






GUIDING OF ELECTRON BEANS BY HOLLOW CONDUCTING CHANNELS

I. Introduction

An electron beam propagating inside a metallic pipe experiences

magnetic centering forces caused by return currents induced in the pipe

wall. This has led to the suggestion that an annular conducting channel,

created by a laser or other means, could guide and possibly stabilize

relativistic electron beams propagating through dense gases.I - 3 A

potential application is in inertial confinement fusion reactors where

multiple beams from isolated diodes propagate through several meters of a

dense shielding gas toward a common target. 4 Advantages of hollow-channel

guidance over other proposed schemes4 - 7 are that it is electrodeless and

requires no additional power supplies, it is compatible with the need for a

dense shielding gas, it improves beam stability, it can be used

repetitively, and the laser light producing the channel can lie outside the

target and need not interact with it.

In this paper we provide a theoretical basis for hollow-channel

guidance and for the major processes affecting it. The analysis is

restricted to gas densities sufficiently high that a scalar conductivity

adequately describes the channel electrical properties. To understand the

interaction between a beam and hollow channel, we consider a rigid-rod beam

that is displaced from the channel axis but propagates inside. The

displaced beam experiences a transverse force that is termed "tracking" if

the force acts to center the beam in the channel, and is termed

"detracking" othervise. The magnitude and duration of the force are

computed analytically and are used to estimate the channel conditions

needed for successful guidance. Several channel configurations (thin and

Manuscript approved April 6. 1987

II

- ~ -



thick annuli, rarefied annuli, and a magnetic cage) are considered.

Preliminary computer simulations are presented to support the analysis.

All of these tracking schemes are passive in that they rely on channel

currents induced by the beam. Not discussed is active magnetic guidance

from channel currents that are externally driven. The dynamical response

of the beam to the channel forces will be presented in a later paper.

2. Tracking in a Metallic Pipe

To illustrate the nature and magnitude of magnetic tracking, consider

a beam propagating inside a perfectly conducting, hollow metallic pipe.

Injection of the displaced beam into the pipe induces an image current and

charge on the pipe. The pipe return current Ic magnetically repels the

beam current Ib, while the distributed pipe charge Qc electrostatically

attracts the distributed beam charge Ib/fC. Here fc is the axial beam

velocity which is taken to be everywhere constant. If the pipe is

evacuated and infinitely long with no conducting end plates, 0c 4 Ic/OC

and the electrostatic forces overcome the magnetic forces to order

y-2 1 1 - 2<< 1. The net transverse force on the beam is then weak but

detracking and propels the beam into the pipe wall. Self-forces similarly

cause the beam to slowly expand.

If the pipe is filled with dense gas, the beam will ionize the gas and

generate conductivity ab in the immediate vicinity of the beam. This

conductivity shorts out the electrostatic fields and forces on the beam,

while simultaneously freezing in the magnetic fields and forces. As a

result, the beam begins to magnetically pinch and track the pipe center

within a charge neutralization time given by

T = I/4 nb (1)
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Beam ionization causes %b to rise rapidly so that the charge-neutralization

time for an intense beam in a dense gas is typically subnanosecond. We

shall henceforth generally ignore electrostatic effects unless explicitly

stated otherwise.

To determine the magnitude of the magnetic tracking force, consider a

beam of fixed radius ab that lies wholly inside a pipe of inner radius

ac > ab* The beam is displaced to an off-axis location y < ac-ab. In

addition to the pipe current I , the beam induces a return plasma current

I in the ionized gas. If the beam and plasma currents are assumed to beP

azimuthally symmetric about the displaced axis = , the axial vector

potential from these currents is given by

AI( 1 ) = c ln - (2)

where d is a scale length determined by the boundary conditions and

I( 1r-yA)is the net current flowing within a radius J ±-yj about the y

axis. Observe that the beam-centered plasma current I produces no netp

tracking force on the beam, although it does alter the magnetic pinch force

on the beam. Any asymmetry in the plasma current would, of course, produce

additional tracking or detracking forces. We show in Sec. 3 that these

forces are often small provided the plasma conductivity ab remains centered

about the beam. Forces from the plasma currents become important, however,

once the beam begins to track (or hose).

Because the beam and plasma currents reside off axis, the induced pipe

current I is distributed asymmetrically. This asymmetry gives rise to a

magnetic centering force on the beam that can be computed by replacing the

pipe by an image line-current Ic located at ,= . The image line-

current generates an axial vector potential given by8
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I l r' 12)
Az~i~=SIn1  i- (3)z2. - n[ T I d,

where d' is another normalization length. The pipe boundary condition for

the total vector potential is

Azi + Az2 = 0 (4)

at r = a c . Combining Eqs. (2)-(4) produces, after some algebraic

manipulation, the following results:

Ic = - In? (5)

V = (ac/Y) 2 (6)

and

d'/d = ac/Y (7)

where In = Ib + Ip is the net current. The total current, Ib + Ip + Ic,

equals zero.

