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) Abstract

r

%
This paper addresses the problem of a single military transport
aircraft that must carry cargo from an origin base to a
destination base. Refueling is required and performed by a
//”tanker*/!aircraft that originates from and returns to a third
| base. The objective is to determine the initial fuel required by
each aircraft and the location of the refueling point so as to
minimize the total fuel consumed subject to restrictions on the
range of the transport and the tanker. Based on U.S. Air Force
data, analytical relationships are derived which allow the
problem to be formulated similar to a constratined spherical
Weber problem with two main differences: Wi) the objective
function is non--linear, and ;é) some of the constraints are a
function of the decision variables. Spherical convexity of both
the objective function and feasible region is shown and used to

develop an optimal algorithm. Computational experience is given.
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The problem addressed in this paper is that of a wmilitary :?

L] ’.,
AN

transport aircraft (A/C) required to transport a cargo of w pounds :&
. p
from an origin base "0" to a destination base "D". The distance s
8o,

.‘

between these bases (Dyn) is greater than the range of the aircraft ﬁ:
) Y

%

thus requiring it to refuel enroute. Refueling is performed in mid- :ﬁ
LY

air wusing aircraft called "tankers". The operation consists of the 2;
tanker flying fraoim its base "B" to some point along the route of the 3&
.

transport A/C where it carries out the aerial refueling. Once }
A

refueling is completed the tanker returns to "B" while the transport Q
.!
\,.

continues on to its destination. The objective is to determine the f{
. A “

initial fuel required by each A/C and the location of the refueling g%
point so as to minimize the total fuel consumed by both A/C subject A
%3
to restrictions on the range of the transport and the tanker. Since ;.
1A

the distances over which the aircraft would normally fly in a real o
application are large, it is appropriate that the geometry of the :&

solution approach be that of a location problem on the sphere

(earth). "
v »
The closest related problem found in the literature 1is the ﬁi

[

2

spherical UWeber problem with maximum distance constraints formulated |ﬁ
o : Y

Ol
by Ayken (1983). The problem consists of determining the optimal 3&
location of a source so as to minimize the éum of the weighted gs
1
v g7 ¢

distance from the source to a finite number of demand points while é
keeping the source within a distance S, of a given point U.. U, may ?f
be any of the demand points and all pointg are locatéd;on the surface ﬁ
. ‘.f

of a8 sphere (earth). - X
“ N )

. ' e . v )
The optimal solution procedure developed by Ayken was bGased on $

g ot
properties obtained by himself and others for the unconstrained ~
' . vy

version of the spherical Weber problem (Aly, Kay, and Litwhiler 1979, ‘i
AR
A
™
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Drezner 1981, Drezner and Wesclowsky 1978, Katz and Cooper 1980,
Litwhiler and Aly 1979). The problem we are considering differs from
the one solved by Ayken in two major considerations. First, the
objective function of the problem addressed in this paper is shown to
be a non-linear function of the spherical distance whereas Ayken’'s
problem dealt with a linear objective function. Second, some of the
constraints of the problem we are considering depend on some of the
decision variables. These properties as well as other mathematical
lationships between fuel consumption, distance traversed, cargo
weight and initial fuel of the transport A/C are derived in the
Appendix.

In a recent series of papers., Mehrez, Stern, and Ronen (1983},
Mehrez and Stern (1985), and Melkman, Stern, and Mehrez (1986), a3
related problem is studied. They study the problem of refueling
tankers escorting smaller aircraft with the abjective of maximizing
the the effective range of the smaller ailrcraft. A central

assumption in these papers is that fuel flow is a constant. For

larger cavrgo aircraft, this assumption is difficult to support.
Finally it chould be mentioned that the initial motivatian for
studying the problem addressed. herein resulted from various

conversations between the authors and personnel at the U. S. Air

Force Logistics Management Center at Gunter, AFS, Alabama.

Subsequently, the Air Force provided raw data. describing A/C

performance at different gross weights, altitudes”énd speeds which

was then transformed i1nto the mathematical re}ationships' previously

mentioned. Information on these and other:%etéiIsl}élated to the

practical origin of this problem is also included 1n the Appendix.

e,
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ASSUMPTIONS AND NOTATION N
Prior to formulating the problem, the following assumptions and ',

notation need to be introduced.

