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FOREWORD

As part of its commitment to national defense, the United States Air Force

(USAF) supports investigations into the chemistry and physics of upper atmo-
spheric energy dynamics. The Center for Space Engineering (CSE), at Utah

State University, under Contract F19628-83-C-0056 with the Air Force Geophys-

ics Laboratory (AFGL), assists in these investigations.

CSE awards subcontracts to various industrial and academic entities to assist
with instrumentation production and data reduction/analysis. Under CSE sub-

contract no. 85-038, the Space Data Analysis Laboratory located at Boston Col-

lege, MA, analyzed Michelson interferometer data obtained from various rocket-
borne experiments.

As part of their work, Boston College scientists developed computer algorithms

to obtain superresolution spectral estimation from Michelson interferometer
data. This report describes the autoregressive (AR) methods of spectral anal-

ysis, compares the AR methods to Fourier transform methods, and gives conclu-
sions from Boston College's research in this area. Boston College's software

package (a magnetic tape) complements this report; CSE retained a copy of the

tape in our archives for reference. CSE Document Number CSE/86-109 entitled,

"ARSPEC: A Program for High Resolution Spectral Estimation from Interfero-

grams" is the software description and user's manual for this software.

Unless otherwise specified, all work reported herein was performed by Space

Data Analysis Laboratory at Boston College under subcontract to CSE. This re-

search study was authorized and funded by the Air Force Geophysics Laborato-

ry's (AFGL) program "Laboratory Director's Fund" (LDF) as Project Number -

ILIR5F. The AFGL program managers for this effort were Messrs. Donald R.

Smith and Anthony J. Ratkowski. The authors wish to express their gratitude

to Messrs. Smith and Ratkowski for their support of this study, and for set-

ting up several helpful meetings and discussions.

iii A-/Oric DI



This page intentionally left blank.

iv



SUMMARY

Boston College researchers developed an autoregressive (AR) data processing

method to enhance the resolution of spectra derived from interferograms. They

compared the MEM theory and their AR method to that of traditional Fourier

methods. In addition, they created an AR-based computer program which in-

cludes routines for computing and graphically displaying the estimated spec-

tra. Finally, Boston College researchers tested their AR method.

Theoretically, MEM may be more efficient than Fourier methods in decoding in-

terferograms carrying information with different spectral distributions. MEM

may also obtain more information about a narrow spectral range, yielding high

precision values for a few spectral lines. Fourier methods, on the other

hand, may be more efficient when an interferogram contains information on a

discrete set of frequencies.

Boston College's AR software package consists of two basic components. The

first component symmetrizes and filters an initial interferogram. The fil-

tered interferogram becomes the "input interferogram" containing only the

spectral band to be analyzed. The second component of the AR software package

contains the AR algorithm which computes the filter coefficients from the nar-

row band interferogram and then computes and displays the resulting AR spec-

tral estimate. The AR software package provides high resolution graphic out-

put, but does not compute values of estimated wavenumber and amplitude.

Boston College researchers studied simulated interferograms to determine to

what extent a high line density spectrum can be estimated from interferograms

with a finite SNR, and what kind of resolution improvement can be expected

with low line density spectra. For high line density spectra and high signal-

to-noise ratios (SNR), Boston College's AR implementation of the MEM principle

enhances the resolution twofold over Fourier methods. With low SNR and a

noisy interferogram it is not possible to increase resolution as much as with

high SNR measurements, yet it seems possible to achieve a resolution compara-

ble to the Fourier estimate with significantly less data.
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INTRODUCTION

AR Methods for Spectral Estimation from Interferograms

In this report, Fourier spectroscopy refers to the spectral analysis of the

sampled output of a Michelson type interferometer as it views a stationary

source of radiation. In the process a beam of radiation is split and caused to

interfere with itself, multiplexing a vide spectral band into a serial data

stream called an interferogram. The spectrum is recovered by a Fourier cosine

transform of this output data stream. In this appplication the interferometer

functions as an information channel which codes the spectral information into

the output data series, actually an autocorrelation series of the input

spectrum. The Fourier series furnishes an orthogonal set of functions to effi-

ciently decode the information in the autocorrelation series.

Maximum Entropy Methods (MEM) of spectral analysis were developed to

enhance the resolution of spectra derived from short time series over that

attainable by Fourier techniques. Since these non-Fourier methods initially

grew out of attempts to spectrally analyze short data records, it may not be

apparent why they should be beneficially applicable to interferometer data

which, at least under controlled conditions, may be as long as is necessary for

Fourier processing. In fact, Dr. Pierre Connes suggested, in response to a

paper by Despain and Bell on enhancing spectral resolution from fixed length

interferograms, given at the Aspen International Conference on Fourier

Spectroscopy (1971), that there should never be arif reason not to design an

interferometer with a sufficient drive length to achieve any desired resolution.

Dr. A.T. Stair responded to this by noting that in non-laboratory measurements,

such as those flown on satellites, or where measurements of transient phenomena

are concerned, there are definite constraints on the drive length that may be

employed, and that it is important, after the fact to extract all the infor-

mation possible from the data.

Although Fourier transforms have come to be automatically associated with

the Michelson interferometer, it should be remembered that this is not the only

possible way to decode the autocorrelation series. In fact, an alternative

method of decoding the interferogram, using a different set of orthogonal func-

tions yielding higher resolution, was proposed by Despain and Bell [14] at the

Aspen Conference. While their method was valid in principle it seemed to be too

sensitive to noise in the measurements to be employed easily and advantageously

1I



to actual data. The autoregressive approach to recovering spectral information

f rom an interf erogran which is being proposed and studied in this report is pri-

marily an algorithm to provide greater spectral resolution than Fourier methods.

At this stage it in couputationally more complex than the Fourier transform, and

Is also limited by measurement noise in ways that require further study. But we

will show in this report that autoregressive (AR) modeling may be a useful tool

in spectral analysis under certain experimental conditions, especially when used

in conjunction with the better understood Fourier methods.

In the spectral estimation problem of any actual time series the assumption

is made that the series represents a finite number of samples from an infinite

series. In both Fourier methods and HEM or AR methods one has to extend the

finite time series, though in different ways for Fourier and non-Fourier

methods. In Fourier analysis one arbitrarily assigns a value to the unknown

samples of the infinite time series (consistent with the assumption of

stationarity), generally zero. This procedure, called windowing, introduces an

inherent resolution limit that is proportional to the length of the original

time series, and effectively models the finite time series with a set of har-

monically related sinusoids truncated to the length of the windowed time series.

This predetermines a set of discrete frequencies, or line positions, in the

spectrum for which spectral information is to be obtained. The resulting

spectral estimates are also subject to leakage errors, where part of the energy

in any part of the observed spectrum is spread over the whole spectrum.

Attempts to reduce the leakage by judicious windowing of the data sample results

in further degradation of the resolution.

The trade-off between leakage effects and reduction of resolution consti-

tute a fundamental constraint in achieving optimal spectral estimation using

Fourier methods. The Maximum Entropy (minimum information) principle allows one

to handle the unknown samples of the infinite time series as statistically

unknown quantities; i.e. we avoid imposing any arbitrary values on these quan-

tities. This leads to an autoregressive model of the time series which avoids

windowing and the associated resolution problems.

