
NR-f193 666 MDR (TERODENAK) COMPILER VALIDATION SUMARY REPORT 1/'1
DIGITAL EQUIPMENT CORP.. (U) FEDERAL SOFTMARE MNAGEMENT
SUPPORT CENTER FALLS CHURCH YA 66 SEP OS

UN CLftSSIIE D/ O 2/5 M

mhhhhm

U,_ _

6 Q

8, I,

1.25 11.4 1. 6

MICROCOPY RESOLUTION TEST CHART

L_ N IJAA RJ, , OF STADARS_ 1963-A

% ~ p % %

% %

Ada* COMPILER VALIDATION SUMMARY REPORT:

Digital Equipment Corporation
VAX Ada Compiler

Version 1.1
VAX 8600, VAX-l11/785, VAX-l1/780, D T FC

VAX-11/782, VAX-11/750, VAX-11/730,
MicroVAX I & II, VAXstation I & II ELECTE
using VAX/VMS and MicroVMS Version 4.2 AUG1 19
and VAXELN Version 2.S

September 6, 1985

Prepared by:

CFederal Software Management Support Center
Office of Software Development

and Information Technology
Two Skyline Place, Suite 1100

5203 Leesburg Pike
Falls Church, VA 22041-3467

Prepared for:

Digital Equipment Corporation
110 Spit Brook Road
Nashu-, NH 03062

Ada Joint Program Office

1211 Fern St., C-107

Arlington, Va 22202

CLEARED
FOR OPEN PUBLICATION

Approv4d fm pt'hUc T.P,-". FEB 6 W6
Lf sbiutimni n~ntaiFE6 98

WMi CTORAIL tiR FREEDOM U* ,htw;MATIWN
AND SECURITY RE,,EW (OASO-PA)

DEPARTMENT OF DEFENSE

* Ada is a registered trademark of the U.S. Government,

(Ada Joint Program Office). 3 9 7

87 r~~~3O

"- *S 8t.t.t. ,"..

., ,. ~~~- . . . ,-, g . -u *-" ,, , , .,,"" ". ,., "- S",;.." . i ~,"/

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT OOCUMENTATION PAGE EA ISTRUCINR.s
BEFORE COMPLETEING FORM -.

1. REPORT NUMBER .2A" NO. 3R.3 IPIENT'S CATALOG NUMBER

4. TITLE (andSubtitle) 5. TYPE OF REPORT & PERIOD COVERED
Ada Compiler Validation Summary Report: 6 SEPT 1985 to 6 SEPT 1986
Digital Equipment Corp., VAX Ada Compiler Version 1.1

VAX 8600, VAX-11/785, VAX-li/780, VAX-11/782, VAX- 6. PERFORMING ORG. REPORT NUMBER

11/750, VAX-11/730, MicroVAX 1911, VAX station l&ll

7hMSHORs, 8. CONTRACT OR GRANT NUMBER(s)
'ederal 'Software Management Support Center

9. PERFORMING ORGANIZATION AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK

Federal Software Management Support Center, Office of Software AREA & WORK UNIT NUMBERS

Development and Information Technology, Two Skyline Place, Suite
1100, 5203 Leesburg Pike , Falls Church, VA 22041-3467

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Ada Joint Program Office 6 SEPT 1985
United States Department of Defense 13. NUMBLR OF PAULS

Washington, DC 20301-3081ASD/SIOL 22

14. MONITORING AGENCY NAME & ADORESS(If different from Controlling Office) 15. SECURITY CLASS (of this report)
Federal Software Management Support Center UNCLASSIFIED

15a. RI JFICATION/DOWNGRADING

N/A

16. DISTRIBUTION STATEMENT (ofthis Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20. If different from Report)

UNCLASSIFIED

18. SUPPLEMENTARY NOTES

19. KEYWORDS (Continue on reverse side if necessary and identify by block number)

Ada Programming language, Ada Compiler Validation Summary Report, Ada
Compiler Validation Capability, ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD-
1815A, Ada Joint Program Office, AJPO

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

See Attached.

DO ,o" 1473 EDITION OF I NOV 65 IS OBSOLETE

1 JAN 73 S/N 0102-LF-014-6601 UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

04MV

ABSTRACT-

The purpose of this Validation Summary Report is to present the results
and conclusions of performing standardized tests on the Digital
Equipment Corporation VAX Ada Compiler. On-site testing was performed
during 12-16 August 1985 at Digital Equipment Corporation, Nashua, New
Hampshire, by an Ada Validation Facility (AVF), the Federal Software
Management Support Center (FSMSC), according to current Ada Validation
Office (AVO) policies and procedures.

The DEC VAX Ada Compiler is hosted on those systems listed in the tabl
below. The hosts, as well as selected VAX/VMS and VAXELN based systems
served as the target systems. The suite of tests known as the Ads
Compiler Validation Capability (ACVC), Version 1.6, was used. The ACVC
is used to validate conformance of the compiler to ANSI/MIL-STD-1815A
(1983) [Ada]. This standard is described in the ANSI Ada Reference
Manual, February 17, 1983. Not all tests in the ACVC test suite are
applicable to this specific implementation. Also, known test errors in
Version 1.6 are present in some tests; these tests were withdrawn. The
purpose of the testing is to ensure that the compiler properly
implements legal language constructs and that it identifies, rejects
from processing, and labels illegal constructs.

