ADA (TRADEMARK) C
GOULD INC APLEX
TECHNOLOGY CENTER

AO-A183 669

i

o

II.
1
R s

I

FRErEEEE

EEEE

I'EEM«-.

e
[4
[4]

o

<

MICROCOPY RESOLUTION TEST CMART
MALIONAL BUREAU OF STANDARDS 1983 4

‘.‘.'
“,‘1
I..

'\‘ ‘\
SN l.‘ O "n

Py e 20
Ly
LSy R/

UNCLASSIFIED -
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

S e M e A -

e FILE COPY

REPORT DOCUMENTATION PAGE

. READ INSTRUCTIONS
BRFORE COMPLETEING FORM

1. REPORT NUMBER }2. GOVT ACCESSION NO.

3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitie)])
Ada Compiler Validation Summary Report:

Gould, - Inc. APLEX Ada Compiler, Version 1.0
Gould CONCEPT/32 Model 9780

§. TYPE OF REPORT & PERIOD COVERED
25 PEB 1987 to 25 FEB 1988

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s)
Wright-Patterson

8. CONTRACT OR GRANT NUMBER(s)

9. PERFORMING ORGANIZATION AND AODRESS
Ada Validation Facility
ASD/SIOL
Wright-Patterson AFB OH 45433-6503

10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS

11. CONTROLLING QFFICE NAME AND ADDRESS

12. REPORT DATE

I-[}dq Jgigté Program nglcg P . 25 FEB 1987

nite ates Department of Defense HT—ROMET

Washington, DC 20301-3081ASD/SIOL - NORORR O PRSRY

14. MONITORING AGENCY NAME & ADDRESS(/ different from Controlling Office) 15. SECURITY CLASS (of this report)
Wright -Patterson UNCLASSIFIED

15a. EE&ES&EE FICATION/DOWNGRADING

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20. if different from Report)

UNCLASSIFIED

“E

18. SUPPLEMENTARY NOTES

19. KEYWORDS (Continue on reverse side if necessary and identify by block number)

1815A, Ada Joint Program Office, AJPO

Ada Programming language, Ada Compiler Validation Summary Report, Ada
Compiler Validation Capability, ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD-

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

See Attached.

DD TUR 1473
1 JAn 73

EDITION OF 1 NOV 65 IS OBSOLETE
S/N 0102-LF-014-6601

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entereq)

1%l hlt

A NI

- (meesw -

P Sy

Sl oA KA,

s

Ada® Compiler Validation Summary Report:

Canpller Name: APLEX@Ada Campiler, Version 1.0

Host: Gould CONCEPT/32 Model 9780
under MPX-32, Version 3.2

Target:

Gould CONCEPT/32 Model 9780

under MPX-32, Version 3.2

Testing Campleted 25 February 1987 Using ACVC 1.8

This report has been reviewed and is approved,

&qu C b tret?

Ada Va]id tion Faclility
Georgeanne Chitwood
ASD/SCOL

Wright-Patterson AFB OH 45433-6503

s K po

Validation Organization

r. John F. Kramer

Institute for Defense Analyses

Alexandria VA

Ada %oint Program Office

Virginia L. Castor
Director

Department of Defense
Washington DC

;._ ACL L""‘ﬁn Fo

" F11S GRAZ

| TT1C TaB

i Unensanced
%

MRS 1\.(1*3911__.-————————

o b

X

0

-
l)_'

4

Ptiatritation/

A nil'f
[

o1
31st

%A-./.

|
i

1
—
|
(R I 't—\' CC"“"’S

anljor

®Ada i1s a reglistered trademark of the United States Covermment

(Ada Joint Program Office).

@APLEX i3 a trademark of Gould, Inc.

7T 003

WS AN NN O

% 5 v

i)
2

Pl i
4

Ny o S L,

-,

e =

T,

-

v

3,
*

o

AVF Control Number: AVF-VSR-59.05c7
86-12-18-GOU

Ada® COMPILER
VALIDATION SUMMARY REPORT:
® Gould, Inc.
APLEX™ Ada Compiler, Version 1.0
Gould CONCEPT/32 Model 9780

Coampletion of On-Site Testing:
25 February 1987

Prepared By:
Ada Validation Facility
ASD/SCOL
Wright-Patterson AFB OH U5433-6503

Prepared For:
Ada Joint Program Office
United States Department of Defense
Washington, D.C.

®Ada 13 a registered trademarx of the United States Govermment
(Ada Joint Program Office).

@APLEX is a trademark of Gould, Inc.

. . . p oA -
NG NG S Ve R R et s L AR S S et M G LA AR S O

of

O

AL SRSt

- 4+ttt bttt bttt
+ +
+ Place NTIS form here +
+ +
S 2 R e L R e L 2

OV C NSRS T
Sl g Valed,

X4 -

L4 4

4, 42

e
- ~ :"
¢
0':
3
(N
'\
" EXFCUTIVE SUMMARY A
. o
) This Validation Summary Report (VSR) summarizes the results and conciusions 1:
of validation testing performed on the APLEX ®ada Compiler, Version 1.0, Oq
using Version 1.8 of the Ada® Compiler Validation Capability (ACVC). The K
APLFEX Ada Compiller is hosted on a Gould CONCEPT/32 Model 9780 operating !
under MPX-32, Version 3.2. Programs processed by this compiler may be b
executed on a Gould CONCEPT/32 Model 9780 operating under MPX-32, Version .
020 _[.
3 N
On-site testing was performed 23 February 1987 through 25 February 1987 at b
Gould, Inc. in Ft. l.auderdale FL, under the direction of the Ada 4
Validation Facility (AVF), according to Ada Validation Organization (AVO) {
policies and procedures. The AVF identified 2102 of the 2399 tests in ACVC 3
Version 1.8 to be processed during on-site testing of the compiler. The 19 s
tests withdrawn at the time of validation testing, as well as the 278 d
executable tests that make use of floating-point precision exceeding that A
supported by the implementation, were not processed. After the 2702 tests W
were processed, results for Class A, C, D, and E tests were examined for ;
correct execution. Compilation 1listings for Class B tests were analyzed
for correct diagnosis of syntax and semantic errors. Compilation and 1link !
results of Class [tests were analyzed for correct detection of errors. "
There were 64 of the processed tests determined to be inapplicable. The =,
remaining 2038 tests were passed. >
The results of vaildation are summarized in the following table: \x
RESULT CHAPTER TOTAI Z
- 2 _3 4 5 6 7 _8_9 10 11 12 14 !
4
Passec 93 204 280 239 161 97 135 262 107 32 217 211 2038 b
LN
Failed 6o o 0o o o o O ©0 O 0 O O 0 b
iy
Inapplicable 23 121 140 8 0 0 4 0 23 0 i 22 342 e
Withdrawn 0o 5 5 0 0 1 1 2 4 o0 1 0 19 r
, TOTAL 116 330 425 247 161 98 140 264 134 32 219 233 2399 Q:
Wt
W
N The AVF concludes that these results demonstrate acceptable conformity %o i
ANSI/MIL-STD-1815A Ada.
®Ada is a registered trademark of the United States Government
(Ada Joint Program Office).
@APILEX 1s a trajemark of Gould, Inc.
i

