end for our experiments is a cochlear model 
[Lyon '82], there is nothing explicitly neural about our tech- 
niques. They could be applied to any other vector quantized 
representation. Many of the experiments are interesting as tech- 
niques for the use of non-parametric statistics in spite of the 
shortage of training data. Since every experiment in the first 
group, originally presented at ICASSP 87 [Loeb et al. '87], uses 
the same training and testing data sets, those results are directly 
comparable; later experiments extend some results to larger train- 

ing and testing sets. 

The bulk of this paper describes the various recognition meth- 
ods that we tested. We start with the non-time-order methods. 
These include a "Basic Method", four modifications to it, and a 
section on vector quantization methods. After that we describe 
our two time-order methods. Just before we conclude, we inter- 
pret some of our methods and results in terms of neural networks. 

2    General Methods 

The first repetitions of the isolated digits in the training sub- 
set of the TI Connected Digit Database (sampling rate 20kHz) 
were analyzed by our cochlear model. The model produces a 
discrete-*;ime 92-channel spectrum, which is down-sampled to 1 
kHz and quantized by a standard Euclidean quantizer with 1024 
codewords. The quantizer codebook was trained on the first rep- 
etitions of all the training speakers using the standard K-means 
algorithm. 

In the first group of experiments to be described, half of the 
112 training speakers were used for training and the other half 
were used for testing. Thus the recognition results in these ex- 
periments are ostensibly speaker-independent. We cannot claim 
total speaker-independence because we used both sets of speak- 
ers to build our vector quantizer. Since this caused two of the 
codewords never to occur in our training set, the net result is 
actually poorer performance than we find in extending to more 
speakers. 

In later experiments, up to four times as much training data 
was used, by using all 112 training speakers, with two repetitions 
from each. One repetition of each digit from each testing speaker 
has been analyzed so far. 

3    Definitions 

codeword an integer in [0, B] where B < 1023. Each codeword 
corresponds to some subset of Si92, and the set of codewords 
corresponds to a partition of S92. 

utterance the sequence of codewords derived from the cochlea- 
gram of one of the speakers saying one of the vocabulary 
words. 

utterance histogram a vector ^(--1), where ^^(A) is the num- 
ber of occurrences of codeword cu; in utterance A. 

guess the index to a vocabulary word. A guess is the result of 
some recognition method operating on a test utterance. 

■>: 
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guess vector a <vocabulary-size >-dmieiisional vector of word 
log probabilities. If a recognition method generates a 
guess vector, then it will always output the index 
of the most prohn' la word as its guess. 

4 The Basic M 

A matrix of condit ilities of observations (code- 
words) given the wor lirst generated. Probabilities 
are estimated from a count of iu« number of occurrences of each 
codeword within all training utterances of each vocabulary word. 
Then, for recognition, each word in the vocabulary is scored by 
adding the log likelihoods for all time samples in the unknown 
utterance; since these scores do not depend on the order of oc- 
currence of the samples, they are most easily computed by mul- 
tiplying the log probability matrix by the utterance histogram. 

Now each codeword, cw, indexes a vector y (civ) in our matrix, 
whose i"1 component is given by 

Vi(cw) = -log Pr[codeword cw \ word i]. 

In this notation the same guess vector can be formed by accumu- 
lating the V{cw)'3 indexed by each codeword found in sequence 
in the test utterance. 

This simple program gives 94.97% correct recognition on the 
first repetitions (see Table 1), and 95.54% on both repetitions 
(see Table 2). This implies that the codewords (and thus the 
underlying cochleagrams) are doing a good job of acoustically 
separating our vocabulary words. 

It is interesting to note that an earlier version of the codebook, 
in which the K-means algorithm had not iterated to convergence, 
gave 94.16% recognition on the first reps. This indicates that the 
method of codebook vector production is an important compo- 
nent of a quantizer-based system. 