-
> .

Assumptions:

- -
>

1. The gross weight of the A/C should not exceed its maximum

-

takeaff weight (MTOW), [i.e., A/C empty weight + cargo weight +

fuel weight £ MTOWI.

R o A A A

e. There are no load balance or size restrictions associated with

the A/C load.

M

o ok

3. The earth is a perfect sphere.

4. The A/C follows the great circle route (shortest path) in flying

from one point to anocther.

-
-l 0..

3. Weather at altitude (i.e., the jet stream) 1s assumed to be 9
[
. »
negligible. P
M}
6. Aerial refueling takes a negligible amount of time. Thus, the ~
!
region in which fuel transfer takes place is considered to be a 5
.“
single pocint. §
7. Everything takes place at altitude. Thus, take-off and its cost
f
are ignored. L
g
-
Notation:
v "
EW = Transport A/C Empty Weight ;k
'
MTOW = Maximum Take-0ff Weight of the transport A/C N
e .
Fom o = Maximum fuel capacity of the transport A/Ch“; 7
. ‘.‘
[ o W = Maximum fuel capacity of the tanker A/C )
s, o N .
. iy . - '
g = Initial fuel of the transport A/C (a decision variable) .Q
" i ",
h = Initial fuel of the tanker A/C (a decision variable) y
. N

w = Cargo weight ' :




L.

GW = Gross weight of the transport A/C (GW = EUW+g+w) .
GW.na = Maximum allowed gross weight of the transport A/C
Qmaex (W) = The maximum fuel the transport A/C can carry in order
tc be able to take off with a cargo of weight w t
= Min{F nmws MTOW-EW-w? [}
Ginw-(w) = The maximum fuel the transport A/C cam carry when it is
in the air, given that its cargo weight is w
= Min{F uns GWgw. . ~EW=-w? N
MPF (GW) = Distance traveled by an A/C in miles per 1,000 lbs of .

fuel at a given gross weight GW

d,(8,d) = The spherical distance between the origin base R
(8..+8..) and the refueling point (8,4) :

dw(B.d) = The spherical distance between the refueling point !
"

(B8,6) and the destination (Bp.8p) é

d»(B8,d) = The spherical distarce between the tanker bsase .

(B :86y) and the refueling point

R(g,w) = Range of the trarnsport A/C when its initial fuel is g

3
and its cargo weight is w
Byt
FC(g,w,d) = Fuel consumed by the transport A/C when 1t flies a ;
distance d and its inittal fuel is g and cargo weight !
%
is w :
) »
FN(w,d) = Exact amount of fuel needed by the transport A/C to d
.
fly a distance d when the cargo weighs W !
{d must be < R(F,....0)] 3
R*(h,w) = Range of the tanker when its 1nitial fuel is h and :
; S M !
cargo weight is w (usually w = O) Iy
)Y
\
i
&
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FC*(h,w,d)=

FN-(W)d)

f;(B-d) =

f.,(8,d) =

f‘.(8v¢) =

The problem

Fuel cornsumed by the tanker when it flies a distance
d, its initial fuel is h, and cargo weight is w

{d must be { R*(h,w), and usually w = 0]

Exact amount of fuel needed by the tanker to fly a
distance d when its cargo weight is w

(d must be £ R*(Hyuuw.y2)s and usually w = 0]

The fuel consumed by the transport A/C in flying from
(B..:6..) to (8,8) (f,(8,d) = FC(g,w.d,}]

The fuel needed by the transport A/C to go from (8.d)
to (Bu+dy) [fm(B.d) = FN(w,d.)]

