
~R193 665 USE OF APR (TRADEMARK) FOR FAR' S ADVANCED AUTOMATION 1/1
SYSTEM (AAS)(U) MITRE CORP MCLEAN VA CIVIL SYSTEMS DIV
V R EASILI ET AL. APR 6? MTR-6?M?7 DTFANI 64 C-WOI

UNCLASSIFIED F/O 12/5 ML

L2
L2*

.

MiCROCOPY RESOLUTON~ TEST C14ART

AMU04 B4RLALJ Of STANDARDS_1963-A

~~~ W i ' p



Use of Ada® OW FILE
for

FAA's Advanced Automation System (AAS)

In

I-

w

OTICSELECTE
- - , -- - r

MITRE
%lTR-87W77

87 82 N
. ' ,gm . . 4. '



Use of Ada®
for

FAA's Advanced Automation System (AAS)

Dr. Victor R. Basili W

Dr. Barry W. Boehm
Judith A. Clapp

Dale Gaumer
Dr. Maretta Holden
John K. Summers

April 1987

MTR-87W77

SPONSOR:v
Federal Aviation Administration .

CONTRACT NO.:
DTFAOI-84-C-OOOI

PROJECTI
1763C

TL~ ~ ~~po-e C.....- 5.L..~.. .. b*

fop PK!:;-'

The MITRE Corporation j
Civil Systems Division7525 Colshire Drive

McLean, Virginia 22102-3481N

%1%'



MITRE Department
and Project Approval:_ L.C, 4~

L. G. Cuihane

O~dais regsteed tadearkof te US. Gvermen
(Ada ointProgrm Ofice)

% %,'

%. %% %

% % % % %

*Ada~~~~~ isa rgsee rdmrk o h .. Gvrmn
N N %4



LN7L7LNLJPWWV1 UUVNWFR UW UWRUA

ABSTRACT

The Federal Aviation Administration (FAA) asked MITRE to organize
and participate in a study on the use of Ada for the Advanced Automation
System (AAS) procurement. A team of MITRE and non-MITRE software experts
was assembled to address the following: First, if Ada is selected for ,.
AAS, how can the FAA judge the ability of a contractor to build AAS in
Ada? Second, if Ada is used, how should the FAA change its contract
monitoring procedures to best manage the project?

The study participants concluded that the size and complexity of AAS
make software engineering, and not the programming language, the key
issue. Moreover, if properly used, Ada facilitates good software
engineering practices and a sound software development process. There-
fore, the participants unanimously recommended Ada (with appropriate
waivers for the use of non-Ada code where necessary) as the appropriate
choice for AAS. However, there are several qualifications to this .,
recommendation. The FAA must use a modified software development approach *6
to take advantage of what Ada has to offer. In addition, risk reduction
activities must be carried out to address the risks associated with Ada.
These qualifications, and others, are documented in he report. Also
included are a characterization of an Ada software development, identified
risks with recommendations for addressing them, and recommended near-term
FAA activities.

Suggested Keywords: Ada, AAS, Advanced Automation System, Software
engineering, Risk management.

Accs!;1on For

GPA&I

r'!.: ri A it on/

111 T<' V.le

;,I Il . ity Codes,-...

!.. w /or%
,Dls . ! p,-c ia1 " '

~~~. %. .. % P . ,. .. %.. V
ti, JA,

FOREWORD

This report was commissioned by Martin Pozesky, Deputy Associate
Administrator for NAS Programs, ADL-2, of the Federal Aviation
Administration, who asked me to chair a study addressing the risks of
using Ada on the Advanced Automation System procurement. The charge was
directed specifically toward making recommendations for assessing
development contractor readiness and changes in the contract management
process resulting from Ada. The study participants were given a free
hand in drawing the conclusions contained in this study. Its results
have been presented orally and are recorded in this report. Since a
major concern of the study was timeliness, the report is not as extensive
or complete as it might have been.

The report was compiled from the experience and expertise of the
study participants and the generous information supplied by the eight
individuals who were interviewed during the study. These individuals, %

chosen by the participants, represented an extensive experience and
knowledge base in the use of Ada. The study participants were
Barry Boehm, Judith Clapp, Dale Gaumer, Maretta Holden, and
John Summers. The interviewees were told that they and their comments
would be anonymous.

I would like to acknowledge the support of The MITRE Corporation,
especially Arthur Salwin, who took on the difficult chore of writing and
organizing this report based upon the comments, discussion, and feedback
of the study participants; Jack Fearnsides, who acted as liaison and
guide through the Federal Aviation Administration; and Barbara Wright,
who taught us as much as we could learn about the Advanced Automation
System.

Victor R. Basili
Chairman, AAS/Ada Study

jig

'e %
% -- %,',¢ " ..%.Z. •. ,.,. ,,,% %%: e ',". .,,,. ~,'L :_ . e.- . . .e4 . . % 'i

,'' NZ . % e 'i .' . .¢,', ', , ,'', '-v.'- -c- e ' " " '-e " -- '. . , e'...'..%e.. ,Y.g_ %

TABLE OF CONTENTS

Page

LIST OF FIGURES xi

LIST OF TABLES xi

EXECUTIVE SUM4ARY xiii

1.0 INTRODUCTION 1-1

1.1 Advanced Automation System (AAS) 1-I1

1.2 The FAA Ada Study 1-I

1.3 Organization of this Report 1-5

2.0 CHARACTERIZING A SOFTWARE DEVELOPMENT 2-I

2.1 Elements of an Ada Software Development 2-1

2.1.1 Compilable Ada Program Design Language (PDL) Designs 2-2
2.1.2 Contractor Use of a Small, Expert Design Team Up Front 2-3
2.1.3 Prototyping and Incremental Development 2-4

2.1.4 Different Milestones 2-5
2.1.5 Different Deliverables 2-5
2.1.6 Development Environment

2-6 "

2.1.7 Training 2-7
2.1.8 Software Development Plan Document 2-8
2.1.9 Methodology 2-8 %

2.2 Advantages of an Ada Software Development 2-9

2.2.1 More Effective Development Approach Stimulated 2-9
2.2.2 Other Alternatives Less Attractive 2-11
2.2.3 Advantages Provided by Compilable Designs 2-11
2.2.4 The Realization of Ada Advantages 2-14

2.3 Using Ada on AAS: Recommendations 2-14

2.4 Summary 2-15

3.0 IDENTIFIED RISK AREAS 3-1 ._

vii

- V VZ.: "

TABLE OF CONTENTS (Continued)

Page

3.1 Ada Performance Risks 3-1

3.1.1 Meeting Real-Time Requirements 3-I
3.1.2 Meeting System Availability Requirements 3-4

3.2 Risks Arising from AAS Software Size 3-6

3.2.1 Compiler Limits--a Key Problem Area 3-6
3.2.2 Resource Adequacy of Development and Target Machines 3-7

3.3 FAA Readiness for Contract Monitoring 3-8
,V.

3.4 Software Support System Risks 3-8

3.4.1 Functionality 3-9
3.4.2 Performance 3-9
3.4.3 Maturity 3-9
3.4.4 Early Availability on Development and Target Machines 3-9 C..

3.4.5 Portability 3-10
3.4.6 Contractor Preparedness for Inevitable Modifications 3-10 A

3.5 Personnel Risks 3-11

3.5.1 Ada, Software Engineering, and Large System Experience 3-11
3.5.2 Staffing Profile with a Small Experienced Front End 3-11
3.5.3 Commitment to AAS and Retaining the Team 3-12
3.5.4 Subcontracting Approach 3-12
3.5.5 Commitment to Tool Usage, Including Management Tools 3-12

3.6 Management Risks 3-12 .,

3.7 Schedule and Cost Risks 3-13

3.7.1 No Historical Data Available 3-13
3.7.2 Lines of Code a Poor Estimation Technique 3-13
3.7.3 Impact of Ada Methodology and Milestones 3-15
3.7.4 Tracking 3-15

3.8 Other Risk Areas 3-16

viii

rN

~ft..- *

TABLE OF CONTENTS (Continued)

Page

3.8.1 User Interface and Graphics 3-16
3.8.2 Ada Orientation of Design Specifications 3-16
3.8.3 Ada Orientation of Software Development Plans 3-1.6

3.9 Risk Summary 3-17

4.0 ADDRESSING THE RISKS 4-1

4.1 Require Contractors to Develop Risk Management Plans 4-1,

4.2 Require Contractors to Develop Software Development Plans 4-1

4.3 Conduct a Software Engineering Exercise 4-2

4.3.1 Description of the Exercise 4-3
4.3.2 Results of the Exercise 4-4
4.3.3 Benefits of the Exercise 4-5

4.4 Require Compilable Designs 4-6

4.5 Benchmarks Should be Used 4-6

4.5.1 Use of Benchmarks on Development Machines 4-6
4.5.2 Use of Benchmarks on Target Machines 4-7
4.5.3 Use of Benchmarks That Run on Both Machines 4-7

4.6 Suunmmary 4-8

5.0 NEAR-TERM FAA ACTIVITIES 5-1

5.1 Acquire Ada and Software Engineering Expertise 5-1 r

5.1.1 Develop In-House Expertise 5-2
5.1.2 Access Services of Outside Expertise 5-2

5.2 Prepare and Dry Run a Software Engineering Exercise 5-2

5.3 Prepare Ada-Oriented RFP and SOW with Revised Milestones 5-3

5.4 Develop a Strategy 5-3

ix

~ %

TABLE OF CONTENTS (Concluded)

Page

5.5 Assess the Feasibility of a Fixed Price Contract 5-4

5.6 Develop a Fixed Price vs. Cost Plus Strategy 5-4

5.7 Required Activities That May Involve Schedule Revision 5-5

5.8 Bring the Maintenance Organization On Board Now 5-6

5.9 Prepare for Contractor Evaluation and Monitoring 5-7
-

5.10 Define Quality Assurance, Standards, and Monitoring
Measurements, Including Ada Progress Indicators 5-7

6.0 SUMMARY 6-1 *

APPENDIX A: TUTORIAL ON THE ADVANCED AUTOMATION SYSTEM (AAS) A-I

A.1 Today's System A-I

A.l.1 Typical Flight Scenario A-1
A.1.2 Limitations of Current System A-2

A.2 Evolution of System A-2

A.2.1 Host Program A-3 %

A.2.2 AAS Program A-3

A.3 AAS System Description A-4

A.3.1 Overview A-4
A.3.2 Workload Characteristics A-5
A.3.3 Response Time Characteristics A-6
A.3.4 Availability Requirements A-6
A.3.5 Design and Construction Requirements A-6

REFERENCES RE-l

GLOSSARY OF ACRONYMS GL-I "C-
%,.,

x

% %~.W%'f % NL..'C %v~I %\

LIST OF FIGURES

Figure Number Page

I-I QUESTIONS PROVIDED TO THE OUTSIDE EXPERTS 1-4

LIST OF TABLES

Table Number Page

1-1 STUDY PARTICIPANTS 1-3

6-1 RECOMMENDATION SUMMARY: DCP RISK REDUCTION TASKS 6-2 .

6-2 RECOMMENDATION SUMMARY: ACQUISITION PHASE RFP 6-3

6-3 RECOMMENDATION SUMMARY: CRITERIA FOR CONTRACT AWARD 6-4

6-4 RECOMMENDATION SUMMARY: ACTIVITIES IN ACQUISITION
PHASE SOW 6-6

i% %
4* -.

- - o • . • . v . . -, -. -. % o • .. • •- •- • • -,.-%° ° ,- ,- °, - . • • %- * -'•°S.
¢ > .' .;,..-,:..:. .,...?,,..,-. -.. ... -. ... -.. ,. ; ..- ... ,...-,..... ,... -. ,.... _. .; . ..-. ,..,. .-. ,,-

" ' ' " " ' , : ,'," , -"W" " ,"." -" " " " ".- "- ", ". " " ", " - .- " " " " -" . • .- , - - - '.--

- ... ~ - -. -

EXECUTIVE SUMMARY

INTRODUCTION f

In 1981, the Federal Aviation Administration (FAA) embarked on a
comprehensive plan for modernizing and improving the United States Air
Traffic Control (ATC) system. The Advanced Automation System (AAS) is
the largest of over ninety projects in this National Airspace System (NAS)

Plan; it is also the most software-intensive, with over a million lines
of code expected to be developed. The Acquisition Phase contractor for
AAS will be asked to select a single high order computer language for use
on the project. Anticipating that the contractor might select Ada, and '-'h

citing lack of FAA experience with Ada, the FAA's Deputy Associate
Administrator for NAS Programs, ADL-2, asked The MITRE Corporation to
organize and participdte in a study. He asked that leading MITRE and

non-MITRE software experts be assembled to address the use of Ada for AAS.

This report documents the findings and recommendations of the study

participants.

CHARACTERIZING A SOFTWARE DEVELOPMENT

The use of the very best in software engineering is imperative for
large, critical, and complex systems such as AAS. Therefore, the study
participants' consensus view of how a software development might proceed
on such large procurements is outlined. Next, the benefits of the
described approach are discussed, along with the advantages offered by
Ada in achieving them. Based on this framework, qualified recommendations
on the use of Ada for AAS are provided.

Elements of an Ada Software Development

While there is more than one way to use Ada in support of good

software engineering, one reasonable way to proceed is to use Ada in a
software development process characterized by a composite of the
following elements:

" Compilable designs

" Small, expert design team up front

" Benchmarks, prototyping, and incremental development 6

* Appropriate milestones and deliverables

* Early access to mature development environments

xiii

- -. , -

1 * ... ,*.*~.*~* * * *..

" Training in Ada and software engineering

* Ada-oriented Software Development Plan

The above approach also provides a framework for discussing risk and
risk reduction activities (as summarized below).

Advantages of an Ada Software Development

Use of Ada does not inevitably lead to good software engineering; a
sound development approach must be followed. However, if properly used,
Ada provides a natural vehicle for employing sound software engineering
practices.

Ada use stimulates a more effective development approach. The
richness of the language, which also contributes to the rigor of Ada as a
design notation, is a major reason for this. In addition, the multiple
individual walk-throughs provide shorter, more focused reviews than a
monolithic Critical Design Review (CDR) would provide. Ada also offers
greater continuity of activities across phases of a project. Furthermore, .

the thoroughness of automated compiler checking permits many flaws to be
uncovered early in the development process, which in turn permits high-
risk elements to be addressed early in the framework of the total design.

Lower life-cycle costs, enhanced software readability and
traceability, improved maintenance productivity and system evolution, and
software with higher quality and increased reliability are expected
benefits of such an Ada development approach. Actual project experience
shows that expectations of a shorter, smoother integration phase can be
realized. Unfortunately, because Ada technology is new, no large Ada
systems are available for verifying the expected life-cycle advantages.

Compilable designs written in Ada Program Design Language (PDL)
provide all the advantages of other-language PDLs, and much more. For
example, other high order languages do not require compiler checking of
module interfaces. In addition, the use of Ada syntax provides increased
rigor for interface definitions; compiler checking ensures that these
interfaces will be used consistently.

The machine-readable deliverables resulting from compilable designs
can be generated with minimal extra effort, since they are produced as a
natural outgrowth of the development process. They result in a single
representation of the design; manual translations of the products of one
phase into the notation of the next (with the inevitable mistranslation
errors) are no longer needed. Thus there is better traceability between
the products of a given phase and those of the succeeding ones throughout
the development process. There is also better traceability between
documentation delivered to the customer, and the system that the

xiv

%I

..

...

documentation purports to describe. Finally, the machine-readable
deliverables can be more easily reviewed; in fact, automation can be used
to assist in the review process. %

Using Ada on AAS: Recommendations

The study participants concluded that the size and complexity of AAS
make software engineering, and not the programming language, the key
issue. Moreover, if properly used, Ada best facilitates good software
engineering practices and a sound software development process.
Therefore, the study participants unanimously recommended that the FAA
commit to Ada as the appropriate choice for AAS, given four strong
qualifications to ensure that Ada's potential is realized:

0 The software development process must be modified; the FMA and
contractors must use an approach tailored to take advantage of
modern software engineering practices and the support that Ada
provides for them.

* It should be expected that appropriate selective use of non-Ada
code within the framework of an Ada design may be necessary when
Ada is found to be inadequate.

* Contractor readiness for an Ada software development must be
evaluated.

9 Positive risk reduction activities must be undertaken addressing
the risk areas associated with Ada.

The large system nature of AAS makes it well suited for the
advantages offered by Ada; no other language offers more advantages. If
one of the likely alternative languages were chosen, the large system
problems posed by AAS would remain, but many of Ada's advantages would
not be available for addressing them.

At the same time, it should be noted that the advantages offered by
Ada will not accrue by default; positive steps must be taken to realize
them. It is of particular importance that both contractor and customer
be well-trained in Ada technology. If positive steps are not taken, or
if risk reduction activities indicate significant problems (e.g.,

* compilers are inadequate), then the advantages of Ada usage will be
'. outweighed by the associated risks. In such a case, the recommendation

to use Ada would not stand. If the FAA commits early to Ada, risks can
be assessed early in the development process. Problem areas thereby
uncovered can be addressed in a timely fashion, or if need be, a fallback
position can be pursued without wasted cost and effort having accrued.

xv

-% %
PI

IDENTIFIED RISK AREAS

Although Ada offers the potential of significant advantages on AAS,
its proper use can only diminish the risks, not eliminate them. Some of
the risks arise from the newness of the Ada technology; others, however,
are not peculiar to Ada. The identified risk areas include the following:

* Ability to meet real-time and availability requirements--The
hardware architecture, run-time systems, and the need for proper
use of Ada's features and non-Ada code pose risks to meeting the
demanding AAS performance requirements.