Finally, when we used the basic method on quantized LPC 
spectra we achieved 88.31% recognition. The LPC codebook had 
1024 codewords made by the K-means Igorithm, but the LPC 
quantizer produced one codeword every 0 msec. When we down- 
sampled the cochlear quantizer to the same rate the basic method 
gave 93.83% recognition. We repeated this test with eight differ- 
ent training and testing populations. In all cases the number of 
LPC errors were roughly double the number of cochlear errors. 

5 Simple Variations on the Basic Method 

5.1    Codeword Grouping - OR type 

Let us suppose there are several codewords covering the spec- 
tra produced by /s/ sounds. Then the majority of the obser- 
vations of these codewords will occur in the vocabulary words 
containing /s/ sounds. In the task at hand these words are six 
and seven. So, if we assign one new number to every codeword, 
cw, such tkat most of the observations of cw occur in the words 
six and seven, then this new number should be a good indicator 
of the /s/ sound. 

To implement this idea we need a parameter covcnage-proportion. 
We map each codeword, cw, to a list of the vocabulary words that 
account for at least couerage-proportionof the observations o{cw. 
Next we map these lists to integers (i.e., we number them). The 
composition of the two mappings is a many to one map from the 
original codewords to -ome new codewords. We then use the new 
codewords in the basic method. 

There are two important variations in the mapping from lists 
to numbers. We make an unordered grouping by numbering the 
lists as sets so that the order of the words does not matter. We 
make an ordered grouping by numbering the lists so that the 
order of the words does matter. 

The results are on the "Basic" row of Table 1 and Table 2. 
In Table 1 the groupings are assumed to be unordered (number 
as sets). In Table 2 we compare the unordered grouping with 
couernge-proportion = 0.80 to the ordered grouping (number as 
lists) with the same coverage-proportion. 

Although this method is of marginal use in improving per- 
formance, it does reduce the number of codewords. In Table 1 
the 0.95 (unordered) grouping reduces the number of codewords 
from the original 1024 to 405, and the 0.80 (unordered) group- 
ing has 313 codewords. In Table 2 the 0.80 unordered grouping 
has 308 codewords. This is different from the same grouping in 
Table 1 because we estimated the codeword distributions with 
both repetitions. The 0.80 ordered grouping in Table 2 has 462 
codewords. 

Some of the sets/lists that we use to make these groupings 
have very clear phonetic content. For example the 0.80 unordered 
grouping of Table 1 maps 71 of the original codewords to the 
set {six , seven}, 39 originals to the set {three , zero}, and 22 
to {one , nine}. Although many of the sets do not have such 
obvious phonetic content, most of the sets that represent large 
numbers of original codewords do. Thus we may have found a 
way to generate phonetically meaningful labels without imposing 
our pre-conceptions upon the data. In the future, we hope to 
extend this method to the grouping of sequences of codewords. 

5.2    Histogram Compression 

Without changing the training procedure, we map the his- 
togram of each testing utterance to its log. I.E If codeword X 
occurs N times in testing utterance A, then the contribution of 
codeword X to our guess vector for utterance A will be the prod- 
uct of log (1 + N) and row number X of the matrix of log prob- 
abilities. 

Notice that we can achieve approximate log compression with- 
out the use of histograms by letting the n response to codeword 
X be 1/n. This is highly reminiscent of habituation. Thus the 
histogram compression method is both neurally plausible and ex- 
tendable to continuous speech recognition. 

The results on the first two lines of the result tables suggest 
that more codewords are better for this method. We should ex- 
pect as much, since compression gives more equal weight to each 
of the codewords than the basic method. We suspect that com- 
pression offers greater improvements than any of the codeword 
groupings because it does a better job of reducing the effects of 
uninformative codewords. 

When compression and time splitting (Section 7.1) are used 
together we begin to rival our best Viterbi algorithm results. 
This combined method is very simp id uses virtually no time 
information at all. This suggests the possibility that our Viterbi 
algorithm might be improved by the addition of a cotUi ressive 
operation. 
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5.3 Non-Occurring Codewords (or Necessity) 

The basic method will often gness "xero" when the input is 
an "oh". The re .son is that the method is one of sufficiency - it 
has no way of necessitating a /z/ sound before guessing "zero". 
Thus we need to modify the basic method to make use of the 
codewords that do not occur. 

