
T7-183 666 AON (TRDEAM) COMPILER VNLIDTION SfMRY REPORT
SOFTECH INC RONVIX CON.. (U) FEDERAL SOFTIMRE MNAGIEMENT
SUPPORT CENTER FALLS CHURCH VR 36 RUU 65

ULUNCLASSIFIED F/I 125 L

Ctmhhhhhhhhmmhhli

SOM.

36

16 a111

AA

ICopy

Ad-* COMPILER VALIDATION SUMMARY REPORT:

Soffech, Inc.
AdaVaX Compiler
Version 2.47
VAX 8600, VAX-11/780, VAX-11/785; and MicroVAX II
using VA"VMS Version 4.1 end MicroVMS 4.!M

DTIC
August 30, 1985 S UEGE1 D

Prepared for: CI

Department of the Army
Communications Electronic Comnmand
Fort Monmouth, New Jersey 07703-5204

Ada Joint Program Office
1211 Fern St.
Arlington, Va 22202

Prepared by:

Federal Software Management
Support Center
Office of Software Development
and Information Technology
Two Skyline Place, Suite 1100
5203 Leesburg Pike
Falls Church, VA 22041-3467

CLEARED
-WR OPEN PUBoCATlON

* Ada is a registered trademark of the U.S. Government, FEB 6 1986
(Ada Joint Program Office). 6 O

W~iHECTOAT FOR FRUOA u, , orvnrAT*ON
AND SECUR:Tv RfEVEW (OASO-PA)

DEPARTME NT OF DEFENSE

RU 30 1 ST"i.-~. ~.-
jkp~oved loz Public l,;

DI~bb11~~ UIIIZD 87398
~ R:....%.. V 87

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When DatJ Entered)

REPORT DOCUMENTATION PAGE REAISTRUCTIONS
- BEFORE COMLPLET]EING FORK

1. REPOR T NUMBER 1;&0TACS 3, .RECIPIENT'S CATALOG NUMBER

4. TITLE (andSubtitle) 5. TYPE OF REPORT & PERIOD COVEREDAria Compiler Validation Summary Report: 30 AUG 1985 to 30 AUG 1986
SofTech, Inc. AdaVAX Compiler Version 2.47 VAX 8600,

VAX-11/780, VAX-11/785; and MicroVAX ii using 6. PERFORMING ORG. REPORT NUMBER

VAX/VMS Version 4.1 and microVMS 4.1M
7 AUTHOR(J) 8. CONTRACT OR GRANT NUMBER(s)

Fe Software Management Support Center

9. PERFORMING ORGANIZATION AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
Federal Software Management Support Center, Office of Software AREA & WORK UNIT NUMBERS

Development and Information Technology, Two Skyline Place, Suite
1100, 5203 Leesburg Pike , Falls Church, VA 22041-3467

It. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Ada Joint Program Office 30 AUG 1985
United States Department of Defense 13. NUMBER OF PAGES
Washington, DC 20301-3081ASD/SIOL 22

14. MONITORING AGENCY NAME & ADORESS(If different from Controlling Office) 15. SECURITY CLASS (of this report)
Federal Software Management Support Center UNCLASSIFIED

15a. RkJFICATION/DOWNGRADING

I N/A

16. DISTRIBUTION STATEMENT (ofthisReport)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20. If different from Report)

UNCLASSIFIED

18. SUPPLEMENTARY NOTES

19. KEYWORDS (Continue on reverse side if necessary and identify by block number)

Ada Programming language, Ada Compiler Validation Summary Report, Ada
Compiler Validation Capability, ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD-
1815A, Ada Joint Program Office, AJPO

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

See Attached.

DO 'um 1473 EDITION OF I NOV 65 IS OBSOLETE
I JAN 73 S/N 0102-LF-014-6601 UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

ABSTRACT

The purpose of this Validation Summary Report is to present the results
and conclusions of performing standardized tests on the SofTech-AdaVAX
compiler, Version 2.47. On-site testing was performed by the Federal
Software Management Support Center (FSMSC)-an Ada Validation Facility--
in accordance vith current . Ad& Validation Office policies and
procedures. The following are the dates and locations of on-site
testing:

23-30 August 1985, SofTech, Waltham, MA (VAX-I1/780*) and
Naval Underwater Systems Center (NUSC), Newport, RI (VAX-11/785);
9-10 September 1985, Picatinny Arsenal, Dover, NJ, (VAX 8600); and
15 October 1985, SofTech, Inc., Waltham, MA, (MicroVAX I).

The suite of test known as the Ada Compiler Validation Capability
(ACVC), Version 1.6, was used. The ACVC suite of tests is used to
validate conformance of the compiler to ANSI/MIL-STD-1815A (Ada). This
standard is described in the ANSI Ada Reference Manual, January 1983.
Not all tests in the ACVC test suite are applicable to this specific
implementation. Also, known test errors in Version 1.6 are present in
some tests; these tests were withdrawn. The purpose of the testing is
to ensure that the compiler properly implements legal language
constructs and that it identifies, rejects from processing, and labels
illegal constructs.

The SofTech Compiler AdaVAX, Version 2.47, using VAX/VKS 4.1 and
MicroVMS 4.1M, were tested with version 1.6 of the ACVC validation
tests. Version 1.6 of the test suite contains 2162 tests of which 56
were withdrawn and 258 were inapplicable to this implementation. All of
the 1848 remaining tests were passed.

