
-A192 645 IMPLEMENTATION OF A COMPILER FOR THE FUNCTIONAL 1/2
PROGRAMUING LANGUAGE PHI CU) NAVAL POSTGRADUATE SCHOOL
MONTEREY CA E J COLE ET AL. JUN 67

CLRSF1FIED F/ 2/5 L

EohhohhohhhhEEIEIIIIIIEEIII
IIlllEllElllllE
EEIIEIIIIIIII
IIIIIIIIIIIIIIfllfllfl
llllllllllEEEE

1.10

miCR(CiPv RESOLUTOI TtSI ('I"'M

-qp Jow M1U AiJMA4P UgjptJ _

q~ 4..

Fl ILE COPY,,(

tn

NAVAL POSTGRADUATE SCHOOL
WMonterey, California
Iw

DTlC
ELECTE u

Is

THESIS
7' A' 7 --

V ~ ;, ---

1

Eugenie .7 qc

Jer E~. 'Dnnel2

8ne 2 046

:-rt;v ' r u']:ic~ r'ele3ze; ;ri " " '

87 8 21 046 ,

SEC'w.Jwri ruS,-CTO o;JW r. PAG

REPORT DOCUMENTATION PAGE
'REPORT SEC ,RITY CLASSIFICATION lb RESTRICTIVE MARKINGS

Za SEC .R'TY CLASSIFICATION AUTHORITY 3 0 STR19UTION/A~fAILABILITY OF REPORT

~ ~C~A ~'.ATONDOWNGRADING SCHEDULE A toe z "~i~

4 -ERFORV NG O)RGAN.ZAT!ON REPORT NMBERCS) 5 MAONtORiNG ORGANiZAT.ON REPORT N V 3E~iSi

6a NAIE (IF PERFORMING ORGANIZA TON 6o QF1' CE SvMBOi 'a NAME o; MON. TOR.NG ORGANZAT ON
(it applicable)

6c ADDRIESS Cty Start and ZIP Code) 'b ADDRESS (City. State, and ZIP Code)

ga NAME 0; FUNDING, SPONSORING 8 b OF ,CE SYMBOL 9 PROCUREMENT iNSTR NMENT iDEN CATIO;N .,-%4EQ
ORGaIZAT ON J (if applicable)

lic -%:)RQESS tyr State. aind ZIP Code) 10 SOUjRCE OF fujNDiNG NUMBERS

PROGRAM PROECT 'ASK GR
ELEMENT NO NO NO ACCE'SSC. i

(nClude Security Classiication)

__.-n J . and 'o-nnel H'.en
QEMQ % EC0.d EIE: DATE OF REPORT (Year Monthr Oa; S AK)2

V %A~ O'A7ON I

COSA'. COC~iS 'B SUBJECT 'ERMS Continue on reverie if neCeiuarV and sdem't by ,Cs ncarn~~berI

ien De317~n

S~ 'RAC 'Confinuf on revie it neccuary and identify by block number)

.. : esonibes the Je21fc-n and 2nnt: '77!

-- L:rnal crogra= mn - lar.j-u re-.

M e 7,e n a C cn 7.ne frn--n1 e: -'~

'anai :r -m nd (7cde ffrcr

?7 -eflt2 .'7n 1?7 2 7rtnt-.r-, ~1*
" i 1.n a 'fuI -re7-.n7,2"i n. .- ,. ~ ~

n j' i J ,- efiniticor-, 'ir - i ,-~7 ~
~ a ob ~aw e H,7nr "-e ne~:2'

* .~ 3 G% AVMALABIL.Tv OF ABSTRACT 21 ABSTRACT SECURITY CLASSPCA.Oi

_ '.ASS 9 EDljNL MITED -AEA TCSERS 21.: .

% a*AVE OF RESPONSB8LE %0I,DU0AL 12t) TEEPt-oNE (include Area Code) 2c V3-M92

00 FORM 1473, 84 MAR B3 APRea 0" o-ay beC Ls.ed wnt IeIt a.sted SECRITY CLASS; (A' 7.~ S ~_
All Oth'er ed.0is are Cbiolete - ---

- d I' ~.V. ~..V..V V .. '4~r'.4~s. .W~iS.A!. ~ ~:. ~ X:7. -~ *-~.*'~**\ *i*%

Approved for public release; distribution is unlimited.

