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THE THEORY AND PRACTICE OF THE h-p VERSION '
OF FINITE ELEMENT METHOD

Ben Qi Guo* 1Ivo Babuska** ' '
Institute of Physical Science & Technology L
- and Department of Mathematics . 3
University of Maryland
College Park, MD 20742

U.S.A.

Abstract: The p and h-p version is a new
development in finite element method in recent years.
This paper is addressing some theoretical advances and
presents numerical illustrations.

=
1. Introduction

\\\\\:9 There are three versions of finite element method.
The classical h-version achieves the accuracy by re-
fining the mesh while using low degrees p of ele-
ments, p = 1,2 usually. The p-version keep the mesh
fixed and the accuracy is achieved by increasing the

degree p. The h-p version properly combines both
approaches.
pproaches. )

K"“"l'he h-p version is the new development of finite
element method. It was first addressed by BabuSka and
porr [4). The further analysis and computation for two
dimensional problems were made by Guo, Babuska) tn—{3oh2..
where the exponential FAt¥ 6F Convergence was proved.
The one dimensional analysis was given by Gui, Babufka,
_A___{i8}+ The improvement of the results for curvilinear

boundary and curvilinear elements was made by Babuska,
Guo. 119} ~ The problem with non-homogeneous Dirichlet
data was studied by BabuSka, Guo,in 410]6 The h-p

r the problem of 2m order

version with éﬁri-e%pnénzs—ﬁg
was discussed Guo.in ([19]. The feedback and adap-

tivg approach was developed by Gui, Babufka -8} and
Babuika, Rank,A11).
by "

The p~ and h-p version for two dimensional
problems were implemented in the commercial code PROBE
by Noetic Tech., St. Louis. See {27,28]. The commer-
cial program FIESTA (Istituto Sperimentale Modelli e
Struttre) has limited p and h-p capabilities in
three dimensions. The p and h-p versions of fi-
nite element method in three dimensions is being devel-
oped by Noetic Tech. and by Aeronautical Research
Institute of Sweden.

The practical effectivity of the p and h-p
version is closely related to the problems in structu-
ral mechanics which are the problems of elliptic par-
tial equations with piecewise analytic data (as do-
mains, boundary conditions). The analysis of the
interior regqularity was given by Morrey (23], and the
behavior of the solution in the neighborhood of corners
and edges of the domain was given by Kondrat'ev,
Oleynik {21,22] and Grisvard [16,19). The characteri-
zation of the regularity of the solution on nonsmooth
domains in the frame of countably normed spaces was
ginven in the series of papers by Babuska, Guo in [5.6,
7.8) and {9].

The advances in the p-version were discussed in
126). The computational aspects were addressed in

[25).

* Supported by the National Science Foundation under
Grant DMS-85-~16191.

segupported by the Office of Naval Research under
Contract NO00014-85-k-0169.
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For a survey of the state of the art of the b
and h-p versions we refer also to (2].

.

-y

2. Finite Element Method and the Approximation

Let B(u,v)

where Hl,H2

be a bilinear form defined on HIIHZ.

are reflexive Banach spaces equipped with

norm “'"1 and “."2' respectively. Let further

F € HS

5 i.e., F be the linear functional on Hy-

We seek the solution u_ € H

o 1 such that

for all v e H_. (2.1)

B(uo.v) = F(v) 2 \

If the bilinear form B{u,v) is continuous and
satisfies the well-known inf-sup condition (see (3]),
then the problem (2.1) has a unique solution.

Let now S, € H ., S, € H,.

1 1° 72 2

problem is to find the finite element solution u, €
1

The approximation

s1 such that

B(usl,v) = F(v) = B(uo,v) for all v e S,- (2.2)

L1

For sake of simplicity we assume that the bilinear
form B(u,v) satisfies the inf-sup condition on
51*52. Then ug exists, is unique, and

Ilunsl-uoll1 = €(5,,5,)2(ug K, .S)) (2.3) )
where
Zlu  H,.S)) = inf ﬂuo—w“. (2.4)
weSl

For details, see [1,3]. We shall assume that

=D

C(Sl.Sz)

¢ s 1T % 3 ® ®

where D is independent of Y and S,, hence the

norm of the error e = ug “u, is completely governed
1 w»

by z(uo,Hl,Sl). The accuracy of finite element solu-

Obviodusly
is not known, but it will be

tion is actually an approximation problem.

the solutions uq

assumed that they belong to a compact solution set

K < "1' Hence we are interested in z(uo.Hl.Sl)_ for

any u_ € K, The precise characterization of the set

(4]
X which is made as small as possible is crucial for N
the most accurate approximation.