* The inherent large size of the AAS software--The inability of
compilers to handle large quantities of code has been a key
problem area on other Ada projects.

" Adequacy of computing resources--Ada projects are typically heavy
users of development resources.

* Customer readiness--The newness of Ada technology and its many
differences pose risks of whether a customer is prepared to award
and monitor an Ada contract.

0 Software support systems on development and target machines--
Their lack of maturity provides increased risk on an Ada
procurement.

-.

* Personnel and management--Risk areas on any software procurement
include staffing profiles and experience, and management
commitment and flexibility.

* Schedule and cost--There is virtually no historical database of
Ada projects to provide guidance.

Early risk reduction activities are needed to address the above
risks; appropriate risk reduction activities were recommended by the
study participants where possible. However, it is realized that, even
given very good early risk reduction awareness and associated activities,
there will be inevitable modifications to the software environments for
the system being developed. Thus the contractors should document in
their plans an approach for addressing problems when they arise, and
should allocate sufficient time and money resources for proceeding with
the documented approach.

To summarize, the proper use of Ada can reduce some of the risks
inherent in a large software development. However, the residual risks
that remain must be addressed.

,cvi

%%"

.-,

ADDRESSING THE RISKS

In addition to specific risk reduction activities designed to address
individual risk areas, the following general risk reduction activities
are recommended:

* Each contractor's proposal should be required to include a Risk
Management Plan.

* Each contractor's proposal should be required to include an 1
Ada-oriented Software Development Plan.

* A software engineering exercise should be conducted. First, the N
FAA would define a software problem. Then the contractors would
be asked to solve it using their AAS personnel, software .-. P
methodologies, and toolsets. This would test the contractors' Il-.. %
planned methodologies and their ability to design and implement

software using them. The results could be used by the contractors
to improve their methodologies, and by the FAA as technical

criteria for assessment in making the Acquisition Phase contract

award, as an adjunct to the technical evaluation of the proposals.

" The AAS contractors should be required to develop compilable Ada

designs for their proposed systems and deliver them to the FAA in
machine-readable format. A corollary to this recommendation is
that the FAA should thoroughly review the Ada designs.

" Benchmarks should be required on development and target -,achines

to address many of the identified risks.

NEAR-TERM FAA ACTIVITIES

Multiple near-term FAA activities must be undertaken to realize the
benefits of an Ada development and to address the inherent risks:

* The FAA must develop in-house expertise and access outside
expertise in Ada and in software engineering.

• The FAA should prepare and dry run a software engineering
exercise.

" The FAA should revise the AAS milestones to reflect an Ada
development process (e.g., replace a monolithic CDR with -g
incremental reviews).

xvii

%... %% % %

" The FAA must develop a strategy for implementing the
recommendations that it chooses to undertake. For example,
benchmarks must be selected, and criteria for evaluating the
results must be established.

* The FAA must assess the feasibility of a fixed price contract, if
one is being considered for AAS. In doing so, the FAA should
consider whether the estimated costs are realistic and known with
a high degree of certainty, and whether design and requirements
are thorough and stable. Where these conditions are not met, a
cost plus contract--or a contract with a mix of fixed price and

cost plus components--should be used to provide the needed
flexibility.

" Schedule revision may be necessary for the FAA and contractors to
carry out activities needed to ensure a successful software
development effort on AAS.

* The FAA should bring the software maintenance organization on
board now. The long-term success of the AAS program depends upon
the early, active involvement of this organization. Recommended
near-term activities for it include the following: writing of a

Software Maintenance Plan, involvement in training and
preparation of a software engineering exercise, and support in
preparing the Request for Proposals (RFP) and Statement of Work
(SOW).

* The FAA must prepare for awarding an Acquisition Phase contract
and monitoring the post-award development activities. Training,
development of contract award criteria, and establishment of FAA
computing facilities are needed. Criteria need to be set for
each intermediate product at each milestone so that project
tracking can occur.

'.

0- %

%, % %xviii ..•.,

/l ='= ' . • . q • . --= ° °. °", * °. • * •. . - ..

60%

... .. %,

1.0 INTRODUCTION

The United States Air Traffic Control (ATC) system is the busiest andmost complex ATC system in the world. By the early 1980s, it had become

apparent that the expansion capability of this system was limited. In
particular, requirements imposed by the continual increase in aviation
activity could not be met indefinitely, and automation improvements to
labor-intensive tasks were being deferred because of capacity limits in
the automated systems. Furthermore, maintenance of aging equipment was
proving to be increasingly costly, with equipment manufacturers unable to
guarantee the provision of spare parts indefinitely, regardless of cost.

%
Therefore, in 1981, the Federal Aviation Administration (FAA)

embarked on a comprehensive plan for modernizing and improving ATC
services. This multi-billion dollar plan consists of over ninety
projects dealing with all aspects of ATC, from runway lights and
navigation to communications and computers. The largest of these
projects is the Advanced Automation System (AAS). It is also the most .. ,.
software-intensive, with over a million lines of code expected to be
developed.

1.1 Advanced Automation System (AAS)

The purpose of AAS is to provide an automation system that includes
controller displays, new computer software, and new processors. AAS will %
provide the capacity to handle projected air traffic loads through the
1990s and beyond, the capability to perform existing and new automated
functions, and a high degree of reliability and availability. More
details on AAS are provided in the tutorial in Appendix A.

In August 1984, the AAS program entered a Design Competition Phase
(DCP). Competitive contracts were awarded to two teams of contractors--
one led by IBM, the other by Hughes Aircraft Company--for the design of
AAS. In mid-1987, a Request for Proposals (RFP) will be issued for the
Acquisition Phase, with contract award for AAS production scheduled for
1988. In addition, a Statement of Work (SOW) will be issued in Spring
1987 for continuation of the DCP until the award of the Acquisition Phase .

contract. It is the FAA's intention to task both contracting teams with
risk reduction activities during this remaining portion of the DCP.

1.2 The FAA Ada Study

The AAS Acquisition Phase contractor will be asked to select a single .4
High Order Language (HOL) as the computer language for use in AAS.
Anticipating that the contractor might select Ada as the HOL, and
citing lack of FAA experience with Ada, the FAA's Deputy Associate
Administrator for NAS Programs, ADL-2, asked The MITRE Corporation to '

l-1;

,. ,. . % ,.%% • " ,,," .- • . .- % % % " ." %- .% -"% . - % •.. % . V- - - •

% 'U
1-v].

S;r=r,;u;wv. riwwJwwu

organize and participate in a study. He asked that leading MITRE and
non-MITRE software experts be assembled to address two issues regarding
the use of Ada for AAS: First, if Ada is selected, how can the FAA judge
the ability of a contractor to build AAS in Ada? Second, if Ada is used,
how should the FAA change its contract monitoring procedures to best
manage the project? Answers were needed in time to have impact on the
Acquisition Phase RFP.

In September 1986, Dr. Victor R. Basili of the University of
Maryland agreed to chair the study. In conjunction with him, the

remaining study participants, listed in Table 1-1, were chosen. The
following ground rules were established and agreed to by the FAA:

* The study participants would be given total latitude regarding
outcomes to be considered--ranging from "don't use Ada" to
"require the use of Ada"--in making their recommendations.

" No source selection sensitive material would be made available to
the study participants; this enabled them to make recommendations
freely, without having to be concerned about impacts on the DCP.

On 7 December 1986, the study participants held an organizational
meeting. Following a tutorial presentation on AAS, they agreed that,
because of the newness of Ada technology, it would be best to access as
much real-world Ada experience as possible. Therefore, they decided to
gather information from eight outside experts, who would be invited to
make short informal presentations to the entire study team and discuss
their Ada experiences.

To this end, a list of candidate experts was generated. Fortunately,
the top eight choices enthusiastically agreed to appear before the study
participants. They were guaranteed anonymity and, therefore, their names
do not appear in this report. To focus their preparations, they were
provided four questions (see Figure 1-1) that had been generated at the
organizational meeting in December.

On 7 and 8 January 1987, the study participants met with the eight
experts. The experts did not hear each other's presentations, but all of
the study participants were present for all of the presentations. On
9 January, recommendations were formulated and drafted into a briefing.
Final versions of that briefing were subsequently presented to senior FAA
management, including the Administrator.

The above information-gathering procedure was effective, and a set
of excellent recommendations from the experts was adopted by the study
participants. However, these recommendations will not be attributed to
individuals for two reasons: because the experts were guaranteed
anonymity, as noted above; and because they were a source of inputs only,

1-2

%d' :- %
I (s +' ' ,' • .".. " \ "'.' .,.". ".."-. " ". .. " , •", -" S;.- - -, -% % -_-%-e"y _..

m~mmm

TABLE 1-1
STUDY PARTICIPANTS

Study Chairman: Dr. Victor R. Basili, Chairman, Computer
Science Department, University of Maryland

Dr. Barry W. Boehm, Chief Scientist, Defense System Group,
TRW Inc.

Judith A. Clapp,* Assistant Director for Software Technology,
The MITRE Corporation

Dale Gaumer, Engineering Scientist, Magnavox Government and
Industrial Electronics Company

Dr. Maretta Holden, Manager, Software Technology, Boeing
Military Airplane Company

John K. Summers, Director, Washington C31 Software Center,
The MITRE Corporation

Executive Secretary: Dr. Arthur E. Salwin, Group Leader,
System Studies, The MITRE Corporation

*Ms. Clapp replaced Richard J. Sylvester, Director of ESD/MITRE

Software Center, The MITRE Corporation, who attended the
organizational meeting.

1-3

U' ~.............. .;....,
- all..-.-

% P ,t ',B" '" .+ mp i
+ ,. % . ,

,,,-,,-%, ',"-I .' e ,
%

'+ '" "" ",.,-* ,%/" ",." , ,. '. - ,,,',P,. +.%" , "
%

% ',' " " "" ,' .""" " .o .,.",",° " . .'.". """. . ,

How should the FAA judge the ability of a contractor to
produce a project with over 400,000 lines of Ada code? .
Specifically address the support provided by, and
experience with, the language, compiler, and run-time
environment on host and target machines, as well as
project experience, personnel issues, and management
structure.

What tests should the FAA conduct to assess the
maturity of the Ada technology for such a large system?

How can the FAA obtain early visibility into the risk
issues associated with Ada development? Specifically

address methodology and, if possible, the development
and tracking of a risk management plan.

How should a software development standard, such as
DOD-STD-2167, be tailored for a large Ada project?

FIGUR 1-

QUESTIONS PROVIDED TO THE OUTSIDE EXPERTS
-..-.

1--

El 'a

%" .

and did not participate in the study's final deliberations or in the
preparation of this report. Furthermore, the conclusions of this report
are those of the study participants, and do not necessarily reflect the
views of any of their employers or of any individual expert. The study
participants wish to thank the experts for their time and effort, their
candor in discussing lessons learned, and their thoughtful responses to 1.

our questions.

1.3 Organization of this Report

Section 2 of the report provides information on the elements and
advantages of an Ada software development approach. This material serves
as the basis for the study's recommendations regarding the use of Ada on
AAS. It also provides a context in which risks can be discussed.
Section 3 identifies risk areas associated with an Ada development, while
Section 4 provides general approaches for addressing these risks.
Section 5 summarizes the near-term FAA activities that must be undertaken
if the study recommendations are to be successfully achieved. Section 6
maps these recommendations into the four near-term task areas.

It should be noted that the report intentionally contains .

redundancies. For example, certain elements of an Ada software develop- K-,-:. c
ment are also cited as risk reduction activities.

1-5

..- ,.'-1 2

..,-.: '-

1-5 ".,"," . "

["),,e ': 2 2 ,?, , -.-',"...'.L-V-,"v v-. ''...-- ' '.v',,N. ."." ".,''¢''.. .J'$ " " ,.,_S

2.0 CHARACTERIZING A SOFTWARE DEVELOPMENT

The use of the very best in software engineering is imperative for
large, critical, and complex systems such as AAS, with high reliability
requirements. Ada is a new programming language with many features
designed specifically to stimulate and facilitate the use of good
software engineering principles. A key characteristic of the Ada
language is that it can be used to represent an understandable statement
of the top-level system architecture and software design. It separates
the "specifications" or definitions of processes and data from the
"bodies" containing the code for performing the processing. It also
encourages structuring of a system into modular units, which have been
collected together into "packages" of logically related units. Packages
are the basic building blocks of a system. Each has a single
specification defining how that package can be used; this isolates the
internal design and code of a package from the rest of the system design
that uses the package. A user of the package does not have to know how
it works. N

Section 2.1 characterizes the study participants' consensus view of
how a software development might proceed on large procurements such as
AAS, and the elements it would contain. Material is included on how Ada
can be used to support such a development process. Section 2.2 addresses
the benefits of the described approach and indicates the advantages0
offered by Ada for achieving them. Based on these discussions,
Section 2.3 provides qualified recommendations regarding the use of Ada
on AAS.

It should be noted that Section 2 focuses on positive aspects of Ada
usage. Section 3, on the other hand, will focus on the negative aspects,
providing a discussion of Ada risks.

2.1 Elements of an Ada Software Development

-As experience is gained in using Ada, managers report similar
approaches to conducting an Ada software development for a large system
such as AAS. It is the study participants' consensus that a composite of
the elements described in this section appears to be a good way to

*achieve sound software engineering and utilize Ada for doing so. This
development approach should not be regarded as the only way in which an
Ada project can be carried out. Rather, it is a reasonable way to
proceed. Furthermore, by documenting an approach, a framework is
provided for the discussions on risks and risk reduction activities (see
Sections 3 and 4).

2-1

40% %
e e %.e Ve

,* Y~r Vee V~.. %*. . . ;, * ** ~ * U
%Z......-

2.1.1 Compilable Ada Program Design Language (PDL) Designs

A key characteristic of an Ada development is that the design is
reflected in machine-analyzable Ada deliverables. In the following three
subsections, "Ada PDL" and "top-level design" are defined, compilable
designs are characterized, and their implications are discussed. Their
advantages are given in Section 2.2.3.

2.1.1.1 Definitions. There are many varieties of PDL, ranging from
structured English to a full programming language. The approach

described here recommends the use of the full Ada language as PDL.

At each design level, Ada PDL contains the information appropriate
for specifying that level of design, including data structures and
interface definitions. Enough information is provided to enable the
package specifications and bodies produced during a given design level to
be used, without modification, later on as the code appropriate for that
level. Only constructs in conformance with the Ada language standard
(U.S. Department of Defense, 1983), are used in the Ada PDL so that the
design will be compilable (The Institute of Electrical and Electronics
Engineers, Inc., 1987, p. 13). Comments are used for supplementary
information.

An Ada top-level design can be defined to include the following:

" All top-level package specifications

* The bodies corresponding to those specifications

* The next level of package specifications called out by the
preceding two items

In practice, management judgment and flexibility are needed in
determining what constitutes top-level design, since riskier and more
complex parts of a system should be designed to greater depth earlier
than the simpler parts should be. Thus a more operationally oriented
definition might be that top-level design is completed when the identi-
fied modules can be independently coded; that is, they are sufficiently
defined so that they can be turned over to programmers who are not
knowledgeable about the total system design. Regardless of the level of
detail provided during design, the product of this activity then becomes
the top-level code for the coding phase. It should be reemphasized that
this requires no translation of the design into a new format.

2.1.1.2 Use of Compilable Designs Characterized. Compilable

designs are used as follows. Beginning with top-level design, all design
decisions are documented in Ada PDL. The compiler is invoked periodically
to ensure that the design is compilable. This implies early access to at

2-2

.*

% %% V 1. "N".* % ,,.

.V , '' .' V.e~ '.'. ' o. /'.--.N 'v - z. . .-.- -, .• . -. - •,., -,--. --.- : . --. L , % % % .
.: e. ., . ., ,.e@ -.., .. ,, . ., j .- . . .% -% -.-

least portions of a mature support environment for these compilations
(see Section 2.1.6). The compilations are more than just a syntax
check. Rather, since Ada requires that all interfaces be consistently
and rigorously defined, the compiler serves as a check on the interfaces,
which are the key entities being defined during top-level design. As the
design is repeatedly compiled--and, in some cases, executed with
stubs--errors will be found and the process iterated until the design
finally stabilizes.

2.1.1.3 Implications of Compilable Designs. The consequence of
such a process is that many of the integration and test activities can be
carried out at the front end, and can continue to be carried out through
the design and coding phases. In fact, the distinction between design
and coding becomes somewhat blurred, as essentially similar activities
occur throughout the development process; only the level of detail
changes. By contrast, in a traditional approach, integration activities
are deferred until an integration phase later in the development process.

To accomplish stable Ada PDL designs, more time will be needed for Iv

requirements analysis and design. Even if the requirements analysis
phase has been previously completed, the rigor of this approach often
means that certain requirements analysis decisions must be revisited.
The justification for this up front time and cost has been demonstrated
in a need for less time and cost during integration, at which time more
developers and more modules are impacted by design changes.

Developing compilable top-level designs is not "extra" or "wasted"
activity. Regardless of the methodology used, the top level of the
software will ultimately have to be developed. The objective in the
suggested approach is to do this early, when it has the most beneficial
impact.

2.1.2 Contractor Use of a Small, Expert Design Team Up Front
'p

'p In any large software development, it is desirable to have a small
'p design team of the best people up front. Critical decisions are made on

the front end of a project, and a small team is needed to ensure that a
complete and correct design has been coordinated across the entire
system. The team must therefore have extensive software engineering and
large system experience.

