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The semi-annual workshop for research and government lota
personnel involved in the DARPA program on Speech Recognition 7ﬂrﬁ;
was held in San Diego, California on 24=-!6 March 1987. The iyt
purpose of the workshop was to review progress on research ,ﬁ,*“
efforts undertaken over the past year by the participating FVQ;
organizations; Carnegie-Mellon University, BBN, MIT, SRI rZw#
International, National Bureau of Standards, MIT Lincoln ', o
Laboratory, Texas Instruments, Dragon Systems, and %

Schlumberger. Also participating were representatives from
DARPA, SPAWAR, NSA, NOSC, RADC, AFWAL, Xerox Research
Laboratory and Signition, Inc.

WA,
In his opening remarks, Commander Sears, the DARPA A
Speech Recognition Program manager, advised the group that in fw*
addition to the site progress reports, two important items o

would receive considerable attention; details related to €Al

performance evaluation and database needs for the October i
demonstration. Other items covered included results from the
March dress rehersal, update plans for Phase II, and a fh

variety of issues including the role of speech understanding }
for future systems and plans for the speech program to s
interact with the strategic computing architecture and k

natural language programs. -1¥L

This proceeding consists of technical reports which
were reviewed by the key individuals for that program at the v
workshop. The papers are arranged generally in accordance W
with the order of presentation.

The last day of the workshop consisted of a visit to 0
the research facilities of the Naval Ocean Systems Center. ;-;~
This site visit was arranged and hosted by Ms. Elaine *
Schiller and fr. Steve Nunn, members of the NOSC research
staff. Several programs being developed for use by Naval
Forces which utilize speech processing, natural language, or
knowledge based systems were demonstrated and explained to
the group by NOSC personnel. The demos proved to be helpful
to the group to understand and relate technology developments
to real world problems.
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The figure used for the cover design was provided by i
Richard Lyon of the Slumberger Palo Alto Research QFET%
Laboratory. Dr. Lyon states that the figure shows three t
representations of the spoken digit "zero." The bottom graph ]
shows the time domain wave form; the middle section is a i
cochleogram which is a representation of the processing in KOO0
the ear; the top section shows the segmentation and $? 3
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t
recognition of the digit using the scale-space technique.* )-t l‘%
Thanks are due to Mr. Tom Dickerson of the SAIC graphics Nt
department for the layout of the cover of the proceedings and bl "
to Ms. Dianne Williams for assistance in putting the report -2
together. ~imel

Lee S. Baumann ':-‘.;JJ,
Science Applications Wl

International Corporation ha%y
Workshop Organizer

* More information is available in Lyon and Loeb's paper .‘~.‘-:
contained herein. O]
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The lexical access component of the CMU continuous speech e
recognition system.
Alexander I. Rudnicky, Zong-ge Li, and Lynn K. Baumeister S,

Department of Computer Sclence, Carnegle-Mellon Univeraity, )
Pittsburgh, Pennsylvania 18213, Jid
L

¢ Coarse Labeller: It ts capable of productng a robust seg- .:.?":

mentation of the speech signal into silence, noise and :-.‘:\_\J

vocallc regtons. Coarse labels are used both to locate iy 4.‘\:

Abstract syllable nuclet and as a secondary source of information A,

by the matcher. 9;4;;:.

The CMU Lexical Access system hypothesizes words In addttion to the above components. the lexical access sys- R

froma phoneuc latUCC. supplemen‘ed by a coarse tem also includes a Phonetic utﬂce mte‘n‘or and a Le A"
labelling of the speech signal. Word hypotheses are Juncture Verifler. -

anchored on syllabtc nuclel and are generated indepen- -:3-'5

dently for different parts of the utterance. Junctures The Phonetic Lattice Integrator combines and transforms Ot ere

between words are resolved separately, on demand from the independently generated information contained tn the 3% 2%

the Parser module. The lexical representation is stop. closure, vowel, and fricative lattices produced by the b,

generated by rule from baseforms, tn a completely Acousttc-Phonetic labelling component. The actions per- t.-:.-

automatic process. A description of the various com- formed by the Phonetic Lattice Integrator include the adjust- &"\.'\"

ponents of the system is provided, as well as perfor- ment of boundaries, the resegmentatton of overlapping seg- Ly

mance data. ments, and the combination of label probabilities from dif-
ferent lattices. RS,
.N’%'?
The role of the Verifler s to process word-juncture verifica- IR
tion requests generated at the Parser level. The Verifler g-‘t::
This paper describes the lexical access system under Q::‘é

development at Carnegle-Mellon Universtty, The design of the Figure 1: Word Hypothesizer system dlagram

hypothesizer 1s based on the following principles:

-
B

e Words can be generated bottom-up with a very high pacser v
degree of accuracy. Given a sufficiently accurate )
transcriptton of the speech signal, it is possible to use a W)
completely bottom-up paradigm to drive word recog- AT j".‘:-

nition, without assistance from higher-level constraints,
such as those that might be provided by a narrowly
defined task. or restrictive grammar,

Word Hypothesizer

Ll
E 2

o Multipie knowledge sources are necessary for Coarse T
generating high-quality word hypotheses. The infor- = Labeller f‘*rr
mation contained in a phonetic transcription is of itself il
insufficient to guarantee high accuracy. addttional con- weee .o
straints on tnterpretation, etther dertved from alternate Front-End; Qfﬁ:i:m
analyses of the signal, or from stored knowledge about

speech characteristics are necessary for accurate

hypothesizing. e
The word hypothesizer produces lexical hypotheses using
the phonetic label lattices produced by the Acoustic-Phonetic ~ -ceeceeemannee '

component of the system |1). Figure 1 presents a schemattc
diag m of the hypothesizer module. The principal functional
components of the word hypothesizer are the following:

¢ Matching Engine: The matcher generates a latttce of
word hypotheses. A modified beam-search algorithm is
used to match a phonettc transcription against a lexicon
stored in the form of a phonetic network.

e Anchor Generator: The matcher does not attempt to
match words at all possible positions in an utterance. as

might. for example. a two-level DP algorithm. Rather, the

anchor generator uses a coarse segmentation of the
spesch wave to locate syllable nucle! and to deflne ltkely
word regions ("anchors”).

analyses junctures between words and Indicates to the Parser
whether the words in question can form a phonetically accept-
able sequence.

1 Matching Engine

Words are hypothesized by matching an input sequence of
labels against a stored representation of possible proruncia-
tions. the lexicont The matching algorithm makes use of both
a phonetic lattice and a coarse lattice. The network search
algorithm used tn the current svstem is based on the beam

O P e Lttt O O S R N N T P T T W N e W M A e S .
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search algorithm. but has been substantially modified to deal
with the particular demands of the current task.

Beam-search is a modifled best-first search strategy that
extends paths with scores within some window of the global
best score. The width of this window (the “beam") controls
the severity of pruning applied to the search. The principal
difference between a conventional beam-search (as imple-
mented, e.g., in the HARPY system (3]) and the current algo-
rithm is the ability to simultaneously search paths of different
lengths. Although search tree Is expanded segment by seg-
ment (i.e., I3 time-locked), paths may begin at a number of
separate locations in the anchor region (see below). Because
of the resulting differences in path lengths, the bounds of the
beam cannot be calculated tn a sitmple fashion. The solution
used is to normalize all path scoves by their duration.

The size of the search tree is controlled in two ways. by
modifying the width of the beam and by altering the score of a

given path through the use of penalities.

Beam width is calculated dynamically at each ply and is
based on a pre-set width modified by a value based on the
size of the expansion stack generated at the preceding ply.
The effect Is to relax pruning when there are few nodes on the
stack and to tighten it when the stack begins to grow exces-
sively large. One practical consequence of this is to allow
paths that initially have poor scores to survive long enough to
accrete positive evidence. Another consequence is to permit
more severe pruning later in the search when the number of
path is typically the greatest. Dynamic beam adjustment
speeds the algorithm up by 39%. and reduces the depth of the
output lattice by 18%, while maintaining match accuracy.

In addition to pruning based on beam width, the system
uses several other strategies to control the size of the search
tree. Since search progresses uniformly through successive
segments, paths that pass through the same node in the net-
work at the same segment (“collisions™) are compared, and
only the best path is kept (work with HARPY has shown that
although this is a sub-optimal strategy. it nevertheless, in
practice, produces near-optimal network traversals, at sub-
stantlal savings in search effort).

Two additional pruning factors come into play through
their ability to modify the cost of a path and thereby place it
nutside the search beam.

The first of these is a duration range associated with each
phonetic label in the ledcon. Paths that remaln in a par-
ticular state (phone) for either shorter or longer than the
characteristic range for that phone incur a penalty. For ex-
ample, the duration range for a /b/ is [3 30|, based on the
observation that /b/ bursts typlcally do not exceed 20ms. the
constraint for an /s/ s [50 250], again based on the obser-
vation that /s/ phones are typically at least 40ms in duration.
Similarly, the duration constraint provides a different range
for an /ax/ as opposed to a diphtho:.g, such as /a¥/. Exiting
a state either too early or too late incurs a penalty, this
penaity is added to the path score.

A second type of penalty is assessed when the coarse class
of a phone mismatches that provided by the coarse labeller.
The assumption here I8 that If the two types of label do not
match, an error is likely. Again, the penalty added to the path
score makes it a candidate for pruning. If the match is al-
ready poor, this penalty hastens its pruning. In fact, this
penaity s most useful for rap!dly terminating paths that
wander across category boundaries, for example, rematning in
a vocalic state when the segments have become non-vocalic.
In the current implementation, enforcing cross-lattice consts-
tency reduces the size of the search by a factor of about 3. If

-

consistency were absolutely enforced (1.e., inconststency
results in immediate pruning) search would be reduced by a
factor of 6-7 though with a loss in accuracy.

The calculation of the path score {s performed according to
the following formula:

" L o

Y. di(klogp, Y.aP, Y dP,

=l - + "'n AL + 959
Z d; Z d Z d;
i=l inl inl

The formula consists of three terms: the phonetic score, the
duration penalties, and the lattice mismatch penaities; a ts
the length of the path. The phonetic score consists of the fol-
lowing: d;is a segment duration, p, 1s a label probability, and

k is a scaling factor (a computational convenience)

The duration penalty consists of a,, the amount of dis-
crepancy, and P, a system parameter controlling the degree
of penaity. The lattice penalty consists of a system
parameter, P, scaled b, the duration of the segment, d. Nor-
malization is necessary, as paths of different length need to be
comparable. The flnal term in the equation represents a state
shortfall. Each hypothesis in the lexdcon is required to match
a minimum number of core phonetic states. Matching less
than this number implies that word has been severely
reduced, a condition which is penalized in the current system.

2 The Lexicon

The lexicon is stored in the form of a phonetic network.
The process of creating a net is as follows: For the chosen
vocabulary, a set of base-form pronunciations is obtained.
The sources of pronunciations that have been made use of In-
clude the following: lookup in an on-line phonetic dictionary,
such as the Shoup dictionary, the generation of pronuncia-
tions using a letter-to-sound compller (the mrmalk system), or
direct construction. Each approach has its advantages and
disadvantages. We have found that automatic generation as a
first pass, followed by hand correction, generally produces the
most acceptable result and does so in a reasonable amount of
time. Baseforms are further expanded into pronunciation
networks In order to take into account different possible
realizations of a word, such as those due to rapid-speech
phenomena and coarticulatory effects. Possible variations tn
pronunciation are expressed in the form of phonological rules
that are applied automatically (in an off-line procedure) to the
baseform pronunciation. Figure 2 shows a typical rule,
governing /ty/ desyllabification. The rule-applier scans the
pronunciation string for the pattern specifled in the FIF por-
tion of the rule, binding the elements of the pattern as
specified. Terms headed by a "+* match O or more elements.
which are bound to the following variable (¢.g.. LeftContext).
Terms headed by ">" must match a single element. typically
meeting the constraints specifled ir the remainder of the
clause; constraints are expressed In terms of phonetic fea-
tures, such as CONS (consonant) or VELAR (a nlace of

articulation). The THEN part of the rule has two clauses, the
first specifies the portion of the pronunctation string to be
emitted. the second clause the portion to be rescanned with
the pattern. Depending on what '~ nut into each clause. a
rule may be made to apply once. .nultiple times, or iteratively
to a pronunctation. The current CMU lexicon I8 constructed
using a base of over 150 rules, covering several types of
phenomena, including coarticulatory phenomena and front-
end characteristics. A small number of additional rules per-
form necessary bookeeping functions.




be apparent that this procedure, although stmple, s in- C&'Ci"
Figure 2: A phonological rule eflicient, There two reasons for this: The entire network is ‘5‘,\:-,{
{I¥-syl-loss-a applied to each anchor, thus time is wasted trying to force, -_f;{_
(Frg ( (+ LeftcContext) ¢.g.. 5-syllable words into 1-syllable anchors. Second. the -\ﬁ._- \
(> Tml (has CONS) ) same reglon of speech is scanned repeatedly, with the results 5)‘.\;@‘.

(> Tar (has VOWEL HIGH FRONT) (lacks LAX)) of one scan betng unavailable to subsequent scans. The :..'&

multiple-anchor strategy alleviates these problems, at only a
slight increase tn algorithm complexity, by using anchors with
multlple end regions. In this case, paths for words of in-
THEN herently different durations can terminate at compatible
| (GefrContixe points in the anchor and are not forced into tnappropriate
(g‘;‘lh ( 21'- ¥ 'I¥) Tpl) regions. A multlple-anchor strategy reduces computation by
, gheConemxty) a factor of 3, while reducing the number of hypotheses
) generated by 60% (inappropriate mappings of words into syll-
ables are eliminated). A third strategy is possible, though at
this time has not been implemented. This i3 the use of
continuous anchors, where each inter-vocalic reglon serves
both as an entry point and and end-region for the search (d).
The advantage of a continuous anchor strategy is that it al-
lows the simultaneous comparison of paths that span dif-
ferent portions of the signal. The quality of input, however,
determines the success of this strategy.

(> Tpl (has VOWEL))
(+ RightContext)

The above rule applled to the word COLUMBIA:

KAX L UK M B IY AX

————>

KAX L Ui MB (Y, IY) AX

Expansion is performed by adding nodes and arcs to the

base pronunciation through the application of phonological 4 Coarse Labeller

rules. The individual nets produced in this fashion are then
merged together into a single network, the representation
used by the matcher. The merge collapses common (nitial
states to eliminate redundant 1atches and produces a net-

The coarse labelling algorithm {s based on the zapDAsH al-
gorithm (2], modified to generate additional labels and to
provide a more accurate segmentation of the signal. The

coarse labeller codes the speech signal using four parameters
extracted on a centisecond basts, these being peak-to-peak
amplitude and zero-crossing counts for low-passed and high-
passed portions of the signal (the crossover being at 1 kHz).
Segments are located by seeking frames characteristic of a
particular energy type using a strict criterion (an “anchor”),
then expanding these into a reglon using a laxer criterfor In
addltion to the anchor-extend procedure, rules are used to
apply contextual tnformatton to ambiguous regions and to
perform boundary adjustment,

work that fans out from few (nitial states into a larger number
of states, the nenultimate states corresponding to indtvidual
lexical entries.

3 Anchor Generation

The structure of speech constrains the possible locations of
words {n an utterance, that is, a word may not begin or end at
some arbitrary point; permissible end-points are governed by
the acoustic properties of the signal. To eliminate unneces-
sary matches, the system uses syllable anchors to select loca-
tions {n an utterance where words are to be hypothesized.

The algorithm currently distinguishes the following acous-

The anchor selection algorithm is straightforward and is tic events: silence, tncluding “true” stlence and notsy silence: qv.}}
based on the following reasoning. Words are composed of sonorants, including vocalic centers as well as inter-vocalic Ly
syllables, syllable all contain a vocalic center (de-voiced syll- sonorant energy dips (such as nasals or liquids): a variety of K
ables can be treated as a speclal-case). Word divisions cannot aperiodic signals, corresponding to fricatives, aspirates, etc. ;-.'_‘,‘.I
occur inslde a vocalic center, thus all syllable and word o~
breaks will occur in the regions between vocalic centers. The The algorithm is robust and speaker-independent. and ﬁﬁ%
coarse labeller provides information about vocalic, non- operates rellably over a large dynamic range. Currently, the ;L"h;
vocalic, and stlence reglons, as well as information about quality of coarse-labelling 1s such that less than 0.1% of syl- . -
energy dips within vocalic reglons (typically corresponding to labic nuclei are missed. A number of extra nucle! are O
liquids, glides, and nasals). This allows the utterance to be generated, though this does not create difficulties for either :" A
segmented into two reglons: vocalic centers and boundary anchor generation or lattice cross-checking during matching. gy
reglons. An anchor, as used by the matcher, consists of two S
anchor regions, a beginning and an ending one, separated by Jeats
one or more vocallc centers, the number of centers determin- 5 Phonetic Lattice Integrator (TR
ing the number of syllables that words hypothestzed for that The phonetic labels produced by the front-end [1] are gty
region should have. Figure 3 provides a schematic diagram of grouped into four separate lattices: vowels, fricatives, .
the anchoring process. closures, and stops. Moreover. labels both within and be- 0N
tween lattices may overlap in time. The role of the integrator :-{‘:’\
The matching algorithm allows words to begin anywhere in is to combine these separate streams and produce a single S
the beginning region (i.e., the initial state of the network is lattice consisting of non-overlapping segments, each segment L.‘-\-.‘:b
put on the stack for each phonetic segment in this region). containing the information from one or more segments in the ,":-'.',,1
Paths may not transition into the the network’s final state un- original lattices. The integrator maps the label space used by o
til path extends into the ending region. The algorithm Is im- the front-end into the label space used In the lexicon. For ex- PLEGS
plemented in such a fashion that, for a gtven word In the lex- ample, the label “stop” is expanded tnto the appropriate set of ™
icon, only a stngle, “best” hypothesis will be generated. where lexcal labels ([{ptkbdg]). In addition, the tntegrator uses a KASOP
best means the lowest cost traversal through the lexical net- confusion matrix to partition the probability assigned to a “'.-":J‘
work. front-end label into several labels that it may be confused e ,.f:
with, thus an input iy label will be reflected tn not only the ?'.' .
Anchors have been used in the system in two modes lexical 1Y label. but also the :H label. .'}.' \
single-anchor and mult{ple-anchor. In the single-anchor mode, oo

anchors of different lengths are generated and the matcher (s
i'voked separately (or each one, as shown in (b). It should
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Figure 3: Anchor region selection
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segments; gaps, where the two words are separated, and
overlaps where the words share one or more seginents. In
general, overlaps that {nvolve inconsistent interpretations of
the speech signal are disallowed, and gaps that contain sig-
nificant speech events are also disallowed. Figure 4 shows
the distribution of juncture types for the Email task
(considering only correct word sequences), together with
Verifler accuracy.

Figure 4: Juncture types and Verifler performance

Juncture type Incidence (rejection)
Abuts 51% (0%)
Gaps 20% (1.7%)
Overlaps 29% (5.9%)

7 Performance

System performance was evaluated by calculating the rank
of the correct word for a known anchor position. This metric
is somewhat conservative, since words with the same core but
with different endpoints are compared (for example, the em-
bedded word END competes with the word SEND under the cur-
rent scheme). Figure 5 gives performance for two types of (n-
put data, spectrogram reading and automatic labelling (using
the September 1986 CMU system). The task is the 324 word
Electronic Mall task.

|

Notes: (a) A coarse segmentation of the speech signal. The
hatched blocks are vocalic centers. (b) Single anchors for the signal
in (a), a total of 20 anchors. Search can begin from any segment in
the onset reglon, must proceed through the middle, and can ter-
minate in the coda region. (c) multiple anchors, search can begin
in the irst region and end at any subsequent region. (d) con-
tinuous anchors. search can begin in any but the last region and end
end at any but the first region.

The use of a confusion matrix to map the tnput symbol
produces an improvement {n accuracy, but at the cost of ad-
ditional search. For the 708 word Shipping Management
task, first choice accuracy goes from 32% to 42%, while the
average number of states examined per word rises 2.5-fold,
from 958 to 2381. We belleve that the advantage of this
transformation 18 due to the ability of the confusion matrix to
capture the broad behaviour of classifler labels across dif-
ferent contexts and thereby supplement the probabilities
generated for a given classification regton (see [1])

6 Verifier

Words are hypothesized (n {solation, that is, without regard
to any sequential constraints between words. In this sense.
the system is completely bottom-up. since no syntactic.
semantic, or task constraints are brought to bear on the
process of = ~othestzation. The resulting word lattice con-
sequently concains many potential sequences of words. The
parser [4] attempts to construct plausible sequences, but does
not have the information necessary to decide whether a par-
ticular sequence is phonetically acceptable. The Vertfler ex-
amines junctures between words and deterrnines whether
these words can be connected together in a sequence. The
vertfler deals with taree classes of junctures: abutments.
where two words join together without overlap or intervening

v
-

Figure 3: Word Matcher performance

Spectrogram Automatic

1st choice 60% 32%
Top 3 83% 55%
Top 10 93% 76%

8 Discussion _

The CMU lexical access system operates as a word-spotter,
generating all Ukely hypotheses, anchored on syllable nuclet.
The design of the matching algorithm demonstrates the ap-
propriateness of a unified matching strategy, as opposed to a
strategy that uses coarse-{lltering of word candidates followed
by fine-grain phonetic matching: Coarse-class constraints are
used as a component of the pruning strategy and do not en-
tail the use of hard decisions tmplicit in, e.g.. a filter design.
This approach provides a maximum of flexibility to sub-
sequent levels of processing.

Experience with the anchor-based matcher has revealed a
number of shortcomings In its design. For example, the

benefits of anchoring are only realized when syllables are cor-
rectly detected. Fatlure to identify a syllable boundary can be
catastrophic—one or more words may be lost as a result.
Stmilarly. the word-spotting mode in which the system
operates makes it difficult to make use of constraints that
could be imposed across word boundaries and. moreover.
complicates the process of interpreting juncture phenomena.
Given these fIndings, we have begun to explore a different ap-
proach to wrrd matching. The new algorithm is not based on
anchoring and it incorporates explicit modeling of juncture
phenomena. We refer to the new algorithm as a rolling
matcher, as it "rolls" through an utterance rather than jump-
ing from anchor to ancheor.
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In order to avold the compromises made in the lattice in-
tegration step, the system has changed to use input in the
form of a phone network. A phone network performs the
same function as the lattice integrator—it coordinates the out-
put of the four different acoustic-phonetic modules. Specift-
cally, it provides segment boundary alignment by coercing
segment endpoints, it resolves conflicting vverlap conditions
(1.e., by providing alternate paths), and it ensures that all
regions of an utterance can be traversed (l.e., by labeling
regions not labeled by any of the primary 1odules according
to thetr coarse-class labels). Another benefit of a phone net-
work representation, from an acoustic-phonetic point of view,
is that it allows correct handling of sequential dependencies
(e.g.. the tnfluence of liquids on vowel color).

In contrast to the compllation process described earlier in
this paper, network comptlation is now performed in two
separate passes. The first generates intra-word vartations,
producing sub-nets for each baseform in the lexicon. After
these sub-nets are merged into a single net, a second set of
rules is applied to generate correct cross-word connections,
dealing with such varied phenomena as gemination, insertion
{e.g.. of glides), and deletions (e.g., of closures).

The matching process consists of "rolling" the (lexdcal) net-
work through the phonetic network. Successful paths
through the lexdcal network (i.c.. traversal from a given start
node to a given end node produces a word hypothests. The
word hypothests is placed on the output lattice, and matching
continues on to all words that can legally follow the word that
was just completed.

w

Early analyses indicate that the Rolling matcher differs
from the Multiple-Anchor matcher in several respects: The
word lattice produced by the Rolling matcher is substantially
denser than the one produced by the multiple-anchor
matcher. This is because the latter produces a single best
match for a given region of speech, the former prodies mul-
tiple matches, with different end-points. This propuity s ac-
tually destrable, as it simplifies the juncture-validation
problem—mult{ple end-points allow the parser to select the
optimal version of a hypothesis, without the need for detatled
juncture analysis.
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SENTENCE PARSING WITH WEAK GRAMMATICAL CONSTRAINTS
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ABSTRACT

This paper compares the recognition accuracy obfained in torming
sentence hypotheses using several parsers based on different types
of weak statistical models of syntax and semantics. The Inputs (o
the parsers were word hypotheses generated from simulated
acoustic-phonetic labels. Grammatical constraints are expressed by
trigram models of sequences of lexical or semantic labels, or by a
finite-state network of the semantic labels. When the Input to the
parser is ot high quality, the more restrictive trigram models were
tound to perform as well as or better than the linite-sfate language
model. The more restrictive trigram and network models of language
produce better recognition accuracy when all correct words are
actually hypothesized, but strong constraints can degrade
performance when many correct words are missing from the parser

The purpose of this paper Is fo compare the ways in which the
degree of specificity of the grammatical constraints atfect the
racognition accuracy obtained with a deterministic tinte-state
nelwork representation ot the task and with some of the probabilistic
tfgram grammars, consldering inputs 10 the sentence parsers of

vitrying quality.

In the following sections we first describe the manipulations ot the
input fo the sentence parsers. We then brietly describe the different
parsers that are used in the present study. Finally, we compare tha
recognition accuracy of these parsers In the presence ot the ditferent
types ot degraded input and comment on some of the implications ot
our results.

WORD LATTICES USED IN EXPERIMENTS

input.

1
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'
A
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For each sentence presenfed to the CMU recognition system, the
word hypothesizer outputs a large number of candidate words, which
are each characterized by a begin tlme, an end time, and an
acoustic-phonetic plausibllity score. This set of annotated word
hypotheses Is referred to as the “word lattice" of the input sentence.
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1t is well known that the accuracy ot automatic speech recognition
systems can be greatly improved by the imposition of syntacic,
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The expected word accuracy ol sentences produced by a parser Is

serpantic. and grammatlcal. constraints. The;e constraints have closely related fo two major attributes of the word lattice: (1) the O
typically been expressed in the torm of finite-state or phrase- relafive acoustic-phonetic scores of the correct words that are 14

structure network models (1, 2, 3] and second order Markov models present on the lattice, and (2) the percentage ot correct words that § e

{e.g.[4]). We would generally expect that more specific domain- are missing trom the lattice &ij.
dependent constraints could provide a greater improvement ot ’ ’ & o
recognition accuracy, but weaker grammatical constraints may prove In order to cotpare the effects of degraded word quaiity and Bt %5
advantageous if the input to the sentence hypothesizer is noisy or omissions trom the word lattice, we prepared six sets ot lattices in Polate o
extragrammatical utterances are frequently encountered. which the relative scores of correct words and percentages of r '__‘!
G N missing words were artificially manipulated. The characteristics of e
Carnegie Melion University Is presently developing a large- thesengsets of lattices, wl:'!ych we'pr‘ej used in our performance 'u";“
vocabulary speaker-independent speech recognition system. The calculations, may be summarized as follows: e at el
system Includes a feature-based acoustic-phonetic hypothesizer {S], ) ) 325.word el . Laen
an island-driven word hypothesizer (6], and several sentence parsers + Original lattices - 48 sentences from a 325-word electronic V%
; mail (email) task were recorded by three temaie and two male LSt
that convert the outputs of the word hypothesizer into sentence speakers. These sentences contained a total of 281 words. A .:{4
candidates. set of acoustic-phonetic labels was created manually by expert A hE
spectrogram readers from spectrograms and other visual ¥
We have explored several schemes tor representing syntactic and displays of the digitized wavetorms. This labelling was “blind" in ra—
semantic knowledge in these parsers, including case trames (7] and that the labellers did not know the identity ot the correct Y
simple statlstical models ¢! sequences ot syntactic and semantic utterance. Since these lattices nominally represent “ideal® ettt
categonies of the word candidates. Most ot the statistical grammars output trom the acoustic-phonetic module, they are useful for ’_‘\;\ 3
make use ol a second-order Markov model! to represent local evaluating Jegradations in recognition performance introduced ‘.'-".'\‘_-
syntactic and semantic phenomena. Our work differs trom most by the system's word and sentence hypothesizers. Word Larr i
other language models employing this ttrigram* representation (e. g. lattices were generated from the acoustic-phonetic labels in the ""\:quf{
{4)) in that constraints are expressed in terms of probabilites ot fashion descnbed in {6]. poe
sequences ol lexical or semantic labels or “tags®, rather than the « High-quality lattices - These lattices are the subset ot the 48 ﬁ‘
individual words in the vocabulary themselves. In addition to original blind-labelled word iattices that have no correct words Z:":-F‘\
providing reasonable accuracy, we also believe that this approach is missing and no incorreclly penalized_word junclures (see ACAN,
a promising way to reduce the amount of storage and fraining below). There are 31 sentences with 122 total words in these rg,{ Ml

lattices. The remaining sets of word lattices were obtained by by

required to effectively model word usage in tasks with very large
vocabularies. A small number of other groups have also proposed
trigram modeis using a reduced number of syntactic or semantic tags
but these groups have not dicussed the range ot language models
and input conditions that will be considered here.

antificially degrading these word lattices.

« Degraded-quality 'attices Moderately-degraded and
severely-degraded word iattices were created by adding a Ca X
constant to the acoustic-phonetic scores of words n the
high-quality lattices. This had the e‘lect of worsening the




scores of the correct words relative to the scores ot the
incorrect words.

« Missing-word fattices - Missing-word lattices were created
by randomly delating elther 10 or 25 percent of the correct
words from the high-quality lattices.

The overall quality ot these lattice Is summarized in Figure 1. Each
curve of Figure 1 shows how many words in the lattice per correct
word need be examined to ensure that a given percentage of correct
words Is inciuded. For example, Figure 1 shows that the
high-quality fattices and the moderately and g efy-degraded
fattices contain approximately 100 percent of the correct words (i
we are willing to consider a sutficiently farge number ot Incomrect
words as well), while the lattices with missing words contain no
more than 70 and 85 percent of the correct words, no how many
words are examined. (The asymptotes In these three curves ditfer
slightly from thelr nominal values because ot difterences In the word-
boundary criteria used by the hand labellers and the automatic lattice
evaluation algorithms.)

PARSERS USING TRIGRAMS AND NETWORKS

We compared the word accuracy ot a number ot different lett-to-right
parsers in processing the various types ot word lattices described
above. These parsers make use ot the same architecture, diftering
only In the types ot knowledge used to evaluate candidate phrases.
We will theretore tirst describe the overalt structure and then
describe each Individual parser In terms of its use ot syntactic and
semantic knowledge.

As noted above, each parser receives a lattice of words that contains
the begtn time, end time, and a score tor each word. it torms phrases
from the words In left-to-right fashion. New phrases are created by
attempting to add new words to the end of existing phrases. A beam
search is used to prune the sel ot phrases retained tor further
expansion so that at any point in the parsing process only the 100
best-scoring phrases are retained.

The toliowing types of knowledge are considered when auding a new
word to a candidate phrase:
» Word score - The word score represents the likelinood tor the

word based on acoustic-phonetic evidence, provided by the
word hypothesizer.
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Words in Lattice per Correct Word

Flgure 1: Companson of quality ol word lattices used in the
sentence parsing experiments.

« Word-juncture quallty - The quality ol the acoustic-phonetic
juncture between two words is scored by the junction verifier In
the word hypothesizer, based on tables ot penatties tor overaps
and gaps.

« Syntactic and semantic information - Two difterent methods
were used to score the syntactic or semantic plausibility: a
tinite-state network derived trom a tormal description ol the
grammar of the task and trigrams ot frequencies ot syntactic
and/or semantic word classes.

The score for a phrase is a linear combination of the scores provided
by each of the above knowledge sources. The weights used to
combine these scores were determined parametrically from training
data, and the recognition accuracy ot the parsers is relatively
insensitive to their exact value.

We now descnbe the various parsers in more detail.

Allword parser. This parser makes use only of acoustic scores and
word juncture Intormation in torming its phrase hypotheses, so any
word can tollow any other word.

Trigram parsers. The ftrigram measure is derived trom the
conditional probability ot observing the syntactic or semantic classes
ot three words In sequence In a set ot training sentences, which in
tum Is used to estimate the joint probability that the syntactic or
semantic structure ot the sequence ot three words is correct. The
overall utility ot this approximation depends on the degree ot domain
specificily ot the training sentences and syntactic classes used.

For each set ot syntactic and/or semantic constraints, words are
sorted into categornies of one or more tags. Special tags are used to
represent the beginning and ending ot a sentence. When a 'vord is
added to the end ot a phrase, it is assigned a trigram score based on
the conditional probability ot observing its tag given the two previous
tags in the phrase.

We examined the tollowing trigram parsers, which are identitied by
the types ot syntactic and semantic knowledge that constrain their
hypotheses.

« Syntactfc trigram parser - In addition to word scores and word
juncture intormation, this parser also incorporates syntactic
information through trigrams ot sequences ot 41 tags denoting
lexical categories. These 1ags were a subset ot the
approximately 90 lexical tags adopted by the compilers of the
Brown corpus [8]. They include expanded designations ol pars
ot speech, complete conjugations ot some important verbs such
as be, do, and have, elc.

Augmented trlgram parser - This parser is similar to the
syntactic parser, except that a set ol 55 tags is used. This set s
somewhat more specific to the email task than the tags used by
the compilers ot the Brown corpus. For example, different
designations are used tor nouns representing people, places.
and things, and there is a greater number ol tags that designate
classes ol prepositions. Hence these tags describe a modest
amount ot semantic knowledge. We believe that these tags
could eventually represent the syntax ol a database-query
system tor an arbitrary task domain.

Semantlc trigram parser - The semantic tngram parser s
similar to the syntactic parser, except that a set ot 92 tags is
used that corresponds to the labels of the nodes ol the
semartic network parser described below These tags, and
their trigram probabilities, are much more domain dependent.

L]

Semantlc Network Parser. The deterministic semantic network
parser 1s derived trom a description of the email task expressed in
the lorm ot case frames and simple phrase structure rules (9. 7)
These were manually combined into a semantic grammar of about
350 rules. The grammar was then compiled into a finte-state
network similar to a Harpy network (1], for faster processing This
type ol network can provide a semantic interpretation of the nput
utterance as well as mere word recognition. There were 92 different
categones ot words in the network, reflecting the semantic specificity
of the encoding. The grammar encoding was fght 1n the sense that
only grammatical sentences are accepted
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EXPERIMENTAL RESULTS AND DISCUSSION w 1207 3-‘}’}
o o
Each of the parsers was run on each of the sets of iattices. Results Z 100} ;:\."_'\'
are expressed by the percentage of correct words detected and by < o piorty
the percentage of incorrect words Inserted by the parser. (The = ‘-'-‘:'
Insertlon percentage in this paper Is defined to be the number of x 80} V‘s.L‘
incorrect words found divided by the number of words uttered. Note o 0 .
that substitution errors cause both a decrease in the detection W 60 .
percentage and an Increase In the insertion percentage.) E A
Q
c 40} A
Aliword  Semantlc Semantic w
Parser  Trigram  Network 0 20t ||
Parser Parser @
DETECTION PERCENTAGES: = O
Originai lattices 58 87 83 0 i :
High-quality iattices 59 93 92 Al Syn Aug Sem Sem
Word Trlg Trig Trig Net
INSERTION PERCENTAGES: @ High-quality fattices
Orlginal lattices 49 9 18 A Moderately-degraded lattices
High-quaiity iattices 45 3 7 B Severesly-degraded lattices

Tabie 1: Companson of word detection and insertlon
percentages of three selected parsers, with input from th¢
original and high-quality lattices.

Figure 2: Effect of the rank of correct words on recognition
accuracy. Filled symbols indicate comect word
detection percentage; open symbols indicate
insertion percentage. Parsers examined (from left
to nght) are the allword, syntactic trigram,
augmented syntactic trigram, semantic trigram,
and semantic network.

Table 1 compares the percentage of correct words and the
percentage of word Insertions for the three of the parsers using the
originai and high-quaiity iattices. The two parsers that make use
of semantic knowledge perform significantiy better than the altword 100,
parser. While the tags for the semantic network parser and the
semantic trigram parser are identical, the semantic trigram parser
obtains slightly greater recognition accuracy because it evaluates the
likelihood of a sequence. The semantic network parser rejects illegai
sequences of words but performs no reordering of legal ones. These
results demonstrate that the parsers using trigrams with semantic
knowledge can equal or better the performance of parsers that
employ a finite-state grammar.

Etfect of the Rank of Correct Words

Figure 2 shows the effects of reducing the rank of correct words
when all correct words are in the lattice. As the quality of the lattices
worsens, ali parsers produce fewer corect words In their best
nypotheses. The application of synactic and semantic constraints
produces improved accuracy, and the more specific the constraints,
the greater the accuracy. The output of the aliword parser is the
most severely atfected as the lattice quality worsens.

Etfect of Missing Words

Parser outputs for sets of lattices with missing words are shown in
Figure 3, and the results exhibit a ditteremt trend. When only 10
percent of the words are missing, the constrained parsers that use
syntax or semantics produce greater word accuracy than the aliword
parser. This is because a significant number of sentences have no
missing words and the constraints are useful in parsing these
sentences. Since the average length of sentences in the email task
is tive words, roughly 60 percent of the sentences have no missing
words when 10 percent of the comect words are missing from the

80}
60}
40}
20}

(=)

All Syn Aug Sem Sem
Word Trig Trig Trig Net
@ High-quality lattices
A 10%-missing lattices
B 25%-missing lattices

PARSER PERFORMANCE

Figure 3: Effect of the rank of correct words on presence of
missing words. Filled symbols indicate correct
word detection percentage; open symbols
indicate Insertlon percentage. Parser labels are
as in Figure 2. q

word tattice. When 25 percent of the correct words are missing, only
about 24 percent of the sentences should have no missing words. In
this case, the more specific tags produce poor performance. The
semantic trigram parser proouces worse word accuracy than the
allword parser, while the use of the more general tags still provides
some benefit over the allword parser. The more specilic tags are,
the better they are able to differentlate between sequences of correct
and incorrect words. Parsers with more specific tags are more
disrupted by missing words, however, because there is less of a
chance that other (incorrect) words that are present could produce
an acceptable sequence of tags. Hence, the more general tags do
not provide as much accuracy when all words are present, but they
still may provide some benefit if many words are missing.

EHect of Syntax of Training Data

We also performed an additional expenment !o examine the

dependence ot the parser that used the syntactic tags Irom the

Brown corpus on the syntax of its training data. This was

accomplished by es. . .ing probabilities of the trgrams ot the

syntactic trigram parser using the following three ditfterent sets of

sentences as the training text:

1. 171 examples ot email sentences. (50 ol these sentences were
used as the test set in ail expenments.)

2. 171 sentences from the original Brown corpus. (These were
examples taken from articles in newspapers.)

3. 342 sentences obtained by combining the lirst two data sets.
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The word accuracy ot the syntactic trigram parsers trained on each REFERENCES At
of the above sets of example sentences Is shown In Table 2. For all ;-_'-'\}‘,-
sets of lattices, parser performance Increased as the training set 1. Lowerre, B., and Reddy, D. R., The Hampy Speech T
more closely resembled the email sentences that the parsars were Understanding, in Trends In Speech Recognition, W. A. Lea, :.-_:,;;
evaluated on. ed., Lawrence Enpaum, New York, 1979. LA
[ N
It is not hard to Imagine why the word accuracy was so low when the 2. Erman, L. D, and Lesser, V. R, The Hearsay-ll Speech !
parsers were tralined on only the Brown corpus sentences. Almost Understanding System: A Tutonal, In Trends in Speech 51“\} .
all of the Brown corpus sentences are declarative, and the first word Recognition, W. A. Lea, ed., Lawrence Erbaum, New York, o
tends to be an article, adjective, or noun. The email sentences, on 197 :i.':_'&:
the other hand, are all Imperative or Interrogative In form, and they . L
begin with a verb, verb auxillary, or whtype adverb. Since the 3. Kimball, O., Price. P., Roucos, S., Schwartz, R., Kubala, F., )"-&;
parsing proceeds In left-to-right tashion, the tirst word in the Chow, Y.L, Haas, A, Krasner, M., Makhoul, J. g
“Recognition Performance and Grammaticai Constraints”, uﬁas
Proceedings of the DARPA Speech Recognition Workshop, |
Sclerce Applications Intemational Corporation Reporn g
Brown  Mixed Emall Number SAIC-86/1546, 1986, pp. 53-59. - w7
Training Trainfng  Tralning P e
DETECTION PERCENTAGES: 4, Bahl. L. R, Jelingk, F., and Mercer, R., L., "A Maximum -,’.;:.,-
Original lattices 58 Yes 80 Likelihood Approach to Continuous Speech Recognition”, ':j.' >
High-qualfty lattices 61 e 83 IEEE Trans. on Patt. Anal. and Mach. Intell., Vol. 51983, "".'j:;
A 5. Cole, R. Philips, M., Brennan, B., Chigier, B., "The C-MU R
I‘;INS;E;I%?")ZESCENTAEGES. 27 22 Phonetic Classitication Sysytem", Proceedings of the IEEE C 'h”‘
High-quallty lattices 44 24 16 International Conference on Acoustics, Speech, and Signal R o
Processing, 1986, pp. 2255-2257. e
- ¥ o
Table 2: Eltect ot the syntax ol the training set ot the 6. Rudnicky, A. |., “The Lexical Access Component ot the CMU SR
syntactic trigram parser on word detection and Insertion Continuous Speech Recognition System™, Proceedings of the .~\.-:‘\»
percentages. IEEE International Conference on Acoustics, Speech, and A :Q
Signal Processing, 1987. " “
ig ng. 3}‘%

7. Hayes, P. J., Hauptmann, A. G., Carbonell, J. G., and
Tomita, M., "Parsing Spoken Language: A Semantic
Caseframe Approach”, Proceedings of COLING-86, 1986.

Francis, W. M., and Kucera, K. K., A Standard Corpus of

sentence has a great effect on how the rest of the sentence is
parsed. In light ot the protound differences between the syntactic
torms of sentences in the Brown corpus and in the email task, the
relatively good performance ot the parser when trained on the 8.
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combination of the two databases is quite encouraging. We believe
this may indicate that reasonable performance may be obtained trom
a completely domain-independent syntactic parser, provided that all
syntactic sentence torms are included in the training database.

SUMMARY

We compared the word recognition accuracy obtained using several
ditterent types of lett-to-right sentence parsers. For the 325-word
emaii task, we tound that parsers using trigram representations ot a
small number ot lexical or semantic tags could perform as weli as or
better than the parser using a tinite-state grammar. Increasing the
specificity of the trigram representation for a particular task domain
tended to improve performance when the correct words are not
among the very best word candidates, but it can degrade
perlormance if correct words are missing completely trom the imput
word lattices. The performance of the syntactic frigram parser
appeared o he relatively insensitive to the specific contents of its
training database, provided that th? training set Included the
sentence lorms that were encountered in the iest sentences.

Present-Day Edited American English, for Use with Digital
Computation, Brown University Department ot Linguistics,
Providence RI, 1364.

9. Hayes, P. J., "Entity-Oriented Parsing”,
COLING-84, 1984.
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A Stochastic Segment Model for
Phoneme-Based Continuous Speech Recognition

S. Roucos and M. O. Dunham

BBN Laboratories Incorporated
Cambridge, MA 02238

Abstract -- Developing accurate and robust phonetic
models for the different speech sounds is a major challenge for
high performance continuous speech recognition. In this
paper, we introduce a new approach, called the stochastic
segment model, for modelling a variable-length phonetic
segment X, an L-long sequence of feature vectors. The
stochastic segment model consists of 1) time-warping the
variable-length segment X into a fixed-length segment Y called
a resampled segment, and 2) ajoint density function of the
parameters of the resampled segment Y, which in this work is
assumed Gaussian. In this paper, we describe the stochastic
segment model, the recognition algorithm, and the iterative
training algorithm for estimating segment models from
continuous speech. For speaker-dependent continuous speech
recognition, the segment model reduces the word error rate by
one third over a hidden Markov phonetic model.

1. Introduction

In large vocabulary speech recognition, a word is
frequently modelled as a network of phonetic models. That is,
the word ts modelled acoustically by concatenating phonetic
acoustic models according to a pronunciation network stored in
a dictionary of phonetic spellings. In phoneme-based speech
recognition systems, it is not necessary for the speaker to train
all words in the vocabulary; only the phonetic models are
trained. Assuming the above structure for a speech recognition
system, the goal of this work is to look for an improved
approach to phonetic modelling.

Hidden Markov modelling (HMM) is one method for
probabilistic modelling of the acoustic realization of a
phoneme.  Although the HMM approach has been used
successfully {1, 2,3], its recognition performance is not
sufficiently accurate for large vocabulary continuous speech
recognition. We propose an alternative and novel approach,
called a stochastic segment model, with the goal of improving
phonetic modeiling. The motivation for looking at speech on a
segmental level, rather than on a frame-by-frame basis as in
HMM or dynamic time warping (DTW), is that we can better
capture the spectral/temporal relationship over the duration of a

on a fixed-length representation of the observed segment,
which is obtained by a time-warping (or resampling)
transformation. The stochastic segment model is a multivariate
Gaussian density function for the resampled representation of a
segment. The recognition algorithm chooses the phoneme
sequence that maximizes a match score on the resampled
segments. The training algorithm iterates between two steps:
first, the maximum probability phonetic segmentation of the
input speech is obtained, then maximum likelihood density
estimates of the segment models are derived.

The paper is organized as follows. Section 2 introduces
the segment model. Section 3 describes the segment-based
recognition algorithm, and Section 4 describes the (training
algorithm.  Section 5 presents experimental results for
phoneme and word recognition, comparing the results to HMM
recognition results for the same tasks. Finally, Section 6
contains a brief summary.

2. Stochastic Segment Vodel

In this section, we define the stochastic segment model
for an observed sequence of speech frames X =[x ¢5... x|
where ; is a k-dimensional feature vector. We can think of
this observation as a variable-length realization of an
underlying fixed-length spectral trajectory Y =(y; ¥3... ¥pl
where the duration of X is variable due to variation in speaking
rate. Given X, we define the fixed-length representation

Y = XT where the L x m matrix T}, called the resampling

transformation, represents a time-warping. The segment Y,
called a resampled segment, is an m-long sequence of
k-dimensional vectors (or a k x m matrix). The stochastic
segment model for each phoneme a is based on the resampled
segment Y and is a conditional probability density function
p(Yla). The density p(Yla) is assumed to be multivariate
Gaussian which is a km-dimensional model for the entire fixed-
length segment Y.

Resampling Transformations

The resampling transformation Ty is an L x m mairix used
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phoneme. Evidence of the importance of spectral correlation to transform an L-length observed segment X into an m-length ;7.:_7.
over the duration of a segment can be found in the success of resampled segment Y. We considered several different P
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to sample the segment trajectory.  Sampling without
interpolation refers to choosing the nearest observation in time
to the sample point, rather than interpolating to find a value at
the sample point.

[

Figure 1: Input segment (o) and corresponding
resampled segment (x). The two axes correspond to two
cepstral coefficients.

Figure | shows an input segment with duration six in two-
dimensional space and the corresponding resampled Y (with m
= 4) using linear time warping without interpolation. The
resampling transformation in this case is:

1000
0000
T= 10100
0010
0000
0001

Probabilistic Model

As already mentioned, the segment model is a
multivariate Gaussian based on the resampled segment Y,
p(Yla). Recall that resampled segments are km-dimensional,
where k is the number of spectral features per sample and m is
the number of samples. In this work, typically k=14 and m=10.
Consequently, the segment model has 140 dimensions.
Because of insufficient training, we cannot estimate the full
phoneme-dependent covariance matrix, so we must make some
simplifying assumptions about the structure of the problem.
For the experiments reported here, we assume that the m
samples of the resampled segment are independent of each
other, which gives a block diagonal covariance structure for Y,
where each block in the segment covariance matrix
corresponds to the k x k covariance of a sample. The log of the
conditional probability of a segment Y given phoneme a can
then be expressed as

m
Inlp(Yie] = 3" In(py Joo), (M
=l

where p (v.la) is a k-dimensional multivariate Gaussian model
for the j-th sample in the segment. The block-diagonal
structure saves a factor of m in storage and a factor of m? in
computation. The disadvantage of this approach is that the
assumption of independence is not valid, particularly if
resampling does not use interpolation wher= adjacent samples

11

may be identical. In the future, with more training data, we
hope to relax this assumption. 1t is likely that more detailed
probabilistic models, such as Gaussian mixture models [5] and
context-dependent (conditional) models (2, 3]. will yield better
recognition results than the simple Gaussian model. However,
due to larger training requirements we did not pursue these
models in this work.

Properties of the Segment Model

There are several aspects of the stochastic segment model
which are useful properties for a speech recognition system.
First, the transformation Ty, which maps the variable-length
observation to a fixed-length segment, can be designed to
constrain the temporal structure of a phoneme model so that all
portions of the model are used in the recognition. We
conjecture that the fixed transformation will provide a better
model of phoneme temporal/spectral structure than either
HMM or DTW. Second, the segment model is a joint
representation of the phoneme, so the model can capture
correlation structure on a segmental level. In HMM, frames
are assumed_independent given the state sequence. In the
segment model, no assumptions of independence are
necessary, though the model of Y given by Equation 1 is based
on the assumption of sample independence because of limited
training data in this study. The model is potentially more
general than the special case of (1). Lastly, by using a segment
model we can compute segment level features for phoneme
recognition. In other words, the segment model provides a
good structure for incorporating acoustic-phonetic features in a
statistical (rather than rule-based) recognition system. For
example, one might want to measure and incorporate formant
frequency or energy differences over a segment. Section S
includes results where sample duration is used as a feature,
which can only be computed given the length of the entire
segment.

3. Recognition Algorithm

In this section, we describe the recognition algorithm.
First, we describeconsider the case when the input is
phonetically hand-segmented. Then, we gencralize to
automatic recognition, that is, joint segmentation ard
recognition of continuous speech.

When the segmentation of the input is known, we
consider a single segment X independently of neiguboring
segments. The input segment X is resampled as segment Y.

The recognition algorithm is then to find the phoneme @ that
maximizes p(Yla):

A
o= arg maxin(p(Ylo)p(a)) (2)
o

where In[p(Yla)] is given by Equation 1. This decision rule 1s
equivalent to a maximum a-posteriori rule.

In an automatic recognition system, it is necessary to find
the segmentation as well as to recognize the phonemes. In this
case, we hypothesize all possible segmentations of the input,
and for each hypothesized segmentation s of the input 1nto n
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A
segments, we choose the sequence of phonemes a that
maximizes:

L) A A
J(»)= Y | LG) Inlp(Y Ja)p(ay) + C)
i=|
where L(i) is the duration of the i-th segment, Y; is the
:csampled segment comresponding to the i-th segment in s, and

3

@ is the phoneme that maximizes p(Yjla)p(a). The cost C is
adjusted to control the segment rate. An efficient solution to
joint segmentation and recognition is implemented using a
dynamic programming algorithm.  Note that for joint
segmentation and recognition, it is necessary to weight the
segment probability by the duration of the segment, so that
longer segments contribute proportionatel’ liigher scores to the
match score J(.) of the whole sequence.

4. Tratning Algorithm

In this section, we present the training algorithm for
estimating the segment models from continuous speech. We
assume that the phonetic transcription of the training datwa is
known and that we have an initial Gaussian model, py(Yla) for
all phonemes. (Phonetic transcriptions can be generated
automatically from the word sequence that cormresponds to the
speech by using a word pronunciation dictionary.) We assume
that the phonetic sequence a has length n. The algorithm
comprises two steps: automatic segmentation and parameter
estimation. The algorithm maximizes the log likelihood of the
optimal segmentation for the phonetic transcription, where the
log likelthood of a segmentation s is given by:

N
() =3 Inip(Ya)p(a)) 4

where Y, is the resampled segment that corresponds to the i-th
segment in the segmentation s and @ is the i-th phoneme in the
sequence & With t = 0, the iterative algorithm is given by:

1. Find the segmentation g, of the training data that
maximizes I(s,) for the given transcription and the
current probability densities (p(Yla)}.