Implementation of a Compiler for the

Functional Programming Language PHI-

by

Eugene J. Cole
Major, United States Marine Corps

B. A., The Citadel, 1975

and

Joseph E. Connell II
Captain, United States Marine Corps

B. S., University of Missouri - Rolla, 1974

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
June 1987

Authors:/ ;i'
SEuge J. Cole

Jsph Cnell 1

Approved by: L{---(4L-tq1
pDaniel Da Thesis dvisor

Vincent Y. airmnan,
Departmn t of Computer Sciencq

Dean of Information and Policy Sciences

2%
%I

ABSTRACT

This thesis describes the design and implement of a prototype compiler for the

functional programming language PHI. The design is highly modularized and the authors

think this should facilitate the understanding of both concept and implementation. The

front-end of the compiler implements machine independent lexical and syntactic analyzers;

top-down parsing techniques are employed. The back-end implements a machine

dependent one-pass semantic analyzer and code generator.

Since this implementation is a prototype, it does not possess all of the qualities

desirable in a full implementation. The basic constructs of PHI: functions and data

definitions are implemented, as well as the integer, natural number, and boolean types.

However, the necessary hooks are present and the design is mature enough to allow

expanding the prototype to a full implementation.

F 1. LI

...............

3 .

, ,.
-, , -, c~w ', " :',' ",."i, i , ,. ," , ", -,,.'.' 5 ,' -'. ',i "v 'ez"Y € ' v ' ; , ' ' / '7 "";""?'":";:'";"')" " "" "

r PI

TABLE OF CONTENTS

I. INTRODUCTION .. 6

A. BACKGROUND - GENERAL ... 6

B. BACKGROUND - THESIS .. 7

C. BACKGROUND - FUNCTIONAL PROGRAMMING 8

1. Problems with Conventional Languages .. 9

2. Functional Languages ... 10

D. ASSUMPTIONS ... 11

E. CONSTRAINTS ... 12

I. FRONT-END OF THE COMPILER ... 13

A. LEXICAL ANALYSIS - THE SCANNER 13

B. SYNTACTIC ANALYSIS - THE PARSER 18

C. ERROR HANDLING ... 23

III. BACK-END OF THE COMPILER .. 25

A. OVERVIEW ... 25

B. RUN-TIME ORGANIZATION .. 25

C. SEMANTIC CHECKING AND CODE GENERATION 31

D. OPITIMIZATION .. 40

IV. RESULTS & CONCLUSIONS .. 42

A. RESULTS..42

B. CONCLUSIONS .. 43

V. FURTHER RESEARCH .. 44

LIST OF REFERENCES .. 46

4

APPENDIX A THE FUNCTIONAL LANGUAGE PHI - 0 (coNcuTE sywAX 0F0b - 10/16/86). 47

APPENDIX B THE FUNCTIONAL LANGUAGE PHI -0(D (CONCRETE SYNTAx OF 0 - 03/03187) 50

APPENDIX C ASCII REPRESENTATION OF PHI - (D................................. 53

APPENDIX D THE FUNCTIONAL LANGUAGE PHI - (P) (RiGHT RECURsIvE GRAmmAR) 54

APPENDIX E ROCK COMPILER - HEADER FILES.................................. 57

APPENDIX F ROCK COMPILER -MAIN MODULE................................ 67

APPENDIX G ROCK COMPILER -SCANNER..................................... 71

APPENDIX H ROCK COMPILER -PARSER..76

APPENDIX I ROCK COMPILER - ERROR HANDLER............................. 106

APPENDIX J ROCK COMPILER - SEMANTIC CHECKER...........................112

APPENDIX K ROCK COMPILER - CODE GENERATION MODULE................... 137

APPENDIX L ROCK COMPILER - USER INTERFACE.............................. 142

APPENDIX M ROCK COMPILER - RUNTIME UTILITIES............................ 145

APPENDIX N TEST SUITE... 157

APPENDIX 0 ROCK COMPILER - USER'S MANUAL 168

INITIAL DISTRIBUTION LIST .. 174

5

I. INTRODUCTION

A. BACKGROUND - GENERAL

In its attempt to provide students with a well rounded background to the field of

