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THE THEORY AND PRACTICE O THE h-p vERSION

OF FINITE ElEMENT METHOD

Ben Qi Guo* Ivo Babuska**

Institute of Physical Science & Technology
and Department of Mathematics

University of Maryland
College Park, MD 20742

U.S.A.

Abstract: The p and h-p version is a new For a survey of the state of the art of the o

development in finite element method in recent years. and h-p versions we refer also to 121.

This paper is addressing some theoretical advances and
presents numerical illustrations. --. -. - "

2. Finite Element ethod and the Approximation

1. Introduction Let B(u,v) be a bilinear form defined on HIXH2 0

There are three versions of finite element method. where H1 ,H2 are reflexive Banach spaces equipped with

The classical h-version achieves the accuracy by re-

fining the mesh while using low degrees p of ele- norm U-II1  and -1*2  respectively. Let further

ments, p - 1,2 usually. The p-version keep the mesh

fixed and the accuracy is achieved by increasing the F c H*, i.e., F be the linear functional on H

degree p. The h-p version properly combines both

approaces. We seek the solution u0 C HI such that

The h-p version is the new development of finite B(u0,v) - F(v) for all v c H2. (2.1)

element method. It was first addressed by Babuska and

Dorr (4]. The further analysis and computatVon for two If the bilinear form B(u.v) is continuous and

dimensional problems were made by Guoo -abusk4)n-23--0-- satisfies the well-known inf-sup condition (see 131).
'ikere the exponent i-fl F'-61r -convergence was proved. then the problem (2.1) has a unique solution.

The one dimensional analysis was given by Gui, Babulka.

A----j 4 .- The improvement of the results for curvilinear c H The approximation
boundary and curvilinear elements was made by Babulka, 

Let now Sl H1 . S2  2 T

Guo.1Wr-194 'The problem with none-hmogeneous Dirichlet problem is to find the finite element solution u. £

data was studied by Babuika, Guo.im- 4401 The h-p 1
_m~l , . of2m oder S1 such that

version with c-/-elinta-r the problem of 2m

was discussed b- Guo.in (191. The feedback agr adap- B(USI,v) - F(v) - B(Uov) for all v c S 2 . (2.21

tivV approach 4as developed by Gui, Babulk&4&O and
Babaka, -_nkA .__1 _ For sake of simplicity we assume that the bilinear

The p h-p erform B(u,v) satisfies the inf-sup condition on
The pand h-p version for two dimensionalexists, is unique, and

problems were implemented in the coasmercial code PROOE .

by Noetic Tech., St. Louis. See (27,281. The commer- IuS -u 01 1 C(SIS2)Z(u0,HI,S1) (2.3)

cial program FIESTA (Istituto Sperimentale Modelli e 0

Struttre) has limited p and h-p capabilities in where

three dimensions. The p and h-p versions of fi- Z(u0 ,H,S 1  = inf Huo-w. (2.4)

nite element method in three dimensions is being devel- WeS

oped by Moetic Tech. and by Aeronautical Research 1"

Institute of Sweden. For details, see (1,3]. We shall assume that

The practical effectivity of the p and h-p C(S1,52  f D

version is closely related to the problems in structu- where D is independent of S1 and S2, hence the

ral mechanics which are the problems of elliptic 
par-

tial equations with piecewise analytic data (as do- norm of the error e = u -u is completely governed

mains, boundary conditions). The analysis of the 1

interior regularity was given by Morrey (231, and the by Z(u0 .HI,S 1) . The accuracy of finite element solu-

behavior of the solution in the neighborhood of corners tion is actually an approximation problem. Obvi6us)y

and edges of the domain was given by Kondrat'ev, the solutions u is not known, but it will be

Oleynik (21,221 and Grisvard 116,191. The characteri- 0

zation of the regularity of the solution on nonsmooth assumed that they belong to a compact solution set

domains in the frame of countably normed spaces was K r H1 • Hence we are interested in Z(u 0 .HI°S 1 ), for

ginven in the series of papers by Babulka, Guo in 15,6, any u0 c K. The precise characterization of the set

7.81 and 19).
K which is made as small as possible is crucial for

The advances in the p-version were discussed in the most accurate approximation.

