
~-A182 "9 AN (TRADEMK) COMPILER VALIDATION SUMMARY REPORT 11
GOULD INC APLEX RDA CO.. (U) INFORMATION SYSTEMS AN
TECHNOLOGY CENTER H-P RFD ON DR VALI. 25 FEB 67UNLRSIFIED F/O 12/5 M

lllllllmom

mhE~hEh~hhIE

11.0 E'I

Ni= la

MICROCOPY RESOLUTION TEST CHART

,_Aitpgk "LAU Of STACAROSII*!
1

wW~~A v w 1 W W ~ W - w

a %~\' % %

UNCLASSIFIED FILE C
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

READ ?)ISTUCrIO4SREPORT DOCUMENTATION PAGE I.ORE COPL-TEINGFORK
1. REPORT NUMBER 12. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (andSubttl*e) 5. TYPE OF REPORT & PERIOD COVERED

Ada Compiler Validation Summary Report: 25 FEB 1987 to 25 FEB 1988

Gould,. Inc. APLEX Ada Compiler, Version 1.0
Gould CONCEPT/32 Model 9780 6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)

Wright-Patterson

9. PERFORMING ORGANIZATION AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK
Ada Validation Facility AREA & WORK UNIT NUMBERS

ASD/SIOL
Wright-Patterson AFB OH 45433-6503

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Ada Joint Program Office 25 FEB 1987
United States De artment of Defense i. NUMN U

" Washington, DC 20301-3081ASD/SIOL 31
14. MONITORING AGENCY NAME & ADORESS(If different from Controlling Office) 15. SECURITY CLASS (of this report)
Wright -Patterson UNCLASSIFIED

15a. R g FICATION/DOWNGRAOING

N/A

0". ~15. DISTRIBUTION STATEMENT (ofthisReport)

Approved for public release; distribution unlimited. D'T1C
v,) - AUG2 0

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20. if different from Report) .

UNCLASSIFIEDC4F'i 4 w I

18. SUPPLEMENTARY NOTES

19. KEYWORDS (Continue on reverse side if necessary and identify by block number)

Ada Programming language, Ada Compiler Validation Summary Report, Ada
Compiler Validation Capability, ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD-
1815A, Ada Joint Program Office, AJPO

. 20. ABST RAC T (Continue on reverse side if necessary and identify by block number)

See Attached.

00 '0w 1473 EDITION OF I NOV 65 IS OBSOLETE

I JAN 73 S/N 0102-LF-014-6601 UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

Adam Compiler Validation Summary Report:

Compiler Name: APLEXGAda Compiler, Version 1.0

Host: Gould CONCEPT/32 Model 9780 Target: Gould CONCEPT/32 Model 9780
under MPX-32, Version 3.2 under MPX-32, Version 3.2

Testing Completed 25 February 1987 Using ACVC 1.8

This report has been reviewed and is approved.

Ada Validation Facility
Georgeanne C hitwood
ASD/SCOL
Wright-Patterson AFB OH 45433-6503

.

ValidationOaition
John F. Kramer :CAc1sn For

Institute for Defense Analyses Y hIs GRA&I
Alexandria VA rjiC T!'L3

U :. .,'tun ced]

Ada Moint Program Office .c'es
Virginia L. Castor . . a:'.,Or
Director
Department of Defense
Washington DC

®Ada is a registered trademark of the United States Gove.rnment
(Ada Joint Program Office).

GAPLEX is a trademark of Gould, Inco.~i

1.I~! N tv-.-

AVF Control Number: AVF-VSR-59.0567
86-12-18-GOU

Ada® COMPILER
VALIDATION SUM[MRY REPORT:

Gould, Inc.
APLEX Ada Compiler, Version 1.0

Gould CONCEPT/32 Model 9780

Completion of On-Site Testing:
25 February 1987

Prepared By:
Ada Validation Facility

ASD/S COL
Wright-Patterson AFB OH 45433-6503

Prepared For:
Ada Joint Program Office

United States Department of Defense
Washington, D.C.

®Ada is a registered trademark of the United States Government
(Ada Joint Program Office).

GAPLEX is a trademark of Gould, Inc.

+ Place NTIS form here +

..

11115 0 111 1 1 11

EXECUTIVE SUMMARY

This Validation Summary Report (VSR) summarizes the results and conclusions
of validation testing performed on the APLEXGAda Compiler, Version 1.0,
using Version 1.8 of the Ada® Compiler Validation Capability (ACVC). The
APLEX Ada Compiler is hosted on a Gould CONCEPT/32 Model 9780 operating
under MPX-32, Version 3.2. Programs processed by this compiler may be
executed on a Gould CONCFPT/32 Model 9780 operating under MPX-32, Version
3.2.

On-site testing was performed 23 February 1987 through 25 February 1987 at
Gould, Inc. in Ft. Lauderdale FL, under the direction of the Ada
Validation Facility (AVF), according to Ada Validation Organization (AVO)
policies and procedures. The AVF identified 2102 of the 2399 tests in ACVC
Version 1.8 to be processed during on-site testing of the compiler. The 19
tests withdrawn at the time of validation testing, as well as the 278
executable tests that make use of floating-point precision exceeding that
supported by the implementation, were not processed. After the 2102 tests
were processed, results for Class A, C, D, and E tests were examined for
correct execution. Compilation listings for Class B tests were analyzed
for correct diagnosis of syntax and semantic errors. Compilation and link
results of Class L tests were analyzed for correct detection of errors.
There were 64 of the processed tests determined to be inapplicable. The
remaining 2038 tests were passed.