The Digital Equipment Corporation (DEC) Compiler VAX Ada, Version 1.1,
using VAX/VMS 4.2, MicroVMS(*) 4.2, and VAXELN 2.0 was tested with
version 1.6 of the ACVC validation tests. Version 1.6 of the test suite
contains 2162 tests, of which 56 were withdrawn and 48 were
inapplicable. All of the 2058 remaining tests were passed.

The following table represents the validated target/host relationships:

CPU HOST OPERATING TARGET OPERATING
TYPE SYSTEM SYSTEMS

VAX 8600 VAX/VMS VAX/VMS
VAX-I1/785 VAX/VMS VAX/VMS
VAX-11/782 VAX/VMS VAX/VKS
VAX-11/780 VAX/VMS VAX/VMS
VAX-I1/750 VAX/VMS VAX/VMS
VAX-11/730 VAX/VMS VAX/VMS
MicroVAX I&II(*) MicroVMS MicroVMS VAXELN
VAXatation I&lI(*) MicroVMS MicroVMS

(M) - MicroVMS is a repackaged variant of VMS for the MicroVAX I&II and
the VAXatation I&II systems with limited disk space. It is not a subset
and provides the full power and functionality of VMS. Throughout the
remainder of this document, it will not be necessary to distinguish VMS
and MicroVMS. We shall use VMS to refer to them both for easier reading.
The reader can assume MicroVMS is present whenever the MicroVax or
VAXstation is referenced.

Federal Sof -Management Support Center

Thomas H. Proberr, Ph. D.
Institute for Defense Analyses

Virginia Castor
Acting Director
Ada Joint Program Office

L AM

ABSTRACT

The purpose of this Validation Summary Report is to present the "esults
and conclusions of performing standardized tests on the Digital
Equipment Corporation VAX Ada Compiler. On-site testing was performed
during 12-16 August 1985 at Digital Eauipment Corporation, Nashua, New
Hampshire, by an Ada Validation Facility (AVF), the Federal Software
Management Support Center (FSMSC), according to current Ada Validation
Office (AVO) policies and procedures.

The DEC VAX Ads Compiler is hosted on those systems listed in the table
below. The hosts, as well as selected VAX/VMS and VAXELN based systems
served as the target systems. The suite of tests known as the Ada
Compiler Validation Capability (ACVC), Version 1.6, was used. The ACVC
is used to validate conformance of the compiler to ANSI/MIL-STD-1815A
(1983) [Ada]. This standard is described in the ANSI Ada Reference
Manual, February 17, 1983. Not all tests in the ACVC test suite are
applicable to this specific implementation. Also, known test errors in
Version 1.6 are present in some tests; these tests were withdrawn. The
purpose of the testing is to ensure that the compiler properly
implements legal language constructs and that it identifies, rejects
from processing, and labels illegal constructs.

The Digital Equipment Corporation (DEC) Compiler VAX Ada, Version I.',
using VAX/VMS 4.2, MicroVMS(*) 4.2, and VAXELN 2.0 was tested with
version 1.6 of the ACVC validation tests. Version 1.6 of the test suite
contains 2162 tests, of which 56 were withdrawn and 48 were

inapplicable. All of the 2058 remaining tests were passed.

The following table represents the validated target/host relationships:

CPU HOST OPERATING TARGET OPERATING
TYPE SYSTEM SYSTEMS

VAX 8600 VAX/VMS VAX/VMS
VAX-11/785 VAX/VMS VAX/VMS
VAX-I1/782 VAX/VMS VAX/VMS
VAX-11/780 VAX/VMS VAX/VMS
VAX-11/750 VAX/VMS VAX/VMS
VAX-I1/730 VAX/VMS VAX/VMS
MicroVAX I&II(*) MicroVMS' MicroVMS VAXELN
VA~station I&II(*) MicroVMS MicroVMS

(*) - MicroVMS is a repackaged variant of VMS for the MicroVAX I&II and

the VAXstation I&II systems with limited disk space. It is not a subset
and provides the full power and functionality of VMS. Throughout the
remainder of this document, it will not be necessary to distinguish VMS
and MicroVMS. We shall use VMS to refer to them both for easier reading.
The reader can assume MicroVMS is present whenever the MicroVax or
VAXstation is referenced.