1261. The computational aspects were addressed in

(251. 3. Characterization of the Solution for Elliptic

Problem with Piecewise Analytic Data

• Supported by the National Science Foundation under As indicated in the previous section, selection i

Grant DMS-85-16191. of the h~p,h-p versions and the performance of three -
versions strongly depend on the solution set K. Let

--Supported by the Office of Naval Research under us characterize this set for elliptic problems with

Contract N000014-85-k-0169. piecewise analytic (input) data.
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Let Q a a2  be a bounded domain (curvilinear g -1/2,1/2 rep. a (1)), then there is
polygon) shown in Figure 3.1 with vertices A1 , 1 C (rasp. -t h

i -S 14 the boundary D) be a pLecewise analyticG curve G k (resp. -8(G)) 8-uch that GJ¥ g. We
M define

F =Il ri where ri's are open arc with endpoint A L gNk-1/21-1/2(W) - infircGu H.
and Ai+. We denote the internal angle by wi. 0 < W y

5 2. 1 i 5 . Theorem 3.1. Let 0 be a polygon, f C BO(), 91 CA
n

_1/2 ,1, 0 _3/2, .0,

AP
B  (r g, e sB  (r , o < oi 1C 1, 0i > 1-

A - "

aI'(resp. 1 - if different types of boundary condi-2w.
tion are imposed on ri  and ri+l ) , 1 -< i -M. then

U AA r3 the problem (3.1) has a unique solution u H I() and

A1  u c B (0). For proof, see (5).

Fig. 3.1. The domain with piecewise analytic boundary. If n is a curvilinear polygon we introduce

-~~ 2-,beCCQ 2 k-i
Let r - u ri and r r-r be the Dirieblet 2 - {u ,2 (k 1~u~x) l Cd ck l)l(*kX)]-1

icD V a. joI - k - 1, C and d independent of k). Then
and Neumann boundary respectively. For simplicity we we have
consider only the problem

-Au + u - f in (3.1a) Theorem 3.2. Let n be a curvilinear polygon and

u g on r O3.1b) r.s are analytic arcs, 1 5 i 1 M, f c B 0(). g3/2-tC3u - g1  on jl(3.1b) nx -
1) 01 -.'1 .>1-- Cep

_ =1 1 3/-U,.
1

an 9 on r1(3.10) B /2- (rI, L - O,1, o < oi < 1, 0i  1 - .(resp.

If f C L2 (0), 9r • °)gI (IC), I • D, 1 - ) 1 5 L ! M. Then the problem (3.1) has a
.i 

Lw
0. 1 2g is continuous on r , the problem (3.1) has unique unique solution u c H1 8() and u e C (0). For proof,

solution (weak sense) u0 C H (). No matter how see (9].
0 1

smooth f,g ,g are, the singularity appears at the 2 2 2
corners of the domain. Hence the standard Sobolev Remark 3.1. Since B0(a) c C() c a05(0) for arbi-

spaces are not a powerful tool for this type of prob- trary E > 0 the result of Theorem 3.2 is weaker than
lem, and various weighted Sobolev norms were intro- that of Theorem 3.1. Nevertheless, it will not affect
duced. the asymptotic rate of convergence for the h-p ver-

sion.
Let B = (B1 . .  H be an M-tuple of real numn-

bers 0 < B. < 1, 1 M i N. For any integer k - 0 Remark 3.2. Theorems 3.1 and 3.2 are also valid for
1 generaly strongly elliptic equation and system with

we shall write O+k (S (i+k,...,01i+k) By rj (x) we analytic coefficients satisfying inf-sup condition

denote the Euclidean distance between x c A and the (5,61. The interface problems with piecewise analytic
interfaces and the eigenvalue problems have the samevertex Ai,  1 

< L < M. We denote then # +k(x )  properties too, see (8). The solution of elliptic
14 x+k  

problem of 2m order on polygonal domain belongs to

i W.B m+1(0) (71. Hence for this class of problems includ-i~l B

Define 'or k. ! 0. > , H0,Hk ) (u • HL-1 (W) ing many structural problems the solution set K =

B+k-t u c L2 (g), L 5 Jul -S k) (if 1 0, the con- B.0) or Ca(0), t 5 2.