The Sotfech AdaVAX Ada Compiler was tested on those systems listed in
the table below. Each system was able to host the compiler and target
itself. In addition, testing demonstrated that all systems could target
each other. The following table represents the tested target/host
relationships:

Series of Site of Compiler
Host Tarset Testina Execution Option

VAX-I1/780* VAX-1/780* Full ACVC Waltham, MA Optimize
VAX-1/780* VAX-11/780* Full ACVC Waltham, KA NoOptimize
VAX-11/780* VAX-I1/785 Subset Waltham, MA Optimize
VAX-I1/780* MicroVAX II Subset Waltham, MA Optimize •
VAX-11/785 VAX-11/785 Full ACVC Newport, RI Optimize
VAX-11/785 VAX-11/785 Subset Waltham, MA No Optimize
VAX-11/785 VAX-1I/780* Subset Waltham, MA No Optimize
VAX-11/785 VAX 8600 Subset Dover, NJ No" Optimie
VAX-II/780* VAX 8600 Subset Dover, NJ No Optimize
VAX 8600 VAX 8600 Full ACVC Dover, NJ Optimize
VAX 8600 VAX 8600 Subset Dover, NJ NoOptimize
MicroVAX I MicroVAX II Subset Waltham, MA Optimize

(M) The configuration for testing under the VAX-11/780 was five Digital

VAX-1/780 system configured in a VAX Cluster and DECKET architecture.
Throughout this document, it will not be necessary to distinguish
between the VAX-11/780 Cluster and the VAX-11/780. The term VAX-11/780
will be used to reference the testing performed on the five systems
configured under VAX Cluster and DECNET.

*.

Federal Software M ement Support Center

.,.To ms s H. Probert , Ph. D.
Institute for Defense Analyses

Virginga Castor
Acting Director
Ada Joint Program Office

Accesion For

NTIS CRAP.t
DTIC TAF9 [-Unanno'i'e~i []

..

B y

DiA

~ a'r% ., '4'~ f ., *.l .,, * , ~ d ,

NsY1

,... -r

ABSTRACT

The purpose of this Validation Summary Report is to present the results
and conclusions of performing standardized tests on the Sofech'AdaVAX
compiler, Version 2.47. On-site testing was performed by the Federal
Software Management Support Center (FSMSC)--an Ada Validation Facility--
in accordance with current Ada Validation Office policies and
procedures. The following are the dates and locations of on-site
testing:

23-30 August 1985, SofTech, Waltham, MA (VAX-11/780*) and
Naval Underwater Systems Center (NUSC), Newport, RI (VAX-lI/785);
9-10 September 1985, Picatinny Arsenal, Dover, NJ, (VAX 8600); and
15 Octcber 1985, Soffech, Inc., Waltham, MA, (MicroVAX II).

The suite of test known as the Ada Compiler Validation Capability
(ACVC), Version 1.6, was used. The ACVC suite of tests is used to
validate conformance of the compiler to ANSI/MIL-STD-1815A (Ada). This
standard is described in the ANSI Ada Reference Manual, January 1983.
Not all tests in the ACVC test suite are applicable to this specific
implementation. Also, known test errors in Version 1.6 are present in
some tests; these tests were withdrawn. The purpose of the testing is
to ensure that the compiler properly implements legal language
constructs and that it identifies, rejects from processing, and labels
illegal constru:ts.

The SofTech Compiler AdaVAX, Version 2.47, using VAX/VMS 4.1 and
MicroVMS 4.IM, were tested with version 1.6 of the ACVC validation
tests. Version 1.6 of the test suite contains 2162 tests of which 56
were withdrawn and 258 were inapplicable to this implementation. All of
the 1848 remaining tests were passed.

The SofTech AdaVAX Ada Compiler was tested on those systems listed in
the table below. Each system was able to host the compiler and target
itself. In addition, testing demonstrated that all systems could target
each other. The following table represents the tested target/host
relationships:

Series of Site of Compiler
Host Target Testing Execution Option

VAX-I1/780* VAX-II/780* Full ACVC Waltham, MA Optimize
VAX-II/780* VAX-11/780* Full ACVC Waltham, MA NoOptimize
VAX-1l/780* VAX-11/785 Subset Waltham, MA Optimize
VAX-1I/780* MicroVAX II Subset Waltham, MA Optimize
VAX-11/785 VAX-11/785 Full ACVC Newport, RI Optimize
VAX-11/785 VAX-11/785 Subset Waltham, MA No_Optimize
VAX-11/785 VAX-11/780* Subset Waltham, MA No Optimize
VAX-11/785 %AX 8600 Subset Dover, NJ No_Optimize
VAX-11/780* VAX 8600 Subset Dover, NJ No_ptimize
VAX 8600 VAX 8600 Full ACVC Dover, NJ Optimize
VAX 8600 VAX 8600 Subset Dover, NJ NoOptimize
MicroVAX II MicroVAX II Subset Waltham, MA Optimize

(*) The configuration for testing under the VAX-I1/780 was five Digital

VAX-l1/780 systems configu-ed in a VAX Cluster and DECNET architecture.
Throughout this document, it will not be necessary to distinguish
between the VAX-11/780 Cluster and the VAX-I1/780. The term VAX-11/780
will be used to reference the tes-ing performed on the five systems
entre l imnf AY vntr 4 , nArVC1 tp pA C rrT

