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Abstr'act

This paper addresses the problem of a single military transport

aircraft that must carry cargo from an origin base to a

destination base. Refueling is required and performed by a

,-"tanker, aircraft that originates from and returns to a third

base. The objective is to determine the initial fuel required by

each aircraft and the location of the refueling point so as to

minimize the total fuel consumed subject to restrictions on the

range of the transport and the tanker. Based on U.S. Air Force

data, analytical relationships are derived which allow the

problem to be formulated similar to a constratined spherical

Weber problem with two main differences: L'l) the objective

function is non--linear, and C2) some of the constraints are a

function of the decision variables. Spherical convexity of both

the objective function and feasible region is shown and used to

develop an optimal algorithm. Computational experience is given.
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The problem addressed in this paper is that of a military

transport aircraft (A/C) required to transport a cargo of w pounds

from an origin base "0" to a destination base "D". The distance

between these bases (Dc,v) is greater than the range of the aircraft

thus requiring it to refuel enroute. Refueling is performed in mid-

air using aircraft called "tankers". The operation consists of the

tanker flying from its base "B" to some point along the route of the

transport A/C where it carries out the aerial refueling. Once

refueling is completed the tanker returns to "B" while the transport

continues on to its destination. The objective is to determine the

initial fuel required by each A/C and the location of the refueling

point so as to minimize the total fuel consumed by both A/C subject

to restrictions on the range of the transport and the tanker. Since

the distances over which the aircraft would normally fly in a real

application are large, it is appropriate that the geometry of the

solution approach be that of a location problem on the sphere

(earth).

The closest related problem found in the literature is the

spherical Weber problem with maximum distance constraints formulated

by Ayken (1983). The problem consists of determining the optimal

location of a source so as to minimize the sum of the weighted

distance from the source to a finite number of demand points while

keeping the source within a distance S. of a given pbint U,.. U. may

be any of the demand points and all points are located-on the surface

of a sphere (earth).

The optimal solution procedure developed by Ayken was tased on

properties obtained by himself and others for the unconstrained

version of the spherical Weber problem (Aly, Kay, and Litwhiler 1979,
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Drezner 1981, Drezner and Wesolowsky 1978, Katz and Cooper 1980,

Litwhiler and Aly 1979). The problem we are considering differs from

the one solved by Ayken in two major considerations. First, the

objective function of the problem addressed in this paper is shown to

be a non-linear function of the spherical distance whereas Ayken's

problem dealt with a linear objective function. Second, some of the

constraints of the problem we are considering depend on some of the

decision variables. These properties as well as other mathematical

lationships between fuel consumption, distance traversed, cargo

weight and initial fuel of the transport A/C are derived in the

Append ix.

In a recent series of papers, Mehrez, Stern, and Ronen (1923),

Mehrez and Stern (1985), and Melkman, Stern, and Mehrez (1986), a

related problem is studied. They study the problem of refueling

tankers escorting smaller aircraft with the objective of maximizing

the the effective range of the smaller aircraft. A central

assumption in these papers is that fuel flow is a constant. For

larger cargo aircraft, this assumption is difficult to support.

Finally it should be mentioned that the initial motivation for

studying the problem -addressed herein resulted from various

conversations between the authors and personnel at the U. S. Air

Force Logistics Management Center at Gunter, AFS, Alabama.

Subsequently, the Air Force provided raw data. describing A/C

performance at different gross weights, altitudes"'nd speeds which

was then transformed into the mathematical relationships" p,-eviously

mentioned. Information on these and other details related to the

practical origin of this problem is also included in the Appendix.
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ASSUMPTIONS AND NOTATION

Prior to formulating the problem, the following assumptions and

notation need to be introduced.

Assumptions:

1. The gross weight of the A/C should not exceed its maximum

takeoff weight (MTOW), [i.e., A/C empty weight + cargo weight +

fuel weight < MTOW].

2. There are no load balance or size restrictions associated with

the A/C load.

3. The earth is a perfect sphere.

4. The A/C follows the great circle route (shortest path) in flying

from one point to another.

5. Weather at altitude (i.e., the jet stream) is assumed to be

negligible.