computer science, the computer science department at the Naval Postgraduate School offers

courses covering recent developments in programming languages. One of the courses

deals specifically with the methodology of functional, also known as applicative,

programming. Both the theory and the practice of functional programming are covered,

concentrating more on the practice than the theory. In order to fully appreciate the nuances

of functional programming it would be desirable to provide the students with a functional

programming environment. This would provide a first hand look at the fundamental dif-

ference in methodologies when programming in functional languages as opposed to

programming in traditional imperative languages.

Of the languages currently supported in the department; LISP, on the UNIX'

environment, comes the closest to meeting this requirement. Although LISP is considered

a functional language by some, its many extensions and modifications actually brings it into

the world of imperative programming. It is not a pure functional programming language.

There are several additional problems associated with using LISP to teach techniques

of functional programming. Modem LISP dialects do not support all aspects of functional

programming. Most notably they lack the ability to define higher-order functions.

Dynamic scoping and the semantics of the language make it a pedagogical nightmare to

teach.[Ref. l:p. 0-1] The goal of teaching functional programming would rapidly be

overtaken by the necessity of explaining the idiosyncrasies of LISP. In an 11 week

'UNIX is a trademark of Bell Laboratories.

6

.U

nw~parwx - W0 -J WMM .

quarter, time devoted to LISP would significantly detract from instruction of functional

programming.

Recognizing the shortcomings of LISP, a pure functional language, PHI was

developed by Dr. B. J. MacLennan for use in this course of instruction. The syntax of

PHI closely follows that of standard mathematical notation. This means students should

have little difficulty in learning how to write legitimate PHI statements. Instruction can

now concentrate on joining these statements to create functional programs. Hopefully, this

will lead to a greater understanding and appreciation of the methodology of functional

programming.

B. BACKGROUND - THESIS

Creation of PHI solved the problem of finding a suitable language to use to

demonstrate the methodology of functional programming. However, currently PHI

programs are programs on paper only. There exists no programming environment for the

PHI language. So it is impossible to machine execute PHI programs. This thesis attempts

to remedy the above problem by providing the first component in a PHI programming

environment - a prototype PHI compiler.

Conventional compiler construction techniques were chosen for this implementation

for several reasons. By choosing conventional techniques, the authors were able to

address the problems associated with utilizing conventional methods for implementing a

compiler for a functional language 2. Additionally, realizing that both the language and

system would change, the authors wanted a well documented and understood

methodology. The cost of maintaining a system can be as much as three times the

development cost [Ref. 2 :p. 478]. Therefore, it was imperative to choose a methodology

that supported a clean and structured design.

2Specific problems and solutions are covered later in Chapters Two and Three

7

!

~ ~ ~*. ~ ** * S.~* .5

Following conventional method. ;ogies, the authors separated the PHI compiler design

into a front-end3 and a back-end4 . The overall general design of the PHI compiler is

shown in Figure 1.1. The front-end, containing the scanner (lexical analyzer) and parser

(syntactic analyzer) is essentially responsible for analysis of the external file containing the

source program. The PHI compiler back-end couples semantic analysis with code

generation to produce code suitable for execution on the target machine. [Ref. 3:pp. 5-61

The authors felt that a clear and distinct separation between parts would aid understanding

of the system, simplify division of labor, and increase ease of development and

maintenance. It should also result in greater flexibility for follow--on development in the

PHI programming environment. As an example, the current front-end could be modified

to support a PHI interpreter.

parse reoutput data

1.22.2.30

functionalprogra i raes is otacti Janalyzer [Ref. 44enerato 4 R file PC 6

,~okens -" oken/I:...

Figure 1.1 General Design of the Pi Compiler

C. BACKGROUND - FUNCTIONAL PROGRAMMING

Functional programming is a methodology in favor among academicians. Although

applicative programming goes further back, it is generally agreed that, as a methodology,

functional programming traces its roots to John Backus [Ref. 4:p. 404t, Ref. 5:p. 651. In

3Design and implementation of the front-end is discussed in Chapter Two.