The fuel consumed by the tanker in going from (8,,s8w)
to (B8,8) [f4(B8,d8) = FC~"(h,0.dy)]

The fuel needed by the tanker to go from (8,8) back

to (8[«063_{-) [f«,(eoé) = FN.(Oodg.,)J

PROBLEM FORMULATION

can now be stated mathematically as follows:

Find (B8+.¢), g and h that will

e
(P) Minimize V(B,d) = J_ f,(8.d)
1=1

S.T. d, (8.8) < RIGmume (W) yw] ' (1)
d;.(B'.QS;‘ CRIGa () ew] (2)

d . (B.d) < R¥(Humo o O) - (3)
FNCWsdy ) 2 G € Guumor () (4)

FN*“ (0. 20m7 & h & Moo , . -3

< 1 Y.
(h+g) - 'f; £,(8.8) : (6)
=

L)
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0 <8< 2am (7

(8)

o
'l‘\
o
ll‘\
g

The first three constraints represent conditions that must be
satisfied by the refueling point. Inequality (1) says that the
distance between the origin base and the refueling point should not
exceed the maximum range of the transport A/C. Inequality (2) says
that the transport A/C must be able to reach its destination from the
refueling point. Inequality (3) says that the tanker should be able
to make a round trip safely. Constraints (4), (S) and (6) are the
conditions that must be satisfied by g and h, that is, g must be at
least egual to the amount of fuel needed to fly from the origin to
the refueling point. Similarly, h should permit the tanker to make a
trip from 1its base to (8,d) and back. Also, the total initial fuel

for baoth A/C must be at least equal to the total fuel consumed.

A few more remarks are in order. First, the intersection of the
first three inequélity constraints (1), (a2) and (3) represents a
region within which all feasible refueling points must lie. Figure ]
illustrates such a region. Note that even though all feasible points

are included in this region, not all the points in this region are

necessarily feasible. It can be shown that any feasible point must

satisfy (1), (2), (3) and the following constraint:

g-nmn(VJ)-FVchvnan(V‘) sWw,yd, ]+[Huv.-nv—F[:~(H:vvﬂ-t'()’d‘fv) ] .
L (BB L (B B) (F)

., N
. oy,
. B v

which is derived from (4), (35), and (&).

(o O A W o A A P N W o o WA o ]




O Refueling Point
Transport A/C route
— ~ — Tanke: route

L Teoar
.. -4 . v

Figure 1: The region inside which all feasible refuefing
points lie.
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. Second, since values of g and h greater than needed will 1
).
increase fuel consumption unnecessarily, we can restrict attention to k
the case where the equality holds for constraint 'ﬁ
-
. .
(). This means that there 1is only one value of h(8,8) for every v
-
.\
choice of g(8,d). Consequently, the best value of g(8,d), {denoted w
by g~(8,8)) that will result in the lowest total fuel consumpticon ;ﬁ
Al
\'
for that point is the solution to the following non—-linear subproblem A
Ny
in one dimension (g): 5:
‘e
Ky
(SP1) Minimize g + FN“[h,(g)sdsl + h.ig) (10 %
S.T. Gmam(B8:8) € g(B, @) < Gupere (W) (11) :
A
where ﬁ‘
Q'
FiNCw.d, ) if g,(8,8) £ Q, ‘.
Omrrm{B,8) = 12y s
F“‘l(gr*’b‘lsd_l) + g-r it gf(evu’.‘l) __‘ [S1 s-\
and hi
-\
v
Ge(B+s8) = f(8,8) + T,(8,8) - [Hyw,, — FC"{H 3D sdy) ] (13 S
he(g) = f.(8.6) + f,(8,¢) - [(giB,d) - f,(8,8)13 {164) :‘-
b-:
hiB.d) = FN"[h.{g),d] + h.{g) : (15 ]
. v
An important result due to Drezmer and Wesolowsky (1978) says ﬁ_
that the distance from a given point r within a circle of radius M/g2 :"
and center r., is a spherically convex function. Since the right htand :é‘
: - .-
side of constraints (1), (2) and (3) are usually thH less than /2, e,
T -
each of these constraints represent a spherically convex . set. The "t
| region resulting from their intersection wil% alsp besa spherically %;
| ) o h . S
. . »
L convex set, Therefore, Problem (P), without constraint 19), will |
| ’ L
| have a spherically convex feasibl~ region. I
s,
&

=
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Qur fourth remark 1is related to Aly et.al. (1979) who showed
that the search for an optimal solution to the spherical Weber
problem can be restricted to the spherically convex hull of the
demand pojints. This result can be extended to the case at hand.

Property 1: The search for the optimal vrefueling point can be

restricted to the spherically convex hull of the three base points
(the origin, the destination, and the tanker base).