For each codeword, cw, that does not occur in the test utter- 
ance we add an inw-ss of V{cw) (Section 4) to our guess vector. 
The inverse of t^(cui) was computed by subtracting each element, 
Yi^cw), from the naadnnan element of V{ew). 

If we examine the differences between the "Basic" and "Neces- 
sity" results in Table 1, then it appears that this method becomes 
more successful as the number of codewords decreases. If this 
were simply the case, however, we would expect an even larger 
improvement in a 0.50 unordered grouping, which had only 156 
codewords. The recognition rates with this grouping were 90.26% 
with the basic method and 91.56% with the necessity method. So 
the utility of the necessity method seems to depend on the extent 
to which our codewords correspond to phonetic units. 

5.4 Several Ranges for Each Codeword 

The basic method has difficulty distinguishing between "nine" 
and "one". We would expect "nine" to have roughly twice as 
many milliseconds of /n/ as "one", but the basic method can not 
take advantage of this. We need the probability vectors V(cw) 
(Section 4) to be functions of the number of occurrences of cw as 
well as of cw. 

To do this, we used the basic method with 6 matrices. If we 
let N be the number of occurrences of codeword X in utterance 
A, then utterance A will contribute to or use the [log(l + 2.W)J th 
matrix for codeword X. 

Each of our non-time-order methods is a function that maps 
every point in the space of utterance histograms to a log dis- 
tribution. The improvements shown in Table 1 may be due to 
our adding more detail to this function. Examination of Table 2, 
however, shows that the ranges method works about as well as 
the compression method (Section 5.2), so the this method may 
work because it allows each codeword to contribute equally to the 
final decision. Alternatively, the improvements may be due to the 
fact that we are now taking into account the average number of 
occurrences of a codeword among those utterances in which it 
occurs. This statistic represents durational information. 

5.5    Codeword Groupings - AND type 

The codewords are not independent. It is therefore interesting 
to consider higher order conditionals such as the probability of 
word W given codeword X, codeword Y, and no codeword Z. 
The number of conditionals of this form is, however, prohibitively 
huge. We thus have no choice but to concentrate on groups that 
have a reasonable chance of occuring. 

We mapped each ranged codeword, RCW, to a list of code- 
words that had an above-threshold correlation to RCW in the 
training data. We then considered each of these lists to be a 
codeword, where the number of occuraces of a list is the geo- 
metric mean of the number of occurances of each of its elements. 
We applied the basic method (Section 4) to the unique multi- 
element lists and added the resulting guess vector to the guess 
vector obtained from the ranges method (Section 5.4). 

By adding the guess vectors of this method to the guess vec- 
tors from the (compressed, original codewords) basic method we 
were able to get a recognition rate of 98.3%. Since this result 
was totally ad hoc, it seems reasonable to expect that a carefully 
built system can achieve 99% recognition with no time order in- 
formation at all. 

These AND-groupings took a great deal of time and memory 
to implement. We consider these groups to be the equi\ t 
of word models. Since this method produced a significant im- 
provement we expect we will be able to find a simpler, more 
effective means of using inter-codeword correlations to generate 
useful word models. 

6 Vector Quantization Methods 

Let us suppose we have a speech recognizer box. Its input 
is a speech waveform or sequence of observations, which may 
be thought of as a vector. Its output is a word, which may be 
thought of as a scalar. Thus our speech recognizer is, in fact, a 
vector quantizer. Can it be implemented directly as one? 

To cut down the pattern space some, we use binary histograms 
(i.e., each codeword either occurs or does not occur in the test 
utterance) with Euclidean distance, and the standard K-means 
algorithm to construct a codebook. A test utterance then maps 
to its closest codebook vector, which in turn tells us which vo- 
cabulary word to guess (the one that most frequently mapped to 
that codebook vector in training). 

In a second experiment codebook vector k was set to be the 
centroid of all the training vectors for vocabulary word k. In 
another experiment we formed 32 ortho-normal vectors from the 
32 codebook vectors of the first experiment. We then used the 
basic method by finding the projection of the test utterance on 
each of these vectors and summing the product of these numbers 
and the appropriate log probabUity vectors. 