The image line-current Ic located at y' repels the beam current Ib

located at X with a distributed force given by

2 bIc 2 1bInb2 '-z) = - 2 222 (8)c Iz-zlc acy

The average magnetic tracking force per beam electron is thus

FM c 2 2 K (9)
c -
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where Nb = - Ib/efc is the beam line density. Result (9) characterizes the

maximum magnetic tracking force that a hollow conducting channel can exert

on a beam. Note that Fm attains a magnitude comparable to the average

monopole pinch force, F. = e0In/abc, as the displacement y 4 ac-ab*

Although the transverse beam force is tracking, the transverse force

on the counter-flowing plasma current I is detracking. In a dense gas theP

plasma channel does not physically displace, but the plasma electrons

instead establish a Hall electrostatic field to offset the magnetic

detracking force:

2vd I

-H 2 2 2
c ac-y

where vd is the axial plasma-electron drift velocity. This Hall field

produces a weak detracking force on the beam electrons which can be ignored

to order

- eE H/Fm = V d /C << 1. (I

The force would be tracking if the beam and plasma current-carriers were

oppositely charged. The Hall effect also produces a slight lateral shift

in the plasma current that has a yet weaker influence on tracking.

3. Tracking in a Conducting Gaseous Annulus

Replacing the metallic pipe with a preionized and conducting gaseous

annulus introduces three new features. Two arise from the finite

conductance of the annulus. The third arises from the tenuousness of the

annulus which permits beam electrons to easily penetrate it.
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The first new feature is that electrostatic fields between the inner

and ouer radii of the annulus are no longer fully suppressed. These

fields reduce the return current carried by the annulus and thereby reduce

the magnetic tracking force on the beam. Although the channel charge and

corresponding electrostatic detracking force are similarly reduced, an

additional detracking force arises from bipolar charging of the channel.

Positive and negative charge sheaths form on the inner and outer channel

edges, respectively, to produce an electrostatic detracking force that is

the analogue of the tracking force produced by solid channels.9  A very low

conductivity in a hollow channel thus produces a net beam force that is

initially detracking although weak.

The second new feature is that magnetic flux diffuses through the

resistive annulus. Any azimuthal asymmetry in the channel current thus

relaxes on a finite channel dipole decay time tcl* Because a symmetric

channel current produces no fields or forces on beam electrons inside the

channel, the channel tracking force relaxes on tcl* The integrated channel

current I relaxes on a channel monopole time T which is usually longer,c co

tco > cl"

Spreading of the beam through the gaseous channel is the third new

feature. A circular ring of beam current which lies entirely outside the

channel produces zero electromagnetic field inside the ring, due to the

assumed azimuthal symmetry of the beam. Such a ring thus experiences zero

net force from the channel. A ring which passes through the channel always

experiences, however, a detracking force caused by channel return current

flowing outside the ring; see Fig. 1. The net magnetic force on a beam

with an extended radial profile is thus comprised of a tracking component

from beam rings inside the channel, and a detracking component from beam
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rings intersecting the channel. At late times only the detracking

component survives. The detracking effect from the beam wings was ignored

in deriving Eq. (9).

These new features suggest that a conducting annular channel can

strongly guide an electron beam only if three conditions are met. First,

the channel should have sufficient conductivity ac to suppress internal

electrostatic fields: typically,

4na a /c > 1 (12)

where ac is the inner channel radius. Otherwise, electrostatic detracking

of the beam head may take place.

Second, the magnetic tracking force from the channel current should

persist longer than the electrostatic detracking force from the channel

charge. Strong magnetic tracking can thus occur only if the channel

magnetic dipole decay time exceeds the beam charge-neutralization time,

T cl > . (13)

At the beam pinch point where
1 0

4 nababp/C = 1, (14)

condition (13) reduces with the help of definition (1) to

T cl > abp/C. (15)

Here abp is the beam radius at the pinch point.

The third condition is that the annulus should lie outside the beam to

minimize magnetic detracking by the beam wings:

I
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a > + Y. (16)C abp +Y

If the latter condition is not met, the hollow channel can act as a solid

channel and eject the beam via magnetic repulsion from the opposing channel

current. Increasing the inner channel radius to much beyond requirement

(16) decreases, however, the tracking force as Eq. (9) demonstrates.

Optimal beam guidance is therefore expected to occur when

1 < a c/abp < 2. (17)

When conditions (12), (15) and (16) are satisfied, the net force on

the beam head is tracking and remains tracking (in dense gases) to beyond

the pinch point. After the pinch point, magnetic coupling forces become

strong and can overcome any residual detracking force arising from beam-

channel overlap. The coupling forces thus cause the beam body to follow

the head. These same coupling forces also give rise to the resistive hose

instability I'1 2 briefly discussed in Sec. 3.4.

3.1 Linearized Analysis

Investigating the consequences of condition (15) requires computation

of the channel dipole decay time x cl" To compute this time and to analyze

* the problem in further detail, we use Ampere's law for the axial vector

potential A :

V2 A 4n A (8
VAz c (b A- z (18

where Jb is the beam current density, a is the plasma conductivity, and

a ct-z is the distance behind the beam head. Here we have employed both

the ultrarelativistic frozen approximation,

8
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crb(r,0,) = b(r, , y !O OO+(21c)

where r' =1 - we treat the dipole terms as small perturbations and

set r' - r. Inserting expansion (21) into Eq. (18) then yields

1_ aA 0  4n - A 1
rrr r c - i - (Ob + a) a (22)

for the monopole potential A0, and

- -T ri -= - y _2 + (a + a) (23)
3r r ar 1 [-I r aC b c a

for the dipole potential AV.