Proof: Let V be the gpherically convex hull of the three points and
X be a point on the sphere such that X t V. Let d,., dwmy do be the
spherical distance between X and the origin, the destination, arnd the
tanker base, respectivelf. Aly et al. (1979) proved that there
exists a point X’ & V that dominates X in the spherical distance

with respect to the three base points. That iss if d’,, d’w, and d’

are the distance between X' and the three points, then d’, < d. for i
= 1,2:3. Since fuel consumption increases with distance, li.e.,
FN(..d..) FC(.s.0d ), FN"{ .- and FC"(.,.,d,) are all i1ncreasing

functions of the distancel. then the objective function value at X’

is less than or equal to the cobjective function value at X. O.E.D.

Taking the first anag fourth remasrks tugether. 1t -un be seen
that the search for the coptimal refueling point can be restricted to
the intersection of the region described by (1), (2) and (3) with the
spherically conver hull of the three tases.

Final}y, the fifth remark concerns the opjective function. It

[Y -t

is a nonlinear function of the spherical distance (the great circle

distance). Using the fuel “unrnction {(see Apperdix). 1t 15 seen that

.vc_!’c4‘-.‘-ud l'n.--..-.-.-‘-...'..‘.._. Tt P At e mavar o .
e e e e N I N N N I A N N I R AR
AT
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fv. =g + a/a, - [(a+a,g)™® - 2a,4,1'7* / a,
fu = —afa, + (a” + Z2a,dn)* "% / a,

fo =h + a’/a, - [fa+a h)™ - 2a,d-I'"™ / a,
fo = =~a3'7a, + (&’ + 2a,d. V""" /7 &,

{ ((a+a,g)*-2a,d, 1" "*-[a"+da,ds I "™ }

h+g-1/a,

+{(a+a,h)™-2a,dy])!' "-[a’¥+2a,d-, 1" "¥

The way the objective function is written, it is difficult to
verify its spherical convexity either by using the second derivative
test or by applying the definitionm ocf a gpherically convex function
directly. Nevertheless, spherical convexity of the objective
furnction can be shown by rewrliting the objective function using some
sphericslly convex functiom like FNC(,,.). To do this, define for any

point (8.4 the following:

WFLlg(8,8).d, I = weight of the fuel left in the transport A/C when 1t
flies a distance d, from the origin to

{(8.,4) given that its initial fuel is g(3.,d).

ThUS y
WFL{G(B,¢),d. ] = g(B.¢) - FCIQ(B.&) w.d:] o L1867

WFL(.,.) is spherically convex because FC(.,.,%) is,gbheyicaily

concave.

Let




£

WFLmw (dy) = Max WFLIG(B.d)syd1] = WFLLQmuwm{Ww)yd,] (17 %

'f

Note that 4
O £ WFLLG.(8,8),d:1 £ WFLym.(dy), (18) i

and that WFLne~(.) is spherically convex also,.

Since g*(8,d) is the best value of g{(B,d), then using the

spherically convex functions FN AND WFL, the elements of the N
objective function can be rewritten as i
f.(9,d) = FN{w+WFLI[g*(B8,d8),d,1,d;?* (19) :
fulB,d) = FN(w,dm) (20) _ﬂ
Ta(8,d) = FN"(G,du) (21 s
fm(B8,8) = FN"(fut+fTo~WFLIgQ"{(B,d),.d:1,d:2 (22) 3
“
and the total fuel consumpticon = V(8,d) = ft f,.(8,d). %
i=1 Y
Both FM(.,.) and FN*(.,.) are convex and increasing functions of ?
-
their arguments, which, in turn, are spherically convex functions. '3
Therefore, the resulting objective function is spherically convex %
(Greenberg and Pierskalla 1971, Rockafellar 1970). é
MOTIVATION FOR THE SOLUTION PROCEDURE OF (PQO) Q
For this problem, the optimal point (g~ ,d") and its optimal .g
g*(B8*,d*) (and consequently, its opfimal h‘(B;,d*)) are to be found. FE
Since g”(B*:d’) depends upon (8,¢) and we do not know this in advance ]
(note that (Spl) needs to be solved to find this out!), it 1s o)
difficult to use (19): (20), (21) and (2&2) directly;;:That is, we can ¢
not search for both (8%,d%) and g™~ (8*.,.d") simultanééhsl?. Howewver ., i
this diff}culty can be overcome by éreating en u?Fe;'E?und~function ‘;
that can be improved from one iteration to another u&tih ipg' minimum :
value coincides with the minimum of the original functiaen. To :'
illustrate this, let ;
g