On an Ada software development, a small, expert design team is
particularly important. The team produces the compilable designs. The
designers must also be Ada experts, because Ada's richness supports a
broader set of design strategies (e.g., tasking and object-oriented
design).

2-3

.J,

%'%%

Once the designers achieve a stable design, large-scale parallel
coding efforts can proceed. A stable design helps ensure that changes
made by the programmers are confined to their individual modules. This
enables them to work in relative isolation from one another without
negatively impacting other parts of the system. Even if a programmer
writes code that violates the interface constraints for a module, the
compile-time checks do not allow such violations to be entered into the
baseline system; programmers cannot proceed until the interfaces are made
consistent. This also implies that adequate software development
facilities must be provided to support interactive use of the development
environment by all of the programmers.

During these large-scale development activities, the small design
team serves as the nucleus of expertise for the total system architecture.
Having a perspective unavailable to the programmer analysts and coders,
the team members determine the system impact of proposed changes and
decide when/whether to implement them (see also Section 3.5.3 on commit-
ment to retaining the team). The designers need to understand the lower
levels of the software. However, they should be constrained from going
into too much detail so each of them can mentally encompass a larger part
of the system, helping to ensure a more correct design.

2.1.3 Prototyping and Incremental Development

Prototyping and incremental development are recommended activities
whether or not Ada is used.

Prototyping can be defined as the experimental design/coding of
various system functions for the purpose of evaluating the requirements,
ascertaining design implications, or studying the effectiveness of the
design in its interaction with humans. The code produced for such an
endeavor is often discarded upon completion of the evaluation; an
operational version must be produced for the actual system.

Whether or not Ada is involved, prototyping is generally encouraged

on all software procurements, where it can provide useful information to

reduce risks in full-scale development. On an Ada procurement, additional
prototypes may be useful. These can investigate the impact of the
language and the code generated for the target machine on the performance
of the system, in turn enabling the degree of uncertainty and the risk
associated with language and compiler to be assessed as early as possible.
Even though such activities may require more up-front time before coding
begins, it is felt that this is justified by the long-term benefits.

Incremental development can be defined as the development of subsets
of full system functionality for the purpose of design control and feed-
back. Incremental development permits verification of the design at
early stages, when any errors detected may be corrected more easily and

2-4

S .e ".. . . .
. . . % %_. %- %_ -. , ,. -.

~rvw~r"'w W' w %.l WAX 1K UKU W'.MM -d MA .n .r X -. -. '- - -n-

thoroughly than would be possible after the entire implementation has
been completed. The result is an evolving product whose functionality
and quality have been verified throughout the development, instead of
remaining unknown until near the very end. Thus incremental development
can be considered an aspect of risk reduction. Its product is often
operational code that will be used in the final system.

The use of simulations is also to be encouraged. However, at this
development, even on an Ada procurement.

to

2.1.4 Different Milestones

The classical life cycle calls for major milestones that provide
demarcations between various development activities. For example, %
Preliminary Design Review (PDR) separates top-level design from detailed
design, while Critical Design Review (CDR) separates detailed design fromcoding. Yet these milestones provide a somewhat unnatural description of

the actual progression of activities, since different parts of the project

may proceed at different rates. In fact, it may be more desirable to
carry certain high-risk areas forward through coding, while deferring
design on low-risk, noncritical areas.

As mentioned in Section 2.1.1.3, rigid milestone distinctions can

become somewhat blurred in the development process suggested in this

report. Prototyping and incremental development result in different
milestones from those found on a traditional software development effort,
whether or not Ada is used. PDR becomes the critical review since it
examines the compilable top-level designs, which serve as the basis for %%%

all further development activities. The use of incremental development
means that a monolithic CDR is replaced with multiple individual design
walk-throughs as various portions of the system become ready for review.
For contractual reasons, a formal CDR may be still be held, but its 2V

characteristics differ from the traditional: it is used to review action -

items resulting from the individual design walk-throughs.

2.1.5 Different Deliverables

The products resulting from the new activities and milestones can
also differ. Ada's readability does away with the need for some of the

* traditional design specifications and much of the manually written
documentation. Instead, compilable Ada--whether it takes the form of PDL
during design, or executable software during coding--is used throughout
the life cycle to provide various levels of system decomposition. Thus -
each phase of the development process results in a machine-readable Ada
product that is used by the developers during succeeding phases; the same
product can be delivered to the customer for review. Consequently,
similar tools and techniques are used throughout the life cycle.

2-5

*, 4- , , , , . , - , , , • , - , , - - , . - , " , , . • , o ..
* ta .%

% V'.'

A good software engineering technique for large systems is to
provide supplementary information for use in conjunction with the PDL.
For design, overview material such as Booch or Buhr diagrams (Booch, 1987
and Buhr, 1984) can be used. During coding, detailed information, such
as material on unit testing and on the rationale for implementation
decisions, is provided in software development folders maintained by the
programmers; these folders should be kept up-to-date throughout the life
cycle.

2.1.6 Development Environment

2.1.6.1 More Demands Placed on the Hardware. An Ada software
development is characterized by high demands placed on the development 0

environment. This is true even if run-time performance is not impacted
by the use of Ada, since run-time performance is a characteristic of the %
target, and not the development, machines. For example, Ada compilers
provide extensive compile-time interface checking capability not
available with other language compilers, which contributes to the Ada
compilers' being heavy users of computing resources. The interface
checking can result in computationally intensive compilations. If the
entire system is recompiled, week-long compile times are not uncommon.
Furthermore, unlike other languages, Ada requires that these system-wide
recompilations be carried out whenever top-level interfaces are redone.
This is sometimes referred to as the "compilation ripple effect" and is
unique to Ada; other languages allow individual modules to be compiled in
isolation, and thereby fail to detect new errors that may have been
introduced. Thus careful resource planning is needed to ensure that 'q
enough workstations with sufficient speed are available to carry out
compilations in a reasonable time, and that adequate disk space is
available for developers to have on-line access to tools, databases, and
the compiler. The anticipated requirements for these resources are later
tracked against actual usage in order to provide proper resource growth.

2.1.6.2 Early Access to the Software Support Environment Essential.
Adequacy of resources also implies access to mature support environments
early in the development process. For example, such access is needed to
support the compilable design activities early in the life cycle. Early
access is also needed to support training exercises in advance of system
development. Because of the standardization provided by validated Ada
compilers, training can be carried out on compilers other than those to
be used on the actual development.

2.1.6.3 Comprehensive Toolset Needed. The comprehensiveness of "."

tool functionality--on all machines during all phases of the development 6

effort--is an important consideration. A set of integrated tools is
needed in addition to the compiler.

2-6

17V
" N

d=" -

[r P, Jr " d' .' -.l' . ' ' " . " " ." e ".e , " " ee' '.- %."." .2 "........ "."....-........................ :J :e _"

During coding, it is desirable to have a tool that indicates the
potential impact of compiling a given module (i.e., how many other
modules will have to be recompiled because of interdependencies denoted
by "with" statements). Managers can use such a tool to make informed
decisions on whether changes should be incorporated or be deferred to
minimize compiler ripple effects. Another way to minimize ripple effects
is through the use of a sophisticated compiler: if a compiler is "smart"
enough to realize the scope of the changes, then unnecessary recompila-
tions can be avoided. (For example, if only the comments are changed in
a given package specification, then no other package specifications need
be recompiled, even those that "with" the specification undergoing the
change.)

During integration and testing, coverage analyzers and performance
analyzers are very useful. They can provide statistics on which program %
units have been executed for a specific set of test data, as well as
performance information on the amount of execution time spent in each
program unit. Target machine coverage analyzers that supplement such
information with the identity of the callers of the invoked units are
particularly attractive.

Interactive debuggers on the target machines are essential. The
alternative--encountering problems on immature target environments,
documenting them, and then trying to reproduce them on a more mature
development environment--is a time-consuming process. This is true on
all large software development projects. For an Ada project, the
debuggers should support features unique to Ada (e.g., tasking).

Other tools are used throughout the life cycle. The library systems
and configuration management tools must have the demonstrated capability
of handling a large software development effort. Management tools must
be provided as well, so that progress on system development can be
tracked. For example, a simple capability that provides the number of
compiled package specifications can be used as a management tool for
plotting progress vs. time. Other management tools providing budget and
feedback information are important. Tools that measure code complexity
can help identify problems and aid in test planning.

2.1.7 Training

Since there is a general shortage of Ada experience, an Ada software
development includes Ada training for all associated personnel, including
managers, with a heavy emphasis on software engineering. This emphasi s '
is needed because Ada supports new strategies (e.g., object-oriented '
design) and new software architectures (e.g., one built around tasking).

Management training is crucial because of the significant
differences between an Ada development process and processes used with

2-7

,- --.

.

% %

*~ %

other languages. Managers must be able to understand the new deliverables

(see Section 2.1.5), which look different from the ones they are
accustomed to. They need to understand what is new, and how to plan the W"N-.
necessary activities and allocate the appropriate resources (including Ie. a,

people and computers). Knowledge of Ada's "generic" feature, for
example, can permit planning for more reusable code. Most important,
managers need to know how to tell whether things are going well or not,
and what to do in the latter case.

Training is given to all personnel on the tools they will be using. ,I
For example, managers are trained on the use of budgeting and tracking
tools, librarians on the use of configuration management tools, and
coders on the use of compilers and interactive debuggers.

Since a considerable amount of time is required to learn Ada--
estimates range from 6 to 18 months for programmers--sufficient lead time
must be provided; such training should take place before contract award.
Following formal courses, experience can be gained by development of the
less sophisticated parts of the system (e.g., tools, benchmarks, proto-
types, and test drivers).

2.1.8 Software Development Plan Document

A Software Development Plan, documenting the development methodology,
should be required on any large software development project. However,
for an Ada project, this plan has an Ada orientation, and is tailored to
an Ada development process. For example, it reflects compilable Ada
designs by small design teams, the new milestones, and new deliverables.
Other items incorporated include an approach for designing reusable
software, and an approach for identifying and incorporating available
reusable software. The plan also includes risk reduction activities,
such as the use of benchmarks, or is coordinated with Risk Management
Plans calling for such activities.

2.1.9 Methodology

An important element of an Ada software development is a methodology
for Ada language usage, clearly defining the design strategies chosen for
a particular Ada development.

The methodology also provides guidance on the use of Ada language

features. Such guidance might take the form of encouraging the use of ..

some language features, constraining or discouraging the use of others, ,
and prohibiting the use of yet others. Features that may be encouraged -,
include private types (which encourage information hiding) and structured
programming constructs. Features that a project might want to constrain .

(for certain applications or to certain individuals) include tasking,
exceptions, and packages. Consideration may be given to prohibiting such .

2-8

%. ".%

% %l
N,.,.. .,

'... W

features as the "use" clause (Booch, 1987, p. 222 and Bryan, January,
February 1987, pp. 25-28) and the "go to" statement. Prohibitions would
in effect subset language usage, even though only validated compilers
(not subset compilers) would be used on the project.

Also included are an approach for using non-Ada code if needed, and
encouragement for the use of commercial off-the-shelf software where
possible. If such software is used, the methodology should indicate how
it will be tested, integrated into the system, and maintained.

2.2 Advantages of an Ada Software Development

Ada was designed to enforce, and provide easier implementation of,
sound software engineering practices. Most of these practices have been
promoted for many years. In effect, Ada's contribution is that, if Nor
properly used, it provides a natural vehicle for employing these
practices. The reasons for this are discussed in the following
subsections. However, it should be cautioned that the use of Ada does
not inevitably lead to good software engineering; a sound development
approach, such as the one described in the preceding section, must be
followed as well.

2.2.1 More Effective Development Approach Stimulated

2.2.1.1 Richness of the Language. Ada is a very large and rich
programing language. Packages separate interfaces from implementation
and encapsulate relevant operations for an abstract object or type.
Tasking allows real-time aspects of the design to be explicitly stated.
Exceptions allow error conditions to be explicitly trapped. Generics
allow programming templates to be created for reusable code. Strong
typing is enforced both within and across modules. Separate compilations
support bottom-up and top-down development approaches. At a more
detailed level, one finds that all the structured programming constructs
are supported. In fact, the syntax for these constructs is better in
some respects than that found in other popular languages, such as
Pascal. Precisions and ranges of numeric quantities can be specified,
and the precisions of quantities resulting from numeric operations are
precisely defined. Long variable names allow for readable code.

2.2.1.2 Rigor of Ada as a Design Notation. Ada provides many
features not commonly found in other high order languages. This richness
allows it to be used as a rigorous design notation as well as a
programming language. For example, real-time and parallelism aspects of
the design may be expressed through tasking. A significant advantage is
that interface definitions can be separated from the underlying implemen-
tation mechanisms, and extensive abstraction of data and typing can be
provided. Exceptions allow the processing of error conditions to be Irv
explicitly defined.

2-9

JO-

V

2.2.1.3 Compilable Designs. Compilable, machine-readable designs
are a significant advantage of Ada. Because of their importance, they
are addressed below in a separate subsection (2.2.3).

2.2.1.4 Shorter, More Focused Reviews. The multiple individual
walk-throughs discussed in Section 2.1.4 are generally of shorter duration
than a monolithic CDR would be. This is an effective management technique
that has several advantages whether or not Ada is used. First, the walk-
throughs can be more focused and productive. Second, they have a K
beneficial impact on the schedule. Since they are held when needed, the
feedback from them is more timely. Once a review for a given portion of
the system has been passed, related development activities can proceed.
In a traditional review process, the work is suspended and awaits
completion of the entire CDR. Furthermore, a traditional CDR monopolizes
personnel and interrupts normal activities, thereby impacting the%
schedule unfavorably; it is also tiring for the personnel involved. As a
result, there is implicit pressure for completion, which in turn means
that some design deficiencies may be overlooked.

The benefits arising from shorter and more focused reviews are
realized because of the thoroughness provided by automated compiler-
checking of compilable designs. This checking is a significant
improvement on time-consuming manual checks for "bookkeeping" items such
as inconsistent naming conventions in English-oriented designs. Thus
there is enough time to take several perspectives that focus on more *

significant issues, such as software growth and reusability.

2.2.1.5 Continuity of Activities Across Phases. Ada provides
greater continuity of activities throughout the software development
process. Manual translations of the products of one phase into the
notation of the next (with the inevitable mistranslation errors) are no
longer needed. This is due, in large part, to the richness of the
language, which is sufficient to allow Ada to be used for top-level
design, detailed design, and coding. Thus a continuity across project
phases is achieved; rather than having a top-level design notation
translated into detailed design, which is then translated into code, the
same notation is used throughout. This similarity of activity means
that, for the most part, the same tools and techniques can be used
throughout the project. Thus there is more opportunity for resources to
be devoted to achieving tool maturity rather than tool proliferation. In
addition, having fewer tools means that developers can become proficient
with a limited number of tools rather than trying to learn the use of
many.

2.2.1.6 Better Traceability. The continuity of activities described
above results in better traceability in two ways.

2-10

.C

we.A . ****-- % '. % %%

First, there is better traceability between the products of one '7..
phase and those of the succeeding ones throughout the development process.
The machine-readable deliverables produced during a given phase are used L
by the developers during the next one. Since there is no longer a need
to translate the products of one phase into those required for the next,
there is no need for manual determinations of which derived requirements
have been implemented at the next phase.

There is also better traceability between documentation delivered to
the customer, and the system, as actually implemented, that the documen-
tation purports to describe (see also Section 2.2.3.8).

2.2.2 Other Alternatives Less Attractive .

The expectation is that a more effective development approach will
result in lower life-cycle costs. This is because software readability
and traceability will improve maintenance productivity and system
evolution. When Ada systems now under development enter maintenance ,.
several years from now, sponsors will have access to Ada maintainers who
will will then be in the mainstream of expertise on Government contracts.
Conversely, if an older language is used, such expertise may be difficult
to find at that time. Furthermore, Ada's support of sound software
engineering practices should result in software with higher quality and
more reliability.

Actual project experience shows that the expectations of a shorter,
smoother integration phase can be realized. Unfortunately, because Ada
technology is new, no large Ada systems are available for verifying the % %
expected maintenance phase and full life-cycle advantages. % %

2.2.3 Advantages Provided by Compilable Designs

Compilable designs offer many significant advantages, as described
below.

2.2.3.1 Better Interface Defini ions. Ada has much more rigorous
requirements for interface definitions than do other high order languages
or PDLs. In Ada, detailed interface definitions must be explicitly set
forth in the package specifications. The thoroughness of automated
compiler checking ensures that these definitions will be used
consistently.

2.2.3.2 Early Interface Checking and Error Detection. The use of
Ada during the design phase means that thorough compiler checking
uncovers many flaws early in the development process. It has been well
documented that the earlier flaws are uncovered, the less costly they are
to correct. For example, correcting a design deficiency during testing

'a

2-Il

' .

%.~'% '" % ~* . . v.. *a.

is over an order of magnitude more costly than correcting it during the
design phase (Boehm, 1981, p. 41).

Machine verification of early design, especially interfaces, is a
significant aid to communication between the individual designers, or
design teams on a large project. It forces more explicit statement of
decisions, thus reducing the erroneous assumptions that can go
undetected. Since only a small design team and a relatively small number
of modules are impacted by the redesign/recompile ripple effects,
multiple iterations are possible. Thus a high level of design stability
is achieved before coding begins. This is a long-sought goal that has
previously been difficult to attain.