In the first experiment, a codebook of size 16 gave recognition 
= 66.6%. When size = 32, recognition = 76.5%, and when size 
= 128, recognition = 80.5%. 

In the second experiment, with one codeword per vocabulary 
word, we got 92.69% recognition. This gives a rough idea of the 
efficacy of the K-means algorithm in approximating the "correct" 
decision boundaries. 

The third experiment gave recognition = 70.13%. Since the 
codebook vectors we ortho-normalized for this experiment were 
the same 32 vectors used in the 32 vector part of the first exper- 
iment, it is clear that this method WEIS of no help whatsoever. 

7 Time Order Methods 

7.1    Time Splitting 

It is surprising that we can do so well without any time in- 
formation, but we will need to use it eventually. As a simple 
extension of the methods we have tried so far, we use the basic 
method on the first and second time-halves of the utterances. 
Thus each test utterance will produce two guess vectors ; one 
for its beginning and one for its end. The final guess vector will 
be the stun of these. In a second experiment, we use the ne- 
cessity look-up method (Section 5.3) on both time-halves. In a 
third experiment, we use the range method (Section 5.4) on both 
tiine-halves. Finally, we use the compression method (Section 
5.2) on both time halves. 'U 
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As in Section 5.2, the fact that such a simple method could 
provide so much of an improvement (see Table 1), confirms that 
the time order information will be extremely helpful when used 
properly. The results of the combined time splitting and code- 
word ranges methods are respectable, but they depend far too 
heavily on the grouping parameter to be considered useful. 

7.2    Viterbi Algorithm 

The Viterbi algorithm is well known in speech recognition. 
We have applied it using simple finite-state word models similar 
to those used by Bush and Kopec [Bush '85]. 

The cost metric used by the Viterbi algorithm in finding a 
best model-based segmentation is -log Pr[codeword [state], as 
in our basic method. The state tables were initially trained using 
segmentations found by Bush and Kopec's LPC-based recognizer; 
they have been retrained and modified to improve performance. 
In comparing the fits of the various word models, we used mea- 
sures other than total cost (probability), as described elsewhere 
[Lyon '87]. In particular, the average costs in each state were 
given equal weight, rather than giving equal weight per unit of 
time; and a term was added to account for the probability of the 
duration in each state, after the best fit to each model was found. 

The scores reported in Table 1 are the best of several vari- 
ations. Other variations on the scoring function, for example 
using total Viterbi cost or omitting durational probabilities, re- 
sulted in up to twice as many errors. We were able to reduce 
the error rate from 1.62% to 0.91% using the same codebook but 
twice as many training repetitions (still testing only on first rep- 
etitions). Testing on both repetitions from the other 56 speakers 
increases the error rate to 1.46%; this doubling of training and 
testing data leads to error rates as low as 1.70% in the best of 
the non-time-order tests. 

It is interesting that the finite-state models give a performance 
that is at best only slightly better than the techniques that use 
little or no time sequence information. Better techniques for 
handling timing and dynamics are clearly still needed. 

In a later test, training talkers were grouped into two clusters 
based on codeword occurrence histograms accumulated across 
all of their utterances, and separate state models were trained 
on each cluster. It was found that the two clusters (found by 
K-means algorithm) partitioned the talkers almost perfectly inio 
males and females. Recognition using both sets of models pro- 
vided no significant difference from using a single set of models, 
contrary to our positive experience with separate male and fe- 
male models in an LPC-based digit recognizer. This is probably 
due to the fact that the vocalic auditory spectra resolve har- 
monics enough to distinguish high and low pitches, so that the 
simple non-parametric techniques already separate male from fe- 
male fairly well. 

Finally, training on two repetitions from all 112 training talk- 
ers and testing on 113 new talkers (first reps only), the error rate 
is reduced to only 0.89% (11 errors in 1243). The second reps 
are expected to lead to up to twice as many errors, based on our 
experience with the 112 training talkers, so the net system per- 
formance is estimated at not worse than 33 errors in 2486 (which 
should be compared with TI's best published result of only 1.4 
errors in 2486 tokens [Bochieri et al. '86]). 