Each beam electron experiences a transverse magnetic force given by

Fm -eO jz (24)

The average tracking force for the entire beam is thus

Fm eJ~d i lb -ljz

2n
!~ Az sine 3A

eojdr r A .d IcLb ose _ z (25)

j'Ib C 3r r ae
0 0

where y is the unit displacement vector. Substituting expansion (21) Into

Eq. (25) produces

Fm fd r ~) y L- b 0] (26)
I 'b * j r ar ar

0
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Integrating both terms by parts and using the dipole boundary condition,

Lim L rAj) - 0,(27)
Ort

ve obtain

81 b A 1

1dJ _ L rA - y r (28)
-F m  P [ b k r Or r O'r "

0

Here the beam radial profile is defined by

r

Ib(r,) - Jdr 2nr Jb(r, )/Ib(C). (29)

0

Substituting expressions (22) and (23) into Eq. (28) produces

!r- b !------+I!A,F - 2ne d l- b -Y " + a
0

+ y b- (bj + ) 0 (30)

Integrating the first two terms by parts reduces this to

OD !__r A, 31 !Ao Al 1bFM 2n3dra _( 3r 3 _ b +Ia (1Jj[bcc ac .r +1 K b (31)

0

vhere

aA
Alb A 1 + Y Or0 (32)
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Result (31) for the average magnetic deflection force F has the
U

following physical basis. The first term in the integrand, Ib ac 8AI1/c

represents the contribution from channel dipole currents that produce the

channel tracking force previously described. The second term,

-y aIb/ 3r c BAo/aC, represents the channel detracking force caused by

overlap of the beam current (Jb w 3 Ib/ar) and the channel current

(Jc = - c A 0A/aQ) The last term, Ib ab Alb/8C, arises from plasma

current in the beam-centered conductivity ab" This plasma current produces

a net transverse force on the beam only if it is asymmetrically distributed

with respect to the beam. Here Alb is the dipole potential for an

expansion about the beam axis = " This potential is defined by

Eq. (32) and satisfies

In 8a 4C BA 0 aAo lbrAlb = " r b c) (33)

3.2 Thin Annulus ("Resistive Pipe")

The magnitude and duration of the tracking and detracking components

of F can be computed using Eqs. (22), (23), and (33). To further simplify~m

the problem, consider first a narrow channel with a specified distributed

resistance R cM):

a c(r) = S(r - ac )/2nacR cM) (34)

where 6 is the Dirac delta function. Inserting this form into Eq. (23),

applying boundary condition (27) and definition (32), and performing two

radial integrations yields for the channel dipole potential

12
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A jafdr rldr !A-[ + y L - A

0 r

+ C0 bi (A~ + y Fj

1 c Ia 121a ( c
9CCR C aC

a

4n Cdr rjdr a L Aib (35)

o r

Here the net current flowing just inside the channel is given by

a

= ] dr 2nr(b-b A0 ). (36)

Inspection of the term on the left and the first term on the right of

Eq. (35) indicates that A1(ac,Q) relaxes on a characteristic dipole decay

length given by

=I l 1/R C . (37)

The channel dipole current and tracking force relax similarly.

Applying the same technique to Eq. (22) yields for the channel

monopole potential

A (a 'Q 2 ln(b/a C) A( 2 Jb rI ,Q (8
0oa, C R c coa~ ac o cj c r ,) (8

a
c
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where b > a is the monopole boundary radius and I(r,) is the net current,C

exclusive of the channel current, flowing within radius r:

r
r 8A

I(r,) a Jdr 2nr(b - b (39)

0

Inspection of Eq. (38) indicates that the channel monopole potential,

field, and current relax on a characteristic monopole decay length given by

CTc = (2/Rcc)ln(b/a ). (40)

The channel monopole and dipole decay times are thus related by

T colcl = 2 ln(b/ac). (41)

The boundary radius b in these equations is where the monopole

electric field falls to zero:

E zo(b,) = 0. (42a)

In the magnetostatic limit considered here, we impose the equivalent

condition that

A = 0 (42b)0

for all r > b. In the absence of external return-current structures, as

was assumed for the dipole boundary condition (28), the monopole boundary

radius b equals the vacuum radius bva c where the conductivity becomes too

low to neutralize the space-charge fields. Typically,

4nar/c < 0.1 (43)

for all r > bvac > a c . If a metallic pipe or similar structure is present

at a radius b pipe the boundary b equals the lesser of bpipe and bva c .

More importantly, the dipole boundary condition (28) must then be replaced

14



with the requirement that A1 (bpipe',) 0 0. This requirement gives rise to

an additional magnetic tracking force caused by return currents induced in

the pipe.

We have thus far shown that the channel tracking force, as represented

by the first term in the integrand of Eq. (31), relaxes on a channel dipole

2time rc - 1/Rc c . The second term, which represents a detracking force

from beam-channel overlap, relaxes more slowly on a channel monopole time

Ico > Tcl" The detracking force is small, however, if the overlap is

small. From Eqs. (31), (35) and (38) one can show that the ratio of the

overlap detracking force to the tracking force is initially given by

IFco/FtI = Ma2Jb(a ,)/Ib(a,) 1 (44)

where Ib(ac, ) is the beam current within r = a . This result can also be

inferred by using Fig. 1 to estimate the detracking force from beam-channel

overlap and comparing it to the tracking force given by Eq. (9). For the

infinitesimally thin channels considered here, the net channel tracking

force is maximized for Bennett or flat-topped beams when ac = a . For

channels of finite breadth, maximum tracking is generally realized when

condition (17) is satisfied. If ac > 2abp + y, the detracking force can

usually be neglected altogether.