TABLE OF CONTENTS

Page

1. Introduction. I
1.1 Purpose of the Validation Summary Report 1
1.2 Host to Target Relationship Table. 2
1.3 Use of the Validation Summary Report 3
1.4 References. 3
1.5 Definitions of Terms 4

2. TEST ANALYSIS...............................6
2.1 Class A Testing...........................66

2.1.1 Class A Test Procedures 6
2.1.2 Class A Test Results 6

2.2 Class B Testing. 6
2.2.1 Class B Test Procedures 6
2.2.2 Class B Test Results. 7

2.3 Class C Testing. 7
2.3.1 Class C Test Procedures 7
2.3.2 Class C Test Results. 8

2.4 Class DTesting.........................8
2.4.1 Class D Test Procedures o.................8
2.4.2 Class D Test Results. 8

2.5 Class E Testing. 8
2.5.1 Class E Test Results 8

2.6 ClassaLTesting 8
2.6.1 Class L Test Procedures. 8
2.6.2 Class L Test Results. 8

2.7 Subset Testing 9

3. COMP~ILER NONCONFORMANCES. 10

4. ADDITIONAL INFORMATION. 11
4.1 Compiler Parameters 11
4.2 Testing Information 12

4.2.1 On-site Data Collection. 12
4.2.2 Control Files. 12
4.2.3 Test Procedures. 12
4.2.4 Test Analysis Procedures 14
4.2.5 Timing Information 14
4.2.6 Description of Errors in Withdrawn Tests. 14
4.2.7 Description of Inapplicable Tests. 17
4.2.8 Information derived from the Tests 19

5. SUMMARY AND CONCLUSIONS 22

-_ p1. 4 q -

1. Introduction

1.1 Purpose of the Validation Summary Report

-This report describes the results of the validation testing for
the compiler designated as AdaVAX, Version 2.47 the following
configurations:

Host Machinesj VAX 8600, VAX-1l/780 and VAX-11/785, and
MicroVAX II.

Operating Systemj VAX/VMS 4.1, MicroVMS 4.1M

Host Disk Systems1 RA8l, RM05, RPO6, RP07, RD53

Target Machinesj VAX 8600, VAX-11/780 and VAX-1l/785, and
MicroVAX II

Operating Systemj VAX/VMS 4.1 and MicroVMS 4.1M

Language Versionj ANSI/MIL-STD-1815A Ada

Translator Namei^, AdaVAX 2.47

-Validation Test

Version-'- 1.6

Testing of this compiler was conducted by the Federal Software
Management Support Center under the supervision of the Ada
Validation Office (AVO), at the direction of the Ada Joint
Program Office. Testing was conducted from 23-30 August, 1985
at SOFTECH, Waltham, Mass and the Naval Underwater Systems
Center (NUSC), R.I. At Picatinny Arsenal, Dover, N.J., testing
was conducted 9-10 September, 1985. The MicroVAX II testing was
conducted 15 October 1985 at Waltham, Mass. All testing was
performed in accordance with AVO policies and procedures.

• The pu-pose of this report is to document the results of the
testing perforted on the compiler, and in particular, to:

identify any language constructs supported by the
compilers that do not conform to the Ada
standard;

identify any unsupported language constructs
required by the Ada standard; and

describe implementation dependent behavior
allowed by the standard.

-1-1

1.2 Host to Target Relationship Table

The SofTech AdaVAX Ada Compiler was tested on those systems listed in
the table below. Each system was able to host the compiler and-target
itself. In addition, testing demonstrated that all systems could target
each other. The following table represents the tested target/host
relationships:

Series of Site of Compiler
Host Target Testing Execution Option

VAX-ll/780* VAX-11/780* Full ACVC Waltham, MA Optimize
VAX-I/780* VAX-11/780* Full ACVC Waltham, MA No Optimize
VAX-1/780* VAX-11/785 FullAt Waltham, MA _Optimize
VAX-11/780* VAX-iI/785 Subset Waltham, MA Optimize
VAXI/780* MicroVAX II Subset Waltham, MA Optimize

VAX-11/785 VAX-11/785 Full ACVC Newport, RI Optimize
VAX-11/785 VAX-11/785 Subset Waltham, MA No__ptimize
VAX-11/785 VAX-II/780* Subset Waltham, MA No Optimize
VAX-11/785 VAX 8600 Subset Dover, NJ No_Optimize
VAX-II/780* VAX 8600 Subset Dover, NJ No Optimize
VAX 8600 VAX 8600 Full ACVC Dover, NJ Optimize
VAX 8600 VAX 8600 Subset Dover, NJ NoOptimize
MicroVAX II MicroVAX II Subset Waltham, MA Optimize

(*) The configuration for testing under the VAX-11/780 was five Digital

VAX-11/780 systems configured in a VAX Cluster and DECNET architecture.
Throughout this document, it will not be necessary to distinguish
between the VAX-11/780 Cluster and the VAX-II/780. The term VAX-II/780
will be used to reference the testing performed on the five systems

configured under VAX Cluster and DECNET.