The AR method presented here, and implemented in an accompanying interac-

tive software package, is an attempt to extract certain information from the

interferometer data that may not be accessible by Fourier processing. It has

been indicated in the above discussion, and demonstrated many times, how HEM

methods are capable of yielding more specific information from a short data

2



series on the precise location of a few spectral lines than Fourier methods. A

rigorous explanation of this fact is beyond the scope of this report, but some

insight may be provided by examining some basic information channel concepts due

to Shannon [21. and adapted to the interferometer problem by Despain and Bell

[1M.

The capacity of an information channel is specified by the bandwidth of the

signal, and the signal-to-noise ratio (SNR) of the channel by the formula:

C - VO log(I+SNR) bits/seconds

where C is the channel capacity and VO is the bandwidth of the signal. For an

interferogram the units of time become units of distance, and the total infor-

mation passed by an interferogram of length 2 XO is:

I - 2 XO VO log(I+SNR) bits

This formula expresses the facts that the total amount of information

retrievable from an interferogram depends on a drivelength-bandwldth product,

and on the SNR of the interferogram. The Fourier data reduction method is one

way of decoding the information multiplexed by the interferometer into the

interferogram, and it may be the most efficient method given data with certain

characteristics. By modeling the data with harmonically related sinusoids the

Fourier method effectively preselects a discreet set of frequencies about which

information is to be obtained, and the interferogram would be most efficiently

decoded if it contained information on only those frequencies. In some cases

where the interferogram carries information with different spectral distribu-

tions MEM methods may be more efficient in decoding the interferogram. In par-

ticular HEN methods may allow one to obtain much more information about a narrow

spectral range, yielding very high precision values for a few spectral lines.

3|
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1.0 THEORY OF AR PROCESSING

1.1 Fourier Spectral Estimation

The Wiener-Khinchin relationship is the basis of standard Fourier methods

of spectral analysis. It states that if R(t) is the autocorrelation function of

a random process

R(t) =f. x(t) x*(t-s) ds (1)

then the power spectral density of the process, S(f), is the Fourier transform

of the function R(t).

S(f) - R(t) EXP(-12ift)dt; R(t) - R(-t) . (2)

If the integral in Eq. (1) is to exist then X(t) must be a stationary random

process. When Eqs. (1) and (2) are applied to digital time series, the

integrals are replaced by sums. For a random process X(n), n=0,1,2,...,N-1:

N-i
R(k) - 1/(-1) E X(n) X(n+k) (3)

n-0

N-1
S'(f) - 2 E R(k) EXP(-i2vkt) . (4)

k-O

In Eq. (3) (k) is a biased estimate of the Autocorrelation function R(k), which

is defined statistically as the expectation value, or ensemble average, of the

product X(n)*X(n+k). Evidently, for a time series X(n), where n=0,1,2,...,N-1,

R(k) may not be estimated for k>N-1. Also, it is clear that as k approaches

N-i, the estimate R(k) becomes poorer as the "ensemble" of products becomes

smaller. Finally, in Eq. (4), the fact that there is an upper limit to the

number of autocorrelation values that may be estimated, i.e. k4N-1, implies a

windowing of the autocorrelation function that appears in Eq. (2). Eq. (4) ay

be rewritten

S'(f) - 2 1 R(k) W(k) EXP(-12wkf) , (5)
k 0

where W(k)-O for k> N-1, and W(k)=1 for k 1 N-I.

The resolution and leakage problems in Fourier methods results from the

truncation of the sum in Eq. (4) or, equivalently, the windowing in Eq. (5). If

S(f) in Eq. (2) is the true spectrum, expressed in digital form as

4



S(f) - 2 0 R(k) EXP(-i2wkf)K-O

then the spectrum S'(f) in Eq. (5) is related to S(f) by a convolution:

S =(f) - f (f') S(f-f') df' , (6)

where i(f*) is the Fourier transform of W(k).

The spectrum S (f) is a smeared version of the true spectrum. The exact

correspondence between S(f) and S(f) depends on the exact form of the window

function. One of the basic requirements of classical Fourier methods is to

choose the window function so that S'(f) is a good estimate of S(f) in some

sense.

1.2 Maximum Entropy Spectral Estimation

Maximum entropy methods (MEM), as introduced by Burg [5], recognize that

the windowing problem in Fourier methods results from arbitrarily setting the

autocorrelation function in Eq. (4) to zero for k.NN-i. The Burg approach, like

the classical Fourier approach, begins with the Wiener-Khinchin relationship in

Eq. (2), but avoids the necessity of setting the unknown values of the auto-

correlation function to zero (or any other arbitrary value). It begins by

asking what the best estimate of S(f) in Eq. (2) is, given that we have no

information about R(k) for k>N-1, and formulates the answer mathematically in

terms of the concept of information, or entropy.

Probability theory shows how to construct from the Wiener-Khinchin rela-

tionship a function of the autocorrelation coefficients, called the entropy,

which is related to the amount of informaton available about these coefficients.

The entropy per sample of a random process X(n), with Power Spectral Density

(PSD) S(f), is defined as:

H - ln(S(f)J df

where fN is the Nyquist frequency of the digital process X(n). Or in terms of

the Wiener-Khinchin relationship:

5



u ,, N ln[ R(k) EXP(-i2wfk) df . (8)
fN k--r

Maximizing the function H with respect to the R(k), for k> N-1 expresses our

complete lack of information about these quantities, other than that they are

consistent with the stationary samples we do know. This latter piece of infor-

mation is incorporated into the analysis by the requirement that the inverse of

Eq. (2)

R(k) - JS(f) EXP(12wrkf) df (9)

hold for the known autocorrelation values, for the spectrum S(f) that maximizes

H. We thus solve the variational problem of maximizing the entropy relative to

the unknown autocorrelation values, subject to the constraint of Eq. (9) for k<

N-i. The solution to this problem is the spectral formula:

PM
S(f) - . (10)

11 - K-I a(k) EXP(-12wkf)j2

In the Burg formulation the a(k) are identified as the coefficients of a predic-

tion error filter, or whitening filter. If S(f) - IX(f)1 2 then X(f) may be

expressed from Eq. (10) as:

x(f) - - (1

I - 1 a(k) EXP(-12wkf)
K-i

The denominator of Eq. (11) may be recognized as the transfer function of the

time domain filter A, with a(l)-l. Then Eq. (11) may be rewritten in the time

domain as:

MA * - a(k) X(n-k) - e(n) , (12)

k-0

where e(n) is a white random process whose variance is the constant P. The a(k)

in Eq. (10) are thus the coefficients of the whitening filter A, so called

because the a(k) are determined from the process X(n) such that the filter

transforms the X(n) into the white noise process e(n).

6



1.2.1 Autoregressive implementation of MEH principles

By writing the prediction error filter in Eq. (12) in a slightly different

form:

MIH
X(n) Z - a(n) X(nk) + e(n) (13)k-i

we see that X(n) is expressed as the output of an autoregressive process of

order M, with the noise process as input. If a set of M coefficients a(k) can

be found such that applying Eq. (12) to the actual time series yields a white

noise series e(n), then X(n) is an autoregressive process where M is less than

the number of samples available in X(n) then the HEM method may not be cpable of

giving a satisfactory spectral estimate. If one does succeed in finding a set

of coefficients that reduce a random process at least approximately to white

noise then the spectral formula allows one to compute the PSD to infinite reso-

lution from a finite set of coefficients. It is this feature that gives HEM

methods their superesolution capability.