The results of validation are summarized in the following table:

RESULT CHAPTER TOTAL
_.2 3 4 5 6 7 8 9 10 11 12 14

Passed 93 204 280 239 161 97 135 262 107 32 217 211 2038

Failed 0 0 0 0 0 0 0 0 0 0 0 0 0

Inapplicable 23 121 140 8 0 0 4 0 23 0 1 22 342

Withdrawn 0 5 5 0 0 1 1 2 4 0 1 0 19

TOTAL 119 330 425 247 161 98 140 264 134 32 219 233 2399

The AVF concludes that these results demonstrate acceptable conformity to
ANSI/MIL-STD-1815A Ada.

SAda is a registered trademark of the United States Government

(Ada Joint Program Office).

SAPLEX is a trademark of Gould, Inc.

V.

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT 1-2
1.2 USE OF THIS VALIDATION SUMMARY REPORT1-2
1.3 REFERENCES 1-3
1.4 DEFINITION OF TERMS1-3
1.5 ACVC TEST CLASSES 1-4

CHAPTER 2 CONFIGURATION INFORMATION

2., CONFIGURATION TESTED 2-1
2.2 IMPLEMENTATION CHARACTERISTICS 2-2

CHAPTER 3 TEST INFORMATION

3.1 TEST RESULTS 3-1

3.2 SUMMARY OF TEST RESULTS BY CLASS 3-1
3.3 SUMMARY OF TEST RESULTS BY CHAPTER 3-2
3.4 WITHDRAWN TESTS 3-2
3.5 INAPPLICABLE TFSTS 3-2
3.6 SPLIT TESTS 3-4
3.7 ADDITIONAL TESTING INFORMATION3-4
3.7.1 Prevalidation 3-4
3.7.2 Test Method 3-5
3.7.3 Test Site 3-5

APPENDIX A DECLARATION OF CONFORMANCE

APPENDIX B APPENDIX F OF THE Ada STANDARD

APPENDIX C TEST PARAMETERS

APPENDIX D WITHDRAWN TESTS

CHAPTER 1

INTRODUCTION

This Validation Summary Report (VSR) describes the extent to which a
specific Ada compiler conforms to the Ada Standard, ANSI/MIL-STD-1815A.
This report explains all technical terms used within it and thoroughly
reports the results of testing this compiler using the Ada Compiler
Validation Capability (ACVC). An Ada compiler must be implemented
according to the Ada Standard, and any implementation-dependent features
must conform to the requirements of the Ada Standard. The Ada Standard
must be implemented in its entirety, and nothing can be implemented that is
not in the Standard.

Even though all validated Ada compilers conform to the Ada Standard, it
must be understood that some differen-es do exist between implementations.
The Ada Standard permits some implementation depen-encies--for example, the
maximum length of identifiers or the maximum values of integer types.
Ot.. differences between compilers result from characteristics of
particular operating systems, hardware, or implementation strategies. All
of the dependencies observed during the process of testing this compiler
are given in this report.'

The information in this report is derived from the test results produced
during validation testing. The validation process includes submitting a
suite of standardized tests, the ACVC, as inputs to an Ada compiler and
evaluating the results.rNThe purpose of validating is to ensure conformity
of the compiler to the Ada'Standard by testing that the compiler properly
implements legal language constructs and that it identifies and rejects
illegal language constructs. The testing also identifies behavior that is
implementation dependent but permitted by the Ada Standard. Six classes of
tests are used. These tests are designed to perform checks at compile
time, at link time, and during execution.

4-i

INTRODUCTION

1 .1 PURPOSE OF THIS VALIDATION SUMMARY REPORT

This VSR documents the results of the validation testing performed on an
Ada compiler. Testing was carried out for the following purposes:

" To attempt to identify any language constructs supported by the
compiler that do not conform to the Ada Standard

" To attempt to identify any unsupported language constructs
required by the Ada Standard

" To determine that the implementation-dependent behavior is allowed
by the Ada Standard

Testing of this compiler was conducted by- SofTech, Inc., under the
direction of the AVF according to policies and procedures established by
the Ada Validation Organization (AVO). On-site testing was conducted from
23 February 1987 through 25 February 1987 at Gould, Inc. in Ft.
Lauderdale FL.

I

1.2 USE OF THIS VALIDATION SLiMARY REPORT

Consistent with the national laws of the originating country, the AVO may
make full and free public disclosure of this report. In the United States,
this is provided in accordance with the "Freedom of Information Act" (5
U.S.C. #552). The results of this validation apply only to the computers,
operating systems, and compiler versions identified in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject compiler has no nonconformities
to the Ada Standard other than those presented. Copies of this report are
available to the public from:

Ada Information Clearinghouse
Ada Joint Program Office
OUS DRE
The Pentagon, Rm 3D-139 (Fern Street)
Washington DC 20301-3081

or from:

Ada Validation Facility
AS D/S COL
Wright-Patterson AFB OH 4 5 433-6503

'V

1-2

LUNN _,S%'_ Li,

!NTRODUCT-.N

Questions regarding this report or the validation test results should be
directed to the AVF listed above or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

1.3 REFERENCES

1. Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, FEB 1983.

2. Ada Validation Organization: Procedures and Guidelines, Ada Joint
Program Office, I JAN 1987.

3. Ada Compiler Validation Capability Implementers' Guide, SofTech,
Inc., DEC 1984.

1.4 DEFINITION OF TERMS

ACV! The Ada Compiler Validation Capability. A set of programs
that evaluates the conformity of a compiler to the Ada
language specification, ANSI/MIL-STD-1815A.