2.2.3.3 Design Rigor. The use of Ada syntax, instead of
English-like descriptions, provides increased rigor in the design
process. Ada PDL provides all the advantages of other-language PDLs, and
much more. These arise from the strong typing requirements, the use of
package specifications, and the interface definitions. It should be
noted that the latter is a key advantage offered by Ada over other PDLs;
other high order languages do not require compiler checking of module
interfaces. Since Ada PDL is used at all levels, the rigor is enforced
by compiler checking throughout the design and coding process. Partial
executions of the design and code can be used to enforce the rigor
further.

2.2.3.4 Early Incremental Top-Down Testing. A compilable design
enables incremental top-down testing to begin early. For a design'.
written in English, there is nothing to test early in the life cycle;
with Ada designs, actual code is available for early testing. The V
top-level Ada package specifications provide a framework within which new
modules can be tested as they are created. In contrast, other
methodologies often resort to bottom-up testing, even if top-down design
is used. With Ada, as new pieces are brought together, they interface
more smoothly. With other languages, pieces that work in isolation often
do not interface properly when integration is attempted.

Thus the expectation has been that stable designs would provide a
smoother integration phase. In fact, the history of recent Ada projects
indicates that this is indeed true, and that significant cost savings are
being realized.

2.2.3.5 Early Addressing of High-Risk Elements. The use of
compilable designs and incremental top-down testing provides the
advantage that high-risk elements can be addressed early in the framework
of the total design. That is, certain threads of the design can be
carried out in more detail, down to the coding of the lowest-level
modules, while other, less risky, parts of the system are still defined
only at a high level. This provides greater assurance that high-risk

2-12

2..

, ,- ,'.',...' . .'......".. ,....-....... .. . ,''' '"... . .. - ,

, ' '~~~~~~~~~~~~~~..'.o...'..."- '.........-.,. •... '.-.,....... - ' -.- "°

% %.

elements will work than does an approach in which such elements are
"bread-boarded" and executed in isolation. As an added benefit, the
customer gets earlier insight into the design. 'I

2.2.3.6 More Natural Progression from Design to Coding. As
mentioned in Section 2.1.1.3, allowing for a more natural progression of
activities on a software development can blur the various phases of the
development process. This may at first be perceived as a drawback in
that it will no longer be as easy to determine when top-level design ends
and detailed design begins (or when detailed design ends and coding
begins). In the past, this determination was somewhat simpler since the
activities carried out during one phase were clearly distinct from those '

carried out in the next. In fact, this perceived drawback is readily
addressed with a rethinking of milestones and is no drawback at all; the
old rigid milestones were, in practice, artificially imposed on a more
fluid development process.

2.2.3.7 Traceability Throughout the Design and Coding Phases. As
discussed in Sections 2.2.1.5 and 2.2.1.6, compilable designs lead to
better traceability across phases, and better traceability between
documentation, deliverables, and the system.

2.2.3.8 Better Deliverables. The Ada PDL products of the various
development phases can be transmitted to the customer as machine-readable '-

deliverables. They offer several advantages over traditional products. %

First, the deliverables are guaranteed to track the design; in fact,
they are the design. More traditional alternatives to PDL result in
multiple representations of the design. Even if these representations
track one another initially, it has proved impossible to keep all of them
up-to-date. With a single representation provided by Ada PDL, this
should no longer be a problem.

Second, the deliverables can be more easily reviewed. Since they
are in machine-readable format, automation can be used to assist in the
review process.

Third, minimal extra effort is needed in generating the deliverables.
They are produced as a natural outgrowth of the development process
rather than as an adjunct to it. Furthermore, much of the required
English-narrative deliverables can be automatically generated.

Finally, since the Ada language is the documentation, many software
developers find it more natural to produce than English narratives. "'

•... .

2-13

:is!NN

% A,,. _V

4,2. r110

2.2.4 The Realization of Ada Advantages

It should be noted that the advantages offered by Ada described
above do not accrue to a project by default. They are available, but
realizing them requires that the contractor and customer be well-trained
in Ada technology, and that they act upon that training.

2.3 Using Ada on AAS: Recommendations

The study participants concluded that the size and complexity of AAS
make software engineering, and not the programming language, the key " -

issue. Moreover, if properly used, Ada best facilitates good software
engineering practices and a sound software development process. There-
fore, the study participants unanimously recommended that the FAA commit
to Ada as the appropriate choice for AAS, given four strong qualifica-
tions to ensure that Ada's potential is realized:

* The software development process must be modified; the FAA and
contractors must use an approach tailored to take advantage of
modern software engineering practices and the support that Ada .
provides for them.

* It should be expected that appropriate selective use of non-Ada
code within the framework of an Ada design may be necessary when P F

Ada is found to be inadequate. '

* Contractor readiness for an Ada software development must be
evaluated.

" Positive risk reduction activities must be undertaken addressing .

the risk areas associated with Ada.

The large system nature of AAS makes it well suited for the
advantages offered by Ada; no other language offers more advantages. If
one of the likely alternatives--FORTRAN, C, or Pascal--were chosen, the
large system problems posed by AAS would remain, but many of Ada's
advantages would not be available for addressing them. Furthermore, if
JOVIAL (the language used to code much of the existing system) were __,
chosen, the FAA would likely be its only major user by the 1990s; JOVIAL's %
original sponsor, the Air Force, has switched to Ada. . ,'

At the same time, as noted above, the advantages offered by Ada will
not accrue by default; positive steps must be taken to realize them. If
such steps are not taken, or if risk reduction activities indicate
significant problems (e.g., compilers are inadequate), then the advantages
of Ada usage will be outweighed by the associated risks. In such a case,
the recommendation to use Ada would not stand. If the FAA commits early
to Ada, risks can be assessed earlier. Problem areas thereby uncovered .-

2-14

%• %%

-14 "
-b ~'F~' J* ~ FFFF.. *"...."v.. .

can be addressed in a timely fashion, or if need be, a fallback position

can be pursued without wasted cost and effort having accrued.

2.4 Summary

An Ada software development process can differ in many significant
ways from the one traditionally used on software. These differences
enable the advantages of Ada to be fully realized, resulting in a more -

effective development approach and in lower life-cycle costs.

However, in order to realize these advantages on AAS, it is
essential that the FAA modify the software development process, allow
appropriate use of non-Ada code, evaluate contractor readiness, and
undertake positive risk reduction activities. The latter, which should
comence as soon as possible, is the topic of the next two sections of
this report. e

AA~

.'-.,

2-15v

".

%% '

'....e,
'"S

2 -15 v~.' . -'.

+
-..

ff~~ ~ ~ ..?%'R W K -jr N
if %,

3.0 IDENTIFIED RISK AREAS

Although Ada offers the potential of significant advantages on AAS,
its proper use can only diminish the risks, not eliminate them. Many of
the risks arise from the newness of the Ada technology: staff must be
trained in Ada, tools must be developed and mature, and there are no
historical data for estimating cost and schedule. However, it will be
noted that many of the risk items are not peculiar to Ada; they would
apply even if another language were chosen as the implementation vehicle.

This section of the report addresses the risk areas identified by '4.
the study participants. Details are provided on the risk items within

these areas, and appropriate risk reduction activities are recommended
where possible. Both Ada-specific and general software engineering
recommendations are provided, though the latter are couched in the
context of using Ada. These recommendations can be used by both the FAA ,..
and the contractors: by the FAA as guidance in writing the Request for
Proposal (RFP) and Statement of Work (SOW), evaluating proposals, and
monitoring contracts; by the contractors as input to consider in
establishing their development process.

It should also be noted that only the AAS procurement was considered
in formulating these recommendations, and their applicability should thus
be considered appropriate only in that context. Nonetheless, the general
nature of the identified risks implies that the recommendations may have
applicability in a larger context, and could serve as the starting point
for formulating risk reduction activities on other large procurements. ,

3.1 Ada Performance Risks

Ada was designed to be used for meeting the performance requirements
of real-time systems. However, risks remain in this area that need to be
addressed if Ada is to be employed effectively. Two types of performance .

risks are considered--real-time and availability. It should be noted
that these risks are likely to diminish over time as compilers mature.

3.1.1 Meeting Real-Time Requirements

AAS must meet many demanding real-time performance requirements.
Indeed, as one study participant noted, a timely but imprecise indication
of an impending midair collision would be far superior to a precise
indication given after the fact.

Four real-time performance risk items were identified and are
discussed below.

3-1

- .-

; * % ~q, , " % , % . , % . . *. .%. .%o - '..'% .. -. -.. - .A - ..-. % ..-......-.-- . .

," • .%% . I , Zv ,,. ,. . r" . ,":"": , . - .".",. . . , . -. , . ,","-, . . .,,"-,
, ,', ' -.. : .. ,,,,.x - - -, ,.',.--- - --. ,- -., -,,_.,,.-.-.-.-.-. , .._... . ., -,.-.-.

3.1.1.1 Impact of Tasking. The foremost real-time performance risk
item identified was the use of the Ada tasking feature. Even though
object code generated by Ada compilers is generally as efficient as that
generated from other high order languages, industry experience leads to
two concerns about tasking: its object code often has poor run-time
performance, and there is a tendency to over-rely on it.

To address tasking risks, execution speeds of various tasking
features should be measured on the target machines. Based on these
measurements, contractor Risk Management Plans should provide a
methodology for the use of tasking; should indicate how performance
bottlenecks resulting from tasking will be avoided, and how they will be
detected and attributed to tasking when they do occur; and should provide
alternative paradigms that may have to be substituted for tasking.

Even ignoring its performance implications, Ada tasking has the same
risks that apply to any other concurrency facility. The problems
addressed by tasking are generally complex, and it is difficult to design
solutions such that there is no possibility of deadlock, starvation, etc.
among competing and cooperating tasks. Furthermore, tasking is one of
the most difficult Ada features to learn. Therefore, there should be a
methodology for its controlled use. Using tasking only where it is
specifically needed can reduce the associated risks. When this is done,
tasking expertise can be limited to a few senior designers for higher-
level use, and need not be of concern to most of the coders as they
implement lower levels of the code. Controlled use can also simplify
debugging since tasking errors can be difficult to find and repair.

3.1.1.2 Impact of Storage Management. Industry experience
indicates risks involved in meeting Ada's implicit need for the
availability of a large contiguous memory. The use of overlay techniques
on a 16-bit architecture may in all likelihood prove too restrictive.
Therefore, hardware maturity would be evidenced by the availability of
large contiguous memory. Moreover, the allocation and deallocation of
storage for tasks and other dynamic entities is of concern.

To address these risks, run-time storage management (i.e., the
allocation and deallocation of storage) and the amount of space required
by the run-time support system should be checked. If this is not done,
the amount of working storage for application software may be considerably
less than was planned when the hardware memory was sized. It is further
recommended that the Risk Management Plans use the results of such checks
to show that the memory subsystems of the chosen hardware families are
appropriate for Ada, or to indicate what work-arounds will be employed
for overcoming the problems.

3.1.1.3 Impact of Run-Time Support System. Even if Ada's features,
such as tasking, are used in an optimal fashion, and the compiler

3-2

% %1

We,%, ., e. -. -

generates efficient code for them, the run-time support system on the L
target machines poses a run-time performance risk. System services, and
the methods for invoking them, must be able to meet real-time require-
ments. This is, of course, true for any real-time system; it is of
particular concern on an Ada development because of the newness of, and ..

lack of experience with, the Ada run-time support systems.

3.1.1.4 Impact of Under-Use or Over-Use of Non-Ada Code. As noted
earlier, there was unanimous agreement that in spite of all of Ada's
advantages, there may still be areas of AAS that will require the use of
non-Ada code. Low-level display software (but not the graphics '.
applications built on top of it), device drivers, and in-line expansion
of assembly language bit manipulation routines were cited as possible
areas where non-Ada code may be needed for meeting real-time requirements.
Anticipating such needs in a Risk Management Plan should be considered a
positive sign of contractor awareness. Furthermore, the proposed use of
commercially available tools should be considered positively, whether or
not such tools happen to be written in Ada.

On the other hand, there is also the risk that performance will be
used as a convenient excuse for justifying an over-reliance on non-Ada
code. Since experience indicates that it is very difficult to anticipate
where performance bottlenecks will develop, benchmarks should be used to
help make this determination. Another possible approach is to design the V
entire system in Ada, providing Ada code for all package specifications.
Then in those areas where performance becomes a problem, the package -

bodies can be recoded in another language, with the result that the
non-Ada code will be developed in the context of an Ada design.

To address the above risks, the contractors' plans should include .,. -,'.
methodologies for using non-Ada code if required. These methodologies
should also document which other languages will be used for the non-Ada
code, and should reflect performance issues, as well as the difficulty of
interfacing non-Ada code to Ada. For example, in some instances there ..-.

are indications that interfacing to high order languages may be more
difficult than interfacing to assembly language. This leads to three
recommendations on non-Ada language selection: 6

" The FAA waiver process for using non-Ada code should be flexible
enough to allow its use when appropriate.

* If a contractor has already identified where non-Ada code will be
needed, through the use of benchmarks or other activities, or has
at least developed the benchmarks for doing so, this should be
considered positively.

* The methodologies should provide for tool sets that can be used
in determining where performance bottlenecks arise. --

3-3
e" % fW

,''. .* "-.e'X ""..'". "'.. ."", -'./''-"."-.-." "-".".":' "..v . v -....,..-"-"-"- .'" ".' ," ,".". ,"." ."."-."".-" . -"-"

%'

Demonstrations of the early availability of such tools and their
level of sophistication should be part of the FAA's evaluation
process.

3.1.1.5 Summary of Real-Time Performance Risks. As the discussion
in the preceding subsections indicates, early risk reduction activities
are needed to ensure that AAS real-time performance requirements can be
met. These activities are needed to identify which risks are of serious
concern in the hardware/software environment chosen by the contractor,
whether or not Ada is used. If these concerns are not addressed by prior

satisfactory experience with the same systems on similar projects, then
benchmarks are needed. They should be used to determine how tasking and
other paradigms are best employed, to identify memory constraints and
work-arounds for them, to indicate where non-Ada code should be provided,
and to determine whether the run-time support system can support large
systems development.

3.1.2 Meeting System Availability Requirements

AAS has very stringent availability requirements, with only three
seconds of down-time allowed per year. This is an area where Ada is seen
as a strength. However, two aspects of the language--exceptions and
elaboration--should be considered in designing the system, for they offer
the potential to improve reliability. In addition, the run-time support
subsystem, previously cited as a real-time performance risk, poses
availability risks as well. •

~3.1.2.1 Impact of Exceptions. The first aspect of Ada to be ,"

considered with respect to reliability is the Ada exception feature,
which is used to trap error conditions. In designing reliability into
AAS, careful attention must be paid to such conditions, regardless of the
chosen language. If Ada is used, the role for exceptions in handling
these conditions must be considered. If all of the conditions are not
considered, then Ada will perform default handling of the error, which
may cause the error to propagate upward. This will result in loss of the
local information needed for handling the error and could even stop the
system. Note that such error effects are typical of other languages,
which generally do not provide any exception-handling capability to the
application programmer. Therefore, Ada provides the capability to elimi-
nate system stoppage when an exception occurs, but there is considerable
risk because it is very difficult to ensure that all possible exceptions
have been properly anticipated.

Another concern regarding exceptions arises from compiler "
optimization, which can re-order, or even eliminate, statements in the
object code. Thus the order in which exceptions are invoked, and the
information that is available to the exception handlers, can be
implementation-dependent. The result is a danger of unpredictable

'4° % %
%% ~ * %*~~ %*~~* %* *

* ~ .* .* * * -. -.. .. '*

behavior. Furthermore, if some of the testing takes place on the
development machines, there is a risk that development and target
machines will optimize differently, resulting in different execution time
behavior for the same code. (See also Section 3.4.5 for other risks
involving differences between development and target machines.)

The contractors should show evidence of fully understanding how
exception handling works on their machines. Their methodology should
address mechanisms for dealing with the cited concerns and for using
exceptions. Exceptions should be used for true error conditions, and not
as a convenient way to implement normal occurrences, such as end-of-file
or loop termination.

3.1.2.2 Impact of Elaboration. The second aspect of Ada that
should be considered with respect to reliability is elaboration, a
run-time process that takes place when a program unit is invoked.
Depending upon the error-recovery techniques employed in AAS, the
elaboration time during restarts of the system could be too time-
consuming. Unless the compiler provides pre-elaboration (i.e., the
results of the elaboration execution are mostly attained before the
software is loaded into the target), stringent availability requirements
may not be met.

3.1.2.3 Impact of Run-Time Support System. The run-time support
system on target machines poses availability risks since it is the
foundation upon which application code is executed. If bugs contained
within such systems cause the software to abort, then meeting AAS
availability requirements may be at risk, regardless of how bug-free the
application code may be. The newness of the Ada run-time systems,
coupled with their required high level of sophistication (Ada real-time
support systems, unlike those associated with other high order languages,
are effectively mini operating systems), makes this a particular
concern. Even the compilers pose risks because their relative newness
increases the likelihood that object code will be incorrectly generated
from correct source code. Thus it is important that contractors
demonstrate the reliability of their support systems and be sufficiently
familiar with them to find work-arounds when troubles arise.
Demonstrated previous use of the same hardware/software environments on
large projects should be considered a plus.

However, regardless of what precautions are taken, the newness of
the Ada environments increases the likelihood of bugs. Therefore, it is
important that the contractors have a viable, documented plan for working

with vendors and having problems fixed in a timely manner, as they arise
(see also Section 3.4.6).