The application of the entropy principle to a random process has been

rigorously formulated only for a Gaussian process leading to the entropy formula

given above in Eq. (8). In this case the coefficients in the spectral formula

correspond to the autoregressive process given in Eq. (13). Thus for a Gaussian

random process the maximum entropy assumption leads to an autoregressive model

of the time series. In the case of a high bandwidth, low information spectrum,

modeling the interferogram with few autoregressive coefficients has two

desirable features. First the spectrum exhibits high resolution resulting from

the autoregressive spectral model. Secondly, while the autoregressive coef-

ficients selectively model the information in the random process to high resolu-

tion they effectively smooth the noise. In Fourier processing any smoothing,

as in Blackman-Tukey procedures, results in poorer resolution. This effect

will be illustrated below in applying the AR method to a noise corrupted inter-

ferogram simulated from an OH spectral band.

1.2.2 Determining the coefficients of the autoregressive model

It is apparent that the essential requirement in implementing the auto-

regressive model is the determination of the autoregressive coefficients. These

are the quantities a(k) in Eq. (13) or, equivalently, the prediction error

coefficients in Eq. (10). One procedure is to relate the autocorrelation coef-

ficients R(k) to the autoregressive coefficients. One may express the auto-
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correlation coefficients of the process in Eq. (13) by taking the expectation

values:

R(k) - E[X(n) X(n-k)]

M
- E act) E[X(n-1) X(n-k)l + Eie(n) X(n-k)lA-i

Now

EIX(n-t) X(n-k)) - R(t-k) - R(k-t)

E[e(n) X(n-k)] - PM 6k,o

In the second expectation value the Kroneker delta symbol indicates that

the white noise in a process is correlated with the process only for the same

time index. Therefore, the autocorrelation coefficients of the process in Eq.

(13) satisfy the formula

M
R(n) - - Z a(k) R(n-k) + PM 6k,o * (14)

K-i

For an autoregressive process of order M, and N samples in the autocorrelation

series, the n(th) autocorrelation coefficient may be computed from the previous

M coefficients using the M coefficients of the autoregressive model. Thus from

a finite autoregressive model one may generate the infinite number of autocorre-

lation coefficients required in the Wiener-Khinchin relationship.

Remembering that R(n) - R(-n), Eq. (14) may be expressed as a set of

simultaneous equations, known as the Yule-Walker equations, in the following

form-

R(O) + a(l) R(1) + a(2) R(2) + ... + a(M) R(M) M PM

R(1) + a1) R(O) + a(2) R(1) + ... + a(M) R(m-1) - 0

R(2) + a(I) R(I) + a(2) R(0) + ... + a(M) R(M-2) - 0

. . . .. . . . . . . . .* . .. .. (15)

R(M) + a(l) R(M-1) + ...... + a(M) R(O) - 0

If one has values of the autocorrelation coefficients, it is a straight-forward

procedure to obtain the autoregressive coefficients by inverting the matrix of

the autocorrelation coefficients. Representing the Yule-Walker equations in

matrix form:
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R(O) R(O) R(2) R(M) 1 PM
R(1 R(O) R(l) R(M-1) a(l) 0i
R(2) R(1) R(O) R(M- ) a(2) 0. . . . . . .S * . _. -
R( R(M-1) R( ) o a(M)0

it is apparent that the matrix possesses a special diagonal structure, known as

the Toeplitz structure. This makes it possible to invert the matrix using the

Levinson algorithm which requires only on the order of M2 computations, a very

significant reduction of computation time over more general methods which

require on the order of M3 computations. This inversion thus remains com-

putationally efficient for very large order matrices.

1.2.3 Processing interferograms by the AR method

The operational philosophy behind our modeling approach is different from

that usually implemented in MEM spectra estimation. Typically one starts with a

time series whose bandwidth is limited more or less to the low line density

spectrum of interest. This time series is assumed to be a random process which

can be satisfactorily represented by the inverse of a whitening filter of some

order. One would then use the Burg algorithm to compute the filter coefficients

from the entire time series, resulting in a model of the entire spectral band in

the initial time series.

In computing spectral estimates from interferograms, the time series on

begins with is an autocorrelation function whose lags are effectively an

ensemble average over a large number of energy packets. In the case of an ideal

noise free interferogram the problem of estimating an accurate autocorrelation

function from a time series does not exist. However short the interferogram,

there would be no reason not to compute the filter coefficients directly from

the interferogram using the Yule-Walker equations. In practice, however, every

interferogram will contain noise. Consequently, while the interferogram values

are not statistically biased, they are subject to random errors. The signifi-

cance of these errors for treating the interferogram as an autocorrelation func-

tion will depend on the signal-to-noise ratio in a manner that will be

investigated empirically in this report.
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The specific procedure presented here is designed to be implemented on an

interferogram (autocorrelation series) associated with a broad spectral range,

with the assumption that this broad spectrum may be partitioned into shorter

"isolated" bands for analysis. klthough no upper limit to the size of the band,

in data points, has been established, better results tend to be obtained for

more or less homogeneous bands of around 500 data points of less. A further

advantage of using limited bands is that the resulting filter polynomial may be

more readily factored to obtain the filter poles, and hence the line positions.

This seems to be a more accurate procedure for finding line positions than a

numerical search for peaks in the amplitude spectrum.

When a short spectral band has been selected for an analysis an inter-

ferogram containing only this band is filtered from the full symmetrized inter-

ferogram. The resulting interferogram will cover the same drive length as the

initial data, but is sampled at a lower rate corresponding to the spectral range

of the filtered band. Filter coefficients are then computed from this inter-

ferogram using the Yule-Walker equations as described above. The AR spectrum is

computed from the formula in Eq. (10) using these coefficients, following some

Intermediate processing to insure that the displayed amplitude profile

corresponds to estimates of the true line strengths.
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2.0 DESCRIPTION OF INTERACTIVE AR SOFTWARE PACKAGE

The accompanying AR spectral estimation program consists of two basic com-

ponents. This corresponds to the requirement that from an interferogram

covering a wide spectral band, a narrow range must be selected for analysis in

order to effectively utilize the capabilities of the method as implemented here.

One component contains the AR algorithm which is designed to efficiently compute

the coefficients of the whitening filter that is associated with the inter-

ferogram (autocorrelation function) as explained above, making use of the

Levinson algorithm for inverting a Toeplitz matrix 1111. This component of the

program also includes routines for computing and graphically displaying the

estimated spectrum.

Algorithms have been included in this component of the program to process

the raw AR spectrum in such a way that the relative amplitudes of the spectral

lines are preserved. Absolute amplitudes of spectral lines are not preserved.

This software presently contains no provision for radiance calibration, or for

handling the effects of instrumentally caused apodization. The frequency axis

may be scaled to wavenumber by specifying a constant sample rate. At the pre-

sent state of development of this program there are no exact procedures to

guarantee the quality of a particular spectral estimate, only very general

guidelines for optimizing the quality of the estimates. This program is offered

primarily as an analysis tool, and may in general have to be used along with

other spectral estimates in order to achieve absolute measurement values.