Ada Standard ANSI/MIL-STD-1815A, February 1983.

Applicant The agency requesting validation.

AVF The Ada Validation Facility. In the context of this report,
the AVF is responsible for conducting compiler validations
according to established policies and procedures.

AVO The Ada Validation Organization. In the context of this
report, the AVO is responsible for setting procedures for
compiler validations.

Compiler A processor for the Ada language. In the context of this
report, a compiler is any language processor, including
cross-compilers, translators, and interpreters.

Failed test A test for which the compiler generates a result that
demonstrates nonconformity to the Ada Standard.

Host The computer on which the compiler resides.

1-3

INTRODUCTION

Inapplicable A test that uses features of the language that a compiler is
test not required to support or may legitimately support in a way

other than the one expected by the test.

Passed test A test for which a compiler ge:,erates the expected result.

Target The computer for which a compiler generates code.

Test A program that checks a compiler's conformity regarding a
particular feature or features to the Ada Standard. In the
context of this report, the term is used to designate a
single test, which may comprise one or more files.

Withdrawn A test found to be incorrect and not used to check conformity
test to the Ada language specification. A test may be incorrect

because it has an invalid test objective, fails to meet its
test objective, or contains illegal or erroneous use of the
language. %

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard is measured using the ACVC. The ACVC

contains both legal and illegal Ada programs structured into six test

classes: A, B, C, D, E, and L. The first letter of a test name identifies
the class to which it belongs. Class A, C, D, and E tests are executable,
and special program units are used to report their results during
execution. Class B tests are expected to produce compilation errors.

Class L tests are expected to produce link errors.

Class A tests check that legal Ada programs can be successfully compiled
and executed. However, no checks are performed during execution to see if
the test objective has been met. For example, a Class A test checks that
re-erved words of another language (other than those already reserved in
the Ada language) are not treated as reserved words by an Ada compiler. A
Class A test is passed if no errors are detected at compile time and the
program executes to produce a PASSED message.

Class B tests check that a compiler detects illegal language usage. Class

B tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that every syntax or
semantic error in the test is detected. A Class B test is passed if every
illegal construct that it contains is detected by the compiler.

Class C tests check that legal Ada programs can be correctly compiled and
executed. Each Class C test is self-checking and produces a PASSED,

FAILID, or NOT APPLICABLE message indicating the result when it is
executed.

Class D tests check the compilation and execution capaci'ies of a compiler.
Since there are no capacity requirements placed on a compiler by the Ada
Standard for some parameters--for example, the nmber of identifiers

'-4

AM . . .' . . - .-. -' .'

I'T DU2TTON

permitted in a compilation or the number of units in a lizrary--a compiler
may refuse to compile a Class D test and still be a conforming compiler.
Therefore, if a Class D test fails to compile because the capacity of tne
compiler is exceeded, the test is classifiec as inapplicable. If a Class D
test compiles successfully, it is self-checking and produces a PASSED or
FAILED message during execution.

Each Class E test is self-checking and produces a NOT APPLTCABLE, PASSED,
or FAILED message when it is compiled and executed. However, the .
Standard permits an implementation to reject programs containing some
features addressed by Class E tests during compilation. Therefore, a Class
E test is passed by a compiler if it is compiled successfully and executes
to produce a PASSED message, or if it is rejected by the compiler for an
allowable reason.

Class L tests check that incomplete or illegal Ada programs involving
multiple, separately compiled units are detected and not allowed to
execute. Class L tests are compiled separately and execution is attempted.
A Class L test passes if it is rejected at link time--that is, an attempt
to execute the main program must generate an error message before any
declarations in the main program or any units referenced by the main
program are elaborated.

Two library units, the package REPORT and the procedure CHECK FILE, support
the self-checking features of the executable tests. The package REPORT
provides the mechanism by which executable tests report PASSED, FAILED, or
NOT APPLICABLE results. It also provides a set of identity functions used
to defeat some compiler optimizations allowed by the Ada Standard that
would circumvent a test objective. The procedure CHECK FILE is used to
check the contents of text files written by some of the Class C tests for
chapter 14 of the Ada Standard. The operation of these units is checked by
a --t of executable tests. These tests produce messages that are examined
to verify that the units are operating correctly. If these units are not
operating correctly, then the validation is not attempted.

The text of the tests in the ACVC follow conventions that are intended to
ensure that the tests are reasonably portable without modification. For
example, the tests make use of only the basic set of 55 characters, contain
lines with a maximum length of 72 characters, use small numeric values, and
place features that may not be supported by all implementations in separate
tests. However, some tests contain values that require the test to be
customized according to implementation-specific values--for example, an
illegal file name. A list of the values used for this validation is
provided in Appendix C.

A compiler must correctly p-ocess eF.ch of the tests in the suite and
demonstrate conformity to the Ada Standard by eit+rer meetirZ the pass
criteria given for the test or by showing that the test is inapplicable to
the implementation. Any test that was determined to contain an illegal
language construct or an erroneous language construct is withdraw.n from the
ACVC and, therefore, is not used in te:ring a compiler. The tests
withdra -n at the time of validation are given in Appendix D.