2. Find the maximum likelthood estimate for the
densities (p,, (Yla)) of all phonemes, using the
segmentation §,.

Jt<-t+ | andgoto Step |

Both steps of the algorithm are guaranteed to increase I(s)) with
t. If there are at least two different observations of every
phoneme, then the probability of the sequence is bounded.
Hence, the iterative training algorithm converges to a local
optimum. Step 1 is implemented as a dynamic programming
search whose complexity is linear with the number of phonetic
models N. Step 2 is the usual sample mean and sample
covariance maximum likelihood estimates for Gaussian
densities.
5. Expertmental Results

In this section we will present results for a phoneme
recognition task, as well as word recognuion results for a
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segment-based recognition system and an HMM-based system. E‘\':\}:
All experiments use m = 10 samples per segment and k = 14 TN
mel-frequency cepstral coefficients per sample. These values S
are based on work in segment quantization (6], and limited ."::J':
experimentation confirmed that these values represent a ':-,'{*
reasonable compromise between complexity and pertormance. L“"‘i
Speech is sampled at 20 kHz, and analyzed every 10 ms with a -
20 ms Hamming window. W
'

Phoneme Recognition

The database used for phoneme recognition is
approximately five minutes of continuous speech from a single E

speaker. The test set contains 270 phonemes. Both the test set NaSR
and the training set are hand-labelled and segmented, using a '::-,'::-'
61 symbol phonetic alphabet. In counting errors, an ‘AX' S
(schwa) recognized as 'IX' (fronted schwa) is considered -“,'{-‘v"_'
acceptably correct, as is an "URT' (unreleased T) recognized as ":‘:"::‘
a 'T'. All recognition rates presented represent “acceptably £ %

correct” recognition rates. The acceptable recognition rate is
typically 6% to 8% higher than the strictly correct recognition
rate.

Phoneme recognition results for three different cases are
given in Table 1. The results illustrate a small degradation in
performance due to moving from recognition based on
manually segmented data to automatic recognition. Using
automatic training does not degrade performance any further.

We also experimented with using an additional segmental
feature to the cepstral parameters: sample duration which
requires knowledge of the hypothesized duration of the
segment. Using joint segmentation and recognition with hand-
segmented training data, performance improved from 74.4% to
75.9% as a result of using the duration feature.

Training Test % %
Segmentation | Segmentation | Recognition Insertion
Manual Manual 78.5 0.0
Manual Automatic 744 10.0
Automatic Automatic 73.7 78

Table I: Recognition results using manually segmented
speech and automatically segmented speech.

For reference, a discrete hidden Markov model with 3
states/phoneme and using a codebook with 256 entries has 62%
phonetic recognition rate with 12% insertions. The HMM
recognition performance on this database is higher when
phoneme models are conditioned on left context, 75% correct -
with 12% insertions {2]. In the lauer case. 600 left-context
phonetic models are used in the HMM system while 61
phonetic models are used in the stochastic segment model.

Word Recognition

The segment-based word recognition system consists of a
dictionary of phoneme pronunciation networks and a collection
of segment phoneme models. A word model is budt by
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concatenating phoneme models according to the pronunciation
network. The recognition algorithm is simply a dynamic
programming search (Viterbi decoding) of all possible word
sequences. For the results in this paper, we assume that words
are independent and equally probable; there is no grammar
(statistical or deterministic) associated with recognition.
Within each word, we find the best phoneme segmentation for
that word, where the phoneme sequence is constrained by the
word pronunciation network.

For continuous speech word recognition, we used a 350
word vocabulary, speaker-dependent database based on an
electronic mail task. We present results for three different
male speakers. Fifteen minutes of speech was used for training
the 61 phoneme models for each speaker, from which the word

models were then built. An additional 30 sentences (187

words) are used for recognition. Analysis parameters are the

same as for the previous database. Again, “acceptable” error

rates are reported here, where in this case, homophones such as
" "

“two" and “to" are considered acceptable errors. Since we do
not use a grammar, homophones are indistinguishable.

The initial segment models are obtained on training from
segmentations given by a discrete hidden Markov model
recognition system. The results after one pass of training of
the segment model for the three speakers are summarized in
Table 2. The HMM recognition results are also given for
comparison. For the HMM results, five passes of the forward-
backward training algorithm are performed. The segment
phoneme system outperforms the phoneme-based HMM
system, reducing the ermor rate by one third (including
insertions). However, the segment phoneme system does not
quite match the HMM context model system. This suggests
that context-dependent segment models might be useful. Note
that in the earlier phoneme results, the segment systein
matched the performance of HMM models conditioned on left
context only. Here we give results for HMM models
conditioned on both left and right context. The HMM system
with context models conditioned on both left and right context
uses 2000 models, or thiny times the number used by the
segment system.

Segment- HMM.- HMM-
Speaker PH PH PH-LE-RI
RS 87/5.3 85/10.2 90/1.1
FK 83/2.1 75/ 5.4 88/2.7
AW 78/3.7 68/17.5 86/3.7
Average 8373.7 76/17.7 88/2.5
Table 2: Word recognition/insertion rates for three

speakers for the segment phoneme system and for two
HMM systems: phoneme models and phoneme models
conditioned on the left and right context.

6. Conclusion

To summarize, we feel that the segmeni model offers the
potential for large improvements in speaker-dependem acoustic
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‘segmented case at the cost of a few

modelling of phonemes in continuous speech. Our initial
results demonstrate the potential of the approach. Of course, a
practical system requires automatic training and recognition,
which we demonstrated to perform close to the hand-
insertions.  For
comparison, the automatic segment system reduces the word
error rate by one third over an HMM system on a 350-word
continuous speech recognition task.
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Abstract

This paper deals with rapid speaker adaptation for speech
recognition. We introduce a new algorithm that transforms
hidden Markov models of speech derived from one "prototype”
speaker so that they model the speech of a new speaker. The
speaker normmalization is accomplished by a probabilistic
spectral mapping from one speaker to another. For a 350 word
task with a grammar and using only 15 seconds of speech for
normalization, the recognition accuracy is 97% averaged over
6 speakers. This accuracy would nomally require over §
minutes of speaker dependent training. We derive the
probabilistic spectral transformation of HMMs, describe an
algorithm to estimate the transformation, and present
recognition results.

1. Introduction

We have previously demonstrated our techniques for
robust modeling of phonetic coarticulation for large
vocabulary, continuous speech recognition [1). The technique
combines detailed conrext-dependent phonetic hidden Markov
models (HMM) with robust conrext-independent models to
improve word recognition accuracy. The BBN Speech
Recognition System (BYBLOS) integrates many components
to allow accurate speech recognition with a grammar (2). On a
350-word continuous speech recognition task, the word
recognition accuracy was 90% with no grammar, and
98%-99% with a grammar. To achieve this high recognition
accuracy, each speaker read 300 training sentences or about 15
minutes of training speech.

Some speech recognition applications have a need for a
new speaker to begin using the system with reasonable
accuracy without investing a long time to train the sy'stem on
their voice. However, as we will see in section 4, the speaker-
dependent performance degrades dramatically when the
amount of training speech is reduced using the standard
training procedure.

The approach that we consider in this paper is to
normalize well-trained models from a "prototype” speaker, to
model the speech of the new speaker. The normalization
requires only a few sentences (referred to as “nommalization
speech”) from the new speaker.

In Section 2, we derive and present a procedure for
estimating a probabilistic spectral mapping from one speaker to
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another. Experiments to test these procedures are described i ;
Section 3. The results of the experiments are analyzed in X
Section 4. o2 ‘j‘
2. Probabilistic Mapping i

In this section we present the basis for the probabilistic ‘::\
transformation and show it to be equivalent to an expanded A
HMM model for each state of the original HMM. The F
transformation is generalized to be partially dependent on the TR
paticular phoneme. Finally, we present two detailed e
algorithms for estimating the probabilistic mapping. :._-_\'.‘
Discrete Hidden Markov Models bl

i

For each state of a discrete HMM, we have a discrete ((‘?:S
probability density function (pdf) defined over a fixed set, &,
of spectral templates. For example, in the BYBLOS system we ,-f':.}'-
typically use a vector quantization {(VQ) codebook of size C{n
N=256 [3). The index of the closest template is referred to :.'.'.t
below as the "quantized spectrum”. We can view the discrete .‘I-".ix
pdf for each state s as a probability row vector '.'::Vg

Zax'y

pts) = [ptkyls), plkqls), ... plkads)], (N
where p(k ls) is the probability of spectral template &, at state s. i:':-‘\{
Mapping From Prototype to New Speaker ::::;t

If we define a quantized spectrum for the prototype Sf‘ti‘
speaker as k, 1SiSN, where i is the index of the spectral ’&i
template and a quantized spectrum for the new speaker as by
kK, 1SjSN, then we denote the probability that the new e,
speaker will produce quantized spectrum L/‘. given that the ol
prototype speaker produced spectrum k, as p(k'Ik) for all i, ;. .::.:-:

NS

We can rewrite the probability for spectrum k’l given a r:;f‘,:-

particular state s of the HMM as [
v fahil

(K 15) = ptklsy ptk’ 1k s) (2) A

ne, ',z( ' i ")W:

If we assume that the probability of K’ given & is “i:
independent of s, then -.:_5,:

N Wi
piKls) = 3 plkls) ptk’ k) (&) oK
1= \

The set of probabilines ptk”  for all 4 and ; form an r"':_x:
NxN matrix, T that can be thought of as a probabilistic \:_-:_
transformation from one speaker’s spectral space 1o another’s (o
We can compute the discrete pdf, p'ts) at state s for the new ﬁ*.-\'j
speaker as the product of the row vector, pts) and the matnx, }::,:J
T. .'\.r...
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Expanded HMM Formulation

The probabilistic transformation can also be described in
terms of an expanded HMM model for the state. Figure la
shows a single state of the HMM for a new speaker. It
contains a single discrete probability vector, p’(s). Figure 1b
shows an expanded model in which the single state is replace
hv N parallel paths.

a)
&y (n)

o, ,(8-1) 0—.—. oyte)

b)

plk,Is)

oy 4(s-1)

plk,,Is)

Figure I: Expanded HMM. a) single state of the

HMM; b) expanded model separating prototype pdf and
transformation matrix.

The transition probability for path i is p(k/ls), the probability of
the quantized spectrum, k; given the same state s for the
prototype speaker. The discrete pdf on that path is p(k'lk,),
which corresponds to row i of the transformation matrix.

Careful inspection of the figure will reveal that the
probability of any new-speaker spectrum, ¥, for the expanded
HMM shown is a summation of the Jth pro{mbilily over all ¥
paths, as given in (3). Therefore, Figure 1a represents the left
side of equation 4, while figure 1b represents the right side.
Now that we have decomposed cach pdf for the new speaker
into s components, we can use the forward-backward
algorithm to estimate the transformation matrix while keeping
the prototype pdf fixed. Then, once the matrix has been
determined, we can replace the expanded HMM by the single
pdf resultiny from the vector-mainx multiplication in (4).

Phoneme-Dependent Transformation

The independence assumption in (3) above assumes that a
single (probabilistic) spectral mapping will transform the
speech of one speaker to that of another. However, we know
that some of the differences between speakers cannot be
modeled this simply. We can define a phoneme-dependent
mapping:

N
pikls) = Z: PIS) pUk Tk o(s)) (5)
=

where &(s) specifies the equivalence class of states in models
that represent the same phoneme as 5. Since the amount of
training speech from the new speaker will be small, we coult
not hope to have enough samples of each phoneme 10 estimate
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a reliable mapping for all phonemes. Therefore, we interpolate
the phoneme-dependent transformation matrix with the
phoneme-independent transformation matrix. The weight for
the combination depends on the number of observed frames of
the particular phoneme. Thus for those phonemes that occur
several times in the normalization speech, the transformatim
will depend mosty on that particular phoneme.

Detailed Algorithm
The algorithm begins with a VQ codebook and well-

trained context-dependent and context-independent  pdfs
derived from a prototype speaker A small number of
sentences are read by the new speaker. The new

(normalization) speech is quantized using the prototype
speaker’s VQ codebook. (This step may be a source of
reduced performance, and will be discussed further in Section
4.) Then, we use a modification of the standard forward-
backward algorithm to estimate the phoneme-dependent and
phoneme-independent transformation matrices.

To save computation and storage we use p'ts), the
compact HMM in Figure 1a to compute the partial (@ and p)
terms in the forward-backward algorithm. The forwar!
backward "counts” are added to a separate count matrix. (Two
methods for computing the counts are defined at the end of this
subsection.) Since we have no a priori transformation matrix,
we must provide an initial estimate. To minimize computation
we use an identity matrix for the first transformation (that is,
we just use the prototype pdf as is). However, when we
compute the counts in the first pass, the transformation matrix
is a constant value of I/N. After the first pass, the same matrix
is used both for forward-backward panial terms and for
computing the counts. At the end of each pass through the
nonnalization data, each row of the count matnx, which
corresponds to p(k'lk,), the transformation given one prototype
spectrum 4; is rescaled so it sums to 1 This normalized count
matrix then becomes the new probabilistic transformation
matrix. After the firal pass we transform all the prototype
models using (4).

Computing Counts - Method 1:

For cach alignment of a state with an observed quantized
spectrum, k'(!):k'/. the prototype pdf vector. p(s), is multiplied
by column j of the transformation matrix, p(k'jlk‘) 1SISN
This vector product is multiplied by the constants a,_(s=1)
and B,(.r) {shown in Figure 1b) and then accumulated in column
J of the count matrix. a,_,(s=1) is the probability of the
observed spectra from frames | through r-1 given the models
up to but not including state 5. B(s) is the probability of the
observed spectra from the end of the sentence back to time r+1
given the models after state 5. This method corresponds to the
standard (maximum likelihood) forward-backward algonithim
for the HMM shown n Figure 1b.

Computing Counts - Method 2:

Method 2 1s similar 10 Method |, wuh the exception that
the prototype pdf vector is multiplicd by the constants a,(s) and
B,(s) (shown in Figure 1b) and then added to the corresponding
column of the count matrix. That is the counts are computed as
the probability of being in state s at tune r. nmes the prototvpe
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pdf. We found that only one pass of the algorithm is necessary
for Method 2, making it preferable in terms of computation.
We also found that this method results in slightly better
performance than Method |.  Therefore all results quoted
below are for Method 2.

3. Experiments

Database

We have performed experiments on a 350-word subset of
a naval database retrieval task (FCCBMP), The task has a
fairly rich structure and allows many different types of
questions and cornmands. The prototype speaker recorded 400
sentences in 4 sesstons of 100 sentences each, separated by a
few days. The first three sessions were designated as training
data, and the last as test material. At an average of 3 seconds
per sentence, the total duration of the training material was thus
about 15 ininutes for the prototype speaker.

Each of 6 new speakers then recorded a subset of the
training sentences and, in a separate session, the 100 test
sentences. The 6 speakers included one female, one non-native
speaker, one experienced speaker, and three inexperienced
speakers.

We constructed a dictionary of phonetic pronunciations
for the vocabulary without listening to either the training or test
material. With very few exceptions, only one pronunciation
was chosen for each word.

The sentences were read directly into a close-talking
microphone in a natural but deliberate style in a quiet office
environment. The speech was lowpass filtered at 10 kHz and
sampled at 20 kHz.  Founteen Mel-frequency cepstral
coefficients (MFCC) were computed every 10 ms on a 20 ms
analysis window. One half of the training speech of the
prototype spcaker was used to derive a speaker-dependent VQ
codebook. Then all the recorded speech for all speakers was
quantized using this codebouk.

Training

The 15 minutes of speech from the prototype speaker was
used, together with the phonetic dictionary to estimate
context-dependent and context-independent phonetic models.
The speech models for the new test speakers were computed in
two ways; Speaker-Dependent  training and Speaker
Normalization. In addition to these two models for the new
spcaker, we also performed control experiments using the
prototype speaker’s models without any change. These
unaitered models are designated "Cross-Speaker” models.
Prior to recognition, the phonetic models were combined and
concatenated into word models to faclitate the word
recognition process.

Recognition

We used the time-synchronous search procedure
described in 4] to find the most likely sequence of words for
cach test sentence. Recognition experiments were performed
both with and without a grammar. When no grammar was
used, the effective branching factor was equal to the
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vocabulary size (350). The grammar used had a Maximum
Perplexity {5] of 30 and an estimated Perplexity [6] of 20
(measured on a test set). The recognized sequence of words
was then compared automatically to the correct answer to
determine the percentage of errors of each 1ype: substitutions,
deletions and insertions.

4. Results

We use an error measure that reflects all three 1ypes of
errors in' a single number. The percent error is given by

100 substitutions + deletions + insertions
total words + insertions

Yoerror =

The word accuracy is then defined as 100 - %error. Note that
this definition is different from the percent correct words.

Figure 2 below shows the recognition error as a function
of the amount of training ¢peech (on a log scale) for both
training conditions. For reference, the results using the Cross-
Speaker models are also shown. Some of the conditions that
did not seem to warrant extensive testing (e.g., 15 second
speaker-dependent training) were evaluated using a subset of
the spcakers. More critical results (e.g., 15 second spcaker
normalization) were evaluated using all 6 speakers.

The recognition error varied lets with the duration of
speech for speaker normalization than for speaker-dependent
training - particularly when a grammar was used. The error
rate with 15 seconds of normalization speech was about the
same as achieved by the specaker-dependent training method
with 6 to 10 minutes of training speech. In particular, when a
grammar was used, the word recognition error with only 15
seconds of normalization speech from each speaker was 4%

(97% correct words with 1% insertions.)
Cross
Spelaker 1.'; s
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Speaker-Dependent Training vs Normalization.
Speaker-Dependent Training (O); Speaker Normalization
(0). Cross-Speaker Results (A). The solid line indicates
accuracy with a grammar; the dashed line indicates no
grammar.
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Detail vs Robustness

We can see from the results with and without a grammar
that the speaker transformation seems to be much more
successful when a grammar is used. That is, the eror
decreased by a bigger factor (from speaker-dependent training
to the normalization algorithm) when a grammar was used than
when no grammar was used.

When no grammar is used in speech recognition it is
important that the models be sharply tuned to make fine
distinctions. Occassional errors will result from a finely tuned
model that was inadequately trainea. In contrast, we assume
that when a grammar is used the number of words allowed at
cach point is small relative to the vocabulary size. In this case
it is less likely that fine phonetic distinctions will be necessary.
To get very high performance, it becomes more important that
the correct word never get a very low score.

We have observed that the pdfs resulting from the speaker
normalization procedure are typically broader than those
resulting from speaker-dependent training. We surmise that
this effect, combined with the appropriate spectral mapping
between the speakers, accounts for the large improvement in
accuracy when a grammar is used.

Source of Errors

We performed a series of experiments on one speaker in
an effort to determine whether the major source of errors is the
duration of normalization of speech, the normalization
procedure itself, or the fact that the VQ codebook of the
prototype speaker is used for the new speaker. We present the
recognition results (using no grammar) in Table 1 below.

Condition % error
15 min spkr-dependent training 16%
Proiotype VQ codebook 24%
15 min nonnalization 27%
5 min nonnalization 30%
2 min normalization 33%

Tahle I: Source of Recognition Errors.
Each line changes one experimental condition.

As we see in the table, the largest increase in word error is
the result of using a VQ codebook that was not designed for
the new speaker. Our next step, theretore, will be to derive a
codebook for the new speaker from a combination of the new
speech and the prototype speaker’s codebook. This expanded
codebook will form the basis for the normalized pdf models.

5. Summary
We have presented a method for transforming the discrete
HMM models of one speaker so that they are appropriate for a

to estimaie a probabilistic spectral mapping from a well-trained
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second speaker. The procedure uses a small amount of speech

prototype speaker to a new speaker. The recognition accuracy
with 15 seconds of normalization speech and a grammar (tested
on a set of 6 diverse speakers) was 97% with 1% word
insertions.

The method also makes the HMM models more robust,
which is most appropriate when a grammar is used. There is
some evidence that the speaker normalization performance
suffers because we use the prototype speaker’s VQ codebook
for the new speaker. In future work we will investigate
speaker-adaptive VQ codebooks for speaker normalization.
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Abstract

In this paper, we describe BYBLOS, the BBN continuous
speech recognition system. The system., designed for large
vocabulary applications, integrates acoustic, phonetic, lexical,
and linguistic knowledge sources to achieve high recognition
performance. The basic approach, as described in previous
papers [1, 2], makes extensive use of robust context-dependent
models of phonetic coarticulation using Hidden Markov
Models (HMM). We describe the components of the BYBLOS
system, including:  signal processing frontend, dictionary,
phonetic model training system, word model generator,
grammar and decoder. In recognition experiments, we
demonstrate consistently high word recognition performance
on continuous speech across: speakers, task domains, and
grammars of varying complexity. In speaker-dependent mode,
where 15 minutes of speech is required for training to a
speaker, 98.5% word accuracy has been achieved in continuous
speech for a 350-word task, using grammars with perplexity
ranging from 30 to 60. With only 15 seconds of training
speech we demonstrate performance of 97% using a grammar.

1. Introduction

Speech is a natural and convenient form of
communication between man and machine. The speech signal,
however, is inherently variable and highly encoded. Vaut
differences occur in the realizations of speech units related to
context, style of speech, dialect, talker. This makes the task of
large vocabulary continuous speech recognition (CSR) by
machine a very difficult one. Fortunately, speech is also
structured and redundant: information about the linguistic
content in the speech signal is often present at the various
linguistic levels. To achieve acceptable performance, the
recognition system must be able to exploit the redundancy
inherent in the speech signal by bringing multiple sources of
knowledge to bear. In general, these can include: acoustic-
phonetic, phonological, lexical, syntactic, semantic and
pragmatic knowledge sources (KS). In addition to designing
representations for these KSs, methodologies must be
developed for interfacing them and combining them into a
uniform structure. An effeciive and coherent search strategy
can then be applied based on global . .sion criteria. Practical
issues that need to be resolved include compuiaion and
memory requirements, and hc they could be traded off to
obtain the desired combinaiion of speed and performance.

In BYBIL.OS. we have explored many issues thai arise in

designing a large and complex system for continuous speech
recognition. This paper is organized as follows. Section 2
gives an overview of the BYBLOS system. Section 3
describes our signal processing frontend. Section 4 describes
the trainer system used for phonetic model knowledge
acquisition. Section 5 describes the word model generator
module that compiles word HMMs for each lexical item.
Section 6 describes the syntactic/grammatical knowledge
source that operates on a set of context-free rules describing
the task domain to produce an equivalent finite state autormnaton
used in the recognizer. Section 7 describes the BYBLOS
recognition decoder using combined multiple sources of
knowledge. Finally, Section 8 presents some figures and
discussions on BYBLOS recognition performance.

2. Byblos System Overview

Figure | is a block diagram of the BYBLOS continuous
speech recognition system. We show the different modlules
and knowledge sources that comprise the compleie system. the
arrows indicating the flow of module/KS interactions. The
modules are represented by rectangular boxes. They are,
starting from the top: Trainer, Word Model Generator, and
Decoder. Also shown are the knowledge sources, which are
represented by the ellipses. They include: Acoustic-Phonetic,
Lexical, and Grammatic knowledge sources. We will describe
briefly the various modules and how they interact with the
various KSs.

Acoustic-Phonetic KS

The Trainer module is used for the acquisition of the
acoustic-phonetic knowledge source. It takes as input a
dictionary and training speech and text, and produces a
database of context-dependent HMMs of phonemes.

Lexical KS

The Word Model Generator module takes as inpu the
phonetic models database, and compiles word models phonetic
models. It uses the dictionary - the lexical KS, in which
phonological rules of English are used to represent each lexical
item in terms of their most likely phonetic spellings. The
lexical KS imposes phonoiactic contraints by allowing only
legal sequences of phonemes to be hypothesized in the
recognizer, reducing the search space and improves
performance. The output of the Word Model Generaior is a
daiabase of word models used in the recognizer.
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Grammatical KS

More recently, we have been working on representation
and integration of higher levels of knowledge sources into
BYBLOS, including both syntactic and semantic KSs. By
incorporating both of these KSs into BYBLOS in the form of a
grammar into our recognizer, we demonstrate @provcd
recognition performance. In Section 6, we describe the
Grammatical KS in more detail.

Speech Text
Tralning
Tralner
e eeeeneanas Datsbasa ol Fhonatic |
Ward Madal phanelic Modals Digtlanary
Compilation
Ward Model
Qaneralar
Datsbimss of
Recognition Word Models .
Speech — Decodar Word
Input Sequence

Figure I: BYBLOS System Diagram.

3. Signal Processing and Analysis Component

The BYBLOS signal processing frontend performs
feature extraction for the acoustic models used in recognition.
Sentences are read directly into a close talking microphone in a
natural but deliberate style in a normal office environment.
The input speech is lowpass filtered at 10 kHz and sampled at
20 kHz. Fourteen Mel-frequency cepstral coefficients (MFCC)
are computed from short-termn spectra every 10 ms using a 20
ms analysis window. This MFCC feature vector is then vector
quantized to an o-bit (256 bins) representation. The vector
quantization (VQ) codebook is computed using the k-means
clustering algorithm with about 5 minutes of speech. We
perform a variable-frame-rate (VFR) compression in which
strings of up to 3 identical vector codes are compressed to a
single observation cade. We found this VFR procedure speeds
up computation with no loss in performance.

4. Training/Acquisition Of Phonetic
Coarticulation Models

The training system in BYBLOS acquires and estimates
the phonetic coarticulation models used in recognition. Given

that we model speech parameters as probabilistic functions of a
hidden Markov chain, we make use of the Baum-Welch (also
known as the Forward-Backward) algorithm (3] to estimate the

 parameters of the HMMs automatically from spoken speech

and corresponding text transcription. For each training
utterance, the training svstem takes speech and text, and builds
a network of phonemes using the dictionary. It firsi builds the
" “netic network for the word by using the phonetic
transcription provided by the dictionary. The phonetic network
is expanded into a triphone network so that each arc
completely defines a phonetic context up to the triphone.

. These triphone networks of the word are then concatenated to

form a single network for the sentence, which'in general can
take into account within word as well as across-word
phonological effects. The training system then compiles a set
of phonetic context models for each tnphone arc in the
network. It then runs the forward-backward algorithm to
estimate the parameters of the phonetic comext models. The
Trainer operates in two modes: speaker-dependent and
speaker-adapted. Associated with these two modes are two
distinct methods for training the parameters of the hidden
Markov models described below.

Speaker-Dependent

This is the algorithm used to find the parameters of the
HMMs that maximizes the probability of the observed data
given the model. This method produces HMMs that are finely
tuned to a particular speaker, therefore in general would work
well only for this speaker. Typically about 15 minutes of
speech from a speaker is required for speaker-dependent
training.

Speaker-Adapted

This is a new method of training that transforms HMM
models of one speaker to inodel the speech of a second speaker
I4]. This procedure estimates a probabilistic spectral mapping
from a well-trained prototype speaker to a new speaker Using
this method it is possible for a new speaker to used the sysiem
with as little as 15 seconds of speech.

5. Word Model Generator

Prior to recognition, word HMMs are computed for each
word in the vocabulary. The word model generator takes as
input two objects: a database of phonetic HMMs as obiained
in training, and a dictionary that contains phonetic spellings for
each word. For each phoneme in each word of the lexicon, it
first finds in the phonetic HMM database all the context
models that are relevant to this phoneme in its particular
phonetic environment. [t then combines this set of phonetic
models with appropriate weights to produce a single HMM for
each phoneme in the word. This combination process saves
compuiation by precompiling the many levels of phonetic
coniext models that can occur for a given phonetic comext into

. 2 single representation. The outpm of the word model

generator is a database of word HMMSs serving as the input to
the decoder.
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6. Grammatical Knowledge Source

To solve the CSR problem requires major advances in
two areas: acoustic modeling and language modeling. A good
acoustic model is essential in making fine phonetic distinctions
when needed. However, it is not sufficient by itself to solve
the CSR problem. In a complex task with large vocabulary
where the number of hypothesized word candidates is large,
the probability for acoustic confusability can be high, and the
recognizer could make emors. A conceptually simple yet
effective way to restrict the number of words that are allowed
to be hypothesized, and therefore decrease probability of
acoustic similarity, is to incofporate a grammar into the
recognizer It is well known that recognition performance
improves as vocabulary size decreases. Similarly, when
syntactical information is used to reduce the number of words
that can legally follow a given sequence of words, a recognizer
is expected to make fewer errors. The purpose for using a
grammar then, is to improve recognition performance, with an
added benefit of reducedcomputation.

Grammar Design and Implementation

We approach the implementation of a grammar in
BYBLOS in two stages. First, we create a description of the
task domain language using a modified context-free notation.

‘Typically this description is based on a representative set of

sentences that characterizes the task domain, and is designed tc
capture generalizations of the linguistic phenomena found in
them. Second, we use a tool that transforms this description
into structures in our recognizer that provide the corresponding
grammatical constraints. This tool provides us with a general
facility for capturing in BYBLOS an approximation of any
language expressible in context-free grammars (CFG)
expressed as context-free rules. We elected to implement the
grammatical constraints in the form of a finite state automaton
(FA) similar to those described in [5].

At the first stage in generating a grammar, we use a
context-free notation augumented with variables in order to
simplify the process of describing a language. For example,
this notation would allow a rule that says a noun phrase of any
number can be replaced by an article and a noun of the same
number; ordinary context-free notation would require two rules
that are identical except that one would be for singular number
and the other for plural.

Our system first translates the augmented notation into
ordinary CFGs and then constructs a FA based on these rules.
Because context-free grammars can accept recursive languages
and a FA cannot, recursion is approximated in the FA by
limiting the number of levels of r-cursion. Such an
approximation is reasonable for most wask languages, since
spoken sentences do not ordinarily use more than a few levels
of recursion.

7. Recognition Search Strategy

Once the FA is compiled from the context-free
description of the task domain, it is ready to be used in the
decoder. An important characteristic of a recognizer is the
search strategy that is used to find the word sequence that best

20

matches the input speech. We believe that an optimum search
strategy avoids making local decisions; the search decisicn
should be made globally, based on scores from all the KSs
One such search paradigm is the one used in BYBLOS: the
search is made top down, linguistically driven, with tightly
coupled KSs.

The FA is convenient for deploying such a search
strategy. It is used as follows in our recognizer. We associate
with each transition in the FA a hidden Markov model for the
word. This model is used to compute the probability of the
acoustic event (sequence of VQ spectra) given the occurrence
of the word ai that place in the grammar. Before the start of
recognition, the initial state of the FA where a legal sequence
of words can begin is initialized to unity, and all the other
states are initialized to zero. For each 10 ms frame of the input
speech, the scores for the states in all the words in the FA
network are updated using modified Baum-Welch algorithm
[2]. In addition to state updates within a word, a word can
have a score propagated to its initial state from its best scorng
predecessor word. This simple state update operation is
repeated every 10 ms for each FA transition until the end of the
utterance is reached. The decoder output is then computed by
tracing back through the FA network to find the highest
scoring sequence of words that end in the terminal state of the
FA.

One potential problem associated with using a FA
grammar for recognition is that computation is expected to be
proportional to the number of transitions in the FA. This
number can be quite large for complex languages. However, in
our experience with different grammars in our recognizer, we
find that a beam search effectively reduces the computation to
a very manageable level while maintaining the same
performance as that of an exhaustive search.

8. Byblos Recognition Performance

In (2], we presented word recognition results for a 334-
word electronic mail task. In speaker-dependent mode, we
demonstrated performance of 90% across several speakers
without the use of a grammar (i.e., branching factor of 334).
Since then, we have tested the system along many dimensions:
two task domains, FA grammars with varying perplexities,
varying amounts of adaptation speech, and different speaker
types. The results are tabulated in Figure 2. Below we
describe the different conditions in more detail.

Task Domains

The two task domains tested are: Electronic Mail
(EMAIL) and Naval Database Retrieval (FCCBMP). Both
tasks have vocabulary sizes of approximately 350 word (334
for EMAIL, 354 for FCCBMP). A description of the task
domain language was created using CFG. The CFGs were
designed to capture generalizations of linguistic phenomena
found in example task domain sentences.

Grammars
Two finite state grammars were generated for each task

domain: Command and Sentence. The Command Grammar in
each case was designed to cover only the command subset of
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EMAIL FCCBMP
Grammar/
: t
srpléxity Command Sentence{Command|Sentence!
Tralning (20) (30) (22) (30)
Tlme
15 minute 98.4 98.8 99.6 99.5
2 minute 97.9 94.9 96.6 96.2

Figure 2: BYBLOS Recognition Results.

Two task domains (EMAIL and FCCBMP),

two grammars for cach task

(Command and Sentence), and varying

amounts of training speech

(2 minutes and 15 minutes). Also shown are
maximum perplexity measures for the grammars.

the language; the Sentence Grammar was designed to cover all
of the language, which included both command and question
type constructs. The maximum perplexity measures of the
grammars, as proposed in [6], are shown in Figure 2. In both

tasks, the sentence grammars have a higher perplexity than
their command counterparts.

Adaptation Time

As described in Section 2, The BYBLOS operate in two
modes, speaker-dependent and speaker-adapted. In speaker-
dependent mode, 15 minutes of training speech is required for
a speaker. This mode in general will give word accuracy in the
98.5+ range. In the speaker-adaptive mode, anywhere from 2
minutes down to 15 seconds of speech from a new speaker is
needed to "adapt” the HMM parameters to the new speaker.
The performance in this case is 97%.

Speuker Type

We have tested BYBLOS on several speakers with
different dialects, including a female speaker, a non-native
speaker, and 3 naive (uncoached) speakers. The recognition
results for these speakers showed litile deviation typical male
speakers of standard American dialects.

9. Summary

We have presented BYBLOS, a system for large
vocabulary continuous speech recognition. We showed how
we integrate multiple sources of knowledge 1o achieve high
recognition performance. In recognition experiments, we
demonstrated consistent performances across task domains,
grammars, adaptation time, and speaker type.

We are currently working to improve various aspects of
the sysiem, including: a real time implemeniation of the
recognizer, search sirategy, acoustic modeling, and language
modeling. In the future, we plan to work on imegraiion of

speech and nawral language for speech understanding
applications.
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on a Large Scale Parallel Processor

Owen Kimball, Lynn Cosell,
Richard Schwartz, Michael Krasne.

BBN Laboratories
10 Moulton St.
Cambridge, MA 02238

Abstract

This paper presents research into the use of large-scale
parallelism for a continuous speech recognition algorithm. The
algorithm, developed for the BBN Byblos system (1], uses
context dependent Hidden-Markov models to achieve high
recognition accuracy. The multiprocessor used in the research,
the BBN Butterfly™ Parallel Processor, is a shared memory,
MIMD machine. The algorthm was implemented using the
Uniform System software methodology, a system that
simplifies parallel programming without sacrificing efficiency.
The algorithm is described, highlighting those portions critical
to an efficient parallel implementation. Some of the problems
encountered in trying to improve efficiency are presented as
well as the solutions to those problems. The algorithm is
shown to achieve 79% processor utilization on a 97-node
Butterfly Parallel Processor. This is equivalent to a speedup by
a factor of 77 over a single processor benchmark.!

1. Introduction

The introduction ‘of large-scale parallelism in computers
offers the potential for greatly increased speed and better
performance-cost ratios for algorithms that can make use of
this parallelism. This paper describes the parallel
implementation of a continuous-speech recognition algorithm
that successfully uses the speedup provided by a general
purpose multiprocessor, the Butterfly Parallel Processor.

The outline of this paper is as follows: Section 2
describes the Butterfly Parallel Processor and the Uniform
System, Section 3 describes the BBN word recognition
algorithm, Section 4 explains the initial parallel
implementation of the algorithm, Section 5 describes the
improvements to the algorithm for better processor utilization
and presents results based on these improvements. The final
section presents some conclustons from the work.

2. Butterfly and Uniform System
The Butterfly Parallel Processor (2] is composed of

multiple (up to 256) identical nodes, each containing a
processor and memory, interconnected by a high-performance

"This work was sponsored by the Defense Advanced Research Projects
Agency and was morutored by the Space and Naval Warfare Sysiems
Command under Contract No. N00039-85-C-0313.

The authors would like 10 thank William Crowther for his assisiance on the
binary-tree maximum and for other informauve discussions.

switch. The Butterfly architecture is multiple-instruction-
multiple-data-stream (MIMD), in which each processor node
exccutes its own sequence of instructions, referencing data as
specified by the instructions. Each processor node contains
either a Motorola MC68000 or MC68020 microprocessor, an
optional floating-point co-processor, from | to 4 megabytes of
main memory, a co-processor called the Processor Node
Controller, memory management hardware, an [-O bus, and an
interface to the Butterfly switch.

The Butterfly switch allows euch processor tc access the
memory on every other node. Collectively, these memories
form the shared memory of the machine, a single address space
accessible to every processor. All  interprocessor
communication is performed using shared memory.
Instructiens accessing memory on the same node as a processor
typically take about 2 microseconds to complete, whereas those
accessing memory on another node take about 5 or 6
microseconds. Block transfers from one memory to another
run at 4 megabytes per second. The machines used in this
project were 16-processor and 97-processor machines, each
with | megabyte of memory and a MC68000 microprocessor
on the processor nodes. Neither had hardware support for
floating point arithmetic.

The software for the project was written using the
Uniform System, a programming methodology supported by a
library of high-level subroutines (3]. The benefit of using the
Uniform System is that it can provide a simple, efficient
solution to the problem of load balancing for the memory as
well as for the processors. To balance the load on memory, the
Uniform System routines spread out the data evenly across the
different physical memories in the machine. Under the
assumption that distributed data will also distribute memory
accesses fairly evenly, this approach can reduce the
inefficiency that results when many processors attempt to
access the same memory simultaneously.

To balance the load on processors, the Uniform System
treats processors as a pool of identical workers, all of which
can execute the same tasks. In this way, tasks can be
dynamically assigned to the free processors in the machine. [n
a typical program, control starts out in a single processor of the
machine. To perform tasks in parallel, this processor calls a
Uniform System “generator” subroutine, specifying a set of
tasks to do and a task subroutine. The generator creates a
descriptor of the work to be done and starts ail proccssors. The
processors then perform the work in parallel, each taking the
next task data from the descriptor and executing the task
routine with this data until all the work is completed. At that
point, control is retumed to the original single processor. An

.
X .l e
o T
A

‘g

K
T

=

e .
-
» " .Y
(3
ety
-
AL 8 o

R, =)
}
B e e

1 e
.
.

e
5 .(-:l:_ o
LAy

a
1 4

b S e o}

P

r J: ‘:-‘ —_—
2T ;{ Y e
el I

l"
e

.
x
»



AT

, Qo

AL

Py

"y

. I [P Q ;\ ‘.j

example of a simple generator is GenOnl. The call 4. Initial Parallel Implementation ,,:: r
"GenOnl(task_routine, Ntasks)” assigns processors to perform .\\.'::.
the subroutine "task_routine” for every integer value in the As the first step toward a parallel implementation, the ':\"\.-"
range 1 to Ntasks. speech recognition program was ponted from VAX/VMS to a ;5.\: :

3. Recognition Algorithm

The Byblos system has two major components, a trainer
and a recognizer. The recognition component was
implemented on the Butterfly Parallel Processor. The training
component uses the forward-backward algorithm [4] to
estimate discrete-density Hidden-Markov models of context-
dependent phonemes. It combines these models to form word

single processor of the Buiterfly Parallel Processor Both
versions of the program were in the language *C'. The most
significant change to the program in this phase was the use of
the Uniform System memory management routines to store in
global shared memory about 1.5 megabytes of data that had
been stored on disk in the VAX version.

The VAX (and the first Butterfly System implementation)
used floating-point arithmetic, but because floating-point
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arithmetic is performed in software in our Butterfly Parallel _f.:v‘
models that are used in recognition. The context-dependent Processor, it is substantially slower than fixed point. For this :--'J‘.\:_
models lead to accurate and robust recognition performance; reason, the program was switched to fixed-point arithmetic. As R
the system has achieved 90% correct recognition on a 335 part of this change, multiplication of probabilities in the e
word speaker-dependent task with no grammar [5]. original version was convented to addition of corresponding log :;-:

probabilities. With this modification, the execution time was P

In the recognition process, input speech is analyzed every about two minutes for a 3.5 second utterance from a 120 word
10 ms and then vector quantized with a 256-vector codebook. task. This is about the same speed as our optimized floating ;-‘:‘ 3
The analysis and quantization are done in real time on an FPS point VAX 11/780 program. . ¢
array processor attached to a VAX. The quantization codes, bl
each representing a frame of input speech, are input in real Examination of the pseudo-code in the preceding section _:..":-f
time over an ethemet connection to the search algorithm on the leads to a natural decomposition of the algorthm: the :',':-\.“:
Butterfly Parallel Processor fundamental parallel task is to update the score of a single { :{-;.
word for a single input frame. Using the Uniform sysiem Ry
The search algorithm finds the best scoring sequence of generator GenOnl, the pseudo-code for the parallel version of -
words using the trained word models. Each possible sequence our algorithm becomes: .‘\’?:l:;
of words that is consxdcr.ed is callcd_a word sequence theory. FOR all frames { Sy
The search uses the Viterbi decoding algorithm to update best end score := 0 TaRH
scores for all word sequence theories at each frame. In order to max_score := 0 :"-:.,
prevent underflow during score updating, all theory scores are GenOnl(update_word, N_words) gt
normalized. To determine the "normalization factor” for a determine inilial state score for new lheories from besi_end_score ‘»,*:l_‘:
frame, the algorithm computes the maximum score of all states | determine normalizaton from max_score
in all words in the frame and sets the factor to the score ceiling delermine and report besi scoring theory R
minus the maximum score. ’ -
. ) ) . In this version, the subroutine update_word now includes RS
The major work being performed in the algorithm can be the calculation of max_score and besi_end score. Note tha :\-:,.‘
abstracted in pseudo-code as folinws: since the processor calling GenOnl waits for all processors to r"‘.r:':-
FOR all input frames ( finish before proceeding, this mechanism provides a ":v":n‘
max_score := synchronization that is needed to ensure that no processor i
besi_end_score :x 0 begins updating words of a new frame umil the initial state A
FOR all words { il : r st
update word score score and the normalization factor for the next frame have been <K
IF word_max_score > max_score computed. R
max_score := word_max_score €4
IF word_end_score > best_cnd_score Using this simple approach to paraliel implemeniation, a S
besi_end_score := vord_end_score first timing experiment was conducied using a 16-processor v;';:’;'
Helermins WIStk Sehrellor e IRGEisaliom bedt. Erdiscots machine and a 120-word vocabulary task. Processor utilizaton e
determinie normalizalon fcom miax score = was found to be 75%, i.e. the machine was effectively using i
| - the computation corresponding to 12 of the 16 actual KF:R
determine and report best scoring theory processors. [6]. This resull was judged to be good enough 1o ~:'\.-:‘\
) . . proceed directly to work on a luger machine. The first time \-:-‘-:'
The algorithm computes two maxima: max_score”, the the program was run on a 97-processor machine. processor A
maximum over all states of the words scored in an input frame, utilization was approximately 20%. Although this represents a N
and "best_end_score”, the maximum score of all words" final factor of 20 speedup of the program, it is an inefficient use of PIR%
states. The first maximum is used for the normalization facior the machine. The next section presents several factors that .
mentioned above, and the second is used to determine the score contributed to the inefficiency as well as the methods used to R
for the initial state of all words in the next frame. improve them. "-J'.:;.'
)- A
The core of this computation, the word score update, -;1'
entails updating all the phoremes in a word. Each phoneme A

update requires a litde less than one millisecond of
computation, and the average word update time is slighily
more than 4 milliseconds for the vocabularies used in this
work.
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5. Efficiency Improvements and Results

There are a number of potential obstacles to attaining
efficient processor utilization on a multiprocessor. Typical
issues include contention for a common memory location,
serial code in the program, and processors waiting idly to
synchronize with other processors. Each of the specific
problems described below includes one or more of these issues.

Number of Tasks and Startup Overhead

Even before the program was run on a larger machine, we
had anticipated that it would be haid to obtain high processor
utilization with a vocabulary as small as 120 words. Since our
long-term goal is to recognize speech from large vocabularies,
we switched to a larger task of 335 words. This change
improved processor utilization to 35% on the 97-processor
machine.

The speed of processor scheduling was examined next. In
the initial parallel version shown above, the generator
subroutine call starts all the processors at each frame. It was
found that the overhead of starting up was relatively large for
the amount of work being done at each frame. To reduce the
overhead, the program was altered to start all processors only
once at utterance start, generating NframesxNWords tasks at
that point and letting each .processor determine its word and
frame indices from the single task index it receives from the
generator. Processor utilization improved to about 50% with
this change.

Processor Synchronization Issues

The task generation change had removed the
synchronization provided by starting up a new generator at
each frame. To replace this, an explicit synchronization was
built into the program to be performed after all the words in a
frame were processed. There were two subsequent changes to
improve the efficiency of synchronization. The first dealt with
task ordering. In the early versions of the algonthm,
processors updated all the words in the vocabulary, with no
particular ordering of the words. Since words have varying
nimbers of phonemes (from one to 14 phonemes in this task’s
vocabulary), different words took different amounts of time to
update. If a processor began work on a long word near the end
of the work for a frame, other processors would finish their
assigned words and wait idly to synchronize with the one busy
processor. To reduce this inefficiency, the words were
processed in order from longest to shortest (in number of
phonemes).

In figure |, we schematically depict the situation before
and after the words are ordered. The filled rectangles represent
time when processors actively work on tasks and the white
space represents time between tasks when no work is being
accomplished. In the right hand part of the figure, idle
processor time is substantially reduced by sorting.

The second change to synchronization
concemed the point in the program at which .

efficiency
Jronization

was done. As mentioned, the purpose of the synchronization
was to ensure that no processor proceeded to the next frame
until the starting score for words and the normalization factor
were computed. Since the nomalization factor was only to
avoid score underflow, it could be estimated a frame or more
carlier. The only remaining synchronization constraint was the

word-starting score. This score, however, is used only at the
beginning of the first phoneme of each word. Considering this,
the order of the update of a word was reversed so that the last
phoneme was updated first, and the first phoneme updated last.

Time

Proc #

NE ///////ﬁé

Synch Point
Unsorted Words

Synch Point
Sorted by length

Figure I: Ordering Tasks by Length

This change allowed a processor to finish work on one frame
and immediately begin work on updating a word from the next
frame, synchronizing only when it got to the first phoneme. In
this way, time that had been previously spent by processors
waiting for others to finish a frame was now being used to
perform useful work from the next frame.

Figure 2 depicts the situation for two frames of an
utterance before and after this change. Tasks for time T+ are
shown in two shades. The darker portion represents the part of
the task that depends on the previous frame's work being
finished. On the right, with the the order of the computation
reversed, the idle processor time is reduced. The effect of the
synchronization changes was to increase precessor utilization
to approximately 72%.

Time

Proc # Time

s W

N

Synch Point

Original Order Computation Reversed

Updalc D ]

Word a1
Time T T+1 Dependson T
Figure 2: Reversing Word Computation Order




Finding Global Maximum

Finally, the efficiency of finding the maximum value was
also improved. A straightforward computation of the
maximum value requires that all values be compared with a
single memory location, but this approach results in contention
for that location. As a first improvement, the program was
altered to make each processor maintain its own local
maximum of the scores of all the words that it updates in a
frame. At the end of the frame, the global maximum of these
values over all processors was determined. In initial versions,
this was accomplished by having processors sequentially
compare their value to the global location and replace it if
necessary. Although on a sixteen processor machine, the time
for processors to tum in values in this way is negligible, with
97 processors, the inefficiency of the approach becomes
noticeable.

An altemative to this approach was to set up a "binary
tree” of locations for taking the maximum. In this approach,
the processors’ local maxima are the leaves of the tree and the
maxima are propagated up through the nodes of the tree. This
approach reduces the asymptotic time for finding a global
maximum from O(N) to O(log N), where N is the number of
processors. More importantly in our case, cfficiency improved
because memory contention was reduced.

The total effect of all the improvements described above
was to improve processor utilization on a 97-processor
machine from 20% to 79%. Figure 3 is a graph of processor
utilization for 1 to 97 processors on the 335 word task. The
actual speed of the speech recognition improved accordingly.
After the optimizations are included, a one-processor Butterfly
Parallel Processor requires 128 times real time (128 seconds to
process one second of input speech) and a 97-processor
machine requires about 1.7 times real time.
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PROCESSORS ,f
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/| L L L
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NUMBER of PROCESSORS

Figure 3: Butterfly Processor Utilization, 335 words

6. Conclusions

This work has shown that the Butterfly architecture 1s
suitable for continuous speech word recognition.  The
algorithm was implemented efficiently without changing t}w
type or amount of computation performed. Some ingenuity
was required to obtain an efficient realization, but once the
obstacles were understood, solutions presented themselves
fairly readily. The memory and processor management
functions of the Uniform System made initial paralielization of
the algorithm quite easy and provided several altermatives for
improving implementation efficiency when required.

We draw several broad conclusions about efficient
parallel programming as well. Most obviously, and perhaps
most importantly, it is crucial that sequenttally executed code
be climinated wherever possible. Similarty, much of the
inefficiency in our original multiprocessor program was due to
processors waiting for each other. Synchronizing processors
only after all other possible work is done was found to be a
good strategy to avoid this. Additionally, it can be very
important to minimize the overhead of parallel constructs such
as starting processors.
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A NEW MODEL FOR THE TRANSDUCTION STAGE \?5
OF THE AUDITORY PERIPHERY" Lt

Stephanie Seneff '(;::\3
i

Research Laboratory of Electronics
Massachusetts Institute of Technology
Cambnridge, Massachusetts 02129

responses to speech.

INTRODUCTION

The peripheral auditory system is typically modelled
by a bank of linear filters which resemble available data
on the shapes of auditory filters, followed by a nonlinear
stage that attempts to capture the dynamics of the trans-
formation from Basailar membrane vibration to nerve fiber
response. This part of the model incorporates such non-
linearities as dynamic range compression and half-wave
rectification, »nd also captures effects such as short-term
adaptation, rapid adaptation, and forward masking. It is
very difficult to devise a scheme that will accurately repro-
duce diverse aspects of auditory response, yet we feel that
it is very important in speech processing for these aspects

*This research was supported by DARPA under Coniract N00039-85-
C-0254. monitored through Naval Elecironic Systems Command.

trogram.” The only part of this model that has been
changed since previous reports [3] is the hair-cell/synapse
stage. The new model ior this stage consists of four sub-
components, as shown in Figure 2: a half-wave rectifier, a
short-term adaptation circuit, a lowpass filter, and a rapid
Automatic Gain Control (AGC). We will discuss each of
these components in turn.