4Design and implementation of the back-end is discussed in Chapter Three.

8

his acceptance speech for the 1977 ACM Turing Award, Backus criticized traditional

programming languages and programming styles. He went on to propose a new

methodology of programming that involved "the use of a fixed set of combining forms

called functional forms." [Ref. 6:p. 619] This methodology is known today as functional

programming.

1. Problems with Conventional Languages

Backus feels [Ref. 6:pp. 613-6191 that the basic underlying problem with

conventional languages is the existence of the assignment statement. The assignment

statement plays a central role in conventional languages and breaks programming into two

worlds. Backus calls the right-hand side of assignment statements, expressions, the first

of these worlds. The second world is the world of statements, with the primary statement,

of course, being the assignment statement.

Several problems are associated with assignment statements. First, they permit

programs to be held hostage through access to their variables. Since variables are used to

imitate the machine's storage cells; assignment statements allow, even encourage, state

changes to take place. This access, either direct or indirect, permits such problems as side

effects, unintentional state changes, and aliasing to arise. It then becomes difficult to

reason about the correctness of these programs, so proving simple programs correct is an

arduous task and proving complex programs correct is virtually impossible. Additionally,

by permitting the value of variables to be changed, the assignment statement makes

temporal order of execution of statements critical. For example, the following two pieces

of code produce dramatically different results depending on which statement inside the for

loop is executed first.

for (i = 0; i != some-value; ++i) for (i = 0; i != somevalue; ++i)
if(i % 2 == 0) { DoSomething(i);

continue; if(i % 2 == 0);
DoSomething(i); continue;

9

• . . ., - - m - -

., -- -,. , - -,,, ,. ., t _,_,' ,-' -.,.- -,. ",, ,,
.' .' "-',c , ',°:'.' , ',''- ';3".,". - ,, ,""€.€ {',;€,'* - ',"". ,"X , 1 ";*;", - ," '.,- • - ,- 'SI

These problems interact so that it becomes extremely difficult to create new programs out of

old ones. [Ref. 6:pp. 613 -619, Ref. l:pp. 1-2 - 1-201

Another problem associated with assignment statements is that each produces only

a one-word result. In effect, they force programmers to think in a word-at-a-time

manner. For example, to apply a function to an entire array of values, the programmer

must access each value individually. Not only is this wasteful of computer assets, but it

results in what Backus refers to as the "von Neumann bottleneck" of conventional

programming languages. [Ref. 6:pp. 613 - 619]

2. Functional Languages

Backus proposes the methodology of functional programming as the solution to

these problems. Functional languages have removed variables and the assignment

statement from their syntax so that their basic building block becomes the function. It is

through "the use of a fixed set of combining forms.. .plus simple definitions" [Ref. 6:p.

619] that the programmer is able to build new functions from existing functions. It thus

becomes possible to form a new program by combining two or more existing programs or

functions together. p

The absence of assignment statements and variables removes the problems

plaguing conventional languages caused by side effects, etc. because the program now

operates exclusively in the world of expressions. This permits the programmer to maintain

a clear conceptual view of the program. It is easier to understand and reason about the task

the program is to perform [Ref. 5:pp. 65 - 69]. It now becomes not only possible, but

practical to prove programs correct [Ref.6:pp. 624 - 625].

Another direct benefit stemming from the absence of side effects is order. The

values of expressions are no longer dependent on the order in which they are evaluated.

Therefore, functional languages provide a natural means of performing parallel

computations [Ref. 7:p. 351. Functional languages and the associated methodology of

10

! "~

functional programming may very well provide the key to programming the massively

parallel computers entering service nowadays. All of the above benefits have applicability

to ongoing research in the SDI program.

The authors feel that functional programming can best be summarized by the

following thought - assignment statements are to functional programming what GOTO

statements are to structured programming.