S-5

- -w * ' % *-..,.-'•

CHkPTER 2

CN;F73'JRAT7)N :NFPMAT7DN

2.1 CONFIGURATION TESTED

The candidate compilation system for tUhs validation was tested under the

following configuration:

Compiler: APLEX Ada O=piler, Version 1.0 5

ACVC Version: 1.8

Certificate Expiration Date: 2 April 1988

Host Computer:

Machine: Gould CONCEPT/32 Model 9780

Operating System: MPX-32, Version 3.2

Mamory Size: 16 megabytes

Target Camputer:

Machine: Gould CONCEPT/32 Model 9780

Operating System: MPX-32, Version 3.2

Memory Size: 16 megabytes

2-1

! , ' " ''" ." '.." ", .', .,", -., ", --,',Y.".,, -"..- ."-.' -,-. . -" , .-. . ',

CONFIGURATION INFORMATION

2.2 IMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine the behavior of
a compiler in those areas of the Ada Standard that permit implementations
to differ. Class D and E tests specifically check for such implementation
differences. However, tests in other classes also characterize an
implementation. This compiler is characterized by the following
interpretations of the Ada Standard:

• Capacities.

The compiler correctly processes tests containing loop statements
nested to 65 levels, block statements nested to 65 levels, and
recursive procedures separately compiled as subunits nested to 17
levels. It correctly processes a compilation containing 723
variables in the same declarative part. (See tests D55A03A..H (8
tests), D56001B, D64005E..G (3 tests), and D29002K.)

. Universal integer calculations.

An implementation is allowed to reject universal integer
calculations having values that exceed SYSTEM.MAXINT. This
implementation does not reject such calculations and prccesses
them correctly. (See tests D4AO02A, D4AO02B, D4AO04A, and
D4AO04B.)

• Predefined types.

This implementation does not support additional predefined types
in the package STANDARD. (See tests B86001C and B86001D.)

• Based literals.

An implementation is allowed to reject a based literal with a
value exceeding SYSTEM.MAX INT during compilation, or it may raise
NUMERIC ERROR or CONSTRAINT ERROR during execution. This
implementation raises NUMERIC ERROR during execution. (See test
E24101A.)

• Array types.

An implementation is allowed to raise NUMERIC ERROR or
CONSTRAINT ERROR for an array having a 'LENGTH that exceeds
STANDARD.INTEGER'LAST and/or SYSTEM.MAXINT.

A packed BOOLEAN array having a 'LENGTH exceeding INTEGER'LAST
raises NUMERICERROR when the array type is declared. (See test
C52103X.)

2-2

CONFIGURATION INFORMATION

A packed two-dimensional BOOLEAN array with more than INTEGER'LAST
components raises NUMERICERROR when the array type !s declared.
(See test C52104Y.)

A null array with one dimension of length greater than
INTEGER'LAST may raise NUMERIC ERROR or CONSTRAINT ERROR either
when declared or assigned. Alternatively, an implementation may
accept the declaration. However, lengths must match in array
slice assignments. This implementation raises NUMERICERROR when
the array type is declared. (See test E52103Y.)

In assigning one-dimensional array types, the expression appears
to be evaluated in its entirety before CONSTRAINT ERROR is raised
when checking whether the expression's subtype is compatible with
the target's subtype. In assigning two-dimensional array types,
the expression does not appear to be evaluated in its entirety

before CONSTRAINT ERROR is raised when checking whether the
expression's subtype is compatible with the target's subtype.
(See test C52013A.)

Discriminated types.

During compilation, an implementation is allowed to either accept
or reject an incomplete type with discriminants that is used in an
access type definition with a compatible discriminant constraint.
This implementation accepts such subtype indications. (See test
E38104A.)

In assigning record types with discriminants, the expression
appears to be evaluated in its entirety before CONSTRAINT ERROR is
raised when checking whether the expression's subtype is
compatible with the target's subtype. (See test C52013A.)

Aggregates.

In the evaluation of a multi-dimensional aggregate, the order in
which choices are evaluated and index subtype checks are made
appears to depend upon the aggregate itself. (See tests C43207A
and C43207B.)

In the evaluation of an aggregate containing subaggregates, all
choices are not evaluated before being checked for identical
bounds. (See test E4327-B.)

All choices are evaluated before CONSTRAINT ERROR is raised if a
bound in a nonnull range of a nonnull aggregate does not belong to
an index subtype. (See test E43211B.)

2-3

CONFIGURATION INFORMATION

Functions.

An implementation may allow the declaration of a parameterless
function and an enumeration literal having the same profile in the
same immediate scope, or it may reject the function declaration.
If it accepts the function declaration, the use of the enumeration
literal's identifier denotes the function. This implementation
rejects the declaration. (See test E66001D.)

Representation clauses.

The Ada Standard does not require an implementation to support
representation clauses. If a representation clause is not
supported, then the implementation must reject it. While the
operation of representation clauses is not checked by Version 1.8
of the ACVC, they are used in testing other language features.
This implementation accepts 'SIZE and 'STORAGE SIZE for tasks; it
rejects 'STORAGE SIZE for collections and 'SMALL clauses.
Enumeration representation clauses, including those that specify
noncontiguous values, appear not to be supported. (See tests
C55B16A, C87B62A, C87B62B, C87B62C, and BC1002A.)

Pragmas.

The pragma INLINE is not supported for procedures or functions.
(See tests CA3004E and CA3004F.)

. Input/output.

The package SEQUENTIAL _O cannot be instantiated with
unconstrained array types and record types with discriminants.
The package DIRECT _O cannot be instantiated with unconstrained
array types and record types with discriminants without defaults.
(See tests AE2101C, AE2101H, CE2201D, CE2201E, and CE2401D.)

An existing text file can be opened in OUT FILE mode and can be
created in both OUT FILE and INFILE modes. (See test EE3102C.)

Only one internal file can be associated with each external file
for text I/O for both reading and writing. (See tests CE3!!!A..E
(5 tests).)