L]
3. Characterization of the Solution for Elliptic ——,
Problem with Piecewise Analytic Data
As indicated in the previous section, selection s :
of the h,p,h-p versions and the performance of three - "
versions strongly depend on the solution set K. Let o
us characterize this set for elliptic problems with
piecewise analytic (input) data. p
, .
pTIC lﬁ"/i | N
B S S,
worPY

INSPECTED '\
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‘LetA 2 € " be a bounded domain (curvilinear

polygon) shown in Figure 3.1 with vertices A‘. 1=

i £ M, the boundary 3! be a piecewise analytic curve
M

r= v ri where ri‘s are open arc with endpoint A
i=l

and Ai*l' We denote the internal angle by w5 0 < N

=2, 1 =4iz=mnm

Fig. 3.1. The domain with piecewise analytic boundary.

tet 1= UF, ana ! =r-r° be the Dirichlet
ied
and Neumann boundary respectively.
consider only the problem

For simplicity we

-8u + u=f in (3.1a)
0 0

u=qg on T (3.1b)

Nogl onr 3.1¢0)

1f fer,, gt e L(rl),d% . enlr), i €0,
2 2 r, i

(]

g~ is continuous on Po. the problem (3.1) has unique

solution (weak sense) u, € Hl(n). No matter how
smooth f.go,g1 are, the singularity appears at the

corners of the domain. Hence the standard Sobolev
spaces are not a powerful tool for this type of prob-

lem, and various weighted Sobolev norms were intro-
duced.

Let B = (B
bers 0 < Bi <1, 1 =i=M

1""'BH, be an M-tuple of real num-
For any integer k Z 0
we shall write B4k = (Bi#k,...,sn+k). Ry :j(x) we

denote the Euclidean distance between x € 2 and the
vertex A., 1 =i 2 M, We denote then ¢ (x) =

i B+k
M 3 +k
Rr (x}.
i=1 i

Define for k > ¢ > 0, u:'in) - (uentluy,

a
.B+k—lD uelL,), ts= la] =x} (if 2 =0, the con-

dition that u ¢ u"l(n) is absent) and B;(ﬂ) =
k,L a < pak-1
. - ,k'.u
lueng' ", log,, 0 “'kz(n) Tcd (k-1)!
t+l, 242,..., |a] = k, C and 4 independent of X}.
As usual, we denote a = (al,oz), |u| = aloo,, n‘ + 0,
a 3'°Iu
i = 1,2, integers and Dy =-——— =2y .
e, @ a, @
2 la 2 x 1 72
*) 9% 1 "2

Let y be the union of some edges of 1. The

space ":-1/2,1-1/2(0) (resp. 81-1/2('), is defined

8

as the trace of H:'!(Q) BI(Q)) on y. If

{resp. ¢

(o € P s v
A O ST T IR

o ¥y Mg € L g
WY " oY LA

g ":-1/2,2-1/2

G e uy'tta)  (resp. BL(M) Tuch that cl, =g we

define

(v)n-(resp. !:-llz(v)). then there is

Hak int ol

k-1/2,t-1/2 X, N
Hg (v) le g Hs fn)
0 1
Theorem 3.1. Let 2 be a polygon, f ¢ BB(Q), 9 €
*82rl), ¢ €83%t%, 0 <8, <1, 8 >1 - X
8 [} i i wg
(resp. 1 - 2 if different types of boundary condi-

2w,
i

tion are imposed on ri and T ), 1 £ i< M, then

i+l
the problem (3.1) has a unique solution u ¢ Hl(d) and

u € a:(n). For proof, see (5}.