We have yet to assess th- last term in Eq. (31) which represents the

dipole force arising from plasma current induced in the beam-generated

conductivity ab. This component of the tracking force was neglected in the

nonlinear derivation given in Sec. 2. We show here that such neglect is

often well justified, provided the beam is rigidly displaced. This

component becomes important, however, once the beam begins to track or

hose.
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is the beam-centered resistance per unit length. Equations (46) and (47b)

indicate that Alb relaxes on a characteristic dipole decay length given by

CTbl 1/RbC = ab2 /C. (49)

The detracking force from dipole currents in the beam-centered conductivity

ab [i.e., the last term in Eq. (32)] thus relaxes on a time Tbl

(Rc/Rb) cl. This detracking is short-lived and can be neglected if

Rb >> Rc , as is usually true in the beam head.

In evaluating the characteristic relaxation times for Alb and

Al(ac,), we neglected the coupling between them. Such coupling alters the

actual relaxation times and thereby alters the tracking force. The maximum

effect that Alb has on A1(ac,C) can be estimated by using Eqs. (46) and

(47b) to compute an approximate upper bound for ai/ Alb:

aAlb) (/a C) b ai(ac,Q. (0- _212a 8C (50)

max Ir/2a2 R

Substituting this upper bound into Eq. (35) produces

1 y 21(aC 'I )

Al(ac) c a A1 (ac Q) +  _ .
a cC C ,z

4n ab b b r+aC A(acQ dr r dr a i (51)
2 aur b 2 2 (1

0 r ;

where the limits in the integrands have been changed to reflect the

assumption that ab 0 for r > ab' For flat ab , we can readily evaluate

the integrals and rewrite Eq. (51) as

a2 aA (a 10 21(ac9

1 1 1 c' A (a ) (52)
a Ro - a c  c 1 ac

ct
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where a - ln(16) - 2 = 0.77. In this example, Al(ac,) thus relaxes on a
' 2

time T that is somewhat shorter than T 2/Rc

/a 2>(3

cl = 1 - (ablac) > 0.23. (53)

1

For ac > 1.5 ab, Tc > Tc/2. Moreover, if Rb >> Rc as is usually true in

the beam head, xcl 1 #cl regardless of the ratio a c/ab .

The accelerated relaxation of Al(ac,) increases the maximum channel

tracking force while decreasing its duration. The increase in magnitude

represents the reactive response of the conducting channel to the

detracking current induced in ab. The net tracking force is nonetheless

weakened. In the absence of beam-channel overlap, the maximum net tracking

force is given from Eqs. (31), (50), and (52) by

(max) [ 0.23 1 2e~yI(a CIO
Fm Il 077a 2/a2 a 2 (c4

b c acc

2 2
Here we have assumed flat Jb (i.e., Ib - r /a b) for r < ab. Except for the

term in square brackets, Eq. (54) represents the linearized equivalent of

Eq. (9) in the limit y << a c . The term in brackets represents the maximum

reduction in the tracking force from dipole currents in a If Rb >> R c

no reduction occurs, and the term in brackets should be set to unity.

3.3 Thick Annulus

Consider now the opposite limit of a broad, hollow conducting annulus

for which ac = 0 for r < a c . If we neglect both beam-channel overlap

(ab < ac) and all effects from dipole currents in ab, Eqs. (23) and (31)

reduce respectively to

18



1 a n r Vlf aL oj8 8
r-r 1 b [ + a A1, (55)

3 r 3r1 L T (b 'b aci &

and
d0

F m ne'Id (56)m c c
a

C

Here we have used definition (32) to rewrite and eliminate all terms

containing ab Alb/3C from Eq. (23), and have set Ib - 1 for r > ac in Eq.

(31).

By integrating Eq. (55) twice, we obtain with the help of Eqs. (27)

and (39) for all r < ac,

r 8A 0A

rAl =- f J dr r f dr [ (i - ab + aC -1

0 r
W0

22nr 2  LAI
2 I(r,') - c dr a a-1 (57)=c c c

a
C

where we have used the fact that a e 0 for r < a . Combining this withc c

Eq. (56) yields

2e~yI(r,C) eOA1 (r, )
Fm = 2 r (58)

rc

for all r < a c . This equation demonstrates that diffusion of the internal

dipole potential A controls the evolution of the channel tracking force.

At late times, A1 4 2yI(r,)/rc while Fm 4 0.

To estimate the characteristic relaxation rate for Fm, we take a to be

flat and constant:

19
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c(r) - aco H(r-aC) (59)

where H is the Heaviside step function. The solution to Eq. (55) for

r > ac and for constant or slowly varying I(ac ,) is then given by

2yI(a c ) -nco r2/c
A1 (r, ) = rc e (60)

Because A1 must be everywhere continuous, Eqs. (58) and (60) may be

combined at r = a to producec

2e~yI(aI )o ac 2 /cC
S() = 2 .-e J (61)

a cc

The characteristic relaxation length for the tracking force produced by a

broad hollow channel of inner radius a and conductivity a is thus

c na 2 /c. (62)

Note that the tracking force in broad channels does not follow the simple

exponential decay [exp(-C/c~cl) ] predicted for narr6w channels. The slow

decay in broad channels occurs because the dipole channel tracking current

diffuses radially outward before it decays. The diffusion is reflected in

Eqs. (60) and (61).