All of these components except the lowpass filter are
nonlinear, and therefore the final output is affected by the
ordering of the components. A particular ordering can be
justified in part by forming associations with elements of

t
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Figure 1: Block diagram of our computer model
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lea from Basilar membrane vibration to merve fiber responses fibers for a number of different experimental paradigms. A ,:.t\.
in the VIIIth merve. The model has been incorporated into useful goal is to attempt to reproduce gross features that eid
a system for speech processing that we are currently using as emerge from such experiments. We selected auditory data o 4
a front end in a speech recoguition system under development. from five different categories of response measurements to oy
We have found that spectral representations based on this model be compared with the model. These demonstrate the de- o
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other experimental categories as well, as discussed in the paper. linear filters, which is followed by the “hair-cell/synapse” ¥
These categories were selected because we believe they reflect stage that introduces the nonlinearities. A bifurcation " '1-5,;
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the actual auditory system. Such links can also aid in the and compressive for larger signals, saturating at 1+ A~/2. g
design of each individual component. To the right of each It is based on the measured hair cell current responses as a ?,'.;f’.:d
component in the figure is proposed a corresponding af- function of a fixed displacement of the cilia as determined -::"-f.\-j
filiation with the auditory system. The hair-cell current in frogs by Hudspeth and Corey {7]. :-"::-f‘t.l
response as measured for amphibians shows a distinct di- «:--’*.:
rectional sensitivity {7]. It is not clear that the current is The model for short-term adaptation is very similar k}'\.‘;’
a direct link in the response mechanism; nonetheless, it is to one proposed by Goldhor [1}. It consists of a simple - -
tempting to assume that half-wave rectification first occurs nonlinear circuit, as shown in Figure 4. The input is the X
in the hair cell, and hence this is the first component in voltage source, V;, and the output is the curr=nt through . : .

the model. There seems to be no evidence for short-tenn

the conductance G1. G1 is in series with a diode, which

S . S
adepia ot in hair cell current or voltage responses; there- serves to lock out this branch of the circuit whenever the el
fOPC it is generally assumed th‘“ this effect is introduced voltage across G1 becomes negative (the “off” condition). :4-:_./-‘:.(
in the synapse be.tween the hair cell and th.e neuron (5]. There is another conductor, G2, in parallel, in addition to A
The logical ordering is therefore to place this component a capacitor. The capacitor accumulates a charge whenever RacR
second. the signal V; is sufficiently positive, and discharges through , ‘,'}'

The AGC is assumed to be affliated with the refrac- G, when the stimulus voltage falls below the capacitor :‘-(\}
. voltage. KO
tory phenomenon of nerve fibers; therefore, this compo- g Lot
?;}u:igi‘;l:‘t:;:lr:“i: l:;: ":a?;:;z::;')j:::tf; :f’iln:::o; Goldhor showed that such a circuit, when applied us- r:-f‘“.*{'
= ‘;nsetl % due topthe re?racto hiin fheory ing the envelope of the stimulus as the input V;, obeys the :
Yy P '. ; equal incremental response property of short-term adap- ‘3'."-_':',
that has been proposed by Johnson and Swami [6]. It is tation [2. and als ately exhibi : . A
difficult to know where to place the lowpass filter. It is as- ation [z}, an ° appropn.ate y exhibits a longer time AN
sociated with the gradual loss of synchrony in nerve fiber constant for recovery after signal offset than for adapta- .:‘.:-\:
sseporikAgitimulia frequétcy i hcrasied. The locts tion after signal onset. The latter property holds because PO
s A
(or loci) of such synchrony loss has not yet been deter- e
mined. The lowpass filter must follow the half-wave rec- & OUTPUT ZuREENT o Atasn
tifier, because it only makes sense after signal energy has ! ~ - SARRY
. -\ NN\ PR
been preserved through a DC component. The solution ! Ll ' (ALY
adopted was to try placing the lowpass filter in all three f-":».‘,' "
of the remaining positions, and choose the one that yields - — . ’),\‘v.,.:-,
the best behavior in the final response. vy O [ S 0 AR
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The model for the half-wave rectifier, whose response | Y
function is shown in Figure 3, is defined mathematically
as follows:
l1+Atan~!' Bz z>0 1 Y
eADs z<0 (1) Figure 4: Goldhor's [1] adaptation circuit. In our model. the 1y (
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during recovery the diode is turned off, and the capacitor
dlscharges only through G, whereas after increments the
diode tends to be on, and current can flow through both
conductors to charge the capacitor more quickly.

Ou: model uses the same circuit, except that the de-
tailed cycle-by-cycle behavior of the input signal is pre-
served iu V;. The consequence is that the diode turns on
and off for each period of the stimulus, and an adapted re-
sponse is obtained only after the capacitor reaches a steady
state condition in which the amount of charge gained dur-
ing the time in which the input voitage level is higher is
exactly the same as the amount lost during the remaining
portion of the cycle. One consequence is that the effec-
tive time constant for adaptation lies somewhere between
the %on” time constant, 7, and the “off” time constant,
7;. The time constant for recovery, on the other hand, is
equal to 7.

The current through the diode branch of the adap-
tation circuit is next processed through a lowpass filter
that achieves two important effects: it reduces synchrony
to high-frequency stimuli and it smooths the square wave
shape encountered in the balf-wave response for saturat-
ing stimuli. The lowpass filter was realized as a cascade of
ngp leaky integrators, each with an identical time constant
ep. The two parameters, n;p and 7., were adjusted to
match available data on synchrony loss (8]. .

The final component is the rapid AGC, which is defined
as follows:

z(n} @
1+ Ksge < zin] >
where K cc is a constant and <> symbolizes “expected
value of,” obtained by processing z[n| through a first-order
lowpass filter, with time constant 74gc. This equation
resembles in form the formula obtained theorstically by
Johnsen and Swami (6] as a steady-state solution for a
simple model of the refractory effect, where it is assumed
that a response is locked out for a time interval A after a
spike occurs:

yln] =

o(t) = —2— (3
. 1+ /:-4 z(a)da

Figure 5 shows the outputs of intermediate stages of
the 2000-Hz channel in response to a high-amplitude tone
at CF. The envelopeof the response over a long time inter-
val is shown on the left, and the detailed waveshapes near
tone ~~-et are shown on the right. Part a shows the re-
sponse after only the linear filter of Stage I. Part b shows
the response after the instantaneous half-wave rectifier.
The square wave shapes introduced here are lost after the
lowpass filter. The effects of the short-term adaptation
component are apparent in the envelope response on the
left in part ¢. The final AGC further alters the dynamics
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Figure §: Responses at intermediate stages of the
hair-cell/synapse model for 2000-Hz tone at CF at high signal
level: (a) after critical band filter, (b) after half-wave, (c) after
short-term adaptation and lowpass filter, and (d) alter AGC

" of the onset, to produce a trend quite typical of auditory

nerve fibers, as shown in part d

- COMPARISONS TO AUDITORY DATA

The above system has a number of parameters that
can be adjusted according to some criteria based on rele-
vant auditory data from the literature. At the same time,
the degree of success in the matching process can help
to evaluate the model's adequacy for capturing auditory
phenomena. The following data were selected as responses
that should be matched, in part based on a judgment of
which aspects of the auditory response are likely to be
significant with regard to speech analysis.

o Envelope response characteristics at tone onsets as
a function of tone level,

o Forward masking effects as a function of masker level

o Period histogram responi s in steady state condi-
tions for one-formant vowel stimuli, as a function of
stimulus level,

o Equal incremental response characteristic, and 5:2
onset-to-steady-state ratio, and

o Synchrony falloff characteristics as a function of tone
frequency.

The parameters of the system were adjusted to match
all of the above criteria as well as possible. Several it-
erations through the matching process were necessary for
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half-wave| adaptation | lowpass | AGC
Al Gyw | n | n |facc|Kace| e Ince
10/ 2.55 |15 ms(120 ms!3 ms| .002 .04 ms| 4

Table 1: Fixed parameter values used for experiments

convergence. Some surprising results emerged from the ex-
ercise; most remarkable was that r; for the Goldhor adap-
tation circuit had to be set to a much larger value than
was anticipated in order to match the forward masking
data. Another discovery was that, although the short-term
adaptation component and the AGC component interact
in a complex way, it is possible to set their paramaters so
that the equal-increment criterion imposed by the Smith
and Zwislocki experiment is reasonably well matched. We
will discuss each of the above criteria in turn, in each case
showing a plot of the auditory data and the correspond-
ing model response. The output of the half-wave rectifier
was multiplied by a gain term, Gyw, which was adjusted
to yield a final output that could be equated with a firing
rate. In all cases, the various time constants of the model
were set at fixed values, according to Table 1.

Tone Onsets:

Delgutte [9] plotted the envelopes of responses of cat's
ear nerve fibers to tone bursts as a function of eight dif-
ferent tone levels, as shown here in Figure 6a. The experi-
mental paradigm was reproduced for the computer model,
and the resulting responses are shown in Figure 6b. On.
set response characteristics are largely dominated in the
model by the parameters of the rapid AGC component.

Porward Masking:

Delgutte’s [9] plots for a forward masking experiment
are shown in Figure 7a, along with the results of the com-
puter model in Figure 7b. The plots are given as a function
of adapter level, with the test tone level held fixed. The
main controlling factor of forward masking in the model
is ; of the short-term adaptation circuit.

Period Histograms:

Delgutte's [9] plots of the period histograms of responses
to a one-formant vowel stimulus are shown in Figure 8a,
along with the model results in Figure 8b. In both the au-
ditory data and the model data, the formant bandwidth
in the response appears to become larger (more rapid de-
cay with each period) at ir* mediate amplitudes, and
much simaller at large amplitudes, when saturation effects
are dominating the response. The half-wave rectifier is
the controlling factor in this steady-state phase-locked re-
sponse characteristic, although the short-term adaptation
circuit also plays a role,
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Flgure 6: (left) Responsc patterns of an auditory nerve fiber
to a tone burst as a function of signal level (from Delgutte
(9]). The 180-ms burst has a rise/fall time of .25 ms, and a
frequency, 770 Hz, approximately equal to the fiber CF. The
post-stimulus-time (PST) histogram was computed with a bin
width of 1.4 ms and then smoothed with a three-point smoother.
Flgure 7: (left) Response patterns of an auditory nerve fiber
to a 20-ms test tone preceded by a 200-ms adapting tone (from
Delgutte [9]). Both tones have a rise time of 2.5 ms, and a
frequency, 1220 Hz, approximately equal to the fiber CF. His-
tograms are computed with a l.ms bin width, and three-point
smoothed. (right) Response patterns for the computer model for
the same stimulus conditions, using a 3-ms Hamming window
for smoothing.
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Flgure 8: (left) Rcsponse patterns of an auditory nerve fiber
to a single-formant synthethic stimulus as a function of sicnal
level (from Delgutte [9]). The stimulus has an §00-Hz formant
frequency. approximately equal to the fiber CF. Formant band-
width is 70 Hz, and the fundamental frequency of voicing is 100
Hz. The 10-ms period histogram. computed with a 50-us bin-
width. is repeated twice in each case, to show two pitch penods
of the response. (right) Response patterns for the model for
the same stimulus conditions. The responses in ths case are
unsmoothed.
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Incremental Responses:

Smith and Zwislocki (2], using tone pedestals as stimuli,
mesured rate responses of guinea pig auditory nerve fibers
as a function of time. The stimuli consisted of sudden-
onset tone bursts whose amplitudes, I, were incremented
by an amount &/ at a tinie r = 150 ms after initial onset.
A PST histogram of the response was computed, and a
difference between the response just before and just after
the araplitude increment constituted a “steady siate in-
cremental response.” This incremental response, defined
by IR = R} - Ry, 'was then compared with an “onset in-
cremental response,” defined as the difference between the
response to an onset tone at level I + §1 and one at level
I. Two important observations were: 1) The steady-state
and onset IR’s were nearly equal for stimuli of intermedi-
ate range, but the steady-state IR was somewhat larger for
stronger stimui, and 2) the ratio of the response R, at on-
set to the response R at steady state was approximately
equal to 2.5, regardless of the onset intensity level.

This was the most difficult experimental paradigm to
match with the model. The rapid AGC and the short-term
adaptation circuit tend to impose opposing constraints on
the outputs. It was possible to obtain a fairly constant
ratio of onset to steady-state response, but this ratio was
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Figure 9: (a) Plots of onset firing rates versus steady-state fir-
ing rates, in response to tone pedestals at CF, for two auditory
neurons (left, from Smith and Zwislocki (2]). aad for the com-
puter model (right). Model response is for the 2000-Hz channel.
(b) (left) Plots of median normalized 3-dB incremental responses
for 10 auditory neurons (fr~m Smith and Zwislocki {2]) at on-
sets (open circles) and at steady-state conditions. (righ: ‘ots

of normalized 3-dB incremental responses for model, at onsets’

(open circles) and at steady-state conditions.

consistently too large (3.0 instead of 2.5), as shown in Fig-
ure 9a. For the parameter settings shown in Table [, the
3-dB onset incremental response of the model was slightly
larger than the 3-dB steady-state incremental response for
weak signals, but became significantly smaller for stronger
signals. This result is in close agreem ent with the data, as
shown in Figure 9b.

Synchrony Palloff:

Johnson (8] gave a specific definition for a “synchro-’

nization index” that he applied to the period histograms
of the steady-state responses of nerve fibers to tone stim-
uli. This index was defined as

Sy = A(F,)/ A(0) (4)

where Sy is the synchronization index, A(f) is the ampli-

" tude of the spectrum of the period histogram at frequency

[, ad Fy is the tone frequency. Johnson measured S,
for a large number of fibers, for tones not necessarily at
CF, and obtained the plot shown in Figure 10. Superim-
posed as large triangles on the plot are points obtainea by
applying the same definition for synchrony to the mod:l
outputs. The main factor contmlling the synchrony falloff
in the model is the lowpass filter.
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Figure 10: Scatter diagram of synchronization index (from
Johnson (8]) as defined in equation 4, as a function of tone fre-
quency (339 measurements from 233 units), with model resuits
superimposed as large triangles.
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OUTPUTS OF THE MODEL FOR
SPEECH SIGNALS

Figure 11 shows an example of the Stage II outputs for
a short segment of a male speaker’s voiced speech, during
the /e/ of the word “make.” Part a gives the wideband
spectrogram of the word, with a vertical bar indicating the
time at which channel outputs are shown in part 5. The
50 ms time window includes about five pitch periods. The
peaks are skewed slightly to the left for low frequencies, a
feature that has been observed in auditory data as well [8].
Part ¢ of the figure shows the output of the channel whose
CF is at Fy of the vowel. A prominent component at the
formant frequency is evident. Such formant periodicity is
utilized by the synchrony algorithm in Stage III.

Figure 12 compares Stage I outputs with Stage II out-
puts for the word “description” spoken by a female speaker.
Each waveform is the smoothed output of one of the 40
channels as a function of time, with low-frequency channels
at the bottom. It is essential to represent Stzge I outputs
by a log magnitude rather than a magnitude; otherwise
the vowel peaks are overwhelmingly larger than the rest
of the data. Log magnitude also corresponds to traditional
analysis methods. Because of the saturating nonlinearity
in the half-wave rectifier as well as in the final AGC, a log
representation is not appropriate for Stage II outputs. The
phonetic transcription has been superimposed, to help in

judging where segent boundaries should be detected.

All segrnent boundaries, with the exception of the /r1/,
are well delineated in the Stage II representation. The clo-
sure intervals for both the /k/ and the /p/ are flat valleys
in the Stage II representation; there is clear evidence for
forward masking here, particularly in the low-frequency
region for the /p/. The vowel /1/ has masked lc  ‘re-
quency noise not only during the /p/ closure interval but
also during the subsequent /J/. Such masking p! ‘nomena
should enhance the contrast between vowels and fricatives.
The boundary between the /i/ and the final /n/ is very
difficult to see in the Stage I representation, but there is a
much greater hope of detecting it after the Stage II non-
linearities. The stop burst onsets for the /d/ and the /k/
are also much sharper after Stage II.

SUMMARY AND CONCLUSIONS

This paper describes the nonlinear component of a rel-
atively simple model for auditory processing of speech sig-
nals, which attains a reasonably good match to measured
auditory responses for a number of different experimen-
tal paradigms. The model offers the hope of elucidating
further the nature of auditory response to speech. In ad-
dition, we anticipate that representations obtained {rom
such a model will be well-suited to applications in com-
puter speech recognitioa.
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Figure 11: (a} Wideband spectrogram of the word “make.”
spoken by a male speaker. (b} Stage Il outputs of 40 channels,
with the lowest frequency channel at the top, for five pitch pe-
riods during the vowel /e/ at the time of the vertical bar in
part a. (¢) Output of the single channel at the frequency of the
second formant at the same time as in part b.
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tion is superimposed on the plots, and the onginal waveform 1s
shown below in each case.
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The Smith and Zwislocki data showing a constant ra- .

tio of onset to steady-state response, and a close-to-equal
incremental response characteristic {or onset and steady-
state conditions, have led to the hypothesis that the adap-
tation process might be linear in nature. A possible alter-
native explanation, based on the resuits from the model
described here, is that this apparently linear feature may
be attributed to a cascade of an enhancing nonlinearity
with a compressive nonlinearity, such that the two effec-
tively cancel one another under certain conditions.

The model used for the AGC is a poor approxima-
tion of the refractory effect as it is currently understood.
First, equation 3 is only valid for steady-state conditions,
and only exact for signals that am periodic with A. Sec-

ond, a leaky integrator yields an averaging window for:

< z > that is exponential in shape, whereas a rectangular
window is a mnch better approximation to the recovery
function. Nonetheless, the value for K,cc that was deter-

mined experimentally to best match auditory data is .002.

This value corresponds to a 2-ms lockont period, which is
a little long but at least the correct order of magnitude.
Perhaps a more realistic model for the refractory effect
that would be appropriate during onsets as well as steady
states would result in a better match to the dynamics of
the onset envelope response.

It is still premature to suggest that an auditory-based
speech analysis system will pay off in speech recognition.

There are emerging, however, strong indications that auditory-

based representations are interesting and worthy of further
study. Onset and offset enhancement properties are partic-
ularly effective in sharpening segment boundaries, as dis-
cussed in 10}, The forward masking phenomenon should
be effective in reducing noise in stop bursts and enhancing
low/high frequency contrast in strong fricatives. We are
now becoming more confident in the validity of the com-
pnter models, anch that thay may reveal interesting effects
in auditory speech processing, which may lead the way to
appropriate later-stage speech recognition strategies.
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VOWEL RECOGNITION BASED ON “LINE-FORMANTS?”
DLRIVED FROM AN AUDITORY-BASED SPECTRAL
REPRESENTATION*

Stephanie Seneff

Research Laboratory of Electronics
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

ABSTRACT

A new approach to vowel recognition is described, which
begins by reducing a spectrographic representation to a set of
straight-line segments that collectively sketch out the formant
trajectories. These ‘line-formants” are used for recognition by
scoring their match to a set of histograms of line-formant fre-
quency distributions determined from training data for the 16
vowel categories in the recognition set. Speaker normalization is
done by subtracting Fo {rom line-formant frequencies on a Bark
scale. Although the formants are never enumerated or tracked
explicitly, the frequency distributions of the formants are the
main features influencing the recognition score. Recognition re-
sults are given for 2135 vowels extracted from continuous speech
spoken by 292 male and female speakers.

INTRODUCTION

The formant frequencies are probably the most impor-
tant information leading to the recognition of vowels, as
well as other sonorant and even possibly obstruent sounds.

of effort designing robust formant trackers, which attempt
to associate peaks in the spectrum with -mant frequen-
cies, using continuity constraints to aid in .. tracking of
the formants. Once the formant tracks are available, it
then becomes possible to identify directions and degree of
formant movements, features that are important in recog-
nizing diphthongs, semivowels, and place of articulation of
adjacent consonants.

It is impossible to dcsign a “perfect” formant tracker.
The most serious problem with formants is that when they
are wrong there are often gross errors. Therefore, we have
decided to adopt a somewhat different appioach, one that
can lead to informatic.. .bout formant movements with-
out explicitly labelling the formant numbers. The method
also collapses the two stages of formant tracking and track
interpretation (e.g., “rising formant®) into a single step.

*This research was supported by DARPA under Contract N00O039-85-
C-0254, monitored through Naval Electronic Systems Command.

Therefore, researchers have spent a considerable amount *

" The outcome is that a spectrographic representation is re-

duced to a skeleton sketch consisting of a set of straight-
line segments, which we call “line-formants,” that collec-
tively trace out the formant tracks. The recognition strat-
egy then involves matching all of the line-formants of an
unknown segment to a set of templates, each of which
describes statistically the appropriate line-formant config-
urations for a given phonetic class (which could be as de-
tailed as “nasalized /&/” or as general as “front vowel”).
Usually the number of line-formants for a given speech seg-
ment is considerably larger than the number of formants,
because in many cases several straight-line segments are

‘required to adequately reflect the transitions of a single

formant.

SIGNAL PROCESSING

Spectral Representation

The system makes use of two spectrogram-like repre-
sentations that are based on our current understanding
of the human auditory system {1]. The analysis system
consists of a set of 40 critical band filters, spanning the
frequency range from 160 to 6400 Hz. The filter out-
puts are processed through a nonlinearity stage that intro-
duces such effects as onset enhancement, saturation and
forward masking. This stage is described in detail in a
companion paper [2]. The outputs of this stage are pro-
cessed through two independent analyses, each of which
produces a spectrogram-like output. The “Mean Rate
Spectrogram” is related to mean rate response in the au-
ditory system, ard is used for locating sonorant regions
in the speech signal. The “Synchrony Spectrograni” takes
advantage of the phase-locking property of auditory nerve
fibers. It produces spectra that tend to be amplitude-
normalized, with prominent peaks at the formant frequen-
cies. The amplitude of each spectral peak is related to the
amount of energy at that frequency relative to the energy
in the spectral vicinity. The line-formant representation is
derived from this Synchrony Spectrogram.
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Line-formant Processing

The line-formants are obtained by first locating sono-
rant regions, based on the amonunt of low frequency energy
in the Mean Rate Spectrogram. Within these sonorant re-
gions, a subset of robust peaks in the Synchrony Spectro-
gram is selected. Peaks are rejected if their amplitude is
not sufficiently greater than the average amplitude iu the
surrounding time-frequency field. For each selected prak,
a short fixed-length line segment is determined, whose di-
rection gives the best orientation for a proposed formant
track passing through that peak, using a procedure as out-
lined in Figure 1. The amplitude at each point on a rect-
angular grid within a circular region surrounding the peak
in question is used to update a histogram of amplitude
as a function of the angle, . Typicrl sizes for the circle
radius are 20 ms in time and 1.2 Bark in frequency. The
maximum value in the histogram defines the amplitude
and corresponding 4 for the proposed track, as marked by
an arrow in Figure le.

At each time frame several new short segments are
generated, one for each robust spectral peak. A short
segment is then merged with a pre-exisiing partial line-
formant whenever the two lines have a sin ilar orientation,
and the distance between each endpoint 2'.d the other line

sual evaluaiion. The latter is constructed by replacing
each line-formant with a time sequence of Gaussian-shaped

spectral peaks with amplitude equal to the line’s ampli- o
tude. The corresponding Synchrony Spectrogram is shown E‘bﬁ
in Figure 2¢, with line-formants superimposed. For direct A
comparison, Figure 2d shows a Synchrony Spectral cross ’_ b
section at the time of the vertical bar, on which is super- \"'4'*':
E ; . -~
imposed a cross section of the Schematized Spectrogram. :@
For this example, we see that peak locations and amlitudes &'-"'_s:l‘.,
in the vowel are accurately reflected. In addition, formant :.: '
transitions appropriate for the palatal fricative on the left ._f‘g
and the velar stop on the right are also captured. o 5
TR
Nl K
ks
RECOGNITION EXPERIMENT ‘@_»

Thus far, we have focused our studies on speaker-inde- oY
pendent recognition for 16 vowelsand diphthongs of Amer-
ican English in continuous speech, restricted to obstruent

. . 2ON
and nasal context. The semivowel context is excluded be- iy
cause we believe that in many cases vowel-semivowel se- ;\.‘R
quences should be treated as a single phonetic unit much ;.j;:..'*."
like a diphthong. !

L
-t d_

Speaker Normalisation

. . . 3 - #& ’“
is sufficiently small. The merging pro-.ess is accomplished Our first task was to devise an effective speaker-nor- '_}:\'_)\.‘
by creating a weighted-average line-furmant that incorpo- malization procedure. Many investigators have noted the :—"..}-".'
rates the new line. If a given new segment is sufficiently strong correlation between formant frequencies and Fj (3|. Y
unique, it is entered as a new partial line-formant. The relationship is clearly nonlinear - ¢he second formant :-"‘.:-‘.
Y
The resulting Skeleton Spectrogram for the /a/ in the !
word “shock”is illustrated in Figure 24, along with a Schema- (a) (b) (c) A
tized Spectrograr- in Figure 2b, included to facilitate vi- 20 [ " ;':"
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Figure 1: Schematic illustration of* process used to deter- . 'f'{“u;
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for female /i/ is higher on average by several hundred Hz,
whereas the F, difference is on the order of 100 Hz. How-
ever, on a Bark (critical band) scale the male-female dif-
ference in F; for /i/ becomes much more similar to that in
Fy. Thus we decided to try a very simple scheme - for each
line-formant, subtract from the line's center frequency the
medsan Fa over the duration of the line, on a Bark scale.

We found this normalization procedure to be remark-
ably effective, as illustrated in Figure 3. Part a shows a
histogram of the center frequencies of all of the lines for
35 male and 35 female // tokens. Part b shows the same
data, after median Fj has been subtracted from each line's
center frequency. The higher formants emerge as separate
entities after the F, normalization. The normalization is
not as effective for F}, but the dispersal in F) is due in
part to other factors such as vowel nasalization.

A valid question to ask is the following: if it is sup-
posed that speaker normalization can be accomplished by
subtracting a factor times F, from all formant frequen-
cies, then what should be the numerical value of the fac-
tor? An answer can be obtained experimentally using au-
toregressive analysis. We defined F = F, — aF, to be

_the normalized formant frequency for each line. Using

vowels for which the formants are well separated, we as-

sociated a group of lines with a particular formant such
as Fy. The goal was to minimize total squared error for
.each remapped formant among all speakers, with respect
to a. The resulting estimated value for @ was 0.975, pro-
viding experimental evidence for the validity of the pro-
posed scheme.

(4]

(a) -

P(f)

[=]

o

(b)

P(f)

DhJ

f(Bark) 20

Flgure 3: Histograms for center {requencies of all line-formants
for 35 female and 35 male tokens of /&/, (a) without Fy nor-
malization, and (b) with Fp normalization.

Scoring Procedures

Our goal in developing a recogrizer for the vowels was
to emphasize the formant frequency informaticn without
everexplicitly identifying the formant numbers. We wanted
to avoid traditional spectral template-matching schemes,
because they depend too heavily on irrelevant factors such
as the loudness or the overall spectral tilt. On the other
hand, we did not want to specify, for example, the dis-
tance between F; and a target F,, because this relies on
accurately enumerating the formants.

We decided to construct histograms of frequency dis-
tributions of spectral peaks across time, based on data
derived from the line-formants. The scoring amounts to
treating each histogram as a probability distribution, and
matching the unknown token's line-formants against the
appropriate distributions for each vowel. To construct the
histograms for a given vowel, all of the line-formants in a
training set were used to generate five histograms intended
to capture the distributions of the formants at significant
time points in the vowel. All lines were normalized with
respect to Fy, which was computed automatically using a
version of the Gold-Rabiner pitch detector [4]. Each line-
formant's contributions to the histograms were weighted
by its amplitude and its length.

Only left, center and right frequencies of the lines were
used in the histograms. The left frequency of a given line-
formant falls into one of two bins, depending upon whether
or not it is near the beginning of the vowel. Right frequen-
cies are sorted similarly, with a dividing point near the
end of the vowel. Center frequencies are collected into the
same histogram regardless of their time location. Such a
sorting process results in a set of histograms that reflects
general formant motions over time. For example, the F
peak in the histograms for /e/ shifts upward from left-on-
left to center to right-on-right, reflecting the fact that /e/
is diphthongized towards a /y/ off-glide, as illustrated in
Figure 4.

To score a. unknown token, the left, center, and right
frequencies of all of its lines are matched against the ap-
propriate histograms for each vowel category, which are
treated as probability distributions. The score for the to-
ken's match is the weighted sum of the log probabilites for
the five categories for ali of the line-formants. The ampli-
tude of the line does not enter into the match, but is used
only as a weight for the line’s contribution to the score.
This strategy eliminates the problem of mismatch due to
fact  such as spectral tilt or overall energy.

Recognition Results

The vowels used for recognition were extracted {ram
sentences in the TIMIT database (5. The speakers rep-
resented a wide range of dialectical variations. A total
of 2135 vowel tokens spoken by 206 male and 32 female
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2135 Vowels, 288 Speakers

\

ull fr]eje|m]aje/|alaf[s]a7jo]uviulz .E %
00 | 720 | 368 | 128 | 183 | 155 | 131 [ 92| 103 | 147 | 158 | 06 | 83 [ 114 |98 | 103
(a) )ﬁ
=

| Table 1: Distributions of vowels in recognition experirent fhepd -
: 0. b
speakers were used as both training and test data, using :::.
a jackknifing procedure. The distributions of vowels are ol ).:,.:
shown in Table 1. Each speaker’s vowel tokens were scored ci L,
against histograms com>uted from all of the line-formants -5 Pl
ezcept those from thi: speaker. The scoring procedure (b) -
was as discussed above, with histograms defined for six- - ,\\::.'.
¢ teen vowel categories. The endpoints for the vowels were = 1*-,\1;-
taken from the time-aligned phonetic transcription. s
4 e
A matrix of first-choice confusion probabilities is given 0 :.;7-3:

in Table 2, in terms of percent correct in the phonetic :
category. For the most part, confusions are reasonable. .5 :}Ew
We feel encouraged by this performance, especially con- (e) 3:..‘_:
sidering that multiple dialects and multiple contexts are -, t::-"
included in the same histogram. o s
a Ny
Figure 5 summarizes recognition performance in terms g
of percentage of time the correct answer ic in the top N, A
for all speakers, and for male and female speakers sepa- nﬂ ar 5 V‘-;
rately. Recognition was somewhat worse for females, who >_‘:\ 3
represented only 25% of the population. Alsc shown are Plgure 4t Histograms for (a) left-on-left, (b) center, aad (c) :{:"
the recognition results for female speakers when the Fo- dm’:d""‘“ line-formaat frequencies for 128 tokens of /e/, Fy nor- :}‘-E

normalization scheme is omitted, both in collecting the
histograms and in scoring. Significant gains were realized

T
e

as a consequence of the normalization. The performance ph
for the male speakers without Fy normalization however .-g:.’-:‘
(not shown) did not change. ‘;«'.'ﬁ-\
' .-:’.r:
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Row = Labeled Category, Column = Recognized Category.
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FUTURE PLANS REFERENCES

We beleve that recogultion perormance can be im. (1 Sl & 1980)"A Computatons Model o e Py
proved by exte.nsions in s.everal dix:ections. One iu‘to divide Research,” ICASSP Proceedings, Tokyo. Japan, 37.8.1-
each vowel's histograms into multiple subcategories, based 37.8.4.
on both general feature.n of the vowel and coarticulation ef- 2] Semcfl, S. (1987) A New Model for the Transduction
fects. General categories, useful for the ~~nter-frequency Stage of the Auditory Periphery,” (these proceedings).

histogram, would include “nasalized,” “Southern accent,” '
: : : 3] Syrdal, A. K. (1985) “Aspects of a Model of the Audi-
or “fronted.” Left- and right-context place of articulation, 3] tory Representation of American English Vowels,” Speech

such as “velar,” could be used to define corresponding his- Communication 4, 121-135.
ies. We also plan ¢ ] terna- 3

togram subcategories f" Pﬁ‘f‘l° o ‘;f‘ 3 'Jh‘l’.n‘ [4] Gold, B. and L.R. Rabiner (1969) *Parallel Processing
e recogmt.lon strategy for exp cn.t y matching eac ng: Techniques for Estimating Pitch Periods of Speech in the
formant against a set of template line-formants describing Time Domain,” J. Acoust. Soc. Am. 46, 442-448.
a particular phonetic category, instead of reducing the line

; : : 5] Lamel, L. F., R. H. Kassel, and S. Seneff (1986) “Speech
to three “independent” points. We believe that such an 18] Database Development: Design and Analysis of the Acoustic-

approach will better capture the fact that a given left fre- Phonetic Corpus,” Proceedings of the DARPA Speech Recog- e
quency and a given right frequency are connected. Finally, nition Workshop Palo Alto, CA., Feb 19-20, 100-109. ‘

we plan to gradually expand the scope of the recognizer,
first to vowelsin all contexts and then to other classes such
as semivowels.
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ACOUSTIC SEGMENTATION AND CLASSIFICATION®
James R. Glass and Victor W. Zue

Department of Electrical Engineering and Computer Science
Research Laboratory of Electronics
Massachusetts [astitute of Technology
Cambridge, Massachusetts 02139

ABSTRACT

As part of our goal to better understand the relationship
between the speech signal and the underlying phonemie rep-
resentation, we havs developed a proeedure that deseribes the-
acoustic strueture ot the signal, and have determined an acous-
tieally motivated set of broad elasses. Acoustic events are em-
bedded in a multi-level strueture, in which information ranging

from eoarse to fine is represented in an organized fashion. An '

analysis of the acoustic structure, using 500 utterances from 100
different talkers, shows that it eaptures over 94% of the acoustic-
phonetic events of interest with an insertion rate of less than
8%. Aeoustic elassifieation is accomplished usiag a hierarchical
elustering technique. Our evaluations of the results show that
with a small number of elusters, we are able to obtain a robust
deseription of the speech signal and to provide a meaningful
acoustie-phonetie interpretation.

INTRODUCTION

The task of phonetic recognition can be stated broadly
as the determination of a mapping of the acousti. “ignal
to a set of phonological units (e.g., distinctive feature bun-
dles, phonemes, or syllables) used to represent the lexicon.
In order to perform such a mapping, it is often desirable
to first transform the continuous speech signal into a dis-
crete set of segments. Typically, this segmentation process
is followed by a labeling process, in which the segments
are assigned phonetic labels. While this procedure is con-
ceptually straightforward, its implementation has proved
to be immensely difficult [4]. Our inability to achieve
high-performance phonetic recognition is largely due to
the diversity in the acoustic properties of speech sounds.
Stop consonants, for example, are produced with abrupt
changes in the vocal tract configuration, resulting in dis-
tinct acoustic landmarks. Semivowels, on the other hand,
are produced with considerably slower articulatory move-
ments, and the associated acoustic transitions are often
quite obscure. To complicate matters further, the acous-
tic properties of phonemes change as a function of context,
and the nature of such contextual variation is still poorly

“This research was supported by DARPA under Contract N00039-85-
C-0254. monitored through Naval Electronic Systems Commaad.
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understood. As a result, the development of algorithms
to locate and classify these phonemes-in-context, or allo-
phones, typically requires intense knowledge engineering.

We are presently exploring a somewhat different ap-
proach to phonetic recoraition in which the traditional
phonetic-level description is bypassed in favor of directly
relating the acoustic realizations to the underlying phone-
mic forms. Our approach is motivated by the observation
that a description based on allophones is both incomplete
and somewhat arbitrary. Phoneticians traditionally iden-
tify a certain number of important allophones for a given
phoneme based on their examination of a limited amount
of data together with introspective reasoning. With the

. availability of a large body of data [5], we are now in 3

position to ascertain whether these categories are acous-

tically meaningful, and whether additional categories will"

emerge. Rather than describing the acoustic variations in
terms of a set of preconceived units, i.e. allophones, we
would like to let the data help us discover important reg-
ularities. In this line of investigation, the speech signal
is transformed into a set of dcoustic segments, and the
relationship between these acoustic segments and the un-
derlying phonemic form is described by a grammar which
will be determined through a set of training data.

This paper describes some recent work in acoustic seg-
mentation and classification, as part of the development
of a phonetic recognition system. Ideally, we would like
our system to have the following set of properties. The
segmentation algorithm should be able to reliably detect
abrupt acoustic events such as a stop burst and gradual
events such as a vowel to semivowel transition. More im-
portantly, there must exist a coherent framework in which
acoustic changes from coarse to fine can be expressed. The
classification algorithm should produce an accurate de-
scription of the acoustic events. Phonemes that are acous-
tically similar should fall into tL- same class. If, on the
other hand, a phoneme falls into more than one acoustic
class, then the different acoustic realizations should sug-
gest the presence of important contextual variations.
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ACOUSTIC SEGMENTATION

The purpose of our acoustic segmentation is to delin-
eate the speech signal into segments that are acoustically
homogeneous. Realizing the need to describe varying de-
grees of acoustic similarity, we have adopted a multi-level
representation in which segmentations of different sensi-
tivities are structured in an organized fashion.

Determining Acoustic Segments

The algorithm used to establish acoustic segments is
a simplified version of the one we developed to detect
riasal consonants in continuous speech [2]. This algorithm
adopts the strategy of measuring the similarity of each
frame to its near neighbors. Similarity is computed by
measuring the Euclidean distance between the spectral
vector ~f a given frame and the two frames 10 ms away.
Movi.  n a frame-by-frame basis from left to right, the
algorithim associates each frame in the direction, past or
future, in which the similarity is greater. Acoustic bound-
aries are marked whenever the association direction switches
from past to future. By varying the parameters of this pro-
cedure, we are able to control its sensitivity in detecting
acoustic segments in the speech signal. We have chosen to
operate with a low deletion rate because mechanisms exist
for us to combine segments if necessary at a later stage.

Signal Representation

The algorithms for both acoustic segmentation and clas-
sification use the output of an auditory model proposed
by Seneff [7]. The model incorporates known properties
of the human auditory system, such as critical-band fil-
tering, half-wave rectification, adaptation, saturation, for-
ward masking, spontaneous response, and synchrony de-
tection. The model consists of 40 filters equally spaced on
a Bark frequency scale, spanning a frequency range from
130 to 6,400 Hz. For our application, we use the output of
the filter channels after they have been processed through
a hair-cell/synapse transduction stage. The envelope of
the resulting channel outputs corresponds to the “mean
rate response” of the auditory nerve fibers. The outputs
are represented as a 40-dimensional feature vector, com-
puted once every 5 ms.

We find this representation desirable for several rea-
sons. The transduction stage tends to enhance the onsets
and offsets in the critical-band channel outputs. Forward
masking will greatly attenuate many low low-amplitude
sounds because the output falls below the spontaneous fir-
ing rate of the nerve fibers. These two effects combine to
sharpen acoustic boundaries in the speech signal. Further-
more, due to the saturation phenomena, formants in the
envelope response appear as broad-band peaks, obscur-
ing detailed differences among similar sounds, an effect we
believe to be advantageous for grouping similar sounds.
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In a series of experiments comparing various signal repre-
sentations for acoustic segmentation, we found that, over
a wide range of segmentation sensitivities, the auditory-
based representation consistently produced the least num.
ber of insertion and deletion errors [3].

Mult} Level Description

Ou. st experience with acoustic segmentation led us
to the conclusion that there exists no single level of seg-
mental representation that can adequately describe all the
acoustic events of interest. As a result, we have adopted
a multi-level representation similar to the scale-space pro-
posal by Witkin [9]. We find this representation attractive
because it is able to capture both coarse and fine informa-
tion in one uniform structare. Acoustic-phonetic analysis
can then be formulated as a path finding problem in a
highly constrained search space.

The procedure for obtaining a multi-level representa-
tion is siniilar to that used for finding acoustic segments.

"First, the algorithm uses all of the proposed segments as

“seed regions”. Next, each region is associated with ei-
ther its left or right neighbor using a similarity measure.
When two adjacent regions associate with each other, they
are merged together to form a single region. Similarity is
computed with a weighted Euclidean distance measure ap-
plied to the average spectral vectors of each region. This
new region subsequently associates itself with one of its
neighbors. The nerging process continues until the entire
utterance is described by a single acoustic event. By keep-
ing track of the distance at which two regions merge into
one, the multi-level description can be displayed in a tree-
like fashion as a dendrogram, as illustrated in Figure 1 for
the utterance “Coconut cream pie makes a nice dessert”.
From the bottom towards the top of the dendrogram the
acoustic description varies from fine to coarse. The re-
lease of the initial /k/, for example, may be considered to
be a single acoustic event or a combination of two events
(release plus aspiration) depending on the level of detail
desired.

We found this procedure to be more attractive than
the scale-space representation which we and others have
investigated [6,8]. The scale-space procedure produces a
multi-level desciiption by uniformly increasing the scale
through lowpass filtering, without regard to local context.
As a result, at low scales It tends to eliminate short but
distinct acoustic events such as stop releases and flaps. In
contrast, our procedure merges regions using a local sim-
ilarity measure. As a result, regions that are acoustically
distinct are typically preserved higher in the dendrogram.
regardless of their duration. Finally, by representing each
region by a single average spectral vector, our procedure
is computationally more efficient.

Evaluation
We have evaluated the effectiveness of our multi-level
acoustic representation in several ways. First, we devel-
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Figure 1: Multi-level Acoustic Segmentation.
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Phonetic Transcription

oped an algorithm to automatically find the path through
the dendrogram which best matched a time-aligned pho-
netic transcription. An example of such a path is high-
lighted on the dendrogram in Figure 1. The boundaries
along this path are also marked by vertical lines in the
spectrogram. We then tabulated the insertion and dele-
tion errors of these paths. Not only should we expect a
small number of insertion and deletion errors, the errors
should also be acoustically reasonable. Next, we compared
the time difference between the boundaries found and the
actual boundaries as provided by the transcriptions. Fi-
nally, we examined whether correct and incorrect bound-
aries behave in any reasonable way.

The evaluation was carried out using 500 sentences
from the TIMIT database [5|: five sentences each from
100 talkers (69 male and 31 female). These sentences
contained nearly 18,500 phonss. The best-path alignment
procedure gave under 6% and 8% deletion and insertion er-
rors, respectively. Closer examination of the errors reveals
that the deletions mostly involve acoustic transitions that
are not always distinct, such as those between closures and
weak stop releases, between vowels and semivowels, be-

tween nasals and voiced closures, and between stops and

fricatives. In Figure 1, we can see that the boundary be-
tween the stop and the fricative was deleted in the word
‘makes’. We have not yet analyzed the insertions as ex-
haustively as the deletions. However, it appears that ap-
proximately half of the insertions occur within the bound-
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aries of a vowel. In Figure 1 there was an insertion between
the vowel and the fricative in the word ‘nice’.

Analysis of the time difference between the boundaries
found and those provided by the transcription shows that
that more than 70% of the boundaries were within 10 ms
of each other, and more than 90% were within 20 ms.

Finally, we compared the boundary heights in the den-
drogram (as measured by the distance at which the region
is merged with one of its neighbors) of valid boundaries
to those of invalid boundaries. This comparison is shown
in Figure 2. The valid boundaries are typically higher,
suggesting that they are more resilient against merging.

Figure 2: Histogram of Boundary Height.
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ACOUSTIC CLASSIFICATION

Once a signal has been segmented, each region in the
dendrogram is assigned an acoustic label using a pattern
classification procedure described in this section. Ideally
the classification procedure should group similar speech

these regions produced 560 clusters covering nearly 96%
of the original data. All of the data then were resorted
into these 560 seed clusters. The distribution of the clus-
ter sizes was a well-Lehaved exponential function with a
mode of 6, median of 16, and an average size of 34. The

sounds into the same category, and separate sounds that hierarchical clustering was then performed on these seed ::_-\.-\.
are widely different. While we did not know how many [Clusters. ::-:’; f
classes would be appropriate, we suspected that the num- Cluster Evaluation \.::-\‘:'.‘
ber of classes would be small so that the results would be . i . . T
robust against contextual and extra-linguistic variations Thie-hlesgrehict] cluétering aigorithm Eorangesitite clis, "":';“"
g g ' ters in a tree-like structure in which each node bifurcates at &ig‘m
Hierarchical Classification a diferent level, The experimenter thus has the freedom to oy
In order to classify the acoustic segments, we first de- select the number of clusters and the associated spectral :'\:;i
termined a set of prototype spectral templates based on templates for pattern classification. We have performed -‘:—“:’_‘*
training data. In our case this was accomplished by using several types of analysis to help us make this decision. _:‘:\:
a stepwise-optimal hierarchical clustering procedure [1}]. First, the set of clusters should be acoustically robust. .-\‘::-f‘:w'
This technique, which is conceptually simple, structures By performing the clustering experiment on several databases ':'_*:\:*.

the data explicitly. In addition, the number of clusters
need not be specified in advance. We used an agglomer-
ative, or bottom-up procedure because the merging crite-
rion is easier to define than the splitting criterion needed
for the divisive procedure. The agglomerative technique
is also computationally less demanding than the divisive
technique. Pilot studies performed using several databases
containing many talkers indicated that the agglomerative

and examining the phonetic contents of the clusters, we
observed that the top three or four levels of the tree struc-
ture are quite stable. For instance, the top two clusters
essentially separate all consonants from vowels. The vowel
cluster subsequently divides based on spectral shapes cor-
responding to different corners of the vowel triangle. The
obstruent cluster divides into subgroups such as silence,
nasals, and fricatives. From these observations we decided

procedure produced relatively stable results, provided suf- that the number of clusters for reliable pattern classifica- "':.-.‘::
ficient training data is available, tion should not exceed twenty. BRI
In the interest of reducing the amount of necessary We also measured the average amount of distortion in- '-::'\;'
computation, we took several steps to reduce the size'of volved in sorting the training set into a given set of clus- e
the training sample used in the hierarchical clustering pro- ters. For a given number of clusters, the set with the e
cedure. First, all of the frames within a dendrogram re- minimum average distortion was designated as the best S
gion were represented by a single average spectral vector. representation of the data. Figure 3 illustrates the rate of '::C'Q‘.\'.'
Second, rather than using all regions in the dendrogram decrease in the average distortion as the number of clus- \:‘\::
for training, we included only those regions that the path ters increases from one to twenty. From this plot we see .‘:.‘-:.-
finding algorithm had used for alignment with the phonetic that the most significant reductions in the average dis- :"\':“
transcription. These two steps were found experimentally tortion occur within approximately the first ten clusters. -;3'3':"-3'
to reduce the data by a factor of fifteen, with no noticeable Afterwards the rate of decrease levels off to around 1%%. L
degradation in clustering performance. ‘:‘:\f‘;-".'
Further data reduction was achieved by merging similar ‘_:\"‘:?,’
spectral vectors with an iterative nearest neighbor proce- Figure 3: Average Distortion versus Number of Clusters. :'4‘2#:
dure, in which a vector is merged into an existing clusterif  _ ., , ;"“_.:}:-&,
the distznce between it and the cluster falls below a thresh- = "3:".-{”'»
old. Otherwise, a new cluster is formed with this vector, § 1 o
and the procedure repeats. In the end, all clusters with § p .:\.\r:.:
membership of two or less are discarded, and the data are a \ W
resorted. The value of the threshold was determined ex- ] "‘ .;\‘::-'_,\
perimentally from a subset of the training data, and was § 10,0~ .":‘:'\i;
set to maximize the number of clusters with more than = QA
two members. This final step was found experimentally to 4 ¥ s
reduce the size of the data by a factor of thirty. H 7 i ¢ ,:’_,,7’
We used the same 500 TIMIT sentences to train the E 1{ S i s .,\:‘:-f
classifier. These data comprised over 24 minutes of speech & | | i A ——— (oj
and contained over 290,000 spectral frames. Restriction to . ' . ol d
the time-aligned dendrogram regions reduced tne data to g VT aTeY »"'.{’«"
just under 19,000 regions. The pre-clustering procedure on :
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Figure 4: Phoretic Hierarchical Structure with Ten Clusters.
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We also judged the relative merit of a set of clusters by
examining the distribution of phonetlc information within
each set. This was done by performing hierarchical clus-
tering of all phoneé using their distribution across the set
of clusters as a feature vector. This procedure is very help-
ful in facilitating visualization of the data structure cap-
tured by a set of clusters. A qualitative analysis of these
structures showed that after ten clusters the hierarchical
organization did not change significantly. The structure
for ten clusters is shown in Figure 4.

Finally, we compared the resulting phonetic distribu-
tion for the clusters obtained from the training data to
that from a new set of 500 sentences spoken by 100 new
speakers. We found that the percentage difference for a
given cluster and phoneme is, on the average, around 1%,
suggesting that the results did not change significantly.
Closer examination reveals that the larger differences are
mostly due to sparse daia. .

Based on the results of these analyses, we concluded
that, by sele~ting approximately ten clusters, we are able
‘o capture a large amount of the variability in the data,
as well as a large amount of phogetic information. Fur-
thermore, because the number of clusters is fairly small,
we are more confident that this result is acoustically ro-

bust in the face of contextual and extra-linguistic effects.
The ten clusters produced by the clustering experiment"

are illustrated in Figure 3.

Flgure 5; Spectra of Ten Clusters lustrating the Average and
Deviation.
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DISCUSSION

Acoustic Segmentation

The segmentation algorithm uses relational informa-
tion within a local context. As a result, we believe that it is
fairly insensitive to extra-linguistic factors such as record-
ing conditions, spectral tilt, long term amplitude changes,
and background noise. Because these procedures require
no training of any kind they are also totally speaker-inde-
pendent. In the future, we plan to examine in more de-
tail the behavior of this algoritbhm under varying recording
conditions.

The results of our experiment on acoustic segmentation
suggest that a multi-level representation is potentially very

netic categories of the phonemes can be extremely helpful
in eliminating unlikely lexical candidates [10]. We believe
that the set of acoustic labels that we bave determined can
potentially aid in the recognition of phonemic classes.

SUMMARY

In summary, we have reported some initial work with
acoustic segmentation and classification which we believe
can provide a foundation for an eventual phonetic recog-
pition system. By representing the speech signal with a
multi-level acoustic description, we are able to capture,
and to organize in a meaningful fashion, the majority of
acoustic-phonetic events of interest. Our work with acous-

useful. The combined segment insertion and deletion rate tic classification indicates that, with a small number of ;';";
of 14%_" much 'better than the. best _"”“" we were able spectral templates, we are able to obtain a robust descrip- T
to ?btame.d prevxbu?ly (25%) with a ungle—l.evel represen- tion of the speech signal, and also to provide a meaningful ‘_‘
tation, using mentmll.y the same segmentation 118‘”{“"}‘ phonetic interpretation. In the fut* = we will combine oy
and signal representation [3] Analysis of the errors md.l- these two results and begin to describ. .n more detail the -
cates that most of the deletions occur when the acoustic relationship between the acoustic signal and the underly- A
change is subtle. When a boundary is inserted, it is often ing phonemic representation. B
the case that significant acoustic change exists, such as o
within a diphthong or between the frication and aspiration oo
phases of stop releases. Since our objective is to provide an REFERENCES - ,JE.‘;{
accurate acoustic description of the signal, some of these (1) 2:21.55?1"?3;:&??0!: “V'Jfl'e" f;‘:;‘sff::"l"o",,;"d Seene ;
insertions and deletions perhaps should not be counted as Yo ) Y ' ) R
errors. [2]  Glass, J.R., Zue, V.W., “Recognition of Nasal Consonaats <o
: . in American English," Proe. DARPA Speeeh Recognition o
] T.he dendrogram p{Od‘fc”.v‘hd bounda.na as well 2s Workshop, Report No. SAIC-86/1546, February 1986. :-.": :
invalid ones, and the distributions of the heights for these T
two.kinds of boundaries well vod h . [3] Glass, J.R., Zue, V.W., “Signal Representation for Acous- )
. s R SCRATENd, AR tic Segmentation,” Proc. of the First Australian Confcr. '..‘.'{.'
Figure 2. The separation becomes even mote pronounced ence on Speech Seience and Teehnology, November 1986. "
when the distributions are conditioned on the general con- H. R ¢ the ARPA Speech Und " P
text of the boundary. This type of information lends itself 4l g:::'“n. 7 A :o":i:' osote ¢ Amer s:;c Gzn Ne: ng lp’;,g g-&_‘
paturally to a probabilistic framework for finding the best 1345-1366. Dec. 1977. ' ' ' K
path through the dendrogram. :'4:.\."
(5] Lamel, L, Kassel, R., Senefl. S.. “Speech Database De- o
Acoustic Classification glopmentPDesxgt;’;néipﬁn;lysls:fnlhe Acoustxc“?hzn;nc {:?a
orpus, roe eee ecognition orkaio o,
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RULE: A SYSTEM FOR CONSTRUCTING RECOGNITION LEXICONS

Mitchel Weintraub and Ja:2d Bernstein

Speech Research Pro
£ SRI Intcmationafmm
Menlo Park, CA 94025

ABSTRACT

The RULE software system is a series of toois that allows one
to construct recogpition lexicons. The tools run on a Symbolics
3600 computer, and allow a user to:

(1) Easily construct and test linguistic rules

(2) Automatically compile and apply rules to probabilistic
networks

(3) Graphically display pronunciation networks of words or
sentences

(4) Observe the pronunciation networks as they are modified
by the linguistic rules

(5) Transcribe speech by selecting one of the possible paths
through a pronunciation network

(6) Test if a set of phonological rules can explain observed
forms

A previous paper [Bernstein etal. 1986 DARPA Speech
Recognition Workshop] described an earlier version of these
tools. This paper describes new algorithms that apply
phonological rules to pronunciation networks. Significant
recent developments in RULE include: (1) phonological rules
are applied to probabilistic pronunciation networks, and (2)
generation of interword phonological effects when phonological
rules are applied to individual word models in a lexicon.