The AR algorithm requires as input an interferogram containing only the

spectral band to be analyzed. This "short" interferogram is obtained using sup-

port software contained in the other component of the total software package

which is designed to symmetrize and bandpass filter an initial interferogram.

Symmetrizing is accomplished with the Forman/Steele/Vanasse [12] phase filter

approach, which approximately removes the linear phase distortion introduced

into the interferogram by retidation offsets, as well as by other non-linear

instrumental causes. The spectral selection is made from an apodized cosine

transform of the symmetrized interferogram using graphic input.

2.1 AR Algorithm

The basis of this interactive AR software package is the algorithm that

computes the filter coefficients from a narrow band interferogram and computes

and displays the resulting AR spectral estimate. A narrow band "short" inter-

11S
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ferograms generated from the previously selected spectral band is read by the

subroutine YULWALK which computes the filter coefficients. Given an inter-

ferogram R(n), of N points (lags), a set of N coefficients a(n,k) is obtained

from the matrix equation (16) by a procedure originally due to Levinson (1947),

and modified by Durbin (1960). Durbin's recursive procedure may be expressed as

follows:

s(1)-R(0)

i-1a(i,i) -- [R(i) + Z a(j,i-1) R(i-j)]/s(i-1) (17)
J.0

a(j,i) -a(J,i-1) + a(iji) a(i-J,i-l), I<- J<- i-I

s(i) - (I - a(i,i)2 ) s(i-1).

These equations are solved recursively for i-1,2,3,...,N if N is chosen as the

order of the model. This procedure actually computes a set of coefficients

a(i,J) for all model orders up to J-N, and the set of coefficients for order N

are a(t,N). The array s(i) contains sigma values indicating the relative

accuracy of the AR model for each order, with a(N) corresponding to PM in

equations (15) and (16). The raw AR spectrum is computed from equation (10)

using the coefficients a(i,N).

As stated above the AR model of the spectrum is generally somewhat

sensitive to the number of lags from the interferogram used to compute the coef-

ficients. This number should, if possible be larger than twice the number of

lines to be displayed in the spectrum, but not so large as to allow the noise to

emerge in the spectrum. The user is allowed to select interactively the optimum

number of lags from the available interferogram to achieve the best combination

of resolution and amplitude stability in the displayed spectrum.

It is not generally useful to display the AR spectrum computed from Eq.

(10) without further processing. In a Fourier spectrum the true amplitude is

proportional to the integral over the fully resolved line, which is in turn a

convolution of the true line shape with the scanning function. Since the

scanning function modifies the shapes of all lines in the spectrum in the same

way the relative amplitudes of the lines is preserved. In the AR spectrum com-

puted from equation (10) the true line amplitude is also proportional to the

integrated area under the line. However, the amplitude of the displayed line is

12
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proportional to the square of the true amplitude, and in addition requires

greater resolution to display than is generally convenient.

One way to represent the true line amplitude in this case is to integrate

over the line in the AR spectrum and use that value to represent the line ampli-

tude, ignoring the line shape. We havemade use.of this procedure and have

found it accurate, but we have been prohibited by lack of time from developing

it to the point where it will function easily in an interactive environment.

Instead we have incorporated another procedure for obtaining line profiles in an

AR spectrum which are estimates of the true line strengths. The AR spectrum

displayed in this program is a convolution of the raw AR spectrum with a sinc

squared line shape, whose resolution may be specified interactively in generat-

ing the display. Any other satisfactory line shape may be implemented as well,

and it is usually possible to find a scanning function which leaves the lines

narrow enough to be resolved in the displayed spectrum, while producing a line

height proportional to the true amplitude. The line shapes in the resulting

spectrum are very nearly those of the convolving function which essentially

determines the resolution in the displayed spectrum, but the line amplitudes

correspond to the true line strengths.

2.2 Supporting Software

2.2.1 Symmetrizing algorithm

Prior to the computation of the AR filter coefficients and spectrum,

another component in this software package is employed to symmetrize the raw

interferogram, and to generate a narrow band interferogram for the spectrum to

be analyzed. The symmetrizing algorithm, based on the Forman/Steele/Vanasse

method [12] computes a phase filter from a short selected length around the

center of the raw interferogram. This is a low resolution filter having a

complex spectrum of constant magnitude whose phase is the conjugate of that in

the interferogram. A low resolution filter is used in this method because it

requires relatively few additional points to the one sided interferogram, and

because the phase of the raw interferogram is expected to vary only slowly.

2.2.2 Graphic selection of spectral range for AR processing

The narrow band interferogram is obtained by a Fourier transform from a

limited range of the full cosine spectrum encompassed in the initial inter-

ferogram. The full cosine transform of the raw interferogram is displayed, and
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the range desired for displaying in high resolution is marked out using a

croashair. In the selection process one may successively make expanded displays

of several spectral bands before selecting the band for high resolution

display. An interferogram of the selected band is computed by another cosine

transform, and written out to a file to be accessed by the AR processing section

of the program.
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3.0 TESTS ON AR ALGORITHMS

3.1 Generating Synthetic Interferograms from Model Spectra

The development of this software was undertaken with the objective of

achieving "super-resolution" spectral estimates of both low line density and

high line density spectra from interferograms. We mean by a high line density

spectrum one in which the number of spectral elements aproaches one half the

number of data points available in the interferogram. This limit defines the

capacity of the interferogram to carry spectral information. (In Fourier

spectral analysis this corresponds to the full spectral range from zero to the

Nyquist.) For an autoregressive model, in the ideal noise free limit, two lags

(or interferogram points) are required for each two coefficients (or each pole)

in the whitening filter, and hence for each spectral line. In this section of

the report we present the results of studies on simulated interferograms to

determine a.) to what extent a high line density spectrum can be estimated from

interferograms with a finite SNR, and b.) what kind of resolution improvement

can be expected with low line density spectra.

A low line density spectrum is one in which the number of points in the

interferogram is much larger than twice the number of spectral elements. Given

a sufficient SNR, a very significant increase in spectral resolution is expected

for AR processing over that obtainable by Fourier methods for a low line density

spectrum. This kind of result has often been reported in the literature with

maximum entropy methods, and has been achieved in at least one case [6] with an

interferogram of hundreds of data points, where there were less than ten

spectral elements. Kawata et al. employed the Burg algorithm which treats the

interferogram as a general time series. If the interferogram is sufficiently

noise free, the Burg method unnecessarily limits the number of spectral elements

that can be estimated from a given number of data points. The significance of

these results lay in the resolution that could be obtained from an interferogram

many times shorter (500 points) than would be needed with a Fourier spectral

estimate (4000 points). It should be mentioned, however, that for inter-

ferograms with a poor SNR, where only a small percentage of the spectral infor-

imation can be retrieved in any case, better results might be obtained with the

Burg algorithm. For high line density spectra, the successful application of
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the AR method appears to depend not only on noise level but also to some extent

on the distribution of the spectral elements.

The studies reported here were made on simulated interferograms generated

by direct Fourier transform from simulated spectra. Two spectra were simulated

to test the performance of this software on low and high line density spectra.