1-1-/2.
dition that u C H (2) is absent) and B1(o) - The definition of B y) does not give the

Hj k-L 0 structure of the space, and it is often difficult to
CU (a) +k- I () f Cd -(k-t). k - t. verify in general whether g belongs to this space.

Bu BH()0 L0) Hence further characterization of the structure of
1+ 2.... l1 - k, C and d independent of k). _t-1/2(f

As usual, we denote a = (a,a2 ), lal - al+a2, a- 0, 35 Cv) is important for application.

- 1.2. integers and O - Let I - (a.b) c 5l. Analogously as before weia=a 22,anta shall Dk , - - =
x 1alx2 a1 02 shall define the spaces Hkt (1) and B L(). Let

- Is-al. 02 - Ix-bi and y - (y1.v2) be the 2-tuple

Let y be the union of some edges of 0. The of real numbers, 0 < yi C 1, i - i.2. For any inte-
k-1/2.t-1/2 1-1/2space H- - (0) (resp. BB I )) is defined ger k .2 0 we shall write 1 4 k - (rlk.y2 k). and

as the trace of It (0) (resp. a (M)) on y. If



d y. +k orinir and Qi, h..5 and h be the maximum and
denotc TV+k i minimum of length of edges of Oil, ,  then dix

Hk' (i) - Cu ( H1
-
1 
(I), T u W L2 (I), -1 a _<k) h ,j  satisfy

(if Z 0. the condition that u c HL
1 
(I) is ab- a

n +2 -j 
, d. 

n +
1
- j,

sUnt) and 3 h

9 kj (k) k-I d 5 - 1 j hij - K2dijB (I) - {u cHy (I), .U I < Cdk-(k-I)! 1~ ij- ~ ~
(u V ( , I L2 ( ) (for 1 < i <  

i(j), I < j - n+l and

k = II+l,..., C and d independent of k).

d. 0d1.1 - O

In+lI n
Analogously we define spaces B (r.) on r. K 3eo hi,1 

< 
hi~ j - O4 

n

with yi instead of . We have the following theo- for 1 
< 
i -i(l). KM,l !5 a -4 are independent of

rem. i and j.

Theore 3.3. Let 0 be a polygon, further (c2) Let M - (1i4 j, I - i ! 1(j), I 
<

j 
< 

n+l).
0 0 0 0

(1) If g is continuous on r i . 9 1r M N. is a one-to-one mapping of standard square S

1 1 r with y . (Y 0 < Y (resp. standard triangle T) onto Ri, j . Let P. and

Y 0 2 denote the vertex and side of 1,j . then M-l.(P.)

GOj 
i 32(aj

1/2, I = 1,2, then there is a function G • B (9) -l

0 0 t and 
. 

(YV) are the vertex and side of S (reap.

such that Gi .0 g and - ax ,l,'i-l.2
} 

+ T), 1 - t 
< 

4 (resp. 1 L _ 3). Moreover, if M.

1/2 for i,i-l c D, S. = 1/2 + Y , for i-1 c D and M map S (resp. T) onto element 0. . and
1i-1,2- m ,k1,

and i d D, 0 < B. 1 are arbitrary for i,i-1 £ D. 92 with common side y1  AIA2, then

1 0~
(2) if 1 1 0 wih . (M71 - .is (-l (AM (

gi - l By()., 1 dt ij (A) , M 
c

(A dtlA) k(At)).