Recognition 
Method 

OR-Grouping 
Original |    0.95    |    0.80 

Time 
Order 

Basic Method 
... with Compression 
... with Necessity 
... with Ranges 

94.97%    95.45%    95.29% 
96.75%    96.10%    94.64% 
94.16%    95.62%    96.10% 
94.81%    97.24%    95.94% 

No 
No 
No 
No 

Time SpUtting 
... with Necessity 
... with Ranges 

96.10%    95.94%    96.27% Some 
94.81%    96.43%    97.56% Some 
95.78%    98.05%    97.56% Some 

Viterbi Algorithm 98.38%    94.15% Yes 

Table 1: Recognition percentage for 616 test utterances. Group- 
ing numbers are the couenojfe-proportion values from Section 5.1 

Recognition 
Method Original 

OR-Grouping 
0.80 Unordered | 0.80 Ordered 

Basic Method 
... with Compression 
... with Necessity 
... with Ranges 
... with AND-Grouping 

95.54% 96.19% 96.02% 
97.40% 96.02% 96.59% 
94.40% 96.83% 96.43% 
97.56% — 97.48% 

— — 98.05% 

Time Splitting 
... with Compression 
... with Ranges 

96.92% 96.92% 96.59% 
98.38% 97.32% 97.73% 
97.65% — 98.05% 

Viterbi Algorithm 98.54% — — 

Table 2: Recognition percentages for 1232 test utterances. Half 
of these utterance were used for Table 1. The other half are the 
second repetitions. 

S     Neural Equivalents 

The four variations to the basic method were produced by a 
simple neural modelling paradigm. Given a numerical system like 
the Basic Method we describe the system as a neural network, 
find some way to make this network more realistic, and then test 
the numerical system version of the more realistic neural network. 

We consider the Basic Method (Section 4) to be equivalent to 
a neural network in which each codeword corresponds to an input 
neuron, and each vocabulary word corresponds to an output neu- 
ron. Under this equivalence, input neurons fires once each time 
their codewords occur in the test utterance. Input neuron cw is 
connected to output neuron i by a linear excitatory synapse of 
weight Vi{cw). Output neurons sum their inputs, and the number 
of the cell with the lowest value (most probable) is our guess. 

The OR-groupings (Section 5.1) were inspired by a kind of 
connectionist model in which each input neuron excites the set of 
output neurons with which it is associated. Each output neuron 
then excites its input neurons. We believed that such a system 
would ultimately make indistiguishable the input neurons that 
belong to the same set of output neurons. 

Two of the other variations were motivated by the fact that 
neurons are not simple linear devices. For the Compression 
method (Section 5.2) we considered that the response curves of 
r neurons look like bounded logarithms We thought of the 
Ranges method (Section 5.4) when we considered that real neural 
pools tend to divide the numbers they encode into approximate 
log ranges [Brooks '86, Chapters 3 and 4]. Thus for each code- 
word we would expect one neuron to fire when the codeword does 
not occur, one to be sensitive to a small number of occurrences, 
another to fire in proportion to a larger range of occurrences, and 
another that only fires during large inputs. 
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9    Conclusions 
It is clear that our cochlear model provides an adequate, if not 

superior, spectral representation. The unexpectedly good perfor- 
mance of the simple methods implies that the cochleagrams are 
effectively separating phonetic units. Furthermore, the cochlea- 
grams appear to be better at separating phonetic units than LPC 
spectra. 

The results of our other non-time-order experiments are in- 
triguing. We now know that there exists a vector quantizer that 
maps utterance histograms to words with at least 98.3% accuracy 
(Section 5.5). Although our direct quantizer experiments are in- 
complete, it appears as though the K-means algorithm cannot 
reach this level of accuracy. If that is the case, then we can 
perhaps achieve a substantial improvement by using a better 
quantizer on the cochleagrams. By analogy with our recogni- 
tion methods, we expect that we can improvement the K-means 
algorithm by assigning different weights to each dimension and 
by feeding back the distribution of each vocabulary word with 
respect to each codeword. 