-2-

or

1+'_.~~ ~%

1.3 Use of the Validation Sumary Report

The Ada Validation Office may make full and free -public
disclosure of this report in accordance with the "Freedom of
Information Act" (5 U.S.C. #552). The results of the
validatioa apply only to the computers, operating systems, and
compiler version identified in this report.

The Ada Compiler Validation Capability is used to determine
insofar as is practical, the degree to which the subject
compiler conforms to the Ada standard. Thus, this report is
necessarily discretionary and judgemental. The United States
Government does not represent or warrant that the statements,
or any one of them, set forth in this report are accurate or
complete, nor that the subject compiler has no other
nonconformances to the Ada standard. This report is not meant
to be used for the purpose of publicizing the findings
summarized herein.

Any questions regarding this report or the validation tests
should be sent to the Ada Validation Office at:

Ada Joint Program Office
1211 Fern Street s

Arlington, VA 22202

1.4 References

Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, February 1983.

Ada Validation Organization: Policies and Proceduren, Mitre
Corporation, June 1982, PB 83-110601.

Ada Compiler Validation Implementers' Guide, SOFTECH, Inc.,
October 1980.

The Ada Compiler Validation Capability, Computer, Vol. 14, No.
6, June 1981.

Using the ACVC Tests, SofTech, Inc. November 1981.

Ada Compiler Validation Plans and Procedures, SofTech, Inc.
November 1981.

9%

-3-

6K

1.5 Definitions of Terms

Class A tests are passed if no errors are detected at compile
time. Although these tests are constructed to be execftable,
no checks can be performed at run-time to see if the test
objective has been met; this distinguished Class A from Class C
tests. For example, a Class A test might check that keywords
of other languages (other than those already reserved in Ada)
are not treated as reserved words by an Ada implementation.

Class B tests are illegal programs. They arp passed if all the
errors they contain are detected at compile-time (or
link-time) and no legal statements are considered illegal by
the compiler.

Class L tests consist of illegal programs whose errors cannot
be detected until link time. They are passed if errors are
detected prior to beginning execution of the main program.

Class C tests consist of executable self-checking programs.
They are passed if they complete execution and do not report
failure.

Class D tests are capacity tests. Since there are no firm
criteria for the number of identifiers permitted in a
compilation, number of units in a library, etc., a compiler
may refuse to compile a class D test. However, if such a test
is successfully compiled, it should execute without reporting a
failure.

Class E tests provide information about an implementation's
interpretation of the Standard. Each test has its own
pass/fail criterion.

ACVC: Acronym for the Ada Compiler Validation
Capability.

AVO: The Ada Validation Office. In the context
of this report the AVO is responsible for
directing compiler validation.

CHECK or
CHECKTEST: An automated tool defined by the Federal

Software Management Support Center (FSMSC)
and developed by the AVF that produces
summary test results by reading compiler
output in a spool file. This tool is
available on the ACVC distribution tapes

from the AVF.

CUSTOMER: The agency requesting the validation
Department of the Army, Communications
Electronics Command, Fort Monmouth, N.J.

07703-5204.

-4-

FSMSC: Federal Software Management Support Center.
In the context of this report the FSMSC

conducts Ada validations under contract to
the AVO as a satellite facility.

HOST: The computer on which the compiler executes.

IG: ACVC Implementors' Guide.

RM: The Ada Language Reference Manual.

STANDARD: The standard for the Ada language,

ANSI/MIL-STD-1815A (1983).

SUBSET TESTS: A grouping of ACVC tests selected by the

FSMSC. Each chapter in the ACVC is
represented in the subset by between 4 to 7
tests. The subset is used for statistical

sampling of the various host and target
hardware configurations.

TARGET: The computers for which the compiler

generates object code.

VALIDATION: The process of testing a compilation system

to certify that it conforms to the standard.

VALIDATION TESTS: The set of test programs used to detect

non-conformances in compilation systems. In
this report, the term will be used
(unqualified) to mean the ACVC tests.

-5-

- - - - , - . - -.- . - - .,- -,, -, - . - .-.- ,. ,- - - - , , .,- ..- •p.

S ; i4 -N

2. TEST ANALYSIS

The following table shows that the SofTech, Inc. AdaVAX compiler passed
all applicable tests.

A B C D E L Total

In suite 61 800 1273 17 8 3 2162
Inapplicable 1 9 248 0 0 0 258
Withdrawn 0 13 43 0 0 0 56

Passed 60 778 982 17 8 3 1848
Failed 0 0 0 0 0 0 0

258 tests in the suite were found to be inapplicable to the SofTech

implementation.

In addition, 56 tests were withdrawn from the test suite because they
were incorrect.

2.1 Class A Testing

Class A tests check that legal Ada programs can be
successfully compiled. These tests are executed but contain

no executable self-checking capabilities.

2.1.1 Class A Test Procedures

Each class A test was separately compiled and executed.
However, the only purpose of execution is to produce a message
indicating that the test passed.

2.1.2 Class A Test Results

Successful compilation and execution without any error messages

indicates the tests passed. All 60 applicable tests passed.

2.2 Class B Testing

Class B tests check the ability to recognize illegal language
usage. There were 778 applicable class B tests processed.

2.2.1 Class B Test Procedures

Each Class B test was separately compiled. The resulting test

compilation listings are manually examined to see whether
every illegal construct in the test is detected. If some
errors are not detected, a version of the program test is
created that contains only undetected illegal constructs.