The high line density spectrum was a synthetically generated emission band of

the molecule (CO2), including 83 lines from 2300 to 2400 wavenumbers. The low

line density spectrum that was used was part of the hydroxyl (OH) band. These

spectra are shown in Figures la, and 7. For our purposes here the identifica-

tion of the spectra is not important, except to establish some relevance of the

tests to actual applications. Our procedure will be to compare the AR estimates

of these spectra with Fourier estimates using the initial synthetic spectrum as

a reference.

These spectra were used to generate interferograms of selected length and

sample rate using a direct cosine transform. As a point of reference the

approximate characteristics of a field widened interferometer [13] were adopted

here (see figures lb and Ic) in selecting sample rate and drive length, although

the effects of some longer drive lengths were also investigated. A drive length

of .56 cm for one side of the interferogram was simulated, and an effective

sample rate of about 36000 samples/cm for the full band interferogram, or about

1.1 interferogram lags for each wavenumber in the spectral band of the inter-

ferogram. The final interferograms were generated by a Lorentz apodization of

the cosine transforms to simulate a very narrow Lorentz spectral line shape,

which is a better approximation to a physical line shape than the original pure

sinusoid spectrum. Tests were made both with and without added noise. Added

noise was white with a sigma specified in relation to the amplitude of the

center of the simulated interferogram.

3.2 Line Matching Algorithm

In the following tests line position and amplitude comparisons were made

between the value estimated in the AR model and the value for the corresponding

line in the synthetic spectrum. For the Fourier spectrum line positions were

determined by searching for peaks in the cosine transform of the interferogram.

The search was initiated on a cosine spectrum interpolated by a factor of four,

an effective wavenumber resolution of about .2, and the interpolation continued

until a specified amplitude variation around the peak was met. In the AR case
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the line positions were determined by finding the zeroes of the polynomial

constructed from the filter coefficients [5].

Developing an algorithm to tabulate and plot these comparisons was compli-

cated by the fact that in both the AR estimates and the Fourier estimates extra-

neous "lines" were generated. In the Fourier case these extraneous lines were

due to sidelobes of the initial primary lines, and in the AR case they were

identified with redundant poles in the filter. These redundant poles in the AR

filter arise from using more than two autocorrelation values for each line in

the estimated spectrum. It may be noted here that there is no a priori way to

distinguish the extraneous lines generated by the redundant poles in the filter

from the genuine lines in the spectrum being modeled. However, for a high SNR

these poles will tend to lie sufficiently far from the unit circle to be

distinguishable from those generated by the true spectrum, and for the extra-

neous lines to be invisible in a linear plot. For poor SNR these redundant

poles will tend to model the noise, and this is responsible for the fundamental

limitation in applying the AR method with a poor SNR. With a poor SNR the

redundant poles may produce an effect similar to a phenomenon known as line

splitting which has been associated with Burg method, the redundant poles in the

AR model tend to distribute themselves uniformly around the unit cirlce instead

of clustering about specific lines and producing true line splitting.

Because of these extraneous "lines" the algorithm had to be designed to

select only those estimated lines that correspond to the original spectrum. In

all cases where there was more than one estimated line for one line in the ori-

ginal spectrum the estimated line closest to the original line was selected.

The primary output of this algorithm was a plot of wavenumber or amplitude

deviation vs. wavenumber, presented along with a plot of the estimated amplitude

vs. wavenumber. A sigma is computed for the wavenumber and amplitude plots to

compare the rms deviations for the AR and Fourier spectral estimates.

3.3 Wavenumber and Amplitude Precision without Noise

3.3.1 Tests on CO2

Fourier and AR spectral estimates were compared both with and without .4

adding random noise to the interferogram. The comparison without noise was made

in order to provide a benchmark to determine the degradation of the spectral
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estimates for different noise levels, and also because an actual interferogram

with high SNU could approach the ideal noise free case.

Tests on the application of AR modeling to high density line spectra were

based on a synthetic spectrum of CO2 provided by Atmospheric Radiation

Consultants (Acton, Mass.), and was made available on an AFGL Cyber 750 computer

permanent file. The spectrum consisted of the line positions and amplitudes of

82 CO2 lines between 2300 and 2400 wavenunbers. The significant characteristic

of this spectrum is that it consists of a P branch and an R branch, where the

average line spacing in the P branch is somewhat greater than one wavenumber,

while the average spacing in the R branch is somewhat less than one wavenumber.

Figure I shows plots of the original synthetic "stick" spectrum of C02 , along

with an interferogram (autocorrelation series) of 128 lags generated from the

synthetic spectrum by direct Fourier transform. Also shown is the interferogram

obtained by band filtering a field widened interferogram (measured data) down to

128 points from the above 100 wavenumber CO2 band. Note the similar drive

lengths of the two interferograms.

A noise free interferogram of 128 lags was simulated from the CO2 spectrum,

which corresponded to the drive length and sample rate of the field widened

interferograms. A Fourier processed spectrum, along with a plot of wavenumber

differences between the original stick model and estimated spectra computed from

this unapodized interferogram is shown in Figures 3. Examining a longer inter-

ferogram will illustrate more fully the relation-ship between a spectrum and the

structure of the interferogram. Figure 2 shows an interferogram of 280 lags

generated from the full synthetic CO2 spectrum, along with interferograms

generated from only the P and R branches. Note the appearance of two distinct

"bursts" near the center of the interferogram of the full spectrum. Each of

these bursts is centered at a drive length about equal to the inverse of the

average line separation in the respective branch. Thus, in this case one could

locate in the interferogram specific ranges where information associated with

each branch of the spectrum was localized. It is now clear that the C02 inter-

ferogram of 128 lags used in this study effectively truncates the burst asso-

ciated with the R branch of the spectrum. This implies that much of the

information associated with the R branch has been lost in the shorter inter-

ferogram, and that no method of processing the interferogram will restore the

detail in this part of the spectrum. According to the above definition of a

dense spectrum, where the number of lines approaches half the number of lags
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available in the Interferogram, the C02 spectrum simulated here is overdense.

that is, more information is being fed into the interferogram in this wavenumber

band than its channel capacity will allow. This spectrum, therefore, provides

an instructive example of how the AR spectral estimate responds to information

in an overcrowded channel. The wavenumber differences for the P branch show a

systematic deviation of the estimated wavenumber values from the correct values.

Because the interferogram was not apodized the peaks represented in this cosine

transform are distorted by the sidelobes of nearby lines. All further wave-

number and amplitude comparisons in this report will be based on triangularly

apodized Fourier spectra, even though this may be accompanied by a degraded

resolution. Note that the wavenumber deviations are not shown for the R branch

of the spectrum. This is because the lines that appear in the estimated

spectrum represent the original lines so poorly that it is difficult to find an

unambiguous correspondence. Examining the interferograms in Figure 2, this

absence of R lines is a result of having cut the interferogram off before the

"burst" associated with the R branch of the spectrum. Consequently, there

is not sufficient information in this interferogram to compute an accurate esti-

mate of the R branch of the spectrum.

Figure 4 shows another Fourier spectral estimate using the same

interferogram after it has been triangularly apodized. Only the peaks of those

lines which are distinguishable have been resolved. However, the line position

estimates are now extremely accurate, and show no systematic error. This is a

clear illustration of the resolution limits imposed on Fourier spectral esti-

mates by the necessity of controlling the effects of a finite data length by

windowing.