Only one internal file can be associated with each external file
for sequential I/O for both reading and writing. (See tests
CE2107A..F (6 tests).)

Only one internal file can be associated with each external file
for direct I/O for both reading and writing. (See tests
CE2107A..F (6 tests).)

2-4

I. r

CONFTGURATTON INFORMATION

Temporary sequential files are given a name. Temporary direct
files are given a name. Temporary files given names are not
deleted when they are closed. (See tests CE2108A and CE2108C.)

Generics.

Generic subprogram declarations and bodies cannot be compiled in
separate compilations. (See test CA2009F.)

Generic package declarations and bodies cannot be compiled in
separate compilations. (See tests CA2009C and BC3205D.)

',S
'S

'SI

2-5

- p *~ . . -S f S S

CHAPTER 3

TEST INFORMATION

3.1 TEST RESULTS

Version 1.8 of the ACVC contains 2399 tests. When validation testing of
APLEX Ada Compiler was performed, 19 tests had been withdrawn. The
remaining 2380 tests were potentially applicable to this validation. The
AVF determined that 342 tests were inapplicable to this implementation, and
that the 2038 applicable tests were passed by the implementation.

The AVF concludes that the testing results demonstrate acceptable
conformity to the Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL
A B C D F L

Passed 67 860 1052 17 11 31 2038

Failed 0 0 0 0 0 0 0

Inapplicable 2 7 316 0 2 15 342

Withdrawn 0 7 12 0 0 0 19

TOTAL 69 874 1380 17 13 46 2399

3-1

TEST :NFORYAT:ON

3.3 SUMMARY OF TEST RESULTS BY CH'APTER

I

RESULT CHAPTER TOTAL
2 3 4 5 6 7 8 9 10 11 12 14

Passed 93 204 280 239 161 97 135 262 107 32 217 211 2038

Failed 0 0 0 0 0 0 0 0 0 0 0 0 0

Inapplicable 23 121 140 8 0 0 4 0 23 0 1 22 342

Withdrawn 0 5 5 0 0 1 1 2 4 0 1 0 19

TOTAL 116 330 425 247 161 98 140 264 134 32 219 233 2399

3.4 WITHDRAWN TESTS

The following 19 tests were withdrawn from ACVC Version 1.8 at the time of
this validation:

C32114A C41404A B74101B BC3204C
B33203C B45116A C87B50A
C34018A C48008A C92005A
C35904A B49006A C940ACA
B37401A B4AO1OC CA3005A..D (4 tests)

See-Appendix D for the reason that each of these tests was withdrawn.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of features
that a compiler is not required by the Ada Standard to support. Others may
depend on the result of another test that is either inapplicable or
withdrawn. For this validation attempt, 342 tests were inapplicable for
the reasons indicated:

. C34001D, B52004E, B55B09D, and C55B07B use SHORT Th, 27GER which is
not supported by this compiler.

• C34001E, B52004D, B55B09C, and C55BW7A use LONG INTEGER which is
not supported by this compiler.

* C34001F and C35702A use SHORTFLOAT which is not supported by this
compiler.

3-2

* * * * * * L-

. C34001G a. d C35702B use LONGFOAT w "i. ..3 not s..pported by tnls
compiler.

C52008B declares a record type wit!. four discrinm0nar.ts of type
integer and having default value-. The type may be used in the
declaration of unconstrained objects, but the size ef these
objects exceeds the maximum object size of this implementation,
and NUMERIC ERROR is raised.

" C55B16A makes use of an enumeration reppresentatfon clause
containing noncontiguous values which is not supported by this
compiler.

" B86001D requires a predefined numeric type other than those
defined by the Ada language in package STANDARD. There is no Fuch
type for this implementation.

" C86001F redefines package SYSTEM, but TEXT 10 is made obsolete by
this new definition in this implementation and the test cannot be
executed since the package REPORT is dependent on the package
TEXT 10.

" C87B62B..C (2 tests) use length clauses which are not supported by
this compiler. The length clauses 'STORAGE SIZE for access types
and 'SMALL are rejected during compilation.

" BA011C, CA1012A, CA2009C, CA2009F, LA5008A..H (8 tests), I.A5008J,
LA5008M, LA5008N, and BC3205D compile generic specifications and
bodies in separate compilations which is not supported by this
compiler.

" CA3004E, EA3004C, and LA3004A use INLINE pragma for procedures
which is not supported by this compiler.

" CA3004F, EA3004D, and LA3004B use INLINE pragma for functions
which is not supported by this compiler.

" LA50081 and LA5008K are inapplicable becauqe, in this
implementation, a generic unit is made obsolete by the
recompilation of a unit on which the generic body (but not the
specification) depends. Since this implementation does not
support separate compilation of generic unit specifications and
bodies, a generic specification must be considered obsolete
whenever the body is found to be obsolete. These tests shoula
report at link time that the body of a generic unit is obsolete.
However, a compile-tIme error message reports that the generic
unit is obsolete.

AE2101C, CE2201D, and CE2201E use an instantiation of package
SEQUENTIAL 10 with unconstrained array types which is not
supported by this compiler.

3-3

TEST 1NFORMATION

AF2101H and CE2401D use an Instantiation of package DIRFCT 10 witn

unconstrained array types which is not supported by this compiler.

" CE2107A..F (6 tests), CE2110B, CE2111D, CE2111H, CE3111A..F (5
tests), CE3114B, and CF3115A are inapplicable because multiple
internal files cannot be associated with the same external file.
The proper exception is raised when multiple access is attempted.