-6-

'

This revised version is recompiled and the resultr analyzed.
If some errors are still not detec!.d, the revision process is

repeated until a revised test contains only a single previously
undetected illegal construct.

A B test is considered to fail only if a version of the test

containing a single illegal construct is accepted by the
compiler (i.e., an illegal construct is not detected) or a

version containing no errors is rejected (i.e., a legal

construct is rejected).

2.2.2 Class B Test Results

There were 800 class B tests presented to the compiler. Of

these tests 9 were found to be inapplicable to this

implementation (see Section 4.2.7); 13 tests were found to be
incorrect (i.e., a conforming compiler would have failed each
of these tests). All 778 remaining class B tests passed.

Because all errors were not detected when compiling the
original tests, the following 12 tests were modified by
removing the detected errors; the modified tests were then
submitted again to see if the remaining errors would be

detected.

B33004A.ADA B37301B.ADA B44001A.ADA B45205A.ADA

B55A01A.ADA B67001A.ADA B67001B.ADA B67001C.ADA
B67001D.ADA BBIOAEB.ADA BCI202B.ADA BC1202D.ADA

All illegal constructs were detected except in some tests that
were withdrawn because of errors in the tests (see Section
4.2.8).

2.3 Class C Testing

Class C tests check that legal Ada programs are correctly

compiled and executed by an implementation. There were 1273
class C tests processed in this validation attempt.

2.3.1 Class C Test Procedures

Each Class C test is separately compiled and executed. The

tests are self-checking and produce PASS/FAIL messages. Any
'failed' tests are individually checked to see if they are
correct and if they are applicable to the implementation. Any

tests that are inapplicable or that do not conform to the Ada
Standard are withdrawn.

2.3.2 Class C Test Results

All class C tests were processed except those tests requiring a

floating point precision exceeding SYSTEM.MAX._DIGITS. All
applicable 982 tests passes.

-7-

2.4 Class D Testing

Class D tests are executable tests used to check an
implementation's compilation and execution capacities: There
were 17 class D tests used in this validation.

2.4.1 Class D Test Procedures

Each class D test is separately compiled and executed. The
tests are self-checking and produce PASS/FAIL messages.

2.4.2 Class D Test Results

Of the 17 applicable class D tests, all tests passed.

2.5 Class E Testing

Class E tests provide information about an implementation's
interpretation of the Standard where the Standrrd permits
implementations to differ. Each test has its own pass/fail
criterion. There were 8 class E tests used in this validation.

2.5.1 Class E Testing Procedures

Each class E test is separately compiled and executed. The
tests are self-checking and produce pass/fail messages.

2.5.2 Class E Test Results

All class E tests passed.

2.5 Class L Testing

Three Class L tests check that incomplete or illegal Ada
programs involving multiple separately compiled source files
are detected at link time and are not allowed to execute.
There were 3 Class L tests processed in this validation.

2.6.1 Class L Test Procedures

Each Class L test is separately compiled and execution is
attempted. The tests produce FAIL messages if executed. Any

"failed" tests are checked to see if they are correct and
applicable to the implementation. Tests that are inapplicable
or that do not conform to the Ada standard are withdrawn.

2.6.2 Class L Test Results

Of the 3 class L tests, none were found to be inapplicable to
this implementation, and none were withdrawn due to errors in
the tests. All three L tests passed.

-8-

2.7 Subset Testing

A subset of the executable ACVC tests was used by the FSMSC and
used during this validation. This subset of tests was ased to
test multiple configuration combinations during the validation,
specifically the VAX 8600, VAX-l1/780, VAX-11/785 and MicroVAX
II host/target relationships using both optimized and
unoptimized versions of the compiler.

The subset comprised the following tests:

Chapter 2 Chapter 3 Chapter 4 Chapter 5

C23001A C34001A C41101D C51002A
C24102A C34001H C42005A C52001A
C26008A A32203D C43214A C53005A
A29002A C35904A C45101A C54A03A

C36204A C48004A D55A03A
C34002B

Chapter 6 Chapter 7 Chapter 8 Chapter 9

C61003B A71002A A83A02A C92002A
A62006D C72001B C84002A C93001A
C63004A C74302B C85007E C94006A
C65003A C74209A C86003A A97106A
C66002A C74409B C87B48A C97202A

Chapter 10 Chapter 11 Chapter 12 Chapter 14

CA1003A CB1001A CC1004A AE2101A
CA2004AOM CB2004A CC3004A CE2102A
CA2004A1 CB3003A CC3408A CE2201A
CA2004A2 CB4001A CC3504C CE2401E
CA2004A3 CE3102A
CA2004A4 CE3901A

*** CZ ***

CZll01A
CZ1102A
CZ1103A
CZ1201A
CZ1201B
CZ1201C
CZ1201D

-9-

0 $rI
I = ';N! Z k Wft]A a w

3. COMPILER ANOMALIES AND NONCONFORMANCE

There were no nonconformances to the Ada standard detected in this

validation. The compiler passed all applicable correct tests.

-10-

.........

4. ADDITIONAL INFORMATION

This section describes in more detail how the validation was concluded.