D. ASSUMPTIONS

An IBM 5 personal computer/IBM compatible personal computer was chosen as the

target machine for this implementation. The authors felt that the nature of the language and

its intended use were better suited for the PC/personal work station environment as

opposed to a mini- or main-frame time shared environment. The PC environment should

provide greater flexibility and freedom when implementing follow-on tools for the PHI

programming language. Also, future compiler improvements will not have to be concerned

with extraneous interfaces to another system. Working with a PC environment eliminates

the need to take into account the effects the PHI environment will have on another user of

the system. The implementor is able to work with a system that remains constant - a

known quantity.

The assumed target machine configuration is based on the equipment available in the

Naval Postgraduate School's computer science microcomputer lab. Each machine is

configured with 640K bytes of RAM, one (most have two) 20M byte hard disk drive, one

1.2M byte 5 inch floppy disk drive, and the 8087 math co-processor: each currently

operates under the MS-DOS 6 3.x operating system. These machines are readily available

to all computer science students at the Naval Postgraduate School, and many students own

5IBM is a registered trademark of Internal Business Machines Corporation. 4.

6MS-DOS is a registered trademark of Microsoft Corporation.

II

personal computers with similar configurations. It is not necessary to utilize a hard disk

when executing the PHI compiler.

E. CONSTRAINTS

As is the case with most implementation theses, time was probably the biggest

constraint facing the authors. This involved making certain trade-offs; e.g. should the

major effort be directed towards a full implementation of PHI while concentrating on a

particular component of the compiler, or should the major effort be directed towards a full

implementation of the compiler while concentrating on a subset of the PHI language? The

authors felt that the greatest benefit could be gained by implementing a complete compiler.

Having to actually face the issues and problems associated with designing, implementing,

and interfacing a full compiler implementation would be much different than just reading

about them in a text. As a result, this thesis implements only a subset 7 of PHI.

Since PHI is an experimental language it is still undergoing changes and revisions.

Trying to modify and update the compiler design with each version proved to be an

impossibility. The authors were forced to freeze the design based on the language as it

stood on 07 January 1987. Any follow-on work will need to update the front-end and

back-end of the compiler to meet the requirements of these new versions of PHI. A

description of the grammar as implemented and a description of the latest version of the

grammar may be found in the Appendixes.

7This subset is discussed in the individual chapters on the front-end and back-end.

12

II. FRONT-END OF THE COMPILER

The authors separated the design of the PHI compiler into two modules, a front-end

and a back-end. These modules were then further subdivided to produce the general layout

of Figure 1.1. The authors believe this modularization simplifies the design and will aid in

understanding the system, thus decreasing future maintenance problems.

The front-end of the P-I compiler is comprised of the scanner (lexical analyzer), the

parser (syntactic analyzer), and their associated error recovery routines. Two possible

interactions between the lexical and syntactic analyzers were considered. The first

incorporates the scanner into the parser, and tokens are produced by the scanner only upon

request of the syntactic analyzer. Thus, this system acts like a pipeline. An alternate

method is to allow the scanner to tokenize the entire source program, store the tokens in

some data structure, and pass this structure to the parser. [Ref. 3:p. 10]

For the prototype implementation of a PHI compiler, the authors based the design on

the first interaction. Although the second method is conceptually very easy to understand.

the authors think the current implementation is clean and will readily lend itself to future

enhancements. Any input alphabet peculiarities are restricted to the lexical analyzer, and

this independence should provide benefits for the next student(s) who work on the PHI

programming environment.

A. LEXICAL ANALYSIS - THE SCANNER

The PHI compiler reads a source file of ASCII text which is fed to the scanner for

lexical analysis. The principle task of lexical analysis is to separate or divide the source j
I

program into tokens for use dunng syntactic analysis IRef.8:p. 4. Ref. 9 :p. 1551. This %

is accomplished in the PHI compiler through a character -by-character examination of the

13

user's source file. These characters are assembled/grouped into the individual tokens

which represent terminal symbols of the PHI grammar. Examples of some of the terminal

symbols are operators, identifiers, keywords, and constants. A complete listing of the PHI

tokens may be found in the header file for the scanner in Appendix E.

The primary advantage to tokenizing the source program is that the design of the

syntactic analyzer needs to take into account only one type of data unit - the token [Ref.

3 :p. 7]. This simplifies the design of the parser because provisions do not have to be

made for handling white space and comments. The scanner has already removed them.