WD ' . : s \ AL LT (LSO URIRN
N O AN I A AN N MBS N M RACAN N Ak KRN M A ANONN OO IR MM b M A A R NN



a(B8.d) = WFLIQ(B8,d),d,] / WFL a. (d,) (23)
then,

0 < at8,8) {1 for all (8.,¢) (24)
Thus, g*(8,d) would result in a*(8,d), where a*(8,d) is the best
value of a(B,d), i.e..

a*({B,d) = WFLI[Q"(B.8),d,] / WFLuwawu(d:) (295)
Also, from (25), we have

WFLI[g(B8,6).d,]1 = a(B8,8)WFL , u.(d,) (26)
The elements of the objective function can be rewritten using

a"(Br»d)IWFL an(d,) instead of WFLIg"(B,d),d,] as

f1(8,d) = FNlw+a~(B,sdIWFL a.{(d1)sd.]
fe(B:sd) = FN(w,dm)
falB.d) = FN"(0QO,d.)
F2(B8,d) = FN"[futf-a"(8.8)WFLwm,(dr) ydal
Now setting a(B.d) = a for all pointss and dencoting the resulting

function by UB(8,6.a). one gets

£, (B.8) = FNIw+aWFL e, (dy)ed,] (27)
£ (Bad) = £.(B.6) = FNCw.dm) (28)
£ (B.d) = £.(B.d) = FN"(O.d.) . (29)
Fir’ (Bad) = FN"[Frutfa=abFLnmy (ds) sdod | (30)
where 0 Z a8 <1
and uB(8.,8,3) = iil f;,'(e,ﬁ) . (31)

UB(B8,d,a) has the following characteristics:

el

1Y It is spherically convex because it is the sum of

s -

spherically convex functions; o NERRE
. M N L v

2) UBLB.6.a31 > V(B,d) ' g (32)

In other words. since any g other than g*(B8,d) would result in a




higher cost for V(8,d), and also produce an "a" that is different
from a*(B8,d), then any "a" used in UB(8,d,a3a) would make UB(B,d.a)
< v(8,d). Therefore UB is an upper-bound for the objective
functionj;
3) uBl(B.6.3%(B,d)]) = V(B,d8) for any (B8,d). That is, the equal
sign of eq. (32) holds true when a = a“(8,8)
Therefore
uUBlB~ +,6",a*(B",6")] = V(B~,86") (33)
4) UB(B,é6,a) = V(B,6) at the boundary points where dl(B,é) =
Rl{Gume~(w),w] because, at those points, WFL,e.(di) = 0. Thus
the value of a does not matter.
How can we use this UB functionmn to solve (P)? Given a
particular value of a, we can optimize the UB function to find
the best (8,d) that corresponds to it. Now, if at some
iteration, we have the value of a”(8*,8") [without knowing
(B™.d*") 1, and we optimize the UB function, then we will enrd up
with (8%,8"). This is true since if (8",d") minimizes the true

objective function, it will also minimize UBIB,d,a"(8",6")1].

SOLUTION PROCEDURE OF (P)

1. Initialization:

Let k=0, and a*=1. GStart with a point (8-,d«’ that satisfies

(1), (2) and (3) [(See Yamani 1986 for the selettj&n of a good
starting point).]
2. Let k=K#1. Find the point that will minimizl UB(8,8,a" ) s.t.

t1), (2), and (3). Let the solution be (8%,8*). pH

3. For (B8*,.,¢*), solve (SP1) to find the best g~"(8",d"). Use




equation (25) to find a* (8" ,.8%).

a. If a*(8",g*) # a*~*, we have an improvement in the objective

function. Therefore., let a» = a*(B8%,8%) and go to step 2.