As noted above, an interferogram does not require apodization when applying

HEM spectral estimation. Figure 5 shows an AR spectral estimate using the same

interferogram with no apodization. Here, all the lines in the P branch are

clearly resolved with highly accurate line position estimates. The amplitude

spectrum is distorted, however, with amplitudes of the lines toward the center 14

decaying faster than in the original spectrum. This distortion of the spectrum

is an effect of truncating the interferogram before the end of the burst asso-

ciated with the P branch. By extending the interferogram farther into the burst

from the P branch the amplitude profile of the AR spectrum of this branch is

restored. Figure 6 shows the AR estimate using an interferogram with 164 lags,

just twice the number of lines in the spectrum. The amplitude profile of the P

branch has been approximately restored, and from the plot of wavenumber
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deviations we see that some of the line positions at the lover end of the R

branch are beginning to appear correctly.

In the CO2 spectrum investigated the line spacing was such that the lines

in the P branch could be fully resolved in a Fourier spectrum with no apodiza-

tion. However, the lines in the unapodized Fourier spectrum were severely

distorted by sidelobes, so that it is generally necessary to apodize the inter-

ferogram, which leaves some of the lines in the P branch unresolved. As a

measure of comparison, one could claim at least a factor of two increase in

resolution for the AR estimate for this high line density spectrum since this is

just the resolution that must be sacrificed by apodization in order to obtain

accurate line positions. This relative performance of the AR and Fourier

methods for the CO2 spectrum probably indicates what would generally be the case

for high line density spectra where the information channel is effectively

full.

3.3.2 Tests on Hydroxyl (OH)

The OH spectrum selected for this study was based on a set of 26 line posi-

tions and amplitudes between 3200 and 3600 wavenumbers shown in Figure 7. This

low line density spectrum consists of a wide range of line spacings and amplitu-

des, and is the "made to order" situation for realizing the advantages of HEM

methds in spectral estimation. A simulated interferogram having a drive length

and sample rate as specified above consists of 445 lags for this wavenumber

band. Fourier spectral estimates from this full interferogram with triangular

apodization are capable of achieving full line resolution, and accurate line

positions and amplitudes. The test in this case consisted in comparing the

Fourier spectral estimates from the full interferogram with the AR estimate when
the simulated drive length was reduced. This situation would arise in practice

if one were forced to use an interferometer drive length too short for the

required spectral resolution, or if it were necessary to limit the scan time to

less than that required for a full scan.

It is pertinent to recall a point made above in discussing the theory

of AR processing. When an AR model is used with a low line density spectrum the

relatively small number of coefficients required in the model require correspon-

dingly few lags Crom an interferogram. This results not only in the ability to

obtain highly resolved spectra from relatively short interferograms, but also in
an effective smoothing of the random noise in the spectrum. Thus, when a small
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percentage of the total number of lags in a moderately noisy interferogram is

used, the resulting filter coefficients selectively model the larger amplitude

spectral lines, leaving the smaller noise spikes effectively smoothed. This

smoothing is effective only if the amplitude of the spectral lines to be modeled

are substantially larger than the noise spikes. If the noise amplitude is

larger than the lines to be modeled, or if more than the minimum number of

interferogram lags required to model the spectrum are used there will be a ten-

dency for the noise to appear as spectral lines. One important implication of

this fact is that the AR spectral estimate is actually degraded by using more

than the optimum number of interferogram lags, although the range of optimality

will generally be broad.

With a drive length and sample rate as specified above, the interferogram

simulated from this OR spectrum contained 445 lags. Figure 8 shows the Fourier

spectrum from the full interferogram, using triangular apodization. Also shown

are plots of the errors in estimating the wavenumbers of the lines and the

errors in estimating the amplitude profile. Since full resolution of all lines

in this spectrum is obtained with an interferogram of this length, the line

position and amplitude estimates are very accurate.

Figure 9 shows the AR spectral estimate of the same spectrum obtained using

150 (about one third) of the available lags from the interferogram. This

spectrum is shown along with the wavenumber deviations of the line position

estimates. Full resolution is obtained in this spectral estimate with only

marginally poorer accuracy in wavenumber values and the amplitude profile. A

Fourier spectrum using the same number of lags is shown in Figure 10, where it

is seen that the group of four lines at the upper end of the spectrum is unre-

solved.

3.4 Wavenumber and Amplitude Precision with Noise

A comparison of AR and Fourier spectral estimates without noise is signifi-

cant, even though no actual measurement can be noise free, because it consti-

tutes a test of the theoretical limits of each of the two methods. However, a

test of the practical effectiveness of these two methods should include a simu-

lation of the noise inherent in any actual measurement process. Four sources of

noise have been mentioned as having a possible effect on interferometer measure-

ments [15]. These include detector noise, photon noise, scintillation noise and

digitizing noise. Of these, photon noise and digitizing noise can be effec-
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tively controlled by instrument and processing design. Scintillation noise

depends on the object being measured and the surrounding environment, and is not

readily characterized in a general way. Of these four sources, detector noise

exhibits a fixed level in the measurement process, and will be of more signifi-

cance in measuring weak signals than in measuring strong signals. Moreover, for

practical purposes one may simulate this noise by a white random process. It

is, therefore, possible and useful to investigate the effects of this kind of

noise on the two measurement processes.

In recording interferograms, detector noise appears as random errors in the

samples values of the interferometer output. One way to characterize the effect

of these interferometer measurement errors on the spectrum is to express the

noise corrupted spectrum as a sum of the true spectrum and a random spectrum,

since the transformation is a linear one. That is, the total noise corrupted

spectrum is the sum of cosine transforms of the noise free interferogram and a

white random process. This shows that the effect of the white noise added to

the interferogram is a.broad band random spectrum. For a given total signal or

energy in an interferogram, the effect of the noise component of the spectrum

will depend on whether the energy in the interferogram is concentrated in a few

lines or spread over a broad band. It is clear that in Fourier processing, a

spectrum of a few discreet lines will tend to dominate the noise component.

The effect of random errors in the interferogram values on an AR spectrum

is more complicated [101. In computing the coefficients of the whitening filter

from the Yule-Walker equations, there is an implied condition that the filter is

stable. This will be true only if the interferogram corresponds to a positive

definite spectrum [8]. Since this will not be true of a noise corrupted inter-

ferogram, by the above arguments, it is not possible to employ the Yule-Walker

equations directly. In our tests we have employed a transformation designed to

force the negative elements in the spectrum, assuming these are the effect of

noise, to be positive. This transformation consists of computing a triangularly

apodized cosine spectrum from the noise corrupted interferogram, and forcing all

negative values to be positive, transforming back to an interferogram and

removing the apodization. The Fourier spectrum corresponding to this new inter-

ferogram is effectively a positive definite random spectrum with about half the

noise variance. We recognize that this interpretation of the procedure is
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somewhat oversimplified, but the resulting AR spectra tend to confirm this

interpretation.

3.4.1 Tests on 0 2

The noise figures in these tests are the random noise amplitude as a frac-

tion of the amplitude of the zero lag of the interferogram. White noise of

amplitude .05, or 5 percent of the zero lag of the interferogram was used in the

CO2 spectral estimates. This noise level seemed adequate to show the dif-

ference in the effect of noise on the Fourier and AR spectral estimates.