(Yi,ii,2 ), 0 < Y i, 
< 

1/2, i • D, I - 1,2, then for any A C Yl" L - 1,2. We assume each side Y of

there is a function G
1 c BI

(Q) such that G
1 1 1 g 

1 , 0, j  is analytic curve, I t 1 5 4 (resp. 1 V 12 3),
0 rI

and B. - max (VY, ,YV1 2) + 1/2 for i,i-l f D, Bi = x h. c i(0,1(X)

Y 
+1 /2

, for i £ D, i-l • D, 0 < 0, < 1 are arbi- V1  = hX =il Y y h i,j'Pi,j,t(Q)

trary for i,i-1 c D. and
Wk , W(k I ,E Cj,kI

Remark 3.3. Theorem 3.3 also holds for curvilinear 19ijk
1) i,j, -

polygon with piecewise analytic boundary (see [10]). i npd o iijAcod
where C and L are independent of 1L,i,j. Accord-

Remark 3.4. Theorem 3.3 allows us to verify the boun- ingly, the mapping M. . of S (reap. T) onto 0i j

dary conditions mentioned in Theorems 3.1 and 3.2. - -- 1,3

is analytic on S (reap. T) and can be extended to

4. The Mesh and Finite Element Spaces S S Let be the Jacobian of N.j. we shall

assume that

Mesh design is very crucial to the accuracy of
method and depends very much on the solution set K - Clh -j -Ch

B,(2) and (0). We assume for simplicity that 0
with constants C1 ,C2  independent of ij.

.5 a polygon cnntained in a unit disc centered at ori-
gin which coincides with the vertex A1 of 0, and Rerk 4.1. Figure 6.3 is an example of the geometric

K- 2(a) with 1 - r ,i .e,, assume that the sin- mesh for the problem with singularity at one corner,
but the mesh can be ahalogously generalized for prob-

gularity appears only at one vertex of 2. lems with singularity at every corner.

Mesh typically used in the h-p version is such n
that domain is divided into several layers by geometric Remark 4.2. If mesh 0

n 
contains triangular elements

pr.-iression. the jth layer, 1 !E j 5 n+l consists of some additional assumptions have to be imposed. In the
c; .cnts a1 , 1 - i - I(j). In addition to the usual practice these assumptions can easily be satisfied, see

conditions in the theory of finite element method, the (91.

main characterization of the (qeometric) mesh P Lla Let P - (p. ., 1 _S i -< 1(j), 1 -< j -< n+1) and

(ai' j , I - I(j), 1 1 j S n+l) is following: Q - (qi,j 1 - i 
< 

1(j), 1 5 i - n+l) be the degree

vetrwith integer p. and qi~ e 0.
(Cl) Let mesh factor a be an arbitrary number, ei,j

•a < 1, and let d be the distance between
we define the finite element spaces

V V -II',An ',. = ,.- -V ' .W , " , .,. .?.



5y or (x-) 6. Numerical Results(4"*(x~yJ Uxyl for__________0
, (C'(,) is the polymomial of degree we will-present- Wme numerical results for the

- Pij in C and of degree 'I qiJ in solution of a plane strain elasticity problem. We
selected the model of crack .panel loaded by traction

and that the exact solution is the first (sym etric) and

1. PIsecond (antisymetric) mode of stress intensity factor
S (Q S'(05 n N (0). solution. This problem wes selected because it charac-

a terizes the usual difficulties of engineering computa-

;-QQ S.(n)nVQ tion. Due to the symetry and antisymmetry we need
a a )only to solve the problem in the upper half of the

panel shown in Figure 6.1. The solution has singular

where I1(a) - (u 'HI(D), ul 0 - 0). behavior at the tip of the crack, i.e., the displace-

0  ment U - (uv) has the expression (r 1 /2#1(e).