Otherwise, the solution is (8%,6%), g*(8",6"),
is calculated from egs. (14) and (19).

Convergence Proof

We need to show that

. ftf&(gnwl’dkw1) > é:fi(ek’dk)
i=1 i=l

Assume, at iteration k-1, that
a¥ (gt gt ) £ ghii
(ODtherwise, we would have stopped there.)

By setting a“—* = a* (B ',g" '}, we have

if-‘- (86!:""‘1 ’él':"—‘l ) = UB(BH““]. ’éit—‘l .‘ah:“"'l )
1=

At iteration k. since (B“,84") minimizes UB(B,d.,a""

UB ( Bl-. A A , dl a1 N ah: i ¥ ) ?— UB ( eir_ y dlr. . al". i 8 )

But,

uB(8*.d"ya“ ") f;f,(e“,d“)‘
1=

and inequality (34) follows.

Moreover,

{
£,08" "1, gnt) > i f,o8",8%),
1= : 1=1
b
if UB(B" ,&% yak~ 1) > ;f (8" ,¢%).
1=

The last inequality holds true if a*(8%,d%) # a"~

s

and

1y,

-4
.

h*(a*,8%")

(34)

(33)

(36)

(37)

(38)

(39)

Thérefore, the

o

L . . ‘ Wt e
true objective function improves from one ateratlpn to :ranother.

b

Since the problem is spherically convex, the solution procedure will

converge to the global

optimum solution (Drezner

and Wesolowsky

- e TV

S e g s B



1978). Q.E.D.

Numerical Results

The above procedure was programmed on a Vax 11/730 in BASIC. There
was no attempt at program efficiency. Several test problems were
solved to represent a variety of possible geographic configurations
and complexities. The minimum CPU time was approximately 0.5 second
(2 1iterations) and the maximum was almost 1.0 second (4 iterations)
for convergence within one degree longitude and latitude. Convergence
within one minute longitude and Jlatitude required only one more
iteration in each case with a maximum CPU time of 1.3 seconds. The
results of these test problems are summarized in Table 2, with Table
1 providing a key for understanding the entries in Table 2.

Summary

In this paper we have shown that the single aircraft refueling
problem is a non~linear convex location praoblem on the gphere. The
algorithm that has been presented is an optimal solution procedure
for this problem. In the sequel to this paper, these results are
used as the basis for solving the more complex multi-aircraft

refueling problem.
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} TABLE '1: Key for trial runs chart of Table 2

Location Longitude Latitude Code
New Jersey 75 40N A
Delaware 75u gN B
North Carolina 78W 35N c
Puerto Rico 66W 18N D
Azores Islands 25 37N E
Iceland 200 65N F
Germany 10E 50N G
Turkey 30E 40N H
Saudi-Arabia 47E 25N I
Egypt 28¢ 30N J
England OE/W 52N K
W = Cargo Weight Code

100,000 1bs ' 1

200,000 1bs

Fuel ACCR = Fuel.Accuracy

10 means to within 10 1lbs

POS ACCR = Positiion Accuracy

1 means to within 1 degree
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Appendix A
Derivation and Characterization of the Fuel
Consumption Function and Other Related Functions

Here, mathematical representation of the various relation-
ships between fuel consumptio%. distance traveled, cargo weight,
and initial fuel of a typical jet A/C are derived.

The United States Air Force provided raw datas describing RAR/C
performance at different gross weights, different altitudes. and
different speeds. These raw data have to be tramnsformed before
they are useful. A sample of these data is shown in Figure 2 for
a C-SA transport A/C flying at an altitude of 31,000 feet.
Different curves are presented for different A/C weights, and
they show the distance traveled per 1,000 pounds of fuel burned
at a given speed and at that given gross weight (GW). Consider
the points on the curve indicating 99 percent maximum specific
range. It is assumed, without loss of generalilty, that the
transport A/C will operate at those points since speed 1s
maximized, while fuel consumption is only 1 percent greater than
the minimum possible. |

The distance traveled in miles per II,OOO pounds of fuel
burnedpwhen the A/C gross weight is GW, deroted here as MPF(GW) .
is plotted against gross weight GW in Figure 3 wusing the 99
percent line in figure 2. Least square linearfand quadratic fits
to the data were tried, and both fit well as seég‘in Figure 3.