Comparing Figure 12, shoving the Fourier spectral estimate of the CO2 band with

the added noise, with Figure 4 the presence of the noise is clearly visible in

the spectrum. The wavenumber estimates are poorest for the low amplitde lines ,S

at the low wavenumber end of the spectrum, but over most of the band are in

errors are a small fraction of a wavenumber. The errors in the amplitude pro-

file are distributed almost uniformly through the spectrum, averaging about

seven percent of the maximum line amplitude. In Figure 13, the results for the

AR spectrum compare favorably with relative to the no noise case shown in Figure

5. Again, the largest wavenumber errors are for the low amplitude lines, and

are generally comparable over the whole P branch to the errors from the Fourier

method.

3.4.2 Tests on Hydroxyl (OH)

The noise figure used in the comparison of the OH spectral estimates is

.05, or 5 percent of the zero lag of the interferogram. Figure 14 shows the

Fourier spectral estimate of the OH band. At this noise level there is a notice-

able degradation in the precision of the wavenumber estimates over what was 1

obtained with no noise (Figure 8) though, as would be expected, the larger

errors occur for the smallest amplitude lines. Actually, the noise has pre-

vented one pair of close lines from being resolved, as indicated by the small

circle on the wavenumber plot in Figure 12. Inspection of Figure 7 shows a line

at this position that is also present in Figure 8. With the noise this line was

not adequately resolved from the adjacent line for the line matching algorithm

to distinguish them. Also, where lines have been resolved, the amplitude esti- 1
mates are only marginally poorer in the presence of noise than in the noise free

case, with a sigma of .9 percent as compared to .1 percent.
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Figure 5 shows the AR spectral estimate, again obtained from only 150 of

the 445 lags. In this case the wavenumber estimates for the low amplitude lines

are poorer than the corresponding Fourier estimates, although it should be

noticed that the low amplitude line which was unresolved in the Fourier case has

been detected here, with a resolution within one wavenumber. Even though these

lines do not appear from the plot to be resolved, they appear as two distinct

poles in the filter derived from the AR coefficients. The larger sigma for the

wavenumber errors erth noise compared to the Fourier estimate is due prli-

marily to the poorer performance of the AR estimate for smaller amplitude

lines. The error in the AR amplitude estimates of 6 percent of the amplitude of

the largest line is poorer than that for the Fourier estimate, but it is still

small.

It is a characteristic of the AR method that if one used many more lags

than the minimum necessary to achieve full resolution (in this case around 150

lags) the performance in the presence of noise would not necessarily be

improved. At approximately this number of lags the best compromise is achieved

between modeling the true lines and smoothing over the noise in the spectrum.

Using a much larger number of lags would tend to make the noise in the spectrum

appear as additional spectral elements. This is one of the reasons why at this

stage of development this AR method of spectral analysis may require some prior

knowledge of the spectrum that is being observed.

3.5 AR Spectral Estimates from a Field Widened Interferometer

In this section of the report some AR spectral estimates obtained of a

single interferogram from the field widened interferometer referred to above

[13). The data used here was measured by a rocketborne interferometer viewing

vertically from a low altitude (about 86 km.). No attempt has been made to

calibrate this data for wavenumber or radiance. The purpose of this analysis

was to test the spectral estimation capabilities of this AR software on actual

data. While we have chosen from this interferogram some of the same spectral

bands that we simulated above, we have made no attempt to ascertain whether all

of the same spectral lines are present in both, or whether the amplitude pro-

file of the lines should be the same in both cases. In particular, the CO2

spectrum used in the simulation was for an altitude of around 100 km, so that
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the amplitude profiles from the simulated and actual data would not be expected

to agree.

The AR estimates are shown for three spectral bands: NO from about 1720 to

2010 cm-l, CO2 from about 2274 to 2403 cm
-1 , and OH from about 3185 to 3600

cMu-. The corresponding apodized, interpolated, cosine transformed spectra are

also shown for comparing amplitude profiles. The AR spectral estimate of the NO

band is shown in Figure 16a, and the cosine transform spectrum is shown in

Figure 16b. This is a high line density spectrum, with about 2.2 interferogram

samples per spectral line in the P branch, and slightly less than 3 samples per

line in the R branch. Although the cosine transform spectrum has resolved set

of the P branch lines, they show more clearly in the AR spectrum. For this high

line density spectrum the information band of the interferogram is nearly to

full so both the Fourier type transform and the AR model should produce about

equal results as a decoder of spectral information. The AR advantage is not

needing to apodize the interferogram. This probably accounts for the better

resolution in the AR estimate. The amplitude profiles of both estimates are

comparable. Note the similar pattern in the larger amplitude lines of the P

branch in both cases.

The CO2 band is also a high line density spectrum. Without calibration

there is no way of checking the line positions of the AR estimate, but the enve-

lopes of both spectral estimates, shown in Figure 17, agree qualitatively even

to the prominence of certain lines. Even though the R branch seems better

resolved in this AR estimate the exact wavenumber values of the lines are

suspect based on the interferogram shown in Figure 2, where the information in

this branch is attenuated. It may be noticed from the lengths of the two inter-

ferograms in Figure 2 that the effective drive lengths for the simulated inter-

ferogram and the actual data appear to be about the same, implying similar

Fourier spectral resolutions. The P branch in this AR spectral estimate is also

very well resolved and the calibrated wavenumber values here should be accurate.

The AR estimate of an approximately 400 wavenumber OH band from the same

intrferogram is shown in Figure 18a. In this case, as in the simulated case

above for the same band, there is no evident improvement in resolution, but as

in that case only about a third of the available interferogram was used to

generate this spectrum. The corresponding apodized cosine transform spectrum is

shown in Figure 18b. However, it is clear that we have basically duplicated the

Fourier spectral estimate from a shorter interferogram. If we attempt to
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greatly increase the resolution by taking more data from the interferogram we

run into a processing problem of the reflection coefficients (the quantity

a(M,M) in equations 2-1) becoming greater than unity. This is probably an

effect of noise in the interferogram causing it to be a non-positive definite

autocorrelation series. Although we have had some success in transforming this

interferogram into one where the effect of the noise is reduced, as described

above in section 3.4, this remains one possible area of development for this

spectral estimation technique.
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Figure Ia. "Stick" spectrum of CO2 band showing P and R branches.
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Figure lb. Interferogram of 128 lags generated from CO2 spectrum in
Figure la.
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Figure Ic. Interferogram generated from 128 points of the CO2 band
measured by a field widened interferometer.
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Figure 2. Interferogram generated from 2300-2400 vavenumber C02
band showing distinct contributions from P and R
branches.