20
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3.4 Optimal Channel Parameters

We now restate the channel parameters needed to effect strong magnetic

tracking at the beam pinch point. We consider both broad and narrow

conducting annuli and arbitrarily assume that the beam radius at the pinch

point, as defined by condition (14), is abp = 3 cm. This is the main beam

parameter that influences the choice of optimal channel parameters.

The optimal inner channel radius is given by condition (17), which is a

compromise between channel tracking and the detracking caused by beam-

channel overlap. A reasonable choice is ac = 5 cm for abp = 3 cm.

The minimum channel conductivity needed to subdue internal channel

electrostatics is given by condition (12): a > c/4na = 5 x 108 s- for

a = 5 cm. This typically corresponds to a channel ionization fraction ofc

nec/ng > 2 x i0-7 where nec is the channel electron density and n is the

gas density. The gas is thus weakly ionized. The low degree of ionization

suggests that the channel could be created using a laser to ionize a seed
2

gas added to an inert base gas.

For thin annuli of width ac << ac, the magnetic conditions (15) and

(37) impose an upper bound on the channel resistance:

Rc < 1/abp c. (63)

This condition insures that magnetic tracking outlasts and dominates

electrostatic detracking. For a =3 cm, a channel resistance of
bp

R < 10- 1 s/cm = 10 9/cm is sufficient. To obtain low R for &a << ac c c c

requires, however, a channel conductivity much higher than stipulated by

condition (12):

21
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4noco acC = 2/Rc aCc > 2abp/6ac >> 1. (64)

Such high conductivity is difficult to establish and maintain in dense

gases. Narrow conducting hollow channels are thus often impractical for

tracking (particularly if formed by lasers or similar gas-ionization

methods).

For broad channels of width a c > a c, condition (64) is replaced by

4 nco ac/c > 4 a bp/ac  (65)

which is derived using Eqs. (15) and (62). In the present example,

condition (65) is only slightly more stringent than condition (12) and is

satisfied for a > 109 s-. The total channel resistance still satisfies

condition (63). Note that channel conductivity generated outside r = 2ac

is of little benefit to tracking (although it can aid beam stability).

Satisfying the magnetic condition (15) provides two additional

benefits. One is that the channel dipole decay time T cl is larger than

four times the beam dipole decay time Tbl at the pinch point p:

Tcl > abp/c = 4Tbl(Cp). (66)

Magnetic detracking from dipole currents in ab can therefore be safely

neglected up to and somewhat beyond the pinch point.

A second and potentially more important benefit is the impact that

condition (66) has on beam stability. The most virulent instability is

beam hose which develops when a nonrigid beam displacement gets out of

phase with the induced restoring forces. The phase delay and growth rate
11

for this instability are governed by the dipole decay time. A hollow

conducting channel increases the dipole decay time and thus imposes an

- upper bound on the hose growth rate. In the beam head where Tcl > > 'bl'

22
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hose develops as a resistive vail instability with a growth rate

proportional to x cl . In the beam body where a b becomes large and

T bl >> xcl' the usual resistive hose instability 11'12 develops with a

4"growth rate proportional to T bl 1. A hollow channel can thus reduce hose

growth in the beam head, and thereby indirectly reduce hose growth (but not

the growth rate) in the beam body. A hollow channel additionally lessens

hose instability (and axisymmetric instabilities) by reducing the

destabilizing plasma return current in the immediate vicinity of the beam. 1

Although the present analysis is restricted to rigid beams, we note that

the stabilizing influence of hollow channels has been observed both

numerically 1'13 and experimentally. 
2'14

4. Alternative Schemes

- 14*A variation on the resistive pipe is a magnetic cage consisting of a

ring of three or more solid conducting channels encircling the beam. A

four-conductor cage is depicted in Fig. 2. The azimuthal asymmetry of the

cage strengthens the tracking force along some directions but weakens it

along others. At late times when the channel current has become equally

distributed, the force becomes detracking for beam deflections between

A adjacent channels, even in the absence of beam-channel overlap. The beam

head nonetheless tracks and guides the beam body. The cage is thus an

acceptable alternative to smooth annular channels, although it does

slightly degrade tracking and requires a higher degree of local gas

ionization to obtain a given net resistance R c. The ability of a cage to

guide and stabilize a beam was demonstrated experimentally by Raleigh and

F ernsler 14 using four resistive rods.
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4Creating high channel ionization for either the pipe or cage mode can

be a formidable problem. One means of circumventing this problem is to

utilize avalanching in the space-charge fields of the beam.2 The space-

charge fields peak off axis and are capable of creating high conductivity

outside an intense beam. If a rarefied or weakly preionized hollow channel

surrounds the beam, preferential avalanching can transform the channel into

*a good conductor.

The degree of rarefaction or preionization required to create a

conducting channel suitable for tracking can be estimated as follows.

Avalanching causes the conductivity outside the beam to grow according to

a- -
c . - = X o (67)

where p is the local gas density and ;(E/p) is the reduced avalanche rate.

Here we have dropped the convective terms (as is often done in simulations)
because they little affect the final conductivity. Also dropped is beam

direct-production on the assumption that Jb 4 0 for r > ac > ab.