" CE3605A attempts to output a line 360 characters long. This
implementation limits output lines to 253 characters. Placing a
limitation on the length of a text line is an acceptable
implementation restriction. An attempt to write the 254th
character results in the exception USEERROR being raised.

" The following 278 tests require a floating-point accuracy that
exceeds the maximum of 6 supported by the implementation:

C24113C..Y (23 tests) C35708C..Y (23 tests) C45421C..Y (23 tests)
C35705C..Y (23 tests) C35802C..Y (23 tests) C45424C..Y (23 tests)
C35706C..Y (23 tests) C45241C..Y (23 tests) C45521C..Z (24 tests)
C35707C..Y (23 tests) C45321C..Y (23 tests) C45621C..Z (24 tests)

3.6 SPLIT TESTS

if one or more errors do not appear to have been detected in a Class B test
because of compiler error recovery, then the test is split into a set of
smaller tests that contain the undetected errors. These splits are then
compiled and examined. The splitting process continues until all errors
are detected by the compiler or until there is exactly one error per split.
Any Class A, Class C, or Class E test that cannot be compiled and executed
because of its size is split into a set of smaller subtests that can be
processed.

Splits were required for six Class B tests:

BA3006A BA3007B BA3008B
BA3006B BA3008A BA3013A

3.7 ADDITIONAL TESTING INFORMATION

3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.8 produced by
the APLEX Ada Compiler was submitted to the AVF by the applicant for

review. Analysis of these results demonstrated that the compiler
successfully passed all applicable tests, and that the compiler exhibited
the expected behavior on all inapplicable tests.

3-4

* S . ~ W5,S~s'.]

0.

3.7.2 Test Method

Testing of the APLEX Ada Compiler using ACVC Version 1.8 was conducted
on-site by a validation team from the AVF. The configuration consisted of
a Gould CONCEPT/32 Model 9780 operating under MPX-32, Version 3.2.

A magnetic tape containing all tests except for withdrawn tests and tests
requiring unsupported floating-point precislons was taken on-site by the
validation team for processing. Tests that make use of
implementation-specific values were customized before being written to the
magnetic tape. Tests requiring splits during the prevalidation testing
were included in their split form on the magnetic tape.

The contents of the magnetic tape wer- loaded directly onto the host
computer. After the test files were loaded to disk, the full set of tests
was compiled, linked, and executed as appropriate on a Gould CONCEPT/32
Model 9780. Results were printed from the Gould CONCEPT/32 Model 9780.

The compiler was tested using command scripts provided by Gould, Inc. and
reviewed by the validation team. The following options were in effect for
testing:

Option Effect

listing Generates compilation listing. Defau t is
to have listing disabled.

listname Allows specification of the compilation listing
filename. Default is to have list name disabled.

Test output, compilation listings, and Job logs were captured on magnetic
tape and archived at the AVF. The listings examined on-site by the
validation team were also archived.

3.7.3 Test Site

The validation team arrived at Gould, Inc. in Ft. Lauderdale FL on 22
February 1987, and departed after testing was completed on 25 February
1987.

3-5

APPENDIX A

DECLARATION OF CONFORMANCE

Gould, Inc. has submitted the following declaration of
conformance concerning the APLEX Ada Compiler.

A--

B-

S.

DECLARATION OP CONFORMANCE

Com.i1er Implementor: TeleSoft, Inc.
AdaLSValidation Facility: ASD/SCOL, Wright-Patterson AFB, OH
Ada Compiler Validation Capability (ACVC) Version: 1.8

Base Configuration

Base Compiler Name: APLEX& Ada Compiler Version: 1.0
Host Architecture ISA: Gould CONCEPT/32 OS&VER #: MPX, Version 3.2

Model 9780
Target Architecture ISA: Gould CONCEPT/32 OS&VER #: MPX, Version 3.2

Model 9780

Implementor's Declaration

I, the undersigned, representing TeleSoft, Inc., have implemented no
deliberate extensions to the Ada Language Standard ANSI/MIL-STD-1815A
in the compiler listed in this declaration. I declare that Gould Inc.
is the owner of record of the Ada language compiler listed ab-ve and,
as such, is responsible for maintaining said compiler in conformance
to ANSI/MIL-F TR-1815A. All certificates and registrations for Ada
language ...pil r listed in this declaration shall be made only in the
owners pora e name.

__ /___________.__Date: __

TeleSoft, Inc.
Ray Parra, Direztor of Contracts/Legal

Owner's Declaration

I, the undersigned, representing Gould Inc., take full responsibility
for implementation and maintenance of the Ada compiler listed above,
and agree to the public disclosure of the final Validation Summary
Report. I further agree to continue to comply with the Ada trademark
policy, as defined by the Ada Joint Program Office. I declare that
all of the Ada language compilers listed, and their host/target
performance are in compliance with the Ada Language Standard ANSI/MIL-
STD-1815A. I have reviewed the Val.. rtion Summary Report for the
compiler and concur with the contents.

Date:_ _ _ _

Mar Macomber, aager, Major Corporate Agreements

"Ada is a registered trademark of the United States Government
(Ada Joint Program Office)

95APLEX is a trademark of Gould Inc.