Also, removing white space and comments and utilizing a fixed-length representation for

the tokens saves space. Once tokenization is complete, the source program can be

discarded and the compacted tokenized file can be utilized for further analysis.

In order to correctly tokenize the source file there must be some discrete means

available to accurately represent each token. There are several ways of describing tok:; rs.

One means available is to use a regular grammar. In this method "generative rules are

given for producing the desired tokens" [Ref. 3:p. 142). An equivalent, but different,

method is to use finite-state acceptors, FSAs, to recognize tokens. The authors found it

easier to visualize this as a recognitive vice generative problem. For this reason the various

tokens were modeled using FSAs. An example of an unsigned number recognizer is

shown in Figure 2.1. The interested reader is directed to Tremblay and Sorenson [Ref.

3:Chapter 41 for an excellent introduction to the practice of using FSAs to model tokens.

The authors found that utilizing FSAs greatly simplified the design, coding, and debugging

of the lexical analyzer - one picture was worth a hundred lines of code.

The ideal grammar would allow each token to be uniquely and unambiguously

identified. Once the lexical analyzer started on the path of building a token, it would be

able to continue until the end with no backtracking. Due to limitations with the standard

14

e , . r~;; sy .r ; . '. - . . S * t :

digit digit

S digit itgrdigit ra

Figure 2.1 Unsigned Number Recognizer

ASCII character set, the designer of PHI used multiple keystrokes, or characters, to

represent various operators in the language 8. This resulted in compound token types.

Also, as in other programming languages, PHI overloads certain operators, allowing them

to do double duty9 by taking on different context-dependent meanings.

The problem of dealing with compound token types was easily handled through the

use of a single lookahead character. For example, upon finding the character "-", the

scanner looks ahead to the next character to see if it is "> (--) or another (--). If the

next character is neither of these two, it indicates that the token is just the simple token

Distinguishing overloaded operators was solved by essentially ignoring it in the scanner!

The authors took the position this is basically a syntax analyzer problem and there was no

reason to complicate the scanner by handling it. The scanner just identifies a generic token

type, e.g. SUB-, and lets the parser make the proper determination of its true meaning,e.g.

SUB_ or NEG_.

There are several design decisions relating to the lexical analyzer worth noting. The

authors, following the example of Pascal, C, and other languages, took the position that

8Some examples of this are -> for -, -= for a and <> for *.

9For example, + and - can serve as either an unary or binary arithmetic operator.

15

a
., , - .. -, - . . - - Ii

PHI's keywords' 0 are reserved words and may not be redefined and used as identifiers.

Alternate decisions would have been to distinguish keywords from identifiers based on

context, as PL/I does, or to precede them by some special character, as ALGOL 60 and

ALGOL 68 do [Ref. 3:p. 91]. PHI has a very small set of keywords, smaller than C's,

and the authors think that this decision makes life easier for the programmer by simplifying

debugging of programs. It certainly made life easier for the authors.

PHI's grammar makes no provisions for programmer comments. The authors

originally implemented comments by requiring the programmer to explicitly indicate the

beginning and end of each comment with a special character. After scanning the special

character at the beginning of the comment, the lexical analyzer would ignore all following

characters until the special character was once again found. Following conversations with

PHI's designer this implementation was changed. Comments are now implemented the

same way they are in Adall: the comment terminator is the end-of-line character. Not

only did this simplify the recognizer for comments, but it also completely removed the

problem of runaway comments.

A name table is used to point to the names of all identifiers and constants. A symbol

table was originally utilized but later discarded when the authors realized the syntax of PHI

makes analyzing an abstract syntax tree easier than analyzing a flattened tree. The

information normally associated with a symbol table is now held in the nodes of the tree.

This permits just the first instance of each name to be placed into the name table. In other

words, regardless of how many times and in how many scopes the identifier X is used, X

appears only once in the name table. The token returned to the parser would indicate a

10A complete listing of PHI keywords may be found in the header file for the scanner in Appendix E.

I IAda is a trademark of the Ada Joint Programming Office, Department of Defense, United States
Government.