It is important to note that we have many results ranging 
from 9% to 90%. The methods reported here are methods that 
worked, and the methods that worked have generally been neu- 
rally motivated. At worst we have a way of thinking about the 
problem that leads to some solutions. At best, the brain uses the 
only possible solution, and we are using a non-random means of 
finding that solution. 

The most difficult remaining c uestion is how to handle time 
order information. The proximity of our Viterbi results to the 
results that used little or no time order information forces us 
to conclude either that time order information is not so useful 
as had been thought, or that the Viterbi algorithm with simple 
word models does not use it very effectively. If we suppose that 
the AND-grouping method (Section 5.5) uses most of the time 
information - namely, the codeword durations and the codeword 
co-occurances, then it seems that the actual order in which code- 
words occur is not terribly important. On the other hand, this is 
the only time information available to th' ^ime splitting method 
(Section 7.1), which was able to out-perfoi-i all methods except 
the Viterbi algorithm. Thus we cannot call any particular piece 
of information crucial. In this situation our best option is to go 
back and insure that each component of our system is exception- 
ally well done. For this reason we believe that the next set of 
experiments should involve diffenmt quantizations of the original 
cochleagrams, 
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ABSTRACT 

Speech recognition algorithms employing a similarity mea- 
sure between the input speech utterance and the stored reference 
patterns to determine recognition of a word/sentence are compu- 
tationally intensive. The instantaneous vocabulary size that can 
be handled in real-time is relatively small. This limitation can 
be alleviated by either using multiple programmable processors 
or by using special purpose hardware to handle the computation- 
intensive tasks. In a research environment the former approach 
is preferred, because improvements to the algorithm can rapidly 
be incorporated and their effects studied in real-time. Texas In- 
struments has developed a multiple-processor architecture based 
on the TMS32020 DSP, called Odyssey, that interfaces with Ex- 
plorer, a symbolic computer. This paper addresses the issues in- 
volved in partitioning and allocating tasks in a multiple-processor 
environment to maximise throughput, and discusses the imple- 
mentation of a grammar-driven speaker-dependent connected- 
word recognizer (GDCWR) aa an example application that use* 
the power of multiple processors. 

Introduction 

Many speech recognition algorithms extract a feature vector 
from the input signal at a rate of 25 to 50 times per second 
(1|. Vocabulary words may then be represented by sequences 
of feature vectors each representing the spectral content of the 
signal over a short period of time called a frame. In the recog- 
nition process, new feature vectors are computed at the frame 
rate(25 to 50 Hz) and compared to every reference vector in ev- 
ery vocabulary word. Comparision involves Euclidean distances 
between N-element vectors, where N is typically between 10 to 
20, and dynamic programming to optimally time-align reference 
vectors with the input speech vector. This process is computa- 
tionally demanding and limits the size of the active vocabulary 
that can be processed in real-time. One way to overcome this lim- 
itation is to use multiple programmable processors to distribute 

Input- 

Speech 

WORD 

HYPOTHESIZER 

WORD 
TEMPLATES 

this loading. Texas Instruments has developed a multiple pro- 
cessor architecture called Odyssey. In a research environment, 
the multi-processor programmability is extremely desirable since 
such an architecture can be used aa a protype to test and evaluate 
advanced robust speech recognition/DSP algorithms. 

The Odyssey system (2| is an expandable, multiple digital sig- 
nal processor (DSP) architecture based on the TMS32020 pro- 
grammable microcomputer[3{. Key features of the board are: 
20 million multiply/accumulates per second, 512K bytes of data 
space, and expandability to 16 boards on a NuBus host. 