RN TR WL YL AT AT T -

e a'T e o)

..l 2" -

o
A A e e i
o - e)t . % RS T T A P P
..... A P S o P AT TN AP FTRE AL A° AR A AR A Y A A

4
o
)
TABLFE OF CONTENTS .Q
5
'
CHAPTER 1 INTRODUCTION
(4
| 4
1.1 PURPOSF OF THIS VALIDATION SUMMARY REPORT 1-2 X
1.2 USE OF THIS VALIDATION SUMMARY REPORT 1=2 $
1.3 REFERENCES e ® ¢ o o o 8 e © e & & o ® ® & e e o s "-3 :l‘
1."‘ DEFINITIW OF TERMS e o e ® e ® e e ° e e s o s @ 1-3 ‘.?
1.5 ACVC TEST CLASSES . . . - ‘l'u -.
»
kY
CHAPTER 2 CONFIGURATION INFORMATION It
2.5 CONFIGURATION TESTFED 4 « ¢ o & o o o o o o o o o o 2=1 b
2.2 IMPLEMENTATION CHARACTERISTICS « ¢ ¢ ¢ o o o ¢ o o 2=2 o
U':l
s
CHAPTER 3 TEST INFORMATION 2
.'f
301 TEST RESULTS e o * e . . L) L) L) L) L3 .] 3“1 ‘
3.2 SUMMARY OF TEST RESULTS BY CLASS . « ¢ ¢ &« & « « o 3-1 :
3.3 SUMMARY OF TEST RESULLTS BY CHAPTER . . « « « « +» o 3=2 "
3.“ WITHDRAWN TESTS e @ # e ® ® e & e o e o e & o o o 3-2 :‘
3-5 INAPPLICABLE TF‘STS L) L] e o - 3-2 {:
3.6 SPLITTESTS0000030000000000-003-1“ }‘
3.7 ADDITIONAL TESTING INFORMATION ¢« « « +» + . 3-4 .t
3-701 P!‘evandation ¢ @ 6 @ & & & 6 o o & ° o o o »® 3"“‘ ‘i
30702 Test Method . e . e - . e 3-5 :
3.7.3 Test Site e ® © & ® e ® 8 o & @ 6 © 8 ¢ & o o » 3-5 l
- :]
APPENDIX A DECLLARATION OF CONFORMANCE [
’ .
APPENDIX B APPENDIX F OF THE Ada STANDARD :
U
\3
APPENDIX C TFEST PARAMETERS »
p 0
APPENDIX D WITHDRAWN TESTS u
5
]
oy
1
"
i
: g

. mmmemmmmTe

CHAPTER 1

INTRODUCTION

\74
This Validation Summary Report (VSR) describes the extent to which a
specific Ada compiler conforms to the Ada Standard, ANSI/MIL-STD-1815A.
This report explains all technical terms used within 1t and thoroughly
reports the results of testing this compiler wusing the Ada Compiler
Validation Capability (ACVC). An Ada compiler must be implemented
according to the Ada Standard, and any implementation-dependent features
must conform to the requirements of the Ada Standard. The Ada Standard
must be implemented in its entirety, and nothing can be implemented that 1is
not in the Standard.

crcr——— .
Even though all validated Ada compilers conform to the Ada Standard, 1t
must be understood that some differen-es do ex :t between implementations.
The Ada Standard permits some implementation depenr-‘encies--for example, the
maximum length of identifiers or the maximum values of integer types.
Ot..:r differences between compilers result from characteristics of
particular operating systems, hardware, or implementation strategies. 41l
of the dependencies observed during the process of testing this compiler
are given in this report.:

The information in this report is derived from the test results produced
during validation testing. The validation process includes submitting a
suite of standardized tests, the ACVC, as inputs to an Ada compiler and
evaluating the results.y The purpose of validating is to ensure conformity
of the compller to the Ada Standard by testing that the compiler properly
implements legal language oconstructs and that it identifies and rejects
illegal language constructs. The testing also identifies behavior that 1is
implementation dependent but permitted by the Ada Standard. Six classes of
tests are used. These tests are designed 0 perform checks at compile
time, at link time, and during execution.

N

Y

§ iy

| e it ol - TS e S

INTRODUCTION x

v

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT :“

\]

This VSR documents the results of the validation testing performed on an -

Ada compiler. Testing was carried out for the following purposes: 9

M y

Y

. To attempt to identify any language constructs supported by the . .

compller that do not conform to the Ada Stamdard o

Uy

8

. To attempt to identify any unsupported language constructs ,

required by the Ada Standard Y

l‘

. To determine that the implementation-dependent behavior is allowed ':;'

by the Ada Standard "

f.

Testing of this compiler was conducted by SofTech, Inc., under the W
direction of the AVF according to policies and procedures established by

the Ada Validation Organization (AVO). On-site testing was conducted from .".

23 February 1987 through 25 February 1987 at Gould, Inc. in Ft. o

Lauderdale FL. .