1. INTRODUCTION

The object of this research is to construct recognition lexicons
that can be used in a speaker-independent continuaus-speech
recognition system. Each word in the vocabulary is todeled by
a separate probabilistic pronunciation network. The set of all
pronunciation networks, and the algorithms that dei>rmine
which paths of one pronunciation network can follow which
paths of a different pronunciation network constitute the
recognition lexicon.

A recognition lexicon should consist of probabilistic pronuncia-

tion networks that accurately model the variations in phonetic
pronunciations observed in continuous speech. A pronunciation
network of a particular seatence (1) should contain all allowable
pronunciations of that sentence, (2) should not contain any
pronunciations that are unreasonable, and (3) s!....d contain
probabilities that accurately reflect the true pronunciation
probabilities.

The RULE system was designed to generate pronunciation
networks by applying a set of lexical rules to a baseform
network. In an earlier version of the RULE system (described
in the paper presented at last year's DARPA meeting), when the
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phonological rules were applied to the baseform networks of a
single word, the resulting network described the possible
word-internal pronunciations of that single word. When the
phonological rules were applied to the baseform networks of
whole sentences, the resulting network described the variations
in pronunciation of that whole senterce. Since the phonological
rules were applied to a known sentence, particular word context
cffects were easily handled. We have extended the RULE
system to apply a set of linguistic rules to individual word
baseforms, and generate a pronunciation network of that word
that represents all significant interword effects. We have also
extended the RULE system to apply probabilistic phonological
rules to a pronunciation network., The new algorithms keep
track of the pronunciation probabilities and the identities of the
rules that generated which pronunciation paths. We will
describe these facilities, as well as the algorithms that can be
used to automatically train the probabilities of a set of
phonological rules.

In addition to the above extensions of RULE, other recent
developments include: (1) a set of algorithms to convert a
pronunciation network into a minimum deterministic network,
and (2) an improved interactive graphical display to manipulate
and inspect networks. These algorithms will not be described in
this paper.

2. DEFINITIONS

A pronunciation network is a directed graph that RULE
represents as a list of nodes and arcs. Each network has a single
start-node and a single end-node. Each path through the
network (from the start-node to the end-node) represents a
possible pronunciation of a word or sentence. Since the
pronunciation network does not contain loops, each network
contains a finite number of different pronunciations.

The arcs of a network contain all the relevant information about
the allowable pronunciations. Each arc contains the following

(1) Arc-Label: (e.g. "T" "D" "IY" "&" NULL-ARC) All the
arc labels in the final version of a pronunciation network
(after the rules have been applied) correspond to specific
phonetic events. As we have implemented our rule set,
" 'ndary labels such as "&", "%", and computational
constructs such as NULL-ARC can exist at intermediate
stages of rule application, but are removed from the
network by the application of lexical rules that delete
these arcs.

Arc-Features: (e.g. SYLLABIC CONSONANTAL
STOP NASAL) These features represent the linguistic
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(3) Arc-Probabilities: These are used to represent the
probability of different pronunciations. The sum of the
probability of all arcs that leave each node should be
equal to 1.0.

(4) Arc-Interword-Boundary-Constraints; Path constraints

determine which of the pronunciation paths through the

network are allowable. Whether or not a path is
allowable depends on the preceding and following word
context. Each arc that leaves from the start-node
contains a LEI -INTERWORD-BOUNDARY-

CONSTRAINT. Each arc that arrives at the end-node

contains a RIGHT-INTERWORD-BOUNDARY-

CONSTRAINT. Other arcs in the network do not

contain path constraints. When the right-interword-

boundary-constraint of the last arc in one network is

COMPATIBLE with the left-interword-boundary-

constraint of the first arc in another network, the

pronunciation paths aiec compatible, and are allowed to
follow each other when parsing a sentence.

(5) Arc-Rule-Bookkeeping-Information: This information is

used to keep track of which rules generated different

pronunciation paths. This information allows the system
to usc hand-transcribed data to compute the probability
of different rules.
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FIGURE 1. Sample Pronunciation Network of the word

"HAUPTMAN'S"

[Note: ";" implies that this arc is nasalized, ")" implies: the
previous word context determines whether this pronunciation
path may or may not be taken, "(" implies: the following
word context determines whether this pronunciation path
may or may not be taken, AW' is AW with primary stress.)

We have constructed 2 dictionary of baseform representations
for 3412 of the words in the TI-AP database. The baseform
representation for each word is a network, and need not be a
single string of symbols (i.e. it could be a multipath network).
Each baseform network begins witk an arc whose label ("&" or
"%") represents a word boundary. Some sample baseform
networks are shown in figure 2.

The interactive RULE facility allows a user to write a sequence
of phonological rules. The current rule set consists of 45 rules.
To illustrate the properties of phonological rules, an example is
shown below. Rule V5 is automatically compiled (by the RULE
system) into a list of rule clauses (figure 4). Each rule clause
consists of: (1) a test that must be satisfied to match the clause to
a single arc in the pronunciation network, (2) the action that is to
be taken on the copied arc, and (3) a word boundary identifier
which is used to determine where the rule can be broken up
across word networks.  The third clause of rule V5 is an
optional morpheme-boundary test that was automatically
inserted by the rule compiler. The insertion of the optional
morpheme-boundary clause allows rule V5 to operate across
word boundaries. Since this rule clause is optional, the rule
application algorithm may or may not be match this clause to a
network arc.

(defrule

:name V5§

:rule-documentation "W-GLIDE Vowel becomes
SCHWA w"

:core (feature W-GLIDE)

:left-environment NIL

:right-environment (feature-and SYLLABIC

) VOCALIC)

:action ((replace-phoneme "AX")
(insert "W"))

‘rule-type MIT

:copy-matching-arcs )

:rule-probability 5

:application-order-number 2050
)

FIGURE 3. A sample rule

TEST TO MATCH ARC COPIED ARC ACTION WORD
BOUNDARY D
I.(FEATURE W.GLIDE)  (REPLACE-PHONEME
AX) NONE
2.NONE (INSERTW) NONE
3. (OPTIONAL (FEATURE
MORPHEME-BOUNDARY))  (DO-NOTHING) VSl
4. (FEATURE-AND
SYLLABIC VOCALIC) (DO-NOTHING) NONE

FIGURE 4. The set of rule clauses that rule V5 is compiled
into.

The word boundary identifiers are used (1) to indicate 10 the rule
application algorithm where the rule clauses can be split across
individual word networks, and (2) in the interword boundary
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Each initial arc and each final arc of a word pronunciation 5 ¥ §
network contain an interword boundary constraint. These ;\ ﬁi v
interword boundary constraints determine whether a pronuncia- 6d : - \ t#::,,-:
tion path that begins one individual word network is allowed to / B .5 \\ / D.5 N\ l.;-\g
follow a pronunciation path that ends another word network. ° [
The pronunciation paths of the two word networks can follow tM
each other if the two interword boundary constraints (of the last .
arc in network-1, and the first arc in network-2) are A 25— “““Ehl'“ s YA
COMPATIBLE. Each boundary constraint consists of a list of 6b _ A 2S5 o D L0 § oY
single boundary constraints. Each single boundary constraints P PCenY
contain two lists: a list of OPTIONAL word boundary identi- B .5 c /,;, PRy,
fiers, and a list of OBLIGATORY word boundary identifiers. A s %,1:1;. )
For two boundary constraints to be compatible, each obligatory v ‘i‘;
word boundary identifier in one interword constraint must be ‘
contained in the list of either the obligatory or the optional word .
boundary identifier of the other interword constraint. :Cf)?
S AN
AR
3. PROBABILITIES 6¢ o ;
it
The pronunciation network of a word initially consists of the ‘-',::3
baseform network. Each of the phonological rules are applied LN
sequentially to each baseform network. To apply a rule to the S
network, the application algorithm searches the network for a i
series of arcs that satisfy the list of rule clauses. When a series 2.)-'\;
of arcs are found that match the rule clauses, the matching arcs ._-‘1‘-
are copied, and the (1) labels, (2) features, (3) interword S
boundary constraints, and (4) path probability of these copied :.:_}_\x:
arcs are modified. The path probability of the matching arc 6d et
sequence is multiplied by the probability of the rule. The new WO
arcs represent an alternate pronunciation path. Since the rules [
are applied sequentially, the pronunciation paths generated by "'r."‘
previous rules may be used to match the rule clauses of el
following phonological rules. el
FIGURE 6. The sample rule in figure 5 is applied to a :. :-."
To illustrate how a rule is applied to a network, we can look at network. P
figures 5 and 6. The purpose of sample rule RULE-1 is to S
allow the alternate pronunciation "E" to a series of arcs (A" .. Yu L
"C"). The 4 stages of rule application are illustrated in figure 6: 6a: The original network. _ i
(1) the network is exhaustively searched for all series of ars 6b: The clauses in RULE-1 have been matched against the S
that match the rule; for each of those series of arcs that maich, network, and the matching path ("A" "C") has been [
the following steps are taken: (2) the matching arcs of the expanded into a linear path. -~ . o 2,
network are broken out into a separate linear path, (3) the 6c: The matching path ("A" "C") is copied, and the t.}:‘-':
matching arcs are copied and subsequently modified by the appropriate actions are taken on these arcs. The nctwork 5_".':6.;
actions of the rule clauses, (4) the network is converted into a probabilities are niodified, and the rule bookkeeping e
minimum deterministic graph. The algorithm is described in indicates which rule generated this new path. o S
much greater detail in Appendix 1. 6d: The network is converted into a minimum deterministic ’
graph. %) .
(defrule S
:name RULE-1 After the rule clauses have been successfuily matched to a f-‘)_\'r‘,‘.
‘rule-documentation "illustrative example” sequence of arcs in the network, the network is expanded into a Ny
‘cnre ((phoneme "'A™) (phoneme "C™)) series of linear arc sequences (see figure 6, top right). This Sl
:left-environment NIL network expansion is necessary so that the pronunciation {;‘_{.‘x‘
‘right-environment NIL probabilities can be modified in a correctly. The original v -
:action ((replace-phoneme "E") matched arcs are then copied, and modified by the actions < {
(delete-phoneme)) specified in the rule. The path probability of the newly modified ;&'\.ﬁ-:\
‘rule-type TEST arc sequence is equal tc the probability of the original matched ,.-‘e:\:(-,(
:copy-matching-arcs T arc sequence multiplied by the rule probability. The path Y ped
‘rule-probability S probability of the original matched arc sequence is multiplied by ‘:;').‘ -”.{
:application-order-number | (- 1.0 rule probability). Finally, the network is converted into a ;'-'. A
minimum deterministic graph, maintaining the correct path -'f.‘-f,(\-'
probabilities and rule bookkeeping information. This algorithm -4
is described in more detail in apnendix. 1. TR
- W
FIGURE 5. A sample rule that will be used to demonstrate LA
how rules are applied to the pronunciation To compute the probability of each phonological rule, a database c}.];\'-:
network. of hand transcribed speech is necessary. For each utterance in ‘.\‘}"‘,
the database, a set ot phonological rules is applied to a sentence K ":-
baseform network to create a pronunciation network for that SRR
sentence. Using the hand transcribed data, the pronunciation W
path through the network is computed. Beginning at the [ .'4
} -
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start-node, RULE traverses the pronunciation network along the
observed path. At each node along this path, RULE can
compute a list of all the different phonological rules that
generated any of the arcs that leave from the node. For each of
the rules that are in this list, we increment their POSSIBLY-
AFPLIED-COUNT by 1. We then increment the ACTUALLY-
APPLIED-COUNT of all the phonological rules that were used
to generate the traversed arc. When we have finished
prozessing all the utterances in the database, the probability of
cach phonological rule is equ. . (// ACTUALLY-APPLIED-
COUNT POSSIBLY-APPLIED-COUNT).

4. INTERWORD RULE APPLICATICN

To allow phonological rules to apply across words when each
word is stored in a lexicon as a separate virtual network, two
major changes were made. These changes consisted of (1) a
new rule application strategy, and (2) the addition of .n
interword boundary constraint that determined which pronuncia-
tions of a word were possible, based on the previous/following
word context.

Each rule consists of a series of 1ule clauses. During rule
application, each rule clause needs to be matched against an arc
in the network. Inorder to deal with interword effects, the new
rule application algerithm needs to allow partial sequences of
rule clauses to be matched against a series of arcs in the
network, with the remaining clauses to be applied to the
previous/following word. Since each baseform pronunciation
network of an individual word starts with a word boundary
symbol (either an "&" or an "%"), only rule clauses that can
match these arcs can split a rule across a network boundary.
Therefore, each rule clause that can match these arcs is given a
unique word boundary identifier. Rule clauses that cannot
match a word boundary symbol, cannot be locations where a
rule is broken up across word boundaries. Each rule can be
split across pronunciation networks at the location between the
clause with an interword boundary identifier, and the previous
clause. In rule V5, this is between the second and third clauses.
An example of how rule V5 (see figure 3) can be broken up
across word boundaries is shown in figure 7.

TEST TO MATCH ARC COPIED ARC ACTION WORD

BOUNDARY ID
1. (FEATURE W-.GLIDE)  (REPLACE-PHONEME
AX) NONE

2.NONE (INSERT W) NONE

¢¢¢ BREAK ACROSS NETWORKS HERE ***
3. (OPTIONAL (FEATURE
MORPHEME-BOUNDARY)) (DO-NOTHING) V5-1
4. (FEATURE-AND
SYLLABIC VOCALIC) (DO-NOTHING) NONE

FIGURE 7. How the ciauses of rule V5 can be «plit across
word boundaries. To apply this rule across netwurk bound-
aries, the first clause matches the last arc in network-1, while
the third clause matches the first arc in network-2. Since the
second clause is an insertion, it does not need to match
anything in either nctwork. Thc changes in pronunciation
(both the AX and the W) will be as.ciated with network-1.

Thc rulc application algorithm was modified to allow partial
sequences of rule clauses to be appiied to networks. When the
rule application algorithm (in appendix 1) reaches the end of a
network, and aiso encounters an interword boundary idenufier
on the next clause to match the network, it allows the rule to be
split across networks. An example of rule V5 being split across
network boundaries is shown in figure 8.

& HH AW

®

&
4

& HH AW

Mt: w(

FIGURE 8. Top: The baseform network for the word
"HOW", Bottom: After rule V5 has been applied to the
network. The new pronunciation patk: that has been added is
highlighted. The "(" of the "W(" means that this pronuncia-
tion path can only be taken if the following word satisfies
certain conditions, in this case that the beginning of the
following word network has a syilabic vocalic arc just inside
the word boundary as specified by the last two ciauses of
rule VS§.

The new pronunciation path ['AX", "W"] of the word "HOW"
in figure &, may only be traversed if the following word satisfies
the interword boundary constraint. This is because the new
pronunciation path is conditional on the features of the word that
foliows it. The new pronunciation of the word "HOW" may
only be used if the next pronunciation network starts with a
morpheme boundary followed by an arc that is both syllabic and
vocalic. This interword boundary constraint indicates where the
rules were split across network boundaries, and which
word-edge paths are consistent with each other.

5. BASEFORMS AND PHONOLOGICAL RULES
IMPLEMENTED IN RULE

For CMU's Electronic Mail Task, SRI implemented a
recognition lexicon that recognizes multiple pronunciations of
most vocabuiary words. The variant pronunciations (e.g.
"decision” with or without a tense first vowel, or "capacity"
with flap or an aspirated [t]) can be directly represented in the
baseform list or they can be derived by rule from single
baseforms. In SRI's work thus far, we have maintained an
intitive, but principled split between irregular or lexica!
variants, and general regular, rule governed variation. By this
criterion, the forms of "exit” with voiced [gz] or voiceless [ks]
are explicit in the baseform list; while the flap and [t] forms of
“capacity" are handled by rule. This kind of split is possible in
RULE but not required.

As of this writing, the rule set that SRI has implemented
consists of about 45 rules that are separated into eight groups.
The rules within a group apply more or less in parallel, while the
members of lower numbered groups apply before members of
highcr numbered groups. The groups are:

0: Expansions -- Convenient redundancies like insertion of
silences and glottal stops as appropriate at word boundaries.

I: Lexical and Dialectal Variants -- Regular dialectal and free
variant forms such as /w/ or /wh/ in "where” etc.. or
initial-syllable tense-lax alternations in words like “demand’
and "deny".

to

. Syllal Nucleus Core -- Deletion of unstressed imitial
rowels and the rc-coding of diphthongs nto schwa-glhide
;CqUeNccs.

3 H and Glide or Liquid Core -- Deletions of b/ and I in
certain environments.
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4: Nasal Cores -- Assimilation of certain nasals.

5: Fricative Core - Epenthetic stop insertion, and several
assimilations.

6: Plosive Core -- Several kinds of lenition, including deletions,
assimilations and cluster reduction.

7. Phonetic Alternates and Patches -- A catchall for covering
regular (non-phonological) correspondences created by the
logic of the Acoustic-Phonetics module, and for the deletion
of diacritics such as boundary marks.

A final note: There are several types of phonological rules that
are often used in linguistic descriptions and would be convenient
for building a recognition lexicon that are not casily implemented
in the RULE system. One example is "alpha” rule notation in
which a variable, alpha, is bound in one clause of the rule and
referred to in another. Alpha rules are useful in handling
assimilations and geminate reductions. A last example is the use
of abstract phones in cross dialectal baseforms; that is phones
that are not realized in either dialect but are convenient ways to
represent a regular correspondence between forms. Abstract
phones and alpha rules can be done in RULE but they are not
natural to its formalism.

6. SUMMARY

The RULE software system is a set of tools that allows one to
construct recognition lexicons. This paper describes new
algorithms that apply phonological rules to pronunciation
networks. The novel aspects of the algorithm involve: (1) rule
application to probabilistic pronunciation networks, and (2)
generation of interword phonological effacts when phonological
rules are applied to individual word models. With a hand
transcribed database, we can automatically train the probability

RULE-APPLICATION-PASS # 2: (same loops and calls as pass #2]
Convert the network into a minimum deterministic graph.
If there are any rules remaining,

THEN CALL: APPLY-SET-OF-RULES-TO-NETWORK
(remaining-rule-lis1,network)

FUNCTION: MATCH-CLAUSE-LIST-TO-NETWORK
(rule<clause-list,node)

If (OR [ ruleclause-list is empty |

(AND [ node is the end-node of the network |
[ the next rule clause thal has an arc test
also has a word boundary identifier)
)
THEN
CALL:MODIFY-NETWORK-BY-APPLYING-RULE
ELSE

Loop for arcs that leave this node
If arc satisfies first remaining nule-clause,
THEN
CALL: MODIFY-NETWORK-BY-
APPLYING-RULE
((cdr rule<clause-lis1),(to-node arc))
ELSE
If rule-clause is an optional clause,
THEN
CALL: MODIFY-NETWORK-
BY-APPLYING-RULE
((cdr rule-clause-list),node)

FUNCTION: MODIFY-NETWORK-BY-APPLYING-RULE

of each of the phonological rules, and use these phonological gx&w:;ﬁﬁﬂgﬁ:mg]c clauses, f-.‘,,-‘ o
rules to create accurate probabilistic pronunciation networks for unmatched-right-ruleclauses) i
each word in the vocabulary. e
If firs1 pass, then collect matched arcs into a temp data structure. If this is e -

the second pass of the rule applicatica, Thed

APPENDIX 1: ALGORITHM FOR APPLYING A SET OF RULES TO THEN .

THE NETWORK A

If there are no unmatched lcft or right rule clauses, ;,.'), ;_'

FUNCTION: APPLY-SET-OF-RULES-TO-NETWORK (rule does not apply across nerwork boundaries.) PRty
(list-of -ordered-rules,network) THEN g __=

If the rule copies the matching arcs, ,a‘_’:.}‘:

Gel the first rule of the list-of-ordered-rules then copy the arcs, modify the probability and By
bookkeeping of this path. :‘..?'v_‘:-",

Determine rules 1o apply in parallel with this rule => Apply action to each copied arc (typically modify oy
PARALLEL-RULE-LIST arc label or features). R
REMAINING-RULE-LIST contains rules that remain. ELSE e
(there are some unmatched rule clauses, LS,

RULE-APPLICATION-PASS # 1: rule that applies across network boundarnies.) g
Loop for each rule in parallel-rule-list F."- -

Loop for each node in the network. Loop through matched rule clauses. : K _-‘!,

If this is the start-node of the network, If clause action modifies the network. _:-‘_;-f‘:,

THEN THEN oY,

Loup for each rule clause that has a word If the rule copies the matching arcs, then copy the '-.':\':':'
boundary identifier arcs, modify the probabilily and bookkeeping of GO

CALL: MATCH-CLAUSE-LIST-TO- this path. e
NETWORK Apply acuon to each copied arc (typically ,r,.'__“.'
(remaining-rule-clause-list.node) modify arc label or features). J.f-.:—.:
ELSE Modify interword constraunts of copied arcs to contain ‘-:,\ o
CALL: MATCH-CLAUSE-LIST-TO- obligatory interword idenufier. ':J'\ﬁ.é
NETWORK (rule-<lause-list.node) ELSE ooy
Modify interword constraunts of the matched arcs w SLASS
Collect the arc sequences successfully matched by rule clauses. Expand contain opuonal interword idenufier. 1‘":;'* &
network so that all mawched arc sequences are separated out. "i
o
o
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STUDIES FOR AN ADAPTIVE RECOGNITION LEXICON!

Miehael Cohen, Gay Baldwin, Jared Bernstein, Hy Murveit, Mitehel Weintraub
Speeeh Research Program
SRI International
Menlo Park, CA 94025

ABSTRACT

In the past year, SRI has undertaken a series of empirical studies of
phonological variation. The goal has been to find better lexical
representations of the structure and variation of real speech, in order
o provide speaker independence in speech recognition. Results from
these studies indicate that knowledge of probabilities of occurrence
of allophonic forms, co-occurrence of allophonic forms, and speaker
pronunciation groups can be used to lower lexical entropy (i.e.,
improve predictive ability of lexical models), and possibly, therefore,
achieve rapid initial adaptation to a new speaker as well as ongoing
adaptation to a single speaker.

INTRODUCTION

As the number of words in the lexicon gre,ws, the speech recognition
problem gets more difficult. In a simlar way, as more possible
pronunciations for each word are included in the lexicon, the recog-
nition problem gets more difficult because there are more competing
hypotheses and there can be more overlap between the representa-
tions of similar words.

GOne important goal of a lexical representation is to maximize cover-
age of the pronunciations the system will have to deal with, while
minimizing overcoverage. Overcoverage adds unnecessary difficulty
to the recognition problem. One way to maximize coverage while
minimizing overcoverage is to explicitly represent all possible
pronunciations of each vocabulary word as a network of allophones.
An example of such a network is shown in figure 1 for the word
"water. This network represents eight possible pronunciations,
some of which are fairly common (e.g., [W AO DX ER|), and others
somewhat rare {e.g., (W AA T AX|). Experience suggests that, to
assure coverage, it will be necessary to include many pronnnciations
for eacli word, including those which happen relatively rarely

In reality, speech is more highly organized. Tlere is more predictive
knowledge available than in a model that simply represents indepen-
dent equiprobable choices with no interaction or influence between
different parts of a model and with no ability to use information
from other parts of an utterance or previous utterances by the
current speaker. In current systems which use allophonic models,
each node represents anindependent set of equiprobable choices.

'This research was sponsored by Defense Advanced Research Projects Agency
Contract N00039-85-C-0302. The views and conclusions contained in thls document
are those of the authors and should not be interpreted as representing the officisl pol-
icies, either expressed or implied, of the Defense Advanced Research Projects Agency
or the US Gorvernment.
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The goal of the research described in this paper is to explore ways in
which a lexical representation can better reflect the strncture of real
speech data, so that the representation will have more predictive
power, and thus improve recognition accuracy. A better under-
standing of the issues involved may lead to methods for rapid adap-
tation to a new speaker, as well as ongoing adaptation to a single
speaker during a single session.

In order to explore these issues, we chose to model (as a single utter-
ance) a pair of sentences containing 21 words for which we had a
large data set. The patterns of variation found for this 21-word
microcosm should indicate what kinds of structures will he nceded in
a larger lexicon. The data used were transcriptions of the two
dialect sentences for the 830 speakers in the TI-AP database.

We have performed a series of four studies that explored four types
of phonological structuie, and ways of representing this structure in
a lexicon. In the first study, we simply looked at the gain in predic-
tive ability of a phonological model which incorporates knowledge of
the probabilities of the various possible word pronnnciations. The
second study explored the co-occurrence of allophonic forms, and
ways in which knowledge of these co-occurrences can be automati-
cally compiled into a phonological model. The third study explored
the possibility of grouping speakers into a small uumber of pronunci-
ation clusters, and looked for demographic and other predictors of
these pronunciation clusters. The fourth study was designed to
compare intra-speaker variation to the variation within the pronun-
ciation clusters defined hy the third study.

To evaluate our data, and compare representations, we used entropy
as a measure of the predictive power of a representation, or
difficulty of the recog-ition task given a particnlar representation.
The entropy of a representation, developed from or “trained” on
some large set of data, reflects both how well the represeutation cap-
tures significant structure in the data and how much predictive
power is gained by modelling this structure.

The four studies are described in the following four sections, fol-
lowed by a general discussion and conclusions.

PRONUNCIATION PROBABILITIES

The goal of the first study wa= to determine how much speech recog-
nition accuracy could be improved by incorporating knowledge of
pronunciation probabilities into a phonological language model. An
important goal of any lexical representation is to provide coverage
of the pronunciations that the system will have to to deal with,
including relatively rare pronunciations. This makes the recognition
problem more difficult hecause tliere are more competing hypotheses
and can be more overlap between word models. One way to deal
with this problem is to include probabilities for pronunciations m
the lexical model. In this way, including somewhat rare pronuncia-
tions will increase coverage without hurting performance. It will




allow recognition of these unusual pronunciations, avoiding confu-
sion with other more common pronunciations of similar words. For
example, consider the allophone string

(DHAXBHIG WAADXAXBIHL 7

This string contains, as a substring, the sequence (W AA DX AX|,
which corresponds to one of the paths through the network for the
word "water” shown in figure 1. This is a relatively infrequent
pronunciation of the word “water”. An alternative hypothesis for
this same substring could be the pair of words "wad of”, for which
this pronunciation is relatively common. (Suggesting the phrase
"The big wad of bills" rather than "The big water bills".) Appropri-
ate probabilities associated with these pronunciations could allow a
system to make a more intelligent choice. Such a model shouid help
recognition accuracy significantly, provided that the probabilities
used are accurate for the domain in which the system will be used,
and especially if the probability distributions are significantly
different from the default equi-probable models.

W AO DX ER

— T e
AA T AX

Figure 1. Allophone network for the word
"water”,

The data used in this study were transcriptions of the two dialect
sentences for the 630 speakers in the TI-AP database. Originally,
the allophonic forms used for each of 58 phonemes in the two test
sentences as produced hy the 630 speakers were transcribed by Mar-
garet ICahn, Jared Bernstein, or Gay Baldwin. The transcriptions
were done carefully using a high fidelity interactive waveform editor
with a convenient means to mark and play regions in a high resolu-
tion image of the waveform. Spectrographic and other analytic
displays were also easily available, though most of the work was
done by ear and by visual inspection of the waveforms. Subse-
quently, a subsct of 18 of these seginents was chosen which we felt
we could transcribe accurately and consistently; the 18 are dispro-
portionately consonantal. This subset of 18 segments in the original
630 transcriptions were then re-checked and corrected by one indivi-
dual (Gay Baldwin). The transcriptions of these 18
segments/utterance were compared to a subset of 156 speakers
whose sentences had heen independently transcribed at MIT as part
of a related project. For this subset of 156 speakers, the number of
transcription disagreements between SRI and MIT wa: about 5-10%
for a typical phoneme.

Figure 2a shows the two dialect sentences, indicating the segments
included in this study, along with the distributions of allophones
found for each of these phonemes. Figure 2b shows the 18 node
allophone model used to represent the possible pronunciations.
Among these 18 phonemes, at the level of transcription we used,
there are 14 two-way splits, two three-way splits, and a six and a
seven-way split. The distributions vary from a 19%-99% split for
canonical /4/ vs. flap in "water” to a 80%-40% split for the
affricated vs. non-aflricated /dy/ juncture in "had-your” to a 47%-
53% split for a glottal gesture at the beginning of “oily”.

The seven-way split for the juncture in "suit in" is the most
unpredictable. The potentially variable events are the burst of the
/t/, the occurrence of a glottal onset to “in" and the presence or
ahsence of the vowel in "in". A third of the readers produced a vury
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34% durel glol ¥
24% flapid ¥
17% no-burel glol ¥

2a

our 9% ygn no-burel giot N
schwa 6% 3% owety o or 96%
o 85% 0.8% buret giot N warsh 5%  SChwe 4%

0.2% ¢ Y-relense

She had/your dark sult'In greasy wash water all year.
dy 40%

rless 6% k-burst 91% I 21%
dz 60% s 79%

flap 99% 7 60%

8% ntiep

18% no-durel glol
% 1-durel

4% +durel glol
% no-cone

™ glot

Don‘t ask me to carry an olly rag ilke that.

o s :-nk 21%

5%

flap 73%
1-buratl 27%

th 97%
d 3%

7 4T%

k-bulst 34%
no burst 65%
%

7 1%

Figure 2.

a) observed percentages of allophonic forms.

b) 18 node utterance model.

c.lenr form that exhibited a t-burst and a glottal stop or glottaliza-
tion at the onset of the /1/ in “in". A quarter of the readers flapped
or produced a short /d/ into tlie vowel in "in". Nineteen percent of
the utterances showed no burst for the /t/ but a glottal gesture into
the /1/, while t8% showed the same burstless /t/ with glottal ges-
ture, but released the gesture directly into the nasal, deleting the
/1/. Three percent of the readers (19 people) released the /t/ with a
burst right into the /I/, 3 speakeis (0.6%) had a clear t-burst, but
the glottal gesture goes right into the nasal with the /1/ deleted.
One speaker (0.2% of the sample) produced the "suit in" juncture as
a /d/ with a velic release into the nasal (as in a word like “sud-
den”). The distributions are surprising only as reminders of how lit-
tle quantitative data on the relative frequency of occurrence of allo-
phones is available. What experienced phonetician could have
estimated the proportion of these forms in reading? it's no wonder
that specch recognition lexicons would have whatever allophonic
options they allow unspecified as to relative likelihood.

The approach uscf‘l .in this study was to compute the probabilitics of
cach of the transitions in the 18-node allophone model (figure 2b)
from a large database of speech. The entropy of this model was
compu%c.d'. and ?ompnrcd to the entropy of a similar model without
probabilities estimated fromn data, in which case all transitions from
a node are c.onmdcred cquiprobahle. Information theoretic entropy,
H, of an arbitrary string, S, in the language was computed as:
IH(S )= =3 3P (t )iog,P (1) (1)
at
where n ranged over all of the the nodes in the utterance model, t
ranged ove.r.all of the transitions from the current node, and P(t) 15
the probability of trapsition t. This is the same as:
H(S)= =Y P(s)log,P (s) (2)
- 2
wher]e s ranges over all of the strings in the language McEliece,
1977].
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The entropy measured for the model with equi-probable transitions 3a a I I- ? S.'f:J
is 22.6 hits, and for the mode] with empirically estimated probahili- t‘-‘_' <"
ties is 13.0 bits. This represents an increase of 42.4% in predictive 0 n '}t,‘hl.'
ability (knowledge or source of constraint) for the model with ' b{‘-"\"
trained probabilities. Presumably, this further constraint should LalLen
translate into improved recognition accuracy. . :

" o

CO-OCCURRENCE OF ALLOPHONIC FORMS 6 5 2 3 0 }‘{%

. »”
The goal of the next study was to explore co-occurrence relation- Ol I Y'? ,-:J'N

ships in allophonic variation. A co-occurrence relationship is one in
which the prohahility of the occurrence of a particular variant is

conditioned on the presence or absence of some other variant in 0 1 84 1 51 &ﬁi

another part of the utterance. Knowledge of such co-occurrence "
relationships can be used to increase predictive power about Fv"u&
allophonic variation. t:'),t‘*
'8 X
The data used in this study was the same as that used in the previ- 3b ane- ? bt:'\:
ous study, except that the realization of /k/ in "dark” was excluded, ‘e .:\
since we decided w~ had insufficient confidence in our transcriptions n 0 ) \;.F
of that phoneme. All possible pairings of the remaining 17 . i
phonemes (136 pairs) were tested for co-occurrence re'ationships. _= ol
The two examples in figure 3 demonstrate the technique. For each Y AR
pair of segments, counts of all combinations of variants for the two ':".-“.\"
forms were entered into a matrix. Chi-square tests were performed burst 39 129 U
on these matrices at the 97.5% confidence level. to t :\' \-_\:-
- .l,‘ "
The example in figure 3a illustrates the analysis of glottal (or no ;"’\aﬂ
glottal) at the beginning of "all” and “oily”. The table shows that, EhA%e
of the 630 speakers, 230 used a glottal gesture (either a full glottal flap/d 2 8 4 3 4 {
stop or a weaker gesture seen as several irregular glottal periods, A A
both symbolised here as {1]) at the beginning of both "all” and i
"oily”. One hundred eighty-four speakers didn't use ] before either '."p.j-.
word, 85 speakers put (1] just on “oily”, and 151 just on "all”. The TR
chi-square is significant at the 97.5% level, indicating that this pat- Figure 3. Co-occurrence Examples: AR
tern of co-occurrence of glottals at the heginning of "all* and “oily” nall® il Seiel
is rather unlikely to happen by chance if we assume that the two 3) onsets In .a” and “oily". gl
events arc independent. In other words, speakers wio used [1) b) onsets for “an" and "to". '
before "all” were more likely to use (?] before "oily™ as well. Simi- CPLL,
larly, if (1] was omitted before "all", it was less likely to be found -;.", W
before “oily”. This case of co-occurrence is not surprising, because :.\',q
both forms could be considered to result from the same phonological y '\:‘V
rule. Chi-squares for all forms .’z}-.:
[ 2
The co-occurrence matrix in figure 3b shows a dependent relation- '§ s
ship between forms that are phonologically hetcrogeneous. In this d !‘; g8 ;f RALLEL D HiieA
case speakers who use [t] rather than flap in “to" show a strong ten- y 8 -u-.-—|-
dency to use (rather than omit) (?] before "an". This might be ;:’:’; : ® .““ & :.::.:
interpreted as evidence for a higher level fast-speech (or lax style) e o
“macro-rule”, which increases the likelihood of several types of pho- sulbln . 9 L HSDe S ] e
nological rules. One goal of our work is t establish a method by greasy » 2 faed
which such functional rule groups can be found (or dismissed). For il ,-":-":-
now we just present preliminary data that show non-independence weard 9 AR,
between pairs of forms over this sample of utterances. '"'“""'H hl' = W ."
Figure 4 shows which of the 136 possible co-occurrences actually had gon’l | m . F'?(::
chi-squared values that indicated non-independence. The confidence ask k & ) )
level for the chi-squared value was 97.5%, meaning that of the 136 1o | M [ "‘.'.\':
chi-squares calculated, one could expect about four artifactually RE AN i A
non-independence between co-occurring forms. Of these 37, about olly n \\ > .'\:.'n:»
15 involve pairs that have a clear phonological relation, (r-lessness in Hke o . P
“your®, “dwk”, "water”; {1 in "all*, "an", “oily”; flapping in thai-th p ~ 3 ARwH)
“water”, "to", "don't ask”, "suit in"; ete.). Most of the remainder that-t g b {
show dependencies between variants in more remotely related pho- N ST
nological contexts. The number of dependencies is obviously consid- gy .'1'2
erable, and suggests that macro-level relationships — dialect region. .-:"::’(
utterance speed, style, sex-linked variation - are pervasive enough Q;: ﬁ
:.;s;n‘;:i:,f:,l in improving predictions of forms for automatic speech Figure a. Signiﬂcant Chi-squares tor s »
form pairs. InE N
e
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There could be significant advantage in finding a way to compile
knowledge about the co-occurrence of allophonic forms into the pho-
nological model. This would allow a form of within-utterance adap-
tation to take place automatically. An example of how this might
be done is shown in figure 5. Figure 5a shows a probabilistic
language model for a language consisting of strings of two symbols,
the first symbol being "A" half the time and "B" the other half of
the time, and the second symbol evenly divided hetween “C" and
*D". There is additional structure to this language, in the form of
co-occurrence. When the first symbol is “A", the probability is 80%
that the second symbol will be “C”, and 10% that it will be “D".
When the first symbol is. *B”, the distrihution is reversed. The
entropy of such a model can be calculated as 1.47 bits, When a
model representir.g the same language is configured as in figure 5b,
without representation of the co-occurrence, the entropy is two hits,
one bit for the choice at each node. Configuring the model to reflect
co-occurrence knowledge has resulted in more than 25% lower
entropy. Clearly, the model in 5a can do a better job of predicting
incoming strings in the language than that in Sh.

C

Figure 5. Aiternative models for a simple
language.

We performed a clustering study to determine whether we could
compile co-occurrence knowledge into a phonological model, hence
lowering entropy, using sn automatic procedure. Considering each
sentence pair from a speaker to constitute one utterance, we
clustered the 830 utterances into the lowest entropy groups we could
find. Each group could then be used to estimate s!'ophone prohabil-
ities for an independent path through the raodel (see figure 6).
Grouping together utterances with similar allophonic realizations in
this manner allows the phonological model to capture co-occurrence
knowledge by isolating co-occurring allophones in the same paths. If
there is significant co-occurrence in the data, this new model should
have lower entropy, and hence greater predictive power, than the
previous model.

The clustering technique used was a combination of hierarchical
clustering and the iterative Lloyd algonthm [Duua and Hart, 19731,
For each specific numher of clusters desired, the data were clustered
into that numher of groups using an agglomerative hierarchical clus-
tering technique, and then these clusters were used as the seeds to

A .
TS .

| = - _
\escfoooocfscoooooo

Figure 6. Allophone network for the
2-sentence utterance, showing
clusters as separate paths.

the Lloyd algorithm. Each step of the hierarchical clustering algo-
rithm involves merging the nearest pair of distinct clusters. lni-
tially, each utterance forms a singleton cluster, and the procedure
continues until the desired nuinber of clusters is reached. At each
step, the nearest pair of clusters was defined as that pair whose
merging would result in a model with the lowest conditional entropy
H(Sk), which was computed as:

HS | )= E DM@AS | 0) ()

=l
where N = tolal number of wulleronces in the somple (630),

n = currenl number of cluaters,

M (i )= number of witeronces in cluster i, and

H(S | i)mentropy of o string S in cluster i

Hence, H(Sk) is dedned as the weighted average (weighted hy clus-

ter size) of the entropies of the individual clusters, which is the same
as the entropy of a string, given that you know which cluster the
string falls into. Though the real ohjective of this procedure was to
minimise H(S) rather than H(S|c), computing H(S) for the composite
model at each iteration of the algorithm is computationally too
expensive. Though H{S) is not guaranteed to be monotonically
related to H(S), it should he in most cases.

In the second phase of clustering, the clusters found by hierarchical
clustering were used as a seed to the iterative Lloyd algorithm.
which continued until the improvement for one iteration was less
than a threshold. Each iteration of the Lloyd algorithm involved
the {ollowing:

1) For each utterance: compute H(S|c), as in equation 3. with this
utterance as a memher of each current cluster - remember the clus-
ter for which H(S|¢) is minimal.

2) Once the new cluster is chosen for all utterances, actually make
the switches.

Typically, the Lloyd algonthm continued for 5-10 iterations, and the
amount of reduction in H(S) over the clusters output f{rom the
hierarchical clustering procedure was another 1-2% lower than the
unclustered model.
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The results of the clustering study are shown in figure 7. The higher
curve H(S) is for the composite model given 10, 20, and 30 clusters.
The results show that the entropy of a phonological model can be
lowered 10-15% hy modelling the co-occurrence of allophonie forms.
Furthermore, this co-occurrence can he modelled for any sufficiently
large data set by running a standard clustering algorithm, without
the need to explicitly determine what the co-occurrences are. The
significance of the lower curve (H(S|c)) will he discussed below in the
section on speaker groups.

14 4 13.0

Entropy

O=-NWaAULAND®

14 ¥ T 1]

0 10 20 30
Number of Clusters

Figure 7. Entropy of utterance model as a

function of the number of clusters.

We also tested whether demographic factors and speech rate could
be used to predict allophonic forms. These results are shown in
figure 8. Chi-squares (at the 97.5% confidence level) were computed
10 test for independence hetween region (each speaker was identified
with one of seven geographic regions or as an “army hrat”), age (by
decade), race, sex, education (HS, BS, MS, or PhD), and speech rate,
vs. form. As can be seen, the results show significant non-
independence hetween all of the demographic factors vs. form and
rate vs. form. This indicates that all of these factors are significant
predictors of allophonic occurrences. For example, people from New
England tend to say reless “your™, and pevple from the South tend
to say “greasy™ with a [z].

Chi-squares for forms vs. demographics

reglon duration age-d race sex educ.
dy
your 9
dark

. 3

greasy o
wash

water-t
watersr @
all
don't
ask )
to
an
olly
like 5 ) e ] > )
that«th
that-t

vod 0 ©

o
® C00 o o

CowvwOe®
Covwd 00

v
P
(%

Figure 8.
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SPEAKER GROUPS

The lower curve in figure 7 shows the conditional entropy of the
model given the cluster, computed as in equation 3. This result
indicates that if the appropriate cluster for the incoming utterance is
known in udvance, entropy can he lowered 30-50% f{rom the
unclustered model. The question then anses of how well can we
predict the cluster for an incoming utterance. This question, in
turn, raises a numher of additional questions:

1) What explicit predictors of cluster memhership are available?
(e.g., sex, region of origin, speech rate, etc.)

2) How consistently does a speaker stay within one cluster? (i.e., If
a speaker stays in the same cluster with reasonahle consistency, then
rapid adaptation to a new speaker may he accomplished hy choosing
the appropriate cluster after some experience with this speaker, or
choosing an appropriate weighting function over the clusters.)

3) How can we classify a speaker into the appropriate cluster, or
choose the appropriate weighting function over clusters for this
speaker at the current time!

4) When during a recognition session should a new cluster be chosen,
or a new weighting function he computed? (e.g., when speech rate
changes, when performance drops, only when a new speaker comes
along, etc.)

The studies descrihed in this section were designed to address the
first two questions.

In order to test for predictors of cluster memhership, we performed
chi-squares at the 97.5% confidence level, testing for non-
independence hetween cluster vs. form, cluster vs. all of our demo-
graphic factors (age, race, region, sex, and education), and cluster
vs. speech rate. There was significant non-independence hetween
cluster and all allophonic forms except for the /t/ in “water™, as
well as for all demographic factors and rate. The lack of
significance for /t/ in “water” is not surprising since, out of our
sample of 830 speakers, only five of them aspirated the /t/

In order to test the consistency with which speakers remain in clus-
ters, we gathered a new set of data, consisting of speakers repeating
the same sentences many times. Four speakers were recorded in
three sc2sions each, with recording sessions for the same speaker a
week apart. The recordings were made in a sound-treated room.
using a close talking microphone and a Nagra tape recorder. Each
recording session consisted of eight readings of the same two sen-
tences used in the experiments descrihed earlier, interspersed in a set
of seven filler sentences. The first five repetitions were uninsi.ructed
(i.e., “normal reading”). At the sixth repetition, the subjects were
instructed to read very quickly, at the seventh slowly and carefully.
and at the eighth normally. From listening to the recordings. 1t is
our judgement that the [ast readings were, indeed, exrremely fast.
and the slow and careful readings were extremely slow and careful
Since the uninstructed readings were fairly fast, the differences
between the slow and uninstructed readings were more dramatic
than those hetween the fast and uninstructed readings. Ihe final
dsta set consista of 96 repetitions of the two sentences, 24 from each
speaker, with 72 repetitions uninstructed or “normal”. 12 fast. and
12 slow and careful.

The same 18 phonemes used in the earlier experiments were phoneti-
cally transcribed. with the aid of the tools described eariier. by
Michael Cohen, and checked by Jared Bernstein and Gay Baidwin.
Each of the 98 utterances were then classified into the clusters based
on the 830-speaker data, as described 1n the previous section \We
chose to classify them into the 10-cluster version so that each cluster
would be based on a large number of utterances {approximately 53!
Each utterance was classified into the cluster with the centroid with
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minimal Euclidean distance to the utterance. Table 1 shows the
number of utterances for each speaker classified into each cluster.
As can he seen, most of the utterances for each speaker tend to be
classified into two or three clusters. Eleven of the 12 slow utter
ances were classified into cluster two. The fast utterances did not
tend to fall into any one cluster.

- — I
Table 1. Classification of speaker utterances
according to pre-existing clusters
Speakers Clustiers

01 23 4 56 7 89
JB 0 03 0 1 2 3 1 014
JK 026 1500190
KC 01212 0 1 0 017
PR 011 8 0 0 0 3 200

These results indicate that although speakers fall into the same clus-
ters with some consistency, choosing a single cluster for a speaker is
inadequate. A more reasonahle approach may be to choose a
weighting function over all of the clusters. Furthermore, cluster
membership seems to be somewhat dependent on speech rate.

INTRA-SPEAKER V8. INTRA-GROUP VARIATION

The results of the previous section suggest a method of adaptation
by choosing appropriate sets of (or weights for) clusters for a
speaker. The study described in this section addresses tbe question
of whether or not it is useful to try to further adapt to the indivi-
dual speaker once the clusters are chosen. We have addressed that
question by comparing the amount of variation within a single
spaaker to the amount of variation within a single cluster. If there
is considerably less variation within a speaker than within even a
single cluster, then there may be ways to further adapt wo the indi
vidual speaker.

The data used for this expenment included botb the 830-speaker
data described earlier, and the four speaker multi-repetition data
described in the previous section. We compared the entropy of a
model trained for a single speaker in the multi-repetition data set to
th> entropy of a cluster from the 630-speaker set. Only the 18 unin-
structed utterances for each speaker were used from the multi-
repetition data, because the 830-speaker data were recorded without
instruction. The comparison was made with the 10-cluster version
of the 630-speaker data so that each cluster would be based on an
adequate amount of data. In order to be able to make a fair com-
parison, it was necessary to compare the entropy of models trained
on the same number of speakers, so we sampled the {arge clusters
from the 630 speaker set by randomly choosing a cluster, 2ad then
randomly choosing the appropriate number of speakers from the
cluster. This was done 1000 times, and the mean entropy of the
18-member clusters were computed. The mean entropy of the 18-
member clusters from the 630-speaker data was 8.39, and for a sin-
gle speaker from the multi-repetition data was 6.86, approximately
18% lower. This suggests the possibility of significant individual
speaker adaptation beyond the choosing of approprate clusters.
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The studies descrihed in the previous four sections have demon- e,
strated some types of structure in the phonological vanation %
observed in a data set consisting of two sentences (21 words) read by 4
many speakers. In addition, we have shown some types of lexical ~
[

representations that might be used to capture this structure.
Representations were compared by measuring their entrooy, or
predictive ability. It is assumed tbat lower eatropy can lead to
improved recognition performance. In the near future, we iutend to
test this assumption in a series of recognition performance studies.

The results descrihed above have a number of implications for sys-

tem design. The first study suggested that a significant advantage f—
in recognition accuracy can be gained by incorporating pronuncia W
tion prohahilities in a lexical model. The major problem in incor- ‘ ‘.':
porating such knowledge icto large vocabularv systems is finding ".:.‘
sufficient amounts of training data to adequately estimate allophone _.,"-
probhabilities for the segments of each word in the vocabulary. A _',':-
possible solution to this problem is to use knowledge of phonological o
rules, rule groups, and the co-occurrence of allophonic forms to by
reduce the number of independent nrobahilities being estimated. W ."

PAS
The second study showed co-occurrence relationships between allo- “_-‘."'
phonic forms. In addition, an automatic clustenng technique was s
demonstrated that could be used to model this co-occurrence for a L
data set without explicit knowledge of what these co-occurrences .':'."
are. This result suggests that lexical representations can be :::.I\:

improved hy including a small aumber of sets of word models, each -t
trained on an appropriate cluster of 2 large data set. When scoring {

sequences of word pronunciation bypotheses for an utterance, each iy
sequence would only include one set of word mode!l probabhilities. ;.::_‘.:

AT
The last two studies suggest methods of auaptation to a new AP
speaker, as well as ongoing adaptation within a session with a single -'.'_-\'.
speaker. In figure 7, H(Sk) is shown to be considerably lower than ':._"-
H(S). This suggests that predicting the appropriate cluster for an ot
utterance can reduce entropy considerably by allowing the search to ,
be confined to the model of a single cluster. Rt

Lyt )
The third study, which explored the consistency with which a .:)C.:'
speaker remains in a cluster, suggests that predicting the cluster for Sty
an utterance cannot be acbieved solely by speak.r adaptation, since '.:, g
a speaker will not stay in a single cluster consistently. However. the '~",‘(:
third study does suggest that H(Sic) can be approached by choosing N
an appropriate weighting function over all the clusters, given some i '
experience with a speaker. Furthermore, these results suggest that Sy
knowledge of speech rate cza be used to improve prediction of the L%
sppropriate cluster for an utterance. Ongoing adaptation might be \:..'-J
achieved by periodically recomputing the weighting funcuon. We :'_-:-,
have not explored the questiou of wben, or how often, should this i,
weighting function be recomputed. ‘:4' X

Y

The results of the fourth study, comparning intra-speaker to intra- ;
cluster entropy, show greater consistency within a single speaker %

than within the clusters found in the previous studies. This suggests ::‘.{:
that speaker adaptation can be improved beyond the choice of clus- Ot 1,
ters by further refinement of model parameters, based on extended B
experience with a speaker. The major problem with individual et
speaker adaptation 13 that model parameters have to be estimated '/,
from a small amount of data for tbe speaker. The advantage of .“.:

adaptation by cluster choice 13 that the cluster could be well trained
on large amounws ¢*  *a. The problem of insutficient data for indi-
vidual speaker adaptation can possibly be handled by exploiting
knowledge about phonological rules, rule groups. the co-occurrence
of allophonic forms, and implicational rule hierarchies. 1n order to
decrease the number of parameters teing sstimated. as weil as
\ncrease the number of samples for each parameter. ‘We intend ‘o
explore methods for doing this in {uture work.
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W= have performed a series of four studies, with the following (1] Duda, R. and Hart, P., "Pattern Classification and Scene 4‘5’
results: Analysis”, John Wiley & Sons, 1973, pp. 225-237 iy \,i::‘
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1) Incorporating empirically determined probabilities of allophonic (2] McEliece, R., “The Theory of Information and Coding: A w
forms into a phonological model can significantly reduce model Mathematical Framework for Communication™ in "Encyclopedia of =
entropy, and possibly improve recognition accuracy. Mathematics and its Applications, Volume 37, Rota, G., ed, _r\'-':‘.‘
Addison-Wesley, 1977, pp. 15-34. “-.\".'-:
2) There is significant co-occurrence of allophonic forms within an .-:-:.:‘
“

utterance, and automatic clustering procedures can be used to com-
pile knowledge of these co-occurrences into a phonological model,

without need to explicitly determine what the co-occurrences are. o0
Incorporating these co-occurrences into the phonological model can A
significantly lower entropy and allow a form of within-utterance =
adaptation, possibly improving recognition accuracy. :-(:: ;_
3) Speakers tend to fall into phonological groups. Rapid adaptation ::'::4:
techniques might work by choosing either a set of clusters or weight~ Lo
ing function over all clusters for a speaker given a small amount of 1"-'_'_-‘
experience with that speaker. Ongoing adaptation may poesibly be zg'_:,i:
achieved hy periodically rechoosing a cluster set or recomputing the o0 al
weighting function.
‘}';:_ 1
4) Individual speakers vary less than speaker clusters, and therefore, Ry
further adaptation to an individual speaker could be useful. This :J'..:.F:
may require the exploitation of knowlsdge about phonological rules, Wi,
rule groups, implicational rule hierarchies, and the co~occurrence of W
allophonic forms. tﬁ'u‘;-\
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LEXICAL ACCESS WITH LATTICE INPUT!