OTC 1 Av-!o xI/ur % o
enpy DitCi %

N~ ~ _I.
INSPCCEo

TABLE OF CONTENTS

Page

1. Introduction 1
1.1 Purpose of the Validation Summary Report. 1
1.2 Validation Overview 2
1.3 Host to Target Relationship Table 3
1.4 Use of the Validation Summary Report 4
1.5 References 4
1.6 Definitions of Terms 5

2. TEST ANALYSIS 7
2.1 Class A Testing 7

2.1.1 Class A Test Procedures 7
2.1.2 Class A Test Results 7

2.2 Class B Testing 7
2.2.1 Class B Test Procedures 7
2.2.2 Class B Test Results 8

2.3 Class C Testing
2.3.1 Class C Test Procedures 8
2.3.2 Class C Test Results 9

2.4 Class D Testing 9
2.4.1 Class D Test Procedures 9
2.4.2 Class D Test Results 9

2.5 Class E Testing 9
2.5.1 Class E Test Results 9

2.6 Class L Testing 9
2.6.1 Class L Test Procedures 9
2.6.2 Class L Test Results 9

2.7 Subset Testing 10

3. COMPILER NONCONFORMANCES 11

4. ADDITIONAL INFORMATION 12
4.1 Compiler Parameters 12
4.2 Testing Information 13

4.2.1 Pre-Test Procedures 13
4.2.2 Control Files 13
4.2.3 On-site Data Collection 14
4.2.4 Test Analysis Procedures 15
4.2.5 Timing Information 15

4.2.6 Description of Errors in Withdrawn Tests 15
4.2.7 Description of Inapplicable Tests 18
4.2.8 Information derived from the Tests19

5. SUMMARY AND CONCLUSIONS 22

... . %

1. Introduction

1.1 Purpose of the Validation Summary Report

This report describes the results of the validation testing for

the compiler designated as VAX Ada, Version 1.1 using the

following configurations:'

Host Machinesj VAX 8600, VAX-11/785, VAX-II/782,
VAX-1I/780, VAX-lI/750, VAX-lI/730,
MicroVAX I&II(*), VAXstation I&Il(*).

Operating Systeml MicroVMS 4.2 for machines marked
with asterisk, VMS 4.2 for all others.

Host Disk System i RPO6, RA81, RC25

Target Machinesi VAX 8600, VAX-ll/785, VAX-II/782,
-' VAX-ll/780, VAX-l1/750, VAX-11/730,

MicroVAX I&II, VAXstation I&II.

- Operating System; MicroVMS 4.2 or VAXELN for the MicroVAX
I&II; MicroVNS 4.2 for the VAXstation I&II
and VMS 4.2 for all other machines.

Language Version3 ANSI/MIL-STD-1815A (1983) [Ada)

Translator Name'-.) VAX Ada

Validation Test
Version: - 1.6

Testing of this iompiler was conducted by the Federal Softu.re

Management Support Center under the supervision of tb Ada
Validation Office (AVO), at the direction of the Ada Joint

Program Office. Testing was conducted frc¢i 12-16 August, 1985

at Digital Equipment Corporation, Nashua, N'H, in accordance

with AVO policies and procedures.

-1-

- -.

The purpose of this report is to docwent the results of the
testing performed on the compiler, and in particular, to:

identify any language constructs supported by the coi!piler
that do not conform to the Ada standard;

7) identify any unsupported language constructs required by
the Ada standard; and-

7 describe implementation-depends.- behavior allowed by the
standard.

1.2 Validation Overview

MicroVAX hardware implements a subset of the VAX instruction set found

on the other members of the VAX series; however, all missing
instructions are transparently implemented by software emulation under
the MicroVMS variant of the VMS operating system as well as under
VAXELN. MicroVMS and VAXELN provide a user mode instruction set
execution environment identical to that of all other processors in the
series.

VAXstation I&II are MicroVAX I&II systems, respectively. The VAXstations
differ from the MicroVAX I&II only by the incorporation of a
sophisticated display and related graphics support for the primary
terminal device.

The VAX family includes multiple hardware/software implementations of
the same instruction-set architecture. Digital Equipment Corporation
maintains a VAX Architecture Management group which develops processes
and tools to assure that each new VAX implementation conforms to the VAX
Architecture Standard. In addition, a separate Software Ouality
Management Group is responsible for certifying that VAX software
products work correctly on all new VAX implerentations. All processors
of the VAX family together with the VMS operating system provide an
identical user mode instruction-set execution environment and, according e
to the vendor, need not be distinguished for purposes of validation.
Similarly, all VAX family processors supported as VAXELN Toolkit targets
provide an identical user mode instruction-set execution environment.

The VAX Ada produces equivalent results on all members of the VAX family
under the VMS operating system. Similarly, VAX Ada and the VAXELN Ada
run-time libr.ry produce equivalent results on those members if the VAX
family under VAXELN as indicated in the abstract table.

The members of Digital's VAX family are the VAX 8600, VAX-1/785,
VAX-11/780, VAX-ll/782, (the VAX-11/782 is a duplex multiprocessor
configuration using two VAX-11/780 processors), VAX-I1/750, VAX-ll/730,
MicroVAX I&II, and VAXstation I&II.

-2-

p p . p -'-U -~ ** ~ -%I

1.3 Host to Target Relationship Table

The following table represents the validated target/host relationships:

CPU HOST OPERATING TARGET OPERATING
TYPE SYSTEM SYSTEMS

VAX 8600 VAX/VMS VAX/VMS
VAX-11/785 VAX/VMS VAX/VMS
VAX-11/782 VAX/VMS VAX/VMS
VAX-l1.!780 VAX/VKS VAX/VMS
VAX-Il/750 VAX/VMS VAX/VMS
VAX-1/730 VAX/VMS VAX/VMS
MicroVAX I&II(*) MicroVMS MicroVMS VAXELN
VAXstation I&II(*) MicroVMS MicroVMS

(*) = MicroVMS is a repackaged variant of VMS for the MicroVAX I&II and

the VAXstation I&II systems with limited disk space. It is not a subset
and provides the full power and functionality of VMS. Throuzhout the

remainder of this document, it will not be necessary to distinguish VMS

and MicroVMS. We shall use VMS to refer to them both for easier reading.