4.1 Compiler Parameters

Certain tests do not apply to all Ada compilers, e.g.,
compilers are not required to support several predefined
floating point types, and so tests must be selected based on
the predefined types an implementation actually supports. In
addition, some tests are parameterized according to the maximum

length allowed by an implementation for an identifier (or other
lexical element; this is also the maximum line length), the
maximum floating point precision supported, etc. The

implementation dependent parameters used in performing this
validation were:

• maximum lexical element length: 120 characters.

" maximum digits value for floating point types: 9 (nine)

• SYSTEM.MIN INT: -2147483648

" SYSTEM.MAX INT: 2147483647

" predefined nu.meric types: INTEGER, FLOAT, LONG INTEGER

and LONG FLOAT.

INTEGER FIRST: -32768

INTEGER LAST: 32_768

LONGINTEGER'FIRST: -2147483648

" LONG INTEGER'LAST: 2147483647

• Source character set: ASCII

Extended ASCII chars: abcdefghijklmnopqrstuvwxyz

" non-ascii char type: (NONNULL)

" TEXT IO.COUNT'LAST: 32_767

" TEXT IO.FIELD'LAST: 32_767

" illegal external file namel: "badcharacter*O"

illegal external file name2: "much__too__long__name

for a file"

" SYSTEM.PRIORITY'FIRST: 1

" SYSTEM.PRIORITY'LAST: 15

-11-

4.2 Testing Information

Complete ACVC tests runs were compiled/executed at SofTech,

Inc., Waltham, MA, at the Naval Underwater Sysems'Center
(NUSC), Newport RI, and at Picatiny Arsenal, New Jersey

4.2.1 Pre-Test Procedures

Prior to testing, appropriate values for the compiler-dependent

parameters were determined. These values were used to adapt

tests that depend on the values. A magnetic tape containing the

adapted tests was prepared and brought to the testing G;te.

Spilt B tests were not prepared on this tape and had to be
split on-site.

For pre-validation, SofTech processed the entire ACVC on the
VAX-l1/780, in the VAX Cluster, DECNET configuration.

Additionally, the subset (see section 2.7) was compiled on the

above configuration and executed on the MicroVAX II.

4.2.2 Control Files

SofTech, Inc. provided command procedures that compiled and

executed tests automatically at all sites. All control files

were duplicated at the NUSC site through transported tapes

prior to the on-site validation.

-12-

4.2.3 On-site Data Collection

The complete ACVC was run on the VAX 8600 (Picatinny Arsenal,
NJ), the VAX-11/785 (NUSC) and the VAX-11/780 (SofTech).

The results from the VAX-1l/780 were analyzed; they were
determined to be correct. These results were thus used as the
"test basis" against which the results from running the ACVC on
other configurations would be compared.

The results from the VAX 8600 and VAX-11/785 were compared
against the test basis; no significant differences were
detected.

The ACVC was again processed by the VAX-l1/780, but this time
without optimization. The class B tests were excluded, since
the do not enter the optimization stage (being illegal programs
that must fail in compilation). The results were compared
against the test basis, and determined to be correct.

A subset of ACVC executable. tests (see 2.7) was compiled on
the VAX-11/780 and the VAX-ll/785*--the former with
optimization, the later without. The VAX-11/780 executed the
subset compiled by the VAX-11/785*; the VAX-1I/785* executed
the subset compiled by the VAX-lI/780. The results were
examined and determined to be correct.

The VAX 8600 compiled and executed the subset, without
optimization. In addition, the VAX 8600 executed the two
subsets compiled by the VAX-11/780 and VAX-11/785 (described
above). All results were compared with each other and against
the test basis; they were found to be correct.

The HicroVAX II compiled and executed the subset, with
optimization. The MicroVAX II also executed the optimized
subset load module from the VAX-II/780. The results were
checked against those of the previous testing with the subset
(described above); no significant differences were detected.

* This was a VAX-11/785 resident at Sofrech, Waltham, HA.

-13-

4.2.4 Test Analysis Procedures

On completion of testing the base system, all results were
analyzed for failed Class A, C, D, E, or L programs, and all
class B compilation results were individually analyzed.
Analysis procedures are described for each test class in
chapter 2.

4.2.5 Timing Information

The real (wall clock) times requireO for compiling the
non-executable tests and compiling, linking, and runring the
executable tests--with optimization--were:

VAX 11/780 49:03 Full run of validation suite under
VAX/VHS - single batch streams on
5 separate systems

VAX 11/785 120:00 Full run of validation suite under
VAX/VMS - two batch streams on a
single machine run in parallel

VAX 8600 72:30 Full run of validation suite under
VAX/VHS - three batch streams on a
single machine run in parallel

MicroVAX II 15:44 Subset run of validation suite under
MicroVMS 4.1M - single batch steam on a
single MicroVAX II syster.

4.2.6 Description of Errors in Withdrawn Tests

The following tests in version 1.6 of the ACVC did not conform
to the ANSI Ads standard and were withdrawn for the reasons
given below:

B66001A-B: Test checks (in section G) that a
parameterless function that is equivalent -i an
enumeration literal in the same declarative region is a
redeclaration and, as such, is forbidden. According to
RM 8.3(17), the explicit declaration of such a function
is allowed if an enumeration liter-I is considered to be
an implicitly declared predefined operation. The RM is
not clear on this point. This issue has been referred
to the Language Maintenance Committee for resolution.
Since the issue cannot be resolved at this time, the
test is withdrawn from Version 1.6. (Please note that
this test may be considered correct and may appear in
the future Versions of the ACVC, including Version 1.6.)