Hy Murveit, Mitchel Weintraub, Michael Cohen, Jared Bernstein
Speech Research Program
SRI International
Menlo Park, CA 94025

ABSTRACT

This paper descrihes alternative approaches to lexical access in the
CMU ANGEL speech recognition system. One approach explores
scoring alternatives within the framework of the CMU module. In
another approach, the asynchronous phonetie hypotheses generated
hy the acoustic-phonetics module are converted to a directed graph.
This graph is compared to a pronunciation dictionary. Performance
results for the approaches and the original CMU approach were
similar. An error snalysis indicates promising directions for further
work.

OVERVIEW

A lexical access subsystam can be divided into two major com-
ponents. One component is a lexizon; s data structure that contains
s list of words and a representation of the allowable pronuncistions
of those words. Those pronunciations may have associated prohabili-
ties and the prohabilities may he dynamie In nature. That is, they
may change due to new estimations of speaker-typs, speech style,
and so on.

The other compcnent is the seereA end scoring mesasnism. This
compares the output of an acoustic-phonetics module, with the lexi-
con and determines the word sequence that with highest probability
corresponds to those outputs. In doing so, the search and scoring
module must take into account the characteristics of the AP output,
such as insertion, deletion, and substitution prohabilities.

This paper evaluates alternative search and scoring mechanisms in a
lexical access module.

GOALS

This is a progress report on work at SRI International in cooperation
with Carnegie-Mellon University (CMU) and sponsored hy DARPA.
SRI is exploring alternative approaches to lexieal-access in the
framework of a speech recognition system (AINGEL) being developed

at CMU [1]. The ANGEL system ie designed to recognize s large
vocabulary from American English continuous speech. Our goal is
w devise an approach o lexical access that be. 1 takes advantage of
all information available from other knowledge sources in the speech
recogmtion system (particularly the acoustic-phonet:- “nowledge
source), and aiso 13 resilient in the face of errors made by those
otlier knowledge sources.

IThis research was sponsored by Defence Advanced Resenrch Projecta Agency
Contract NO00J9-85-C-0302. The views aad conciueione contained in this document
are those of the authors aad ehould not be interpreted as representing the oficial poi-
icies, vither expressed or impiied. of the Defenee Advanced Research Projects Agency
or the US Government.
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OVERVIEW OF THE
CMU LEXICAL-ACCESS MODULE
(eirea summer 1986)

A lexico-centric block disgram of the ANGEL speech recognition
system is shown in Figure 1. The acoustic-phonetic module [2] out-
puts s set of phionetic hypotheses (see Figure 2) to the lexical-access
module. These Isttices contain “firings" that give the estimated
probabilities of segments occurring in particular time intervals,
However, the reistive probability of one firing versus another is not
estimated, even if the two firings overlap it in time. This is because
the acoustic-phonetic module is made up of a set of indv.sendent seg-
ment. iwators and classifiers.

Verifier e—{  Syntax

Lexical Access

Lexicon

Wave- Z2p-Coarse]

lornf
\ \. MATCHER

Generator Be
Acoustic
Lartice
Phonetics Integrator
Figure 1.

A lexico-centric block diagram of the ANGEL
speech recognition system

The 1086 version of CMU'’s lexical-access module converted this fat-
tice structure into an infegrated lattice. The lattice integrawr
created boundaries wbere acoustic-phonetic segments began ard
ended and, in particular, created new boundanes where segments
» 1apped. It collapsed information from tbe acousuic-phonetic lat-
tces hy combining the prohability esumates from overiapping
acoustic-pbonetic segments o denve likelihoods of the newly created
segments. An example of tbis integrated-lattice data is sbown in
Figure 2,
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Acoustic phonetic lexical-access interface
data structures

The integrated lattice was matched to a dictionary network that
represented all allowed pronuncistions of words. The match algo-
nthm allowed one or more integrated-lattice segmenta to match a
particular dictionary segment. A scoring algorithm computed the
costa of matching paths in tbe dictionary and the integrated lattice.
The scoring was based on the integrated-lattice likelihoods, com-
parisons of expected durations of dictionary segmenta with durstions
of corresponding concatenated integrated-lattice segments, and com-
parisons of the integrated-lattice segments with an independent
coarse labeling of the input speech (based on the ZAPDASH coarse
labeler [3]).

The lexical-access module also computed ancbor regions (ses Figure
2) from the waveform. Anchor regions define possible syllable and
word boundaries as the consonantal regions between vocalic regions
specified by the ZAPDASH coarse labeling routine.

The match routine searched for words between all (reasonable) pairs
of anchor regions. The matcb routine did so by looking for patterns
in tbe integrated lattice tbat matched patterns in ita lexicon. The
matcb routine passed matehes and their likeliboods to tbe syntactic
module. The syntactic module hypothesized sentences, verifying the
word junctures with the lexicakaccess module.

MODIFICATIONS TO THE CMU SYSTEM

SRI decided to explore a number of alternative scoring and search
algorithms to determine how to make the best use of the informa-
uon contained in the integrated lattice. We limited our search of
alternative lexical scoring/search algorithms to variations of the fol-
lowing CMU-lexicak access characteristics.

1. Lexical phonemes were required to begin and end at the boun-
daries of the integrated lattice.
2. Phoueme scores were weighted by the duration of the phoneme

3. Phoneine scores included penalties if the duration was below or
above a preset mimmum/maximum duration.

4. Phoneme scores included penalties when their phoneme type did
not agree with the coarse-labeling information.

Our goal was o see how well a lexical sconng algomthm could
hypothesize words if you knew where the words begin and end. The
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search of alternative lexical scoring algorithms tried to maximize the
rank of the correct word given the known begin and end times of
that word. Our best algorithm of this type is described below:

1. Phoneme scores were not weighted by their duration. Therefore,
the score of a word candidate was the average of the individual
phoneme scores. (In the CMU algorithm, the word score is the dura-
tion weigbted average of the individual phoneme scores.)

2. Lexical phonemes were allowed to begin or end every 10 msec. A
minor degradation in performance was observed when phonemes
were required to begin and end at the boundaries of the integrated
lattice.

3. The preset minimum/maximum duration constraints were used as
hard limits on the allowable duration of a phoneme.

4. The coarse labeling information was not used w0 modify the
phoneme scores.

Evaluation and Testing Data

The matcher and lattice integrator portions of the CMU lexical-
access module were compared with the alternative routine desc.ibed
above. These modules were tested on 100 “Electronic Mail" sen-
tences, part of a larger database collected st CMU. In this data,
eacb of 10 speakers said ten sentences compoeed from a 339 word
vocabulary. An example sentence is ‘‘Send s message 1o Smuth at
CMU." The data was hand-lsbeled at CMU and the outputs of the
CMU acoustic-phonetic module and CMU's anchor generator module
were sent o SRI. All CMU modules for this study are circa md
1086. All testing was done on this continuous-speech database in a
speakeniudependent manner with no grammatcal constraints.

The resulta shown in the tables below are the percent correct words
in the text set for the lexical access algorithms given correct anchor
regions and hand-set endpoints.

lécm;L&m{qmntu_nh.H;nd;Sﬁ.Eymn__u_“
Renk Alternate CMU Systen Symulafion
Correct .55 45
Top 3 78 e | i
Top 10 04 88 I

heexisal sip
Rank Alternate CMU Reported Results
Correct .30 32
Top 3 .55 .85
Top 10 .81 .78
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As our results show, the performance advantages gained on known
endpoints did not translate into an advantage when endpoint inter-
vals were used. However, we believe that this sconng algorithm
might result in an improved word accuracy f sentence hypotheses
are constructed from the individual word hypotheses. Our current
research has therefore been mmed at generating sentence
hy potheses.

CO:.~ECTED LATTICES

SRl also explored a modification to the mid-1986 CMU svstem
which eliminated the integrated-lattice component and hypothesized
words directly from a structure more similar to the acoustic-
phonetic output.
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We felt that a significant amount of information was being lost by
the integrated-lattice component. For instance, segmentation deci-
sions made by the acoustic-phonetic module weic in eflect over-ruled
by the matcher using the integrated lattice. Similarly, decisions
about relative likelihoods of overlapping acoustic-phonetic firings
were made by the integrated lattice, when such decisions should
have been made by the acoustic-phonetics module.

However, the acoustic-phonetic output without the lattice integrator
was not amenable to direct lexical access. Often the string of
correct phonctic hypotheses were in the lattice, but either one

correct phonetic segment overlapped with the next correct one or
vas separated fron: it by a small interval of time. This probiem was
«1lved when using the lattice integrator by splitting segments at all
overlap points and by allowing single dictionary segments to match
a scries of integrated lattice seginents.

A new represcntation of the acoustic-phonetic data was chosen (the
connccled lafticc) that retains the information in the acoustic-
phonetic lattice such as duration of segments and reduces the possi-
ble search space by not introducing additional boundaries at seg-
ment overlaps.

Conversion to the Connected Lattice

An algonthm that transforms uhie acoustic-phonetic lattice to the
connected lattice works as [ollovs:

The acoustic-phonetic lattices are converted to a simple directed
graph, the connected lattice. There are two types of arcs in this
graph. AP ARCS are created by replacing each acoustic-phonetic
firing with an are going from s node representing the start time of
the firing, to a node r-pr-senting the end time of the firing. CON-
NECT ARCS are create:| between all nodes that have incoming AP
arcs and all nodes within 100ms of these nodes that have outgoing
AP ares. Connect arcs are necessary because without them there
typically would not be a connected path between the start and end
of a sentence.

Output probabilities are assigned to the AP arcs. These probabili-
ties are the product of a vector and a matrix. The vector consists of
the probabilities of phonetic segments as assigned by the acoustic-
phonetic module in the time interval corresponding to the AP arc
(or acoustic-phonetic firing). The matrix is a segment~confusion
matrix corresponding to the observed performance of the acoustic-
phonetic module. Probabilities are also assigned to the connect ar-e
in 8 context dependent manner that makes more reasonable con-
nects more likely. This is described below.

Search of the Connected Lattice

A search is performed to compare the system's lexicon (stored in a
pronunciation graph) with the connected lattice. Tuples consisting
of the imitial lexicon node and all initial nodes in the connected lat-
tice (corresponding to all permissible word starting points given the
anchor regions) are placed on a list of active paths. The items in
the list are called partial patks. The search algorithm proceeds by
taking 3 partial path off of the list, extending the path in all possible
ways? (the product of every lexicon arc leaving the lexicon node at

the end of the partial path, and every AP or connect arc leaving the
connected lattice + -+ at the cnd of the partial path). These new
pathis are placed back 1n the list. Paths that are complete (that end
in the end anchor region) are also placed in a list of complete paths.

Parual paths (scts of associations of dictionary segments and con-
nected latlice arcs) are scored as the sum of the log-probabilitics of

The search aigorithm does not silow paths to 'oop, nor can psths have two
consecutive connect arcs or begia with or end with connect arcs.

the components of the path. A component probability for an cou-
nected lattice is the probability of the dictionary segment in the set
of output probabilities of the associsted AP arc. The compotent
probability for connect arcs, which have no associated dictionary
segment, is a function of the length of the conncet are relative to
the leugths of the AP arcs that surround them. For instance two
long AP Arcs connected by a short connect arc would have a much
higher probability than two short AP arcs connected by a long con-
nect are.

It is the function of the connect ares to permit AP ares to connect
reasonably without affecting the score of the paths, however unrea-
<onable sequences of AP ares are inhibited by the scoring of the con-
nect arcs. The connect arcs also, in effect, lessen the cflect of
premature segmentation decisions made by the acoustic-phonetic
module.

Evaluation

The above algorithm was evaluated using CMU’s 100 electronic mail

sentences described above. The results are summanied in the tables
below.

Lexical Access Performance
Using Anchor Regions
(CMU reported resy|ts)

Rank CMU Connccted Lattice
(324 words) {240 words)

correct .32 35

Top 3 .55 .52

Top 10 .78 .74
Lexical Access Pcrformance with Hand-Set Endpointws

{CMU sxstem was simulated au SR))
Renk cMU Connccted Lotlice
240 words) (240 words)
correct 45 .63
Top 3 el .79
Top § .80 84
Top 10 88 92
Top 20 20 93 _
DISCUSSION

The recognition results above show similar performance for the two
modules. A closer examination of the data revealed that thc con-
nected lattice module tended to have catastrophic crrors. Such
errors typically occurred ‘vhen one of the proper segmeuts was
deleted by the acoustic-phonetics modules. This version of the con-
nected lattice search algorithm was not equipped to deal with such
problems. For instance, of ths 17 words not in the top 20 choices
for the connected lattice system with hand-set cndpoints, 168 were
caused by the AP-module’s failure to spot one or more segments in a
word. One error was due to a speaker's mispronunciation of that
word. Of the words that were in the top 6 through 19, the
overwhelming majority had the segments there but with low proba-
bilities. )

In order to soften the effect of AP deletions, vet continue o taxe
advantage of tbe acousuic-phonetic data, new con d lattices
being designed should include insertion, deletion, and substitution
probabilities (separate from phonological insertion. dcietion and
substitution) for segments based on a model trained with icoustic-
phonetic module output. Probabilities for connect ares will be
estimated from similar data, however, in later systems it s hoped
that tbe acoustic-phonetic module will also provide some injorma-
tion about the reasonableness of intcr-scgment junctures.
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A proposal that describes a new interface between the acoustic-
phonetic module and the lexical-access module is included in the
appendix to this paper.
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APPENDIX

Proposed New luterface between
Acoustic-Phonetles and Lexlecal Access
(abbrewiated form of « memo
circulated Fall 1980)

OVERVIEW

The goal of this proposal is to define an interface between the
Acoustic-Phonetics (AP) module and the Lexical-Access (LA} module
that will improve overall system performance.

The main thesis of this proposal is that some hard decisions (typi
cally segmentation decisions) that are made in the AP module are
better left to the LA or even syntax modules, using probabilities
assigned by the AP module. For instance, an acoustic-phonetic net-
work that provides probabilities for different segmentations might be
used to avoid many of tbe problems of deleted or split segments,
after dictionary and syntactic constraints are applied.

The second thesis of this proposal is that the performance of the AP
module should be evaluated in the context of the LA module and
vica versa. This implies that to improve system performance a tight
feedback loop should be established for developing the two modules.
For example, a new network-based AP module should be frequestly
precented (perhaps even in half-baked form) to the LA group, who
should then evaluate word hypotheses, discover specific areas in the
AP data as well as in the LA algorithms that need the most
improvements, and feed this back to the AP people for further
refinements.

GENERAL DISCUSSION

We have come to the conclusions that performance of the top word
hypothesis made by the lexical access module is best without a lat-
tice integrator. However, without such an integrator, AP errors are
more serious causing & higher percentage of words not to be included
in the top 20 words hypothesized by the LA module. The proposed
interface between the two modules is expected to help solve this
problem.

The following problems are listed in order of seriousness of eror
(those causing the most problems to those causing the least) based
on an analysis of crrors made by our current LA algorithma:
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1) PHONE DELETION ERRORS

The AP module often combines adjacent phones into a single phone
with no competing two-phone hypothesis. This can cause a fatal
error for word hypothesis routines that do not account for AP seg-
ment deletion, since the lexicon only accounts for phonologieal
deletions and for some generalizations about AP deletion. In fact,
phone deletion and insertion are the major causes of words missing
from the (non-lattice-integrated) word lattice in our expenence.

The lattice integrator deals with phone deletion errors by overseg-
menting, that is by creating extra boundaries on all overlaps. By
creating extra boundaries, the word network can be traversed in
cases where it could not be without a lattice integrator. This allows
the correct word to be included in the top 20 words hypothesized
more often, but often permits incorrect wo-ds to achieve better
scores than the correct word.

Ideally, the AP module would hypothesize many segmentations,
though some might bave low probabilities. It is inevitable, however,
that some deletions will occur. Therefore, statistics for estimating
the probability of deleted phones are necessary for the LA module.
First-order statistica such as "the probability that an /ih/ is deleted
anywhere™ can be computed on a large data base sucb as the one
that will be used to estimate phone confusion probabilities.
Second-order statistics, such as probability of deleting an /ih/ alter
an /iy/ (as in the word "ceeceeing”), may be more desirable. In this
example, although the general probability of deleting a vowel may
be low, deleting a vowel in the context of another vowel may be
much more likely. Higher-order statistics, such as the probability of
deleting segments in particular words, may be even more helpful for
certain high frequency words.

2) PHONE INSERTION ERRORS

The AP module often splits pbones ot inserts spurious phones wbich
affects the LA module In ways similar to phone deletion. Error
statistlcs can be computed for phone insertion similar to those for
phone deletion. Furthermore, a AP post-processor might examine
the AP data for consecutive similar segments and creates an addi-
tional AP segment if it decides that there is positive probability that
these two segments represent one underlying segment.

3) ANCHOR ERRORS

The current lexical access algorithm uses anchor regions based on
ZAPDASH analysis wn prupose regions where words may start.
Although the claiL. has bexn made that 98% of all words are found
b this analysis, tbe boundaries proposed by ZAPDASH are not
necessarily even close to the appropriate phonc boundaries produced
by the AP module. Clearly, anchor generation must be syncliron-
ized with the phonc alignment! Our lexical-access analvses for svs-
tems without lattice integration do not use anchors, but rather
hand-marked times corresponding to AP lattice output that may
then be “fussified.”

4) ERRORS OF PHONE ALIGNMENT
The proper phones may be loczted and classified but thev may be

erroneously aligned. This is shown in the figure below for the word
"TVT smee > tiy vy
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Alignment problems ia the AP module

Adjusting the alignment of segments is important when recognizing
from current AP lattices. Better alignment can be accomplished by
requiring locators for different sexments to use common information
(such as a coarse labeling of the input speech) when making align-
ment decisions.

One current SRI lexical access algorithm uses heuristics to solve this
problem. This is not the most desirable solution, but in the absence
of acoustic-phonetic information to determine the goodness of aligo-
ment choices, it is an expedient choice. Overlaps or gaps were
penalized more with an increased ratio of the length of the overlap
or gap to the sum of the lengths of the segment connected by the
overlaps or gaps.

In contrast, the lattice integrator solved the phone-aligr.ment prob-
lem by creating new AP boundaries 3t overlaps and by ignoring
gaps il there were no lat 2led segments in the gap.

Any alignment scheme should aim towards allowing phones to follow
each other reasonably, while disallowing incorrect phones with too
much overlap or gap. Since absolute decisions can not be made with
100% certainty, alternative segmentations should be provided.
When alternative segmentations are provided, probabilities of these
segmentations should be estimated as well. It is more appropriate to
have the AP module to apply acoustic-phonetic information to
evaluate the junctures between segmental hypotheses, than to have
the LA module make these decisions.

5) ERRORS OF PHONE SUBSTITUTION:

With phone substitution errors, the correct region for a phone is
found, but the correct phone is Iabeled with little or no probability.
This can be overcome by characterizing the phone-substitution pro-
babilities of the AP module over a large data base, and using this
“phone confusion matrix” in lexical access. This is currently being
done by the AP module. Of course, the estimation of
P (phone; |label;), the confusion matrix, should take into account
the a priori probability of label; .

PROPOSAL

One possible interface is outlined below. This interface starts with
an AP module similar to the current CMU module, but with betcer
phone alignment (perhaps based on the ZAPDASH segmentation
scheme). This system, however, also explicitly rates the probabilities
of lattice phones following each other which has the effect is of
doing “phone-juncture verification” for all nearby phones. Also, the
probabilities for merging similar labels are explicitly computed by
the AP module. This system 1is then statistically cheracterized in
terms of phone substitution probabilities, phone deletion probabili-
ties, and phone merger probabilities. All this information s
represented in a directed-graph data structure.

INTERFACE SPECIFICATION

A directed graph data structure is output by the AP module with
the following characteristics:

1. Each node in the graph represents a particular point In time.
There may be several nodes corresponding to the same point in
time. This may happen, for instance, if a particular AP event is
dependent on another event. For instance, a vowel may be depen-
dent on a following nasal. Then the hypothesis is only connected to
things conasistent with its hypothesis.

2. There are arcs leaving each node in the graph. These arcs
correspond to one of two possible things.

(a) The firing of a locator for a given type of phone (an AP arc). AP
arcs always lead to other nodes. (b) The possibility that a locator
did oot fire for a given phone (an insertion arc). An insertion are
always leads to the node it came from.

3. There are two probabilities associated with each AP arc (above):

(a) the probability that the locator fring corresponding to the arc
was valid, P(AP-arc | node), the transition probability for the AP-
arc. (b} the set of output probabilities of phones given the AP are 1s
valid, P(phone | AP-arc).

4. Similarly, there are two probabilities associated with each inser
tion arc: the probability that any phone can be inserted at the node.
which is P(insertion-arc | node); and the probability of a particular
phone being inserted at this point given that there was an insertion,
which is P(phone | insertion-arc), the output probabilities of the
insertion ares,

5. For a given node, the sum of the transition probabilities for the
arcs leaving that node, in other words all the AP arcs plus the inser~
tion arc, should equal 1.0. Similarly, for a given are, the sum of its
output probabilities should be 1.0.

FINAL CONSIDERATIONS
PROBABILITIES AUTOMATICALLY ESTIMATED

All of these probabilities should be automatically estimated from the
outputs of the AP module, so that system changes will not require
the tweaking of many parameters.

Further, higher order probabilities are desirable when there is ade-
quate data. Thus, (or example, the deletion of phone in context (or
in word) for high frequency contexts (or words) would be good infor-
mation. Output statistics showing probabilities of eveats and the
aumber of events used to estimate these probabilities would be use-
ful to the LA group. With this information, bigher order probabili-
ties can be used when there is enough training data to make them
reliable, and lower order probabilities can be used otherwise.

ALGORITHM READJUSTMENT WILL BE NECESSARY

Although this propcsed interface should ultimately improve perfor-
mance, there will be some initial problems with it. These problems
should be worked out in the context of the lexical-access module.
We propose that the AP group initially output both the tfinish
product grapb and intermediate statistics tbat lead to that graph.
These 1nclude the initial locator/classifier decisions. statistics. such
as tbe confusion matrix, that lead to the ultimate graph. and inser-
tion and deletion statistics. Information on tbe methods used to
assign probabilities to new arcs should also be presented to the lexi-
cal access group.
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The NBS Fast Formant Tracker
A Progress Report

William J. Majurski and James L. Hieronymus

National Bureau of Standards
Gaithersburg, Maryland 20899

Abstract

This paper presents a progress report on the develop-
ment of a fast formant tracker. Our present effort is
focused on extracting formants 1, 2, 3 and 4 and their
amplitudes from voiced speech. Our goal is to produce
formants which can reliably drive the recognition of
vowels and scmivowels in the context of specaker
independent continuous speech. The algorithm is based
on pcak picking and a data reduction technique which
analyzes peak frequencies and amplitudes as a function
of time. A side product of the tracker is scgmentation of
voiced regions of speech that shows promise for usec in
segmenting some photemic ciasses. Evaluation of the
tracker on 350 utterances from the DARPA Acoustic-
Phonetic database indicates that 90% of all phonetic
segments are trucked correctly. This is based on visual
evaluation of the formant tracks overlayed on spectro-
grams. Phonemically, a large portion of the errors cluster
arourd /r/. We are in the progress of adding a
retroflexion detector developed at NBS (Gengel, Majurski
and Hieronymus 1987) to aid the tracker in these areas.

Introduction

This paper gives an overview of our current algorithm
for tracking formants in continuous speech. We want to
use formants to assist in machine recognition of vowels
and semivowels. At the outset of this project no
sufficiently acurate formant tracker existed for our use.
This algorithm produces formant frequencies and ampli-
tudes for the first four formants.

Our goal was a formant tracker which was acecurate, fast
and structured to extract as mueh information from con-
tinuous specch as possible. The formant tracker employs
a peak-picking algorithm followed by a peak-

combination algoritbhm. The peak-picking algorithm
parameterizes peaks by both their frequency and ampli-
tude. The peak-combination algorithm develops initial
tracks, called ridges, which are found by combining
peaks which aic similar in frequency and minimally
seperated in time.

-~-
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Front End Signal Processing

The formant tracker uses pitch synchronous dfts as its
signal processing front end. We are currently using a
pitch tracker and synchronous dft routines developed at
CMU. During voiced speech (areas where pitch tracker
fires) a variable width hamming window is centered on
the pitch period. The window size is taylored to the
pitch period length. This tends to produce spectra in
which the formants are represented clearly. For peak
picking this appears to be an optimal windowing of the
waveform. Including a second pitch period or overlap-
ping two pitch periods in a single analysis window would
add components that are out of phase thus diminishing
the clarity of the formant structure. Preemphasis of 6
db per octave is used.

Peak Picking

Spectral peaks are selected by locating the negative-
going zero-crossings of the first difference of the pitch
synchronous spectra. Zero-crossings which occur during
negative cxcursions of the second difference mark the
locations of spcetral peaks. The pitch synchronous spec-
tra are used unsmoothed.

Each peak is parameterized by its quantized height,
frame, and bin. Within a sonorant region the range of
peak amplitudes in db is quantized into ten levels by a
simpl2 linear function. Frame refers to the pitch period
the peak was extracted from. Bin is a frequency measure
corresponding the dft bin number (0-127) of the center of
the pcak. Only peaks in the frequency range 0 - 4000
Hz. are used in the tracker.

Peak Combination - Simple Ridge Construction

The algorithm groups together peaks that will eventnally
belong to the same formant. In this first pass, the
combination-algorithm is very conservative, grouping
peaks that are very similar in frequeney and very elose in
time. For each peak in a region of voiced speech. left
and right (earlier in time and later in time) neighbors are
sought. Only peaks within 2 timc frames and 2 fre-
queney bins are considered as neighbors. ‘A simple dis-

tance measure is used when multiple clioices are avail-
able.
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The matcher produces groups of linked peaks called three for the mnbiguous areas in between. An assign- v \:
ridges. In the simplest case, a steady state vowel, simple ment algorithm is used to select, from the Caﬂd'ld{“e {&j
ridges represent the formants. This leaves undone only ridges, four lirst choice forinants and four second choice -‘g)
the assignment of ridges to formant slots. More compli- :'0:“‘3"‘5- '}:h:; Set,conl((l Ch;’lcihf”m‘}ms are lllse('jdm a 2
cated speech patterns require more sophisticated algo- ater pass of the tracker. In the assigner, cach ridge 1s B
rithms utilizing more context. A segmentation-algorithm parameterized by its average frequency and its strength. :_‘tj‘-
assists here by splitting up speech in places where clear The top candidates (by strength) from each of the seven a&_}_:
breaks in ridge patterns occur. ranges are collected and formant assignments made - :f’.'
stongest ridge first. Ridges in ambiguous frequency . :i,
s,
Onee a ridge is found most decisions concerning it, use a ranges contend for two formant slots. :“ﬁj
small number of parameters. Its frequency is parameter- E
ized as minimum, maximum and average frequency. Its i
amplitude relative to other ridges is parameterized as . ) :{}‘;
strength and density. Strength is calculated by sum- Basic Segmentation e
ming the quantized height of each peak in the ridge. So The segmenter subdivides voiced regions in a way that r;-}’
it is a function of both the relative amplitude of the assists in the assignment of ridges to formant slots. For I‘:,,:‘
ridge and the length of the ridge. Density is calculated some phoneme groups, this corresponds roughly to a 9.
as the average quantized peak height in the ridge. So it phonemic segmentation. Specifically, it attempts to seg- =
is a function of only the relative amplitude of the ridge. ment nasals, voiced stops, voiced fricatives, and flaps, e
In the remainder of this paper, the terms strength and from the surrounding voiced areas. We have found these ",‘
density refer to these definitons. locations to harbor a majority of the discontinuities in ae
v’
formant frequency. e
44
Choosing Formants From Ridges hd
Ridges are assigned to formant slots based on boih fre- The segmenter uses as input a select group of ridges :.;.}‘_
quency and st,rengt,h.. Frequency ranges.for each °f.°h° called important ridges. Ridges are selected by there P‘t?‘:"'
forr.nnnts are determ.med by speaker. pitch. ) In voiced dominance in a region, using several criteria. By
regions the average pitch (I /average pitch period length) g-\ﬁ«
is used to declare the region as having low (below 150 . W
] o . ) Ridges that occupy one of the first three formant slots LA
Hz.), high (above 170 Hz.) or medium pitch. Formant (first and second choice) are used; although, in most Sy
ranges arc then taken from one of 3 tables. For each X - ugh, in |
g . cases the second choice slots are empty. Other ridges o
formant the table contains a range of frequencies that . . . LN
g : may be included based on their density measure or on a Cplays
are unique to that formant. It also eontains ranges of . . s
B srenciEs for-which thc forniant.choics i fiot cleat. A measure called overlap. The density measure is used to G
JosnoIs=Tr o Tt include ridges which have very high amplitudes but do A
formant with frequencies in one of these ranges is con- . . . Sy
2 : ] . not have sufficient duration to win a formant slot. The hS .
sidered ambiguous and its assignment must be deter- odénla rovision finds ridges which (1) overlap Rrst ‘.-,'.1,
mined in the context of the other formant candidates. choicepridp es in time, (2) i min i I N ertn(;) rxrs :"}“
Seven ranges exist, four for the first four formants and T ' AMGegte) "are MINIMA 1y *8EpERated roni -
the first choice ridge during the overlap and (3) have a “’3
higher density during the overlap. This overlap provi- Ry
sion thus, finds places where the initial peak matcher :.;\c
Formant Frequency Ranges® may have failed to follow the formant correctly. .::_..:1
Low Pitch Medium Pitch High Pitch :._}".\:
Range** | From To |From To |[From  To Segmentation clues are extracted from the important Ea
Freq__ Freq | Freq  Freq | Freq  Freq ridges. The begining and end frame of each ridge is =
f1 100 700 | 140 825 175 1000 labeled as a clue. Sudden changes in amplitude are :’;,.:J"
f12 700 1200 | 825 1250 | 1000 1300 labeled. Sudden changes in F1 frequency are labeled. I
f2 1200 1500 1250 1630 1300 1775 .'!t“:h
23 1500 2500 | 1630 2850 1775 3000 .“'_:'.')
3 2500 2800 | 2850 3200 3000 3500 . . iy "\ﬁ; »
31 2800 3200 | 3200 3800 | 3500 3800 Segmentation clues associated with FI tend to mark ")?‘\"-f
r4 3200 4000 | 3600 4200 | 3800 4100 obstruent boundries such as nasals, flaps and voiced “",‘.‘
* Uses average ridge frequency stops. Since these phonemic events tend to harbor for- '3

*v £1,12,03,04 refer to frequency ranges unique to that formant
f12 refers to frequency racges which could hold f1 or 2.
{23 refers to frequency ranges which could hold {2 or 3

mant discontinuities, a segment boundry is created for
this type of clue without further confirmation. Segmen-
tation clues associated with higher formants are less reli-

£34 refers to frequency ranges which could hold f3 or I1 able. They involve more variation in frequency and
amplitude. They also are more heavily influenced by ?__\-ﬁ
neighboring frication. Segment boundries are only esta- '

blished where two or more clues are found. 0N

Figure 1 - Pitch dependent, forinant frequency ranges used in
formant slot assignments. Low pitch is below 150 Hz. High
pitch is above 170 Hz.
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Recursive Segmentation

The segmenter drives the search for formants recursively.
Each voiced region is initially labeled as a single seg-
ment. Basic ridges and important ridges are recomputed
and new segment boundries are searched for. New boun-
dries cause the segmenter to subdivide and operate on
each resulting piece. The process ends when no further
subdivisions can be found.

Use of Bark Scaled Spectra

An attempt was made to use Bark scaled spectra as
input to the formant tracker. (Senefl 19868) We had
hoped it would help in tracking diffuse upper formants
and upper formants influenced by fricatives. While Bark
scaling did help in these two cases it hurt in ways we
were less willing to cope with. Upper formants that are
close in frequency to start with, such as high front
vowels, and retroflexion, tended to be merged. We found
merges very difficult to handle. Therefore we no longer
use Bark scaling of the spectra for formant tracking.

Performance Analysis

The CMU and NBS formant trackers were run on a sub-
set of 350 sentences of the DARPA Acoustic-Phonetic
database. The formants were overlayed on spectrograms
and examined. Only the voiced phonemes weie con-
sidered as valid segments for statistics. An error was

Formant Tracxing Errors

Formant Sex Set CMU NBS
All m ul 8% 8%
f ul 25% 7%

m vl 8% 11%
t vl U% 14%
m v2 % 10%

{ v2 28% 12%

F1 m ul 1% %
t ul 5% 0%

m vl 1% 1%

f vl 4% 2%

m v2 1% 1%

{ v2 4% 2%

F2 m ul 5% 5%
t ul 20% 1%

m vl 5% 6%

f vl 23% 8%

m v? 7% 8%

[ v 20% 7%

F3 m ul 1% 6%
f ul 12% 3%

m vl 1% 9%

{ vl ° 20% 9%

m v2 8% 7%

[ v2 20% 9%

Figure 2 - Percent errors in voiced phonemes. Performance
on 350 sentences from the DARPA Acoustic-Phonetic
Data Base.
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counted if any of the three formants were not within the
dark bands on the spectrogram or If the wrong formant
was assigned. In total there were 6718 segments exam-
Ined. The results of this analysis are shown in Figure 2.

Upcoming Changes

Development of the algorithm is not yet complete. Per-
formance in several areas can be improved. We have
learncd much from our first pass at creating a segmenter
based on formant data. We will soon start a complete
rewrite of the segmenter which will use many new rules
and clues, An evaluation and more complete description
will be published later. An energy based retroflex
detector(Gengel, Majurski and Hieronymus), already run-
ning in our lab will be used to help make decisions dur-
ing /r/, where F2 - F3 merges are common, during
retroflexed vowels. Since this algorithm is based on for-
mant continuity, tracking the high frequency formants
during and near fricatives is a special problem also
requiring solution.

Implementation

The peak picker and formant tracker are written in C
and run on both Unix and the Symbolics Lisp Machine
using the Zeta-Soft C cross compiler. All development
work on the tracker was done on the Lisp Machine using
Spire. The Unix version has been delivered to CMU to
be evaluated for use in their system.

Execution speed on our Vax/750 averages 50 seconds per
utterance. On CMU's Vax/780 it averages 20 seconds
per utterance. This implementation uses fixed point
arithmetic only.

Conclusion

We have presented an overview of our current algorithm
for tracking formants in continuous speech. We have
described the general algorithm for tracking and for seg-
menting. The segmenter is currently in a rudimentry
state but we believe it holds much promise for segment-
ing voiced speech. Since we believe that formant
analysis is critical to the paramaterization of continuous
speech. ‘We will continue working to improve the perfor-
mance of this algorithm.
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An Energy-Ratio Based "Retroflexion” Detector:
urrent Status and Performance

Roy W. Gengel, William J. Majurski and James L. Hieronymus

National Bureau of Standards
Gaithersburg, Maryland 20899

Abstract of Energy Sum R. Note that when the criteria are
closely met, the peak in the Energy Sum R display is
relatively high. This generally occurs (1) during produc-
tion of /r5.3/, (2) sometimes, during production of cer-
tain other phonemes coarticulated with /r,f.4/, and (3)
sometimes, during transitions of other phonemes (see /a/,

Results are described for a "retroflexion”™ detector
designed to locate the acoustic manifestations of /r/, /3/.
and /3/ in the continuous speech of male speakers. A
SEARCH analysis indicates 89 percent correct detections
for a false alarm rate of 14 percent. Missed retroflexed

A Ca
tokens fall into three groups: (1) low F4, which is also 3/ and [k/.) iy
4 close to F3; (2) "diminished retroflexion,” attributed to a Corous and Method :.::'.."
E phonotactic rule; (3) F2 and F3 are relatively high and e ] . Ny
{ straddle or exceed the specified cutoffl for male The corpus used for analysis consisted of sentences in a DY
retroflexion. subset of the DARPA Acoustic Phonetic Data Base that :'.)-:.‘
are spoken by males speakers. There were 126 sentences C""-f.:
Intrcliiiction which contain a total of 4485 tokens. The breakdown of ey
We are developing in automatic "retroflexion™ detector uwkefpf;?;i'ﬁf ;.'? 3:'1:121’” per phoneme is shown in the :‘w:}
1 based on energy ratios. It is designed to locate the e : ’ X
acoustic manifestations of the phonemes /r/, /3/, and o
: FiL T Th‘:: detectot( /wil/l /not. bi‘ In order to perform the test we used the SEARCH Pro- '.-,4_:2
g . - ; . gram developed at MIT (Randolph, 10868). The phonetic s
described in great detail here. It is based on the idea - b
that a third formant below 2000 Hz for males and 2300 labels used were the labels provided by the MIT Group. Y
Hz for females is a correlate of retroflexion. A set of The SEARCH program was set to find all labeled .
energy ratlos has been formulated and tested to detect honemas: which contiined valiss of Egerey Sum R .';Q':
. this event. In its current form, it is designed to detect P . 8y hy
l wavelsrm ‘segitents UHAL, "gbaerally ‘medy, thi ToHowing greater than a specified threshold value. Thus, included ?‘-'-f'
thiese ot ilasias in this search are all phonemes having Energy Sum R '_-';:.r
: values above threshold, regardless of how much or how ;,_-'.j
1) relatively high energy between 1000-2000 Hz coupled little was the value above threshold, or how much or ¥
with relatively low energy between 2000-3000 Hz (Energy h:lw little of the segment contained the suprathreshold =
Diff 8); alue.
r:,:-'\.
2) relatively high energy between 1400-2000 Hz coupled Rasnits L ) :~'\
with relatively low energy between 2000-3000 Hz (Energy The results of one SEARCH analysis is shown in the o

Diff 20); lower portion of Figure 2. Max Energy Sum 30 g.i\g
represents an arbitrary, but reasonable threshold; reason- -
able in its trade-off between correct detections and false o

3) relatively high energy between 120-1100 Hz coupled )

. . ~ L]

with relatively low energy between 2200-2800 Hz (Energy alarms. st

Sum 4+5). . LR

Note that the analysis reduces the corpus to be examined '.~:"_."

. . 0 . * 2 L4 .'n’

The current version of the detector, called Energy Sum further to 20 percent of the original. Contained therein e

R, was developed for males voices. A modified version of are 89 percent of the target phonemes /r.V.g/. These ")"3‘

. N ) » . N

the detector is also being developed for use with [emale retroflexed” phonemes comprisze 32 percent of the -

speakers. Only analyses based on male voices will be reduced corpus. g

V)

reported here. :_-:. e

[n the remainder of this paper, we describe some charac- s

. . 7 g - 3 Y. ) Yy ‘I

Figure 1 shows analyses of two sentences from the data teristics of the /r.f,3/ tokens that were "missed” by the al

base that may be used as "canonical™ representations of combined detector. In a companion paper. we describe e $-:.‘

/e.3, 3/, and can be used to illustrate the underlying logic some of the “false alarms” due to coarticulation =tects f o
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and other phenom<na. Nevertheless, they currently are classiied as “true }::;A.""
misses.” However, we are relatively confident they will t,“j
Thirty four "retroflexed” tokens were "missed” by the be detected when the modified version of Energy Sum R, ey
analysis: 25 /r/s, 4 /3/s, and 5 /§/s. These 34 tokens designed specifically to analyze Ligher pitched voices. is 'Q."s.::
were further analyzed to determine whether they pos- fully developed. a8t
sessed characteristics different from the 279 tokens that = {
were correctly detected. In conclusion, the current retroflexion detector seems to ?‘N :t
) ) offer great promise. When the "diminished” retroflexion '\"h‘\-}‘
We ¢ali the "normal” retroflexed token, one in which the tokens are deleted from the target corpus, the correct :,Q .
energy in F1, F2, and F3 is located below 2000 Hz, while detection rate is about 91 percent. Assuming the suc- \j\.‘;n
F4 remains above 3000 Hz. (See Figure 1.) In 15 of the cessful incorporation of an F4 tracking program into the iy
25 "missed” /r/ tokens, F4 dropped below 3000 Hz. present analysis scheme, the "low F4 misses” should also v '
This relatively low frequency F4 caused the denomina- be detected. Then the hit rate will reach about 97 per- L ey
tors of the energy ratios used to calculate Energy Sum cent. Finally, the modified Energy Sum R (F) detcctor R
R, to become large. This, in turn, resulted in low values might detect the remaining three percent of “missed” s
of ES R that did not exceed the threshold for retroflex tokens, thereby bringing overall performance to oo
"retroflexion” detection. Figure 3 shows some dramatic near 100 percent correct detection. This would be its .":::}
examples of F4 downward movement in parallel with F3. performance capabillty tempered by a current estimated R
However, the movement is not always in parallel with F3 false alarm rate of about 14 percent (572 incorrect detec- .
nor as dramatic. The characteristics of both F3 and F4 tions/4158 nonretroflex tokens). e
of the adjacent phoneme determine, in part, the type of ,-'-,:-,
F3 and F4 movement into the retroflexed waveform Acknowledgement ‘-‘:,.
ZaBI08. Pr.esum§bly; thsed:, tok¥us SEOW retroflexsd This work was supported, in part, by DARPA Contract el
alveolar articulation,” as contrasted to "retroflexed pala- N0003984P D41304 Ny
tal articulation” (Fant, p.28, 1973). The f{ormer are also ) YA
referred to as "r, ==voiced, continuant, apical” (op.cit., p. (
83). This phcn;menon requires more detailed(inthiga- REFERENCES e
tion since it is not restricted merely to the 15 tokens just Fant, G., (1973). "Descriptive analysis of the acoustic -'_','.‘_‘-:.:-
mentioned. It also occurred in two "missed” /§/ and in aspects of speech,” in: Speech Sounds and Features, AR
three "missed” /&/ tokens, as well as in tokens where MIT Press,Cambridge. e
Energy Sum R exceeds threshold during a portion of its R
waveform duration. The latter condition can be seen Randolph, M. A., (1986). Described in: "The develop- [
clearly in the upper portion of Figure 1 where F4 paral- ment of speech research tools on MIT's Lisp Machine- o L
lels the diminution in the amplitude of Energy Sum R. based workstations.” by: Cyphers. et. al., Proceedings. Py
(We are currently developing an F4 tracking program to Speech Recognition Workshop, DARPA., Palo Alto. CA. ‘.:
more efficiently identify this phenomenon.) ._.:‘
LA
A second phenomenon which is evident in six "missed” f:\:}.
tokens we have tentatively labeled as "diminished i [
retroflexion.” This occurred in five /r/s, and in one /3. AN
It is evidently due to a phonotactic rule employed by St
some persons living along the eastern seaboard that :-
states: When /r/ {or other retroflexed token) is preceded prog
by a vowel, delete the /r/. This rule is also used in ._‘:.
areas of Great Britian (Bristow, 1084) and in some varia- foder
tions of Black Dialect. Acoustically, it is manifested by -
a relatively high F3 (above 2000 Hz), and a relatively RO
low F2 (below about 1400 Hz). Perceptually, it does i
seem to differ from the preceding vowel, at least to the R
untrained ear. We recommend it be given a different A
token-label, since it is not a retroflexed phoneme. iy
»\w}l-

Finally, a third phenomenon accounts for the remaining -

“missed” tokens. In these instances. (five /r/s, two //s. Py

and one /g/) both F2 and F3 are rclatively high: i.e.. S

they straddle. or are above, the 2000 Hz criterion for a 5

male retroflexed token. These tokens are in the fre- o

quency rcgions that we presume are more usual for e

female voices (or higher pitched voices generally).
-
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Figure 1. Two examples of the output of Energy Sum R indicating retroflexion

allophones and coarticulated neighboring phonemes.
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and Hieronymus, these Proceedings.) We conclude that
strong retroflexion is indeed present in these tokeas; i.e.,
F3 is below 2000 Hz, for various portlots of their total

Figure 1 shows the layout used for analysis. The
displays are an Original Waveform Window, a Wide
Band Spectrogram, a Wideband Spectral Slice, an LPC
Spectral Slice, and a Phonetic Transcription Window, all
of which are part of MIT-Spire (Cyphers, 1985); a Vax
Psdft Spectral Slice, a display of the CMU-Darpa-

An Analysis of Some Coarticulatory Effects of /r/ on Preceding Vowels:
Initial Findings

Hz prior to the phonemic (pereeptual) onset of /r/; and
thus, the longer is the duration of the coarticulatory
manilestation of retroflexion. (Recall Figure 1.)

for over half their total duratices.

From the amount of data analvzed so far it is difficult to
reliably fit a gaussian to the histogram data. So the reli-
able means and variances of 1he coarticulation durations
will be determined in subsequest work.

Roy W. Gengel, William J. Majurski and James L. Hieronymus -‘::}'.:_sj

N.
National Bureau of Standaras N, "',

Gaithersburg, Maryland 20898 ;
I 0
-
Abstract Phonet‘ic Transcript.ion W'md.o'.. We then me&sure.[o w:‘:;}«;‘
. . . determine whether the cursor is in the first, second, third e,
SEARCH and a rer.roﬂexno.n detector identified vowel- or fourth quartile of the vowel (or Whether it is actually o'_‘:;\-;_‘ ?
tokens that (1) were classified as retroflexed, and (2) in the token even preceeding the vowel; or e :..::5-.,".
shared a boundary with /r/. The vowels fa/, _/g/' 12/, whether it is within the /r/-token boundary itself). 'j'-?‘?-{:
and /I/, among others, show strong coarticulatory Thus, for example, in the top panel of Figure 1, F3 is e
effects. Data supporting this conclusion are presented. below 2000 Hz in the /w/ that preceeds the /E/ that i “‘""
preceeds the /r/; i.e.. a relatively long coarticulation Ff-“:-‘.“‘
Introduction eflect. And in the lower panel, F3 drops below 2000 Hz ‘.-".\"{i
A pilot study of coarticulation effects in vowels due to in the second quartile of the vowel preceeding /r/: i.e., a :-'::-":-1
post-vocalic /r/, was made for a subset of the DARPA relatively shorter coarticulation effect. D J.}'.',:'
Acoustle Phonetic Data Base. Using the SEARCH Pro- QN
gram, the technique was to find where the retroflexion Results ol :’r
detector fired inside vowel- tokens that shared a boun- A summary of the retroflexion analysis is shown in Fig- =
dary with /r/. We have found the vowels &/, g/, [3/, ure 2. Note that the duration of the vowel preceding /r/ .’:::;C:'i
and /g/ are among the labeled nonretroflexed tokens that has been divided into quartiles As the quartile value e
are strongly retroflexed. (See Figure 2, Gengel, Majurski increases from one to four, the longer is F3 below 2000 e

o) 2k

duration. Histograms of coarticulation extent are -
presented below. Note that most of the sampled vowels show the coarticu- '\':::

Iation effect: 94 % for jar/, 94% for fr/, 83% for /or/. ..:r_"._‘_-,:
Method and 88% for /rr/. The durmion of the coarticulation LR
The corpus of sentences used in this analysis was the effect, for all four vowels varies from relatively short ;"( ;’
same sentences described in Gengel, Majurski and Hiero- (first quartile) to relatively lomg. For the far/ coarticu- ‘r:',.-:‘):
nymus (1987, these Proceedings). However, in order to lated tokens, 61 percent of the /a/ durations are f 4
Increase sainple size, additional sentences from the retrofiexed for over half of their total durations: for f£r/. T‘:I
DARPA Acoustic Phonetic Data Base were also included. similarly, 41 percent of the &f durations are retroflexed s
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System- output; and F2 and F3 formant tracks, a part of Y
the NBS system developed by Majurski and Hieronymus Based on these initial findings. we conclude that many of '-r:;
(1987, these Proceedings). The goal is to determine the the retroflexion “errors”™ signaled by the detector are not :':'s.
time in the vowel preceeding /r/ where F3 drops to a errors but rather reflect the eZect of coarticulation. For e .',‘
value of 2000 Hz or less. As the figure shows, there is example. fur.... analysis of (2e 44 /a/ "errors™ (Figure .
often good agreement among the various indicators, as to 2, op. cit.), indicate that 25 /a/s preceded /r/. 6 followed ': *'.;12
the frequency of F3. (\When there is not. the value /r/. and 13 were not articulated in 3a /r/ environment. “‘E-\':\
determined by the Wideband Spectral Slice Window is The 25 pre-/r/s and the 6 post-/r/s ail showed coarticu- :‘..h'\".')-:'
used.) When the 2000 Hz F3 pitch period has been lation effects. The post-/r/ edects were small. never Lt
located, the cursor in the Original Waveform Window is beyond the first quartile. The 13 “true error™ detections é'.ﬁ":n"‘
automatically aligned in the same time frame in the have not vet been analvzed fully. However, thres are K
t:‘.‘-}.".-'
S
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associated with 4 k®/ coarticulation, the "velar pinch” References k"{',"h:
described by Zue, (1988), wherein F2 and F3 in /a/, and Gengel, R.W., Majurskl, W. J., and Hieronymus, J.L.. X k‘.h
other, front vowels, "pinch” together at the /k9/ boun- (1987). "An energy-ratio based "retroflexion” detector: i
dary. Current status and performance,” these Proceedings. t::ﬂ

These strong coarticulations occur across word boun- Majurski, W. J., and Hieronymus, J.L., (1987). "The !

daries as well as within words. Therefore, it is impor- NBS fast [(ormant tracker: A progress report,” these {‘::::
tant that the effect of /r/ on nearby vowels be taken Proceedings. o
into account in the DARPA Speech Recognition Systems. e

Zue, V. (1988). "Speech spectrogram reading: An acous- ‘-§‘-
Acknowledgement tic study of English words and sentences,” Workshop Lo

TLis work was supported, in part, by DARPA Contract Notes, MIT, Cambridge. ;-
N0003984PD+1304.
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doars Prossem Lsyemt . Gengel, Majurski, Hieronymus
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Figure 1. Layout used to measure coarticulation effect of /r/ on preceding
vovel. See text for explanation.
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* Indicates that F3 did not drop below 2000 Hz in either /r/
0 the preceding vowel.