3-5

% %"
% % %

3.2 Risks Arising from AAS Software Size

The largeness of the AAS software--hundreds of thousands of lines of

code--results in its own risks. These often arise because the experiences A

gained on small systems simply do not scale up to larger amounts of

software in a practical amount of time. Although such risks would also
arise in non-Ada developments, the use of Ada makes them potentially more
troublesome because of the newness of the Ada compilers, environments,

and tools. lt-

3.2.1 Compiler Limits--a Key Problem Area

The first software size risk, which has caused significant problems
on other procurements, is the ability of the compiler to handle large

amounts of code in the context of the chosen hardware/software environ-

ment. For example, a compiler may work quite well on a small- to

medium-sized application, but run out of internal heap space without
warning when a very large compilation is attempted. It is therefore ,

essential that benchmarks be applied early for stressing the large system
aspects of the chosen compiler, on exactly the same hardware/software
environment that will be used for application code development.

Several options must be considered in choosing such benchmarks. w
First, it must be determined which ones will be chosen by the contractor

and which by the FAA. For those chosen by the FAA, a previous large Ada
project could be supplied. The contractors would make minimal modifica-
tions and then compile the benchmark to demonstrate that the compiler

correctly handles large quantities of code. Another possibility for an
FAA-supplied benchmark is a synthetic one whose overall characteristics %

(e.g., number of packages, number of procedures per package, nesting

depth, interdependencies arising from "with" statements) are similar to
those anticipated for AAS. Since such a benchmark is intended as a

compilation test and not as a run-time test, stubs could be provided for
the package bodies. In some cases, these stubs could be constructed in

such a way that they would stress the compiler for memory space or for
time.

Even if the compiler has no internal size limitations, its speed may
result in de facto limits as to how much code can be handled. The same
is true for the linker, library manager, and other tools: they may be

too slow to handle large volumes of code. Thus benchmarks are needed on
all these development tools to ascertain how quickly they can handle

large volumes of code.

Other types of compiler limits manifest themselves at run time. For P

example, a compiler implementation may support a limited amount of
dynamically spawned tasks. These limits should be known early in the %,'r

3-6 %%

% % % %,% %* %% 'P
. -- . -

procurement, so that designs can be constrained to remain within these k

limits, or steps taken to increase them.

3.2.2 Resource Adequacy of Development and Target Machines N

The adequacy of computing resources is another risk because Ada
developments typically require more development resources than do non-Ada
ones, partly because of the large amounts of checking that must be
performed by the compiler. (This should not be confused with the
efficiency of the generated code; in fact, the more efficient the
generated code is on the target machines, the more computing resources
are required to produce it on the development machines.) In effect, one .
is trading off large personnel costs and time at integration for more
complete computer checking throughout the software development. Machine
time is traded for human labor, and reliability is gained in the process.

An important aspect of resource adequacy is how the contractors
intend to proceed with their designs. Because of the interdependencies
among modules arising from the use of "with" statements, a small system
change can result in large recompilation ripple effects; total recompila-
tions of a week's duration or longer have been observed for very large
systems with slow compilers. Early benchmarks should be carried out .0
indicating the time required for such recompilations. Furthermore, the
development methodology should address this issue and display an aware-
ness of the need for stable top-level designs before larger staffs are
brought on board for parallel development activities: a week of idle
time forced by total recompilation is more costly the larger the team
size. Other issues to be addressed by the methodology include the
necessity for deferring some design changes until the next major
recompilation, the use of incremental compilers, and the availability of
tools that indicate what the effects of a particular change will be.
This information, combined with compilation speed benchmark results,
enables management to make informed decisions about proceeding with
design changes or deferring them.

There is also a need to address the adequacy of computing resources
on host and target machines. One concern, for example, is that .4.

sufficient disk space must be provided to hold the anticipated number of
system releases (including source code, object code, and on-line
documentation) that will be required at any given time. By comparing the
planned resource usage with that actually encountered, controlled
resource growth over the project life cycle can be achieved. The %
adequacy of the computing resources for the number of development
personnel and the anticipated number of recompilations must be considered '6
as well. This includes central processing unit (CPU) speeds, the amount
of memory, and the number of workstations to be made available. Again,
tracking of projections with actual experience provides the mechanism for
informed growth planning.

3-7

tZ

Lao,

Ilk

I %

4
_€

3.3 FAA Readiness for Contract Monitoring

Considering the newness of Ada technology and the many differences
inherent in an Ada development process, there is a risk on any Ada
procurement that the customer will not be ready to award the contract or
to monitor and manage the project. An understanding of Ada and software
engineering is needed so that contractor and customer can communicate,

with the result that the activities, the design notation, and the items
being tracked (e.g., number of package specifications) have meaning for ;/

the customer. Furthermore, there is a risk that lack of readiness could
jeopardize the development process. For example, unnecessary deliverables
could be called for, or a contractor could be unfairly penalized for
identifying and proposing positive risk reduction activities.

Contractor readiness is also needed to make informed decisions about
waivers for the use of non-Ada code (see Section 3.1.1.4), and to tailor
DOD-STD-2167. In the latter case, there is a risk of not allowing the
contractor to tailor this standard towards an Ada development process.

3.4 Software Support System Risks

Software support systems are the foundation upon which code is
developed and executed. Thus they are a key concern--on both the
development and target machines. Always a risk item, they are especially %
so on an Ada development because of their newness. This is particularly " .

true on the target machines, since vendors often put most of their
emphasis on the development environment; support for the target machine
may be limited to a cross-compiler back-end for their product line. The
result can be a "bare-bones" target environment not suitable for testing
and running a large system.

Indeed, the history of Ada indicates that a likely problem area is
the unavailability of environments with adequate maturity; this has been
the cause of failures on past projects. Therefore, an early assessment, "'K
such as through the use of benchmarking, is made of the environments. If
they prove to be unacceptable, there is still time to find alternatives;
if their inadequacies are manageable, steps can be taken to find work-
arounds or to have the environments mature on the job through corrective
measures.

Guidance in addressing environment risks is available. For example,
the Software Engineering Institute is working on criteria for evaluating
environments, and the National Aeronautics and Space Administration (NASA)
Space Shuttle program has undertaken development of its own Software

Support Environment.

3-8

%~. % %, %.- -, %.,%

L R1....
-*

3.4.1 Functionality

There is a risk that insufficient functionality will be available in
the support environment. This risk pertains whether or not Ada is used.
In fact, incomplete toolsets are a common problem in the software
industry. On an Ada development, this may be especially true since the
newness of the technology means inadequate time may have been available
for developing the toolsets. (See also Section 2.1.6.3 for a characteri-
zation of an Ada toolset.)

3.4.2 Performance

As discussed in Sections 3.1.1.3 and 3.1.2.3, the support systems
present risks for meeting real-time and availability requirements.

3.4.3 Maturity

Ada technology has clearly advanced to the point where production
quality compilers are available for use on a wide range of computer
architectures. Nonetheless, the maturity of a compiler and its
associated tools and environment remains a concern for any particular .
hardware suite; overall maturity of the technology is of little solace if
the technology is unavailable, or is not of production quality, on the
hardware chosen for the application. "Maturity" is hard to define, but
implies, at a minimum, being bug-free, having the ability to work with
large amounts of code, and offering a comprehensive set of tools.
Validation of a compiler is necessary, but validation alone is %
insufficient to ensure production quality.

A mechanism for handling exponential compile time growth would be p

considered evidence of maturity. Elaboration should be optimized for
real-time systems. A demonstrated mechanism or technique for interfacing
with other languages should be available.

Since maturity cannot be achieved rapidly (e.g., several years are A
needed for compilers to attain maturity), prior successful use of the -
exact hardware/software environment on other large projects is advan-
tageous. If this experience is not available, then other techniques
(e.g., benchmarks) will be needed. Early availability (see
Section 3.4.4) and contractor preparedness for modifications (see
Section 3.4.6) will also allow maturity to be achieved.

3.4.4 Early Availability on Development and Target Machines

The early availability of a run-time support system, on both target
and host machines, is essential. Although such availability is strongly
recommended regardless of what language is used, it is especially
important for Ada: because of the difficulty in producing Ada compilers,

3-9

* r V

there is a history of projects never achieving access to satisfactory
compilers and support systems for the chosen hardware/software environ-
ments. Therefore, an early demonstration of such availability should be
required of the contractors. Such demonstration should include
satisfactory results from the compiler sizing benchmarks discussed in -6 NO

Section 3.2.1.

3.4.5 Portability

Although it is not anticipated that AAS code will be reused on other
projects, two types of portability within AAS are of concern. The first
of these--the ability to transfer code from development to target
machines--is essential if some of the testing takes place on development , AM6
machines. The second type--the ability to transfer code from one major
subsystem (e.g., the Initial Sector Suite System [ISSSI) and reuse it on
another (e.g., the Tower Control Computer Complex [TCCC])--is desirable.

Many Ada features were designed to enhance portability, and the use
of a validation suite was intended to enforce it. Indeed, Ada is more
portable than other high order languages. Nonetheless, operating system
dependencies remain, and Chapter 13 of the Ada language reference manual
(U.S. Department of Defense, 1983), allows for machine dependencies. For
example, code optimization schemes used by the compiler may result in
different run-time behavior for exceptions on development and target
machines. The contractors should demonstrate an awareness of these
differences, perhaps through the use of benchmarks.

In order to ensure that the developed code will run on the target r ,
machines, the contractors should provide an early assessment of the
commonality of Ada's implementation-specific aspects on target and
development machines. The results of such an assessment should be
incorporated in their methodology guidelines on minimizing the use of
implementation-specific features. Where such features are necessary, %-Ne
their use should be limited to the common intersection only.

,. .1e

In some cases, such an assessment may indicate that an essential
feature is lacking. If this is so, then early access to such information
allows the contractor to have this feature developed in a timely fashion,
or to find alternative compilers. The commonality assessment can also
address the impact of optimization on such items as exception handling
(see Section 3.1.2.1), testing, and program correctness.

3.4.6 Contractor Preparedness for Inevitable Modifications
-,6

Early demonstrations of tool capabilities, such as through the use ..-.
of benchmarks, are considered important since surprise limitations late
in the life cycle can ha',- disastrous consequences. However, it is
realized that, even given very good early risk reduction awareness and

3-10

,eq ,.,, % ' ' '-. . ,,'," ",, ..', ¢ . .- ,- , . .- - . - . . . - .. - .. ,

%..$" , . G "/ :/,.";.;,, .,: ",-- . ;:.'.- :",", ' ."-- -.. ..-- . _.,.- '.--;-' , - ..- /; --;..-.'.',:.-'-'

associated activities, some tailoring of the environments to the system It

being developed is inevitable on systems as large as AAS. (This is true
whether or not Ada is employed.) Thus the contractors should document in
their plans an approach for addressing problems when they arise, and
should allocate sufficient time and money resources for proceeding with ..

the documented approach. One attractive solution, which has been used
previously, is to have all tool and environment vendors under subcontract
on the procurement, in order to ensure responsiveness. It may even be

desirable to provide them with work areas on the contractor's development
system so they can verify and fix bugs quickly. This is preferable to a
cumbersome Problem Trouble Reporting procedure in which difficulties must
be overcome in reproducing bugs on a different system before the bugs can .
be fixed.

To summarize, an indication that troubles are anticipated in the
support environments should not be considered a weakness in the proposals,
but rather realistic addressing of a risk. This is not a contradiction
to the early availability recommendation in Section 3.4.4: enabling _.,

existing environments/compilers to mature is acceptable; developing new ..
ones from scratch is not.

3.5 Personnel Risks

Several risks regarding contractor personnel have been identified, \.. .

as discussed below.

3.5.1 Ada, Software Engineering, and Large System Experience

For the contractors to proceed successfully with AAS, it is
necessary that staff have sufficient experience and training. Software,%
engineering training is needed--not just Ada training. The Ada experts
repeatedly stressed to the study participants that such training is
needed for management personnel as well as for development personnel. .

(See also Section 3.3 on the importance of a prepared customer.)

Sufficient lead time must be allowed for the requisite expertise to
be acquired. For example, estimates range from six months to several .

years for the time needed to get programmers up to speed on Ada and the
associated methodologies. Thus a one-week training course after contract
award, while better than nothing, does not suffice.

3.5.2 Staffing Profile with a Small Experienced Front End

In order to achieve the full benefits of a sound software engineering - -

approach, including a stable top-level design with well-defined inter- -.-
faces, a small team of experienced designers is needed up front. Again,
sufficient lead-time is needed for bringing this team on board, and more
than Ada experience is required. Judicious use of such people up front

3-11

V.

allows successful deployment of a much larger team of less experienced

personnel later in the life cycle.

3.5.3 Commitment to AAS and Retaining the Team..

The contractors should indicate a commitment to retaining key
personnel needed to exercise control over the design and implementation
throughout the project (see Section 2.1.2). For example, it is important
that the participants in a software engineering exercise (see
Section 4.3) continue to play key roles throughout the development
process. Because of the relative scarcity of Ada personnel, attrition
issues, always a problem on software development, are particularly acute.
The contractor needs to indicate what incentives will be used to retain

key personnel and how personnel will be replaced if lost.

3.5.4 Subcontracting Approach

The relationship of the contractor to its subcontractor personnel is
important. All training and experience requirements that apply to the
contractor apply equally to the subcontractors. The latter should,
moreover, be as proficient as the contractor in the chosen software
development methodology, and their use of it should be enforced. Soft-
ware development methodologies should show how the subcontractors are
truly part of the development team (e.g., indicate their participation in
the design and review process).

The contractor/subcontractor relationship is of concern on any
procurement. The newness of Ada methodologies that allow full realization
of the Ada potential makes this relationship of particular concern on an
Ada development effort.

3.5.5 Commitment to Tool Usage, Including Management Tools

A sophisticated toolset is no advantage if it goes unused. For
example, simply dropping a six-inch user manual on a manager's desk will
not be sufficient to guarantee use of a project tracking tool. Training
can be considered evidence of a commitment to using the provided tools. I
Another indicator is a track record of prior usage, which also helps
ensure tool maturity.

3.6 Management Risks

Strong, disciplined management is essential for success in any large
software development process. For example, all personnel must be familiar "
with, and use, the chosen methodology. The managers must understand the
methodology well enough to enforce it, and to permit refinements when,
but only when, they are necessary. As new personnel are brought into the A
project, they, too, must become part of the project culture.

3-12

% % *,,.%.% %

r~~~~V Or.. .. W_ . -" . .
m_ . • , " • . = _ _. . . %. . . ' • .. %'% '% . . % " ." = -= % • 5 '

One of the advantages of an Ada development process is that proto-
typing and the rigorous design notation will make design flaws more
readily apparent earlier in the development process. However, realizing
the benefit of this potential advantage requires that the contractor have
flexible management to act upon this information. As work at lower
levels of the project reveals top-level design flaws, management must be
willing to back up and correct the higher-level problems. Flexible
management is also needed to forgo the use of the design methodology in
the limited number of cases where it is not applicable; for example,
object-oriented design may not be appropriate in implementing well-defined
communications protocols. Furthermore, nice-to-have, but inessential,
design changes may have to be deferred to reduce the number of major
recompilations. Management flexibility is also needed in approaching the
use of non-Ada code. For example, even though guidelines may suggest the
use of C over assembly language for implementing a certain function, the
use of assembly language may be necessary if productivity will suffer
because of difficulties in interfacing the C code to Ada.

Implicit in the preceding discussion on the need for flexible
contractor management is that FAA procedures allow for this flexibility
to occur without the contractors' expending undue effort in gaining W%
permission. Even if the contractors have properly approached the use of
non-Ada code, they may perceive an implied stigma in asking the FAA for
waivers from using a single language. Also, as noted in Section 3.1.1.4,
the FAA waiver process for using non-Ada code should be flexible enough
to allow it to be invoked when appropriate. Moreover, timely FAA
responses to requests for waivers should be given. Thus the FAA may want
to consider the use of general guidelines rather than case-by-case
waivers.

3.7 Schedule and Cost Risks

3.7.1 No Historical Data Available

Schedule and cost risks, always high on a software procurement, are
increased for an Ada development. The newness of Ada means that no major
procurements have gone through an entire Ada development process,
including the maintenance phase. Thus there is no familiar application Al
or environment that can be used for guidance in generating AAS cost and
schedule estimates. This is the foremost cost and schedule risk
resulting from the use of Ada.

3.7.2 Lines of Code a Poor Estimation Technique ,.

Software estimation techniques have traditionally centered around
lines of code estimates. There has always been controversy as to what
constitutes a "line of code": Should comments be included? blank
lines? data statements or only executable lines of code? Unfortunately, %-%

3-13 ""

4, 4. ,.,...'. , .. , . . . ,
-.,.-;,,,.,,,'.:.,;.; ..-....-. ,,., .; ..,:..-..... . j.,_,.. -...'.'...., ,%','..... .; ,.%.,,

.%

the situation is worse in Ada. The most apparent, but probably least

important, complication is that there is not a one-to-one mapping between

Ada statements and source lines. For example, an if-then-else statement

can span multiple lines; conversely, multiple statements can appear on

the same line, although this practice is generally frowned upon. An easy

solution to this problem is simply to count semicolons. However, this

solution ignores more significant issues. The extreme strong typing in

Ada requires that all data structures be clearly laid out in "type"

statements and that all variables be declared. This is not done in some

of the older languages such as FORTRAN and JOVIAL. The cost and schedule

effects of producing such statements, relative to the effects of producing

a line of executable code, have yet to be determined. Fortunately, past

experiences in Pascal may provide guidance in this area. Conventions,

such as those provided in Boehm, 1981 (p. 59), should be established for

counting lines of code. Whatever convention is chosen, its consistent

use throughout the project life cycle is essential.