The Odyssey host is Texas Instruments' Explorer(4), a LISP 
machine workstation. Software has been provided which extends 
the high productivity environment of the Explorer into the area 
of digital signal processing. This provides an environment to 
perform many intelligent signal processing tasks by associating 
meaningful relationships between quantitative (signal process- 
ing) and qualitative (symbolic processing) entities to develop 
inferences using expert system technology. Applications such 
aa grammar-driven connected-speech recognition, neural network 
simulation, and generation of speech with natural language gen- 
eration techniques are some of the tasks that can utilize the com- 
putation! power of the mutiple DSP and symbolic processing. 

Grammar-Driven Connected-Word Recognizer 
(GDCWR) 

Figure 1 shows a block diagram of '>e GDCWR system [5]. 
An isolated recognizer outputs all the words that are hypoth- 
esized along with their corresponding distance scores and esti- 
mated durations. The basic technology of the word recognizer is 
a modification of the original Texas Instruments LPC-based iso- 
lated word recognition system(5]. The sentence hypothesizer con- 
structs probable sentences from the word hypotheses and their 
time marks, and invokes grammatical constraints to consider only 
the admissable paths to output a recognized sentence with the 
lowest distance score. The list of possible :ubsentences is pruned 
to minimize both memory and processing requirements. The 
distance measure for the sentence has three parts: the first com- 

SENTENCE 

HYPOTHESIZER 

I Recognized 

[Sentence 

! 

GRAMMAR 

Figure 1: Block diagram showing lüe components of the Grarrunar-Driven Connected Word Recognizer. 
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Figure 2: Task Partitioning 

ponent is the sum of individual word distance scores multiplied 
by corresponding word durations; the second is a penalty for 
overlap or underlap of adjacent words; and the third is a silence 
(null speech) distance measure. An important feature of the rec- 
ognizer is that the sentence hypothesizer does not control the 
isolated word recor;nizer by any feedback. This ensures that all 
information is preserved for late binding and possible recovery 
from higher level errors. 

The loading of the similarity measurements is a fixed pre- 
dictable function of the vocabulary size whereas the loading of 
the sentence hypothesizer is not fixed and is a function of the size 
and complexity of the grammar and the input utterance. 

Task Partitioning and Allocation 

In an ideal multiple processor environment one would expect 
the throughput of the system to increase linearly as the number 
of processors increases. However, this is not always true. In 
practice, the throughput in a multiple processor system increases 
significantly only for the first few additional processors and in fact 
begins to decrease after a certain number of processors [6]. This 
is due to increased interprocessor communication (IPC). This 
occurs when software modules, resident on different processors, 
need to communicate with each other. Communication protocols, 
management of storage, waiting time in queues etc. all contribute 

to the overhead. This overhead grows rapidly with large num- 
bers of highly interacting processors and the system throughput 
actually begins to decrease. This is referred to as the saturation 
effect. 

The designer is now faced with a dilemma. In order to exploit 
the computing resources offered by the multiple processor system 
he needs to balance the load. But balancing the load creates 
interprocessor overhead which needs to be kept as low as possible. 
One way to compromise these two conflicting factors is to allocate 
closely related software modules to the same processor and keep 
the communication between processors to a bare minimum. This 
demands a thorough understanding of the algorithm and the flow 
of data involved. 

The first step is to partition the algorithm into several individ- 
ual sub-tasks or modules. For example, GDCWR has been split 
up into several subroutines which have been arbitrarily named 
A, B, C, etc. Subroutine A calculates the 11 autocorrelation 
values from a frame of digitized speech samples, B is a routine 
that computes the reflection coeffecients and so on. These sub- 
routines, represented by circles, are shown in Figure 2 and are 
connected in accordance with the flow of data. The number of 
words being passed from one sub-routine to another on a per 
frame basis represents the inter-module communication and has 
been placed on the connecting arcs. This process is known as 
task partitioning. 
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Once the task partitioning ia completed, the next itep is to 
allocate these modules to different processors so that the system 
throughput is maximized. This is known as task allocation. It 
is during this phase of the design that one has to balance the 
two conflicting factors of load distribution and minimum inter- 
processor communication. To maximize throughput, the individ- 
ual processors should be able to run autonomously to the extent 
possible. 