74

\ \.’ .\\:\g“'} Ut ‘:‘ W '\.- -)x > ‘%: 'Q‘\\x{ ot "'\p.'( }-\: : : \‘: ( N- ,‘;\-:“, e
3 ¥ ' .. ' " L%, : ; “. .
k Ab\-\.’b\.\-\ \h\‘i " { 2. A AL, .. N" x,§ v(‘ k-_&.;:.‘_i.‘i !-:: N



P L
i
LY .
r
“Ln
&
20
TEST PROCEDURES "o
i
FOR THE -’-"{‘z‘
MAKCH 1987 DARPA BENCHMARK TESTS :"-‘_:'

* w
- 3
David S. Pallett SR
A
Institute for Computer Sciences and Technology .‘i
National Bureau of Standards \'\h

Gaithersburg, MD 20899

R
ABSTRACT Systems, MIT and TI during visits during ”~“i
June and early July 1986. These Py
This paper describes test procedures discussions were valuable in developing an }%ﬁ}
that were to be used in conduct ing outline of benchmark test procedures [3] ST
benchmark performance tests prior to the that was discussed at the Fall 1986 DARPA 2
March 1987 DARPA Meeting. These tests were Meeting, and which was structured after a N,
to be conducted using selected speech model for performance assessment tests NIy
database material and input from "live outlined in an earlier NBS publication el
talkers", as described in a companion (4]. Thus the present proposed test AL,
paper. procedure represents the most recent and LI
specifically focussed in a series of %$ﬂ§
documents outlining test procedures for R

the DARPA Speech Recognition Program.
INTRODUCTION

EXPERIMENTAL DESIGN
At the Fall 1986 DARPA Speech

Recognition Meeting, plans were discussed There were to be two distinct types

for implementing benchmark tests using the
Task Domain Speech Database. There was
additional discussion of the desirability
of developing and implementing "live
tests" using speech material provided by

of tests conducted prior to the March 1987
DARFA meeting:

(1) Tests based on use of a subset of
the Task Domain (Resource Management)

speakers at the contractors' facilities, Development Test Set Speech Database. This “:}i‘
emulating in some sense the process of subset was to include use of 100 sentence :-".'-f':
inputting speech material during a utterances in either the Speaker e
demonstration of real-time performance. Independent or Speaker Dependent portions qu;ﬂ
Following the Fall Meeting, the Task of the database. The process of selecting b
Domain Speech Database was recorded at TI speakers and the specific utterances is 5>\§5
and significant portions of it were made described in Reference (l). In each case, e
available for system development and there was considerable freedom to choose é{f.-
training purposes through NBS to both CMU system-dependent factors such as the {\f{'
and BBN. Another portion was selected for amount of training material for Speaker Zu}y
use in implementing these benchmark tests Dependent technology and the most }u}f
(13, and this test material was appropriate grammar. All of the 100 Mo
distributed to CMU and BBN during the last specified test sentences were to be }{{’
week of February, 1987. This paper processed and reported on at the meeting. |
outlines test procedures to be used to "Spell-mode” material (spelled-out Lt
implement these tests prior to the March representations of tne letter strings for ol
1987 Meeting. items 1in the lexicon) was available for U
use, but it processing this material was e
A number of informal documents have not required. {Q{'
circulated within the DARPA Speech W
Recognition community that outline These sentence utterances were to be o
proposed test procedures. A Strategic processed both with and without the use -
Computing draft document dated Dec. 6, of imposed grammars. In the case of using “7:
1985 (2] identified key issues in some no grammar, the perplexity is essen+tially yu{'
N detail. Portions of this were heavily to be nominally 1000. Comparable detailed ;fvf
annotated and distributed to several sites results are to be reported for both h’$£
during June 1986 and were the subject of conditions. No other parameters are to be ﬁfﬁﬁ
discussions involving the author and changed for these comparitive tests. :{h
representatives of CMU, BBN, Dragon g

s ‘.“,U‘ SR ‘-f"-‘_:-(_.\" ."’..-_'_v'."v i w\r\v‘ a2 s -rwu LR -*.' o X ‘n ot W
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Optionally, the same data may be 10 words random 2?2
processed using the "rapid adaptation” "spellmode" vocabulizy 533322. = e :5$*
sen’ ences for system adaptation. There is Qgr
to be no use of adaptation during PROCESSING OF LIVE INPUT o
processing of the test material. ‘\;:
The systems were to process the test "y
(2) Tests based on 1input provided material in a manner similar to that used - ‘
from "live talkers". The test talkers for the Resource Management database test (P
visited both CMU and BBN prior to the material. Statistics comparable to those r}ﬂ
March meeting. Each of the talkers spoke for the 100 sentence subsets were to be ﬂcﬁ
the "rapid adaptation” sentences and read prepared and reported on at the March rﬂ?
a script containing 30 sentences drawn meeting. fbﬁ
from the task domain sentence corpus. Data WO
derived from the input from "live talkers" ADAPTATION Potie’
was to be analyzed and reported on at the ‘
March meeting. Although the wuse of the "rapid T?Q
adaptation” sentences was to be permitted, 33\
it appears that the only use made of the Qﬁ:
LIVE TEST PROTOCOL rapid adaptation sentences was in adapting H\ﬁ
the Speaker Dependent system at BBN for SN
The microphone was to be the same as the "live test" speakers. NN
that used at TI for the Resource Al
Manegement database, the Sennheiser HMD There was to be no use of any of the £
414-6. This 1is a headset-mounted noise test material to enroll, adapt or to RIAT
cancelling microphone similar to the Shure optimize system performance for the test ,u:w
SM-10 family of microphones. The headset material through repeated analyses and re- e
is a su.ra-aural headset that allows the dse  of the test material. Intended 5N
subject to be aware of nearby conversation allowable exceptions to this prohibition e
or instructions for prompting. The test against re-use of the test material E:’;
environment was to be a conference room or include demonstrating the effects of using i
computer lab. There was to be no different grammars, different strategies {
background speech at the time the test for enrollment, different algorithms for .‘-::'\:
material 1is provided. Test utterances auditory modelling, acoustic-phonetic g
could be rejected (and the subject asked feature extraction, different HMM A
to repeat the sentence) If in the techniques, system architectures, etc. It ]
judgement of the person(s) administering is recognized that the breadth of these ;n:%
the tests there was some noise artifact exceptions in effect limit the future use }”{x

(e.g. coughs or paper-shuffling noises) or of this test material, since such W
severe mis-articulation of the test extensive use of test material to i !
sentenee. Evidence of this could be demonstrate parametric effects constitutes h:::
obtained by play-back of the digitized training on test material. ik
utterance. PR
Since a finite 3set of task domain e
For systems that require time to sentences was developed at BBN, and the .tr:
develop speaker-adaptive models, the entire corpus of task domain sentences was ELf5
subjects were to provide the 10 "rapid made available to both CMU and BBN, in s ‘
adaptation” sentences prior to the tests some cases the grammars used for these Vo
(e.g. the evening prior to the tests). tests have been adapted to this finite set Dby
of sentences, jincluding the test material. ?}?}
For one of the speakers, the 30 test e
sentences were to be read in and i
processing (automatic recognition) could e
take place "off-line". For the other two .
speakers, the test sentences were to be VOCABULARY/LEXICON/OUTPUT CONVENTIONS :;rt;'!
read 1in, one at a time, waliting for the Oy
system to recognize each sentence before The task domain sentences in effect N
proceeding to the next sentence. At the define the vocabulary. Internal M
end of 30 minutes, if all 30 sentences had representations (lexicon entries) may be U
not been read In and recognized, the at the system designer's choice, bktut for :4;4
remaining sentences were to be read in the purposes of implementing uniform 1 e
for "off-line" processing. In practice, scoring  procedures, a convention was B
only three to five sentences were defined, drawing on material provided by o
recognized interactively within the 30 cMu (S}, BBN and TI. This convention el
minute period, and the remaining sentences includes the following considerations: ] iNZ
were then read in. The elapsed time for SR
each speaker providing the test material Case differences are not preserved. {;Ju
in this manner was typically 45 minutes. All 1input (reference) strings and output h&{?
If requestec, each speaker was to read in strings are in upper case. L'E:
A
7€ s
L
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There is no end-of-sentence
punctuation. Nor 1is there any required
special symbol to denote silences (either
pre-pended, within the sentence utterance,
or appended) or to indicate failure of a
system to parse the reference string or
input speech.

Apostrophes are represented by
plusses. Words with apostrophes (embedded
or appended) are represented as single
words. Thus "it's" becomes "IT+S".

Abbreviations bncome single words.
All periods indicati J abbreviations are
removed and the worc is closed up (e.g.
"U. S. A." becomes "USA").

Hyphenated items count as single
words. In general, compound words that do
not normally appear as separate words in
the context of the assumed task domain
model are entered as single, hyphenated
items. The exception to this rule are
compounds that include a geographic term,
such as STRAIT, SEA or GULF. Thus entries
such as the following count as single
"words": HONG-KONG, SAN-DIEGO, ICE-NINE,
PAC-ALERT, LAT-LON, PUGET-1, M--RATING, C-
CODE, SQQ-23, etc. However, BEI'ING STRAIT
is to count as two words since this
compound includes the geographic term
"STRAIT", and it is not to be hyphenated.

Acronyms count as single words, and
the output representation is not the form
of the acronym made easier to interpret or
pronounce (e.g. "PACFLT", not PAC-FLEET or
PAC FLEET).

Mixed strings of alpha-numerics are
treated as acronyms. Thus, "A42128" \is
treated as a one-word acronym, even though
the prompt form of this {ndicates that
this is to be pronounced as "A-4-2-1-2-8".
strings of the alpha set are also treated
as acronyms (e.g. "USA"). Strings of
digits are entered in a manner that takes
into account the context in which they
appear. Thus for a date such as 1987, (it
is represented as three words: "NINETEEN"
"EIGHTY" "SEVEN". If it is referred to as
a cardinal number it would be represented
as "ONE" "THOUSAND"™ "NINE" *HUNDRED"
"EIGHTY" "SEVEN".

SCORING THE TEST MATERIAL

For results <to be reported at the
March meeting, the use of different
scoring software will be acceptable. Each
contracter was free to use software
consistent with the following general
requirements:

Data are to be reported at two
levels: sentence level anr word level.

Py
DO
a

A
L R (\'\.’.\'.\.:'\'.'-.':‘--"_-. \.!.-_".-'.-."‘

At the sentence level, & sentence is
to be reported as correctly recognized
only if all words are correctly recognized
and there are no deletion or insertion
errors (other than insercions of a word or
symbol for silence or a pause). The
percent of sentences correctly recognized
is to be reported, along with the percent
of sentences that contain (at least one)
insertion error(s), the percent of
sentences that contain (at least one)
deletion error(s) and the percent of
sentences that contain (at least one)
substitution error(s). The number to be
used for the denominator in computing
these percentages is the number of input
sentences in the relevant test subset,
without allowing for rejection of
sentences or utterances that may not parse
or for which poor scores result.

At the word level, data that are to
be reported include the percent of words
in the reference string that have been
correctly recognized. For these tests,
"correct recognition" does not reqguire
that any criterion be satisfied with
regard to word beginning or ending times.
It s valuable, but not required, to
report the percent of insertion, deletion,
ard substitution errors occurring in the
system output.

For those systems that provide
sentence or word lattice output, scoring
should be based on the top-ranked sentence
hypothesis. Additional passes through the
alternative hypotheses are acceptable,
provided the data are compared with

comparable data for the top-ranked
hypothesis.
System response timing statistics

should be reported.

Data resulting from these tests i= to
be provided to NBS following the March
meeting for detailed analysis and in
evaluating altermative scoring software.

DOCUMENTATION

Documentation on the characteristics
of the imposed grammar(s) must be
provided. This information should describe
any use of the material from which the
test material was drawn (i.e. the set of
2200 task domain sentences developed at
BBEN and used by TI In recording the
Resource Management Speech Database).

The system architecture and hardware

configuration used for these tests should
be documented.
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SELECTED TEST MATERIAL

FOR THE

MARCH 1987 DARPA BENCHMARK TESTS

David s.

Pallett

Institute for Computer Sciences and Technology
National Bureau of Standards
Gaithersburg, MD 20899

ABSTRACT

This paper describes considerations
in selecting test material for the March
'87 DARPA Benchmark Tests. Using a subset
of material available from the Task Domain
(Resource Management) Development Test
Set, two sets of 10C sentence utterances
were 1identified. For Speaker Independent
technology, 10 speakers each provide 10
test sentences. For Speaker Dependent
technology, 4 speakers each provide 25
test sentences. For "live talker" test
purposes, three 30-sentence scripts were
identified, using a total of 70 unique
sentence texts. The texts of all of these
test sentences were drawn from a set of
2200 sentences developed by BBN in

modelling the (resource management) task
domain.
INTRODUCTION

In order to implement benchmark tests
of speech recognition systems to be
reported at the March '87 DARPA Speech
Recognition Meeting, it was necessary to
specify selected test material. This test
material is drawn from two sources: (a)
the Task Domain Speech Database recorded
at Texas Instruments (also referred to as
the "Resource Management" Database), and
(b) the use of "live talkers" in site
visits. In each case, the texts of the
sentences were drawn from a set of
sentences developed by BBN. Selection of
test material using the Resourca
Management Database includes two separate
components, a Speaker Independent
component and a Speaker Dependent
component. This paper outlines the process
of defining these subsets of speech
material. :

At the time the Resource Management
Speech Database was designed, it was
intended that approximately equal volumes
of material would be available for system

development (research)
two rounds of
Consequently, approximately half of the
available material is designated
"development” or “"training" material, and
the remaining portion 1ir designated for
test purposes. The test material is
designated as "Development Test" or
"Evaluation Test" sets, each including
1200 test sentence utterances in each
portion (Speaker Independent or Speaker
Dependent).

purposes and for
benchmark tests.

The design and collection of this
Task Domain (Resource Management) Speech
Database 1is described elsewhere 1in this
Proceedings in a paper by Fisher (1].

Thus, as originally intended, two
sets of 1200 sentence utterances were to
be available for the March '87 tests.
During January 1987, discussions involving
representatives of CMU, BBN, MIT, NBS and
the DARPA Program Manager determined that
use of this large a volume of test
material was not necessary to establish
performance of current technology when
pragmatic considerations of processing
times and expected performance levels were
made. Consequently, it was agreed that
subsets of 100 sentence utterances were to
be defined for these tests, and that NBS
would specify the appropriate subset.

To complement the use of the recorded
speech database material, a test protocol
for the use of "live talkers" emulating in
some sense procedures to be used in future
demconstrations of these systems was
defined, and texts were selected for this
purpose.

RESOURCE MANAGEMENT SPEECH DATABASE TEST
MATERIAL

Speaker Independent Test Material

For the March'87 tests, a set orf ten
speakers was identified, drawn from
material recorded at Tl and made available

to NBS in December '86 and .January 'B87
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Each speaker provided two "dialect" and Speaker Dependent Test Material qai
the ten "rapid adaptation" sentences in .
addition to a tctal of thirty test For these tests, & @8t |of Four t-ﬁ
sentence utterances. For each speaker, a speakers was identified, also drawn from o
unique subset of ten sentence utterances material recorded at Tl and made available gég
were specified to be used for the March to NBS during December '86 and January'S7.
'87 tests, amounting to 100 sentence In this case, selection of the specific S
utterances in all (10 speakers times 10 individuals was strongly influenced by the "kh
sentence utterances per speaker). availability of training material. BBN :*&
expressed concern that the entire set of ‘5*q

Seven male speakers were selected and 600 sentence utterances intended for P
three female speakers, reflecting the system training should be available for %y
male/female balance throughout the any test speakers. At the time of ANA
Resource Management Speech Database. selection of test material, nct all of the

12 speakers for this portion of the n"

To aid in the selection of individual database had completed recording their Wi
speakers, a set of approximately 16 training material. With this in mind four ‘-f-"‘-:
speakers was identified. SRI was asked for speakers were identified. &$:
advice® on whether any of these would be Qﬂg
regarded as anomalous on the basis of the Each speaker had previously recorded P
"dialect" sentences obtained in the the ten "I'Epid adaptation" and "dialect" “"'-‘
acoustic-phonetic database. SRI performed sentences, and the Development Test s
a clustering analysis and advised us that material included 100 sentence utterances ;KZ‘
most of the speakers clustered in three for each speaker. From this, unique sets DA
groups of similar speakers with three of 25 sentence utterances were identified Ranty
other individuals categorized as for each of the four speakers, amounting o
exceptional in some sense (e.g. unusually to 100 sentence utterances in all for this -fu'
slow rate of speech) [2]. The ten speakers portion of the test material. ~'\$
identified for inclusion {n the test .
subset include one of these "exceptional” Three of the speakers were male and -
speakers, the others being drawn from the one was female.
three clusters to provide some degree of
coverage of regional effects. Table 2 provides additional data on

these speakers.
Table 1 provides detailed information

on the individual speakers'’ regional Analysis, by T1, of the lexical
vackgrounds, race, year of birth and coverage provided by this subset of cthe
educational level for the ten selected test material indicates that 832 words DV
L] «
speakers in the Harch '87 Test Subset. occur at least once, with a total number o
b o
Analysis, by T1, of the lexical iSn :grdsf °§ 232, fgr a T:ian isenteTce -:nj
coverage provided by this subset of the sim?la = s ‘ hw:r sé : ss qukte ‘i”i
test material indicates that 348 words Ind rd t e € tial 12; ; :h dpea.ir e
occur at least once in this test material, of :g:ndf:trTgugiozs'd?ffe:ugli h:l EEaLUS e
and the total number of words is 836, for 2 L 8
a mean length of each sentence of 8.36 Rkt
HaEEs - Subject Sex Region Race Year of Birth Education :’r:‘{
- .ﬂ
CMR:  FEMALE WNORTHERN WHT '51 M.S. " s
bolteti
Subject Sex Regton Race Year of Birth Education BEF: VALE NORTR MIOLAND WHT 52 oK. _.:'.:',
- ¥
A8 VALE  NEW ENGLAND  WHT '62 3.s. JWii MALE  SOUTH MIDLAND #HT 40 B.S. A
GWT VALE NORTHERN WHT ‘2l 8.s. RKM: VALE SDUTHERN LK 3 .5, n ’
Ty
3L6 “ALE  NORTH MIOLAND WHT 182 (?) (fﬁ*‘a
CT7 YALE SOUTHERW WHT ‘62 8.s. Table 2. Speaksr Dependent Test Subset :“::*(
JFC MALE  NEW YORK CITY WHT '59 8.5. oL
<A
3TH  VALE  WESTERW WHT ‘62 B.S. R,
. - - [y N
Re s OREEN o . . LIVE TALKER TEST MATERIAL ~
BCG  FEWALE “ARMY BRAT®  (7) 59 8.5 For the "live tests", it was A
'l".h
caw  FEVALE EW ENGLAND  uHT ‘16 8.5 necessary to select sentence texts that -NAk;
would be read oy the test speakers. It was u{u:
STROVALD eRSTERN Ll 39 “.s. thought desirable to use three speakers, St
each speaker reading a total or 30 Qf:a
sentence texts in addition to the 10 o ;e
“apie . Speaxer Independent “est Subset "rapid adaptation" sentences. Ten of the g

thirty sentence texts were to bte the same

30

N N SARA S N AR S
X .f'a o e e U T, T '_w.",'x:}\'
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for all speakers, so that of the 90
sentence utterances to be used for
testing, there would be three productions
of each of the ten sentences, and 60 other
sentences (20 for each of three speakers).
A total of 70 unique sentence texts was
thus required.

The sentence texts were selected frc

a subset of 2200 Resource Management
sentences. CMU representatives had
indicated a preferance for sentence texts
that could be produced in less than 6
seconds. Accordingly, the essentially
random process of sentence text selection
was perturbed slightly to throw out longer
sentences.

Lexical analysis, by TI1, of the
scripts developed from these sentences
indicates that the three scripts are well-
balanced in terms of mean sentence length
and number of lexical entries. Each of the
three scripts has a mean sentence 1length
of 7.93 words (258 words/30 sentences),
reflecting the intentional bias in
sentence selection process toward slightly
shorter sentences. The number of lexical
entries in the three scripts is 153, 155
and 161.

The prompt form of each of these
scripts was to be made available to the
"live <talkers" in site visits to be
conducted in March '‘87. Each of the test
speakers was to use the Sennheiser HMD
414-6, the same microphone used at Tl for
the Resource Management Speech Database,
and the test environment was to be a
computer lab or conference room with no
competing conversation. A portion of the
test material was to be provided in an
interactive manner (i.e. while waiting for

system processing of the data) and the
remainder was to be processed off line.

GRAMMATICAL COVERAGE

At the time that BBN developed the
set of approximately 2800 sentence texts
modelling this task domain, no explicit or
formally defined grammar was used.
Rather, a set of prototypical sentences
was identified to provide coverage of the
task, and the subset of vocabulary
occurring in these sentence "patterns" was
then expanded to approximately 1000 words.
There were a total of approximately 95C
sentence patterns (3)]. By incorporation of
the expanded vocabulary, the 2800
sentences were generated by including
approximately three exemplars of each
pattern. From these, 600 were designated
to be used for speaker-dependent training
material, leaving a remaining subset of
2200 sentences. All of the test material
was randomly selected from this subset of
2200 sentences.

No analysis to determine the
representation of the basic sentence
patterns in the test material has been
conducted to date.

REFERENCES

(1) W. A. Fisher, "A Task Domain
Database", Proceedings of the March 1987
DARFA Speech Recognition Workshop.

(2) J. Bernstein, private communication,
January 1987.

(3} P. Price et al., oral presentation at
the Septemb 'r 1986 DARPA
Recognition Workshop.
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ROBUST HMM~BASED SPEECH RECOGNITION: AN UPDATE :$b'
%'
'l
Clifford J., Weinstein :\::.':'?
e
l-'i".
-:".::
Lincoln Laboratory, Massachusetts Institute of Technology r’-.‘,
Lexington, Massachusetts 02173-0073 t.l&
"'4:"“;
-,“:".F,
INTROOUCTION TRAINING OF WORO MOOELS ':-"j'
ac o v Ay -..'--_:
Lincoln Laeboretory work 1n robust speech ; ] l _] ;.“:.1'
recognition through Februsry 1986 is summerized in uTmiaascee | 4c0uenc i w3l K}'}
the Proceedings of the prior 0ARPA  Speech :":“'_' CALCULA PON l LETIRATON il
Recognition Workshop.{1]. The pspere included 1in is
theee proceedinga {2-5) provide en update on sajor o At [1p=a
tachnical sccomplishments over the past yeasr. 100041 1901 4ne ConeTRANTE ,’.):
This summary provides an oversll 1introduction to ’.:)..i,
the eccompsnying papers, end notes some current f.f(.
efforts snd some additionsl sccomplishmente of the ",iw.,
Lincoln progreas in robust speech recognition. RCOSMTION-OFNGY UTTEAANGES ¥ “,',)
WORD WOORLS W ad

OVERVIEW OF TECHNICAL APPROACH

TO ROBUST RECOGNITION l
-t
ACOuUsTC WOR0
Our spprosch to echieving high-pecformence  ‘memcs n:::::“ Yo ecoate
recagnition of speech produced under stcess 3nd in =

noise has been to develop techniques for enhancing i
the robustness of s baseline Hidden Markov Model

(HMM) cecognizer. The treining end crecognition fFig. 1. Hidden Markov Model 1solsted-word
modules of 8 beseline ieolested-word HMM ayatem sre recognition systes.
depicted in Fig. 1, while Fig. 2 indicetee the _
robuatness enhancements which heve been developed ‘.:-‘.
and teseted. Oescriptions of the verious mmm*o:‘\roouo mooeLs ._-;\')‘.
A AN -
enhencements snd their rifectiveness ere deacribed Sowparmi mnd Gl [————] '.“;‘-:_:
in the accompanying pepers. Many of the TRAWNNG reTTT e ;~,,").
L
snhancements, such es qgrand veariance or tempocasl yrmpascet ! Tsama wootL e
mOCEESOR CALCWRANON A genmanon Ehe
differance pacrametare, are in the eres of improved 4 l -
modelling end training in the (fremework of the _—.-,—.1;,;.;, ' 0! AWV
besic HMM system. Other enhsncements, such es the L’:‘:‘m‘.l WODEL FORM AND CONSTRANTE
second-stege discriminent analyesies aeystem, sre TTTTT Riisovamawce T T~ =
outside the bessic HMM frsmework. | TEAORML DWATRCE PARAMTIAG !
| OURATIONAL MOOELS !
Eae Pt R I A I
OATA BASES OF SPEECH PROOUCED ACCOUNTION OF NEW UTTERANCES
UNDER STRESS AND IN NOISE WORD WOOILD
e tome ) | e =
o L0
Two primary data bases have been used for the Loy e lat tn LECTION
1so0lated-word robuat recognition algorithe l L_.'. |
development work: (1) the *“TI-strees” 105-word ™t “°"""|-f=_]_1: — om0 | ‘.-; stucrol
vocabulary dats bese (6], 1including simulated- reociseon | I ; et O AT
stress through talker etyle veristion and nolae __:__- / : e — -
exposucre (Lomberd condition); and (2) the l’-'z;,'.":' ;: C;;:"‘,:t |
"Lincoln-etrese” date base {21, including "A’C:'m?'uozou ]co”:v.:l:‘lnom
simylateg-atrese via talker-style va® *io0n, Les—o=dhe=a-= -
Lomo.cd condition, and workloesd strsea, with @
J5-word vocabulary <composed of scousticelly- Fig. 2. HMM 1so'ated-word recognition systenm
similar sudeete of the Tl 105-word vocabulery. with crobuetness enhancement,
Additional experiments have been conducted on
[ "Tl-Iw0," & standard, normally spoken 20-word
vaocsbulary deta base {7].
o/
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MIGMLIGHTS OF ACCOMPANYING PAPERS (2-3] A [Boler Joeus of oUg ‘Curemt eFfprte g s hSTGy
extend the robuet recognition work to opecrete with .-,‘:-\:_q
The beeic cobuet MMM lsoleted-word high performsnce on continuouvely-spoken eequencee .\ﬂ\?‘
[ -
tecognizer, ond experimente ond reeulte on of worde, under conditione of etreee ond nolee, ‘:—'-'J\.
Tl-etrese ond T1-1¥0, ere described 1in (2]. A Our work 1s directed epecificelly ot limited- lLfiHS
veriety of robuetnese techniquee ere described, vocebulery, reetricted taek domeine repreeentetive [
end the creeults on the effectiveneee of verioue of the Pilot'e Aeeociete applicetion of the OARPA :"'\'."
techniquee ere comperea end diecueeed, Stretegic Computing Progres. To thie 18nd, f\f'
Recognition eccurecy reeulte reported for Tl prototype continuoue cech  HMM  treiner  end RO
etrees ere 98.05% with treining reetricted to recognizer hes been brought 1into operetion end 'é\L\;
noreel epeech only, end 99.12% with treining on subjected to initiel teeting. The system treine '.\\\‘L\‘.
L
multiple speech styles. Theee represent more then on continuoue epeech, can wuee either subword e
smodele or whole-word models, end i1ncludes celavent Lt

en order-of-megnitude improvement reletive to e
beeeline MMM, ee well es eignificent 1mprovement
reletive to reeulte reported in (1], 1n eddition,
the beet reeults known to dete for eny eyetem ere
reported for T1-1W01 99.94%, first teet; 100%, reeulte. The new CSR aystam hee slso been
beet test. This shows thest the robuetnese interfeced to our live-input front end (see [2])
techniques epply effectively to normsl sepeech end ueed effectively 1n numerous demonetretions,
veristions, es well ee to the etreee verietione
for which they were developed.

robuetneee techniques vueed in the 1eoleted-word
syestee. The continuoue-speech racognition (CSR)
systen 1e opereting with good preliminery

Another 1mportent focue of our current work
ie edeptetion of the crobust crecognizer to the
environment end to the telker, by modifying the

The focus of ()] i1e e perticuler robuetnese
persmetere of the crecognizer (e.g., the HMM word

enhencement technique wherein the beelc

recognition peremeters (eel-frequency cepetre) ere '°d'}') during operetion. Adeptetion work hes
modifled edeptively to compensete for verietione been’ conducted eo fer in the context of
1eoleted-word recognition. Encoureging

due to setreee. Thie wedeptetion 18 shown to
compeneete for epectrel tilt end to produce
eignificent perforesnce improvements for syeteme
treined with normel speech.

prelieinery reeulte heve been obteined both
through edeptetion of the beeic HMM eyetem and
through edeptation of the eecond-atege
diecriminetor. A veriety of techniques ars being
developed end compered, renging from full
retreining of the HMM =model to asimple edeptation
of the cepetrel meene.

Multietyle treining, end aexperimente ond
reeulte on the Lincoln-stress dete Dbuse, ere the
focus of {a&]. The effectiveness of treining on
multiple telker etylee 1in tmproving crecognition
pecformence for etreece end noiee conditione
(workloed, Loabsrd) not included 1in the treining
Jete 10 ceported end discuened. Overell
recognition eccurecy of 99% on the difficult
Lincoln-etreee dete i1e reported, ochieved vie &
cosbinstion of wmylti-style treining end other sircreft. Curcently,

Finelly, eince one of our terget goals 13
recognition in the eicrcreft cockpit, we are
developing e eimuleted eircreft ecenerio for
demonetretion asyetenm. The goel 18 e reslistic,
etreeeful rlight tsek for voice control on en
e prototype flight simulator

robuetnece enhencements. hes been developed on a SUN workstetion. The
eimuletor providee epproximete models for three

A eecond-etsge diecriminent enelyeie eyeten, sircreft types--e¢ Ceeens 150, en F-15, and a
developed to eerve ee e post-processor to the HMM high-eltitude powered glider. A number of

improvemente to the eimuleter (@.9., improved
weether eode! end n.vigetion eide) ere planned for
the neer future; later, the ei1mulstor will Dbe
itntecfeced to the epeech cecognizer, enc 2
euiteble control lengusge will be designed ang
implemented.

recognizer, in order to reeolvs confueion between
scousticelly-similer worde, ‘e deecribed 1in (s].
Thie diecrieinent eyetee 18 treined by possing
eeeplee of every word 1in the vocebulery through
the MMM moJele of every word in the vacebulery, to
explicitly wodel ecouetic differencee Dbetween
words. A etetisticelly-beeed e1fting techniquee

1e described which eelecte only those pecemsters REFERENCES

which ere likely to be effective in (1] 0. 8. Paul, R. P. Lippmenn, Y. Chen, C.J.

diecriminetion, Pecrformence tierovements creletive Wei1natidin *Robust HMM-Besed TocRohdses
y N

to the robust eingle-stege HMM ere reported for
the Lincoln-etrese dete beee, contributing, for
example, to the overell 99% (see ebove)
recojnition eccurecy on thet dats basee.

for Recognition of Speech Produced Under

Strese end in Noiee,” Proceedings DARPA

Speech Recognitiion, Februery 1986 also

published 1in  Soeech Tech 86 Conferencs

Proceedinga, April 1986.

CURK. ' EFFORTS L

(2] D. 8. Paul, ®*A Spesker-Stress Resistant HMM
Isolated dord Recognizer,”
slso opublishes 1n Proceedings [CASSP 97,
Apeil 1987,

A nymbsc of current efforts 1n progreas, and
recent sccomplishments not covered in the
eccompenyinqg pspers, are outlined here. More will]
be reported 1n this work 1n the future.

these p-oceedings;
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LCASSP 87, April 1987,

(&) R.P. Lippmenn, E.A, Mertin, end D.8. Peul,
"Muiti-Style [freining for Robust Speech
Recognition,* these proceedinge} elso
publiished in Proceedtngs LCASSP a7,
Aprtl 1987.

(%) E. A, Mertin, R. P, Lippmenn, end D. B. Pgul,
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A SPEAKZR~STRESS RESISTANT HMM ISOLATED WORD RECOGNIZER

Douglas B. Paul

Lincoln Laboratory, Massachusetts Institute of Technology
Lexington, Massachusetts 021/73-0073

ABSTRACT

Moat currsnt epesch recognition ayetems ers senaitive
to veristions in epesksr atyle. The folilowing ie the
result of en effort to eske & Hidden Markov Modei (HMM)
lsoleted Word Recognizer (1WR) tolerent to euch epeech
chenges casused by spesker setrese. More then en
order-of -sagnitude reduction of the srror rate wes echisved
for 8 105-word sismuleted-atress date bees and a 0% error
rats wes echisved for the Tl 20 isoisted-word dets bass.

INTRODUCTION

Current recognition sigorithes ere genereily far more
seneitive to veristions in eptc ing etyls end conditione
then ere humen listeners. Mo , fectors cen cause esuch
changea in epesking etyie in en cperstional environment.
For inetanca, typicel ceuses ere tiss (a wesk or mors),
nesa! congestion, esotional atets, expraseion, end
tesk-induced etrese. W+ ers epecificeily interessted in
task-inducad stress, but tha scoustic changes sppesr to be
similer for meny cerses. Typicel effects of etrese ofe
chengea in epectrei tilt, forment position, snergy, timing,
snd phonstic content. The foilowing describes work which
has yialded moce then an order-of -msgnituds reduction in
the srror cats of en HM IMR over s multi-epeech-elyls
deta bess ss weil se significent improvesenta for noresliy
spoken spesch.

Since it is difficuit to obtain iarge mmounts of dete
from streesed wsubjects, we have used & multi-etyle
simulsted-etress dete besss generated ot TI (1]).  Thie
data basa hes 8 epesksre (5M + ¥), s 105-word aircreft
vocebuiary snd, for ssch epesksr, s (noreaily epolen) 5
token per word treining eection snd 6 styla eections of 2
tolkenas per word sech for testing. The epesch wes digitized
with 8 4 4z wudio bendwidth, Ths eix conditions eret
rormai, fest, ioud, Lomberd (noies presented in
headphonea), soft, end shout. Ths shout condition is so0
diffarent from the other conditions thet it hes been
fergely ignored. The work hes focused on ths other 5
conditione with their overali sversge substitution srror
rote (avg5) os the primery msesura of pecformsnce.

The obssrvetions uesd by this systee ers centisecond
mei-cepates (2). Thaes mej-cepatrs are computed from the
digit ized spaecch by the foiicwing proceseing sequence:

1. 20 msec Haming window.

2. 256 point FFT ( = compiex spectrum),

3. Magnituda squarsd ( — power spectrum).

8. Preempheste: S(f) z S(f) * (1e(r/500Mz)2),
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5. Teienguiar mei-bendpese esusmstions (== mel power
spectrum). Conatent eres fiitare: 100 Hz spacing
betwesn .1 and 1 kHz, 10% sbove; width = 2x
epacing.

6. Convert sl power spectrum to 8.

7. Modified cosine trenaform (2) (= mel-cepatrum).

Similear mej-cepstrai obesrvetions hevea bean  used
successfuily in o number of recognition syetems. See, for
exaspis, (3].

T™e besic aystem is @ disgonsi-covarience-matrix
sufti-vacriete Gauseien probebility density continuous-
obsarvstion (4] isolieted-word WM recognizer viing the
sbove esl-cepetrei obeervetiona. (The sbeolute energy
tare, ¢0, ia not uead. The eystems oeugmented with
differentisl  obescvntions (ess below) inciudes e
diffsrentie]l snergy tsrm.) Oniy one modei is used per
word. The aeystes s treined by the Baum-Wsich
(forward-backward) elgorithm, Since the detas files contein
o fow hundred me of beckground noiss et sech end, thu first
end lest nodes of the modei ste dediceted to modeiing the
beckground. (Both the treining end recognition ere open
andpoint). The terminetion of the obesrvetione is modsied
by e tesneition to s degenerete node. The rerognizer uses
e Viterbi decoder. Ali eystess reparted hare use "linsar®
networka-~i.e., thars era no nodei ekip treneitions.

A vacisty of treining conditions and HMM syatems were
tested. The treining conditions ere "normai” treining,
whers only tha narmaiiy spoksn treining esction of the
deta bese wes used for treining, end "multi-atyie” treining
whate tha firet token of sech word of asach styls wes addsd
to the treining est snd the second tolen wes ueed for
testing. Veristions in the eystems sre of esversi forms:
mmber of nodes per word, obsscvetion enhsncemente, the
method of obteining the vearisnces, the training staert
stete, ues of adeptive background nodes during rscognition,
the durstion mdei, and modificetions to improve psrsmeter
est iestes in trs fece of emei! amounts of treining dets.
Uniese otherwiss stated, eii eystems have 10 sctive nodes.

NORMAL TRAINING

The normei training systems used 5 normaiiy spoken
toksns per wocd for (spesker-specific) training and a totai
of 1680 . . ne per styie (8400 per svg5) for teating. Esch
syatem wiii be identified by a code. The error rates
quoted asre the evg5 percent error. More oetail wiii be
found in Tabje | sna Fiqure 1.

The bassiins system used traitned noosi variences
(beseiine, 17t 20.39%). Lower bounding the variances
(variance limiting), wnich reduced the effects aof limited
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tealning deta, reduced the scror rata to (v1,10s 15.92%).
Augmsnt ing ths obssrvstlons with 20 ms tsmporal diffsrencas
of tha ml-cepstra furthar reducad ths srror rcsta to
(v1,d2,10s 10.50%).

Ths above systsms ell used individually trelnsd
varlancs vactors for sach node. Ths following systems uss
ths same variance vactor far ell nodss. An L2 nom (all
variances = 1) performed poorly (L2, 10: 13.58%). Fixad
variances equal to tha varlances of all tha tralning speech
of all spaskars (Flg. 2) yielded (raw, 10: 8.76%), A
perceptuslly-besed flxed varlsnce (sem below snd Flg. 2)
reducad tha srror rate to (gfv,10s 6.13%). Adding 20 me
tsmporsl diffscential pacsmetars (gfv, d2,10: 4,99%),
increasing ths rumbar of nodes to 14 (gfv, dZ,18: 2.54%),
modifying tha fixed varlsnce yislded (gafv,d2,183 2.26%),
and finally, sdding an sndpoint-based tralning start stets
and adaptive background estimstion to ths recognizar
reducsd ths srror rets to (gafv,d2,b,18: 1,95%). A tralned
"grand varlancs® (Flg. 2) computed in tha Basum-Welch
reestimation procedurs, in which tha varlance is tled aver
all nodes of all words, spproached tha fixed varisnce
(grandv, d2,b,18: 2.95%).

MULTI-STYLE TRAINING

Tha multi-etyla trained syatems added 1 token from
sach non-shout test styla to tha treslnlng set for 10 tolene
par word (mtas). (Similer rasults were obtsined even when
a shout token wee included in tha trsining.) This laft 840
tast toksne per styls and 4200 tokens for the svg5. None
of the teat tokens were used for trelning.

In gensral, the results improved signiflcently:

multl-etyla trained
wtas,v1,d2,b,142 1.12%

wtas,qgefv,d2,b,142 .93%
mtas,grandv,d2,b, 142 .89%

notmelly trained
v1,d2,b,18: 7.11%

qafv,d2,b,142 1.95%
grandv, d2,b,18: 2.95%

Multi-styls training, by presanting more legitimats
vsristion to tha training slgorithm then does the normsl
tralning, asppssrs to csusa tha training to find s bettsr
model for the word {5]. In additlon, performence on tha
normel styls usually improves ss a result of tha
multi-styla trainlng.

THE PERCEPTUALLY MOTIVATED FIXED VARIANCE

Vowel perception sxperiments (6] have Indicsted that
formant posltion is more important then spectral tllt in
vowal identlflcatlon. Our lnvest lgations also showed large
spectral tilts to be one of tha sffects of speskar streses
and styla [7]. Howevar, spectral tlit is also & atrong cue
for distinguishing between volced and unvoiced epeech.
Tharafors, & wslghting (lnverse varisnce) which
desmphasizad, but did not totally allminate the low=order
mel-cspatral tsrms, wes epplied in the distance measure
(i.s., wes ussd to poatulats a fixsd varlance in ths
Gaussian probabillty denslity function). Ths weighting
function was chossn to be (Fig. 3):
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1<i<d (normal mei cepstrs)

0<i<d (diffecential mel cepstca)
0 otherwise

var{t] = 1/w(i]

where i is ths mel-cepstrel index and d and dd are ths
observstion ordsrs.

Thls weighting, if intsrpratsd as s signal processing
operatlon on ths rnel-spectrum, is a dynamic cangs
comprsasar and iocal fsaturs snhancer very similar to ths
homomorphic dynsmic rsnge compression and contrast
snhancement tschniquea used in plcturs processing (8], It
also provides a degres of tolarance to chargss in ths audio
channel (sse below).

STRONGER DURATION MOOELS

Tha Fsrguaon full durutlon model [9], which modsis the
duration ss a vector of duration probabilitiss rsthsc than
tha dying sxponentlal of ths stendard HMM, yisldsd mixad
rsaults when spplied to some of ths sbove systsms. It ie
such mora cosputationally intenelvs than ths standard
syatems snd hss not been adequatsly sxplorsd. It also
sppesre to requira mora treining data than was aveilabls
for these sxperiments.

A doublas-noda subnet is much  simpisc and
computatlonally mora sfficisnt than ths full duration

model. Each node is rsplaced with s network consisting of .

2 serles-connected nades conetrained to have the same
obsarvation probsbllity dsneity functlons end tha same
salf-tranaition probabllitien. With no incrsass in ths
number of paresstars and only a minor incrsass ths total
computstion (tha computational loed is dosinated by ths
probability density functlons), ths duration modsi is
changed from tha usual sxp(-st) to a t*sxp(-at) form. This
system hss not been sdaquatsly saxplorsd, but ths cssuits
are  sncoursglng: from  (qafv,d2,10:  3.69%) to
(dn,qafv,d2,10s 3.42%). Simller duration modsis have been
axsalned slsewhare [10].

ADDITIONAL RESULTS

This syatem, which wsa davalopsd using ths TI
simulated-atresa data bess, has been tsated on two othsr
‘data bases and in numeroua ilva-input demonstrstions. Ths
syatem has shown similer rssults on a iocally-gsnecstsd,
simulated, and worklosd stress data bass [5,11]. Ths
system has slsc been tested using ths TI 20 isolated-word
data bass (16 speskers, 20-word vocsbulscy) [12]. Ths
scror catsa were as followat

First teet:

ti-iwdt gfv,d2,10: ~r(3/5120)
8sst rssuit:

ti-iwds gfvx,d2: .00% (0/5120)

Ths best rssult csportsd in [12] is .20% (10/5120).
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Llva-lnput testa of tha normally trained, fixed-
variance esyatem heve conflrmed ths robustness to epesch
style snd hava Indicated sdditlonal tolarsnceas. Thie
ayetom hss been tralned ovar a locel dlaled-up talephone
line and tested over dlaled-up long-dlstence telephone
llnee. A teet was performed when the epeaker had a cold.
(The trelning data had been rscorded monthe earller.)
Under both of these conditions, the eyatem has contlnued to
perform well. With the exception of the adaptive
background nodea, the syatem dld not adept in any wsy to
th~ tast environment.

The eyatem has besn formally tested or demonstrated
over bandwidtha renging from 3.2 kiz to 8 kHz. (In each
casa the testing and training bandwldtha were identlcal.)
A variety of microphonea, asudio ayatams, snd background
noiee levele have been used and eyatem has tolerated them,
all wlthin ressonsbla llmlta.

DISCUSSIDN

The Ilmprovements reported here are the reault of
several phllosophies: the mode]l muet be tralnable, muat
have sufflclently datalled observations, snd must ba
tolerant of unanticlpsted changwe. Any parmmetars used
muet be trainsbla on realistlcally avallsbla smounts of
dsts. Thua, the verlancs limltlng, grand verlance, and
flxed-varisnce systess outperformed the basellne eysteam.
Augmenting the obescvaticns  wlth time-differant lal
parmmsteras provided more Informatlon to tha ayatess and
thus ylelded further improvements. Hldden Mackov mode la
are fairly lnsensltlve to the exsct number of nodea, but
the Increase from 10 to 14 nodes generally improved thelr
ability to model the givan vocsbulary.

A "fully tralned® model can only model the tralnlng
data--1t cannot actlvely sntlclpata what 1t hes not aseen.
We provide a priorl Informetlon to these aystems ln several
waye. Tha rumber of nodea and the allowabla trsnsltions
between them are one form of such a prlori Informetlon.
The fixed variance la snother wey of provlding useful a
prlori knowledge. The normally tralned grand variance
eyatem only lnowa sbout epeech veriatlons found in lta
tralning data. The flxed vaciance Informs tha syatem sbout
the kinds of verlatlone which msy be encountared In speech
and, tharefors, outperforms the grsnd varlence for normel
trainlng with style testing, end gives equlvalent
performence for normal tralnlng wilth normsl testlng and
mult1-style tralnlng with atyla testling. From another
vlewpoint, the spplicatlon of a prioci knowledge haa
reduced the regulrsments for tralnlng data by anticlpating
the variation ln the test data.

Tha techniques descrlbed hare Incresse the tolerance
of the recognlzer to epasch veristlons. Another mpproach
used a flxed varlsnce, normelly tralned aystem, modlfled to
compeneate for the epectral tllte durlng recognltlon {131.

CONCLUSIONS

Several tschniguee for improving the training and
speech modeling of a "textbook” (basellne) HMM recognizsr
with good normal spesech performance have been combined to
significantly improve racognition reeults in the face of
speech-atyle variation and small amounts of training dats.
Results have improved from a 20.5% avg5 error rate to 1.95%
if normal treining data ie ueed, or to .88% if samples of
the expected speech atyles sce svsilsble. Theae
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ehhancements hava also improved performence on normal
epesch, ss shown by the .24% error rate echleved for normal
spesch, and the .06% and .DO% error cates achlsved on the
TI 20 lsolsted-word data base.
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SUBSTITUTION ERRORS FOR TI~SIMULATED

TABLE I

STRESS ANO TI-IWD DATA

TN R
Y

normal avgs
Nocrmei Training:
indivlduel nodel veriencee:
beseline 1.90 20.49
vi,10 1.07 15.92
vi,d2,10 65 10.50D
vi,d2,14 .48 8.57
vi,d2,b,18 .48 7.71
seme fixed vsrlence for eil nodee:
L2,10 2.08 13.58
reaw, 10 «95 8.76
gfv,10 «65 6.13
gfv,d2,10 + 36 4,99
gfv,d2,14 36 2,54
gsfv,d2,14 .48 2.26
gefv,d2,b,14 +36 1.95
eeme trslned verlence for eli nodes:
grendv,d2,b,14 .36 2.95
Muit i-.Style Treinlng:
indivlduel nodsl veriences:
ates,v1,d2,b,18 71 1.12
ssme fixed veriencee for eli nodes:
atse,qefv,d2,b,14 .48 .93
eeme trelned verlence for ail nodes:
mtee,grendv,d2,b,14 .28 .88
TI-IWD (20 word
gfv,d2
firet test: .06
beet: .00
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“ Baselinu, 10 avg5=20,
Avl,d2,b,14 avgs= 7. 71 |

~grundv,:12,b,14 avgSs 2.95 !
20—« gafv,d2,b,14 avgS= 1.95 =
{

Omtas,vl,d2,b,14 avgS=s 1.12

g ymtas,grandv,d2,b,14 avgS= .88
1 " @mtas,gafv,d2,b,14 avgS5= .93 !
10 = =
5. o
L ALIEFLEL:

norm fast loud Lombard soft

Fig. 1. Percent eubstltution errors for Tl elmulstsd

streee data bsse., Ses text for eystem codes.
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Fig. 2. Variancee for eeveral training techniquea.
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CEPSTRAL DOMAIN STRESS COMPENSATION FOR ROBUST SPEECH RECOGNITION

Yeuriung Chen

Lincoln Laboratory, Massachusetts Institute of Technology
Lexington, Massachusetts 02173-0073

ABSTRACT spoken in various tulking conditions. The recognizer (1)
is a continuous-obsarvation HMM system using mel-frequency
Automat ic epeech recognition algorithma generally rely cepstral parameters. The work reported 1in this peper 1is
on the assumption that for the distance meaaure used, described in more detail in [2].
intraword varisbilities are smaller then interword
varisbilities so that sppropriata separation in tha Ths experiments conducted in this reeearch were bssed
meesurement space is rosaible. As svidenced by degradation on tha "simulated stresa” {3] speech data base coilected by
of recognition performence, the validity of such an Texaa Instruments.
assumption decresses from simpla tasks to complex Lasks,
from cooperativa talkera to cssual talkers, and from In this data basa, stress-like degradations of the
lsborstory talking environmenta to practicsl talking speech signal wera elicited by asking the speaker to
environment s. produce speech in a veriaty of styles (normal, fast, loud,
soft, and shout) as well as with 95-d8 pink noise exposure
Thia paper presents a study of talker-stresa-induced in ths asr to produce tha Lombard effect. Tha vocsbulary
intraword verisbility, and en algorithw that compensates consiated of 105 words, including monosyllsbic,
for tha syatemstic changes obeerved. Tha study ia based on polysyllabsii, and confusing worda.
Hidden Markov Modela trained by speech tokens in varioua
talking stylea. Ths tslking styles include normal speech, Tha dats bese wes divided into training dsta and test
fast speech, loud speech, soft epeech, and talking with data, Training dats consisted of Five aamples of each of
noisa injected through earphonea; tha styles ace dasigned tha 105 words collacted in a rsndom order under normel
to simulste speech produced under real stressful talking conditions, end test data consisted of two samplee
condit iona. of asch word under asch simulated-stresa condition. Data
wore collected from fiva adult malea and three adult
Cepstral coefficianta sta used as tha psremstace in fesalss, Tha total nusber of test word tokens wea 10,080.
the Hidden Markov Models. Tha strsss compensation '
algorithm compensatea for tha varistions in the cepstrsl AN EXPERIMENT ON MULTISTYLE-TRAINED
coefficients in e hypothesis-driven mennsr. The functional HIDOEN MARKOV WORD MODELS
form of the compensation ie shown to correspond to the
equalizat ion of spectral tilta. Mult istyls training ([4,5] ia s technique used to
improve speech recognition performance under stress. In
Praliminary exparimenta indicata that a substential mult istyla training a recognizar ia trained using word =
reduction in recognition arror rata cen be echieved with tolens spolen with diffactent talking styles insteed of A
relatively littla incrassa in computstion snd storage ueing words all spoken narmally. It hes been found to be »
requirementa. easy for s tslker to change to styles such sa faat, slow, t‘:\
loud, end soft, producing changea in speech characteristics s r‘
INTRODUCTION that are similar to changes thst occur under etress. Q.'\\H
| S
Current speech recognition syatems generally degrads An experiment on multiatyie-treined MHidden Markov . b
significsntly in performence if tha systeme are not both Model word recognition was percformed. In thie experiment, bin wat
trained snd tested undar similsr talking conditions. A 11 spesch tokens were used to train esch word modal: 5 W“
major reason for performance degredstion when testing and tokens from the training data base, and § tokens, one per i f;
treining conditions differ is thst people spesi diffsrantly talking styla except normal, from the test deta base. The .g*ﬁ
under different conditione. Despite tha knowlsdge that recognition error ratea sre iisted in Table I. For !
speech pstterns chsnge in stresa and in noisa, little comparison, tha srror rete of the bsseiine HMM syetem is
speech recognition reeesrch has been directed at modeling also included.
syetematic chenges observed and at developing recognition
syetems that are reeistant ! such chenges. From Table [ we observe thet there 1s dramatic
performence deqradation when the baseline recognizer 1e
This paper presents e study of talker-etreee-induced tested with styled data; end that multistyie-training haa
variations in speech cepstral coefficients, and an conelderabiy improved syetem performance for speech oata of
algorithm thet compensates for syetematic (but unknown) all atylee.
changes obaerved. The study is bLaeed on isolated-word
Hidden Markov Modei speech cscognizer [1] trained by speech It appesrs that the HMM word modeis were able to

assimilate the date from the multiple styles and to capture
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statistically the more inverient featurss of each word. In
the next section we investigste the gross chenges of model
psrametars resulting from multistyle training as well me
from style training (as opposed to normal treining).

CEPSTRAL OOMAIN STRESS COMPENSATION-DRIVEN 8Y OBSERVATIONS

The success of ths multistyle training experiment
motivated a comparison of the model parmmet... trained
under various talking styles to determine whether it would
be possible to compensete for the cepstral changes through
simpls trensformations on the cepatral swans and variancea
obtained using normal treining. Such transformation, if
sffective, would simplify the training procedure.

The diffsrences among normally trained, singls-
style-trained, and multistyle-trained word modela sre
partially reflected in the average shifts of the msan
valuea and in the sverage scaling of the variances of the
cspstral cosfficients. To atudy esch differencs, aeven
diffarsnt seta of word modela wers examined. Six of the
models wers trained under six individusl conditions
(normal, fast, loud, Lombard, saft, aend ahout
respectively) whils tha seventh wes trained using a
composite of all these conditions (multi-style). Ths
cepstral swane snd variancss, aversged over all words in
the Tl vocsbulary, over all speech nodea in each word, and
over all talkers, were computed for esch of the modela
above.