16

. ,,.. -.,-, ". ' " * " .' . .- -' ' " " '. .X
, ' , '' . ' - .

token type of identifier and the parser would then know to dereference the pointer to find

the string containing the actual name, X.

Because keywords are reserved, each potential identifier must first be compared

against the possible keywords prior to being placed in the name table. The authors

implemented a keyword table to simplify this process. Knuth [Ref. l0:pp. 406-4101 has

shown that a binary search is the most efficient way of searching an ordered table, using

only comparisons. For this reason the keyword table is kept in alphabetical order. The

lookup, which is at worst O(log n), is performed using a binary search of the keyword

table.

In an attempt to improve the efficiency of the name table, the authors implemented it as

a hash table. McKeeman [Ref. 1 :pp. 253-3011 experimented with six different length

dependent hash functions. He found that the function producing the best results involved

summing the internal representation of the first and last characters of the variable's name

with its length shifted four places to the left. This was the function utilized by the authors.

The possibility of collisions is reduced by choosing a prime number as the table size.

However, since this only reduces, not eliminates, the possibility of two or more names

hashing to the same value; the authors had to make provisions for handling collisions.

A variant of the chaining method of collision-resolution was chosen. In PHI's

implementation, each of the name table slots/buckets holds a data structure that can contain

both the name of the variable and a pointer to another structure of the same type. So each

hashed value points to a linked list of names. This method offers the advantage of

providing better performance than linear probing [Ref. 12:p. 891, is conceptually easy to

visualize/work with, and also solves the problem of possibly overflowing the hash table. It

does require slightly more memory to implement, but the authors determined that the

benefits of this method far outweighed the slight increase in storage requirements. IRef.

12:pp. 83-931

17

A.

B. SYNTACTIC ANALYSIS - THE PARSER

The purpose of the parser is twofold: 1) to determine if the program, as represented

by the output from the scanner, is syntactically correct; 2) to impose a hierarchical structure

on the token stream, fitting it into the abstract syntax tree which is the output of the parser

[Ref. 8:pp. 7-8, Ref. 9:p. 71. Traditionally, these tasks are done by either a top-down or

bottom-up methodology [Ref. 8:p. 411. Both methodologies use the tokens generated

through lexical analysis.

The terminology top-down refers to the order in which the nodes of the parse tree are

constructed. Top-down parsing starts from the root of the tree and proceeds downward

towards the terminal symbols at the leaves. The parse tree is constructed from the top to

the bottom by applying productions of the grammar to generate strings of terminals and

nonterminals. On the other hand, bottom-up methodologies start from the terminal

symbols at the leaves and proceed upwards to the root. The parse tree is constructed from

the bottom to the top by applying reductions of the grammar to generate single nonterminals

from strings of terminals and nonterminals. [Ref. 8:pp. 40-41, Ref. 9:pp. 134-1361

It is generally agreed that the popularity of top-down parsing techniques is "due to the

fact that efficient parsers can be constructed more easily by hand". [Ref. 8:p. 41J The

authors can attest to the fact that the concept of top-down parsing is very easy to grasp.

When parsing PHI, it is natural to begin with the start symbol of the grammar,

BLOCKBODY, and work forward from there to analyze the token stream. So, partially

because of its efficiency, but primarily because of its ease of understanding and use, the

authors chose the top-down methodology of recursive-descent parsing to design and

implement the syntactic analyzer.

In recursive-descent parsers, separate procedures/functions are written to recognize

each nonterminal of the grammar [Ref. 3:pp. 219-220]. This technique gets its distinctive

name "because nonterminals can appear in the right-hand sides of each other's

18

productions, the procedures for recognizing nonterminals are recursive." [Ref.9:p. 150]

To state it more clearly, the function to recognize nonterminal 'A' could end up calling itself

recursively if either 1) 'A' appears on the right-hand side of the production describing 'A'

itself, or 2) 'A' appears on the right-hand side of the production describing another

nonterminal 'B' and 'B' appears on the right-hand side of the production describing 'A'.

Regardless of how one looks at the nature of the technique, one usually identifies a stack

with recursion. What made this technique so easy to implement was that the authors were

able to use C's underlaying mechanism for handling recursive functions. The authors did

not have to explicitly maintain a stack of symbols for each function call; instead, the

information was implicit in the stack of activation records resulting from each function call.