The first step in task allocation is to identify those routines 
that are closely related and/or communicate with one another 
extensively. In Figure 2 routines A, B, C, E , F and I are closely 
related and therefore fused together to form a bigger module 
called the Preprocessor which is allocated to one processor. It 
was found that H contributes to more than 50% of the loading 
and limits the vocabulary size. An entire processor must there- 
fore be devoted to doing H. However, there is considerable traffic 
between H and P and interprocessor communication would be in- 
creased if these routines were resident on different processors. H 
and P are therefore fused together to form a bigger module called 
the Word Hypothesizer and allocated to the another processor. 
U is a routine that could be allocated to the Word Hypothesizer 
or the Preprocessor, but since we wish to allocate as much CPU 
time to the Word Hypothesizer as possible to do the similarity 
measurements, U is allocated to the Preprocessor. The remain- 
ing routines G and S comprise the Sentence Recognizer and are 
allocated to another processor. This completes the task alloca- 
tion of the CWR software. The basic recognition system there- 
fore requires three processors viz., the Preprocessor, the Word 
Hypothesizer and the Sentence Hypothesizer. Th-i parallelism 
offered by a multiprocessor architecture can now be utilized to 
increase the active vocabulary size by the concurrent execution 
of the Word Hypothesizer on two or more processors with each 
processor addressing a smaller subset of the vocabulary. 

Figure 3 shows the allocation of tasks to different processors 
on one Odyssey board. Processor 0 is the Preprocessor, Proces- 
sors 1 and 2 are the Word Hypothesize» and Processor 3 is the 
Sentence Hypothesizer. Note that all word hypothesizers operate 
on the same data from the preprocessor, and communicate with 
a single sentence hypothesizer. A single Odyssey is capable of 
recognizing about 100 words. Each additional board is capable 
of addressing 200 words each. 

In designing real-time systems one tends to optimize the en- 
tire software. Optimization of real-time software, though desir- 
able, may not necessarily be practical. The resulting increase in 
processing efficiency does not justify the effort required to opti- 
mize all the code. It is often found that there are only a few 
sections of code where a large percentage of the total processing 
time is spent. Hence, efforts should be directed towards optimiz- 
ing only these small sections of the code. For example, in the 
Word Hypothesizer module, it was found that 90 % of the time 
was spent in the distance measuring routine that compared the 
input speech with the stored references. Consequently only this 
module was optimized. 

Multi-processor software should be designed so that it can be 
er debugged. As with most computer systems the design and 
specification of a multiprocessor system is done top-down and 
debugged bottom-up. Thus it is important that one be able to 
debug the module associated with each processor individually. In 
the GDCWR implementation, each processor module is designed 
to communicate via I/O buffers. During the debug process, the 
input buffer is filled with canned data and the processor is made 

to execute its function. The output buffer can then be examined 
for correctness. Using this technique each processor module can 
be tested prior to integration of the entire application. 

Performance Testing 

The performance of a connected word recognizer is extremely 
difficult to quantify because of the lack of accepted data base 
and measurement standards. However, Texas Instruments has 
done a limited amount of testing on this algorithm using an in- 
ternally developed connected digit data-base. The data used to 
test the algorithm consisted of 20 speakers reading 5-digit strings. 
A total of 2000 strings were tested. Two application scenarios 
are of interest - those applications where the length of the digit 
sequence is unknown and those (like telephone numbers for ex- 
ample) where the length of the sequence is known. The results 
of the test are summarized below : 

UNKNOWN LENGTH :    5.2% sentence error rate 
1.1% word error rate 

KNOWN LENGTH : 3.4% sentence error rate 
0.7% word error rate. 

Note that the word error rate for digit strings of known length 
approaches that achieved for the best isolated word systems. 

Conclusions 

We have presented the issues involved in partitioning and allo- 
cating tasks in a multiprocessor environment and have discussed 
in detail the implementation of a connected word recognizer on 
the Odyssey/Explorer system. Each word hypothesizer is capa- 
ble of addressing about 50 words providing a 100 word capability 
for the first Odyssey board and 200 words for each additional 
board. 
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