The reader can assume MicroVMS is present whenever the MicroVax or

VAXstation is referenced.

-3-

1.4 Use of the Validation Summary Report

The Ada Validation Office may make full and free -public
disclosure of this report in accordance with the "Freedom of
Information Act" (5 U.S.C. #552). The results of the
validation apply only to the computers, operating systems, and

compiler version identified in this report.

The Ada Compiler Validation Capability is used to determine
insofar as is practical, the degree to which the subject

compiler conforms to the Ada standard. Thus, this report is
necessarily discretionary and judgemental. The United States
Government does not represent or warrant that the statements,
or any one of them, set forth in this report are accurate or
complete, nor that the subject compiler has no other
nonconformances to the Ada standard. This report is not meant
to be used for the purpose of publicizing the findings
summarized herein.

Any questions regarding this report or the validation tests
should be sent to the Ada Validation Office at:

Federal Software Management Support Center
5203 Leesburg Pike
Suite 1100
Falls Church, Virginia 22041

1.5 References

Reference Manual for the Ada Progranming Language,
ANSI/MIL-STD-1815A-1983, February 1983.

Ada Validation Organization: Policies and Procedures, Mitre
Corporation, June 1982, PB 83-110601.

Ada Compiler Validation Implementers' Guide, SofTech, Inc.,

October 1980.

The Ada Compiler Validation Capability, Computer, Vol. 14, No.
6, June 1981.

Using the ACVC Tests, SofTech, Inc., November 1981.

Ada Compiler Validation Plans and Procedures, SofTech, Inc.,
November 1981.

-4-

I

1.6 Definitions of Terms

Class A tests are passed if no errors are detected at Goile

time. Although these tests are constructed to be executable,
no checks can be performed at run-time to see if the test
objective has been met; this distinguishes Class A from Class C
tests. For example, a Class A test might check that keywords
of other languages (other than those already reserved in Ada)
are not treated as reserved words by an Ada implementation.

Class B tests are illegal programs. They are passed if all the
errors they contain are detected at compile time (or link
time) and no legal statements are considered illegal by the
compiler.

Class L tests consist of illegal programs whose errors cannot
be detected until link time. They are passed if errors are
detected prior to beginning execution of the main program.

Class C tests consist of executable self-checking programs.
They are passed if they complete execution and do not report
failure.

Class D tests are capacity tests. Since there are no firm
criteria for the number of identifiers permitted in a
compilation, number of units in a library, etc., a compiler
may refuse to compile a class D test. However, if such a test
is successfully compiled, it should execute without reporting a
failure.

Class E tests provide information about an implementation's
interpretation of the Standard. Each test has its own
pass/fail criterion.

ACVC: Acronym for the Ada Compiler Validation
Capability.

AVO: The Ada Validation Office. In the context
of this report the AVO is responsible fnr
directing compiler validation.

CHECK or
CHErKTEST: An automated tool that produces summary test

results by readinR compiler output in a
spool file.

CUSTOMER: The agency requesting the validation
(Digital Equipment Corporation).

-5-

LeV. % "I' Ir V-".%

FSTC: Federal Software Management Support Center.

In the context of this report the FSMSC

conducts Ada validations under contract to

the AVO as a satellite facility.

HOST: The computer on which the compiler executes

(VAX 8600, VAX-Il/785, VAX-1l/782,
VAX-I1/780, VAX-11/750, VAX-11/730, MicroVAX

I & II, VAXstations I & II)

IG: ACVC Implementers' Guide.

RK: The Ada Language Reference Manual.

STANDARD: The standard for the Ada language,

ANSI/MIL-STD-1815A (1983) [Ada].

SUBSET TESTS: A grouping of ACVC tests selected by the
FSMSC. Each chapter in the ACVC is

represented in the subset by between 4 to 7

tests. The subset is used for statistical %
sampling of the various host and target

hardware configurations.

TARGET: The computers for which the compiler

generates object code (VAX 8600,

VAX-11/785, VAX-I1/782, VAX-1I/780,
VAX-11/750, VAX-l1/730, VAX-11/725,
MicroVAX I&II, VAXstation I&II).

VALIDATION: The process of testing a compilation system
to certify that it conforms to the standard.

VALIDATION TESTS: The set of test programs used to detect
non-conformances in compilation systems. In

this report, the term will he used

(unqualified) to mean the ACVC tests.

-6-

V'V

.-. _ - ,. ,- . ,- - -.- , _ _ -,- - - - -. ', .' . ' 1 ' " - - , - i..'.

2. TEST ANALYSIS

The following table shows that the DEC VAX Ada compiler passed all
applicable tests.

A B C D E L Total

In Suite 61 800 1273 17 8 3 2162
Inapplicable 0 4 44 0 0 0 48
Withdrawn 0 13 43 0 0 0 56
Passed 61 783 1186 17 8 3 2058
Failed 0 0 0 0 0 0 0

48 tests in the suite were found to be inapplicable to the Digital
implementation.