If 2 is a curvilinear polygon we introduce
c:(n) ={ue uz'z(n), Io%atxr | = ca® by rte, 03”
Va, Jol =k 21, ¢ and d independent of k). Then
we have

1

Theorem 3.2. Let Q be a curvilinear polygon and

ri’s are analytic arcs, 1 < i <M, f ¢ B:(n). 93/2-1(
82ttt =00, 08 <1, 8 >1 - 5: (resp.

1- 55?4' 12 i<M. Then the problem (3.1) has a
i

2

unique solution u € H;(Q) and u € CB(Q)’ For proof,

see [9]).

:*c(n) for arbi-
trary € > 0 the result of Theorem 3.2 is weaker than
that of Theorem 3.1. Nevertheless, it will not affect
the asymptotic rate of convergence for the h-p ver-

sion. :

Remark 3.1. Since a:(a) c cg(n) cB

Remark 3.2. Theorems 3.1 and 3.2 are also valid for
generaly strongly elliptic equation and system with
analytic coefficients satisfying inf-sup condition
[5,6). The interface problems with piecewise analytic
interfaces and the eigenvalue problems have the same
properties too, see [8]. The solution of elliptic
problem of 2m order on polygonal domain belongs to
m+l

B8 () (7). Hence for this class of problems includ-
ing many structural problems the solution set K =

L L >
Bs(n) or CB(Q)' t 2.

The definition of B:-l/z(v) does not give the

structure of the space, and it is often difficult to
verify in general whether g belongs to this space.
Hence further characterization of the structure of

Bl-l/z

8 (y) is important for application.

1

Let 1 = (a,b) € & . Analogously as before we

shall define the spaces n:"(x) and s:(r). Let o

= |x-al, o, = |x-b] and y = {v;.Y,) be the 2-tuple

of real numbers, 0 < Y <1, i = i,2. For any inte-

ger k 2 0 we shall write vy ¢ k = (v Ok.vz'k). and

1

T T TN o O O S 4 o, T
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M yi+k
denctc ¥ = Np .
TR gl
LT% PR t-1 (w)
u (1) = {ue H (1), 11+._‘u €L,I), t=m =k}
(if & = 0, the condition that u ¢ H"-l(l)
sent) and :

| 4 v k,t
BY(I) = {u ¢ H' (D), “’y#k-tu

Por Xk Z L 20, we define

is ab-

(x) k-2
an‘I’ £ cd” T(k-2)!

k=2,2+41,..., C and d independent of k}.

Analogously we define spaces B: (!‘i) on l‘i
i
We have the following theo-

with Yi instead of Y.

rem.

Theorenm 3.3. Let @ be a polygon, further

(1) 1f ¢° is continvous on TC, gg =g%l

r.
i

1 . . -
Bvi(ri)' i ¢ D, with Y "1.1'71,2)' 0 <« Vi€

1/2, £ = 1,2, then there is a function Go € B:(Q)
0 [+)
such that G Iro =g, and B, =max {v; 1,v; , )+

1/2 for 1i,i~l ¢ D, Bi = 1/2 + 71_1 Py for i-l e¢ D
and i ¢ D, 0 < Bi <1 are arbitrary for i,i-1 ¢ D.

) 1£ g} = g

(] .
=g ri I3 BYi(l‘ih with Y
(Yi,l'Yi,z)' 0« Vi< 1/2, 1 € D, £ = 1,2, then
there is a function G ¢ a;(m such that G| " g,
r
,1"1-1,2) +1/2 for i,i-1¢D, B, =
L 1*-1/2, for i ¢ D, i~1 €D, 0 < 8i <1 are arbi-

trary for

and Bi = max (71

i,i-1 € D.

Remark 3.3. Theorem 3.3 also holds for curvilinear
polygon with piecewise analytic boundary (see [10]).

Remark 1.4. Theorem 3.3 allows us to verify the boun-
dary conditions mentioned in Theorems 3.1 and 3.2.

4. The Mesh and Finite Element Spaces

Mesh design is very crucial to the accuracy of
method and depends very much on the solution set K =

B2(W) and C(R). Ve assume for simplicity that B

.5 a polygon contained in a unit disc centered at ori-
gin which coincides with the vertex A‘ of 2, and

K= B:(m with .B agsgume that the sin-

gularity appears only at one vertex of Q.