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the origlinating country, the AVO may
make full and free public disclosure of this report. In the United States,

vV
this is provided in accordance with the "Freedom of Information Act" (5 h
U.S.C. #552). The results of this validation apply only to the computers, 0
operating systems, and campller versions identified in this report. $
gt
The organizations represented on the signature page of this report do not v
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject compiler has no nonconformities A
to the Ada Standard other than those presented. Copies of this report are 4
available to the public from:
Ada Information Clearinghouse .
Ada Joint Program Office !
OUSDRE >
The Pentagon, Rm 3D-139 (Fern Street) N\
Washington DC 20301-3081 N
v
or from: o
Ada Validation Facility N
ASD/SCOL ~
Wright-Patterson AFB OH 45433-6503 -~
;
X
:
Y
[

- T T T U - o rm ik e .- .
o l.cv W he ‘.\"" " L adn el a il d s -..u s iy ""(‘ #" "V ", - " .""‘

-~

Ta .,

B

BN
- e

-
v

-
-

Yo

) a s §% ¥ 3 ' A e N | ! %] 1-". W W W W W ')'\1\..\ L N T T T
"" .""‘.'.“‘ '.-’.‘.‘.""‘""- LA .-‘l.- LA l'r‘\‘- ..n\“~ L% ML » ' v I'!‘I n‘ AUl n AN, .‘v * <, 'y “* - Ll » ot .0 .- L Q

INTRODUCTION

Questions regarding this report or the validation test results should be
directed to the AVF listed above or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

1.3 REFERENCES

1. Reference Manual for the Ada Programming Language,

ANSI/MIL-STD-1815A, FEB 1983.

2. Ada Valldation Organization: Procedures and Gulidelines, Ada Joint

Program Office, 1 JAN 1987.

3. Ada Compiler Vallidation Capability Implementers' Guide, SofTech,

Inc., DEC 1984.

1.4 DEFINITION OF TERMS

ACVS

Ada Standard

Applicant

AVF

AVO

Canpller

Failed test

Host

The Ada Campller Validation Capability. A set of programs
that evaluates the conformity of a canpiler to the Ada
language specification, ANSI/MIL-STD-1815A.

ANSI/MIL-STD-1815A, February 1983.

The agency requesting validatiom.

The Ada Validation Facility. In the context of this report,
the AVF 1is responsible for conducting compiler validationmns
according to established policles and procedures.

The Ada Validation Organization, In the context of this
report, the AVO is responsible for setting procedures for
compiler validations.

A processor for tne Ada language. In the context of this
report, z compller 13 any language processor, including

cross-compllers, translators, and interpreters,

A test for which the campiler generates a result that
demonstrates nonconformity to the Ada Standard.

The camputer on which the compller resides.

1-3

'y

INTRODUCTION

Tnapplicable A test that uses features of the language that a compiler is
test not required to support or may legitimately support in a way
other than the one expected by the test.

Passed test A test for which a compiler geuerates the expected result,
Target The computer for which a compiler generates code.

Test A program that checks a compiler's conformity regarding a
particular feature or features to the Ada Standard. In the
context of this report, the term 1s wused to designate a
single test, which may comprise one or more files.

Withdrawn A test found to be incorrect and not used to check conformity

test to the Ada language specificaticn. A test may be incorrect

- because 1t has an invalid test objective, fails to meet its
test objective, or contains illegal or erroneous use of the

language.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard 1is measured using the ACVC. The ACVC
contains both 1legal and illegal Ada programs structured into six test
classes: A, B, C, D, E, and L. The first letter of a test name identifies
the class to which it belongs. Class A, C, D, and E tests are executable,
and special program units are used to report their results during
execution. Class B tests are expected to produce compilation errors.
Class L tests are expected to produce link errors.

Class A tests check that legal Ada programs can be successfully compiled
and executed. However, no checks are performed during execution to see if
the test objective has been met. For example, a Class A test checks that
recerved words of another language (other than those already reserved in
the Ada language) are not treated as reserved words by an Ada compiler. A
Class A teat 1s passed if no errors are detected at compile time and the
program executes to produce a PASSED message.

Class B tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that every simtax or
semantic error in the test is detected. A Class B test 1s passed if every
illegal construct that it contains is detected by the compiler.

Class C tests check that legal Ada programs can be correctly compiled and
executed. Each Class C test 1s self-checking and produces a PASSED,
FAIL*D, or NOT APPLICABLE message indicating the result when it |is
executed.

Class D tests check the compilation and execution capaci*ies of a coampiier.
Since there are no capacity requirements placed on a compiler by the Ada
Standard for some parameters--for example, ¢the number of identifiers

TRTRODUSTTON

permitted in a compilation or the number of units in a licrary--a compiler
may refuse to compile a Class D test and still be a conforming compiler.
Therefore, 1if a Class D test faills to compile because the capacity of the
compiler i3 exceeded, the test is classifiec as inapplicable. TIf a Class D
test compiles successfully, it is self-checking and produces a PASSED or
FAI.ED message during execution.

Each Class E test is self-checking and produces a NOT APPLTCABLE, PASSED,
or FAILED message when 1t 1s compiled and executed. However, the "Iz
Standard permits an implementation to reject programs containing some
features addressed by Class E tests during compilation. Therefore, a Class
E test is passed by a compiler if it is compiled successfully and executes
to produce a PASSED message, or if it 1s rejected by the compiler for an
allowable reason.

Class L tests check that 1incomplete or 1llegal Ada programs involving
multiple, separately compiled units are detected and not allowed to
execute, Class L tests are compiled separately and execution is attempted.
A Class L test passes if it is rejected at link time--that 1s, an attempt
to execute the main program must generate an error message before any
declarations in the main program or any units referenced bty the main
program are elaborated.

Two library units, the package REPORT and the procedure CHECK FILE, support
the self-checking features of the executable tests. The package REPORT
provides the mechanism by which executable tests report PASSED, FAILED, or
NOT APPLICABLE results. It also provides a set of identity functions used
to defeat some compiler optimizations allowed by the Ada Standard that
would circumvent a test objective. The procedure CHECK FILE 1s used to
check the contents of text files written by some of the Class C tests for
chapter 14 of the Ada Standard. The operation of these units is checked by
a ~~t of executable tests. These tests produce messages that are examined
to verify that the units are operating correctly. If these units are not
operating correctly, ther the validation is not attempted.

The text of the tests in the ACVC follow conventions that are intended to
ensure that the tests are reasonably portable without modification. For
example, the tests make use of only the basic set of 55 characters, contain
lines with a maximum length of 72 characters, use small numeric values, and
place features that may not be supported by all implementations in separate
tests. However, some tests contain values that require tne test to be
customized according to implementation-specific values--for example, an
illegal file name, A 1list of the values used for this validation i1
provided in Appendix C.