28



C02
FOURIER SPECTRUM
LAGS=128,NOISE= .00

9 9.0 2367.0 2385.0 2403.0

DELTA WAVENUMBER SIC- .25

A

I I I I I I.
2295.0 23!3.0 2331.0 2349.0 2367.0 2385.0 2403.0

9 AMPLITUDE DEVIATION SIG-10.72

x

2295.0 2313.0 2331.0 2349.0 2367.0 2385.0 2403.0
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Figure 3. Fourier spectrum of 128 point unapodized interferogram
generated from CO2 spectrum. Also shown is a plot of
the errors in the wavenumber estimates, and a plot of
errors in the estimated amplitude profile.
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Figure 4. Fourier spect~rum of apodied int~erferogram generat~ed from
C02 spectrum, wit~h errors in t~he wavenumber estimates
and amplitude profile est:imate.
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Figure 5. AR spectrum of unapodized interferogram generated from

CO2 spectrum, with errors in the wavenuber estimates and

omplitude profile estimate.
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Figure 6. AR spectrum of unapodized interferogram of 164 lags
generated from CO2 spectrum, with errors in the wave-

number estima es and amplitude profile estimate.
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Figure 7. "Stick spectrum of OH band from 3200 to 3600 wavenumbers
(after McDonald, et. al. [14])

33 3

9 a 'q-



ON
FOURIER SPECTRUM
LAGS=444,NOISE- .00

3200.0 3256.F 3333.3 4 3l 3.3 oo.o

DELTA WAVENUMBER SIG- .03

z

------------- >b O*0x i-w AI I I 1

'3A2000 3266.7 3333.3 3400.0 3466.7 3533.3 3600.0

9 AMPLITUOE DEVIATION SIC- .35

33200.0 326. 3.3 3400.0 3 46.7 3533.3 3600.0

WAVENUMBER

Figure 8. Fourier spectrum of 444 point apodized interferogram
generated from OH spectrum. Also shown is a plot of the
errors in the wavenumber estimates, and a plot of errors
in the estimated amplitude profile.
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Figure 9. AR spectrum using 150 lags of the unapodized interfero-
gram generated from OH spectrum. Also shown is a plot of
the errors in the wavenumber estimates, and a plot of
errors in the estimated amplitude profile.
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Figure 10. Fourier spectrum using 150 lags of the apodized inter-
ferogram generated from OH spectrum. Also shown is a
plot of the errors in the wavenumber estimates, and a
plot of errors In the estimated amplitude profile.
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Figure 11. AR spectrum using 200 lags of the unapodized inter-
ferogram genertated from OH spectrum. Also shown is a

plot of the errors in the wavenumber estimates, and a
plot of errors in the estimated amplitude profile.
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Figure 12. Fourier spectrum of 128 point apodized interferogram,
vith added random noise, generated from CO2 spectrum.

Also shown is a plot of the errors in the wavenumber-
estimates, and a plot of errors in the estimated ampli-

tude profile.
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Figure 13. AR spectrum uning 128 lags of the unapodized inter-
ferogram, with added random noise, generated from C02
spectrum. Also shown is a plot of the errors in the
wavenumber estimates, and a plot of errors in the esti-
mated amplitude profile.
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OH
o FOURIER SPECTRUM
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Figure 14. Fourier spectrum using 444 lags of the apodized inter-
ferogram, with a noise level of 5 percent of the first
lag of the interferogram, generated from OH spectrum.
Also shown is a plot of the errors in the wavenumber
estimates, and a plot of errors in the estimated ampli-
tude profile.
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Figure 15. AR spectrum using 150 lags of the apodized interferogram,
with added noise as in Figure 14, generated from OH
spectrum. Also shown is a plot of the errors in the
wavenumber estimates, and a plot of errors in the esti-
mated amplitude profile.

41

11,1 , 111 111 1 1, ili., 1



FV SAN /0
AJ SEC 14UM

NF , 81H. AV FAC-32
0

40

.,-o IiI
-j

ihil

' A

1740.0 1791.? 1856.4 1914.6 1972.8 2031.0BIN NUMBER

Figure 16a. AR spectrum of NO band - approximately 1715 to 2005 wave-
numbers - from field widened interferogram.
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Figure 16b. Fourier spectrum of NO band, as in Figure 16a.
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Figue 1. A setru ofCO2 band -approximately 2275 to 2403 wave-
numbers - from field widened interferogram. The Fourier
spectral estimate from the same data appears as an

envelope of the AR spectrum. 41I
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Figure 18a. AR spectrum of OH band - approxim ately 3200 to 3600 wave-
numbers - from field widened interferogram computed from
150 out of 415 lags of the narrowband interferogram.
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Figure 18b. Fourier spectrum of OH band, as in Figure 18a, using all
available lags of narrow band interferogram.
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CONCLUSIONS

This report is an evaluation of an Autoregressive (AR) method of spectral

estimation incorporated into a high resolution interactive software package. It

should be noted that, while the accompanying software package is capable of

generating the AR spectral estimates as displayed in Figures 16 through 18, some

of the results obtained in this report have utilized additional software which

is not included in the interactive program. In particular, only graphic output

is available from the interactive program at this time. The software which com-

puted values of estimated wavenumber and amplitude values has not been incor-

porated in the interactive package. The time for this kind of software

development was not available in this program, and our effort needed to be

directed primarily toward testing the capabiliuties of the method itself rather

than the existing interactive program. With these provisions, the results of

the comparisons made in this report apply to the output of the interactive

program.

The evaluation of the AR method of spectral estimation in this report is

based on a comparison of this method with the results of the conventional

Fourier transform methods. The Fourier results shown here for the simulated

spectra were generally computed as cosine transforms of apodized interferograms

generated from these spectra. The principal conclusions from these comparisons

are as follows:

1. For a very high SNR, close to the no noise cases studied here, this AR
method offers significant advantages in resolution of low line density
spectra. This could be utilized, for the case of the OH spectrum
studied here, for shortening the required drive length of the inter-
ferometer by a factor of two or three while still maintaining at least
the line resolution and amplitude acuracy of the Fourier method. For
high SNR it would also be possible to make use of additional inter-
ferogram samples to increase the resolution even further.

2. For high line density spectra and high SNR, the resolution enhancement
of the AR method is limited because one is operating at the limit of
the information carrying capacity of the interferogram. In this case
one may still achieve a resolution improvement of at least a factor of
two, which is what one loses by using a triangular or similar apodiza-
tion to minimize line distortion due to sidelobes with the Fourier
method.

3. Test with the simulated CO2 spectrum indicated that with the added
noise the degradation of the AR line position estimates appeared no



P

worse than the Fourier estimates. However, there did seem to be less I
accuracy in the amplitude estimates.

4. Conclusions on the AR spectral estimates of the low SNR simulated OH
spectrum (low line density) may be more difficult to generalize. With
a noisy interferogram it is not possible to increase resolution to the
same extent as with high SNR measurements, since introducing more lags I
into the AR estimate, beyond those needed to model the basic signal,
tends to amplify noise spikes instead of averaging over them.
Nevertheless, it seems possible to achieve a resolution comparable to
that from the Fourier estimate with significantly less data.

5. It should be recalled that it was necessary to pre-process the noise
corrupted interferogram in order to implement the AR process, as
described above. This was done to satisfy an inherent requirement in
producing an AR model, that the reflection coefficient belonging to the
set of filter coefficients from which the AR spectrum is computed be
less than unity. This procedure was effective for the simulated
spectra because it was possible to generate more lags than were needed.
The effectiveness for actual data is more limited and we are studying
alternate procedures for transforming a noisy interferogram to z posi-
tive definite autocorrelation series.
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