6. Aerial refueling takes a negligible amount of time. Thus, the

reqion in which fuel transfer takes place is considered to be a

single point.

7. Fverything takes place at altitude,. Thus, take-off and its cost

are ignored.

Notation:

EW = Transport A/C Empty Weight

MTOW = Maximum Take-Off Weight of the transport ArC

F__.. = r1aimum fuel capacit/ of the transport A/C

H... = Maximum fuel capacity of the tanker A/C
* *9 *. St. .

g = Initial fuel of the transport A/C (a decision variable)

h =Initial fuel of the tanker A/C (a decision variable)

w = Cargo weight
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GW = Gross weight of the transport A/C (GW = EWg+w)

GW....= Maximum allowed gross weight of the transport A/C

g,.I.0(w) :The maximum fuel the transport A/C can carry in order

to be able to take off with a cargo of weight w

= Min(F..., MTOW-EW-w)

G..(w)= The maximum fuel the transport A/C can carry when it is

in the air, given that its cargo weight is w

= Min{F,..., GW-...-EW-w)

MPF(GW) = Distance traveled by an A/C in miles per 1,000 lbs of

fuel at a given gross weight GW

d,(8,.d) = The spherical distance between the origin base

(8 ...... ) and the refueling point (8,d)

d,(8,d) = The spherical distance between the refueling point

(9,6) and the destination (8v,:)

d.,(Sd) = The spherical distance between the tanker base

(r,,O,) and the refueling point

R(g,w) = Range of the transport A/C when its initial fuel is g

and its cargo weight is w

FC(g,w,d) = Fuel consumed by the transport A/C when it flies a

distance d and its initial fuel is g and cargo weight

is w

FN(w,d) Exact amount of fuel needed by the transport A/C to

fly a distance d when the cargo weighs W

[d must be < R(F.. . )]

Rw(h,w) = Range of the tanker when its initial fuel is h and "

cargo weight is w (usually w = 0)

.w ~ ~ I - 4



FC-(h.d)= Fuel consumed by the tanker when it flies a distance

d, its initial fuel is h, and cargo weight is w

Ed must be < R'(h,w), and usually w = 0)

FN-(w,d) = Exact amount of fuel needed by the tanker to fly a

distance d when its cargo weight is w

Ed must be < R*'(H,,,,,.O.)t and usually w = 0))

fL(83.d) =The fuel consumed by the transport A/C in flying from

~ to (e,o) Cf,(E3,0) = FC(g,w~d,,)]

fm(8. d) = The fuel needed by the transport A/C to go from (E3.d)

to E f&9.vd) = FN(wqdj.) ]

= The fuel consumed by the tanker in going from

to (e.6) f:(,)= FC'(h.O.d.,)]

f..E)16) = The fuel needed by the tanker to go from (9,0) back

to ( ~ , ) E f.,((8.0~) = FN (C) *d: ,) J

PROBLEM FORMULATION

The problem can now be stated mathematically as follows:

Find (G.I). g and h that will

. '4
(P) Minimize V(9,d) f,8)

S.T. d, (E3. < C Rg,__.,.(w) vi (1)

FN(w,d,) _ g <.g,.....(Lw) (4)

FN' . 2dj-, %. _ (5



o <_ 2Tr (7)

o <~ir (6)

The first three constraints represent conditions that must be

satisfied by the refueling point. Inequality (1) says that the

distance between the origin base and the refueling point should not

exceed the maximum range of the transport A/C. Inequality (2) says

that the transport A/C must be able to reach its destination from the

refueling point. Inequality (3) says that the tanker should be able

to make a round trip safely. Constraints (4), (5) and (6) are the

conditions that must be satisfied by g and h, that is, g must be at

least equal to the amount of fuel needed to fly from the origin to

the refueling point. Similarly, h should permit the tanker to make a

trip from its base to (8,d) and back. Also, the total initial fuel

for both A/C must be at least equal to the total fuel consumed.