. BC1013A-B: The declaration of eauality in lines 86-87
is illegal because the parameter type T declared in line
11 is not a limited type (LRH 6.7-4).

-14-

" C45521A, C45521B, ... C45521Y (25 tests) : Cases C and I
define the model interval for the result too narrowly.

• C48005C-B: Lines 38 and 63 of this test shoild check
that the value of the designated object is null.

" C64103C-B: This test should raise CONSTRAINT ERROR
during the conversion at line 179.

" C64103D-B: This test involves a CONSTRAINT ERROR vs.
NUMERIC ERROR issue that is to be resolved by the
Language Maintenance Committee.

" C64105E-AB: For case E, ensure that non-null dimensions
of formal and actual parameters belong to both index
subtypes (see AI-00313).

* C64105F-AB: For case E, ensure that non-null dimensions
of formal and actual parameters belong to both index
subtypes (See AI-00313).

. B6700lA-B: Line 414 is missing the "BEGIN NULL; END;"
needed to complete the block beginning at line 389 (case
H).

" B67004A-B: The default name for a formal generic
equality function should not be allowed to be "/="
unless an expanded name is used.

C93005A, C93005B, and C93005C: These tests contain a
declaration of an interger variable whose initialization
is solely for the purpose of raising an exception. Some
compilers will not raise this exception due to their
optimization.

" C93007B-B: This test should check for PROGRAM ERROR
rather than TASKING ERROR (See AI-000149).

CAl011A*-B: The test objective should be reversed to be
consistent with AI-00199.

• CAllO8A-B: A pragma ELABORATE is needed for OTHER PKG
at line 25.

" CAll08B-B: A pragma ELABORATE is needed for FIRST PKG
at line 39 and for LATER PKG at line 49.

-15-

SI

*CA2009B-B, CA2009E-B: The repetition of the main
procedure after the subunit body makes the subunit body
obsolete; therefore, an attempt to execute the main
procedure will fail.

CA2OO9F-B: The file CA2CFZ-B is missing from the
test suite.

BC3204A-B, BC3204B-B, BC32O4C-B, BC3204D-B, BC3205A-B,
BC3205B-B, BC3205C-B, BC3205D*-B, BC3405B-B:
Instantiations with types that have default
discriminants are now legal CAI-00037).

*CE3603A-B: The last case is inconsistent with AI-00050.
If the string argumlent is null, no attempt to read is
made and ENDERROR is not raised.

*CE3604A-B: Cases 5, 8, 9, and 11 are inconsistent with
AI-00050. SKIP__LINE is called only if the end of the
output string has not been met.

*CE3704H-B: A superfluous SKIP LINE causes the input and
output operations to be out of synchronization.

-16-

4.2.7 Description of inapplicable Tests

AE2101C was inapplicable because the implementation's version
of SEQUENTIAL_10, DIRECT__10, and TEXT_10 did not allow for
instantiation with unconstrained array and record t'pes.

B52004E, B55B09D, B86001CR, C34001D, and C55B07B were
inapplicable because the implementation does not support
SHORT INTEGER.

B86001CP, C34001F, and C35702A were inapplicable because the
implementation does not support SHORT FLOAT.

B8600lDT was inapplicable because the implementation does not
support LONG LONG INTEGER.

BA2001E is inapplicable because Ada RM 10 2/5.4 states that the
"simple names of all subunits that have the same ancestor
library unit must be distinct identifiers". The test expects
that the above condition be checked at the point of the
declaration of the stub. The implementation detects a duplicate
subunit name under a single ancestor library unit when the
subunit itself is being compiled. No program library will
contain duplicate subinits since the second of the subunits
will be rejected.

BC3009A, BC3009B, BC3009D are inapplicable because of detection
of generic instantiation only on an instantiation of a "real"
entity - an instantiation outside of a generic entity. Since no
subprogram or package is instantiated outside of a generic unit
in these tests, the circularity is not detected. In essence,
since generics are treated as templates, only a "real"
instantiation actually brings a copy into being: circularity
within a template is tolerated through no instantiation of this
template will be legal.

The following tests were inapplicable because they exceed the
accuracy of the floating-point definition for the target
implementation:

C35705F through C35705Y (20)
C35706F through C35706Y (20)
C35707F through C35707Y (20)
C35708F through C35707Y (20)
C35802F through C35802Y (20)
C45241F through C45241Y (20)
C45321F through C45321Y (20)
C45LI1F thro ,gh C45421Y (20)
C45424F through C45424Y (20)
C45621F through C45621Z (21). (-201 tests, total)

-17-

_ AV "LJa

C24113F through C24113Y, and CE3605A were in applicable because
the implementation does not support the line le: th specified
in the tests. (21 tests)

C64103A was inapplicable because line 66 value of LARGE not big
enough to cause VMS exception "floating error".

C86001F was inapplicable because "SYSTEM" is recompiled,
requiring all other library packages to be compiled.

C96005B - This test checks to find a difference between
DURATION'BASE'FIRST and DURATION'FIRST. If no difference exists
(as is the case in the implementation) the test is
inapplicable.

CC3407A, CC3407D, CC3LO7E and CC3407F are inapplicable because
the tests raise NUMERIC ERROR for array declarations should
similarly be considered inapplicable for this implementation.