A more significant issue is how to count package specifications,

since there are no corresponding constructs in other languages. At first

glance, specifications may seem somewhat insignificant since, in size,
they may be only one-quarter to one-third as large as the corresponding

package bodies. However, this perception is deceptive, because they are

more difficult to write. This, in turn, is because they embody important

design aspects such as encapsulation, information hiding, and data

abstraction, and even form the structure of the overall software

architecture. In fact, they may often be written by the design team

early in the project, and are thus not produced during the formal coding

process. Furthermore, some of the information in package specifications

is repeated if there is a corresponding body. Should such code be

counted doubly? Again, there is no right answer here, but at a minimum
the contractors should show awareness of the problems and provide an

intelligent means for addressing them. Counting the semicolons may be a

naive approach.

By far the most serious impact on estimation techniques is the use .§1

of Ada generics. When properly used, generics are a boon to productivity,

since a single line of code can be used to tailor and reuse

("instantiate") a code template generated elsewhere on the project. How
such instantiated code should be counted is an open question--as a single

line of code, or as the perhaps thousands of lines that it generates?Even writing the generic template poses estimation problems, since ' ,_

writing such a template takes somewhat more effort than writing the

equivalent nongeneric version; the payoff comes in its reuse. Because of

these difficulties, on some previous Ada procurements, contractors used
other estimates (e.g., staff months), and then "backed out" an equivalent

line of code measure corresponding to the the measure being used. Such
"lines of code" might correspond to the number that would have been
produced on, say, a FORTRAN project; however, they do not necessarily %

3-14

" .' V\ .% " • . 4 . ". •., . ." .. . , .. ."- • . . " ." . " ." . . *V* ' .* , ,.-

, . , % ". '.%.'-' .'.'x '..'..'. % N '- '.'..'.Q. ', '... - '. . ".". .-' ".-.. ,. ".'-''- -.'- "....' ".'. ..'.'-.-- .% '-J..- -'

, V,' -qC ,', ,r C % . - . • .,, ' ' . ' , e , _ ,% %J. _ :e .' ' , i,

17

•.. % ,

correspond to those actually produced on an Ada procurement. N
Unfortunately, we have no experience to serve as a basis for mapping
FORTRAN lines of code into those for Ada, or for determining the relative .,.

amounts of effort needed to produce them.

In summary, the limited past history with Ada means that there is no
prior project experience to draw on; such historical data are the
cornerstone of popularly used commercial models. In lieu of this 4
experience database, one is forced to resort to analogous experience with
other languages. However, the more significant the estimation problem
becomes, the less guidance is available in relating this problem to
experiences gained with other software development languages. Nonethe-
less, if Ada is to be used on AAS, the FAA may want to consider
alternative measurement techniques. Ada-oriented measures, such as
number of completed package specifications or bodies, may be more
appropriate. The advantage of using such Ada-tailored techniques is that em,

the same ones can be employed throughout the life cycle, including the
design phase, to derive early quantitative measures of progress.

3.7.3 Impact of Ada Methodology and Milestones

The revised milestones resulting from incremental development ., .

provide a natural development progression, reflecting the fact that
different parts of the system achieve maturity and completion at
different times. However, this approach tends to blur the distinction
between various phases. Again, there are no historical data available to
indicate the resultant cost and schedule impact.

3.7.4 Tracking

The ability to track a project is essential since such feedback can
be used to provide early warning of needed changes. Past experience
indicates that far too often, both contractor and customer fail to track -
progress and update costs based upon that tracking. Failure to track
could be especially troublesome on an Ada development, because the lack
of prior experience makes initial estimates less reliable.

Thus it is strongly recommended that both contractor and customer
commit to a tracking process that will enable them to learn from the
experience database being generated throughout the procurement. At all
times, indicators of planned vs. actual progress should be available.
Machine-readable deliverables provide the opportunity for doing this with
the assistance of automation; for example, the number of package specifi-
cations (planned and actual) could be tracked vs. time.

In summary, to realize the tracking potential offered by an Ada-
oriented development requires the following:

3-15

.
%o% % %P.-% IN

om 0. %. J. % " - ," ' ' ". -"", - - -#',- -= . 4 ". "" . . ".-'-""'--. . - "•--"- -"•" " .

" That the proper measures be defined

• That the proper tools for providing these measures be developed %J-

* That both contractor and customer commit to using these tools in
a tracking process

3.8 Other Risk Areas

Several other risk areas have been identified, as discussed below.

3.8.1 User Interface and Graphics

Acceptance of the finished AAS product by air traffic control
personnel is essential for its success. Achieving such acceptance, and
meeting the goal of increased controller productivity, requires an
outstanding user interface to the system, regardless of the language used
to implement it. Such interface development requires multiple iterations
with the controllers in the loop. Thus the use of prototyping is
strongly encouraged in this area. As is noted earlier in Section 3.6,
management flexibility is the key; the ability to back up and address
mistakes is particularly crucial. One possible imped.,ent to such . -

flexibility would be the use of a fixed-cost contract (see Sections 5.5
and 5.6). Since a requirement such as "be user friendly" is difficult to -

define precisely, the use of a fixed-cost approach in this area can .. €
easily lead to a "design to cost" solution.

Another risk in this area is the question of whether Ada is the most 'S.

appropriate language for implementing graphics; as assessment may be '
needed to determine whether another high order language or assembly.-
language would be more appropriate, at least for the low-level routines .-S'
such as device drivers.

3.8.2 Ada Orientation of Design Specifications

One risk is that the design specifications will not be suited to an
Ada procurement. The RFP should allow for, and the contractors should
propose, machine-readable deliverables that are a natural consequence of 6
a compilable design process. Other types of deliverables could be worse
than useless; not only are they costly, but their production detracts -

from the more meaningful work that is needed.

3.8.3 Ada Orientation of Software Development Plans "..'

The methodologies proposed in the Software Development Plans should
show cognizance of, and exploit, the many differences that will result
with an Ada procurement. A "business as usual" proposal will mean that

3-16

% -

e- J...' . ~"i . ;ZOZ *- *j. // ' .e~.~.~P. '. . . A

• ,-. ,

all of Ada's risks will be inherent in the procurement without the
offsetting advantages.

3.9 Risk Summary

The proper use of Ada can reduce some of the risks on a large
software development described in this section. However, the residual %
risks that remain must be addressed. This section of the report has
focused on specific risk items organized into eight general areas.
Wherever possible, solutions addressing the specific risk items have been ,'-.

proposed. In Section 4, some general risk reduction activities are
recommended for addressing risks in a broader context. . -:

,, **.

3'1

3-1 7 .-?.r?..

'-,p-

, . -.. -:,--.-,.,:,-Z-.Y,-..-.'--. 2.. ... :.. ;.. L.... . . .;.. :. - . --..- -. -..-..
• *, -. •. -, % ", ". - , ° ° °- ° . , . . % % - .• .• ° - . . %- .- N

4.0 ADDRESSING THE RISKS

This section of the report recommends five general risk reduction

activities: Risk Management Plans, Software Development Plans, a ,

software engineering exercise, compilable designs, and benchmarks. If

properly carried out, they can minimize the effects of the risks
identified in Section 3.

4.1 Require Contractors to Develop Risk Management Plans

Recommendation: The contractors should be required to submit Risk

Management Plans as part of their proposals. %

The Risk Management Plans should address each of the risk items

identified in Section 3 of this report; in addition, they should identify %.e

and address other risks. For each item, the following material should be

included in the plans:

" Documentation of the item, including an indication of its fy..'-

significance q

* A risk resolution approach, including milestones and schedules

* Assignment of responsibility to individuals or organizations

* Identification of the resources (personnel, computing, and other) I
required for addressing the risk item

The plans for the individual items should be coordinated with each other

and with the overall Software Development Plan.

4.2 Require Contractors to Develop Software Development Plans

Recommendation: The contractors should be required to submit Ada-

oriented Software Development Plans as part of their proposals.

Any program as large and complex as AAS should require a Software ..

Development Plan, encompassing material beyond the scope of this study. 6
Nonetheless, the plan should indicate how Ada will affect the software

development process and should include the following Ada-oriented

material:

0.. %

% .1

!

4-1 .

0 A methodology showing how Ada is used, including the following:

- Use of the the language's tasking, exception, and generic -
features

- An approach for handling the ripple effects arising from
redesign

- An approach towards total recompilations

* A substantial tailoring of DOD-STD-2167, if that standard is used
on AAS

* An emphasis on the use of benchmarks, prototyping, and
incremental development, with a clear indication of the
relationship between the results of these activities and the
overall methodology

* An approach for using non-Ada code (see Section 3.1.1.4 for
specific recommendations)

* A discussion on the use of Ada-oriented tools

* A method for transferring the Ada technology and methodologies to
all the subcontractors involved in the software development effort IV

* An approach for reusable software that includes the following:

- Development of reusable software

- Identification and incorporation of available reusable software

To summarize, the Software Development Plan should contain material
that characterizes a sound development approach, such as the one
described in Section 2 of this report. Its contents should be familiar
to all development personnel, and its use should be enforced throughout
the software development.

4.3 Conduct a Software Engineering Exercise

Recommendation: A software engineering exercise should be conducted.

A software engineering exercise (sometimes informally termed a A
"contractor take-home exam") is a novel approach to risk reduction. The
recommendation for its use is based on initial indications of its .,

viability and success.

4-2

',W d', %

Briefly, in conducting a software engineering exercise, the FAA
would define a software problem that the contractors would then be asked
to solve. In carrying out the exercise, the contractors would be
required to use their AAS personnel, their software methodologies, and
their toolsets. More details follow.

The study participants recognize that they are not familiar with the
detailed software progress to date by the design competition contractors,
the software related deliverables provided during the course of the
competition, or the detailed plans for expected deliverables to the time
of contract award. As a result, the actual performance of the software "
exercise by the contractors may vary from the description below, but the
intent of the exercise is very significant, and its conduct should be
required by the FAA.

4.3.1 Description of the Exercise

A software engineering exercise would be carried out as described
below.

4.3.1.1 Preparing the Exercise. First, the FAA would prepare a

short problem statement, perhaps four pages, defining the requirements
for a relatively small-scale software development effort. It is
important that such a problem statement be tailored towards the AAS .*
application, addressing some of the perceived risks of AAS. In fact, if
properly constructed, the exercise could have spin-offs, perhaps a
prototype, that would have been developed anyway, somewhere else on the %
AAS procurement. Thus, problem statements written for exercises on other
procurements are probably not appropriate for AAS. S/i

It should be noted that preparing the problem statement would not be
an easy undertaking. If the problem were too simple, the results could
be misleading: the contractor could use a few expert software engineers
for the exercise, whose performance would not be indicative of what could
be expected from the entire contracting team on the AAS procurement.
Conversely, if the exercise were too complex, then little progress would

be made on it during the limited time allowed. (Even worse, so much time
and effort could be devoted to the exercise that it would detract from
the overall AAS development effort.)

To best ensure that the problem statement is of proper scope, it is
strongly recommended that an FAA team dry run the exercise before
presenting it to the contractors. Doing so could uncover defects in the
problem statement, so it could be revised before presentation to the
contractors. A dry run could also provide the FAA with insight into the
problem, allowing for better evaluation of the contractors' results. P

4-3 'p*

%. 5

%~ %

,,. ~/~5.% %5 "-" . 55

S. ~** ~ . .* ... ?*~*..5.5.. *.
'_,, p '_p,5*. ..5 .P. . . ".,.,.I

°
-""-..'Z. -'''.-".."",". *'"".. ''. .. ""*...*""". -5.""- "- ."- - -. .. . _.- .- ".

4.3.1.2 Conducting the Exercise. The contractors would be given
the problem statement and asked to carry it out. Only a limited amount
of time, perhaps three weeks, would be allotted for this purpose. To
,obtain meaningful results, it is essential that the exercise employ key
AAS personnel who will be involved on the actual procurement, as well as
the software development methodologies and toolsets defined in the
Software Development Plan. Typically, ten contractor staff members,
including subcontractor representation, would be involved.

During the exercise, the contractors' activities would be in the
form of an inverted triangle. That is, compilable Ada would be used to *. ..
develop the following: a top-level design and software architecture for -
the entire problem, a partial detailed design, and code for perhaps one
key thread. The entire effort would be documented in accordance with AAS
documentation standards.

4.3.1.3 Timing of the Exercise. The exercise would be carried out
after proposal submission, but before contract award. Thus, the
contractors would not have to split their team between two activities--
responding to the RFP and carrying out the exercise. Furthermore, the
software engineering exercise activities would then dovetail nicely with
other procurement activities: while the contractors are preparing their A
responses to the RFP, the FAA can be preparing the exercise. Then while
the FAA is performing technical evaluation of the proposals, the
contractors can be carrying out the exercise.

It is suggested that the exercise be required as an adjunct to the
RFP response; however, it could be FAA-funded as part of the DCP risk
reduction activities taking place between April 1987 and the Acquisition
Phase contract award.

4.3.1.4 Evaluating the Exercise. The final step of the exercise
would be an FAA evaluation of the exercise results, in accordance with
AAS contract monitoring procedures.

4.3.2 Results of the Exercise

A software engineering exercise would have several results. First,
it would provide a test of the contractors' planned methodologies; this
is because the contractors would be required to adhere to those
methodologies in carrying out the exercise. Second, it would provide a
test of the contractors' ability to design and implement software using
their methodologies. Third, the results could be used by the FAA as
technical criteria for assessment in making the Acquisition Phase

contract award, as an adjunct to the technical evaluation of the
proposals. Finally, the exercise could result in an improved Software
Development Plan; any contractor activities deviating from those laid out
in the plan during this, its initial use, would have to be documented.

4-4 ..

%'
J. .0 .r e .r l

% % %~
J1 -P Jk

%d

4.3.3 Benefits of the Exercise

There are many benefits to be realized from conducting a software
engineering exercise.

First, by requiring that the contractors adhere to their Software ,
Development Plans, the FAA would, in effect, be requiring them to turn
"dead" paper plans into living methodologies. In so doing, the
contractors would undoubtedly find flaws in those plans. Thus, necessary
revisions to the plans should be allowed, provided that such revisions
are well documented and become part of the final Software Development
Plans used on AAS. This would result in better, partially tested,
methodologies for use on the actual procurement. Similarly, problems
with the various toolsets could be identified early, thereby removing
them from the critical path of the AAS development effort.

Another benefit resulting from the exercise is that contractor and
subcontractor personnel would be forced to become familiar with the
methodologies and tools they had proposed for use on AAS. Thus the -
exercise team members would become experts who would serve as an
important nucleus of expertise for the larger procurement effort. The
exercise would also serve as a partial mechanism for keeping the 4''
integrated software team together and current on AAS during the time
between proposal submission and contract award. %

A corresponding benefit would result for FAA personnel: based on
their experiences in evaluating the exercise results, the FAA would gain .

familiarity with its own contract monitoring procedures, and could modify
them if necessary. As part of this evaluation, the FAA could assess the
adequacy of the deliverable requirements, and determine whether they
should be altered. A spin-off benefit of the exercise is that an FAA -"
dry-run of it would provide valuable training in software engineering and
in Ada.

Another benefit is that the exercise results would provide the FAA
with an opportunity to observe how the two contractors perform on a
real-world problem. Proposing compilable PDL designs is desirable, but ,. .

actually producing them on such a problem would provide greater
assurances.

Finally, FAA review of the exercise would indicate whether the '
Software Development Plans were followed and how many revisions were .-

needed to carry out the exercise. This could, in turn, indicate the
viability of the plans and of the contractors' commitment to using them. "

4-5

' .-

,p

., ? e %
*. , .. %.%

4.4 Require Compilable Designs

Recommendation: The AAS contractors should be required to develop '
compilable Ada designs for their proposed systems and deliver them to the
FAA in machine-readable format. b

As discussed in Section 2, compilable designs are an essential part
of an Ada software development. They may also be considered part of the
risk reduction activities. Therefore, this recommendation on compilable
designs stands even if it means that some or all of the existing designs
must be redone.

A corollary to this recommendation is that the FAA should thoroughly
review the Ada designs. This review should include verification of
compilability, and a check of how much of the design appears in comments
as opposed to how much is expressed in Ada. In effect, an Ada-oriented 'A1 .
PDR is called for. The size of this activity is not necessarily as large
as it may at first appear. Because of the compactness and rigor of Ada
notation, it is anticipated that a redesign in Ada would be considerably
more compact than any corresponding English-oriented designs that may r

previously have been produced. Furthermore, if a moderately sophisticated
toolset were employed, much of the deliverable documentation could be
generated automatically from the Ada designs, and would not have to be
regenerated.

As noted earlier, compilable top-level designs are considered a big
plus. Their advantages include providing evidence of the contractors'
ability to perform, providing early consistency checking of the design,
and providing the opportunity for the use of tools as part of the FAA
reviews. For more details on these and other advantages, see
Section 2.2.3.

4.5 Benchmarks Should be Used '

Recommendation: Benchmarks should be required for use in addressing
many of the identified risks.