A compiler must correctly p-ocess ezch of the tests in the suite and
demonstrate conformity to the Ada Standard by eitier meetir: the pass
criteria given for the test or by showing that the test is inappiicable to
the implementation. Any test that was determined to contain an illegal
language construct or an erroneous language construct is withdrawn from the
ACVC and, therefore, 1s not used in te:<lng a compiler. The tests
withdrawn at the time of validation are given in Appendix D.

“« cmrpr « R I R I T R Y SRR T e W PR T N U VT SRS SRR UL S SV RS SO
o T T g S ey W Ao Syt A o A, Sy SN IR R SN

CHAPTER 2

CONFIGURATION INFILPMATION

2.1 CONFIGURATION TESTED
The candidate compiliation systeam for this validation was tested under the
following configuration:

Cappiier: APLEX Ada Coampller, Version 1.0

ACIC Version: 1.8

Certificate Expiration Date: 2 April 1988

Host Computer:

Machine: Gould CONCEPT/32 Model 9780
Operatirg System: MP X-32, Version 2.2
Mamory Size: 16 megatytes

Target Canputer:

Machine: Gould CONCEPT/32 Model 9780
Operating System: MPX-32, Version 3.2
Memory Size: 16 megabytes

2-1

LI P

[}

e PR AL AL L C L

=

v % 3
-

o
™

5,
CONFIGURATION INFORMATION B
Q-
U
2.2 TIMPLEMENTATION CHARACTERISTICS Y
N

W

One of the purposes of validating compilers is to determine the behavior of E
a canpiler 1in those areas of the Ada Standard that permit implementations N
to differ. Class D and E tests specifically check for such implementation ‘J
differences. However, tests in other classes also characterize an gﬂ
implementation. This compiler is characterized by the following :3
interpretations of the Ada Standard: W
:ﬁ

. Capacities.

The compiller correctly processes tests containing loop statements %l
nested to 65 1levels, block statements nested to 65 levels, and 0
recursive procedures separately compiled as subunits nested to 17 A

- levels. It correctly processes a compilation containing 723 #
variables in the same declarative part. (See tests DS55A03A..H (8 et
tests), D56001B, D6UOOSE..G (3 tests), and D29002K.) &
.;:;

. Universal integer calculations. ;

An Iimplementation 1is allowed to reject universal integer Zi
calculations having values that exceed SYSTEM.MAX INT. This "
implementation does not reject such calculations and prccesses -
them correctly. (See tests DyA002A, DUAOO2B, DUAOOU4A, and s
D4AOO4B.) e
. Predefined types. 25
This implementation does not support additional predefined types 24
in the package STANDARD. (See tests B86001C and B86001D.) 1,
:N

“

. Based literals. Iy

An implementation is allowed to reject a based 1literal with a *Y
value exceeding SYSTEM.MAX INT during compilation, or it may raise
NUMERIC_ERROR or CONSTRAINT ERROR during execution. This
implementation raises NUMERIC ERROR during execution. (See test
E24101A.)

. Array types.

An 1implementation 1is allowed to raise NUMERIC_£RROR or
CONSTRAINT ERROR for an array having a 'LENGTH that exceeds
STANDARD.INTEGER'LAST and/or SYSTEM.MAX INT.

A packed BOOLEAN array having a 'LENGTH exceeding INTEGER'LAST
ralses NUMERIC ERROR when the array type is declared. (See test
C52103X.)

= n ALY >l LN " o Mt R A T R T L TR Iy
SR AT T O T ."I- .'l da et !.(.A.q. \""J\' y Y iy W s

CONFIGJRATION INFORMATION

A packed two-dimensional BOOLEAN array with more than INTEGEER'LAST
components raises NUMERIC ERROR when the array type is declared.
(See test C52704Y.)

A null array with one dimension of length greater than
INTEGER'LAST may raise NUMERIC ERROR or CONSTRAINT ERROR either
when declared or assigned. Alternatively, an 1mp1em€htation may
accept the declaration. However, lengths must match in array
slice assignments. This implementation raises NUMERIC ERROR when
the array type is declared. (See test E52103Y.)

In assigning one-dimensional array types, the expression appears
to be evaluated in its entirety before CONSTRAINT ERROR is raised
when checking whether the expression's subtype is compatible with
the target's subtype. In assigning two-dimensional array types,
the expression does not appear to be evaluated i1in 1its entirety
before CONSTRAINT ERROR 1s raised when checking whether the
expression's subtype 1s compatible with the target's subtype.
(See test C52013A.)

Discriminated types.

During compilation, an implementation 1s allowed to either accept
or reject an incomplete type with discriminants that 1s used in an
access type definition with a compatible discriminant constraint.
This implementation accepts such subtype indications. (See test
E381044.)

In assigning record types with discriminants, the expression
appears to be evaluated in its entirety before CONSTRAINT ERROR is
raised when checking whether the expression's sub?}pe is
compatible with the target's subtype. (See test C52013A.)

Aggregates,

In the evaluation of a multi-dimensional aggregate, the order in
which cholces are evaluated and 1index subtype checks are made
appears to depend upon the aggregate itself. (See tests CU3207A
and C43207B.)

In the evaluation of an aggregate containing subaggregates, all
choices are not evaluated before being checked for identical
bounds. (See test EU32°°E,)

All choices are evaluated before CONSTRAINT_ERROR 1s raised if a
bound in a nonnull range of a nonnull aggregate does not belong to
an index subtype. (See test EU3211B.)

-_-_
R

)

- - -

- o -

A AR

b 2o T I JR L JRLIA

CONFIGURATION INFORMATION R
¢

. Functions.

An implementation may allow the declaration of a parameterless

function and an enumeration literal having the same profile in the M
same immediate sccpe, or it may reject the function declaration. 5
If it accepts the function declaration, the use of the enumeration P
literal's identifier denotes the function. This Implementation ﬁ
rejects the declaration. (See test E6600iD.) b

J

. Representation clauses. h
¥

The Ada Standard does not require an implementation to support hy
representation clauses. If a representation clause 1s not .t

supported, then the implementation must reject 1it, While the

- operation of representation clauses 1is not checked by Version 1.8
of the ACVC, they are used in testing other language features. v,
This implementation accepts 'SIZE and 'STORAGE STZE for tasks; it
rejects ‘'STORAGE SIZE for collections and T 'SMALL clauses.
Enumeration representation clauses, including those that specify
noncontiguous values, appear not to be supported. (See tests
C55B16A, C87B62A, C87B62B, C87B62C, and BC10024.)

