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Benzenoid hydrocarbons are studied in terms of the much simpler caterpillar

trees.

Using molecular connectivity indices of the latter almost exact linear

relations are obtained with natural logarithms of five properties of benzenoid

hydrocarbons including all self-avoiding paths, conjugated circuits, number of

Kekulé structures, electronic absorption spectra, and heats of atomizations.
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1. Introduction and definitions

One of the main goals of every science is the endeavoring to arrange and
collate the numerous individual observations and details which present themselves,
in order that they become part of one comprehensive picture.1 Such an objective

may be achieved through the use of data reduction which is an essential part

of chemical and physical data analysis. In the past the task of data reduction
involved mainly curve fitting procedures which have recently become more
efficient due to increased availability of computers. Topological approaches
which consider additivities of molecular properties have been almost ignored
in the past. However some recognition of the role of graph theory became
apparent soon after the (important) work of Smolenskii and (to a lesser degree)
the work of Gordon and Kennedy3 who formalized their schemes of general
approaches to molecular additivities. Revival of interest in chemical graph theory
is probably due to Balaban via his (editing) of a book4 which provided a source
of problems and numerous other papers. Several counting polynomials were defined
which act as descriptors of the connectivity pattern of various types of molecular
graphs. The latters are well-defined mathematical objects which describe the
bonding relation between atoms in the original molecules. Such counting
polynomials are then a combinatorial form of data reduction. Equation 1 describes
the general form of a graph-theoretical counting polynomialS, F(G;x), for an
arbitrary graph G, containing n vertices:

M
FGx = g o 0(G;k) xflk,n) @)

k=0

where p is either 1 or (-1K, 8(G;k) enumerates-certain selected graph-invariants

in G taken in k independent tuples (i.e. no two of them are adjacent) and M is
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the maximal value of k. For the purpose of this paper we consider three

polynomials for all of which o= 1and f(k,n) = n. These are:

i) The counting polynomial (of Hosoya)®, H(G;x) for which &Gk) = p(G:k) =
the number of k-matchings in G.

ii) The sextet polynomial (of Hosoya and Yamaguchi)7, o(B;x) of which ¢ (G;k)
= r(B;k) = the number of selections of k mutually resonant but nonadjacent
aromatic sextet in a benzenoid system ( = polyhex grapha), B.

ili) The independence polynomial (of Gutman)?d, 4 (G;x), for which 8(G;k) = O(G;k)
= the number of selections of k independent vertices of C.

2. The Caterpillar Treew, the Polyhex Graph11 and the Clar Graph9:12'

In a given Kekulé structure an (aromatic) sextet is defined as a set of three
double bonds circularly conjugated so that no two sextets can have a common
bond. When two rings (hexagons) can have aromatic sextets so that all other
carbon atoms are spanned by a sextet or by double bond, such two rings are called
resonant.9.12 The individual hexagons of a given benzenoid system may or may
not be resonant’. Information on such resonance relations (among the individual
hexagons) are best "reduced” (i.e. described) using either a caterpillar tree 10
or a Clar graph.9 To illustrate this fundamental relation13 we consider the three

graphs shown below:
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The hexagons of B may be grouped into three subsets, viz., {1,2,3); ( 4,5,6,7,8); .

{9,10,11,712}. One observes that no two hexagons are resonant if they belong

to one subset. Similarly the edges of T may be subdivided into analgous three X
subsets observing that no two edges of the same subset can be adjacent. A similar s

description obtains for the vertices of graphf . In fact bijective (i.e. one-to-one,
onto)14 mapping might be defined between the hexagons of B, the edges of T b

and the vertices of A: the latter is called the Clar graph9:12 of B. It is easy

to verify the following identity:

Yy
>
0 (B;x) = H(T;x) = w(A;x) = 1 +12X + 45X2 + 53%3 ¥ e
0
L.
A caterpillar tree such as T whose counting polynomial is identical to the sextet 0t
X
polynomial of a benzenoid hydrocarbon B will be called an equivalent caterpillar -
A
to the benzenoid hydrocarbon. the set of graphs { B,T,A} shown above will be :
3
called a_set of equivalent graphs. Gutman1> demonstrated that for every -
nonbranched 1 benzenoid hydrocarbon there is an "equivalent” caterpillar tree. '
o
3. Conjecture .,
-,
-“'
The physical properties of a benzenoid hydrocarbon which depend on its topological -_'_
o
structure may be predicted from graph-theorétical properties of its equivalent "o
"y
graphs. K
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4. Results and tests of Conjectures

Fig. 1 shows benzenoid hydrocarbons and their equivalent caterpillar trees studied in this work.