- r ? i.eq,

Mesh typically used in the h-p version is such
that domain is divided into several layers by geometric
pr-onression. the jth layer, 1 < 3j < n+¢l consists of

€. .cnts ﬂl 5 1 £i=1I(j). In addition to the usual
’

conditions in the theory of finite elcment method, the

main characterization of the (qcometric) mesh n: =

(ﬂi 3¢ 1<i<1I(j),1=<3 =n+l) is following;
*

(Cl) Let mosh factor o

<9 <1, and let d.
i,)

be an arbitrary number,
be the distance between

FEERTREw

orininr and a2, 5 h; 3 and h, j be the maximm and
[ ’ L4

minimum of length of edges of gi,j' then dt,j' h"j,

h., . satisfy

1,)

on-rz-j <a. < on#l-j'

i
¢.d =h =

19,5 3R, Sh5 T %2%,5.

for 1 <i=i(j), 1< j < n+tl and

for 1 =i =i(l). -:m,l < m < 4 are independent of

i and j.

(C2) Let M= (M. ., 1=i=1I(j), 1=3 = nel),

i,j
"i. ; is a one-to-one mapping of standard square S
’
(resp. standard triangle T) onto Qi 5° Let Pl and
. -1
y! denote the vertex and side of ni'j. then "i,j(pl)
and H;lj (Yl., are the vertex and side of S (resp.
’
T, 122t =<4 (resp. 1 =12t = 3), Moreover, if Hi ;
and "m,k map S (resp. T) onto element ai,j and

Q with common side Y. = A then
m,k

1 172°
. -1 -1 . -1 -1
dist (Hi,j ), Hi'j(ll)) = dist -("m,k(A) . H"R(Al)):

for any A ¢ Y, L = 1,2, wWe assume each side A of

ﬂi 3 is analytic curve, 1 <t <4 (resp. 1=t <x<313),
r
x=h. .9 . (x)
Yy : i,374.3.¢ x€I=(0,1)
=h. .Q. .
y anvlrJ:l(x)
and
(k) (k) < Ky
PR ’ PR = 1
lvx.).ll l*x.J.ll c

where C and L are independent of t,i,j. Accord~

ingly, the mapping M. . of S (resp. T) onto 2. .
- 1,) 1.3
is analytic on s (resp. T) and can be extended to
S* 5. Let Ji j be the Jacobian of Hi 5° We shall
[ ’

assume that

. = Ch

<
by, 2 95,5 = %ML

with constants CI,C2 independent of 1i,j.

Remark 4.1. Figure 6.3 is an example of the geometric
mosh (or the problem with sinqularity at one corner,
but the mesh can be ahalogously generalized for prob-

lems with singularity at every corner.

Remark 4.2. If mesh n'; containsg trianqular elements
some additional assumptions have to be imposed. In the
practice these assumptions can easily be satisfied, sece
92].
Let P = (pij.ISiSI(j), 1 £ 3 < n+l) and
Q= (qi 3 1 24i<1(3), 1= ) = ne+l)
[

vector with integer P; j
[4

be the degree

and L P 2 0.
'

)

wWe define the finite element spaces




'..'sli"ti,

s7 2D - (eletx.y) = 0‘.’01;3’(:.,” for (x,y) ¢
nhj. ¢(¢,n) 1is the polynomial of degree
< P; 3 in £ and of degree in

n)

Ta,
and
s"Q"m:) - 572N o ul,

§"°'1(r¢;‘) - s 2 )

vhere MM = (u e ul(, u} = 0).
r

By N we denote 4dim (§P'Q'l(n::)), the number of
degree of freedom.

5. Basic Approximation Theorems of the h-p Version

We will list some basic approximation results in

the case that "1- HZ- ﬁ’(m K= n:(m or c:(m and

S, =S = §P'Q'1(Q:). i.e, we seek the estimates of

1 2
*P,Q,1

z(u, 0@, $ @) for u ek

Theorem 5.1. Let 2 be a polygon and u ¢ B:(Q) n

ﬁl(m. then for any o ¢ (0,1), P= Q, v} = Py 3 < un,
. .
OSvsEy<e and pijZI' We have

173

PlQll ~bN

z(u. 8@, s @) = ce (5.1)

where b and C are independent of N =
du(gp'o'l(ﬂ:)), the number of degree of freedom. For

proof, see {9).