The mean cepatral shifte (i.s., cepstral swane of tha
given model minus the cepstral means of the normal model)
for each of the cepetrel coefficienta are plotted in Fig.
1. Figure 1(a) plots meen cspetral shifts for four casea:
soft; shout; evercge of (fast, loud and Lombard; and
multietyle. Figure 1(b) plota the corresponding apectra of
these mwan shifta, contrasting the affecta of spectrsl tilt
of low vocal affort (soft) ve higher vocal effort (fast,
loud, Lomberd, and shout). lncrsssed vocal effort
incressea the relative high frequency content, wheress the
oppoeite occura with low vocal sffort.

1t is well known that spectral tilt sxhibita large
varistion when a talker spesks under streae. Such
variation usually contaminates the distance measure and ia
one of the most significant csuses of recognition
performance degradation. It asppears that the effect of
spectral tilt could be compenested, to soms extent, by
spplying the appropriste cepstral compensstion to normally
trained word modela.

Because varisnce satimetion is less relisble than mean
estimation, we have only compared cepstral varisnces of
multistyle-trained modela which uaed 11 treining tokena
with the normally treined models. Their ratioe
(multistyls/normal) are: plotted in Fig. 1(c). 1t sppears
that ths major styls-induced veristiona occur in ths moat
slowly varying spectral components (corresponding co lower
order cepstral cosfficients), and in most rapidly vsrying
spectral componenta (corrsaponding to the highsr ordsr
coef ficients) .

The following cepstral compensaticn expsriments were
performed, 1n which new word modsls wers gensrated by
modifying normslly trained Hiddsn Markov word models by one

11n s diffsrsnt data base we hevs obeervad 1inflatsd

variance scaling only 1n the low ordsr cosfficisnts.

AR A
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or maors seta of cepatral differencea. The word moduls were
talker-dependent, but ths modificstions were ths ssme for
all worde and all talkers,

(s) Singls Model Compensation: The sst of cepatral
meen diffsrsnces and varience ratios obaerved in
multistyle-trained models [repreasnted by filled
squares in Fig. 1(a) and (c)] was applied as
compensation in rscognition tssts on all stylea.

(b) Multimadel Compensation: Three asts of cepstral
mean compensations corrssponding to the soft, the
loud, and ths shout-trainsd models, were applied
to generate three new word modsls. The variances

in these models wers scsled according to
Fig.1(c). In recognition, the four models
(including ths original normal model) were

treated independently snd equally; in sffect, the
computst ion for HMM recognition wss quadrupled.

The recognition error ratea of these sxperiments ars
listed in Teble 11, Ths srror rate reductions relative to
the bsseline system seem quite promising given ths
simplicity of the compensation tschniqus.

The next section discueses s variation of the above
technique--the hypothesis-driven streas compsnsation,

CEPSTRAL' DOMAIN STRESS COMPENSATION -
A HYPOTHESLS DR1VEN APPROACH

1t ia the high cost of incressed computation and the
uncertainty sbout training-style sufficiency and efficiency
that prompted us to search for sltsrnatives. As a reault
of this effort, the hypotheais-drivsn cepstrsl mean
compenaation technique, which adapta to ths input speech
and to ths hypothesized reference word, was developed.
Fixed wultistyle varisnce compensation has been found
beneficial for all styles and will be used 1in conjuctiecn
with ths adeptive mean compensation.

1n deriving this tschniqus, we model the talker as an
information source (Fig. 2) thst puts out a sequence of
determiniatic cepatral vectors l°t} .~ Before the vectors
are receivad by the decoder, we assume thst they undergo
two atsges of contamination.

Stage 1

A ssquence of indspendent 1dsnticslly distributed
(i.i.d.) random vectors {6'_} is added to the cepstral
sequence || to crsate a new sequence {"t

u =¢

§ 1
t JE (1)
The sequsnce {§;} mdels the randowess of  speech
cepatral psrametsr outputs; its elements are assumed to be
normally distributed with zero mean vector and disgonal
covariance matrix.

ZThe subscript t 1s an index of time.
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Stage 2

A deterministic but wunknown vector X is added to
the sequence l“t} to creste the observation sequence

{w
Ve T U X (2)

The vector X is the additive "strees" component. [t
ie assumed to have the functional form {see Fig. 1(a)l:

.-b( i-1) (3

= a
S
and 13 further assuwed to remein unchanged within a word

intecrval.

Given s sequence of observetions wy, t3l,2,...,7 we
have developed a procedurs for estimation, based on maximum
likelihood principles, of the perametere a and b in
Equation (3).

The procedure consists of two steps:

Step 1 (Estimating X;)

The probability density function of vy, the ith
component of the obesrvetion vector, ia given by

i 1 ("1"’1"‘1)2
vi)= oxp - ) (a)
\/Eo,x o

where Cilﬂd xinr- the ith components of the cepstral vector
and the "stresa” vector, respectively.

Givan s set of independent obssrvations {"t}'
ts1,...,T, the meximum likelihood estimate of x; is given

by
T , T : T
- 1 1 1
X7 31 CNEL 51 Yit"T 51 %5t i

We replsce ths sampls sversge of c;, which is not
observsble, by ths expected aversge valus, decived from the
ward hypotheais:

|-z 1'n':'xn

Zt in
m

T
32 E[—n' (6)

where the T .'s are a set of mutually independent discrete
random variables whose vslues repreeent the dwell time in
sach of the n nodee, and the summations are over all speech
nodes.

s
Since a closed formula for E Z—‘ has not been found, we uee
T
m

an approximation using up to the second-order moments. Let

N
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Y, * B (n
m21
mn
Tn
At v =55 @
n n

then T, and Y, are independent anc the expectation can
be approximated by

: 3 1 2 3 2 3
elole, v )] o F)eg & “B.qf =2
arn 3Yn

T Y
n n
(9)
= 2 2
T Wy Tk
n n n
=7 — = -3
T i ([f +7)
with the means and varisncea given by
a4
~ N Pn
N
7,01 L
mz1 m
mn
(10)
1 = (1-Pm]
%3
n P
n
N (1-p)
dza Z -0
2
L n mal P"
mhn
The estimstion formula (5) becomse
T N
- 1
X, = ] v 4 -1 Elg(r /¥ )] (1)
ta1 nz21

In Equation (11) the first sum 1s over the observed
cepstral coefficient sequence, and the second eum is over
the nodes of the hypothesized model. Therefore, we refer
to this technique ss a hypothesis-driven technique.

Step 2 (Seoothing X;)

After X1 ,...X12 are sstimated, we fit Equation (3) to
them. A lesst-mean-square fit requires numecically solving
a set of nonlinear equations. - A lesa computationally
intensive and yet more robuet fit (i.e., one which 1s less
sueceptible to the effect of outlying data), ia given by
fitting o -~nential functions to all pairs {x-l,xj}, 1§, or
a eubset of these pairs, and then by averaging magnitudes
and time conetants of the fits. We have chosen to fit the
airs that contain X) and one of X2,X3,X4 and X5, namely,
rxl Xt §22,3,8,5. Therefore,

e T




, "
u‘.ﬂ. “..‘n

X
o, X)Xy > 0 end x> s

X,
bJ = 0 otharwisa
. (12)
b#* 0
B [
jyljo otherwise,

a snd b ar2 the average of non-zero IJ'I and bJ'a.

Given the cepatral vactore of a teat token and the
Hidden Markov word model for s reference, the procedure for
the adaptive cepstral compensation end recognition 1s
described as followa:

Step 1: Compute a set of atreas components {c.f. Eq. (11)].

Step 2: Smooth the atresa componenta by fitting an expo-
nential function to them [c.f. Eqa. (3) and (12)].

Step 3: Subtract the values of the axponential function
from the cepsiral vectors of the test token.

Step 4t 'In recognition, perform likalihood teata using the
compensated test tokena.

In Table II] we summsrize tha recognition error rstea
when ths hypothesis-driven atress compansation is spplied
to the "simulated stresa” dete basa. For comparison, tha
error ratss of the bssaline snd of multimodel compansation
are also included. This technique has also been applied to
a wora sdvanced 14-node, fixed-variance HWM system (1)
whose paramstars contain cepstral coefficients as well aa
differential cepstral coefficienta. Becsuse cepstral
varisnces ara fixed in thia recognizer, .. varience scaling
ia performed. The recognition resulta, with snd without
cepstral compensationa, are listed in Tebls IV.

A confidence interval snalysis indicates that the
improved error rates in Tebles III end IV, 6.2% snd 1.9%,
lie well outaide the 95% confidence intervals of the
unimproved error ratea, 13.9% snd 2.5%. Therafore, our
sxperimental reaults are statiatically significant.

CONCLUSION

Spectral tilt has been found to vary significently for
spsech apoken in stresaful talking environments. We
studied the statistical veriations of cepstral coefficients
embedded in the framework of Hidden Markov models end that
the observed changes in cepatral msan values, from normal
exponential type of apectral tilt. A simple and efficient
compensat ion technique, the hypatheais-recognition
experiments yielded significent reduction in error rate.
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TABLE I

SUBSTITUTION RATE (PERCENT):

A COMPARISON OF NORMAL-
ANO MULTISTYLE-TRAINEQD HMM RECOSNIZERS

"o
Condltiaon Nocm Faet Loud Noise| Soft Shout| Avg$ Avgé
8sseline HMM* 1.0 6.1 29.1 19.6{ 13.5 86.41 13.9 25.9
Multistylew* 0.5 5.6 5.1 2.1 5.8 43.6 3.8 ] 10.5

* The baeeline system was tcalned wlth S nocmally spoken
per talker and teeted on 10,080 teet tokana.

*#The multistyle-trained system wee treined on 11
per telker and teeted on 5,040 teet tokenes.

styie speesch tokane

ward tokene

*®*The Avg5 is an aversge of the ercar retee of sll stylee except shout.

TABLE II

SUBSTITUTION RATE (PERCENT):
A COMPARISON OF FIXEQD STRESS COMPENSATION

._}

§ m .\{& g ‘}‘: -( r "\:":*(NJN "\.n r?\
oL ¥ v
8. 1% P o R

Condition Nocm Fest Loud Noles Saft| Shout| Avg$s Avgé
Single Model 1.2 4.6 15.2 12.2 15.4| 79.5 9.7 21.4
Mult imodel 1.0 4,2 121 6.7 5.5| 68,7 5.9 16.4

TABLE III
SUBSTITUTION RATE (PERCENT):
A COMPARISON OF MULTIMOOEL FIXEQD STRESS COMPENSATION
WiTH HYPOTHESIS-ORIVEN STRESS COMPENSATION
Conditian Norm Fast Loud Noles Saft Shout Avg5 Avgé
Beesline HMM 1.0 6.1 29.1 19.6 13.5 86.4 13.9 25.9
Multimodei 1.0 4,2 12.1 6.7 5.5 68.7 5.9 16.4
Hypotheele-Oriven 0.9 4.7 12.7 7.0 5.7 72.4 6.2 17.2
TABLE IV
SUBSTITUTION RATE (PERCENT):
AN AOVANCED HMM RECOGNIZER
Condit ion Norm Fast Loud| Noise Soft Shout| Avgs Avgé
Without Caompeneation 0.4 1.7 3.4 2.9 4,4 49.8 2.5 10.4
With Compeneatian 0.4 157 3.4 1.4 2.4 45,3 1.9 9.0
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MULTI-STYLE TRAINING FOR ROBUST ISOLATED-WORD SPEECH RECOGNITION

Richard P. Lippmann, Edward A. Martin, Douglas B. Paul

Lincoln Laboratory, Massachusetts Institute of Technology
Lexington, Massachusetts 02173-0073

ABSTRACT

A new trslning procedure called muiti-styie
tralning hes been developad to improve performance
when a recognizer is used under stress or in high
noise but csnnot be trained in these conditions.
Instead of spesking nocrmally durlng training,
talkers use different, easily producad, talklng
styies. Thias technique wes teated uasing a speech
data beae that Included stresa speech produced
during a workload task and when intense noise was
presented through eacrphones, A continuoua-
distribution talker-dependant Hidden Markov Modei
(HMM) cecognizer was trainad both nocwally (5
nocrmaliy spoksn tokens) end with multi-styie
training (one token each from nocmal, faast, ciear,
ioud, and questlon-pltch talking stylee). The
average ercror rate wundar astress and normal
conditions feil by more than a factor of two with
multi-styie tralning and the average ecrror rato
under conditions sampled during trainlng fell by a
factor of four.

INTRODUCTION

The pecformance of current tecognition
systams often degrades dramsticsily as s talker's
speech characteristics change with time, when a
talker is wunder nocrmal jeveis of workload or
psychoiogical stcess, and when e talkar is in a
high noise snviconment. New techniquea to prevent
thls degradation have been davelopad and tested
with & number of data basea, including a naw
Llncoln atress-speech data base. In thls papac we
ficst review results obtained with thls speech
data base snd then provide detailed infocrmation on
the effects of multi-style training. Other papers
In this proceedlngs describe dlacriminent analysis
[1] and cepstral atcess compensation (2] and
present results obtained with another speech data
bsse [3].

Lincoin Stress-Speech Data Base

The Lincoin stress-speech data bsse inciudes
words spoken with eight taiking styies (nocmsi,
siow, fast, soft, ioud, ciear enunciation, angry,
question pitch) and undecr three stress conditions.
A difficult motor-workload taak [4] wes used to
create sasy (cond50) and more difficuit (cond70)
workioad stress conditione that smuiate the type
of workioad stresa expecienced when deiving a car
or fiying an aicpiane. A third streess condition
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wes created by presenting 85 dB SPL of 3speech-
shaped noise through escphones. Thia produces the
so-called tombard effect [8) whers a taiker apeaks
ioudar and often more cieariy when in noise. This
is the main cause for recognizer degradation in
nolse In situatlons where an scoustlcsiiy-ahieided
ciose-tslking microphone minimizes the effect of
additive noise. The data baae vocabuiary
contained 35 dlfficuit airccraft words with
scouatically similar subsets asuch aa go, heiio,
oh, no, and zero. A totsl of 11,340 tokens were
obtalnad from 9 mals talkecrs during three aeasiona
per talker spsnnlng a four week period.

HMM Recognizec

The baseline cont lnuoua-distribution HMM
recognizer desccibed in [4) was wused for aii
axperiments, It is a left-to-cright isoiated-word
recognizar wlth multiveriate Geussian dlstribu-
tlons and diagonal covarisance matcrices where
obaervatlona conslst of centisecond mel-scale
cepetral parametars. Unleas othecrwlse stated, sli
rasults were obtalned using 10-node word modeis
created using five tralning tokens per wocd with
the focrward-backwacrd sigocithm [5] and using the
Viterbi algocithm [S] during rscognition.

RESULTS WITH LINCOLN STRESS-SPEECH DATA BASE

Figurs 1 prasents an ovarview of resulta in
rough chronologlcal ordec obtained using a number
of dlffarent tachnlques with the Lincoin stress-
speech dats base, The initisl ecrocr rate,
averaged over all conditions exciuding the most
dlfficult angry condition, wea 17.5%. A simiiar
high eccor rcate was obtsined with a new, high
pecfocrmance, commercial rcecognizer. Poor perfor-
mance for the initiai Lincoin aystem and the
commercial asystem wes caused by the difficuit
vocabulary and stress conditions and by the fact
that only normally-spoken aspeech waa used in
training. The initisi Lincoin recognizer was the
beseiine system with variance iimiting (4] which
iimits the variance eatimatea obtained during
forward-backward training to be above a specified
iower !lmit. The high initiasi srror rate waa more
than hslved to 6.9% uaing muiti-style training. In
this case, the five tokens used during training
were taken from the normai, fast, clear, loud, and
question-pitch taiking stylas instead of oniy from
the normai styie. Muiti-style training halvad the
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error rate with no increaae in computation

requirements.

The naxt lsrgs reduction in srror rets (from
to 3.2%) was obtainsd by doubling ths number
of parametere uased in the obaervation vsctor. The
originel vector of 16 cepatrsl parameters waa
supplemented with 16 additional differential
parametera which were the diffsrencea between the
current 16 perametsrs and the parametsrs computad
20 ms earlier. This diffsrentiai parameter
technique was also recently wused by [6]. It
reduces ths error rcats, but elso doublss ths
recognition computation requiremsnte. Ths next
large dscrease in error rate (from 3.2% to 1.6%)
was obtained by using grend-vsrience eetimstes.
Inetead of eatimeting the variancs of eech of the
32 obeervation parametars eeparateiy for each node
of every word modei, the grand verisncs of sach
observetion parameter wae  eetimated once acroee
all word modsle end all nodss during training.
Using grend variances reduces the degradation in
performance ceussd by using a ststisticsi mods ]l
that ie too complex for the amount of training
date. This result rsinforces pset reeuits that
demonetrate the necessity of matching ths
compiexity of a model to the amount of treining

6.9%

dete [7]. Using grand vsriancee halved ths error
rate whlle eimulteneously decreaeing recognition
computation requirements. Ths final largs
rsduction in scrror cete (1.6% to 1.0%) was
obtained ueing the two-stage discriminant snslyeie
ayetem described in [1]. This system focusaa

attention on thoes parts of oftsn confuasd words
that ere most different and reducsa the error rste
with only a siight incresae in recognition
computstion requiremsnts. The final syetem with a
1% error rate scrose many strssa/style conditions
is a uesble, practicsl, robust rscognizer that
couid be ueed for a variety of speech-rscognition
taaks.

EFFECTS OF MULTI-STYLE TRAINING

More deteila on the effecte of multi-etyie
training from the experiments deecribed above are
preeented in Figa. 2 to 4. Figurs 2 comparss
reeulta with normal and muiti-etyle trsining for
the aix novel conditione not sampled during
treining ee wsll se for normaliy-spoken apeech.
Theae are repreeentetive rssuite for the aitustion

where 8 recognizar cannot bs trained under live
streee conditione. Ths percentege error rste
averaged over all nins talkers ie presented for
normal speech, for spsech apoken aiowly, for the
eaay (cond50) end the more difficuit (cond70)
workioad taek, for aoft epeech, for speech
produced in ~3iae (Lombard) and for angry epeech.
Muiti-atyle training reducse the ercror rete
subetantially for all conditions. The averege

error rate over all conditions feil by more than a
factor of two from 20.7% to 9.8%. The drop in
ercror rate is large (- % to 2.9%) even for

normally spoken words and greateat for the Lombard
and angry conditions.

Figure 3 shows the resuita when the
recognizer waa tested under the same conditions
sampled during training. Here, the average error
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rats over all conditiona feil by a factor of four
from 18.4% to 4.6%. It ahould be noted that in
thsss and othsr sxperiments, training word tokens

wars naver ussd during teeting.

Furthar sxperimenta were performed to
determine whether more effective subsets of five
atyles could be found and whether fewer than five

different stylee couid provide large improvements.
Theae experimenta suggeat thet the five styles
selected are more effective than other subsets of
the sight stylee in ths strees-apeech data baae
and that all five different etylea are required
for bset performsnce with multi-etyle training.
Further experiments have also been performed to
explore the effecta of multi-atyle training with
more advenced HMM isolated-word talker-dependent
rscognizere. We heve found that multi-style
training eiwsye improvee overail performance. For
exampis, ths srror rate for an advanced recognizer
with differsntiai paremetere, grand-variance
eetimates, 14 nodee, end five trsining tokena,
drope from 3.,2% to 1.4% with multi-atyie training.

One surprieing reeult evident in Figa. 2 and
3 is that the srror rate dropa for norme! speech
when ths recognizer ie trained on non-normal
treining tokane. Thie ie caused by day-to-day
veriebility in normal spesch as demonstrated in
Fig. 4. Figure 4 preeents the arror rate with
normal and multi-etyle treining for normal speech
recorded in the first, second, and third recording
sseeione. Ae can be asen, multi-style training
snd normal training produce similar results in
eeasion one, but multi-etyls training is superior
in eeeeions two end three. Theae reauits
dsmonstrats thet multi-atyis training can
compeneate for variability in normsl apeech over
tims, and that five normal treining tokens
recordsd in one esssion are lees representative of
normsl tokens recorded one to three weeks later
than five multi-etyle tokens.

OISCUSSION

Multi-atyie trsining improves performance for
the novei streee conditions because: (1) the
forward-backw«.d treining eigorithm and statisti-
cal decoding focueeas attention on spectral/
temporai regions that are consiatent acrosa styles
end (2) spsech sempies are preaented during
training thet ere eimiiar to thoae that occur
during teeting. For example, loud speech is
simiiar in meny ways to apeech produced under the
Lomterd condition. The improvement in performance
with conditiona sempled during training was
greater than 'the improvement with novel untrained
condition for thia aecond reaaon.

A cerefui anelysie of differencea between
word models obtained using normal and multi-atyle
training and of recognizer confusions 1ndicated
that improvements are caused by
mechaniama, First, estimatea of the
variance of the cepstral pacrameters used HMM
word models are more representative of those
observed during testing with multi-style
treining. This is illustrated in Fig. 5. The
left side of this figure presents the difference
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bstwesn multi-styie and normally treinsd cspstral {2] Y. Chsn, "Cepstrai Domain Stress Compsnsation
mesn astlmatss and the rlght side prsaents tha for Robust Spsech Recognition,"™ ICASSP'87,
retio of  multi-style over normelly trained Dallaa, TX, April 1987,

cspatral varisncs satimatss. Data ars averagsd

ovar all telkers and all word modsls. Aa can be (3] 0. 8. Peul, "A Spsaksr-Stress Rssistant HMM
ssen, the iower-ordsr cspstral msen sstimatss srs Isolsted-Word Rscognizer,” ICASSP'87, Oaiias,
raduced with muiti-styis training. This TX, April 1987.

compsnsates for spectral tilt (prssumably ceused
by narrowsr glottsl pulsea) which ls charecteris- (a] 0. 8. Peul, R. P. Lippmann, Y. Chsn, and

tic of much of tha strsss spsech in the Lincoln C. J. Wsinstsin, "Robust HMM-B8sssd Technigues
data bsss. Varlancs satimetss for lowsr-ordsc for Ascognition of Spssch Produced Under
cspatcel cosfficisnts ars alao higher with multl- Strsss and in Noiss,” Proc. Spssch Tech 86,
style tralning. Thls weighta thess cspstral pp. 281-249, Nsw York, NY, April 1986.
cosfficisnts issa heavily during rscognition
bscauss thsy ars more veriebls acroas strasa and (5] s. E. Lsvingon, L. R. Rabinsr, and -.»"‘
styls coanditiona. M. M. Sondhi, "An Introduction to the -'_\?\3:*
Application of the Theory of Probabilistie ‘,‘:".;"
A second mschanism that 1lsada to bettsr Functions of e Markov Procees to Automatic ;_{LQ'_
pscformancs with multi-atyls trelning ls that word Spesch Rscognitlon,” B8STJ, 62, pp. 1035-1074, ;A:,{ﬁ'ﬂ
modeis ars richsr and provide a better dsacriptlon April 1983, H‘T{};
of pscrcsptually important acoustic svents that ara Cl‘*\fj
prssent acrosa talking stylsa. Thla mechanism wea (6] €. L. Bocchiari, and G. R. Doddingtan, .
discoversd by sxamining spsctrograma craeted from "Frame-Specific Ststisticsl Fsatures for ;7;‘.'5
normal and multi-styis HMM word wmodels for those Spsaksr Indspsndent Speech Recagnition,” IEEE @:
modeis that ceused major confusions. Spsctrograme Trana. Acouat. Speech, snd Signsl Processing, '«‘-.-.Q
were crsated by piotting ths average spectrum et ASSP-34, pp. 755-764, August 1986. o
sach nods with duration equel to the averags node ¥$21
rssidency tima. For sxample, Flg. 6. conteina (7] G. F. Hughes, "On ths Msan Accuracy of \v(‘.‘j
spsctrograma gsnarated from HMM word models for Statletical Pattscn Rscognizers,” ILEE g:'t,d
the word "brsak". The left spectrogrem waa Trana. Info. Theory, 1T-14, PP, 53-63, ‘
generatsd PYrom a normelly-trained word model and Jenuery 1968. Nt
ths right ons waa generatad from a wmultl-etyla !,-_
model. Numbsrs indicsta the HMM nods numbsr uasd (8] €. Lombard, "Ls Slgne de l'tlsvation de ia 7.“":’
to gsnerats eech spectra. In these and all Bolx," Ann., Mslediers Orsills, Larynx, Nez, Eﬂ‘.:j
sxperimsnts, ths snd nodsa (nodea numberad 0 and 9 Phacynx, 37, 1911. L’f\’)
in Fig. 6) are anchora that metch beckground ‘\{"4
noiss. Ths largs ticka in Fig. 6 are at 100 ma ;'Q
intervels, ths jiower curve plots ovsrall energy, 5 ) A 1
and the frequoncy scale axtands to roughly 6 kHz. | [9rlu.xns, sV ono. iy
As can bs weeen, the multi-atyle word wodal ! 10,710 TOKENS %
containas the optional releese for the final /k/ 5 TRAINING TOKENS
and provides a cleersr dsscription of formant 0L ’E‘:’énﬁgfﬁc‘ﬂéﬁsm"""s

VARLIM(17.5%)

transitions. Examination of meny other word-modei
spectrogrsms showed thet multi-styls word modeie
generaliy contain more of tha important acouatic- 0L

phonetic cues ussd in spectrogrem rsadlng than MULTI-STYLE TRAINING(6.9%)

normaiiy-treined modsls. :;_
HARARY ’ DIEFERENTIAL PARAMETERS (3.2%)
A new training procsdure cailsd multi-atyle 2l
training waa dsvelopsd end teated with a CRAND VARIANCE (1.6%)
strsas-speech date bass. It improvea performanca
substantielly under strsss and with diffarsnt 1. DISCRIMINANT :
ANALYSIS (1.0%) =
talking styiss, and can be ussd when a rmcognizer T
cannot be trsined under iivs atrsas condltlass. ""{éi
It siso improves performance undsr normel Qash LINCOLN EXPERIMENTAL RECOCNIZERS E;{:An‘
conditions by compenseting for normel! dey-to-day ,(;Jt v.‘_z’y
spssch variebility. N )*{\1
By
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TWO-STAGE DISCRIMINANT ANALYSIS FOR IMPROVED ISOLATED-WORD RECOGNITION

Edward A. Martin, Richard P. Lippmann, Douglas B. Paul

Lincoln Laboratory, Massachusetts Institute of Technology

Lexington, Massachusetts

ABSTRACT

Thie paper deaacribae a two-stege isoieted
word epasech racognition aystem thet uasa a Hidden
Merkov Modai (HMM) recognizar in tha flrat atagas
and s diecriminent asnalysie aystes in thas aeacond
et age. During racognition, when the firat-atages
racognizar ie unadble to cieariy dlffasrentiaste
batween acouaticsiiy simliar worda euch as "go"
and "no" tha asecond-atege discrieinator is uaed.
The saccnd-stage asystas focusea on thoas parte of
the unknown token which ars sost affactiva at
diacrieinst ing the confuecd worda. Tha ayatas waa
teeted on a 35 word, 10,713 tokan aetrasa speech
ieolatad word dets besa crestad at Lincein
Leboratory. Adding the sacond-stags dlacriminet-
ing ayatas producad tha baat raaulta to data on
thia date bass, raducing ths overali arror rsta by
sors then a factor of two.

1. INTRODUCTION

A two-atage discrimlnant ensiysia ayatem hea
been daveiopad to address asome of tha prodiamsas
ganerally encountared in currant Hlddan Markov
Modal (HMM) jecisted word racognition ayatasa.
Thaas probiama inciudes (1) tha affecte of limitad
training data ere not axplicitly takan into
sccountj (2) tha cocrreistion batwean adjacant
obeervetion framea ie incorrectiy modaied; (3)
duret iona of acouatic avanta aera poorly wodalad;
snd (4) faetureaa which wmlght ba important 1n
discrieinet ing only samong aepacific word palra, or
sete of words, ara not aesaily incorporated Inte
the ayatem wlthout degrading ovareii parforesanca.
The two-ataga ayatam vasas new atat iaticel
tachniques that aexplicltly aeccount for the ileitad
emsounte of trsining dete avalledbia for telkar-
dependent racognition. Tha asacond-stage cyates
focuasas ite ettention on thoee paramsatara in the
modaia which sre most effective:in discriminating
between worde which schieve similer ecorss in the
firet-etage HMM eyetes. A eimiler two-atege
syetam wee developed by Rabinar and Wiipon [9].
Thet eyatem wsa developed in tha contoxt of a
Oynemic Tima Werping (DTW) rether then an HMM
syeten, snd eleo did not sxpllecitly take into
srrnunt the effecta of iimited training deta.
Anocher spproech to the focus-of-sttention probles
in diecriminetion ie preeented in [6]. The new
two-etege discriminsnt eystes deacribed here wee
deveioped se pert of s lsrger effort simed st
reducing ths sffects of streea on robuet apsech
recognit ion syetsme [1,4,7,8].
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2. OVERVIEW

The etructura of the two-stege syetem is
shown in Fig. 1. Each word modei in the first-
stage HMM racognizer ia creeted using forwerd-
backward training end training tokena for thst
word [3]. A detallad deacription of the HMM
racognlzacr which is uead ia given in (4,7,8]. The
reacognlzac ueesa a continuous-diatridbution epeaker-
dapandant 10-noda HMM wmodal with 16 capetrel
coefflciante thet ers aeeeumad to bda jointly
Gesusaisn aend indspendant. The HMM weodai s
tcainad uaing five tokana per word with
eulti-atyla treining (4,7] end varience iimiting
(7,8].

The ascond-atega discriminant ayatens
celculates atstletica, on tha cepatral pereseters
and on salectad additional paramatere (ssa beiow),
for sach word sedei, vocabulery word, and ncds by
decodlng trelning tokana of ell worde ueing the
Vitardl algorithm with HMX word modela fnr ali
worda. Thls “cross-word tralning®™ oprovidae
additlonsl atatisticei information which ie not
svellabis 1n atandard HMM training, where each
word model la tralnad only on sampies of thet
word. Ouring racognition, dlecriminent decieione
ars boamd on ilkallhood-retio comparisone smong
all word pairea in tha top N worda from the HMM
syatas. The comparisone essume that diecriminmnt
stat iatlca are jointly Gesuessian end independant.
In esddition, a new technlqua caliad "aifting” ie
sppliad, which ussa & etatiaticei "T" teet to
focua sttantion only on diacriminant etatietice
that wara judged from thas treining dete to be
statlatically dlffarant, for specific word peirs.

Tha discriminent ayates wea teeted ueing the
Lincoin Laboratory etress-apeech data beae [4,8].
This includea 10,710 worde from nine telkere
producing 33 scoueticeiiy-eimiiar sircreft wordse
spoken norselly, under workioed strsse, in noiss
prasented over serphonea, end with seven different
talking stylaa.

3. DISCRIMINANT TRAINING

Figure . 4iluatratea the fiow of dets for the
discrieinent treining proceass. During treining,
sii tokene of eil treining words wsre dscoded by
sli of the first stege HMM word models. Esch
dacode reaulted in s segmentetion. From ¢this
procsdure s etetieticsi deecription wes aobteined
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charactsrizing the distribution of obaervations
that wsre asslgnsd to eech nodes of sach word
modsl, given a epecific input word. Each
eat imeted distribution weaa modeled aa Gaussien.
This information waes then stored as two four-
dimensional errsys: s mean s8nd variance array
indexed by word model, input word, node within the
model, snd parsmeter. Given a token aegmented by
a word model, these statistlcs were then availsble
to be wueed, during recognltlon, to calculats a
likelihood~-ratlo between any two hypotheslzed
input words.

4. DISCRIMINANT RECCGNITION

During recognition, unknown tokene were firet
passed through the HMM system. Likelihood ecorea
from the Viterbi algorithm were calculated for
each word model.
models, say for worda A and B, were clearly bettsr
then 8ll other modela yet were very aimilar to
each other, the second stage syatem was wuaed.
During the HMM paas, segmentation by each word
model saeigned each input obaervation to a
specific node in that model. Per-node obaerva-
tions weres uaed with the diacriminant training
statistics to seperately calculete the likelihood-
ratio between the inputa being A and B given the
segmentat ion from both the A and B word models.

An effort was made to aeperate the acoring
based on duration informatlon from other aapects
of the ecoring. To iumplemant this, likelihood=~
ratio scorea for any input token weare calculeted
on a per=node basia rather than on [ ]
per-oboarvation baais. Thia waa achieved by firet
caiculating the likelihood-ratio baaed on all
obaarvationa in a node, then normallzing this
score by tha number of observetiona asasigned to
that node. The adventage of thia acheme waa
two=-fold: first, it reduced the weighting of
certein nodee which might dominate in the final
acore beceuso of the large number of obaervationa
assigned to those nodes, and secondly, it
eiiminated the aseumpt ion made with
par-obaervation scoring that all obaervationa are
statistically independent. On the contyvary, this
"per-node” scheme asaumad a very stronj correla=-
tion between obeervations assigned to the seme
node.

It should be obeerved that thie per-node
scoring technique removes duration information
from the scoring. This wss desirable since it
enebled the duration information to then be
explicitly modeied and inciuded 8ss e separate
feature into the scoring mechanism. To facilitate
thie, two more arrsye were generated during the
discriminent training procedure described ebove.
A mean and variance array were generated modeiing
the number of obaervatione aaeigned to each node
by e word modei - ‘ven each input word. Thie
information wae stored ae two three-dimeneional
arrays indexed by word model, node in the modei,
and input word.

In cases where acorea for two
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5. EXPERIMENTS

Since two likalihood-retio ecores wore
celculested for each peir-wlse diecriminetion,
correasponding to the segmentstion arieing from the
psir of word models, 2 scheme had to be devised to
sccount for poesibie diaegreement from these two
ecorea. For initial experimente it waa decided
that if discriminsnt ecoree dieegreed, the
decieion would simply be deferred back to the
origlnal scores from the HMM eyetem.

A deciaion slso had to be made on criteria
for deciding when the second-etege should be used,
and how many of the top candidate worda should be
considered. To simplify initial experiments a
hard threahold waa sstebiished on the difference
between the top two HMM word scoree. If the
difference between the two iesding scorea exceeded
the threahold, the eecond stege wse not ueed. It
was later found that reaults were reiativeiy
inaenaitive to changes in this threshold.
Discriminations were limitcd initialiy to consider

.only the top two candidate worde.

The HMM aystem selected as the firet stage
wea at the time, the beat system teated on the
Lincoln databesae, achieving an error rate of
7.7%. A mcre detailed description of this system
ia included in [4] and [7].

5.1 Eetimated Variance

The flrat oesxperiment with the two-stage
syatam uased all the cepetral parametere, aa weli
aa the duration and enargy paremetsre, in the
second-stage diacriminator. Performsnce of this
syatem wes mediocre. The overall error rate fell
from 7.7% with the basic HMM eystem to 7.4% with
the two-atage aystem. It was euepected that pert
of the reeson for the disappointing performance
might be that only a eubset of the perameters
contributed positively to discrimi-ation. To
inventigate the effectivenese of individual
parameters ae discriminatore snother experiment

'waa performed which used oniy a single parameter

in all aecond etage discriminstione. This

experiment waa repeated for each avaijable
parameter. These inciuded the sixteen cepatral
coefficiente from the HMM system, a relative
energy measurement and e node duration

messurement . Reeulte wusing oniy the two best
parametere (duration and relative enerqgy), each

individuaiiy, ehowed improvementa over the
previoue experiment, where all psrameters were
in:luded in the discrimination. .ln partial

explanation of thie resuit, it anouid be noted
that when a very compiex modei ia made for a
system and very limited training deta is available
to characterize it, statistical noiae from poor
eatimetion can degrade performance. In the above
sxperiment, the modei waa simplified to better
metch the amount of training data available. Less
etatieticel noiee waa then introduced to the
scoring, and becauae of this, overall system
performance improved. The woverall error rate
dropped from 7.4% to 7.0% wuasing only a single
parameter (the duration parameter) in the second
stage.
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5.2 Grand Variance

The naxt sxperlment attempted to extend this
concept. Instead of ualng ths large variance
array generated durlng training for the observa-
tion parameters, gqgrand variance estimatss wsre
used [4,7]. The gqgrsnd varisnce is a variance
aat imats far a single cepstrai coefficient
parametsr ssmpled over ali word modeia, nodes, and
input words. 8y inciuding grand varisnce
sst imates, the second-stage modei was simpiified
and the number of sampies used to charscterlze
sach variance estimate was greatiy increased. The
arror rate dropped with this scheme from 7.0% to
6.3% with the single best parameter (the duration
parsmeter). Using grand variance eatimates, the
second-atage system waa modified to once again
inciude ail cepstral pacrameters in the
diacriminstion. This chsnge resulted in the error
rate dropping from 6.3% to 4.6%. Thls -reault
suggests that the poor performance found wlth the
origlnai 9second-stage 9system was due to poor
variance estimates basod on a very small number of
samplies.

5.3 Sifting

When an unknown token ia compared to two word
modeis of acoustically simifiar words, thoae parta
of the modois which «correspond to ident fical
acoust ic events should make no contribution to a
discrimination between the modela. However, when
iimited training data is available to characterize
these modeis, there will be slight dlfferencea in
the estimated modeis for ident jcal acoustic

events., These differences can have an accumulated
affsct farge enough to overwhelm the more
importent differencss in the mode ia whlch
correspond to different acoustic events. The
statistical T-teat provides a technlque for
estimating the oprobabifiity that ¢two estimated
distributions have identicai wunderlying meana

{2]. A tachnique bssed on the T-test, which wiil
be caiisd "sifting,” was used in the second stsge
to siiminate parameters from discrimination when
the training data did not indicate significant
differences in the wunderiying distributiona of
those parameters [5]. The effect of this proceaa
is to focus the discrimination on thoae parameters
and nodes which «correspond to the acoustical
differences in the two modeis. Appiicstion of
this tachnique resulted in a slight decreasae in
scror rste from 4.6% to 4,5%. 8ut more signifi-
cant thsn the reduction in error rate achieved was
the decrease in computation provided by the
sifting tachnique. Approximateiy 50% of sli
parameters were exciuded from the discrimination
in this experiment, thus decreasing computation by
a factor of two. Figure 3 filiustrates the effect
of sifting by indicsting which parsmeters for a
specific word pair ars includsd in discrimination.

5.4 Addad Features

This techniqus of sifting perameters snabies
features to bs added Lo Lthe syatem, which might
oniy addreas a few 3pacific confusions. Theas
featurss can be added without dngrading
recognition for inputs where the features are not
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useful, since for those csses the 3ifting proceas
should eiimlnate them from the acoring. To
flivgtcrate this, a new set of perameters wss
inciuded in the dlscriminant scoring. These
parsmeters were chosen to make use of ionger term
spectcrsl changes in the speech signai. The mean
value of ali cepatrai parametsrs were csicuiated
for sach node. The differences in theae mean
vajues between adjacent nodeas wera Lthen inciuded
in the set of featurea used for discriminaticn,
This effectiveiy doubied the number of paramaters
uaed 1n the discriminant system from 18 to 35.
Thls set of pacrametsrs was wused along with
T-teating, in another —recoynition experiment.
Again, T-teating eliminated approximateiy haif of
the parsmeters from the sacoring; and the sarror
rate was slightiy reduced from 4.5% to 4.4%.

5.5 Top Three Candidates

A fina. axperiment which was performed
included diaccimination on the top three
candidatas ae oppoaed to the top two as in
prsviocue axperimenta. The decision 9scheme was
modified to sccount for this change and to leasen
the incidence of the second-ataqge defarring back
to the originai HMM scorea. This experiment
resulted in the best performance st the time with
the two-stage ayatem reducing the srror rats to
3.5%. A detaijed look at the improvements thia
aystem showed over the HMM asystem aione |is
preaented in Fig. 4. The discriminsnt systenm
provided improved pecformance for ali ot the
various apeaking atylea and stress conditions.

5.6 Jeats with Advanced HMM System

After the aeeriee of experiments described
above, an advanced flrat-atage HMM system (7]
beceme aveilable which produced an aversge error
rate of 1.6%X on the Lincoin stress speech dsts-
base. Application of the best second-atags
discriminator (as 1in Section 5.3) to this mare
advanced HMM system reduced the average arror rate
from 1.6% to 1.0% (see [4]).

5.7 0Oiscussion of Caonfuaion Ststistics

Many of the srrora from the first-stage
syatem were a reault of confusions between simijar
sounding words such as "eighty" and "eight,” "fix"
and "9ix," and "white® snd "wide" Prssumably
theae sarrora were osttributabie to the probiema
discusaed earlier in this paper. Aithough some of
these confusiona persisted aftar impiementing the
second-stage syatem, most were siiminsted, and the
remaining acrrors were mostly scattared across many
word paira.

6. SUMMARY

A naw two-stage recognition systsm haea been
deveioped which substantialiy reducea overali
error ratas and assists a recognition system in
discriminating among &cousticaliy similar worde
without compromising performance for tha remainder
of a vocabuiary. Xey characterietics aof the
ayatam ars thst it specificaliy addressee prodleme
csused by iimited training data, and poor duratiaon
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The eyetem also appliee s atatietlcally-
based "elfting"™ tachnique to focus ite attantlon
on paramatera whlch most effectlvely bring out
dlfferencee in the worda being discrlminated.

modele.
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with darkened regione. Most of the parameters
ueed are concentrated toward the beginning nodes.

Fig. 3.
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THE DARPA TASK DOMAIN SPEECH RECOGNITION DATABASE

William M. Fisher

Texas Instruments Inc.
Computer Sciences Center
P.0. Box 225015, MS 238
Dallas, Texas 75266, USA

Tel. (214) 995-0394

ABSTRACT independent development test data
. recording was finished on 12/17/86.
This paper documents the DARPA training and development test sentence
Resource Management ~ (RM) Task Domain recordings for the first four of the
speech data base, which is intended to be twelve speaker dependent recordings were
used in the evaluation of speech recogni- completed on 2/10/87; final completion
tion systems that may incorporate a date of all recording was 3/25/87 for
higher~level language model. The prompts, speaker independent data and 3/26/87 for
contributed by BB&ZN, were taken from a speaker dependent.
specific sub-language model." In addltloe The purpose of the task domain data
to full sentence utterances, "spell mode base is to provide speech data limited by
word spellings were ;ecorded. For use a languige model. The language model
primarily with speaker-independent recog- developed at BB&N, covers utterances
nizers, 57 utteran?es were recorded from appropriate for a specific naval resource
~each of 160 speakers; a speaker-dependent management  task. TI received 2835
set of data is provided by recordings of sentences generated from this model as a
1012 utterances from each of 12 speakers. pool from whichk to draw prompts. A subset
The speakers were selected, with the help of 600 of these sentences had been hand
of SRI, from among the 630 speakers re- picked at BBZN as training sentences; in
%orded previously in the pan-dlalgctal the following explanations these may be
IMIT = Acoustic-Phonetic _ data ase referred to as the PJSENT1 sentences. The
Recording formats and facilities were the other 2235 RM sentences are the PJSENT2
same, with the exception of an improvement sentences. Ten sentences from the same
in suppression of background noise. language model were selected at SRI as

peculiarly appropriate for rapid phonetic
adaptation. At TI these sentences were
formatted to normal orthographic standards
and used as prompts. 600 words from the
vo;abulgry of the language model were
The RM task domain data base was e ects and, ‘made into prompts Io5
designod during 1986, in collaboration  oPellomoder @ readings. o oRIeCtE eaco
with NBS, CMU, BB&N, and SRI.  Both Sapsac pie- W noastectl  peRtences
speaker independent and speaker dependent that were used to calibrate dialect usage.

Subjects were recruited from the

phases were segmented into training, de= sample of 630 who had given speech earlier

1. INTRODUCTION AND BACKGROUND

velopggnt tesg: : agd eviluation teit for the TIMIT Acoustic-Phonetic data base.

recordings. igita tapes ~of  the Selection was guided by an analysis of the

recordings were shipped tn the National subjects’ observed honetic

Bureau of standards (NBS), for <further characteristics made  at SRIP 160

distribution to users, during the course subjects were " used dn the 'speaker

of the data base collection. . independent phase and 12 subjects in the
The original plan was to give the speaker dependent phase.

speaker independent recordings priority,
substantially completing them before
starting on the speaker dependent

recordings. Recording of the speaker

independent part began on 10/16/86; its

training phase was completed 11/20/86 and 2. STRUCTURE

its development test phase was approaching The macrostructure of the data base
completion in early December when the is exhibited in the two figures below,
decision was made to deliver speaker Figure 1 for the speaker independent phase
dependent data and speaker independent and figure 2 for speaker dependent
data to users at about the same rates. Subjects are arrayed vertically and
Speaker dependent recording began on utterances or sentence productions

12/10/86 and was given priority. Speaker horizontally.

105
e S . . = i R R A At OO —— I —
T T A e s L s
A8 g R T e R R A e N AN S S T L
_"u,*r; '-'{'l Y. r{r‘!“’ A{ﬁ*}i’;‘p o p Y 7'-'}‘:-{':"\’[; L'&"’_‘ "-’N} Ny ‘-‘_ .f .: "c';:".i i l*..)‘, "~_" 'k.'f,{’h':\-b




TRAINING EVAL/DEV TESTS

Productions (tokens) —>

40 2 15 30 10 2 15
] S| spell a |S| spell
task~domain R| mode task-domain | d (R! mode
80 sentences I| words 40 sentences a |I| words
spkrs spkrs P ‘
1600 d 300 600 t |d 150
types i| [types l types a i} |types
a t |a
1 il
e o je
c nilc
t t
Figure 1.  Speaker Independent Task Domain Data Base Layout @é};
WO
R
W
TRAINING EVAL/DEV TESTS
productions (tockens) —>
600 2 10 100 100 50
S| a | spell spell
task-domain R d | mode task-domain | mode
12 gsentences I a | words sentences words
spkrs P
600 d t 300 600 150
l types i] a | [types types types
a t
1l i
e o
c n
t

Figure 2. Speaker Dependent Task Domain Data Base Layout

Sentence I.D. Significance

SR0O01 - SR600 600 training RM sentences i. .. PJSENTS1
ST0001- ST2235 2235 other RM sentences from PJSENTS2
SA1 - BA2 2 SRI dialect sentences

SP001 - SP600 600 Spell-mode word sentences

Table 1. Sentence I.D. Key.
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In the speaker independent training
phase, each of 80 speakers read 40 RM
sentences, 2 SRI dialect sentences, and 15
spell-mode words. In all, 1600 distinct
RM sentences (sentence types as opposed to
tokens) were available in this part,
resulting in each sentence type having two
tokens, being read by two subjects. The
distribution of sentences to speakers was
arbitrary, with the exception that no
sentence was read twice by the same
subject. Both SRI dialect sentences were
read by each subject. Each speaker read
15 spell-mode words, yielding (80x15) 1200
productions, which were covered by a
selection of 300 words. Each spell-mode
word was thus read by 4 speakers.

The speaker independent development
and evaluation test sets have identical
form factors. In each, 40 speakers each
read 30 RM sentences, the 10 rapid
phonetic adaptation sentences, the 2 SRI

dialect sentences, and 15 spell-mode
words. 600 RM sentence types were
randomly selected for each test and

assigned to the 1200 available
productions, as in ‘the trainiug phase.
Similarly, 150 spell-mode words were
selected and assigned to the 600 available
spell-mode productions.

For speaker dependent training, each
of the 12 subjects read each of the 600
PJSENT1 RM sentences, the 2 SRI dialect
sentences, the 10 rapid phomnetic
adaptation sentences, and a selection of
100 spell-mode words. The 1200 spell-mode
word readings thus produced were covered
by a selection of 300 word types,
resulting in four productions per word.

In the speaker dependent development
and evaluation test sets, each of the same
12 speakers read a selection of 100 RM
sentences and 50 spell-mode words. Two
random selections of 600 RM sentences were
made from the PJSENT2 sentences, one for
the development test and omne for the
evaluation test. Distributing these over
the (12x100) 1200 productions available in
each gives 2 utterances per sentence.
Simarly, two random selections of 150
words each were made from the pool of 600
spell-mode words, for development and

evaluation tests. Distributing these over
(12x50) 600 readings available yields 4
subject productions for each word.

3. SENTENCE IDENTIFICATION

Each sentence that was read has an
identifying name. This sentence 1i.d.
appears as a sub-field in the name of
speech files holding recordings of the
associated sentence. Table i is a key
showing the significance of the different
sentence i.d.’s.
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4. LEXICON

In order to have a uniform and
repeatable scoring, there is a need to
specify each of the RM sentences in terms
of a string of recognition units from a
standard lexicon. It seems best to derive
these representations from the prompts
actually used in the collection of the
data base instead of some other phase of
the language model, since they are the
most  sure representation of what was
probably said.

Dave Pallett (of NBS) , who is
organizing the scoring procedures, after
soliciting and considering the opinions of
interested parties, issued a memo giving
rules for converting our prompts from
normal orthography into strings of these
lexical units. Ve call such
representations SNOR’s, for standard
Normalized Orthographic Representations.
In +this kind of representation, the
lexical units (or "words") are strings of
non-blank characters separated by a blank.
We wrote a set of lexicalizing rules in a
quasi-linguistie Format implementing
Dave’s rules but making explicit choices
where there was some vagueness in his
formulation. These rules are presented
below as Figure 3.

The format of the rules is
straightforward. In the symbol-defining
section, certain variables are defined
that range over specified strings of
characters, and are used in the later
definition of rules. In the rule-defining
section, a list of rules for transforming
character strings is given, of the form:

Al --> [Bl /7 [C] __ [D]; "comments"

The algorithm for rule application is
simple. The rules apply to map an input
buffer of characters into an output buffer
of characters; the input, left
environment, and right environment fields
of each rule match to the input buffer,
and if the rule applies, the output field
of the rule is added to the output buffer.
A cursor is initiated to point to the
first character in the input buffer; at
each cycle, the list of rules is searched
from top down until either a rule is found
that applies of the end of the 1list of
rules is reached. If a rule is found that
applies, the output of the rule is added
to the output buffer and the input buffer
cursor is advanced beyond the part of the
input buffer that was matched by the input
field of the rule. If no rule applies,

the single character that the input buffer
cursor points to is copied into the output
buffer and the input buffer cursor is
advanced by one.
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FILE TTPSNOR2.RLS

INPUT

QX QOQOOQQOQ

RULE FAILURE ACTION = ’PASS’

$ANUM =

SET OF RULES TO CONVERT T.I. PROMPT SENTENCES INTO

STANDARD NORMALIZED ORTHOGRAPHIC REPRESENTATION (SNOR) FORMAT.
: PCODEFILE=UD: [SPEECH.PH]CPASCII.DAT

OUTPUT: PCODEFILE=UD: [SPEECH.PH]CPASCII.DAT

»xx%x% SYMBOL SECTION BEGINS HERE #%#*x*x
I SRRV NV AN VA VAR RV ARRVAS AV AR AR
{AN+Y = 2 272,272 .20/
*T2/'N’/°R?/°S*/’H?/’D? /L2 /°F/C /M /G /P /W /

lBl/lvl/lK)/lxl/lJl/’ql/lZl/lEl/lAl/)Ol/’Il/lUl/lYl/

»xx%x*% RULE SECTION BEGINS HERE x***x*x

-+
+ '1'/’2’/’3’/’4’/’5’/’6'/'7’/'8'/’9’/’0'/’ZERO’
*
*

RULE FORMAT B
(S’1 => [S+s]1 /

[#]1 ; weird possessive plural formation rule

[’]1 => [+] ; "apostrophes become pluses" (for exception see TTPSNOR1.RLS)

; "abbreviations become single words, no end-of-sentence

(.1 => 0
C punctuation”

(?71 => [0 ; "no end-of-sentence punctuation®

[ 1 =>1(17]; delete multiple blanks

[ 1 =>[1; delete multiple blarks
C s?ecial hyphenated idioms:

(] => [-]1 / [#DIEGO] (GARCIA]

(1 => [-] / [#HONGI _— [KONG]

(1 =>(-1 /7 [#ICE] __ ([NINE]

C1=> (-1 /7 [#LAT] __ [LONG]

L1 => (-1 / [#NEW] CYORK]

{1 => (-1 / [#NEW] —_ [ZEALAND]

(1 => [-1 / [#PAC] (ALERT]

(1 => (-] / [#SAN] —_ [DIEGO]

L1 =>1[-1/ [#SAN] —_ (FRAN]

C correct spelling of U in some alphanumeric strings:

[ZERO] => [01 / [-]

C supply weird spellings for some acronyms

[CROVELI => [CROVL] / [#] __
[PACK] => [PAC] / [#]
[TACKIN] => [TACAN] / [#]
[TASSEM] => [TASM] / [#]
[-FLEET] => (FLT] / [LANTI__
[-FLEET] => [FLT] / [PACK]

C alphanumeric strings spelled without hyphens:

(-1 => [1 / C[{AN+}3SANUM
(-1 =>10 /7 L.l

[SANUM{AN+}
[SANUMTAN+}] ; "D.D.D.-2-4-3"

C NOTE: THE RIGHT ENVIRONMENT IS NEEDED IN THE ABOVE RULE TO PREVENT
C IT FROM APPLYING TO, FOR INSTANCE, "S.Q.Q.-23", WHICH SHOULD BE "SQQ-23",

C NOT "SQQ23".