A few more remarks are in order. First, the intersection of the

first three inequality constraints (1), (2) and (3) represents a

region within which all feasible refueling points must lie. Figure J

illustrates such a region. Note that even though all feasible points

are included in this region, not all the points in this region are

necessarily feasible. It can be shown that any feasible point must

satisfy (1), (2), (3) and the following constraint:

.... (Vj -F C Q ..... (w), , d I ]+ H ... -F' (H,,,,.... 0, ,d . I

'-.f;.( j)+ f.. (0E-, 0 (9) N%

which is derived from (4), (5), and (6).
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0 Refueling Point

Transport A/C route

--- Tanket route

Figuize 1: The region inside which all feasible re fuelng

points lie.



Second, since values of g and h greater than needed will

increase fuel consumption unnecessarily, we can restrict attention to

the case where the equality holds for constraint

(6). This means that there is only one value of h(e,6) for every

choice of g(G,d). Consequently, the best value of g(8,d), (denoted

by g(8,M)) that will result in the lowest total fuel coisumption

for that point is the solution to the following non-linear subproblem

in one dimension (g):

(SPl) Minimize g + FN[h.,..(g),d-.,] + hr(g) (10)

S.T. g<,,(8 g(8,i) < g ..... (w) ( i

where

FN(w,d. ) if g,.(8,0 ) < .g,,,, (9, ) = (12 i)

FN(q,+w,d. ) + g,. if g, (8,d)

and

g,.(8,66 = fj.(8.6) + foe,8 ) - [H, .... - FC"(H... ,O,d7)] J 13)

h,.(g) - f;6.(86 4 f,,(9,d) - [g-8,0) - f,(e,(6) 114)

h(9.d) : FN"[h. g),d] I h,(g) (15)

An important result due to Drezner and Wesolowsky (1979) says

that the di.stance from a given point r within a circle of radius IT/2

and center r. is a spherically convex function. Since the right hand

side of constraints (1), (2) and (3) are usually n.qhi less than "T/,

each of these constraints represent a spherically convex set. The

region resulting from their intersection wil-I also.be-a spherically

convex set. Therefore, Problem (P), without constrai'nt 19), will

have a spherically convex feasibl- region.
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Our fourth remark is related to Aly et.al. (1979) who showed

that the search for an optimal solution to the spherical Weber

problem can be restricted to the spherically convex hull of the

demand points. This result can be extended to the case at hand.

Property 1: The search for the optimal refueling point can be

restricted to the spherically convex hull of the three base points

(the origin, the destination, and the tanker base).

Proof: Let V be the spherically convex hull of the three points and

X be a point on the sphere such that X k V. Let d, , dz., d;., be the

spherical distance between X and the origin, the destination, and the

tanker base, respectively. Aly et al. (1979) proved that there

exists a point X' F. V that dominates X in the spherical distance

with respect to the three base points. That is, if d',, d';.,- and d'-.

are the distance between X" and the three points, then d', ' d, for i

1,2,3. Since fuel consumption increases with distance, [i.e.,

FN(.,d.) FC(... d,), FN-(.,d-, and FC"f d ) are all increasing

functions of the distance], then the objective function value at X'

is less than or equal to .the objective function value at X. Q.E.D.

Taking. the first and fourth remarks together. it -_in be seen

that the search for the optimal refueling point can be restricted to

the intersection of the region described by (1), (2) arnd (3) with the

spherically conve) hull of the three bases.

Finally, the fifth remarP con ers the oti jective function. It

is a nonlinear func:tion of the Ephe-ical distance (the great circle

distance). Using the fuel Ijnctio-. isee Opperdix). it is seen that
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f= g a/a 1 - [(a+ag) - 2ad .''I a,

fu = -a/a, + (a' - 2aid,.)i . ' / a,

= h + a'/a, - (a+ah) "  - 2aid.,] o"' - / a,

. -a /a. + (a': + aaLd,) / a.

f . = h + g - l ,"a , 
1 2(a 

+ a g) -_ a ~ d L ' ' -, ' +_ a d . I.] .