Benchmarks were previously suggested as a means of achieving risk
reduction for many of the items discussed in Section 3. For the
contractors, they identify problem areas, which can then be remedied; for
the FAA, they provide an indication of contractor readiness. Because of
their importance, benchmarks are discussed in some detail in the
following three subsections.

4.5.1 Use of Benchmarks on Development Machines

On the development machines, early application of benchmarks is
needed to address the large system size aspects of the AAS procurement.

4-6

.'

3 .1 ~* '- ~ , 3.-
-, ~ ~ . ~ 'U ~ '~~ ~'%:% ~ .q";*, ~

'. "t'%' .V

For example, the compilers should be stressed to their limits to find out

how large a system they can successfully compile.

Similarly, the library and configuration management tools should be

stressed to determine their adequacy for a large system procurement. "V. .

Since there will be a large team of developers, the tool assessment

should include tests of simultaneous access by multiple users.

Early benchmarks demonstrating the functionality of the support

environment should be carried out as well. These can be used to generate

changes to the system in time for development activities.

Benchmarks measuring performance are needed for ascertaining how

much code can be compiled within a given amount of time. Measurements on

disk space, and on memory and CPU utilization, are needed. A determina-

tion can thereby be made as to the adequacy of the hardware resources

assigned to development personnel.

4.5.2 Use of Benchmarks on Target Machines

The large system aspect of AAS should also be addressed by target

machine benchmarks. For example, if spawned tasks are to be used, then

the run-time limit of the number of such tasks that can be run on the

target machine must be ascertained, and the system design constrained to

be within those limits. Similarly, memory limitations should be
ascertained.

Target machines frequently have only "bare-bones" environments, as

contrasted with the often much richer environments on the development

machines. Thus benchmarks addressing the adequacy of the development
machine toolset are needed.

AAS must run under the framework of the target machine run-time

support system. Thus this system poses risks with regard to both
performance and reliability, and benchmarks are needed to address these
two areas. Performance measures on the target machine can be used in

determining how best to employ tasking; the results from similar
benchmarks on the development machine would be largely meaningless.
These performance measures can also ascertain memory constraints imposed

by the hardware, and determine whether enough memory has been provided.
In addition, performance measures can give an indication of where non-Ada

code should be used. Benchmarks illustrating the best mechanisms for
interfacing to non-Ada code are needed as well.

Fairly elaborate benchmarks may be needed to test graphics and the user

interface. For example, as part of the efforts involved in prototyping

various user interfaces, measurements of the graphics hardware performance

(e.g., time needed to refresh a screen or to zoom) should be obtained. V

4-7

• . .. % " % • °o . % -~~~~~ . , ° ..-. ,0"....- *", . , ,".v ,",r;O/, , ',"-'..-':.'"'.:."-,.. ,.4-,".".""" P % "" " "" " " ""?:"""" '""":"/: :'"

#-- IM

4.5.3 Use of Benchmarks That Run on Both Machines

Benchmarks that run on both development and target machines are
needed to identify which Ada features are supported differently on the
two machines. Results from early application of such benchmarks can be
be fed back into the Software Development Plans and methodologies. In
some cases, this information would take the form of prohibitions (e.g.,
"Don't use feature X because it is not supported on all the machines.").
In other cases, some restrictions might have to be invoked (e.g., "The
largest-sized array that will fit on all machines is <i> words; thus no
array should be larger than that, even though there is no practical limit
to the size of arrays on the development machines."). Assuming the
availability of adequate documentation, these benchmarks might be simple
verifications of documented limits.

4.6 Summary

The use of Ada, or any other language, on a large systems development
has many inherent risks. However, recent experience indicates that these
risks are manageable if properly addressed. To this end, the above
recommendations for risk reduction activities have been provided.

€,~

N L

"1

4-87

,'." ',, ." ',. ", ",, . %.. . ,,' . "- --. . '. N ," \. ' . ". " '.,' '. . .e . , ,.,. .. N •._,, ,,, ,% . . . ,,. - . ."
% %

il'-.- *'~ ~'N~% ' ''~N V~V.,~z.*'N .*-

5.0 NEAR-TERM FAA ACTIVITIES

This section of the report summarizes multiple near-term FAA

activities that must be undertaken to accomplish the following:

" Carry out an Ada software development on AAS.

* Realize the advantages of a software development approach such as

the one characterized in Section 2.

" Address the risk items identified in Section 3.

* Carry out the risk reduction activities suggested in Section 4.

To put these recommendations into the proper temporal context, it

should be noted that when the recommendations were being generated and

this report written, the AAS had been under Design Competition Phase

(DCP) for several years. There were two competing contractor teams, and \.

the FAA was actively pursuing four goals:

" Developing a Statement of Work (SOW) for activities to be carried

out during the remainder of DCP. Risk reduction activities for

both contractors were being considered for inclusion.

" Developing a Request for Proposal (RFP) for the Acquisition Phase.

" Defining criteria for the proposal review and Acquisition Phase

contract award.

* Defining work activities to be carried out during the Acquisition

Phase. (These are specified in the Acquisition Phase SOW, which

is part of the RFP; however, for purposes of this report, the

acquisition phase RFP and SOW will be discussed separately.) .
a,

It is intended that the following recommended activities will

influence these four goals. Unfortunately, it has proved impossible to

present these recommended activities in the order in which they should be

undertaken: all of them should be performed in the near future.

The study participants recognize that they are not familiar with the

details of FAA's on-going or planned risk mitigation activities over the

near-term. In this context, the activities described below may correspond

to activities currently in progress.

5.1 Acquire Ada and Software Engineering Expertise

Because of the newness of Ada technology, there is a scarcity of

experienced Ada personnel throughout government and industry. However,

5-1

,,, ,. ,f"..v , % % % %%... -.. ... % ,

wz' , jk. ,~*-~~'

the activities and recommendations discussed in this report depend upon
both Ada and software engineering expertise. Therefore, it is necessary
for the FAA to acquire such expertise in two ways: develop in-house
expertise, and access outside expertise.

5.1.1 Develop In-House Expertise

For the FAA to develop in-house expertise, formal training will be
required in Ada and in software engineering. Throughout the deliberations
of this study, it was repeatedly emphasized that such training is
necessary at all staff levels, including (or perhaps especially for)
upper management. The U.S. Army Ada Training Curriculum (U.S. Army,
1984) is an example of an available training program that provides
methodology and language courses at the appropriate levels. An excellent
follow-on for gaining expertise would be for FAA personnel to dry run a
software engineering exercise before giving it to the contractors (see
Section 5.2 below). It may be desirable for FAA support contractors,
along with internal staff, to be involved with the training and the dry %
run.

5.1.2 Access Services of Outside Expertise

In spite of Ada's risks, there have been several notable Ada
successes in recent years. To capitalize on this real-world experience,
outside Ada experts should be actively sought. Sources of such expertise
include the Software Engineering Institute (in particular, their Software
Environment Evaluation Project); NASA personnel (joint Ada activities
with NASA personnel involved on the Space Station may be considered); and
consultants (several companies specialize in Ada expertise). The FAA may
also want to consider another study, similar to the one that resulted in
this report, to take place after contract award. That follow-on study 0
could formulate recommendations after reviewing the contractor's design.
If this is to be done, the proper contract mechanisms must be provided in
the RFP so that such a review, and any appropriate remedial response to
it, will be within the scope of the contract.

5.2 Prepare and Dry Run a Software Engineering Exercise

As discussed in Section 4.3.3, there are many benefits to conducting %
a software engineering exercise. It is therefore recommended that one be :%
used on AAS. However, preparing the exercise will require a considerable %
amount of planning, perhaps four to six staff for four to six months.
Part of this preparation includes giving considerable thought to which :%Y-
risks should be addressed by the exercise. Furthermore, to provide -w,
maximum benefit, the exercise must be dry run. Doing so will yield
insight into the problem statement, and allow it to be refined before
being presented to the contractors. Other aspects of the preparation are
the provision of an Ada environment for FAA use and the establishment of ..

5-2

%t

% %.,',''"""b""""',, ,,.-, ..,,..-.". . .. ' ',-,- - ,. . -•-•-. , "'['

evaluation criteria for assessing exercise results. Given these -At
preparation needs, staff should be designated for the software

engineering exercise, and planning begun on it, as soon as possible.

5.3 Prepare Ada-Oriented RFP and SOW with Revised Milestones

As noted in Section 2.1.4, an Ada-oriented development process is

characterized by somewhat different milestones than those typically

associated with large software procurements in the past. Thus, if Ada is

to be used on AAS, the FAA should revise the AAS milestones to reflect an ""
Ada development process. Specifically, these milestones should reflect
the new design approach, requiring compilable top-level designs. Multiple .? .?

reviews and walk-throughs, instead of a single, monolithic Critical Design
Review (CDR), should also be indicated. As the milestones are revised,
they must be coordinated with one another.

The coordination of milestones must include a decision on how the

attainment of compilable designs is to be coordinated with contract
award. Ideally, the contractors should generate designs, and the FAA
should review them, before the contract is awarded. This would allow the
designs to be used in the source selection process. However, if budget
or other constraints preclude this approach, then compilable designs
should be included as a milestone soon after contract award. This ,- .

approach may involve revising the scheduled date for CDR (see

Section 5.7). . -

5.4 Develop a Strategy

For the recommendations that the FAA chooses to undertake, a
strategy is needed. For example, it must be determined which benchmarks .
will be selected by the contractors and which by the FAA; for those .-. .'J
selected by the FAA, a determination is needed as to the exact benchmarks
to be used. For all benchmarks, criteria for evaluating the results must
be established.

The RFP should be revised to specify which risk areas the FAA wants

addressed in the Risk Management Plans and which by other means. The
contractors should also be asked to identify additional risk areas in
their Software Development Plans and Risk Management Plans, and propose
methods for addressing them. ["-. ",

Revision of the RFP should be coordinated with the software

engineering exercise. The latter should address as many risks as is
feasible; these risks must be determined and the remainder addressed in
the Risk Management Plans.

5-3

%
,% ,, %,,/

O / .L

5.5 Assess the Feasibility of a Fixed Price Contract

If a fixed price contract is being considered for AAS, then the %r

feasibility of such a contract must be carefully assessed. In making
this assessment, it is important to consider whether the estimated costs
are realistic and known with a high degree of certainty. An important
consideration is whether design and requirements are thorough and
stable. If certain areas of the system are expected to evolve (e.g.,
user interfaces) because they cannot be defined precisely up front, then
fixed price contracts for those areas are not feasible; a cost plus
contract should be used in such cases to provide the needed flexibility.

Other items needing precise definition in a fixed price contract are
the milestones (e.g., exactly what is contained in CDR) and their criteria
for success. If success criteria are not well defined, or if certain
areas are expected to evolve, then fixed price contracts are not feasible:
either the items will be designed to cost (not necessarily undesirable),
or costly contract modifications will be needed to allow for enough
iterations to achieve customer satisfaction.

In making this feasibility assessment, one should not be tempted to
infer that if costs are underestimated, then the Government enjoys a
bargain price while the contractor loses--a "win-lose" situation. In
fact, underestimates invariably result in a "lose-lose" situation. In
the worst cases, with no incentive to perform, a contractor would remove o*
its best people from the project and design to cost, not to requirements,
while an antagonistic relationship might well develop between contractor " '"
and customer.

5.6 Develop a Fixed Price vs. Cost Plus Strategy

Once the assessment of fixed price feasibility has been completed, a
strategy of fixed price vs. cost plus contracting should be formulated,
providing for a mix of fixed price and cost plus components. For those i.

items meeting the feasibility criteria described in Section 5.5, a fixed
price costing arrangement can be developed; for those items involving
more uncertainty, cost plus contracting can be used.

For fixed price items, decisions must be made on synchronizing the
costing strategy with contract award. That is, a determination must be
made as to the best time to go fixed price: on the one hand, even if a
given item is best procured on a fixed price basis, existing uncertain-
ties may mean that it is too early to do so; on the other hand, waiting
until these uncertainties are resolved (perhaps after completion of the
software engineering exercise or CDR) might require a delay in the
Acquisition Phase contract award. Therefore, a strategy for synchronizing
contract award with design stability must be formulated.

-, dl- -

b .% ,s,.
~%

5.7 Required Activities That May Involve Schedule Revision %

The FAA must carry out the following activities in order to ensure a
successful Ada software development on AAS:

* Assemble and train staff (internal and support contractors).

0 Prepare the RFP package and contract award criteria.

0 Develop evaluation capabilities (tools and checklists). %

0 Prepare Ada progress indicators and milestones.
.'

* Review the Ada-oriented compilable designs.

0 Prepare and dry run the software engineering exercise.

Depending on when contract award takes place, one or both ,,%
contractors must be tasked with carrying out the following activities to
ensure a successful Ada software development on AAS:

" Prepare thorough Ada-oriented compilable designs.* "."..

* Prepare thorough Software Development and Risk Management Plans.

* Assess the maturity of tools and compilers.

* Perform the software engineering exercise. %

In order to achieve the advantages described in Section 2.2, the FAA
must allow enough time and funding in the schedule for the contractors to
complete thorough requirements analysis and design. Not doing so would
tend to negate the advantages offered by compilable designs. In fact,
under such circumstances, those designs could prove a hindrance as the
ripple effects introduced during the coding phase would result in many
time-consuming recompilations. Because of the complexity and importance , -

of the requirements analysis and design activities, they must be allotted
adequate time. A determination must be made as to whether more time and
money than originally anticipated are needed to implement this recommenda-
tion. Any such schedule revision must be coordinated with contractor and
FAA risk reduction activities.

On the other hand, even if the schedule must be revised, this offers
the potential for long-term savings, since less time and money should be ._ -3
needed during integration. Furthermore, product quality should be
increased and risk reduced, partly because the ability to achieve stable
top-level designs can be used as a criterion in the source selection
process.

5-5 ,t

.1 P -A r 0 t% .

S .%

'"

5.8 Bring the Maintenance Organization On Board Now

The long-term success of the AAS program depends upon early, active
involvement of the eventual maintenance organization. Therefore, the
software maintenance organization should be brought on board in the
immediate future. This is important because several near-term activities
should be undertaken by the maintenance organization.

First, a Software Maintenance Plan should be written now, even
though it will have to be revised after an Acquisition Phase contractor
has been selected so that it will work with the contractor's Software
Development Plan. Thus the Software Maintenance Plan should be
considered a living document.

Second, the maintenance organization should be involved in two -
near-term FAA activities: training (see Section 5.1) and the software
engineering exercise (see Section 5.2).

Third, the maintenance organization should be involved in RFP and
SOW preparation. This is especially important in the areas of
documentation standards and deliverables, since maintenance personnel are
the eventual users of these products. As such, their perspective on what
should be produced differs somewhat from that of those involved in -'

contract monitoring during the development phase. The maintenance
organization may desire certain deliverables that would enhance
maintenance productivity, such as high-level "pointers" telling where
particular items are located in the software. Conversely, the
maintenance organization can provide guidance on which anticipated
deliverables are really unnecessary for their purposes. For example,
detailed design documentation can be costly, tedious, and time-consuming
to produce, yet much of it is often found to be of little use to the
maintenance personnel for whom it was intended. This is because the
documentation does not always track the actual system, especially when
maintenance updates are made to the system, but the corresponding
documentation is not revised accordingly. Thus the actual code proves to
be a better source of information. This is especially true for an Ada
software development because of the readability of Ada code.

Finally, an early determination should be negotiated with the
maintenance organization as to its Acquisition Phase role. One
possibility is for maintenance personnel to review AAS designs for items
that may be overlooked by those responsible for monitoring the
development process. Clarity of error diagnostics and ease of code
change are examples of such items. Since the maintenance personnel will
be using these items, they have a different perspective and are more ,
likely to flag deficiencies. Furthermore, an Acquisition Phase role will
familiarize maintenance personnel with the system, giving them the
required background and capabilities when maintenance activities begin.

5-6

% % -

m r,_ % % . -. % % % ., . "
N. %,~-.- N*c-

I.. Olt% .1 .0

6%

%...

6.0 SUMMARY

The study participants unanimously concluded that Ada is the
appropriate language choice for AAS, given the following qualifications:
the software development approach is modified, appropriate use of non-Ada
code is allowed, contractor readiness is evaluated, and risk reduction
activities are undertaken. Recommendations related to each of these
qualifications have been provided, as have near-term FAA activities for
implementing these recommendations. Tables 6-1 to 6-4 map these
activities into the four task areas--DCP risk reduction, Acquisition
Phase RFP, contract award criteria, and Acquisition Phase SOW--that are
currently being pursued. Of course, there are many additional activities
associated with these task areas that are beyond the scope of this study.

%- 5,-'

4A 0 ,

6-1.

%".

.

' #" , " '- , " " , •. .5 ,. " ." . " " ." , " " " ." . . " ' ,* " . 7 . ." ". .' • " ." . . " .- * '

.. P, , • ,*% " , ', " " " _ " -,- " " . . -" -" ," "" . -' ." .''''" . . " . . ." -'." ' '""" " . -" -" " . ,""o

TABLE 6-1
RECOMMENDATION SUMMARY:
DCP RISK REDUCTION TASKS

" Require compilable top-level design in Ada.*

" Develop software development and Risk Management Plans.**

* Perform benchmarks stressing large system aspects of
compiler and support environment. a'

*Defer to Acquisition Phase SOW only if budget considerations p..

do not allow for this as part of DCP risk reduction tasks. -

**May be part of response to RFP.

, ax...

6-2

%. %

ON %

TABLE 6-2

RECOMMENDATION SUMMARY:
ACQUISITION PHASE RFP

" Require submission of Risk Management Plans addressing
each risk area identified in Section 3.