. Pragmas.

The pragma INLINE is not supported for procedures or functions.
(See tests CA3004E and CA3004F.)

. Input/output.

The package SEQUENTIAL TO cannot be instantiated with

unconstrained array types and record types with discriminants. |

The package DIRECT_IO cannot be 1instantiated with unconstrained "
array types and recordc types with discriminants without defaults. '

(See tests AE2101C, AE210%H, CE2201D, CE2201E, and CE2401D.) :

A
An existing text file can be opened in QUT FILE mode and can be -
created in both OUT_FTLE and IN_FILE modes. (See test EE3102C.) >
b

Only one internal file can be associated with each external file
for text I/0 for both reading and writing. (See tests CE37111A..E "
(5 tests).)

s,
Only one internal file can be associated with each external file &
for sequential I/0 for both reading and writing. (See tests
CE2707A..F (6 tests).) ot

Only one internal file can be associated with each external file
for direct I/0 for both reading and writing. (See tests
CE2707A..F (6 tests).)

CONFTGURATION TINFOEMATION

Temporary sequential files are given a nanme. Temporary direct
files are given a name. Temporary filles given names are not
deleted when they are closed. (See tests CE2108A and CE2i08C.)

Generics.

Generic subprogram declarations and bodies cannot be compiled in
separate compilations. (See test CA2009F.)

Generic package declarations and bodies cannot be compiled 1in
separate compilations. (See tests CA2009C and BC3205D.)

Pl Mo sy

HEEIF

-
=

Y

-

IR, "

Pl WL

4

TR

e o Jn |

CHAPTER 3

TEST INFORMATION

3.7 TEST RESULTS

Version 1.8 of the ACVC contains 2399 tests. When validation testing of
APLEX Ada Compiler was performed, 19 tests had been withdrawn. The
remaining 2380 tests were potentially applicable to this validation. The
AVF determined that 342 tests were inapplicable to this implementation, and
that the 2038 applicable tests were passed by the implementation.

The AVF concludes that the testing results demonstrate acceptable
conformity to the Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL
A B C D F L

Passed 67 860 1052 17 11 31 2038

Failed 0 0 0 0 0 0 0

Inapplicable 2 7 316 0 2 15 342

Withdrawn 0 7 12 0 0 0 19

TOTAL 69 874 1380 17 i3 46 2399

TEST INFORMATION

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

RESULT CHAPTER TOTAL
2 _3_4 5 6 7 _8 9 0 11 2 4

Passed 93 204 280 239 161 97 1135 2062 107 32 237 231 2038

Failed 0o o 0 o0 0o o0 O 0 O 0 O O 0

Inapplicable 23 121 140 8 0 0 y 0 23 0 1 22 342
Withdrawn 0 5 5 0 0 i 1 2 4 0 I 0 19

TOTAL 116 330 425 247 161 98 40 264 34 32 219 233 2399

3.4 WITHDRAWN TESTS

The following 19 tests were withdrawn from ACVC Version 1.8 at the time of
this validation:

C32174A C4140u4A B74701B BC3204C
B33203C BUS116A C87B50A

C34018A cug8oo8a C92005A

C35904A B49006A C940ACA

B37401A BLAOTOC CA3005A..D (4 tests)

See Appendix D for the reason that each of these tests was withdrawn.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of features
that a compiler i1s not required by the Ada Standard to support. Others may
depend on the result of another test that s either inapplicable or
withdrawn. For this validation attempt, 342 tests were inappiicablie for
the reasons indicated:

. C34001D, BS52004E, BS5BOYD, and C55BO7B use SHORT _ILIFGER which Is
not supported by this compiler.

. C3H4007E, B52004D, B55B0SC, and C55BJ7A use LONG_INTEGER which is
not supported by this compiler.

. C3U4007F and C35702A use SHORT FLOAT which 1s not supported by this
compiler.

3-2

-

(L o

A S -'d’J-

'.‘.I ‘l' .’ ’

i

", l"" ..-

o lnawl

Bl T RARANNS

Ly
LN

LY IR IYTSTIA “u oW N N LN '.‘\ \'\'\“‘".'\‘ .
N N (L N N A Y AT AT A A T R A AN

C34001G a.d C35702B use LONG_FLOAT wil n .3 not s.pported by tnis
compiler,

C52008B declares a record type wit:. four discrimi‘nants of type
integer and having defauit values. The type may be used in the
declaration of unconstrained objects, but the size c¢f these
objects exceeds the maximum object size of this implementation,
and NUMERIC_FRROR 1s raised.

C55B16A makes use of an enumeration representation cliause
containing noncontiguous values which is not supported by this
compiler,

B86001D requires a predefined numeric type other than those
defined by the Ada lianguage in package STANDARD. There is no such
type for this implementation.

C86001F redefines package SYSTEM, but TEXT_IO is made obsolete by
this new definition in this implementation and the test cannot be
executed since the package REPORT is dependent on the package
TEXT IO.

C87B62B..C (2 tests) use length clauses which are not supported by
this compiler. The iength clauses 'STORAGE_SIZE for access types
and 'SMALL are rejected during compilation.

BA1011C, CA1012A, CA2009C, CA2009F, LAS008A..H (8 tests), LA5008J,
1.LA5008M, LAS008N, and BC3205D compile generic specifications and
bodies in separate compilations which i1s not supported by this
compiler.

CA3004E, EA3004C, and LA3OOUA use INLINE pragma for procedures
which 1s not supported by this compiler.

CA3004F, FA3004D, and LA3004B use INLINE pragma for functions
which is not supported by this compiler.

LAS008T and I.AS008K are 1inapplicable Dbecau<e, in this
implementation, a generic unit 1s made obsolete by the
recompilation of a unit on which the generic body (but not the
specification) depends. Since this implementation does not
support separate compilation of genmeric wunit specifications and
bodies, a generic specification must be considered obsclete
whenever the body is found to be obsolete, These tests shoulc
report at 1link time that the body of a generic unit 1s obsoclete.
However, a complle-time error message reports that the generic
unit is obsoclete.