1
[
polygon, the boundary of domain is piecewise analytic,
then the result of the previous theorem holds. For
proof, see [9].

Theorem 5.2. If u ¢ C:(m nd {(R), R is a curvilinear

Remark S.1. Mesh factor © can be any number ¢ (0,1)
the computation shows that o = 0.15 is the optimal

value. In {18] it has been proved that ¢ = (\/i-l.)2
= 0.17 is the optimal mesh factor in one dimensional
setting. The value o = 0.15 in two dimensional prob-
lems reflects the fact the solutions in the neighbor-
hood have essentially one dimensional character.

1 .
rc BY (l"‘), i € D with Yy

i i
are non-homogeneous Dirichlet

Remark S5.2. 1If q? - qol

= (Bi-l/2. 81‘1-1/2)
boundary condition, the theorems above hold provided

go is properly projected on the trace of finite ele-

ment space SP'Q'l(Q:).

Remark 5.). For problems of order 2m, the theorems
hold when geometric mcsh contains only parallelogram
and triangular elements. For details, see (22}.

Ll | & LA |
.H.lr.o., (W R (AR R

Wiy o g o, . oL o
> A" ot Y

6. Numerical Results

We will present Fome numerical results for the
solution of a plane strain elasticity problem. We
selected the model of crack .panel loaded by traction
that the exact solution is the first (symmetric) and
second (antisymmetric) mode of stress intensity factor
solution. This problem was selected because it charac-
terizes the usual difficulties of engineering computa-~
tion. Due to the symmetry and antisymmetry we need
only to solve the problem in the upper half of the
panel shown in Pigure 6.1. The solution has singular
behavior at the tip of the crack, i.e., the displace-

ment U = (u,v) has the expression (r”zol(e).
21/202(0)) near the origin. Obviously u,v ¢ n’(m

and u,v ¢ B:(Q) for B8 > 1/2.

The energy of U is defined as

E .2 v, 2
U TS T PARA U T
u v u  v.2 2
23—; -D—y + (1/2-v) (('37 + 31) }dxdy "Ul:

where E and v are the Young's modulus of elasti-

city and Poisson ratio. The error e = U - Un is

measured in energy norm, and by (5.1)

/3
flel, = ce Sl , (6.2)
The relative error is defined as

fel, o = Rell/Hull x100v. |
y
1

Y
(]
-1 [ [
3

-1 -1 ] 1 ]
Figure 6.1. The crack panel.

The computation of the p and h-p version were
made by program PROBE (27]. The computation of the
h-version with p = 1 was made by the adaptive pro-
gram FEARS developed at University of Maryland [24).
We will compare the performance of the three versions
of finite element method.

Meshes A., 1 =i 6 which are refined near the

i
tip by geometric progression with factor o0 = 0.15

are shown in Figure 6.2.
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v N
-t ° of v o % rante
MESH AJ MESH A‘
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u U
-1 'o~ [} x - :,5 ' x
M
ESH As MESH A6

Figure 6.2. Mesh
The table 6.1 shows the relationship between
N,n,p and IlellB R where n is the number of layers,

P is the element degree and N is the number of
degree of freedom. The relationship is plotted in

) ll-l! R*Nln scale and shown in Pigure 6.3. The
[

curve characterizing the convergence of the h-p ver-
sion is the envelope of the six curves of the p-
version on the Mesh Al' 1<4i=<6 and is nearly a

straight line. The slope of the line is b in (6.1)
and is numerically 0.67.

Ne g g (%} ——e
LN Ie'n‘ —

Figure 6.3. Relative error in energy norm vs. number
of degrec of frecedom. The symmetric problem (£ = 1,
v=0.3) on Mesh Ai.l‘siis,o-o.ls,p-n.