In addition, 56 tests were withdrawn from the test suite because they
were incorrect programs.

2.1 Class A Testing

Class A tests check that legal Ada programs can be

successfully compiled. These tests are executed hut contain
no executable self-checking capabilities. There were 61 class

A test programs processed in this validation.

2.1.1 Class A Test Procedures

Each class A test was separately compiled and executed.
However, the only purpose of execution is to produce a message
indicating that the test passed.

2.1.2 Class A Test Results

Successful compilation and execution without any error messages
indicates the tests passed. All 61 applicable tests were
passed.

2.2 Class B Testing

Class B tests check the ability to recognize illegal language
usage. There were 783 applicable class B tests processed.

2.2.1 Class B Test Procedures

Each Class B test was separately compiled. The resulting test

compilation listings are manually examined to see whether
every illegal construct in the test is detected. If some

errors are not detected, a version of the program test is

created that contains only undetected illegol constructs.

-7-i

SIl

This revised version is recompiled and the results analyzed.
If some errors are still not detected, the revision process is
repeated until a revised test contains only a single previously
undetected illegal construct.

A B test is considered to fail only if a version of the test
containing a single illegal construct is accepted by the
compiler (i.e., an illegal construct is not detected) or a
version containing no errors is rejected (i.e., a legal
construct is rejected).

2.2.2 Class B Test Results

There were 800 class B tests presented to the compiler. Of
these tests 4 were found to be inapplicable to this
implementation (see Section 4.2.7); 13 tests were found to be
incorrect (i.e., a conforming compiler would have failed each
of these tests). All 783 remaining class B tests were passed.

Because all errors were not detected when compiling the
original tests, 2 tests were modified by removing the detected
errors; the modified tests were then resubmitted to see if the
remaining errors would be detected. These tests were:

B97101A-AB.ADA and B97101E-AB.ADA.

All illegal constructs were detected except in the tests that
were withdrawn because of errors in them (see Section 4.2.6).

2.3 Class C Testing

Class C tests check that legal Ada programs are correctly
compiled and executed by an implementation. There were
1186 class C tests processed in this validation attempt.

2.3.1 Class C Test Procedures

Each Class C test is separately compiled and executed. The
tests are self-checking and produce pass/fail messages. Any
'failed' tests are individually checked to see if they are
correct and if they are applicable to the implementation. Any
tests that are inapplicable or that do not conform to the Ada
Standard are withdrawn.

2.3.2 Class C Test Results

All 1186 applicable class C tests were processed and passed.

2.4 Class D Testing

Class D tests are executable tests used to check an
implementation's compilation and execution capacities. There
were 17 class D tests used in this validation.

-8-

.

2.4.1 Class D Test Procedures

Each class D test is separately compiled and executed. The
tests are self-checking and produce PASS/FAIL messages.

2.4.2 Class D Test Results

All 17 D test were passed.

2.5 Class E Testing

Class E tests are executable tests that provide information
about an implementation's interpretation of the Standard in
areas where the Standard permits implementations to differ.
Each test has its own pass/fail criterion. There were 8 class
E tests used in this validation.

2.5.1 Class E Testing Procedures

Each class E test is separately complied and executed. The
tests are self-checking and produce pass/fail messages.

2.5.1 Class E Test Results

All class E tests were passed.

2.6 Class L Testing

Three Class L tests check that incomplete or illegal Ada
programs involving multiple separately compiled source files
are detected at link time and are n 'ot allowed to execute.
There were 3 Class L test programs processed in this validation
attempt.

2.6.1 Class L Test Procedures

Each Class L test is separately compiled and execution is

attempted. The tests produce FAIL messages if executed. Any
"failed" tests are individually checked to see if they are

correct and if they are applicable to the implementation. Any
tests that are inapplicable or that do not conform to the Ada
standard are withdrawn.

2.6.2 Class L Test Results

Of the 3 class L tests, none was found to be inapplicable to
this implementation, and none was withdrawn due to errors in
the tests. All Lhree L tests were passed.

-9-

* - ~ *-~* - ~. .

2.7 Subset Testing

A subset of the executable ACVC tests was defined by the.FSMSC
and used during the this Ads validation. This subset of tests
was used to test multiple configuration combinations during the
pre-validation. The subset comprised of the following tests:

Chapter 2 Chapter 3 Chapter 4 Cha:ter 5

C23001A C34001A C41101D C51002A
C24102A C34001H C42005A C52001A
C26008A A32203D C432:4A C53005A
A29002A C35904A C45101A C54A03A

C36204A C48003A D55A03A
C34002B

Chapter 6 Chapter 7 Chapter 8 Chapter 9

C61003B A71002A A83A02A C92002A
A62006D C720:1B C84002A C93001A
C63004A C74203B C85007E C94006A
C65003A C74209A C86003A A97106A
C66002A C74409B C87B48A C97202A

Chapter 10 Chapter 11 Chapter 12 Chapter 14

CA1003A CB1001A CCO004A AE2101A
CA2004AOM CB2004A CC3004A CE2102A
CA2004A1 CB3003A CC3408A CE2201A
CA2004A2 CB4001A CC3504C CE2401E
CA2004A3 CE3102A
CA2004A4 CE3901A

*** CZ ***

CZ1101A
CZ1102A
CZ1103A
CZ1201A
CZ1201B
CZ1201C
CZ1201D

-10-

I

3. COMPILER ANOMALIES AND NONCONFORMANCE

There were no nonconformances to the Ads standard detected in this

validation. The compiler passed all applicable correct tests.