In the low-conductivity regions (4nar/c << 1) outside the beam, the

dominant electric field is the radial field Er which in axisymmetry evolves

ir
as

j a 4na
E.. r + r E E B (68)

If avalanching is to be effective, the azimuthal magnetic field B0 changes

little during the breakdown process. Dropping the right-hand side of

Eq. (68) and setting the total electric field E Er allows us to combine

and integrate Eqs. (67) and (68) to obtain
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E
0

4cr, a41rai(r) + p f LE ;(E/p). (69)
E

Here vi(r) = a(r,O) is the preexisting conductivity, E(r,) is the

instantaneous electric field, and E0 (r,) is the effective initial field

given by

E ) () r, = 21(r,)/rc. (70)

Because Be is not truly constant, Eqs. (69) and (70) actually represent

only an approximate upper bound for the conductivity a outside the beam.

The equations are fairly accurate, however, in the region of greatest

interest where 4nar/c = 1.

If the initial preionization is small, the final conductivity after

breakdown is given by

E
0

4 df E (/p) >> 4a. (71)
f i

E b

where the breakdown field strength in air is Eb/P = 30 kV/cm-atm. That f

is largely independent of a. indicates that preionization alone is unlikely

to produce a well-defined hollow conducting channel suitable for tracking.

Potentially more effective is a low-density channel for which the

product pr is small within the channel but large everywhere outside the

channel and beam. If ; is a strong function of E/p, as usually true, af is

large only within the channel. According to Eq. (71), the channel

conductivity produced by avalanching is then limited to
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4Rac < 4no f(aCIO) < PC v(E 0 /PC) (72)

where PC is the channel density and

E 0 E 0(a C )a 21(a C )/a c. (73)0o  0oa c  (C, C

To obtain high conductivity satisfying condition (12) over a broad channel

thus typically requires

PC v(Eo/Pc) > > c/ac (74)

Condition (74) together with Eq. (73) defines an allowed range for the

channel density PC in terms of the avalanche function ;, the inner channel

radius ac , and the net current I(a ,C) evaluated at the pinch point p.

The maximum channel density allowed by condition (74) depends sensitively

on the pinch-point current I(ac, p ) which evolves slowly as the beam head
c p

erodes. The ambient gas density at r < a should satisfy

Po 2 Pc (75)

to produce a well-defined channel.

The use of avalanching to produce hollow conducting channels has a

second important advantage that is not readily apparent from the preceding

axisymmetric analysis. A displaced beam introduces azimuthal asymmetry

into the channel space-charge fields. This asymmetry is amplified by the

avalanche function v(E/P) to produce a channel conductivity ac peaked

nearest the beam. The asymmetry in a enhances the asymmetry in the

channel return current and thus enhances the channel tracking force. The

nonlinear character of v can produce a strong asymmetry in a that could

raise the tracking force by more than a factor of two. At late times, the
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force remains tracking. Even channels that are weakly preionized but not

rarefied may be capable of producing modest tracking forces via asymmetric

avalanching. Asymmetric avalanching is likely, however, to degrade beam

stability.

Although channel rarefaction can produce strong tracking, it is not an

energy-efficient process. The hydrodynamic energy required to halve the

ambient gas density is orders of magnitude higher than the ionization

energy required to create the necessary channel conductivity directly.

Tracking experiments in rarefied channels of modest length may nonetheless

be practical if direct gas ionization techniques are not readily

available. 15

5. Other Effects

We describe here several other effects that can influence tracking.

The first is beam rise time. If the beam current rises slowly, it

generates conductivity a gradually so that the pinch point, as defined by

condition (14), occurs late in the beam pulse. If the pinch point occurs

at a location p >> cTcl, the tracking force is reduced by the fraction

(Ccl/Cp) << 1, as suggested by Eqs. (61) and (62). To minimize this

reduction, the channel dipole decay time should therefore satisfy

CT cl > C P. (76a)

This imposes an additional constraint on either or both the channel

resistance Rc and conductivity acot as required by either result (37) or

(62). For a pencil beam with a constant rise rate ib' the pinch point

1/2
occurs at p < c (ab/2kIb) . Condition (76a) is thus typically satisfiedopccubb

provided
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T > (abp/2kib)l/ 2  (76b)

Here abp is the beam radius at the pinch point, and k is the direct-

production coefficient defined through the relationship

a j +b (77)--= k J b, + . . -. ( 7

In nitrogen, k = 5 x 10- 4 cm/statcoulomb.

Even if condition (76a) is satisfied, the tracking force at C still
p

falls with increasing rise time because the beam current at Cp falls. For

example, for a pencil beam with constant ib,

1/2I(ac p'~ 1b( p~ b a b /2k) . (78)

The decrease in the tracking force is partially offset, however, by an

increase in the tracking duration. Moreover, a short beam rise time (i.e.,

large ib) can degrade tracking by initiating avalanching in the inductively

generated axial field Ez . On-axis avalanching causes ab to rise rapidly so

that the pinch point moves forward and Ib( p ) and the tracking duration are

reduced. Optimal beam rise time for maximizing the tracking force at the

pinch point is thus expected to occur when the on-axis field Ez (0,Cp) Eb

where Eb is the gas breakdown field strength.