* Establish that contractors provide basis of cost
estimation, while FAA provides cost estimation guidelines.

" Identify benchmarks and prototypes.

* Require contractors to take Software Engineering Exercise.*

Use Ada-oriented designs, schedules, milestones, and
deliverables. -

* Require evidence of commitment to using tools and .*% .

retaining key personnel.

*May be done as part of DCP risk reduction tasks. %

6-36

% % % % %

'.....

..

6-3

t OcAFcJ&St J L + - " ' - ; ' ".' " p " , ' ". • ' "ii' . - . . _- .°. .4 '
+ -- m + m " " 4 S o + 4-

TABLE 6-3
RECOMMENDATION SUMMARY:

CRITERIA FOR CONTRACT AWARD

0 Software Development Plans

* Risk Management Plans: assessment of approaches for each
risk item as to realism, scaling issues, and progress

* Realistic understanding of Ada impact on the following: .

- Compiler and environment maturity for specific hardware

- Costs and schedules

- Incremental development approach

- Recompilation requirements

- Need for modifying environments 'V

- Need for use of non-Ada code and approach for
implementing and containing it

* Results of software engineering exercise

* Design team profile (small, experienced team)

" Early availability of mature support environments

'5

6-4

%* %~

~'of% -e -' :7 I-l* .--
10' 2 *

TABLE 6-3 .
RECOMIENDAT ION SUMMARY: A-

CRITERIA FOR CONTRACT AWARD
(Concluded)

* Evidence of readiness

- Benchmarks

- Published readiness criteria %1%

" Design evaluation of top-level Ada design

- Check for completeness, feasibility, consistency,
traceability, reusability, and growth

- Compliance of design with requirements

* Independent cost estimates

6-5

W, W,
Z

f1". -

TABLE 6-4
RECOMMENDATION SUMMARY:

ACTIVITIES IN ACQUISITION PHASE SOW

" Carry out Software Development Plan methodology (emphasis
on prototyping).

* Adhere to Risk Management Plan.

* Use incremental development (use of prototypes). 6

* Implement incremental reviews (including reuse and growth
reviews).

* Apply revised milestones and activities.

" Produce machine-readable, Ada-oriented deliverables.

* Require use of benchmarks and prototypes.

N

Iv

6-6%

%. S. ''. , \ S *

APPENDIX A

TUTORIAL ON THE ADVANCED AUTOMATION SYSTEM (AAS)

A.1 Today's System

Before considering the role of AAS in the future Air Traffic Control
(ATC) system, three types of FAA facilities used in today's system for a
typical commercial airline flight are described.

A.1.1 Typical Flight Scenario

The first facility usually encountered on a flight is the Air
Traffic Control Tower, typically located above a busy airport and staffed
by the air traffic controllers looking through the large glass windows.
Approximately 400 towers direct the movement of traffic at and in the
vicinity of airports. Controllers in the tower are in radio contact with
the pilot before takeoff, providing verbal guidance on maneuvering the %

aircraft from the gate to the runway. The tower controllers are also
responsible for directing actual takeoffs and landings. It is they who .- ,.

issue the "Cleared for Takeoff" command.

Upon takeoff, the pilot switches radio frequencies to contact a
controller in the Terminal Radar Approach Control (TRACON) Facility,
often located one floor below the tower. There are almost 200 of these

facilities. Several controllers staffing the displays in this darkened
"radar room" are responsible for maintaining an orderly flow of traffic

to and from the airport within the "terminal area" radius of 30 to
40 miles. In some locations, a single TRACON is responsible for several

adjacent airports.

As the flight approaches the boundary of the terminal area, control

of the flight is handed off to one of the 20 Air Route Traffic Control ..

Centers (ARTCCs), that are located in the continental United States.
These large en route facilities have regional responsibility for more .

than 100,000 square miles of airspace, with sometimes 50 or more

controllers on duty at a given time. It is their responsibility to
monitor an aircraft's route of flight between terminal areas. They
provide separation services, traffic advisories, and weather advisories.
While en route, a typical flight may be handed off several times between
controllers handling different portions of the airspace within an ARTCC's ..

area of responsibility, or between controllers in adjacent ARTCCs. In
each case, the procedure is virtually identical to that employed in the
original transfer of control from the TRACON to the initial ARTCC.

A-1

n'
.: . *- % -. I I el % %%

% dp 4 .' e . .- -P l
.~~~~~~ J .A;: .;,' ,_,, Z..., ., o,,, , o-_

As the aircraft descends, the process is reversed, with control
being handed off first to the terminal responsible for the destination
airport, and finally to the tower, which clears the aircraft for landing.

A.1.2 Limitations of Current System

ARTCCs presently use IBM 9020 computers (essentially IBM 360s)
developed in the 1960s to process radar and flight data. Aircraft
separation is based on radar data display and flight data printed on
paper flight progress strips. Despite their capabilities, the current •
9020 computer systems are not expected to be adequate for handling the :

projected growth in aviation traffic beyond the late 1980s. .',.'

Minimal automation capabilities exist in today's tower. Although
paper flight progress strips and a radar display may be available, these
are driven by computers in the associated ARTCC or TRACON. The TRACON
also has paper flight progress strips and radar displays. However, the
automation equipment at the TRACONs is significantly different from that
found at the ARTCCs. y%,w

The present system is labor-intensive. A great deal of manual
effort is required of air traffic controllers. Even though higher levels
of automation are being developed to reduce operational costs, improve
safety, and provide fuel savings for aircraft users, implementation of
these enhancements is not possible because of capacity limits. There are
high hardware and software maintenance costs associated with the operation
of the current system. Moreover, equipment manufacturers cannot provide %-%
parts indefinitely, even regardless of cost.

A.2 Evolution of System

The FAA's current en route modernization programs are aimed at
replacing existing ATC computer systems with modern technology. New
software will be implemented to enhance safety and increase productivity,
and permit the integration of a number of functions now performed
separately.

The new computer system is being designed for approximately
100 percent functional availability and reliability of services. More-
over, the new computers, software programs, and displays now being
developed will be capable of providing both en route and terminal
services. During the 1990s, this will enable the FAA to consolidate
TRACONs and ARTCCs into new Area Control Facilities (ACFs), which will be
located at the existing ARTCC locations. Some ACFs will be similar to
the present ARTCCs in that they will be responsible for the control of a
large volume of en route airspace. However, they will also include the
terminal control responsibilities of some present TRACONs that are
contained within the airspace that will become the ACF airspace. Other

A-2

.. "... ..- . V- .. %* .* ..- , , %* ., -, % .* * * *... • v.-*.. .. . - --*.

anW lIEtS.S An RatflF~ U% urKPOKPOWW .P~'~ ~ llf~~l n ffli~llflfl

ACFs will be formed by combining several adjacent TRACONs and the

appropriate adjoining low-altitude en route sectors into a single
facility. These ACFs will be concerned primarily with terminal ATC and ,
will be responsible for the control of a smaller volume of airspace. %

Thus, the airspace of each of these ACFs will consist of a combination of
the individual volumes of airspace presently controlled by a number of
TRACONs, plus some present en route low-altitude airspace.

The resulting reduction in the number of facilities will eliminate,
or considerably diminish, the present demarcation of services, thereby
reducing operational overhead. Airport traffic control towers will still
provide airport services; however, this will be done with increased
automation.

A.2.1 Host Program

The first step towards modernization is replacement of the 9020
computers in the ARTCCs with host computers. (A host computer is a
replacement computer that uses existing software from another computer
system.) These host computers will be capable of running the present
9020 software package with minimal modifications. An acquisition

contract was awarded in July 1985 to IBM, which will install 9020
instruction-compatible IBM 3083 computers from late 1986 to 1988. The
purpose of this procurement is to provide needed computer capacity for ..
the present en route system as early as practicable, and improve computer
reliability and availability. This will provide for projected air
traffic growth until the AAS is in place.

A.2.2 MAS Program

The purpose of AAS is to provide a total automation system that
includes the controller Sector Suite, new computer software, and new
processors to augment the host computers. AAS will provide the capacity
to handle the projected traffic load through the 1990s and beyond, the
capability to perform all of the new functions to be introduced into the
system through the mid-1990s, increased productivity through the introduc-
tion of new Sector Suites at the earliest practical time, a high degree
of reliability and availability, and the capability for enhancement to V
perform other functions subsequently introduced into the system. TV

The transition to MAS will consist of four steps. First will be the
replacement of the 9020 computers at the ARTCCs with the new host
computers described above. Second is the implementation of the Initial
Sector Suite System (ISSS). Third is the provision of terminal consolida-
tion capabilities. The final step provides en route automation
capabilities.

A-3

N1 % .V

.4,01~~~~~ or-PP, ^r - .'.- '

Z .. :%z "%.-,"- %"',:,:.",", . :.,: -%, %,.-,%- % % -.%- -%--

The Sector Suite will consist of common controller workstations
called common consoles, used for both en route and terminal functions.
It will incorporate an improved man-machine interface, including the use

of color displays and electronic presentation of flight data, to enhance

controller productivity. A typical Sector Suite will consist of displays 04
that present a plan view of the current situation, such as (1) radar

returns of aircraft position, and real-time weather information;

(2) electronic display of flight data (eliminating the need for manual

flight strip handling); and (3) the display of planning information and

advanced functions. The Sector Suite will be installed initially in

en route facilities, and interfaced with the host computers and rehosted

software to form ISSS.

During the final transitional step, new computer software and new

processors to augment the host computers will be introduced. Software

functions that are now unique to the terminal ATC systems will be
incorporated into the new software to support the area control facilities.

All remaining elements of the current en route automation hardware and

software will be replaced.
N

AAS will be a distributed system: operations requiring centralized

processing will be accomplished in the centralized computers, with all

remaining functions performed within the individual Sector Suites. The
reduced capability and emergency modes of AAS will ensure that surveil-

lance, flight, and weather data are provided with near 100 percent

functional reliability. Additional safety and productivity functions

will be included in the new software.

In August 1984, competitive contracts were awarded to two teams led

by IBM and Hughes for the design of AAS. These contracts provide for the
total system design of ISSS and AAS, including all hardware and software,

and development and demonstration of the common consoles. Contract award

for the production phase of AAS is currently scheduled for 1988.

Transition to the full AAS will begin with ISSS, currently scheduled for

installation in the early 1990s. The final step will prepare the way for

additional integration of terminal and en route operations within area

control facilities and for higher levels of automation when the full AAS
is implemented in the mid-1900s. Not only will AAS provide uniform

processing capabilities for en route and terminal ATC, but it will also

increase the tower automation capabilities; tower console installations

are currently scheduled for 1994 to 1999.

A.3 AAS System Description

A.3.1 Overview

An Area Control Computer Complex (ACCC) is the equipment and

software that provides automation support for the control of aircraft in

A-4]

-A%%..

a volume of airspace under the air traffic jurisdiction of an ACF. The
equipment and software of all ACCCs will be identical, varying only in
installation quantities and in software adaptation to the operational 0
configuration of the sites. An ACCC includes computers, computer 1 .
software and related documentation, displays, storage devices, input J'O
devices, output devices, controller workstations, operator workstations,
interconnecting communications, a supporting maintenance subsystem, a
training subsystem, and interfaces with other FAA systems.

A Tower Control Computer Complex (TCCC) is the equipment and soft-
ware that provides automation support for the control of aircraft in a
volume of airspace including the airport surface under the air traffic
jurisdiction of an Air Traffic Control Tower (ATCT). This includes the
control of those airport systems that are related to ATC. TCCCs will be
located at several hundred ATCTs. To the extent practical, ACCCs and
TCCCs will have common equipment and software. -f

The major functions of AAS are as follows:

* Primary Processing, including radar target processing, tracking,
separation assurance, flight data processing, automation
processing, and weather processing.

* Data Entry and Display, including display presentation and
controller input message make-up to support seven different typesof operational positions.

* A Monitor and Control Capability to provide the maintenance
supervisor workstation and associated processing.

* Emergency Processing, which provides a subset of ACCC functions
sufficient to ensure the safety of aircraft during ACCC equipment
failures.

* Stand-Alone Processing to enable TCCC processing to continue in %
the absence of an ACCC interface.

It is anticipated that over one million source lines of high order
language (HOL) code will be developed for AAS.

A.3.2 Workload Characteristics

An ACCC is to be capable of supporting up to 280 common consoles
configured as up to 140 Sector Suites; a Sector Suite can consist of from
1 to 4 common consoles. An ACCC is to be capable of processing data from
up to 27 long-range and up to 53 short-range surveillance sites, with a
total surveillance coverage area of up to 2500 x 2500 nautical miles,
resulting in up to approximately 4000 aircraft target reports per second.

A-5

P %1 .~~~j.rw I~
.~.~p~p** - %

1 k ,

The system is to be capable of maintaining up to 5500 tracks and over
6000 flight plans.

A.3.3 Response Time Characteristics

AAS response time requirements vary widely depending on the nature
of the function being performed. For example, lexical feedback for
controller keyboard entries and display item selections is to be provided
within 50 milliseconds (mean); response time from time of receipt of
surveillance inputs is not to exceed one second for target position
updating or 1.5 seconds for track data updating; and changes to flight
data requiring reprocessing of the route of flight are to be provided in
1.5 seconds (mean).

A.3.4 Availability Requirements

AAS availability is defined in terms of the ability of the AAS
system to provide required services within the required response times.
The availability of an ACCC providing all ATC operational functions
(full-service mode) is to be at least 0.999995 (down 2.6 min/yr). The
availability of an ACCC providing emergency mode functions is to be at
least 0.9999999 (down 3 sec/yr). Emergency mode functions include
tracking and display data maintenance, but do not include flight plan ".
processing or separation assurance.

A.3.5 Design and Construction Requirements

Software developed for AAS is to be written in a single high order
language. Any exceptions must be justified by the contractor and
approved by the FAA. Identical computer programs, adapted through site-
specific data to local resources, environment, and workload, will be
installed at each site. 1W

All common consoles within an ACCC Sector Suite will be identical
and must be capable of performing the functions of any other console
within the suite.

An ACCC local communications network using standardized local area 6
network protocols is to be provided for communications within the ACCC,
and between the ACCC and certain external systems.

9... .J.

A-6

V . J. P e.

W. S. % %. %
4 ~~~~ ~ ~ ~ ~ ~ ~ 0 .4M4' J, '.;r>' 5* ~ ~ .. . I~~

J J

REFERENCES

Boehm, Barry W (1981), Software Engineering Economics, Englewood Cliffs,

NJ: Prentice-Hall.

Booch, Grady (1987), Software Engineering with Ada, Menlo Park, CA:

The Benjamin/Cummings Publishing Company.

Bryan, Doug (January, February 1987), "Dear Ada", Ada Letters, VII:l,

pp. 25-28.

Buhr, R.J. (1984), System Design with Ada, Englewood Cliffs, NJ:
Prentice-Hall, Inc.

Castor, Virginia L. (1985), Issues To Be Considered in The Evaluation of 06%
Technical Proposals from The Ada Language Perspective, AFWAL-TR-85-1100,
Wright-Patterson Air Force Base, OH. " 1

Humphrey, W.S. et al. (1987), Assessing the Software Engineering
Capability of Contractors, Pittsburgh, PA: Software Engineering

Institute.

The Institute of Electrical and Electronics Engineers, Inc, IEEE
Recommended Practice for Ada As a Program Design Language, IEEE
Std 990-1987, New York, NY.

U.S. Air Force (1984), Software Development Capability/Capacity Review,
Wright-Patterson Air Force Base, OH.

U.S. Army (1984), Ada Training Curriculum, Fort Monmouth, NJ: Center For
Tactical Computer Systems.

Weiderman, Nelson et al. (1987), Evaluation of Ada Environments, .
Pittsburgh, PA: Software Engineering Institute.

U.S. Department of Defense (17 February 1983), Reference Manual for the
Ada Programming Language, ANSI/MIL-STD-1815A-1983. .

RE-I

'J'w' ..."Q ,e .e'.e . 'r ,eoe F .04 e " e f -. P e ,r~ P .#e e.-w . .-3 ._4 y. . .,,. . . ;,. ,. ,,, ,

W.

GLOSSARY OF ACRONYMS

AAS Advanced Automation System
ACCC Area Control Computer Complex
ACF Area Control Facility
ARTCC Air Route Traffic Control Center
ATC Air Traffic Control

CDR Critical Design Review k.,

COCOMO Constructive Cost Model
CPU Central Processing Unit 4

DCP Design Competition Phase

FAA Federal Aviation Administration

HOL High Order Language

ISSS Initial Sector Suite System

NAS National Airspace System
NASA National Aeronautics and Space Administration

PDL Program Design Language
PDR Preliminary Design Review

RFP Request for Proposals
".

SOW Statement of Work

TCCC Tower Control Computer Complex -

TRACON Terminal Radar Approach Control!. S

GL-I -l

% "

.00.

'r.- -.
%

-V

" ,e..' '. ,.e. ". .. _ee. re '.;'..' .' .'..'." .,.':" .';.'; ., ." ," .'".= "' .'.:" "'-'.'."" '" "'"." "..'"" " " '" - ": '." " '" '4.
,# - 2.,.e2# '.:,...,e..'....

• - ' .'e",'.'_'. ' .. "' "e.."" .",'"'x."e". '"--'"'" -. "' '-" .'. '"e~%. ". - *'- 4...

K. w w U

~ ~% . -. - - - - ~