I

4. ADDITIONAL INFORMATION

This section describes in more detail how the validation was conducted.

4.1 Compiler Parameters

Certain tests do not apply to all Ada compilers, e.g.,
compilers are not required to support several predefined
floating-point types, and so tests must be selected based on
the predefined types an implementation actually supports. In
addition, some tests are parameterized according to the maximum
length allowed by an implementation for an identifier (or other
lexical element; this is also the maximum line length), the
maximum floating-point precision supported, etc.. The
implementation-dependent parameters used in performing this
validation were:

" maximum lexical element length: 120 characters.

" maximum digits value for floating point types: 33

" SYSTEM.MIN INT: -2147483648

" SYSTEM.MAX INT: 2147483647

• predefined numeric types: INTEGER, FLOAT,
SHORT-INTEGER, SHORT-SHORT-INTEGER, LONG-FLOAT,
LONG-LONG-INTEGER

INTEGER'FIRST: -2147483648

INTEGER'LAST: 2147483647

source character set: ASCII

* extended ascii chars: abcdefghijklmnopqrstuvwxyz

non-ascii char type: (NON NULL)

TEXT IO.COUNT'LAST: 2147483647

TEXT IO.FIELD'LAST: 2147483647

illegal external file name1 : "badcharacter*O"

illegal external file name2: "much _too .longname for a
file much toolong name for a file"

* SYSTEN.PRIORITY'FIRST: 0

SYSTEM.PRIORITY'LAST: 15

-12-

4.2 Testing Information

Tests were comiled/executed at digital Equipment
Corporation, Nashua, NH.

4.2.1 Pre-Test Procedures

Prior to testing, appropriate values for the
compiler-dependent parameters were determined. These
values were used to adapt tests that depend on the values
(This relates to on-site testing!). A magnetic tape
containing the adapted tests (and split versions of some
class B tests--see section 2.2.2) was prepared and brought
to the testing site.

The Digital pre-validation consisted of the following
steps:

a) The entire ACVC was processed on both the VAX-11/785 and
VAX-1l/782 under VMS. The results were examined and
found to be correct. The results from the VAX-11/785
were used as the "test basis" against which all other
results were compared to determine correctness.

b) The load module created on the VAX-11/785 in step "a"
was transported to and executed on the MicroVAX I under
VMS. The results were compared to the test basis and
found to be correct.

c) A subset of the ACVC executable tests (see 2.7) was then
compiled and executed on the VAX 8600 and on the
MicroVAX II under VMS. Both results were examined and
found to be correct.

d) All results were compared to the test basis; no
differences were detected.

4.2.2 Control Files

Digital Equipment Corporation provided comand procedures
that compiled and executed tests automatically.

-13-

'a

4.2.3 On-site Data Collection

The complete ACVC was run on both the VAX 8600 under VMS
and the MicroVAX II under MicroVax. The results frnm the
VAX 8600 were analyzed; they were determined to be
correct. These results were thus used as the "test lasis"

against which the results from running the ACVC on other
configurations would be compared. The various test results
were captured on tape; the tapes were compared against the
test basis with "DIF"--a difference utility. Each ACVC run
can be linked twice to produce two load modules, (1) a VMS
load module which executes under VMS and MicroVMS and (2) a
VAXELN load module which executes on a bare machine after
loading its own VAXELN operating system. Only load modules
from the 8600 were executed under VAXELN.

The results on the MicroVAX II were compared against the
test basis; no differences were detected.

The VAXELN-linked load module from the VAX 8600 was
transported to the MicroVAX II and executed under VAXELN.
The results were checked against the test basis and found
to be correct.

The VMS-linked load module from the MicroVAX II under VMS
was transported to the VAX-11/780 and executed under VMS.
The results were checked against the test basis and found
to be correct.

Additionally, the two results of re-targetting the two load
modules described above were compared against each other
using the DIF utility; no differences were detected.

The VMS-linked load module from the MicroVAX II was
transported to, and executed on, the following
configurations:

VAX-11/750
VAX-11/730

VAXstation I&II, and
MicroVAX I.

The results -ere individually compared against the test
basis and founc to be correct.

Also, the results created during pre-validation for the
VAX-11/785 & VAX-11/782 were compared against the test
basis and found to be correct.

-14-

%.

4.2.4 Test Analysis Procedures

On completion of testing the base system, all results were
analyzed for failed Class A, C, D, E, or L programs, end all
class B compilation results were individually analyzed.
Analysis procedures are described for each test class in
chapter 2.

4.2.5 Timing Information

The real (i.e., wall clock) times required for compiling the
non-executable tests, and compiling, linking, and running the
executable tests were -

VAX 8600 3:10 Full run of validation suite under
VAX/VMS - multiple batch streams run

in parallel.