For the linear fit, B L

MPF(BW) = a. + a.6W. | -
where

a.. = 36.2829, a, = -0.027
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Figure 2: Data for C-5A aircraft.




MPF(GW) =Miles per 1000 Ibs. of fuel burned for v
a given gross weight :
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Figure The MPF function versus GW.




B
'
lﬂ'.
Q
and correlation coefficient = -0.9919. Q
‘.v
For the quadratic fit, X
MPF(GW) = b.. + B.GW + b.GW™ :
L}
where by
)
b. = 43.7616, b, = -0.0576, bw = 2.94 » 10"®
and correlation coefficient = -0.9983. :
v
(O
*
Only the linear form of the function will be used here. The x
]
\)
use of the quadratic form is similar (Yamani 1986). ﬁ
Note that at any moment during the flight, N,
‘,
GW = EW + w + f o
N
where f = the present (instantanecus) amount of fuel and EW = A/C o
empty weight. During flight, f changes due to fuel burning; N
g
’
thus, GW changes while EW and w stay the same. So, &
N
dGW = df Py
The Range Function R{g,w) :
A"
.
Initial Gross Weight = EW + w + g &
!
Final Gross Weight = EW + w i
Then, .
EW+w+g K,
R({g,w) = SMPF(GW) dGW -
EW+w .
st
9 ' S
= IMPF(GN) af O
0 ;
¢
9
= jMPF(El«J+w+f) df E
O _:
ll
. " ¢
The Fuel Congumption Function FC(g,yw.d) v
W
. N)
Let g9, equal the final amount of fuel left. . oﬂ
T . . g
) 2 T N . .Q
Then, ' R T ) _E
“ )
° FC(g,w,d) = Q9 - g
Thus, finding FC reduces to finding g.s which can be accomplished <
-
e
s\
|
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by solving for g+ in the following equation:

g = g 5MPF(EN*w+f) df

I

d = 9 .I(am + 31 (EW+f+w)] df

which results in

gr = —a/a, + [(a+a,g)¥ -~ 2a,dlit"*® / al
Thus,

FClg,w,d) = g + a/a; - [la+a,g)® ~ 2a,dl* ™ / al
where

a = a, + a;{(EWtw)

The Fuel Reguirement Function FN{w,d)

If the distance d to be flown and the cargo weight w are
known in advance, then the amount of initial fuel g must be at
least as great as the amount of fuel needed. If g is set equal
to FN(w,d), then we can use the range function R(g,w) to solve
for g. That is, set

R(g,w) = d = [a” + a,w + (3,/72)g1g»
where

a’ = a,. + a EuW .

Solving for g results in the following equaéiﬁh%

FN(w,d) = g = ~w-a’/a, + [{(a’+3,w)™ + 2a,d3' 7 /7 a,

Table 3 summarizes the various fuel functi%nsi"' R
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Characteristics of the fuel functions

{1 The function FN(w,d) 1s a8 strictly convex and increasing
function of the distance d for any given value of the cargo
weight w. This can be shown by taking the first and second

derivatives of FN with respect to d.

dFN = 170ta’+a,wi™ + 2a,dl*"® > Q
d=FMN = -a,/[(a"+a,w)® + 2a,dl*" ™ » 0
d dg¥
because a,<0. Therefore, FN is strictly convex in d. Moreover,

since the first derivative is always positive, FN is an increas-
ing function of d.

(2) The function FN is a strictly convex and increasing function
of the cargo weight w for any given value of d. This can be
shown in a straightforward fashion as in the previous case.
Yamani (1986) proved that if the distance d is measured along the
surface of a sphere (earth), then the function FN{w,d) is spher-
1cally convex (s-convex) over a spherical disc of radius /4.
(3) The function FC(g,w,d) is a concave and increasing function
of the distance d for any givén values o% the initial fuel g and
the cargo weight w.

(4) The function FC(g.w,d) is a convex and increasing function of
w for any given Jalues of g and d. .

Again, both cases (3) and (4) can be shown to “be true M a

oA

fast ion similar to that of FN(w,d). .. N
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