+ CE( a a h ) ; -2 a d , " 2 a, d-, 3

The way the objective function is written, it is difficult to

verify its spherical convexity either by using the second derivative

test or by applying the definition of a spherically convex function

directly. Nevertheless, spherical convexity of the objective '

function can be shown by rewriting the objective function using some

spherically convex function like FN(.,.). To do this, define for any

point (9.d) the following:

WFL[g (9,b dd]= weight af the fuel left in the transport A/C when it

flies a distance d, from the oriqin to

(9,r4) given that its initial fuel is g(8, ).

Thus,

v<FLg(8, ) , J g(8,d) - FC~g(8, ),, ,d ] ,,16;5)"

WFL(...) is spherically convex because FC(.,.,..) is, spherically

concave.

Let
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WFLm,.,(di) =Max WFL~g(B.d),dL3 = WFLg,.,,,w)t, (17)

Note that

0 < WFLrg,.(Be6),d.tJ < WFL...,(di), (16)

and that WFLm.M,(.) is spherically convex also.

Since g"M (6,d) is the best value of g(G,d)p then using the

spherically convex functions FN AND WFL, the elements of the

objective function can be rewritten as

f1 ($3,d) = FN~w+WFL~g-(6~)..d 1 d 1., (19)

fl&6,d) = FN(w,d-) (20)

f"9d FN"(0,d,) (21)

f.=(E).d) FN= ,f -W L ge (). ~ ~ -,' (22)

£4

and the total fuel consumption =V(96) fe 6)

Both FN(.,.) and FN"(...) are convex and increasing functions of

their arguments, which, in turn, are spherically convex functions.

Therefore, the resulting objective function is spherically convex

(Greenberg and Pierskalla 1971, Rockafellar 1970).

MOTIVATION FOR THE SOLUTION PROCEDURE OF (P0)

For this problem, the optimal point (,) and its optimal

g'"(B,d ) (and consequently, its optimal h"(e",d,)) are to be found.

Since g"8,d) depends upon (e,d) and we do not know this in advance

(note that (Spi) needs to be solved to find this out!), it is

difficult to use (19), (20), (21) and (22) directly -That is, we can

not search for both(6 ) and g, (E3 16 s imul tanecr*6sly. However,

this difficulty can *be overcome by 6reating 'an uppe~r bound- function
-f .1.

that can be improved from one iteration to another until- its minlimumT

value coincides with the minimum of the original function. To

illustrate this, let



aC6.d) = WFLtg(Gd).,1J / WFL.....(di) (23)

then,

() < a(96,t) < I for all (8,d) (24)

Thus, g (B,d) would result in a~6Wwhere a,(ed) is the best

value of a8).i.e..

a (G,d) = WFLEg (6.6),dtJ / WFL.,-(d,1 ) (25)

Also, from (25), we have

WFLEg(E6,t).diJ = a(6,pd)WFL.,(di1 ) (26)

The elements of the objective function can be rewritten using

aw(9,d)WFL,,-,,,(d 1,) instead of WFL~g"(8,d),d1 ) as

fz!(B.d) =FN(w+.dt.)

f..9. = FN'(O,d,.)

Now setting a(B.d) = a for all points, and denoting the resulting

function by UB(E3,6,a). one gets

(27)

f G ) FN"f.+f,,aWFL,, (d), d.] (30)

where 0 a < I

and UB(96~,a) f f, (e6& (31)

UB(G,d,a) has the following characteristics:

1) It is spherically convex because it is the sum of

spherically convex functions;

2) UB(6).b.a) V(9,0) (32)

In other words. since any g other than g"(Bd) would result in a

1101 1



higher cost for V(19,d), and also produce an "a" that is different

from a (G,d) , then any "a" used in UB(86,a) w~ould make UB(63,d a)

< V(6l,d). Therefore UB is an upper-bound for the objective

function;

3) UB(6,6,a"(G6.d)J = V(8,d) for any (8..d). That is, the equal

sign of eq. (32) holds true when a = a(36

Therefore

= V(,6~)(33)

4) UB(86,a) =V(8p6) at the boundary points where d1 (63,6) =

R~g,,,(w,w) because, at those points, WFL,,,...(d 3 .) = 0. Thus

the value of a does not matter.