MicroVAX II 14:17 Full run of validation suite under
MicroVMS - single batch stream.

4.2.6 Description of Errors in Withdrawn Tests

The following tests in version 1.6 of the ACVC did not conform
to the ANSI Ada standard and were withdrawn for the reasons
given below:

B66001A-B: Test checks (in section) that a
parameterless function that is equivalent to an
enumeration literal in the same declarative region is a
redeclaration and, as such, is forbidden. According to
RM 8.3(17), the explicit declaration of such a function
is allowed if an enumeration literal is considered to be
an implicitly declared predefined operation. The RM is
not clear on this point. This issue has been referred
to the Language Maintenance Committee for resolution.
Since the issue cannot be resolved at this time, the
test is withdrawn from Version 1.6. (Please note that
this test may be considered correct and may appear in
the future Versions of the ACVC, including Version 1.6.)

BCIOI3A-B: The declaration of equality in lines 86-87
is illegal because the parameter type T declared in line
11 is not a limited type (LRM 6.7-4).

C45521A, C45521B, C45521C, ... C45521Y (25 tests):
Cases C and I in each of these tests define the model
interval for the result too narrowly.

-15-

-rd-W. e,

• C48005C-B: Lines 38 and 63 of this test should check
that the value of the designated object is null.

C64103C-B: This test should raise CONSTRAINT ERROR
during the conversion at line 179.

• C64103D-B: This test involves a CONSTRAINT ERROR vs.
NUMERIC ERROR issue that is to be resolved by the
Language Maintenance Committee.

• C64105E-AB: For case E, ensure that non-null dimensions
of formal and actual parameters belong to both index
subtypes (see AI-00313).

• C64105F-AB: For case E, ensure that non-null dimensions
of formal and actual parameters belong to both index
subtypes (See AI-00313).

" B67001A-B: Line 414 is missing the "BEGIN NULL; END;"
needed to complete the block beginning at line 389 (case
H).

. B67004A-B: The default name for a formal generic
equality function should not be allowed to be "/="
unless an expanded name is used.

• C93005A, C93005B and C93005C: These tests contain a
declaration of an integer variable whose initialization
is solely for the purpose of raising an exception. Some
compilers will not raise this exception due to their
optimization.

C93007B-B: This test should check for PROGRAM ERROR
rather than TASKING ERROR (See AI-000149).

• CAl011A*-B: The test objective should be reversed to be
consistent with AI-00199.

" CAl108A-B: A pragma ELABORATE is needed for OTHERPKG
at line 25.

• CA1I08B-B: A pragma ELABORATE is needed for FIRSTPKG
at line 39 and for LATER PKG at line 49.

• CA2009B-B, CA2009E-B: The repetition of the main
procedure after the subunit body makes the subunit body
obsolete; therefore, an attempt to execute the main
procedure will fail.

. CA2009F*-B: The file CA2009F2-B is missing from the
test suite.

-16-

UVI l*, 'Il % .~~'~~-.

BC3204A-B, BC3204B-B, BC3204C-B, BC3204D-B, BC32O5A-F,
BC3205B-B, BC3205C-B, BC32O5D*-B, BC3405B-B:
Instantiations with types that have default
discriminants are now legal (AI-00037).

*CE3603A-B: The last case is inconsistent with AI-00050. "

If string argument is null, no attempt to read is made
and END ERROR is not raised.

*CE3604A-B: Cases 5, 8, 9, and 11 are inconsistent with
AI-00050. SKIPLINE is called only if the end of the
output string h as not been met.

*CE3704M-B: A superfluous SKIPLINE causes the input and
output operations to be out of synchronization.

-17- .

* * / 4~* ?d~ ~ ~ I ?

4.2.7 Description of Inapplicable Tests

B52004D and B55B09C were inapplicable becausi the
implementation does not support LONGINTEGER.

B86001CP and B86001CS were inapplicable because the
implementation does not support SHORTFLOAT and LONGINTEGER,

respectively.

C34001E and C34001F were inapplicable because the
implementation does not have predefined types LONG-INTEGER and
SHORT FLOAT, respectively.

C35702A was inapplicable because the implementation does not

have a predefined type SHORT FLOAT.

C24113H through C24113Y, were inapplicable because the
implementation does not support source lines longer than 120
characters. (18)

C55BO7A inapplicable because the implementation does not have a

predefined type LONG INTEGER.

C86001F was inapplicable because the compilation of the
user supplied package SYSTEM makes the body of TEXT_10
obsolete.

C96005B - This test checks to find a difference between
DURATION'BASE'FIRST and DURATION'FIRST. If no difference exists
(as is the case in the implementation) the test is
inapplicable.

CC3407A, CC3407D, CC3407E, and CC3407F are inapplicable because
NUMERIC ERROR is raised in calculating the size of objects of a
type, as allowed by the LRN.

CE2102D, CE2102E, and CE2102F are inapplicable because the
implementation does support files of mode INFILE, OUTFILE,
and INOUT FILE, respectively.

CE2102G is inapplicable because the implementation does support

RESET and DELETE.