AE2107C, CE2207D, and CE2207F wuse an instantiation of package

SEQUENTIAL_I0 with unconstrained array types which is not
supported by this compiier,

3-3

{ .) W, o \7 L4 v v A T TR " s T T --.‘- LI I..-.‘-'.-_-r.‘..-u‘v._'v RS
mmmm:ﬂm;:‘f:&fﬁ'xfh:ﬂv_ FO P T A I I T M

R K

oL

Rt A Nt

~ o

C PN]

XA

» e e

TEST INFORMATION

. AF2107H and CF240°D use an instantiation of package DIRFCT_IO with
unconstrained array types which 1is not supported by this compiler.

. CF2707A..F (6 tests), CE2110B, CE211iD, CE27%17H, CE3i111A..F (5
teats), CE3114B, and CF3115A are inapplicabie because multiple
internal fiies cannot be associated with the same external fiie,
The proper exception 1s raised when muitiple access 1s attempted.

. CE3605A attempts to output a 1line 360 characters long. This
implementation 1limits output lines to 253 characters. Placing a
limitation on the length of a text 1line is an acceptabie
implementation restriction. An attempt to write the 254th
character results in the exception USE_FRROR being raised.

. The following 278 tests require a floating-point accuracy that
exceeds the maximum of 6 supported by the implementation:

C24113C..Y (23 tests) C35708C..Y (23 tests) Cus5u42iC..Y (23 tests)
C35705C..Y (23 tests) C35802C..Y (23 tests) CUS5424C..Y (23 tests)
C35706C..Y (23 tests) Cu52U1C..Y (23 tests) CU5521C..Z (24 tests)
C35707C..Y (23 tests) Cu5321C..Y (23 tests) CuUB621C..Z (24 tests)

3.6 SPLIT TESTS

if one or more errors do not appear to have been detected in a Class B test
because of compiler error recovery, then the test is split Into a set of
smaller tests that contaln the undetected errors. These spiits are then
compiled and examined. The splitting process continues until all errors
are detected by the compiler or until there 1s exactly one error per spliit.
Any Class A, Class C, or Class E test that cannot be compiled and executed
because of 1ts size 1s split into a set of smaller subtests that can be
processed.

Splits were required for six Class B tests:

BA3006A BA3007B BA3008B
BA3006B BA30084a BA3013A

3.7 ADDITIONAL TESTING INFORMATION

3.7.1 Prevaliidation

Prior to validation, a set of test results for ACVC Version 1.8 produced by
the APLEX Ada Compiler was submitted to the AVF by the applicant for
review, Analysis of these results demonstrated <that the compiler
successfully passed all applicable tests, and that the compilier exhibited
the expected behavior on all inapplicable tests.

........

e TR e
,_MYJ\A'P.'} T

3.7.2 Test Method

Testing of the APLFX Ada Compiler using ACVC Versiorn 1.8 was conducted
on-site by a validation team from the AVF. The configuration consisted of
a Gould CONCEPT/32 Model 9780 operating under MPX-32, Version 3.2.

A magnetic tape containing all tests except for withdrawn tests and tests
requiring unsupported floating-point precisions was taken on-site by the
vaildation team for processing. Tests that make use of
impiementation-specific values were customized before being written to the
magnetic tape. Tests requiring splits during the prevalidation testing
were included in their split form on the magnetic tape.

The contents of the magnetic tape wer- 1loaced directly onto the host
computer, After the test files were loaded to disk, the full set of tests
was complled, linked, and executed as appropriate on a Gould CONCEPT/32
Model 9780. Results were printed from the Gould CONCEPT/32 Model 9780.

The compiler was tested using command scripts provided by Gould, Inc. and
reviewed by the validation team. The following options were in effect for
testing:

Option Effect
listing Generatas compilation listing. Default is
to have listing disabled.
list name Allows specification of the compilation listing

filename. Default is to have 1ist name disabled.

Test output, compilation listings, and job logs were captured on magnetic
tape and archived at the AVF, The 1istings examined on-site by the
validation team were also archived.

3.7.3 Test Site

The validation team arrived at Gould, Inc. in Ft. Lauderdaie FL. on 22
February 1987, and departed after testing was completed on 25 February
1987.

APPENDIX A

DECLARATION OF CONFORMANCE

Gould, Tnc. has submitted the following declaration of
conformance concerning the APLEX Ada Compiler.

P
- -

'Ry

L R

R K

% Gy '

0
.
.

e g LR TP P R O I p e e P o P LoV Ll P

DECLARATION OF CONFORMANCE

Compiler Implementor: TeleSoft, Inc.

Ada<’Validation Facility: ASD/SCOL, Wright-Patterson AFB, OH

Ada Compiler Validation Capability (ACVC) Version: 1.8
Base Configuration

Base Compiler Name: APLEﬁEE Ada Compiler Version: 1.0

Host Architecture ISA: Gould CONCEPT/32 OS&VER #: MPX, Version 3.2
Model 9780
Target Architecture ISA: Gould CONCEPT/32 OS&VER #: MPX, Version 3.2
Model 9780

Implementor's Declaration

I, the undersigned, representing TeleSoft, Inc., have implemented no
deliberate extensions to the Ada Language Standard ANSI/MIL-STD-1815A
in the compiler listed in this declaration. I declare that Gould Inc.
is the owner of record of the Ada language compiler listed ab~ve and,
as such, is responsible for maintaining said compiler in conformance
to ANSI/MIL-STD-1815A. All certificates and registrations for Ada
language c¢ofipil®r listed in this declaration shall be made only in the
owner'

A\ "‘ Date: U,/(/J/D

TeleSoft, Inc.
Ray Parra, Director of Contracts/Legal

-~

Owner's Declaration

I, the undersitned, representing Gould Inc., take full responsibility
for implementation and maintenance of the Ada compiler listed above,
and agree to the public disclosure of the final Validation Summary
Report. I further agree to continue to comply with the Ada trademark
policy, as defined by the Ada Joint Program Office. I declare that
all of the Ada language compilers listed, and their host/target
performance are in compliance with the Ada Language Standard ANSI/MIL-
STD-1815A. I have reviewed the Val.Zstion Summary Report for the
compiler and concur with the contents.

d Ific.
Macomber,

@%da is a registered trademark of the United States Government
(Ada Joint Program Office)

Date: 6/—9’/6’7
777

anager, Major Corporate Agreements

@BAPLEX is a trademark of Gould Inc.