APPENDIX B

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to implementation-
dependent pragmas, to certain machine-dependent conventions as mentioned in
chapter 13 of MIL-STD-1815A, and to certain allowed restrictions on
representation clauses. The implementation-dependent characteristis of
the APLEX Ada Compiler, Version 1.0, are described in the following
sections which discuss topics in Appendix F of the Ada Language Reference
Manual (ANSI/MIL-STD-1815A). Tmplementation-specific portions of the
package STANDARD are also included in this appendix.

package STANDARD is

type INTEGER is range -2_147_483_648 .2_147_483_647;

type FLOAT is Cl 'gits 6 range -7.23698E+75 .. 7.23698E+75;

type DURATION is delta 2#1.0#E-14 range -86_400.0 .. 86_400.0;

6,*

I.0

't

end STANDARD;

B-1

1. Implementation Dependent Pragmas

There is one implementation-defined pragma, COMMENT. It has the
form:

pragma ..'.%iENT(<string_ literal>);

It may only appear within a compilation unit and has the effect
of embedding the given sequence of characters in the object code
of the compilation unit.

2. Implementation Dependent Attributes

There are no implementation dependent attributes.

-3. Specification of Package SYSTEM%

--Pragma Comment(*This is an unpublished work written by TeleSoft");

--Pragma Comment("Copyright 1984, 1985 TeleSoft. All rights reserved');

-- Change History.

-- ps 2.02.85 Original version
-- ps 2.09.85 Additions for tasking support
-- ps 3.05.85 Modification for 32 bit integer support P
-- ps 3.18.85 Added system.subprogram value
-- ps 3.26.85 Modified Priority to be-range 1 .1 to fix PAR 1684
-- ps 5.17.85 Modified definitions of delta and fine delta to use
-- be type float instead of integer.
.. ps 6.19.85 Amended definition of 'fine delta to be an exact binary

-- number.
-- ps 6.27.85 Amended the definition of 'priority' to be non-null

With Gould names;
package SyStem is

Pragma Elaborate(Gould names);

type Address is private;

type Name is (Gould UTX, Gould MPX);
System-Name : constant name := Nkame'Val (Gould-names.sys_name);

Storage Unit constant 8;
Memory_ ize • constant 2-,24-1;

B-2

...... g

-- System-Dependent Declarations

subtype byte is integer range 0 2-s 8-1;
subtype integer_16 is integer range -2,-15 2-,15-1;

subtype integer 32 is integer; -- range -2--31 .. 2-31-1;
--subtype integer_64 is integer..32;

-- System-Dependent Named Number

Min Int • constant -2--31;
Max-Int constant "= *2.*31-1;
Max-Digits constant 6;
Max Mantissa : constant := 30;
Fin- delt. : constant = 1.0 / (2.0 so (Max_ Mantissa - 1));
Tick . constant 1.0 / (2.0 so 14);

-- Other System-Dependent Declarations
Max Object Size • CONSTANT "= Max Int;
Max-Record-Count • CONSTANT MaxInt;
Max-Text I Count CONSTANT Max-Int-1;
Max-Text"Io-Field : CONSTANT 100d;

subtype Priority is integer range 0 .. 255;

Null address : constant address;

type regarray is array (0..7) of integer 32;

type subprogram-value is record
base regs: regarray;

end record;

private

type Add:ess is new integer 32;

Null address : constant address =0;

end System;

package body system is

begin
null;

end;

B-3

A _

Package Gould-names is

Function Sys name return irteger;

end Could names;

Package Body Gould-names is

Function Sys._name return integer is
begin

Return 0;
end;

end Gould-names;

4. Restrictions on Representation Clauses

The Compiler supports the following representation clauses:

Length Clauses: for tasks 'STORAGE SIZE (LRM 13.2(c))
Length Clauses: for the attribute 'SIZE (LRM 13.2(a))
Address Clauses: for objects and entries (LRM 13.5)

5. Implementation dependent naming conventions

There are no implementation-generated names denoting
implementation dependent components.

6. Expressions that appear in address specifications are interpreted

as the first storage unit of the object.

7. Restrictions on Unchecked Conversions

Unchecked conversions are allowed between variables of typez.
(or subtypes) Ti and T2 provided that 1) they have the same
static size, 2) they are not unconstrained array types, and 3)
they are not private (unless they are subtypes of or are derived
from a private type SYSTEM.ADDRESS).

8. 1/0 Package Characteristics

Instantiations of DIRECT 10 and SEQUENTIALIO are supported with
the following exceptions:

" Unconstrained array types.
" Unconstrainted types with discriminants without default

values.
" Multiple internal files may not be associate with the

external file for reading and writing.

*In DIRECT 10 the type COUNT is defined as fc& low

type COUNT is range 0. .2147483647;

*In TEXT 10 the type COUNT is defined as follows:

type COUNT is range 0. .214483_645;

*In TEXT 10 the subtype FIELD is defined as follows:

subtype FIELD is INTEGER rpnge 0. .100Y,

*The line length limit for the target is 253 characters.

B-5.

APPENDIX C

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent values, such
as the maximum length of an input line and invalid file names. A test that
makes use of such values is identified by the extension .TST in its file
name. Actual values to be substituted are represented by names that begin
with a dollar sign. A value must be substituted for each of these names
before the test is run. The values used for this validation are given
below.

Name and Meaning Value

$BIG IDi (1.199 => 'A', 200 => '1')
Identifier the size of the
maximum input line length with
varying last character.

$BIG 1D2 (1..199 => 'A', 200 => '2')
Identifier the size of the
maximum input line length with
varying last character.

$BIG TD3 (1-100 1 102..200 => 'A',
Identifier the size of the 101 => '3')
maximum input line length with
varying middle character.

$BTG ID4 (1-100 I 102..200 => 'A',
Identifier the size of the 101 => '4')
maximum input line length with

varying middle character.

$BIG INT LIT (1.197 => '0', 198..200 => "298")

An i7nteger literal of value 298
with enough leading zeroes so
that it is the size of the

maximum line length.