CE2107B, CE2107C, CE2107D, CE2107E, CE2110B, CE3111B, CE3111C,
CE3111D, CE3111D, CE3111E, CE3114B are inapplicable because the
implementation does not support associating two internal files
with the same external file for writing (Section F.8.1 of
Appendix F).

CE3115A was inapplicable because more than one internal file
was associated with the same external file.

CE2201D, CE2201E and CE2401E were inapplicable because a
constraint was required for instantiated type.

-18-

•'

4.2.8 Information Derived from the Tests

Processing of the following tests indicated support as
described below for a variety of implementation bptions
examined by the tests.

E24101A-B.TST: If a based integer literal has a value
exceeding SYSTEM.MAX INT, an implementation may either
reject the compilation unit at compile time or raise
NUMERIC ERROR at run time. This test showed thEw the
compiler did not reject the compilation unit at compile
time.

B26005A.ADA: This test contains all the ASCII control
characters in string literals. The system replaced the
control characters corresponding to format effectors
with a space in the listing file. All occurrences were
identified with a diagnostic message by the compiler.

D29002K-B.ADA: This test declares 713 identifiers and
was passed by the compiler.

E36202A-B.ADA and E36202B-B.ADA: These tests declare
multidimensional null BOOLEAN arrays in which LENGTH of
one dimension exceeds INTEGER'LAST and SYSTEM.KAXINT,
respectively. An implementation can accept this, or it
can raise NUMERIC ERROR or STORAGE ERROR at run time.
The compiler did accept the declarations and raised
NUMERIC ERROR during execution.

D4AO02A-AB.ADA and D4AO02B.ADA: These tests contain
universal integer calculations requiring 32 and 64 bits
of accuracy, i.e., values that exceed SYSTEM.MAX INT are
used. An implementation is allowed to reject programs
requiring such calculations. The compiler passed these
tests.

E43211B-B.ADA: If a bound in a non-null range of a
non-null aggregate does not belong to an index subtype,
then all choices may or may not be evaluated before
CONSTRAINT ERROR is raised. The compiler did not
evaluate all choices before CONSTRAINT ERROR is raised.

E43212B-B.ADA: This test examines whether or not all
choices are evaluated before subaggregates are checked
for identical bounds. The compiler evaluates all
subaggregates for identical bounds.

-19-

• E52103Y-B.ADA, C521C-X-B.ADA, C52104Y-B.ADA: These %

tests declare BOOLEAN arrays with INTEGER'LAST+3

components. An implementation may raise NUMERIC ERROR

at the type declaration or STORAGE ERROR when array

objects of these types are declared, or it may accept

the type and object declarations. The compiler did not

raise NUMERIC ERROR for null array with one dimension of

length greater than INTEGER'LAST in E52103Y-B.

A series of tests (D55AO3*-AB.ADA) checks to see what

level of loop nesting is allowed by an implementation.
Tests containing up to 65 nested loops passed without

exceeding the implementation's capacity.

• D56001B-AB.ADA contains blocks nested 65 levels deep.

This test was passed.

" C94004A-B.ADA: This test checks to see what hqppens

when a library unit initiates a task and a main program
terminates without ensuring that the library unit's task
is terminated. This test showed that such library tasks

continued to execute even after the main program

terminates and then terminated appropriately by

themselves.

CAlOl2A4M-B.DEP: This test checks whether an

implementation requires generic library unit bodies to
be compiled in the same compilation as the generic

declaration. The compiler does allow generic
declarations and bodies to be compiled in completely

separate compilations.

BC3204C*-B.ADA and BC3205D*-B.ADA: These tests contain

a separately compiled generic declaration, some

instantiations, and a body. An implementation must
reject either the instantiations or the body. The
compiler generated errors when compiling the generic

package body.

CE2106A-B.DEP and CE311OA-B.DEP: These tests confirm

that dynamic creation and deletion of files is not

supported.

CE2107A.DEP: These tests showed that more than one
internal file may be associatec with the same external
file.

CE211OB-B.DEP: This test confirmed that an external
file associated with more than one internal file can not

be deleted.

-20-

%.."."'

- - -% . - *r. - ! , . .. ' ,-, .i*. =i ; :Z :..f-, N .

. EE3102C-B.ADA: This test confirmed that an Ada program

can open an existing file in mode OUT FILE but can not

create an existing file in either mode OUT FILE or IN

FILE.

• CE31l1A-B.DEP showed that two internal files may read

the same external file.

" CE311IB-B.DEP and CE311IC-B.DEP showed that the compiler
does not allow two internal TEXT 10 files to be

associated with the same external file when one or both

internal files are opened for writing.

-21-

5. SUMMARY AND CONCLUSIONS

ACVC version 1.6 comprises 2162 tests, of which 56 were withdrawn due to
errors. The Federal Software Management Support Center (FSMSC), in AVF,
identified 1848 of the remaining tests to be applicable to SofTech,
Inc.'s AdaVAX compiler. The compiler passed all of these tests,
operating on the VAX 8600, VAX-11/785, VAX-1l/780, and MicroVAX II under
VMS 4.1 and MicroVMS 4.1M.

The FSMSC considers these results to show acceptable conformity to the
Ada Standard.

-22-

AwMW.