.
;l
Al
o’
/s
-
- ?
3
¥
v
0
APPENDIX B
APPENDIX F OF THE Ada STANDARD ‘
3
- The only allowed implementation dependencies correspond to 1implementation- !
dependent pragmas, to certain machine-dependent conventions as mentioned in
chapter 13 of MIL-STD-1815A, and to certain allowed restrictions on &
representation clauses. The implementation-dependent characteristics of y
the APLEX Ada Compiler, Version 1.0, are described in the following
sections which discuss topics in Appendix F of the Ada Language Reference &
Manual (ANSI/MIL-STD-18154). Tmplementation-specific portions of the Q
package STANDARD are also included in this appendix. “
package STANDARD is -
type INTEGER is range -2_147_483 648 .. 2_147 _UB3_64T; 4
s
type FLOAT is -igits 6 range -7.23698E+75 .. T7.23698E+75; ;;
type DURATION is delta 2#1.0#E-14 range -86_400.0 .. 86_400.0;
-
s o0 I.
o
end STANDARD; Iy
W
-
"
B-1
A)
S

' W I MU W o Wt o W a g N W g i W Vb N 0t

1. Implementation Dependent Pragmas

There is one implementation-defined pragma, COMMENT. It has the
form:

pragma < .vMENT(¢(string_literal));

It may only appear within a compilation unit and has the effect
of embedding the given sequence of characters in the object code
of the compilation unit.

2. Implementation Dependent Attributes
There are no impiementation dependent attributes.

-3. Specification of Package SYSTEM

--Pragma Comment("This is an unpublished work written by TeleSoft");
-~Pragma Comment ("Copyright 1984, 1985 TeleSoft. All rights reserved");

-- Change History.

-- ps 2.02.85 Original version

-~ ps 2.09.85 Additions for tasking support

-~ ps 3.05.85 Modification for 32 bit integer support

-- ps 3.18.85 Added system.subprogram value

-~ ps 3.26.85 Modified Priority to be range 1..1 to fix PAR 1684

-- ps 5.17.85 Modified definitions of delta and fine delta to use

- - be type fioat instead of integer. -

-~ ps 6.19.85 Amended definition of "fine delta” to be an exact binary
-- number .

-- ps 6.27.85 Amended the definition of "priority" to be non-null

With Gould names;
package System is

Pragma Elaborate(Gould_names);

type Address is private;

type Name is (Gould _UTX, Gould MPX);
System_Name : constant name := Name'Val (Gould_names.sys name);

Storage Unit : constant := 8;
Memory;gize : constant = 2ss24-1;

|
| -- System-Dependent Deciarations

subtype byte is integer range 0 .. 2=« 8-1;

subtype integer_16 is integer range -2++15 .. 2+s15-1,

subtype integer_ 32 is integer; -- range -2ss31 .. 2es31-1; o
--subtype integer 64 is integer_ 32; t
-- System-Dependent Named Number +J
Min_Int : constant := -Ze23];

Max_Int : constant := +2ee31-1; "N
Max Dnguts . constant := 6; A
Max_| “Mantissa : constant := 30;]
Fine delt= : constant := 1.0 / (2.0 e+« (Max_Mantissa - 1)); “
Tick : constant := 1.0 / (2.0 == 14); o

-- Other System-Dependent Declarations

Max_Object Size : CONSTANT := Max_Int;
Max Record Count : CONSTANT := Max_Int; L
Max Ter_Iq_Count : CONSTANT := Max Int-1; s
Max:Ter_Iq_Field : CONSTANT := 1000; A
subtype Priority is integer range O .. 255; !
‘.
Null_address : constant address; f
type reg_array is array (0..7) of integer_32; B‘:
type subprogram value is record X
- base_regs: reg_array; 2,
end reccrd; Py
private -

type Add-ess is new integer_ 32;
Null_;ddress : constant address

= .
% %

"
o

4

end System;

i

[package body system is f\
o

i begin o
null; '@

end;

Package Gould_names is

Function Sys_name return irteger;

end Gould_names;

Package Body Gould_names is
Function Sys_name return integer is
begin
Return O;
end;

end Gould names;

. Restrictions on Representation Clauses

The Compiler supports the following representation clauses:
Length Clauses: for tasks 'STORAGE SIZE (LRM 13.2(c))
Length Clauses: for the attribute "SIZE (LRM 13.2(a))
Address Clauses: for objects and entries (LRM 13.5)

. Implementation dependent naming conventions

There are no implementation-generated names denoting
implementation dependent components.

. Expressions that appear in address specifications are interpreted
as the first storage unit of the cbject.

. Restrictions on Unchecked Conversions

Unchecked conversions are al lowed between variables of types

(or subtypes) Tl and T2 provided that 1) they have the same
static size, 2) they are not unconstrained array types, and 3)
they are not private (unless they are subtypes of or are derived
from a private type SYSTEM.ADDRESS) .

. I/0 Package Characteristics

Instantiations of DIRECT_ IO and SEQUENTIAL IO are supported with
the following exceptions:

+= Unconstrained array types.

* Unconstrainted types with discriminants without default
values.

*« Multiple internal files may not be associatec with the

external file for reading and writing.

In DIRECT_IO the type COUNT is defined as fcilow:
type COUNT is range 0..2_147_483_647,

In TEXT_IO the type COUNT is defined as follows:
type COUNT is range O..2 147_483_645;

In TEXT_IO the subtype FIELD is defined as follows:
subtype FIELD is INTEGER range 0..1007"

The line length limit for the target is 253 characters.

%t LN e T ™ ey U
PN A AN AN A

2 P T T e]

D

£

Y
*
‘»

APPENDIX C

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent values, such
as the maximum length of an input line and invallid file names. A test that
makes use of such values is identified by the extension .TST in 1ts file
name. Actual values to be substituted are represented by names that begin
with a dollar sign. A value must be substituted for each of these names
before the test 1s run. The values used for this validation are given

below.
Name and Meaning Value
$BIG ID (1..199 => 'A', 200 => '1')

Tdeatifier the size of the
maximum input line 1length with
;varying last character.

$BIG_ID2 (1..199 => 'A', 200 => '2')
Identifier the size of the
maximum input line length with
varying last character.

$BIG_ID3 (1..100 | 102..200 => 'A"',
Identifier the size of the 101 => '3")
maximun input line 1length with
varying middle character.

$BTG_ID4 (1..100 | 102..200 => ‘A",
Identifier the size of the 101 => '4')
maximum input line 1length with
varying middle character.