4.a Graph theoretical (combinatorial) properties

]
Three graph-theoretical properties of benzenoid hydrocarbons, viz.,

self-avoiding paths19, conjugated circuits20 and the number of Kekulé  structures
(i.e. number of perfect matchings) are correlated with the molecular connectivity
indices,21 x ’s of the equivalent caterpillar (or pseudocaterpillar) trees. Fig.
2 shows the types of linear correlations obtained. In all cases correlation

coefficients > 0.999 were obtained.

4b. Physical properties

Two physical properties viz., electronic absorption spectrazz, and heats

of atomizations23 of several homologous series of benzenoid hydrocarbons are
linearly correlated with X (TYs; the molecular connectivity indices21 of the
corresponding equivalent trees. Details of data are available of request17 but
as an illustraton Table 1 is included which contains 8 and p bands of the electronic
spectra of two families of hydrocarbons of Fig. 3. A separate manuscript
is submitted elsewhereZ4 dealing with electronic absorption spectra of 27 arene

systems all linearly correlated with Z(T) values. The same type of data reduction

is obtainable?7 when molecular properties (topological or physical) of benzenoid
hydrocarbons are studied in terms of connectivity functions of their equivalent

Clar graphs.25 Fig. 4 is a plot of heats of atomizations of some benzenoid

hydrocarbons versus connectivity indices of the corresponding caterpillar trees.
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6. Discussion

Caterpillar trees and Clar graphs seem to be quite promising “storage
devices" which preserve many properties of (the much larger) equivalent polyhex
graphs. In contrast to the Balaban-Harary dualist graph526 they do not have
a geometric element and as such, connectivity alone best describes them. It
is amazing that some of the studied properties such as the total number of paths19
in a polyhex graph (Fig. 2) take nearly 30 minutes on a Corona computer,27
yet can be retrieved by very simple hand calculation of the connectivity index
of a much simpler graph! Table 2 lists percent retrievals of the totAaI number
of self-avoiding paths for a series of nonbranched benzenoid hydrocarbons shown
in Fig. 1. All the above mentioned correlations imply classification of molecules
into families (i.e. homologous series). The concept of classification is well-known
in science: the periodic table of the elements and recently table of alkanes
introduced by Randi¢ and Wilkins28 and more recently table . of benzenoid
hydrocarbons of Dias29 are all non-mathematical forms of set theory. However

in constrast to the latter two tables,. which result from graph theoretical

considerations, the "old" periodic table is a result of group thedry as it follows

from symmetry properties of atoms.
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Electron absorption spectra of the 8 bands, Ag » of the homologous series of

benzenoid hydrocarbons shown in Fig. 3. X(TYs are molecular connectivity indices

of the equivalent pseudocaterpillar trees.

t“.o .o'll N .n' )‘ ‘

Hydrocarbon®  X(T) A8 (A) A p(A)
A 3.914 2570
B 4.684 2870
C 5.293 3130
D 5.812 3430
1 1.000 2068
2 1.414 2850
3 1.732 3745
4 2.000 4710
5 2.236 5755
6 2.449 6930
ec.f. Fig. 3
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Table 2

Percent retrieval of the total number of self-avoiding paths for the series of
nonbranched benzenoid hydrocarbons shown in Fig. 2. The regression line is Y

= 4,374 + 0.484X with a correlation coefficient = 1.0000.

Hydrocarbon®*  Calcd. £p;(B)*  Actualr p;(B)* Difference % Retrievala)
E 3254 3277 23 99,298
F 7391 7413 22 99.704
G 16055 16055 0 100.000.
H 33827 33879 52 99.846
| 69675 69857 182 99.740
J 141060 142645 1585 98.889
*c.f. Fig. 2

a) = 100 - 100 | Calcd-Actual| /Actual
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Polyhex graphs of benzenoid hydrocarbons studied in this work together with

the molecular graphs of their corresponding caterpillar trees.

Combinatorial properties of benzenoid hydrocarbons studied: K(B), Ip(B) and
I Ryor(B) respectively indicate number of Kekulé structures, total number of
self-avoiding paths and total number of conjugated circuits of a benzenoid system,
B, plotted versus the connectivity index of the corresponding caterpillar tree,
X(T) raised to various powers. (The hydrocarbons and their caterpillars are shown

in Fig. .

Electronic absorption spectra of benzenoid hydrocarbons: Points 1-6 indicate
benzene, naphthalene, anthracene, tetracene, pentacene and hexacene; the line
passing through these points is a plot of their absorption para band (in In units)
vs. the connectivity index of the corresponding caterpillar trees, X(T). The line
passing through points A-D is a plot of the beta band vs. X(T) where the

hydrocarbons and their trees are shown in Fig. 1.

Fig. 4
A plot of the natural logarithms of the heats of atomizations of some benzenoid

hydrocarbons, In Ht At(B), against the connectivity indices, X(TYs, of the

corresponding caterpillar trees shown in Fig. 1.
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