By H we denote dim (SP'Q (oo). the number of r 1/22(6)) near the origin. Obviously uv iK2 (Q)
a2

degree of freedom. and uv c 82) for B , 1/2. ',

5. Basic Approximation Theorems of the h-p Version The energy of U is defined as

We will list some basic approximation results in G(U) 2 3v 2
G(U -2lv ((tj) + -))

the case that HI7 H2! Al(9),K -8 (a) or C2 (0) and 2(1-2v)(1+ 0 a) 3

S 5 . S P.Q,l( n), i.e. we seek the estimates of Tx (l/2-v) -3y -) )E

Z(u,I(o),-_ P,Q.(,n)) for u a K. where 8 snd v are the young's modulus of elasti-
a city and Poisson ratio. The error e - U - UFE is

Theorem 5.1. Let Q be a polygon and u C B () n measured in energy norm. and by (5.1)

!S PiJ -. . _ 
b N 

1
/ 3

Hl(), then for any a f (0,1). P - Q. vJ < leie
lie".cce(6. )

0< v1 u < - and Pi,, 1. We have

The relative error is defined asCel n . P Q I Q -bM1/3 
'

Zau. s )) - (5.1) e.i . lelE/10l2"100%" -

where b and C are independent of H -

dSA(;SPQ l(On)), the number of degree of freedom. For

proof, see 191. - 1

Theorem 5.2. f u a C2(Q) n 41(g), ( is a curvilinear

polygon, the boundary of domain is piecewise analytic, - O
then the result of the previous theorem holds. For a
proof, see 19).

Remark 5.1. Mesh factor a can be any number c (0.1)
the computation shows that a - 0.15 is the optimal

value. In [18| it has been proved that a = (1--)
2

- 0.17 is the optimal mesh factor in one dimensional Figure 6.1. The crack panel.

setting. The value a - 0.15 in two dimensional prob-
lems reflects the fact the solutions in the neighbor- The computation of the p and h-p version were
hood have essentially one dimensional character. made by program PROSE (271. The computation of the

h-version with p - 1 was made by the adaptive pro-
0  

Bg £ B (r), i D with y gram FEARS developed at University of Maryland 124).
R 2 = gr i  We will compare the performance of the three versions

= (B -1/2, 0 +-1/2) are non-homogeneous Dirichlet of finite element method.

boundary condition, the theorems above hold provided Meshes Ai 1 - i S 6 which are refined near the
0

g is properly projected on the trace of finite ele- tip by geometric progression with factor 0 O.IS

ment space S P,Q,( n are shown in Figure 6.2.
o

Remark 5.3. For problems of order 2m, the theorems
hold when geometric mesh contains only parallelogram
and triangular elements. For details, see 1221.

LN

.5-



Table 6.1. Relationship between Uenlpb and

C for the h-p version. The symmetric problem

(E-lv-0.3) on Mesh Ai. 1 - i _ 6. a - 0.15, p - n.

MCA p N K'd Ittlea* h Ci fuele

A, I 9 10S 6 0.92 0.741 IASS
A, - 48 3..) 0.23 0.740 2.303

- 0 0 I 4 0 0 1 A, 3 121 4.95 7.61 0.776 2.091
MESH A MESH A A. 4 256 6.35 257 0.720 1o0

2 A, 5 477 7.81 0.90 0.670 1.683
A, 6 80 9.31 0.33 0.670 1.618

-t 0 02 1 -I o'o 1

MESH A3  MESH A.
3

in Figure 6.4 we show the dependence of the error
on a. We see the best value of 0 is close to

(4-1) - 0.17 which is the theoretica'l optimal value

-' '. , - s in one dimension.

MESj A5  MESH A6
30 %OZO 4O S080 0 -a " - - - - I

Figure 6.2. Mesh I 0- -.7
The table 6.1 shows the relationship between * "--.,

Mn,p and laeER where n is the number of layers,

p is the element degree and N is the number of - -.

degree of freedom. The relationship is plotted in .- - -

Ln lei ,R-N1/3 scale and shown in Figure 6.3. The

curve characterizing the convergence of the h-p ver-

sion is the envelope of the six curves of the p-
version on the Mesh Ai. 1 1 i - 6 and is nearly a 2 3 4 3 6 ? 0 9 10

straight line. The slope of the line is b in (6.1) Nv3 -

and is numerically 0.67.