A second influence on tracking is a dipole chemistry effect arising

from field dependence in the plasma-electron mobility v. Hubbard, et al. 16

first discovered this effect in hose studies. A usually adequate

expression for the conductivity is

C= eneW (79)

where ne is the plasma-electron density. The mobility is defined by
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u M Vd /E (80)

where vd(E) is the plasma-electron drift velocity. Straightforward

linearization of the plasma current density, Jp = vE = enevd, reveals that

the dipole equations (23) and (31) are more accurately represented by

1_ 
T

ar r ar 1A aT [b % + Ybl

+ ('bl +  cl) -- (81)

and

2neS d A1 a b aA0Fm = i dr bcl --- y -r c -

0

aAIa~lb ]

b bl (82)

respectively, where the effective "dipole" conductivities are defined by

Obl n enebtid (83)

and

acl , enectjd* (84)

Here nec is the plasma-electron density in the channel, neb is the plasma-

electron density generated symmetrically about and by the beam, and U d is

the differential mobility given by

av d  aln(v M)
Ijd - ln(E 1 (85)
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where vm - eE/me vd is an average momentum-transfer collision frequency for

the plasma electrons. Not included in these equations are azimuthal

asymmetries in n eb caused by avalanching as discussed in the previous

section.

The principal change introduced by Eqs. (81) and (82) is that the

dipole decay times cl and tbl are determined not by the conductivities c

and ab but by the effective conductivities acl and abl. If the collision

frequency v m increases with field E, as is typical of most weakly ionized

gases, the dipole decay times are reduced. The reduction is modest,

however, in gases such as nitrogen where 0.5 < Vd/. < 1. Increasing the

channel ionization by a factor of two or so is thus often sufficient to

insure that condition (15) for Tcl remains satisfied. In unusual 17 or

highly ionized gases, v d can exceed V and the dipole decay times are

increased. In some gases, Od can be negative but the plasma currents are

then inherently unstable. In all cases the tracking force never exceeds

the value predicted by Eq. (9).

A third effect on tracking is channel fill-in. For some applications,

channel fill-in cannot be avoided, and hence a truly hollow channel

configuration cannot be maintained. Hollow channels produced by laser

preionization, for example, suffer from laser refraction and diffraction

which cause the laser beam to optically distort.

The effect of channel fill-in on tracking can be assessed by adding a

constant floor conductivity, af, for r < a c . If the fill-in conductivity

is low (4 nafa / 1 and af << aco), channel tracking is probably improved

because af weakens or eliminates deleterious electrostatic effects. If af

is large, however, it produces an overlap detracking force given according

to Eq. (31) by

30



F = 2neY (86)f zo

where

a

Ezo - dr 3b a0 (87)

0

is an average axial electric field. Because the monopole field,

A- 3Ao/a, usually varies slowly with r, the average field satisfies

~ uI~a~j-2 2Ezo = [I(acIO - Ib(C)J/lhabob + nacof]. (88)

If we define the peak channel tracking force by

F = 2eo2I(a c C) / a cc 2 (89)

we find that

)a 
2

F f (b) - I(a C10~ a2ca
Ft I(ac,1) a (90)t ccof + a b crb)90

This equation indicates that channel fill-in does not appreciably degrade

tracking unless it causes the net current inside the channel to fall below

I(acO) < Ib(C)/2. (91)

In that case, the net force can become detracking and eject the beam from

the channel.

At beam injection, condition (91) is satisfied and the net channel

force is detracking, provided 4nofac /c > 1. The plasma currents in af that

cause detracking then relax while the net current I(ac,C) grows. For

ab 4 0, the characteristic relaxation time for the detracking force to

decay and I(ac C) to grow is given by
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M f - 2 a /2c 2  (92)
f C f

As I(a ,Q) grows, the tracking force from dipole currents in c

develops. The development of this tracking force is hampered, however, by

its relaxation on a characteristic time xcl Only if

tcl > f (93)

can the tracking force fully develop and overcome the detracking force

caused by plasma currents in af. According to Eqs. (62) and (92), a broad

hollow channel of conductivity aco can therefore produce strong tracking

only if the fill-in conductivity satisfies

m f < a co/2. (94)

Conversely, if the fill-in conductivity exceeds fifty percent of the off-
axis peak conductivity, detracking is likely. Hubbard and Slinker 13 have

performed numerical simulations that confirm this prediction.

A fourth effect that can degrade tracking is azimuthal nonuniformity

in the channel. Nonuniformity caused by laser hot spots, preferential

avalanching, or other means should not be too disruptive provided the

nonuniformity is mild. The principal effect is to displace the effective

channel center and to produce detracking in the beam body, much as occurs

in the magnetic cage. An example of strong nonuniformity is a three-

conductor or four-conductor cage with one conductor missing. In that case,

the absence of conductivity over a broad region would lead to violent

ejection of the beam.
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A dynamical effect that invariably degrades tracking is beam

expansion. Gas scattering, ohmic losses, and finite beam emittance all

cause the beam head to expand and flare radially outward as it advances.

This flaring pushes the pinch point p backward so that the beam head

continually erodes. 18,19 Because the channel tracking force is of finite

magnitude and extent, any given beam slice experiences a positive tracking

force for only a finite time before erosion sweeps past. If the duration

is too short to allow the beam to respond, tracking is curtailed. The

curtailment is small only if the erosion rate satisfies

z-T  . (95)

Here ACt characterizes the extent of the tracking region, and

1 1

t 2 t" t = g (ymc 2,2 y ,,(96)

characterizes the axial distance required for the tracking force Ft to

deflect the beam. For hollow channels with ACt = CTcl, erosion can

typically be neglected only if

1

CICcl > 20 21(acp) dz P(7

where IA = ymc 3/e is the Alfven current. Erosion is usually most severe

for low-energy beams and often seriously threatens channel tracking.