How can we use this UB function to solve (P)? Given a

particular value of a, we can optimize the UB function to find

the best (8,cd) that corresponds to it. Now, if at some

iteration, we have the value of a-(e8,&6) [without knowing

(6".)). and we optimize the UB function, then we will end up

w it h ( i). This is true since if ("d)minimizes the true

objective function, it will also minimize UBie,6,a,(e.6.*)).

SOLUTION PROCEDURE OF (P)

1. Initialization:

Let kO, and al-. Start with a point (9-06," that satisfies

(1), (2) and (3) [(See Yamani 1986 for the selet-tidn of a good

starting point).]

2. Let k=Ktl. Find the point that will minimizeL US(, ,aIis.t.

(1), (2), and (3). Let the solution be ('~)

3. For (81*,id&), solve (SF1) to find the best "(,).Use

14



equation (25) to find a6,)

4. If a('~)~a',we have an improvement in the objective

function. Therefore. let a" a'(63 ,d') and go to step 2.

Otherwise. the solution is (,) g (Ell,dl), and h-(E6,61n)

is calculated from eqs. (14) and (15).

Convergence Proof

We need to show that

fi el )>f1 E3l )(4

Assume, at iteration k-i, that

(Otherwise, we would have stopped there.)

By setting a =- a- (Oki,&L 6--l) we havie

t 6','~ ) = UB(8)'.' . .af,-J. (35)

At iteration k. since (e-:6') minimizes U(,,~ )

UB(Bt- dl- I a > U B ( e 6 a (36

But,

US()"> f, e,,. ,-1) 37

and inequality (34) follows.

Moreover,

if UB (E31" aI d" , a,.:,.-'i (39)

The last inequality holds true if a(,6) a. Therefore, the

true objective function improves from one -itera'ti'on to -another.

Since the problem is spherically convex, the solution procedure will

converge to the global optimum solution (Drezner and Wesolowsky

15



1978). Q.E.D.

Numerical Results,

The above procedure was programmed on a Vax 11/750 in BASIC. There

was no attempt at program efficiency. Several test problems were

solved to represent a variety of possible geographic configurations

and complexities. The minimum CPU time was approximately 0.5 second

(2 iterations) and the maximum was almost 1.0 second (4 iterations)

for convergence within one degree longitude and latitude. Convergence

within one minute longitude and latitude required only one more

iteration in each case with a maximum CPU time of 1.3 seconds. The

results of these test problems are summarized in Table 2, with Table

1 providing a key for understanding the entries in Table 2.

Summary

In this paper we have shown that the single aircraft refueling

problem is a non-linear convex location problem on the sphere. The

algorithm that has been presented is an optimal solution procedure

for this problem. In the sequel to this paper, these results are

used as the basis for solving the more complex multi-aircraft

refueling problem.
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TABLE 1: Key for trial runs chart of Table 2

Location Longitude Latitude Code

New Jersey 75W 40N A

Delaware 75W 38N B

North Carolina 78W 35N C

Puerto Rico 66W 18N D

Azores Islands 25W 37N E

Iceland 20W 65N F

Germany 10E 50N G

Turkey 30E 40N H

Saudi-Arabia 47E 25N I

Egypt 28E 30N J

England OE/W 52N K

W = Cargo Weight Code

100,000 lbs 1

'200,000 lbs 2

Fuel ACCR = Fuel.Accuracy

10 means to within 10 lbs

POS ACCR - Posit~on Accuracy

I means to within 1 degree

2' ~ . .!
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Appendix A

Derivation and Characterization of the Fuel

Consumption Function and Other Related Functions

Here, mathematical representation of the various relation-

1
ships between fuel consumption, distance traveled, cargo weight,

and initial fuel of a typical jet A/C are derived.

The United States Air Force provided raw data describing A/C

performance at different gross weights, different altitudes. and

different speeds. These raw data have to be transformed before

they are useful. A sample of these data is shown in Figure 2 for

a C-5A transport A/C flying at an altitude of 31,000 feet.

Different curves are presented for different A/C weights, and

they show the distance traveled per 1,000 pounds of fuel burned

at a given speed and at that given gross weight (GW). Consider

the points on the curve indicating 99 percent maximum specific

range. It is assumed, without loss of generalilty, that the

transport A/C will operate at those points since speed is

maximized, while fuel consumption is only 1 percent greater than

the minimum possible..