Figure 3. Major Rules for Lexicalizing Prompts.

The rules shown in Figure 3 are
preceded by passes of rules, not shown,
which capitalize all letters, delete the
apostrophe in such abbreviated dates as
"*87", and convert numeral strings ‘- o
English words.

In brief, the rules: 1.
punctuation; 2. convert letters to all
capitals; 3. replace apostrophe with "+";
4, combine certain "words" into single
lexemes, wusing hyphens; 5. split up
certain alphanumeric strings by inserting
blanks.

eliminate

SO L Y »
e P 4] -‘f-

TI has run a program to apply these
rules to all prompts used in this data
base and can supply the resulting SNOR
strings and an alphabetical listing of the
SNOR lexicon of these sentences to any
interested parties.
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5. RECORDING CONDITIONS

Recording conditions were nearly the
same as has been reported at earlier DARPA

workshops; in brief: subjects were seated
in a sound-isolated recording booth; the
director placed a Sennheiser SN 414
headset microphone on the subject and,
using a template, positioned a  B&K

pressure microphone about 30 centimeters
away from the subject’s mouth, 20 degrees
to the left; the subject was instructed to
read the prompts appearing on a CRT screen

in a "natural" voice; and speech was
digitized directly onto disk at 20 ksps
per channel. The automatic recording
software system STEROIDS was used. Each
recording was 1listened to by both the
recording director and the subject to
check for errors.

Before +this data base recording

the sound booth was retrofitted
with a steel I-beam subfloor and air
spring suspension system which reduced
low-frequency (<100 Hz.) noise by about
20-25 dB.

The raw recordings were split into
separate files for each channel, filtered,
and down-sampled to 16 ksps as before and

began,

these versione of the speech were sent
along with the original 20 ksps 2=-channel
files to NBS.
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6. ERRATA

After a large amount of speech had
been sent to NBS, they discovered that
some recordings apparently had firal words
clipped off; this problem was called the
"zero-tail" problem Some investigation
determined that the original recording was
all right and that the problem was caused
by a bug in general speech file software
that was introduced with a program change
in October. It was a "magic number"
problem; only about 2% of the recordings
made with the buggy software were
affected. Recordings that had not been
yet shipped by the time the bug was fixed
were corrected before shipping. The
recordings that had already been shipped
were handled in a different manner: two

"errata" tapes have been prepared, which
contain corrected versions of
already-shipped files that were found to
have zero tails. These errata tapes are
delivered with the data base, clearly
marked, and users should make sure that

the files on the errata tapes are used in
place of the corresponding files with
matching name.
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An Architecture for Multiple Knowledge Sources

by James K. Baker
Dragon Systems, Inc.
90 Bridge St.
Newton, MA 02158
(617) 965-5200

Introduction

To achieve high performance continuous speech
recognition, we need to bring to bear a wide variety of
sources of knowledge. To achieve real-time continuous
speech recognition, we must impiement these knowledge
sources working cooperatively in a very high speed
computing environment, probably with many processors
running in parailel. This paper discusses one approach to
achieving these goals at a reasonable cost in the
environment of a single workstation, It is furthermore a
prime goal of Dragon Systems’ project to provide an
environment in which knowledge sources of many
different types may be implemented.

The architecture, as seen by the knowiedge source
software, should be capable of mixing stochastic knowledge
sources with deterministic knowledge sources, [t should be
capable of combining rule-based knowledge representations
with pattern~matching based knowiledge. It should provide
for., both parametric and non-parametric statistical
procedures. Finally, it shouid facilitate the independent
development of separate knowledge sources, passibly at
remote sites.

Of course, Dragon Systems is not alone in working
tswards these overall goals. It is not claimed that we are
anywhere close to a complete solution to the problem of
many different knowledge sources cooperating in a real-
time environment. Rather, the opposite is more nearly
true--research on different knowledge sources cooperating
in a real-time environment is likely to be of value
specifically because of the current fragmentary state of our
knowledge. Getting different kinds of knowledge sources
to work together is still very much an exploratory activity.
In this light, the current project is not trying to find an
optimal malti-procesor, multi-knowledge source
architecture, but merely an adaguate ong,

An important objective of this project is to develop
techniques which apply not only to a substantial variety of
the algoriths that we lmow wday, but abo o the
algorithms that we might invent in the future. Therefors,
both the hardware architecture and the softwars
architecture must be general purpose, not tailored to a
particular class of algorithm.

Hardware Architecture

The software architecture, discussed in more detail
below, is specifically designed to be compatible with many
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of the existing parallel processor architectures. To meet
the goal of fitting in a single workstation at moderate cost,
however, the architecture shown in figure 1| has been
chosen. The general framework is a simple tree; the host
processor in the workstation itself with several clusters of
processors, with each cluster implemented on one or two
boards that plug into the peripheral bus of the workstation.
Each cluster has a local system bus with a memory that is
shared by the host and all the processors in the cluster.
Each processor in the cluster also has a substantial amount
of local memory of its own. The "knowledge” of the
individual knowledge sources is stored in these local
memories. .

This architecture is not intended as a great
innovation, similar architectures have been done before.
Rather, it is a simple and reliable means of fitting a large
amount of general purpose computation in a small space.
With the multi-processor board that Dragon has designed,
it is possible to fit up to 7 general purpose 2 MIP
processors in a single siot of a personal computer. Over 50
MIPS could be available in a workstation. Even more
computational power is feasible with more specialized
processors.

In any multi-processor, multi-knowledge-source
architecture a prime consideration is the communication
between the knowledge sources and the communication
between the processors. As will be discussed later, the
software architecture that Dragon has adopted provides for
4 flexible, but very structured and controlled
communication between the knowledge sources. The
principal strategy which is used to reduce the amount of
communication between processors, is to have each
processor have sufficient processing power and a sufficient
amount of local memory to implement one or more
complete knowledge sources.

Choosing an architeeture in which knowiedge sourcey
and processors are somewhat loosely coupled leads to
different issues and different research questions than a
more tightly coupled architecture. Thus code vectorization
Ot cunverting scalar code (0 parailel code, which mignht oe
critical in a tightly coupled architecture, are insignificant
in this architecture. On the other hand, partitioning the
knowledge into separate local memories, which is
unnecessary in an architecture in which every processor
has immediate or near-immediate access to every memory
location, is a critical issue in this hierarchical architecture.
However, since it is a prime concern of this research
project to study how knowledge sources of different t~es
can work together, it is entirely appropriate to choose a
hardware architecture in which the most important
implementation issues occur at a similar level to the
important issues in the functional architecture.
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Note also that with each knowledge source located on
a single general purpose processor, it i$ practical to do
much of the development work for a knowledge source
independently in a stand-alone environment, and still

easily link the knowledge source into the rest of the
system.

The specific implementation that Dragon Systems has
designed uses up to sev . 80286 processors on a mother-
daughter board combmauon in a single slot in a high-end
MS-DOS personal computer. There is 876K of local
memory for each processor and also 64K of memory
shared by all processors on the board and also by the host
processor in the personal computer. The local system bus
is essentially a standard Multibus restricted to the local
board. Dragon’s mulu-processor board and its interface to
the host CPU is described in much greater detail in the
separate documen! "Multi-Processor Board.”

Code written for this design should be upward
portable to a design using 80386 processors with no
reeoding st sl e should b porble 10 worksationg using
other penpheral buses (Multibus, VME-bus or Unibus) and
other operating systems (UNIX or VMS) with only
moderate redesign and recoding. All of the knowledge
source code, in particular, runs independently (within the
specifications of the software architecture) on a single
processor. An individual knowledge source is implemented
independently of the higher-levsl hardware structure.

Since MS-DOS is not multi-tasking and not re-
entrant, 'we have implemented a multi-tasking monitor to
handle the low-level communication and synchronization
between the processors and to simulate multi-processors on
a single processor. Detailed spec:fxcauons for these
routines are available, but they will not be discussed
further in this paper.

It also should be pointed out that although the multi-
processor design has been compieted, only a one-processor
prototype has been constructed so far. Also, the
benchmark software development has been done in a
personal computer environment with limited memory, so
even though the software architecture is intended for a
multi-processor, multi-tzsking environment, the current
implementation runs non-reai-time on a smgle processor
without slmulaung the low-level communication details.

Software Architecture

The overall architecture of the multi-knowledge
SOUITE symm requires 3 cleer dinincrion between the
concepts of "knowiedge" and of "data,” “"Knowledge”
should be thcught of as permanent information, such as
properties of speech or facts of linguistics. “Data” is the
information that has bsen ‘computed about a particular
utterance. "Data" is passed around among the knowledge
sources and is used in the recognition process, but unless it
is converted to "knowledge,” it is not permanently stored.
*Knowledge,” on the other hand, is not shared. All
knowledge is local to a particular knowledge source.

It is imgortant to notice that these definitions are not
merely definitions to distinguish the two kinds of
information.  Splitting all information into these two
categories deliberately imposes very significant limitations
on the overall system. "Knowledge” cannot be shared
among knowledge sources; “"data® cannot be saved
permanently. Although scme exceptions are allowed for
efficiency, the distinction between "knowledge” and "data®
is deliberately enforced to enhance the modularity of the
knowledge sources.
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For example, if two different knowledge sources
hoth need models for the "expected” formant frequencies
of each steady-state vowel (say one that is recognizing
consonants from the formant transistions in adjacent
vowels, and one that is recognizing the vowels themselves),
then they should each have their own local copy of that
knowledge. They can share the "data® about the formant
frequencies estimated during a particular utterance, but
they must each have their own local copy of the permanent
"knowledge.” If they each have their own local models,
each knowledge source would still work if the other
knowledge source were replaced by another knowledge
source that used a completely different modeling method.

A knowledge source cannot directly call a function in
another knowledge source. All communication is done by
posting data on the "bulletin board." The system enforces
1 very strong Jegree of modularity on the koowledge
sources.

In these restrictions, however, training is logically
separated from recognition. Training, if necessary, can
run offline using data that has tempurarily been saved w
files. Related knowledge sources that might be executing
on separate processors at recognition time can be put on a
single processor and can make direct calls to functions in
other knowledge source modules, This mechanism should
be used sparingly and not abused, but it is open-ended
enough to allow any training algorithm implementation that
is consistent with good structured program practice:
Training does not have to follow the stricter discipline that
is necessary for real-time computation on parallel
processors.

How to do global training in a system that has many
different kinds of knowledge sources is a very complex
and intriguing question. In particular, it is an open
research question as to how to combine knowledge sources
that use fully automatic training with knowledge sources in
which the training process involves interaction with a
humen expert. However, pur investigalions are still st »
very preliminary stage. So, even though dicussion of this
issue would be very welcome, it is not covered in this
paper.

The discusion will now focus, therefore, on the
loading of knowledge and the communication of data at
recogilition time. Five functions are specified for the
communication of knowledge and datx three entry poines
that the knowledge source provides to the system (ks__| load
ks_call, ks_unload, where "ks" would be replaced by a
unique character string identifying the particular
knowledge source) and two  system functions
(load_get _knowieage and post_get_cata) that the
knowledge source calls to get the actual knowledge or darta.

The parameters and calling specifications for these
functions is given in the Appendix

From the pomt of view of an individuai knowledge
source, activity is divided into three parts: 1) loading and
initiahizing the knowledge source, 2) the actual processing
of utterances, and 3) cleaning up, freeing memory and
unioading. Loadmg and unloading are mainly used in
REDEriments in which not 4l of the knowledge will fir i
available memory. In the multi-processor configuration,
with a sufficient number of processors, all knowledge
sources will be loaded at system initialization and would
not need to be unloaded. The discussion, therefore will
focus on ks_call and the processing of utterances 10 be
recognized.
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When a knowledge source is called, the only input
parameter is "time." The parameter "p_post_list" is a
pointer that the knowledge source sets to point to the first
item in a list of items to be puited on the bulletin board,
and "p_done_time" is an output value that the knowledge
source sets to tell the system that it is finished up through
the indicated time. The central data structure is called a
"bulletin board" rather than a "blackboard,” because
previously posted items cannot be modified.

The knowledge source gets its actual input data by
calling the function "post_get_data." This "input data on
demand,” lets an individual knowledge source request only
the data that it needs rather than all the data the system
has available, reducing the inter-processor communication.
The system keeps track of the data sources that provide
input to a given knowledge source. The system does not
issue the "ks_call" for a particular value of "time" until all
the input data is ready. Thus the knowledge source knows
that it can call "post_get_data" for any of its input data
sources for any time up to and including the current value
of "time."

It is immediately apparent that this manner of calling
the knowledge sources imposes a timewise "left-to-right"
order on the processing of each utterance. This is one of
the compromises that has been made to keep the system as
simple as possible in some ways in order to make it as
flexible and general as possible in others., Note that, since
"p_done_time" may lag behind "time,” each knowledge
source may internally create a look-ahead buffer of
arbitrary duration.  Although there are some potential
knowledge sources which might be very inefficient given
this constraint of timewise processing, it is a reasonable
constraint for a real-time system. The main limitation
imposed by this processing method is in the possible
implementations of svntax control, semantics, and language
modeling generally, since any context dependence of
duration less than a couple words can be easily handled
with a look-ahead buffer. There are at least some parsing
and language modeling methods that can work well within
this constraint, with a limited look-ahead.

For the input data, a strict "timewise" sequence is
imposed on a knowledge source. Once a knowledge source
has called "post_get_data" for a particular time, it cannot
go back to any earlier time. If it wants to reuse an item,
it must buffer it internally. The output is not as
restricted, the knowledge source can post data for any
"post_time" greater than any previous "p_done_time."
The system is responsible for buffering the output of the
knowledge source until other knowledge sources have used
it.

The constraints of this functional architecture thus
are as follows:

1) Know:ledge is local, not shared
2) Data is temporary, not saved
3) Utterances are processed timewise

Implicit constraints include;
4) Each knowledge source should use only a small

fraction
of its computation time communicating

data
5) Each knowledge source should operate in real-time
on
a single 2 MIP processor with 876K of
local

memory
6) To minimize response time, knowledge sources
should be
designed to use data as soon as possible
after
it becomes available.
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The "fraction” in constraint (4) must be smalier (in
the range 5-10%) for this architecture than for some

architectures, to prevent the local system bus from
becoming a bottleneck. However, communication between
several small knowledge sources clustered on a single
processor doesn’t count against this constraint. Since
Dragon Systems has demonstrated real-time large
vocabulary, natural language isolated word recognition on a
single | MIP processor, it is believed that constraint (5) is
not too great a limitation on the complexity of an
individual knowledge source.

A knowledge source that requires a lot of processing

but that doesn't use too much memory can be easily be

partitioned to run on more than one processor simply by
making duplicate copies of the local "knowledge." The
greatest design constraint is for knowledge sources that
need more than 876K of local memory for program code
plus their "knowledge." Such knowledge sources must be

partitioned to run as separate knowledge sources on more
than one processor, without the ability to share knowledge
among the partitioned knowledge sources.

It is easy to see that the constraints are all very broad
and not specific to the kinds of knowledge sources
involved. In this framework a "knowledge source” is any
module of subroutines that satisfy the necessary constraints
to be local to a processor. The module need not deal with
what would conventionally be called "knowledge." Thus an
FFT routine would be a "knowledge source" as long it
followed the calling conventions and received and sent all
its data by posting on the bulletin board. The FFT routine
would have an empty set of "knowledge," even in the
formal sense, unless the coefficient table was loaded as
"knowledge." Thus a "knowledge" source need not actually
have any "knowledge."

On the other hand, a knowledge source could be very
complex. It could be a complete rule-based phoneme
recognizer or a complete hidden Markov model word
recognizer. Some knowledge sources could be "transiators”
thdt would allow knowledge sources of different types to
cooperate with each other. With this functional
architecture it will be possible to run "plug-and-replace”
experiments with several different versions of the
knowledge source that does a particular t.&x. The other
knowledge sources will not need to be explicitly aware =~
which of the experimental knowledge sources is in the
system,

As a matter of good programming practice, it is
generally preferable to break the recognition task up into a
larger number of simpler knowledge sources. Thus
different knowledge sources might specialize on different
phoneme classes rather than being combined into a single
knowledge source. Each knowledge source should be oniy
a few hundred lines of code in a higher level language.

Current work is proceeding on two fronts: within this
software architecture Dragon is implementing a complete
connected word recognizer as a feusiblity proof of the
knowledge source partitioning and the timewise processing
and as a platform for studying communication and
performance bottienecks. Dragon is also implementing
"benchmark” versions of a variety of novel algorithms, e. g.
neural networks, to see how they might be incorporated
into this framework. Dragon also invites other DARPA
sites to submit knowledge sources in either source code or
object code form. The greater the variety of knowledge
sources that can work together in a cooperative

environment, the greater will be the benefit for the whole
speech recognition research community.
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BOOL ks_ load(ks,data_size,data_handle)
7% Returns YES if already loaded */

5
L

unsl6 ks; /* The unique handle the system has assigned to FRvGay
this knowledge source, used when calling ,._ﬁu_ ¥l
load_ ger_ knowledge. */ oLt

g >

*

int32 data_size; /* The size in bytes of the block of
knowledge that the system has availatle to
pass to this knowledge source */

int16 data__handle;  /* A handle that the system has assigned
that the knowledge source should use when calling
load_get_ knowledge */

BOOL ks_ call(time,p_ post,p_done__time)
. 7® Returns YES for end-of-data condition similar to EOF
/
unsl6 time; /* Current time as measured by the system. Being
called with this value of "time" tells this
knowledge source that any input data that it
all knowledge sources that send input data to
this knowledge source have reported to the
system that they are done posting up through this
value of time. */
struct POST__LIST **p_post; /* A pointer to a list of items
to be posted on the "bulletin board" */
unsl6 *p_done_time; /* The knowledge source tells the system

that it has finished posting all igems to be
posted at time up to and including p_done_time.

e
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struct POST _LIST {
unslé6 size; /‘ actual size of the data in this item */
unsl6 post _time; /* the time slot on the bulletin board
at which this item is to be posted */
struct POST _LIST *next_post; /* pointer to the next item
to be posted, if any ¥/
char datalMAX_DATA_SIZE};

/* The actual data, which may
have any kind of information, but whose internal
structure is only known to the knowledge sources that
use it, */

|5
BOOL ks__unload()
int32 load_get_ knowledge(ks,data_size,data_area,data__handle)

/¥ Return the actual number of bytes sent */
unslé6 ks; /‘ Knowledge source handle */

int32 data _size; /* Size of buffer area in which to
put a portion of the knowledge. */
char *data_area; /* Pointer to buffer area */

intl6 data_| “handle; /* A handle for the knowledge data_ area,

comparable to a file pointer. */

/* (In the current implementation load_get_knowledge is
functionally similar to a
read(data__handle,data_ area,data_size) ) */

BOOL post_get_ data(handle,post_time ,ship__to,ship_size,remain,
complete,eof)
/® Returns YES if there more to come for the current
post_time */
unsi6 handle; /* Handle identifying the the data source */
unsl6 post_time; /* The posting time for which data is
requested. Any knowledge source for which ks_call has
called with a particular value of "time", may call
post_get_data if any value of post_time<=time. */

char *ship__to; /* Buffer in which to put a block of
the data. ‘/
uns16 *ship_size; /* On input: the size of the ship_to
buffer
On output: the actual number of bytes
sent .
unslé *remain; /* Number of bytes remaining in the

data that was posted for the current time. */

BOOL ‘complete /* This buffer includes the end of a
complete item */

BOOL *eof; /* YES if there is no more data (for this or
any greater value of post_time */
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Experiments in Isolated Digit Recognition
with a Cochlear Model—An Update

Richard F. Lyon and Eric P. Loeb

Schlurcherger Palo Alto Research
3340 Hillview Avenue
Palo Alto, CA 94304

The bulk of this paper describes the varicus recognition meth- o
Abstract ods that we tested. We start with the non-time-order methods. LMK .

These include a "Basic Method”, four modifications to it, and a E’;&

We have conducted speaker-independent isolated digit recog- section on vector quantization methods. After that we describe

nition experiments using vector quantized cochleagrams. With- our two time-order methods. Just before we conclude, we inter- R
out the use of time order information, we were able to achieve a pret some of our methods and results in terms of neural networks. ?- \ :
recognition rate of 98.3%. With a modified Viterbi algorithm we Gy
achieved a rate of 99.1%, 'n a test with a larger talker popula- ‘J('*',}'
tion. Since these accuracie: are not far apart, we must call into 2 General Methods ’C‘ﬁz&"
question the effectiveness with which the Viterbi algorithm uses The first repetitions of the isolated digits in the training sub- tﬂ_’ o
time order information. These results demonstrate that the au- set of the TI Connected Digit Database (sampling rate 20kHz) iy
ditory sprectrum approach leads to high performance even with were analyzed by our cochlear model. The model produces a Y .
simple non-parametric techniques and phoneme-level word mod- discrete-time 92-channel spectrum, which is down-sampled to 1 g‘\:::i:
els. The results presented here update the results presented at kHz and quantized by a standard Euclidean quantizer with 1024 ):}‘4-;
ICASSP 87 [Loeb et al. '87); they verify the prediction that ac- codewords. The quantizer codebook was trained on the first rep- i‘,?i.f‘a
curacy would be significantly improved by doubling the training etitions of all the training speakers using the standard K-means (t,‘-\f'&
and testing talker populations, and by using two repetitions of algorithm. :-{,3"' H:
each digit from each talker in training. In the first group of experiments to be described, half of the #f«'-“*"-,’!;
112 training speakers were used for training and the other half WAl
were used for testing. Thus the recognition results in these ex- ™ ‘ .

periments are ostensibly speaker-independent. We cannot claim ANA

total speaker-independence because we used both sets of speak-
ers to build our vector quantizer. Since this caused two of the
codewords never to occur in our training set, the net result is

1 Introduction actually poorer performance than we find in extending to more
akers. ;
s f isolated digit recognition ex- speakers . . . PR S
We have conducted a number of isolate 9 . gnd & In later experiments, up to four times as much training data AT,
periments in an effort to eval.uate the poltlen.txal Oian &t tf:iz was used, by using all 112 training speakers, with two repetitions Y \h-:g'
model front end. Tl?e expenmenta.emp asize ‘non-pa.mn.xe from each. One repetition of each digit from each testing speaker iy p
approaches and techniques that use little or no time order infor- ia¢ bamn amalyawd soSan ’;.-";I‘ s
mation. We wished to set high performance standards for future : J&a
experiments while estimating the relative importance of the var- "d
ious sources of informatien in the data. .. g -
Although the front end for our experiments is a cochlear model 3 Definitions A ‘-‘: .“\.\:
[Lyon '82], there is nothing explicitly neural about our tech- codeword an integer in [0, B] where B < 1023. Each codeword ‘_‘.‘.1_";'-
niques. They could be applied to any other vector quantized corresponds to some subset of 92, and the set of codewords ;-";_. vk
representation. Many of the experiments are interesting as tech- corresponds to a partition of 92, :: J"._;
niques for the use of non-parametric statistics in spite of the - R::g_
shortage of training data. Since every experiment in the first utterance the sequence of codewords. derived from the cochlea- Pritey
gram of one of the speakers saying one of the vocabulary i

group, originally presented at ICASSP 87 [Loeb et al. '87], uses

the same training and testing data sets, those results are directly words.
comparable; later experiments extend some results to larger train- utterance histogram avector I?(A), where H.,(4)is the num-
ing and testing sets. ber of occurrences of codeword cw in utterance 4.

guess the index to a vocabulary word. A guess is the result of
some recognition method operating on a test utterance.
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guess vector a <vocabulary-size>-dimensional vector of word
log probabilities. If a recognition method generates a
guess vector, then it will always output the index
of the most prohalle word as its guess.

4 The Basic M

A matrix of condit lities of observations (code-
words) given the wor first generated. Probabilities
are estimated from a count ot the number of occurrences of each
codeword within all training utterances of each vocabulary word.
Then, for recognition, each word in the vocabulary is scored by
adding the log likelihoods for all time samples in the unknown
utterance; since these scores do not depend on the order of oc-
currence of the samples, they are most easily computed by mul-
tiplying the log probability matrix by the utterance histogram.
Now each codeword, cw, indexes a vector V(cw) in our matrix,

whose i** component is given by
Vi(cw) = — log Pr[codeword cw | word i].

In this notation the same guess vector can be formed by accumu-
lating the V(cw)'s indexed by each codeword found in sequence
in the test utterance.

This simple program gives 94.97% correct recognition on the
first repetitions (see Table 1), and 95.54% on both repetitions
(see Table 2). This implies that the codewords (and thus the
underlying cochleagrams) are doing a good job of acoustically
separating our vocabulary words.

It is interesting to note that an earlier version of the codebook,
in which the K-means algorithm had not iterated to convergence,
gave 94.16% recognition on the first reps. This indicates that the
method of codebook vector production is an important compo-
nent of a quantizer-based system.

Finally, when we used the basic method on quantized LPC
spectra we achieved 88.31% recognition. The LPC codebook had
1024 codewords made by the K-means .lgorithm, but the LPC
quantizer produced one codeword every : 0 msec. When we down-
sampled the cochlear quantizer to the same rate the basic method
gave 93.83% recognition. We repeated this test with eight differ-
ent training and testing populations. In all cases the number of
LPC errors were roughly double the numlser of cochlear errors.

5 Simple Variations on the Basic Method
5.1 Codeword Grouping — OR type

Let us suppose there are several codewords covering the spec-
tra produced by /s/ sounds. Then the majority of the obser-
vations of these codewords will occur in the vocabulary words
containing /s/ sounds. In the task at hand these words are siz
and seven. So, if we assign one new number to every codeword,
cw, such tkat most of the observations of cw occur in the words
siz and seven, then this new number should be a good indicator
of the /s/ sound.

To implement this idea we need a parameter coverage-proportion.
We map each codeword, cw, to alist of the vocabulary words that
account for at least coverage-proportion of the observations of cw.
Next we map these lists to integers (i.e., we number them). The
composition of the two mappings is a many to one map from the
original codewords to ‘ome new codewords. We then use the new
codewords in the basic method.
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There are two important variations in the mapping from lists
to numbers. We make an unordered grouping by numbering the
lists as sets so that the order of the words does not matter. We
make an ordered grouping by numbering the lists so that the
order of the words does matter.

The results are on the “Basic” row of Table 1 and Table 2.
In Table 1 the groupings are assumed to be unordered (number
as sets). In Table 2 we compare the unordered grouping with
coverage-proportion = 0.80 to the ordered grouping (number as
lists) with the same coverage-proportion.

Although this method is of marginal use in improving per-
formance, it does reduce the number of codewords. In Table 1
the 0.95 (unordered) grouping reduces the number of codewords
from the original 1024 to 405, and the 0.80 (unordered) group-
ing has 313 codewords. In Table 2 the 0.80 unordered grouping
has 308 codewords. This is different from the same grouping in

Table 1 because we estimated the codeword distributions with %
both repetitions. The 0.80 ordered grouping in Table 2 has 462 AN0Y
codewords. .
Some of the sets/lists that we use to make these groupings %ﬁ""l’!
have very clear phonetic content. For example the 0.80 unordered W %.l'h:
grouping of Table 1 maps 71 of the original codewords to the k. i‘.}‘:
set {siz , seven}, 39 originals to the set {three , zero}, and 22 ‘.:v{."u.
to {one , nine}. Although many of the sets do not have such }-‘.‘,
obvious phonetic zontent, most of the sets that represent large N':t ?
numbers of original codewords do. Thus we may have found a r 3
way to generate phonetically meaningful labels without imposing AAE
our pre-conceptions upon the data. In the future, we hope to o {-\

extend this method to the grouping of sequences of codewords.

5.2 Histogram Compression

Without changing the training procedure, we map the his-
togram of each testing utterance to its log. L.E If codeword X
occurs N times in testing utterance A, then the contribution of
codeword X to our guess vector for utterance A will be the prod-
uct of log (1 + N) and row number X of the matrix of log prob-
abilities.

Notice that we can achieve approximate log compression with-
out the use of histograms by letting the atk response to codeword
X be 1/n. This is highly reminiscent of habituation. Thus the
histogram compression method is both neurally plausible and ex-
tendable to continuous speech recognition.

The results on the first two lines of the result tables suggest
that more codewords are better for this method. We sbould ex-
pect as much, since compression gives more equal weight to each
of the codewords than the basic method. We suspect that com-
pression offers greater improverpznts than any of the codeword
groupings because it does a better job of reducing the effects of
uninformative codewords.

When compression and time splitting (Section 7.1) are used
together we begin to rival our best Viterbi algorithm results.
This combined method is very simp  .id uses virtually no time
information at all. This suggests the possibility that our Viterbi
algorithm might be improved by the addition of a com,; ressive
operation.




5.3 Non-Occurring Codewords (or Necessity)

The basic method will often guess “zero” when the input is
an “oh”. The reuson is that the method is one of sufficiency - it
has no way of necessitating 2 /z/ sound before guessing “zero”.
Thus we need to modify the basic method to make use of the
codewords that do not occur.

For each codeword, cw, that does not occur in the test utter-
ance we add an inversz of V(cw) (Section 4) to our guess vector.’
The inverse of V(cw) was computed by subtracting each element,
Vi(cw), from the maximum element of V(cw).

If we examine the differences between the “Basic” and “Neces-
sity” results in Table 1, then it appears that this method becomes
more successful as the number of codewords decreases. If this
were simply the case, however, we would expect an even larger
improvement in a 0.50 unordered grouping, which had only 156
codewords. The recognition rates with this grouping were 90.26%
with the basic method and 91.56% with the necessity method. So
the utility of the necessity method seems to depend on the extent
to which our codewords correspond to phonetic units.

5.4 Several Ranges for Each Codeword

The basic method has difficulty distinguishing between "nine”
and "one”. We would expect "nine” to have roughly twice as
many milliseconds of /n/ as "one”, but the basic method can not
take advantage of this. We need the probability vectors V(cw)
(Section 4) to be functions of the number of occurrences of cw as
well as of cw.

To do this, we used the basic method with 6 matrices. If we
ft N be the vamber A Cecarreness of evdeword X i atterunee
A, then utterance A will contribute to or use the |log(1+2N)|th
matrix for codeword X.

Each of our non-time-order methods is a function that maps
every point in the space of utterance histograms to a log dis-
tributicn. The improvements shown in Table 1 may be due to
our adding more detail to this function. Examination of Table 2,
however, shows that the ranges method works about as well as
the compression method (Section 5.2), so the this method may
work because it allows each codeword to contribute equally to the
Tl decisiva. Alteinatively, the ituprovewents may be due (o the
fact that we are now taking into account the average number of
occurrences of a codeword among those utterances in which it
occurs. This statistic represents durational information.

5.5 Codeword Groupings — AND type

The codewords are not independent. It is therefore interesting
to consider higher order conditionals such as the probability of
word W given codeword X, codeword Y, and no codeword Z.
The number of conditionals of this form is, however, prohibitively
huge. We thus have no choice but to concentrate on groups that
have a reasonable chance of occuring.

We mapped each ranged codeword, RCW, to a list of code-
words that had an above-threshold correlation to RCW in the
training data. We then considered each of these lists to be a
codeword, where the number of occuraces of a list is the geo-
metric mean of the number of occurances of each of its elements.
We applied the basic method (Section 4) to the unique multi-
element lists and added the resulting guess vector to the guess
vector obtained from the ranges method (Section 5.4).
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By adding the guess vectors of this method to the guess vec-
tors from the (compressed, original codewords) basic method we
were able to get a recognition rate of 98.3%. Since this result
was totally ad hoc, it seems reasonable to expect that a carefully
built system can achieve 99% recognition with no time order in-
formation at all.

These AND-groupings took a great deal of time and memory
to implement. We consider these groups to be the equir t
of word models. Since this method produced a significant im-
provement we expect we will be able to find a simpler, more
effective means of using inter-codeword correlations to generate
useful word models.

6 Vector Quantization Methods

Let us suppose we have a speech recognizer box. Its input
is a speech waveform or sequence of observations, which may
be thought of as a vector. Its output is a word, which may be
thought of as a scalar. Thus our speech recognizer is, in fact, a
vector quantizer. Can it be implemented directly as one?

To cut down the pattern space some, we use binary histograms
(i.e., each codeword either occurs or does not occur in the test
utterance) with Euclidean distance, and the standard K-means
algorithm to construct a codebook. A test utterance then maps
to its closest codebook vector, which in turn tells us which vo-
cabulary word to guess (the one that most frequently mapped to
that codebook vector in training).

In a second experrment codebook vector k was set to be the
centroid of all the training vectors for vocabulary word k. In
another experiment we formed 32 ortho-normal vectors from the
5% codebook vectors of the fast experiment. We then ased th
basic method by finding the projection of the test utterance on
each of these vectors and sumrming the product of these numbers
and the appropriate log probability vectors.

In the first experiment, a codebook of size 16 gave recognition
= 66.6%. When size = 32, recognition = 76.5%, and when size
= 128, recognition = 80.5%.

In the second experituent, with one codewsurd per vocsbulary
word, we got 92.69% recognition. This gives a rough idea of the
efficacy of the K-means algorithm in approximating the “correct”
decision bounaaries.

The third experiment gave recognition = 70.13%. Since the
codebook vectors we ortho-normalized for this experiment were
the same 32 vectors used in the 32 vector part of the first exper-
iment, it is clear that this method was of no help whatsoever.

7 Time Order Methods
7.1 Time Splitting

It is surprising that we can do so well without any time in-
formation, but we will need to use it eventually. As a simple
extension of the methods we have tried so far, we use the basic
method on the first and second time-halves of the utterances.
Thus each test utterance will produce two guess vectors . one
for its beginning and one for its end. The final guess vector will
be the sum of these. In a second experiment, we use the ne-
cessity look-up method (Section 5.3) on both time-halves. In a
third experiment, we use the range method (Section 5.4) on both
tizne-halves. Finally, we use the compression method (Section
5.2) on both time halves.
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As in Section 5.2, the fact that such a simple method could
provide so much of an improvement (see Table 1), confirms that
the time order information will be extremely helpful when used
properly. The results of the combined time splitting and code-
word ranges methods are respectable, but they depend far too
heavily on the grouping parameter to be considered useful.

7.2 Viterbi Algorithm

The Viterbi algorithm is well known in speech recognition.
We have applied it using simple finite-state word models similar
to those used by Bush and Kopec [Bush '85].

The cost metric used by the Viterbi algorithm in finding a
best model-based segmentation is — log Pr[codeword |state], as
in our basic method. The state tables were initially trained using
segmentxtions found by Bush and Kopec’s LPC-based recognizer;
they have been retrained and modified to improve performance.
In comparing the fits of the various word models, we used mea-
sures other than total cost (probability), as described elsewhere
[Lyon '87). In particular, the average costs in each state were
given equal weight, rather than giving equal weight per unit of
time; and a term was added to account for the probability of the
duration in each state, after the best fit to each model was found.

The scores reported in Table 1 are the best of several vari-
ations. Other variations on the scoring function, for example
using total Viterbi cost or omitting durational probabilities, re-
sulted in up to twice as many errors. We were able to reduce
the error rate from 1.62% to 0.91% using the same codebook but
twice as many training repetitions (still testing only on first rep-
etitions). Testing on both repetitions from the other 56 speakers
increases the error rate to 1.46%; this doubling of training and
testing data leads to error rates as low as 1.70% in the best of
the non-time-order tests.

It is interesting that the finite-state models give a performance
that is at best only slightly better than the techniques that use
little or no time sequence information. Better techniques for
handling timing and dynamics are clearly still needed.

In a later test, training talkers were grouped into two clusters
based on codeword occurrence histograms accumulated across
all of their utterances, and separate state models were trained
on each cluster. It was found that the two clusters (found by
K-means algorithm) partitioned the talkers almost perfectly into
males and females. Recognition using both sets of models pro-
vided no significant difference from using a single set of models,
contrary to our positive experience with separate male and fe-
male models in an LPC-based digit recognizer. This is probably
due to the fact that the vocalic auditory spectra resolve har-
monics enough to distinguish high and low pitches, so that the
simple non-parametric techniques already separate male from fe-
male fairly well.

Finally, training on two repetitions from all 112 training talk-
ers and testing on 113 new talkers (first reps ouly), the error rate
is reduced to only 0.89% (11 errors in 1243). The second reps
are expected to lead to up to twice as many errors, based on our
experience with the 112 training talkers, so the net system per-
formance is estimated at not worse than 33 errors in 2486 (which
shculd be compared with TI's best published result of only 14 .
errors in 2486 tokens [Bochieri et al. '36]).
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Recognition OR-Grouping Time P
Method Original | 0.95 | 0.80 | Order o
Basic Method T 94.97% 05.45% 95.20% | No t‘_f;
... with Compression || 96.76% 96.10% 94.64% | No M
... with Necessity 94.16% 95.62% 96.10% | No &
... with Ranges 94.81% 97.24% 95.94% | No R
Time Splitting 96.10% 95.94% 96.27% | Some ot
... with Necessity 54.81% 96.43% 97.56% | Some C‘\'v'ﬂ
...with Ranges 95.78% 98.05% 97.56% | Some ti{
Viterbi Algorithm 98.38% 94.16% — | Yes h"

Table 1: Recognition percentage for 616 test utterances. Group-
ing numbers are the coverage-proportion values from Section 5.1

Recognition OR-Grouping
L Method Original | 0.80 Unordered | 0.80 Ordered

Basic Method 95.54% 96.19% 96.02%
... with Compression 97.40% 96.02% 96.50%
... with Necessity 94.40% 96.83% 96.43%
... with Ranges 97.56% — 97.48%
... with AND-Grouping — — 98.05%
Time Splitting 96.92% 96.92% 96.59%
... with Compression 98.38% 57.32% 97.73%
... with Ranges 97.65% - 98.05%
Viterbi Algorithm 98.54% = —

Table 2: Recognition percentages for 1232 test utterances. Half
of these utterance were used for Table 1. The other half are the
second repetitions.

8 Neural Equivalents

The four variations to the basic method were produced by a
simple neural modelling paradigm. Given a numerical system like
the Basic Method we describe the system as a neural network,
find some way to rnake this network more realistic, and then test
the numerical system version of the more realistic neural network.

We consider the Basic Method (Section 4) to be equivalent to
a neural network in which each codeword corresponds to an input
neuron, and each vocabulary word corresponds to an output neu-
ron. Under this equivalence, input neurons fires once each time
their codewords occur in the test utterance. Input neuron cw is
connectgd to output neuron { by a linear excitatory synapse of
weight V;(cw). Output neurons sum their inputs, and the number
of the cell with the lowest value (most probable) is our guess.

The OR-groupings (Section 5.1) were inspired by a kind of
connectionist model in which each input neuron excites the set of
output neurons with which it is associated. Each output neuron
then excites its input neurons. We believed that such a system
would ultimately make indistiguishable the input neurons that
belong to the same set of output neurons.

Two of the other variations were motivated by the fact that
neurons are not simple linear devices. For the Compression
method (Section 5.2) we considered that the response curves of
r neurons look like bounded logarithms. We thought of the
Ranges method (Section 5.4) when we considered that real neural
pools tend to divide the numbers they encode into approximate
log ranges [Brooks '86, Chapters 3 and 4]. Thus for each code-
word we would expect one neuron to fire when the codeword does
not occur, one to be sensitive to a small number of occurrences,
another to fire in proportion to a larger range of occurrences, and
another that only fires during large inputs.




9 Conclusions

It is clear that our cochlear model provides an adequate, if not
superior, spectral representation. The unexpectedly good perfor-
mance of the simple methods implies that the cochleagrams are
effectively separating phonetic units. Furthermore, the cochlea-
grams appear to be better at separating phonetic units than LPC
spectra.

The results of our other non-time-order experiments are in-
triguing,. We now know that there exists a vector quantizer that
maps utterance histograms to words with at least 98.3% accuracy
(Section 5.5). Although our direct quantizer experiments are in-
complete, it appears as though the K-means algorithm cannot
reach this level of accuracy. If that is the case, then we can
perhaps achieve a substantial improvement by using a better
quantizer on the cochleagrams. By analogy with our recogni-
tion methods, we expect that we can improvement the K-means
algorithm by assigning different weights to each dimension and
by feeding back the distribution of each vocabulary word with
respect to each codeword.

It is important to note that we have many results ranging
from 9% to 90%. The methods reported here are methods that
worked, and the methods that worked have generally been neu-
rally motivated. At worst we have a way of thinking about the
problem that leads to some solutions. At best, the brain uses the
only possible solution, and we are using a non-random means of
finding that solution.

The most difficult remaining cuestion is how to handle time
order information. The proximity of our Viterbi results to the
results that used little or no time order information forces us
to conclude either that time order information is not so useful
as had been thought, or that the Viterbi algorithm with simple
word models does not use it very effectively. If we suppose that
the AND-grouping method (Section 5.5) uses most of the time
information — namely, the codeword durations and the codeword
co-occurances, then it seems that the actual order in which code-
words occur is not terribly important. On the other hand, this is
the only time information available to th- time splitting method
(Section 7.1), which was able to out-perfo..a all methods except
the Viterbi algorithm. Thus we cannot call any particular piece
of information crucial. In this situation our best option is to go
back and insure that each component of our system is exception-
ally well done. For this reason we believe that the next set of
experiments should involve different quantizations of the original
cochleagrams.
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ABSTRACT

Speech recognition algorithms employing a similarity mea-
sure between the input speech utterance and the stored reference
patterns to determine recognition of a word/sentence are compu-
tationally intensive. The instantaneous vocabulary size that can
be handled in real-time is relatively small. This limitation can
be alleviated by either using multiple programmable processors
or by using special purpose hardware to handle the computation-
intensive tasks. In a research environment the former approach
is preferred, because improvements to the algorithm can rapidly
be incorporated and their effects studied in real-time. Texas In-
struments has developed a multiple-processor architecture based
on the TMS32020 DSP, called Odyssey, that interfaces with Ex-
plorer, a symbolic computer. This paper addresses the issues in-
volved in partitioning and allocating tasks in a multiple-processor
envircnment to maximise throughput, and discusses the imple-
mentation of a grammar-driven speaker-dependent connected-
word recognizer (GDCWR) as an example application that uses
the power of multiple processors.

Introduction

Many speech recognition algorithms extract a feature vector
from the input sigual at a rate of 25 to 50 times per second
[1]. Vocabulary words may then be represenied by sequences
of feature vectors each representing the spectral content of the
signal over a short period of time called a frame. In the recog-
nition process, new feature vectors are computed at the frame
rate(25 to 50 Hz) and compared to every reference vector in ev-
ery vocabulary word. Comparision involves Euclidean distances
between N-element vectors, where N is typically between 10 to
20, and dynamic programming to optimally time-align reference
vectors with the input speech vector. This process is computa-
tionally demanding and limits the size of the active vocabulary
that can be processed in real-time. One way to overcome this lim-
itation is to use multiple programmable processors to distribute

!

this loading. Texas Instruments has developed a multiple pro-
cessor architecture called Odyssey. In a research environment,
the multi-processor programmability is extremely desirable since
such an architecture can be used as a protype to test and evaluate
advanced robust speech recognition/DSP algorithms.

The Odyssey system (2] is an expandable, multiple digital sig-
nal processor (DSP) architecture based on the TMS32020 pro-
grammable microcomputer(3]. Key features of the board are:
20 million multiply/accumulates per second, 512K bytes of data
space, and expandability to 16 boards on a NuBus host.

The Odyssey host is Texas Instruments’ Explorer(4], a LISP
machine workstation. Software has been provided which extends
the high productivity environment of the Explorer into the area
of digital signal processing. This provides an environment to
perform many intelligent signal processing tasks by associating
meaningful relationships between quantitative (signal process-
ing) and qualitative (symbolic processing) entities to develop
inferences using expert system technology. Applications such
as grammar-driven connected-speech recognition, neural network
simulation, and generation of speech with natural language gen-
eration techniques are some of the tasks that can utilize the com-
putation] power of the mutiple DSP and symbolic processing.

Grammar-Driven Connected-Word Recognizer
(GDCWR)

Figure 1 shows a block diagram of - GDCWR system (5].
An isolated recognizer outputs all th: words that are hypoth-
esized along with their corresponding distance scores and esti-
mated durations. The basic technology of the word recognizer is
a modification of the original Texas Instruments LPC-based iso-
lated word recognition system(5]. The sentevice hypothesizer con-
structs probable sentences from the word hypotheses and their
time marks, and invokes grammatical constraints to consider only
the admissable paths to output a recognized sentence with the
lowest distance acore. The list of possible zubsentences is pruned
to minimize both memory and proceswsing requirements. The
distance measure for the sentence has three parts: the first com-

Inp ) WORD
Speech | HYPOTHESIZER
WORD
TEMPLATES

SENTENCE Recognized
i
HYPOTHESIZER Sentence
A
|
GRAMMAR

Figure 1: Block diagram showing the components of the Grammar-Driven Connected Word Recognizer.
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Figure 2: Task Partitioning

ponent is the sum of individual word distance scores multiplied
by corresponding word durations; the second is a penalty for
overlap or underlap of adjacent words; and the third is a silence
(null speech) distance measure. An important feature of the rec-
ognizer is that the sentence hypothesizer does not control the
isolated word recoy;nizer by any feedback. This ensures that all
information is preserved for late binding and possible recovery
from higher level errors.

The loading of the similarity measurements is a fixed pre-
dictable function of the vocabulary size whereas the loading of
the sentence hypothesizer is not fixed and is a function of the size
and complexity of the grammar and the input utterance.

Task Partitioning and Allocation

In an ideal multiple processor environment one would expect
the throughput of the system to increase linearly as the number
of processors increases. However, this is not always true. In
practice, the throughput in a multiple processor system increases
significantly only for the first few additional processors and in fact
begins to decrease after a certain number of processors [6]. This
is due to increased interprocessor communication (IPC). This
occurs when software modules, resident on different processors,
need to communicate with each other. Communication protocols,
management of storage, waiting time in queues etc. all contribute

121

to the overhead. This overhead grows rapidly with large num-
bers of highly interacting processors and the system throughput
actually begins to decrease. This is referred to as the saturation
effect.

The designer is now faced with a dilemma. In order to exploit
the computing resources offered by the multiple processor system
he needs to balance the load. But balancing the load creates
interprocessor overhead which needs to be kept as low as possible.
One way to compromise these two conflicting factors is to allocate
closely related software modules to the same processor and keep
the communication between processors to a bare minimum. This
demands a thorough understanding of the algorithm and the flow
of data involved.

The first step is to partition the algorithminto several individ-
ual sub-tasks or modules. For example, GDCWR has been split
up into several subroutines which have been arbitrarily named
A, B, C, etc. Subroutine A calculates the 11 autocorrelation
values from a frame of digitized speech samples, B is a routine
that computes the reflection coeffecients and so on. These sub-
routines, represented by circles, are shown in Figure 2 and are
connected in accordance with the flow of data. The number of
words being passed from one sub-routine to another on a per
frame basis represents the inter-module communication and has
been placed on the connecting arcs. This process is known as
task partitioning.




Once the task partitioning is completed, the next step is to
allocate these modules to different processors so that the system
throughput is maximized. This is known as task allocation. It
is during this phase of the design that one has to halance the
two conflicting factors of load distribution and minirmum inter-
processor communication. To maximize throughput, the individ-
ual processors should be ahle to run autonomously to the extent
possible.

The first step in task allocation is to identify those routines
that are closely related and/or communicate with one another
extensively. In Figure 2 routines A, B, C, E , F and I are closely
related and therefore fused together to form a higger module
called the Preprocessor which is allocated to one processor. It
was found that H contributes to more than 50% of the loading
and limits the vocahulary size. An entire processor must there-
fore he devoted to doing H. However, there is considerable traffic
between H and P and interprocessor communication would be in-
creased if these routines were resident on different processors. H
and P are therefore fused together to form a bigger module called
the Word Hypothesizer and allocated to the another processor.
U is a routine that could be allocated to the Word Hypothesizer
or the Preprocessor, but since we wish to allocate as much CPU
time to the Word Hypothesizer as possible to do the similarity
measurements, U is allocated to the Preprocessor. The remain-
ing routines G and S comprise the Sentence Recognizer and are
allocated to another processor. This completes the task alloca-
tion of the CWR software. The basic recognition system there-
fore requires three processors vis., the Preprocessor, the Word
Hypothesizer and the Sentence Hypothesizer. The parallelism
offered by a multiprecessor architecture can now be utilized to
increase the active vocabulary size by the concurrent execution
of the Word Hypothesizer on two or more precessors with each
processor addressing a smaller suhset of the vocabulary.

Figure 3 shows the allocation of tasks to different processors
on one Cdyssey board. Processor 0 is the Preprocessor, Proces-
sors 1 and 2 are the Word Hypothesizers and Processor 3 is the
Sentence Hypothesizer. Note that all word hypothesizers operate
on tue same data from the preprocessor, and communicate with
a single sentence hypothesizer. A single Odyssey is capable of
recognizing about 100 words. Each additional board is capable
of addressing 200 words each.

In designing real-time systems one tends to optimize the en-
tire software. Optimization of real-time software, though desir-
able, may not necessarily be practical. The resulting increase in
processing efficiency does not justify the effort required to opti-
mize all the code. It is often found that there are only a few
sections of code where a large percentage of the total processing
time is spent. Hence, efforts should he directed towards optimiz-
ing only these small sections of the code. For example, in the
Word Hypothesizer module, it was found that 90 % of the time
was spent in the distance measuring routine that compared the
input speech with the stored references. Consequently only this
module was optimized.

Multi-processor software should be designed so that it can be
er " debugged. As with most computer systems the design and
specification of a multiprocessor system is done top-down and

- debugged bottom-up. Thus it is important that one he able to
debug the module associated with each processor individually. In
the GDC'WR implementation, each processor module is designed
to communicate via [/O buffers. During the debug process, the
input huffer is filled with canned data and the processor is made
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to execute its function. The output buffer can then be examined
for correctness. Using this technique each processor module can
be tested prior to integration of the entire application.

Performance Testing

The performance of a connected word recognizer is extremely
difficult to quantify because of the lack of accepted data hase
and measurement standards. However, Texas Instruments has
done a limited amount of testing on this algorithm using an in-
ternally developed connected digit data-base. The data used to
test the algorithm consisted of 20 speakers reading 5-digit strings.
A total of 2000 strings were tested. Two application scenarios
are of interest — those applications where the length of the digit
sequence is unknown and those (like telephone numbers for ex-
ample) where the length of the sequence is known. The results
of the test are summarized below :

UNKNOWN LENGTH : 5.2% sentence error rate
1.1% word error rate

KNOWN LENGTH : 3.4% sentence error rate
0.7% word error rate.
Note that the word error rate for digit strings of known length

approaches that achieved for the hest isolated word systems,

Conclusions

We have presented the issues involved in partitioning and allo-
cating tasks in a multiprocessor environment and have discussed
in detail the implementation of a connected word recognizer on
the Odyssey/Explorer system. Each word hypothesizer is capa-
ble of addressing about 50 words providing a 100 word capahility
for the first Odyssey board and 200 words for each additional
board.
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