Table 6.1. Relationship between '".E g’ ¥onop.b and
C for the h-p version. The symmetric problem
(E=],v=0.3) on Mesh A 1£i%6, 0=0.15 p=n.

Mcsh  » N L g lelea™> 8 o [7X P
A, 1 9 208 6092 0.741 1.453
Ay 2 L ) & 20.2) 0.740 2303
Ay 3 m 495 2.61 0.776¢ 2.098%
Ae 4 256 6.)S .57 0.720 1.810
A [ mn T 0.90 0670 1.68)
Ay 6 308 L & 1) 03 0.670 1.688

In Figure 6.4 we show the dependence of the error
on ¢. We see the best value of O is close to

(VZ-1)2 = 0.17 which is the theoretical optimal value
in one dimension.

N ————

o) 23 3% 00 200 400 600 6800 000 2
N
N
m X \ L4 -z ‘
I ~N T~ oo
\ \~..\ s
R N ~— o =015,
!_l "; \\ < | ;~
; N -4 =
w2
™ N z
- 1 \. s
o
\\\ <
2 ] 4 -} [ [ ] 9 ©0
“V! ——

Figure 6.4. Dependence of Relative error of the h-p
version in energy on the mesh factor 0. The anti-
symmetric problem (E=1,v=0.3) on Mesh A 1=4i=e6.

Figure 6.5 shows that the h-p version in insen-
sitive to change of Poisson ratio. The slope of the
curves of the h-p version for v = 0.3 and 0.49
are almost the same. The locking problem never
occured.
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Fiqure 6.5. Insecnsitivity of Relative error of the

h-p version in cnergy norm to change of Poisson ratio.

The antisymmetric problem (E=1,v=0.3} on Mesh Al.
1 2i<6.
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' Table 6.2.‘ lstilnt.d'crtor of the h-p version. The symmetric problem (E = )},
v = 0.3)] on Mesh A‘.ISLSS.C-O.IS.P'n.
" béle bele Flea™ bl (ebe—lélelelc %
1 2.9596E-1 2.9662E-1 60.8) 60.92 0.2189
? 9.8774E-2 9.8S11E-2 20.28 2023 —0.2669
3 3.7033E-2 3.1053€E-2 7.606 1.611 0.0606
4 1.2489E-2 _ 1.2500E-2 2.565 2,567 0.0926
S 4.3359E-3" 4.3691E-3 0.891° 0.897 0.6689

In Figure 6.6 we compare the performance of the
h,p and h-p versions in In lcl! g¥In N scale. we

see that the accuracy 0.571.0% is very expensive and
probably is not achievable at all for the p-version
and h version with p = 1. The h-p version allows
us to use a relatively very small number of elements to
obtain high accuracy.

(S) Preliminary computation and theoretical ana-
lysis show that in the three dimensions the p and
h-p have superior qualities in practical computation
of problems in structural mechanics.
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The Laboratory for Numerical analysis is an integral part of the
Institute for Physical Science and Technology of the University of Maryland,
under the general administration of the Director, Institute for Physical
Science and Technology. It has the following goals:
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o To conduct research in the mathematical theory and computational
implementation of numerical analysis and related topics, with emphasis
on the numerical treatment of linear and nonlinear differential equa-
tions and problems in linear and nonlinear algebra.
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| o To help bridge gaps between computational directions in engineering,
physics, etc., and those in the mathematical community.
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0 To provide a limited consulting service in all areas of numerical
mathematics to the University as a whole, and also to government

agencies and industries in the State of Maryland and the Washington
Metropolitan area.
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o To assist with the education of numerical analysts, especially at the
postdoctoral level, in conjunction with the Interdisciplinary Applied
Mathematics Program and the programs of the Mathematics and Computer
Science Departments. This includes active collaboration with govern-
ment agencies such as the National Bureau of Standards.
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o To be an international center of study and research for foreign Ef
students in numerical mathematics who are supported by foreign govern- .
ments or exchange agencies (Fulbright, etec.)

Further information may be obtained from Professor I. Babufka, Chairman, o
Laboratory for Numerical Analysis, Institute for Physical Science -and -
Technology, University of Maryland, College Park, Maryland 20742.