C-1

TEST PARAMETERS

Name and Meaning Value

$BIG REAL LIT (1..i94 => '0', 195..200 >

A real literal that can be "69.0E1")
either of floating- or fixed-
point type, has value 690.0, and
has enough leading zeroes to be
the size of the maximum line
length.

$BLANKS (1..180 => '

A sequence of blanks twenty
characters fewer than the size
of the maximum line length.

$COUNTLAST 2_1 47_483_645
A universal integer literal
whose value is TEXTIO.COUNT'LAST.

$EXTENDED ASCII CHARS "abcdefghijklmnopqrstuvwxyz!" &
A string literal containing all "$%?@[\]" {}"
the ASCII characters with
printable graphics that are not
in the basic 55 Ada character
set.

$FIELDLAST 1000
A universal integer literal
whose value is TEXTIO.FIELD'LAST.

$FILE NAME WITH BAD CHARS "X}] /@%#$ &-Y"
A7n illegal- ext-ernal file name
that either contains invalid
characters, or is too long if no
invalid characters exist.

$FILE NAME WITH WILD CARD CHAR "XYZ*"

An external file name that
either contains a wild card
character, or is too long if no
wild card character exists.

$GFEATER THAN DURATION 100 000.0

A universal real value that lies
between DURATION'BASE'LAST and
DURATION'LAST if any, otherwise
any value in the range of
DURATION.

$GREATER THAN DURATION BASE LAST 10 0O)_000.0
The universal real value that is
greater than DURATION'BASE'LAST,
if such a value exists.

C-2

TEST PARAMETERS

Name and Meaning Value

$ILLEGAL EXTERNAL FILE NAMEI "BADCHARACTER%/*'"
An illegal external file name.

$ILLEGAL EXTERNAL FILE NAME2 (l..17 => 'A')
An illegal ext-ernal file name
that is different from
$ILLEGALEXTERNALFILE NAME1.

$INTEGERFIRST -2_147_483_648
The universal integer literal
expression whose value is
INTEGER' FIRST.

$INTEGER LAST 2.147_483_647
The universal integer literal
expression whose value is
INTEGER' LAST.

$LESS THAN DURATION -100 000.0
A universal real value that lies
between DURATION'BASE'FIRST and
DURATION'FIRST if any, otherwise
any value in the range of
DURATION.

$LESS THAN DURATION BASE FIRST -10 000 000.0
The universal real value that is
less than DURATION'BASE'FIRST,
if such a value exists.

$MAX DIGITS 6
The universal integer literal
whose value is the maximum
digits supported for floating-
point types.

$MAX IN LEN 200
The universal integer literal
whose value is the maximum
input line length permitted by
the implementation.

$MAXTNT 2_147_483_647
The universal integer literal
whose value is SYSTEM.MAX INT.

C-3

TEST PARAMETERS

Name and Meaning Value

$NAME LONGLONGINTEGER
A name of a predefined numeric
type other than FLOAT, INTEGER,
SHORT FLL .,., SHORT INTEGER,
LONG_ FLOAT, or LONGINTEGER
if one exists, otherwise any
undefined name.

$NEGBASED_ INT 16#FFFFFFFE#
A based integer literal whose
highest order nonzero bit
falls in the sign bit
position of the representation
for SYSTEM.MAX TNT.

$NON ASCII CHAR TYPE (NONNULL)
An enumerated type definition
for a character type whose
literals are the identifier
NON NULL and all non-ASCII
characters with printable
graphics.

C-14

APPENDIX D

WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform to the
Ada Standard. The following 19 tests had been withdrawn at the time of
validation testing for the reasons indicated. A reference of thA form
"AI-ddddd" is to an Ada Commentary.

. C32114A: An unterminated string literal occurs at line 62.

" B33203C: The reserved word "IS" is misspelled at line 45.

• C34018A: The call of function G at line 114 is ambiguous in the
presence of implicit conversions.

" C35904A: The elaboration of subtype declarations SFX3 and SFX4
may raise NUMERIC ERROR instead of CONSTRAINT ERROR as expected in
the test.

. B37401A: The object declarations at lines 126 through 135 follow
subprogram bodies declared in the same declarative part.

" C41404A: The values of 'LAST and 'LENGTH are incorrect in the if
statements from line 74 to the end of the test.

" B45116A: ARRPRIBL1 and ARRPRTBL2 are initialized with a value of
the wrong type--PRIBOOLTYPE instead of AFRRTBOOLTYPE--at line
41.

" C48008A: The assumption that evaluation of default initial values
occurs when an exception is raised by an allocator is incorrect
according to AI-00397.

B49006A: Object declarations at lines 41 and 50 are terminatAd
incorrectly with colons, and end case; is missing from line 42.

" B4AO10C: The object declaration in line 18 follows a subprogram
body of the same declarative part.

D-1

91LILA.~

WITHDRAWN TESTS

. B74101B: The begin at line 9 causes a declarative part to be
treated as a sequence of statements.

. C87B50A: The cal2 of "/=" at line 31 requires a use clause for
package A.

. C92005A: The "/=" for type PACK.BIG_TNT at line 40 is not visible
without a use clause for the package PACK.

. C940ACA: The assumption that allocated task TT will run prior to
the main program, and thus assign SPYNUMB the value checked for by
the main program, is erroneous.

. CA3005A..D (4 teits): No valid elaboration order exists for these
tests.

. BC3204C: The body of BC3204C0 is missing.

D-2

~----- ~ W ~' " ~ .1W Jew - .,q q W Fp