Figure 6.4. Dependence of Relative error of the h-p
version in energy on the mesh factor a. The anti-

symmetric problem (E-l,v-0.3) on Mesh Ai, 1 5 i 5 6.

__ -Figure 6.5 shows that the h-p version in insen-

-so--
7 r- 4 0I sitive to change of Poisson ratio. The slope of the

- - - curves of the h-p version for v - 0.3 and 0.49

30 - -RI, . are almost the same. The locking problem never

- - -0 occured.K -- 'N ,i N

- I 
i

25 10o 200 400 ,OOOWOOMo5-.,1- J ! ! . -10" I 1" ' I 2I
• -. - -4 50r - - - - -

=" 2 - 20 -.

03 - -- 5P
O.- - S

-' S I 1 0

2 3 a 3* 0 5 a 9 0Z- -
NV) . _

3 5 7 9

Figure 6.3. Relative error in energy norm vs. number Fiqure 6.5. Insensitivity of Relative error of the

of degree of freedom. The symetric problem , h-p version in enerqy norm to change of Poisson ratio.

v - 0.3) on Mesh AC. I i 6, 0 0.15, p * n. The antisymmetric problem (F=l.v=03)) on Mesh A
I <E i 1! 6.

' W VW . ' ,Y~.',, L, , :{ ,:, : /. .,: ,5 , './,.. ': " . ' ' ".5?



Table 6.2. Istimated error of the h-p version. The symmetric problem (3 - 1,
v - 0.3) on Mesh Ai. 1 - 1 - 6. a = 0.15, p -n.

tlh lI lIl. el.a- (Il IsVel.

I 2.95 E. 2.9662E. 60.33 60.92 0.21 9
2 9.9774E-2 9.SSII E-2 20.23 20.23 -0.2669
3 3.7033E-2 3.705SE-2 7.606 7.611 0.0606
4 1.2489E-2 1.2500E-2 2.565 2.567 0.0926
S 4.3359E-3' 4.3691E-3 0.891, 0.897 0.6639

In Figure 6.6 we compare the performance of the (5) Preliminary computation and theoretical ana-
h,p and h-p versions in In lei... In N scale. We lysis show that in the three dimensions the p and

see that the accuracy 0.5-1.0% is very expensive and h-p have superior qualities in practical computation
probably is not achievable at all for the p-version of problems in structural mechanics.
and h version with p - 1. The h-p version allows
us to use a relatively very small number of elements to
obtain high accuracy. References

N IlI Arnold, D.. Babulka, I., Osborn. J.: "Finite
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The Laboratory for Numerical analysis is an Integral part of the
Institute for Physioal Science and Technology of the University of Maryland,
under the general administration of the Director, Institute for Physical
Science and Technology. It has the following goals:

o To conduct research In the mathematical theory and computational
implementation of numerical analysis and related topics, with emphasis
on the numerical treatment of linear and nonlinear differential equa-
tions and problems in linear and nonlinear algebra.

o To help bridge gaps between computational directions in engineering,
physics, etc., and those in the mathematical community.

o To provide a limited consulting service In all areas of numerical
mathematics to the University as a whole, and also to government
agencies and Industries in the State of Maryland and the Washington
Metropolitan area.

" To assist with the education of numerical analysts, especially at the
postdoctoral level, in conjunction with the Interdisciplinary Applied
Mathematics Program and the programs of the Mathematics and Computer
Science Departments. This includes active collaboration with govern-
ment agencies such as the National Bureau of Standards.

o To be an international center of study and research for foreign
students In numerical mathematics who are supported by foreign govern-
ment3 or exchange agencies (Fulbright, etc.)

Further information may be obtained from Professor I. Babu4ka, Chairman,
Laboratory for Numerical Analysis, Institute for Physical Science-and
Technology, University of Maryland, College Park, Maryland 20742.
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