$BIG_INT_LIT (1..197 => '0', 198..200 => "298")
An integer 1literal of value 298
with enougn leading zeroes so
that it 1s the size of the
maximum line length.

o DA R B AL L A A A

TEST PARAMETERS

Name and Meaning Value

$BIG_REAL LIT (1..794 => '0', 195..200 =>
A real literal that can be "69.0E1")
either of floating- or fixed-

point type, has value 690.0, and
has enough 1leading zeroes to be
the size of the maximum line
length.

$BLANKS
A sequence of blanks
characters fewer than the
of the maximum line length.

twenty
size

$COUNT_LAST

A universal 1nteger 1literal

whose value 1s TEXT TO.COUNT'LAST.

$EXTENDED_ASCII_CHARS
A string 1literal containing all
the ASCII characters with
printable graphics that are not
in the basic 55 Ada character
set,

$FIELD_LAST

A universal integer 1literal

whose value 1s TEXT IO.FIELD'LAST.

$FILE_NAME WITH BAD CHARS
An 1illegal external file name
that either contains 1invalid
characters, or is too long if no
invalid characters exist.

$FILE NAME WITH WILD_ CARD CHAR
An external file name that
either contains a wild card
character, or is too long if no
wild card character exists,

$GZEATER_THAN DURATION
A universal real value that lies
between DURATION'BASE'LAST and
DURATION'LAST if any, otherwise
any value in the range of
DURATION.

$GREATER_THAN_DURATION_ BASE LAST
The universal real value that is
greater than DURATION'BASE'LAST,
if such a value exists.

(1..180 => * ")

2_147_UB3_6U5

"abedefghi jklmnopqrstuvwxyz!" &

"$%2€(

1000

\]"T ()=

"X}11/768%#$7&7Y"

nyyzun

100_00

0.0

10_000_000.0

NI W AT AW i WD

s RN OO

"2

I'm’
227

o

2

.

1R AL

oA YAy

pe 4

o
vj
e N

e

b

Name and Meaning

TEST PARAMETERS

Value

$ILLEGAL_EXTERNAL_FTLE NAME1
An 1llegal external file name.

$ILLEGAL EXTERNAL FTLE NAME2
An illegal external file name
that is different from
$ILLEGAL_EXTERNAL FILE NAME1.

$INTEGER_FIRST
The universal 1integer literal
expression whose value is
INTEGER'FIRST.

$INTEGER_LAST
The universal integer literal
expression whose value is
INTEGER'LAST.

$LESS_THAN_DURATION
A universal real value that lies
between DURATION'BASE'FIRST and
DURATION‘FIRST if any, otherwise
any value in the range of
DURATION,

$LESS_THAN_DURATION BASE FIRST
The universal real value that is
less than DURATION'BASE'FIRST,
if such a value exists.

$MAX DIGITS
The universal integer 1literal
whose value 1s the maximum
digits supported for floating-
point types.

$MAX IN LEN
The universal integer 1literal
whose value 1s the maximum
input 1line 1length permitted by
the implementation.

$MAX_TNT
The universal integer literal
whose value is SYSTEM.MAX INT.

"BAD_CHARACTERZ/#*""

(1..17 => 'A")

-2_147_483 648

2_147 483 647

-100_000.0

~10_000_000.0

200

2_147_U83_647

TEST PARAMETERS

Name and Meaning Value

$NAME LONG_LONG_INTEGER
A name of a predefined numeric
type other tnan FLOAT, INTEGER,
SHORT_FL{ .3, SHORT_INTEGER,
LONG_FLOLT, or LONG_INTEGER
if one exists, otherwise any
undefined name.

$NEG_BASED_INT 16#FFFFFFFE#
A based integer literal whose
highest order nonzero bit
falls in the sign iv

position of the representation
for SYSTEM.MAX INT.

$NON_ASCTI_CHAR TYPE (NON_NULL)
An enumerated type definition
for a character type whose
literals are the identifier
NON NULL and all non-ASCII
characters with printable
graphics.

APPENDIX D

WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform to the
Ada Standard. The following 19 tests had been withdrawn at the time of
validation testing for the reasons indicated. A reference of the form
"Al-ddddd" is to an Ada Commentary.

. C32114A: An unterminated string literal occurs at line 62.
. B33203C: The reserved word "IS" is misspelled at line 45.

. C34018A: The call of function G at line 114 is ambiguous in the
presence of implicit conversions.

. C35904A: The elaboration of subtype declarations SFX3 and SFX4
may raise NUMERIC_ERROR instead of CONSTRAINT ERROR as expected in
the test.

o B37401A: The object declarations at lines 126 through 135 follow
subprogram bodies declared in the same declarative part.

. CH4404A: The values of 'LAST and 'LENGTH are incorrect in the if
statements from line 74 to the end of the test,

. BUS5116A: ARRPRIBL1 and ARRPRIBL2 are initialized with a value of
the wrong type--PRIBOOL TYPE instead of ARRPRIBOOL_TYPE--at line
p 41,

{ . CUBO0OBA: The zssumption that evaluation of default initlal values
occurs when an exception 1s raised by an allocator is incorrect
according to AI-00397.

. BHQOO6A: Object declarations at lines 47 and S0 are terminzted
incorrectly with colons, and end case; 1s missing from line 42.

. BUAO10C: The object declaration in line 18 follows a subprogram
body of the same declarative part.

WITHDRAWN TESTS "

. B74101B: The begin at line 9 causes a declarative part to be 4
treated as a sequence of statements. bt

. . C87B50A: The call of "/z=" at line 31 requires a use clause for
package A.

. C92005A: The "/=" for type PACK.BIG_INT at line 40 is not visible ny!
without a use clause for the package PACK.

. CQUOACA: The assumption that allocated task TT1 will run prior to <
the main program, and thus assign SPYNUMB the value checked for by »
the main program, is erroneous. z

. CA3005A..D (4 tests): No valid elaboration order exists for these
tests.

. BC3204C: The body of BC3204CO is missing.

PR T

A A 47808 &

PRIy ~n

A

a_»_~

-

A L o i T M T N N A O S pvs L

I ‘
W ﬂ.q",«" VOO "‘.s. .|. " \"

Oy i"‘.‘ Y, t."t * s‘l
; n‘.) \‘ ;' ‘\‘ A" o ‘\‘ o'
RO ‘