The distance traveled in miles per 1,000 pounds of fuel

burned when the A/C gross weight is GW, denoted here as MPF(GW),

is plotted against gross weight GW in Figure 3 using the 99

percent line in Figure 2. Least square linear arid quadratic fits

to the data were tried, and both fit well as seer in Figure 3.

For the linear fit,

MPF(GW) = a,. + aGW.

where

a- = 36.2829, a, = -0.027
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Figure 2: Data for C-5A aircraft.



MPF(GW) = Miles per 1000 lbs. of fuel burned for
a given gross weight

30

28

-Quadratic Fit
26 - ---- Linear Fit

X Real Data Point

24

22

20

18-

16

320, 400 480 560 640 720

GW = Gross weight in 10oo0 tbs.

Figure The MPF function vesu ;W.



and correlation coefficient = -0.9919.

For the quadratic fit,

MPF(GW) = b... + b.GW + b=GW

where

b, = 43.7616, b., = -0.0576, b? = 2.94 x l0 '-

and correlation coefficient = -0.9983.

Only the linear form of the function will be used here. The

use of the quadratic form is similar (Yamani 1986).

Note that at any moment during the flight,

GW = EW + w + f

where f = the present (instantaneous) amount of fuel and EW = A/C

empty weight. During flight, f changes due to fuel burning;

thus, GW changes while EW and w stay the same. So,

dGW = df

The Range Function R(g,w)

Initial Gross Weight = EW + w + g

Final Gross Weight = EW + w

Then,

R(g,w) =MPF(GW) dGW
EW+.w

g IMPF(GW) df
0

0g fMPF(EW+w+f) df

The Fuel Consumption Function FC(g,w.d)

Let gr equal the final amount of fuel left.

Then,* ' .

FC(g,w,d) g - g,

Thus, finding FC reduces to finding g,, which can be accomplished

19



by solving for 9,~ in the following eciuation:

d = MPF(EW+w+f) df

d = Si3 a,. + ai(EW+f+w)) df

which results in

gr=-a/a. + E(a+a 1 .g)17- - 2a .dJ'-' / al

Thus,

FCig,w,d) = g + a/a, - ~~~)~-2aadP~ / al

wher e

a a + at(EW4W)

The Fuel Requirement Function FNlw,d)

If the distance d to be flown and the cargo weight Vj are

known in advance, then the amount of initial fuel g must be at

least as great as the amount of fuel needed. If g is set equal

to FN(w,d), then we can use the range function R(g,w) to solve

for g. That is, set'

R(g,w) =d =[a' + aiw + (a,/2)glg1i ~ ~~where' a.+ W

Solving for g results in the following equatibn:

FN(w,d) g wa/,+ [(a'+ajw)- + 2a~d1 " ~ a,.

Table 3 summarizes the various fuel functi'ons.'
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Characteristics of the fuel functions

(1) The function FN(w.d) is a strictly convex and increasing

function of the distance d for any given value of the cargo

weight w. This can be shown by taking the first and second

derivatives if FN with respect to d.

dFN = ll[(a'+a w) - + 2a,.d3l.' -  > 0

d 2FN = -a,/C(a'+a w) -  + 2ad]1"i" ! > 0
d d -

because a,<O. Therefore. FN is strictly convex in d. Moreover,

since the first derivative is always positive, FN is an increas-

ing function of d.

(2) The function FN is a strictly convex and increasing function

of the cargo weight w for any given value of d. This can be

shown in a straightforward fashion as in the previous case.

f..
Yamani (1986) proved that if the distance d is measured along the

surface of a sphere (earth), then the function FN(w,d) is spher-

ically convex (s-convex) over a spherical disc of radius 1v/4.

(3) The function F C(g,w,d) is a concave and increasing function

of the distance d for any given values of the initial fuel g and

the cargo weight w.

(4) The function FC(g.w,d) is a convex and increasing function of

w for any given values of g and d. .

Again, both cases (3) and (4) can be shown to "be true in a

fast ion similar to that of FN(w,d).

A.
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