CE2IO7B, CE2107C, CE2107D, CD21O7E, CE21IOB, and CE3114B are
inapplicable because the implementation does not support
associating two internal files with the same external file for
writing.

CE2111D is inapplicable because VAX Ada does not allow the

creation of a file of mode IN FILE.

%w ~%

CE3IILB, CE3111C, CE3111D, and CE31IIE were inapplicable

because the implementation does not suoport associating two

internal files with the same external files with the same

external name when one internal file has made OUT FILE. -

CE3115A was inapplicable because more than one internal f!lc

was associated with the same external file.

4.2.8 Information Derived from the Tests

Processing of the following tests indicated support as

described below for a variety of implementation options

examined by the tests.

E24101A-B.TST: If a based integer literal has a value

exceeding SYSTEM.MAX INT, an implementation may either

reject the compilation unit at compile time or raise
NUMERIC ERROR at run time. This test showed thAt

NUMERIC-ERROR was raised at run time.

B26005A.ADA: This test contains all the ASCII control

characters in string literals. The system replaced the

control characters other than those corresponding to

format effectors with a space in the listing file. All

occurrences were identified with a diagnostic message by

the compiler.

D29002K-B.ADA: This test declares 713 identifiers and
was passed by the compiler.

E36202A-B.ADA and E36202B-B.ADA: These tests declare

multidimensional null BOOLEAN arrays in which LENGTH of

one dimension exceeds INTEGER'LAST and SYSTEM.MAXINT,

respectively. An implementation can accept this, or it

can raise NUMERIC ERROR or STORAGE ERROR at run time.

The compiler did accept the declarations and raised
NUMERIC ERROR during execution.

D4AO02A-AB.ADA, D4AO02B.ADA, D4AO04A.ADA and

D4AOO4B.ADA: These tests contain universal integer

calculations requiring 32 and 64 bits of accuracy, i.e.,

values that exceed SYSTEM.MAX INT are used. An

implementation is allowed to reject programs requiring

such calculations. The compiler passed all four tests.

E43211B-B.ADA: If a bound in a non-null range of a

non-null aggregate does not belong to an index subtype,
then all choices may or may not be evaluated before '

CONSTRAINT ERROR is raised. The compiler evaluates all

choices befo-re CONSTRAINT ERROR is raised.

-19- .a

•%

a' S. .

E43212B-B.ADA: This test examines whether r nor a1l
choices are evaluated before subaggregates are checked
for identical bounds. The compiler evaluates all
subaggregates first.

E52103Y-B.ADA, C52104X-B.ADA, C52104Y-B.ADA: These
tests declare BOOLEAN arrpvs with INTEGER'LAST+3
components. An implementation may raise NUMERIC ERROR
at the type declaration or STORAGE ERROR when array
objects of these types are declared, or it may accept
the type and object declarations. The compiler did not
raise NUMERIC ERROR for null array with one dimension of
length greater than INTEGER'LAST in E52103Y-B.

A series of tests (D55A03*-AB.ADA) checks to see what .4

level of loop nesting is allowed by an implementation.
Tests containing up to 65 nested loops passed without
exceeding the implementation's capacity.

D5600IB-AB.ADA contains blocks nested 65 levels deep.
This test was passed.

C94004A-B.ADA: This test checks to see what happens
when a library unit initiates a task and a main program
terminates without ensuring that the library unit's task
is terminated. An implementation is allowed to
terminate the library unit task or it is allowed to
leave the task in execution. This test showed that such
library tasks continue to execute.

BC3204C*-B.ADA and BC3205D*-B.ADA: These tests contain
a separately compiled generic declaration, some
instantiations, and a body. An implementation must
reject either the instantiations or the body. The
compiler generated errors when compiling the generic
package body.

CE2106A-B.DEP and CE311OA-B.DEP: These tests confirm
that dynamic creation and deletion of files is
supported.

CE2107*.DEP: These tests showed that more than one
internal file may be associated with the same external
file for reading.

* EE3102C-B.ADA: This test confirmed that an Ada program
can open an existing file in OUT FILE mode, and can
create an existing file in either OUT FILE or INFILE
mode.

* CE3111A-B.DEP confirmed that two internal files may
read the same external files.

-20-

I -I 1.," 00 P ' O.*

CE3111B-B.DEP and CE311IC-B.DEP showed that the compiler

does not allow two internal TEXT 10 files to be
associated with the same externaT file when one or both
internal files are opened for writing.

p

'.

I

-21-

%".

5. SUMMARY AND CONCLI'SIONS

The Ada Validation Facility (AVF) identified 2162 of the ACV" version
1.6 tests as being being potentially applicable to the validation'of the

Digit&* Equipment Corporation compiler hosted on the VAX 8600,

VAX-l1/785, VAX-lI/782, VAX-1I/780, VAX-lI/750, VAX-lI/730, MicroVAX

I&II and the VAXstation I&II. Of these, 56 were withdrawn due to test

errors$ aand 48 were determined to be inapplicable. The compiler Passed

the remaining 2058 tests.

The AVF considers these results to show acceptable compliance to the

February 1983 ANSI Ada Reference Manual.

S

-22-

a

%U

wW~p Re .. M :