A related problem is the rise in the beam radius abp at the pinch

point as the beam nears the end of its range. Unless the channel radius ac

.1J* increases with propagation distance z, abp will eventually exceed a c. The

beam is then likely to be ejected from the channel or suffer rapid erosion.
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Loss of the beam is inevitable. Such loss is generally of little

consequence, however, because the loss occurs only after the beam has lost

most of its energy and has begun to rapidly expand.

6. Numerical Simulations

Preliminary numerical simulations using the DYNASTY field solver
20

have partially confirmed the preceding analytical predictions. Typical

results for the net tracking force are presented in Fig. 3. In these

simulations the beam was displaced by 0.05 cm from the channel center with

a beam current density given by

Jb(r,) = (Ib /na2)exp(-r 2/a2)tanh(C/<r). (98)

In all runs avalanching was turned off, to aid comparison with theory, and

the beam parameters were: peak current Ibo = 10 kA, radius ab = 0.5 cm,

rise length r = 15 cm, and direct-production coefficient k = 8.8 x 10
-4

cm/statcoulomb.

In curves a and b of Fig. 3, the preexisting conductivity for the

annular channels was given by

a (r) = a exp[-4(r-r ) 2/Sr 2 (99)
c co c c

with Sr = r = 1 cm. The use of steeper profiles for a led to numerical

difficulty. Despite the presence of both substantial channel fill-in and

substantial beam-channel overlap, the tracking force was large. In curve a

where 4coa b /C = 5 (with Rc 6 Q/cm and ccl 2 cm), a peak tracking

force of 160 Gauss per cm of beam displacement was reached at

C = 5 cm. Detracking occurred beyond C = 18 cm, but this should be offset

by strong body-head coupling. Indeed, channel fill-in caused the pinch
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point 4 0 in this example. Raising the channel conductivity to

4a co a b/c . 50 (with Rc a 0.6 Q/cm and c cl f 20 cm) caused the tracking

force in curve b to continue rising until it peaked at 575 Gauss per cm at

= 17.5 cm.

Curves c and d were derived for a magnetic cage consisting of four

solid channels, each displaced symmetrically 1 cm from the cage axis and

each with a Gaussian radius of 0.5 cm. The net cage resistance in curve c

was Rc = 6 Q/cm while in curve d, Re = 0.6 Q/cm. Comparison of curves a

and c and curves b and d demonstrates that the four-conductor cage degraded

the tracking force produced by an equivalent smooth annulus by < 20Z.

In curve e, a low channel conductivity of 4 nacoab/c = 1 was used,

spread over a broad annulus from r = 0.5 to 5 cm. The tracking force was

reduced but still large and peaked at 36 Gauss/cm. The tracking force

persisted for a surprisingly long time. Whether this persistence is an

artifact of the code or accurately represents the diffusive decay of the

tracking force remains unclear.

-I
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7. Summary

The preceding analysis and simulations have shown that hollow channels

of even modest conductivity can produce strong tracking forces on

relativistic electron beams propagating inside. Such channels have the

added advantage of improving stability in the beam head. The combined

traits of strong tracking and improved beam stability make hollow channels

particularly attractive for both long-range and short-range guidance of

charged particle beams.

The principal requirements for successful hollow-channel tracking are

high conductivity and conductance in a channel that lies outside the beam.

Dipole chemistry effects, slow beam rise, and moderate channel fill-in or

nonuniformity may weaken the tracking force but rarely eliminate it. The

principal practical obstacles are creating the channel and finding a

stable, slowly eroding mode of beam propagation.

Although preliminary numerical simulations have partially confirmed

the analysis, further numerical work is required. Static simulations are

needed to assess the impact of avalanching on rarefied or weakly preionized

channels, and to study the effects of dipole chemistry, beam rise, and

channel fill-in and nonuniformity. Dynamical simulations, such as those

13
begun by Hubbard and Slinker, are needed to study beam stability, beam

erosion, loss of beam particles that lie outside the annulus, and the

behavior of the beam once the pinch point expands outside the channel.

We mention in closing that hollow-channel tracking has been

successfully demonstrated in the laboratory by Leifeste, et al. 2 and by

14
Raleigh and Fernsler. Leifeste, et al. used a hollow Nd:YAG laser to

preionize an annular channel in nitrogen doped with diethylanaline.
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Successful guidance and beam transport were achieved at a gas pressure of

1 Torr with only moderate beam hose. More recently, Raleigh demonstrated

beam guidance and partial stabilization at pressures up to 40 Torr in air

using a cage constructed of four resistive rods.
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Figure 1. Hollow-Channel Tracking. A displaced electron beam propagates
in an annular conducting channel bounded by the heavy concentric
circles. A symmetric ring of beam current (dashed circle in a)
entirely inside the channel experiences a net tracking force
initially and zero force later. A beam ring (b) entirely
outside the channel always experiences zero net force. A beam
ring (c) intersecting the channel always experiences a net
detracking force caused by channel return current flowing
outside the ring (shaded area).
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Figure 2. Four-Conductor Magnetic Cage. Four solid conducting (shaded)

channels are arranged in a square configuration to guide an
electron beam (dashed circle).
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