Top-down parsing techniques, especially recursive descent, offer straightforward %

means of implementing a syntactic analyzer. However, these techniques are applicable

only to a subset of the context-free grammars and it is essential that all left recursion be

eliminated from the grammar [Ref. 3:p. 211]. In other words, there must not exist any

productions describing nonterminal 'A' with 'A' appearing as the first element on the

right-hand side of the production. Obviously, if this situation existed, it would be possible

to present the parser with strings to parse that would cause it to enter "an infinite loop of

production applications" [Ref. 3:p. 211], never to be heard from again. The PHI

production QUALEXP = QUALEXP WHERE AUXDEFS is an example of this type of string.

The parser would hang up looking for QUALEXP and would never leave this loop until the

machine ran out of memory stacking activation records. In order to employ top-down

parsing techniques with PHI the authors rewrote the PHI grammar to be right-recursive' 2.

However, as shown below, even the new grammar does not lend itself to "pure" recursive

descent parsing techniques. 04

12The right recursive syntax of PHI may be found in Appendix D

19

..._ -...-.... *. * .;.:-- % ~- ~ , .._ - - . : .. , ' ~Iy I(. , '-

1U'KKswunr X.RKMIRMr * UP& P-'- x

From the compiler writer's point of vie v the ideal grammar would allow the correct

production rule to be applied in every step of the parsing process. Constructing the parse

tree would then proceed in a completely deterministic manner. When this is not possible,

there are two basic parser design methods for dealing with nondeterminism in the grammar

[Ref. 9:pp. 151-152]. In the backtracking method, which is generally not applicable to

recursive-descent techniques, the parser picks an arbitrary production and continues with

the parse [Ref. 9:p. 1511. If the parse is successful it is assumed that the correct

production was chosen. However, if an error is later discovered, the parser backtracks to

the last choice, a new production is chosen, and the parser presses forward again. This

process continues until either the parse is successful or the parser runs out of possible

productions to chose from. The second method requires a modification to the grammar

which results in a deterministic parser: the grammar is rewritten using a process called left

factoring to avoid choices among nonterminals [Ref. 9:p. 151].

For the most part, the design of PHI is conducive to recursive descent parsing

techniques. There are, however, several productions where this is not so. The result was

that a degree of nondeterminism arose in the parser design. The authors attempted to solve

this problem through a combination of left factoring and the employment of a simple single

token look-ahead. This solution worked for all but the two productions described below.

In one case a two token look-ahead was employed and backtracking was used tn the other.

This is not to say that the authors are absolutely certain that PHI is not an LL(I) grammar

or that backtracking had to be used. These solutions were used because they solved the
'.1

problem at hand.
I'

A two token look-ahead was used for the production 13 ARGBINDING= [QUALEXP OP 1W

1. When the token '[' is found, a flag is set to indicate that an ARGBINDING is being

parsed. The first look-ahead token is utilized when parsing the QUALEXP part. QUALEXP,

13A complete description of the PI grammar may be found in the Appendices

20

.e

.4

.-

~ 4~~.

'*~, -- ~ *,. 5 P,,4. .* &~% .,% %• * % . N .- o m

for example, may parse as TERM, which in turn may parse as either FACTOR or

FACTOR*TERM. After succeeding on FACTOR, a look-ahead is employed to look for the

MULOP, *, to see if a recursive search for another TERM should be initiated. This

methodology works as long as QUALEXP was not called from ARGBINDING. If it was

called from ARGBINDING, argbinding flag set, the operator * could be the trailing operator

in the ARGBINDING production and not part of the TERM production. In order to make this

determination, an additional look-ahead is utilized to look for the token 'T. If '1' is found

the QUALEXP production is terminated, e.g., term does not recursively call itself again, and

the ARGBINDING production is allowed to proceed to completion.

Backtracking was utilized when parsing productions of ACTUAL: ACTUAL =

COMPOUND and ACTUAL = DENOTATION = FORMALS I-> ACTUAL. Legitimate PHI

sentential forms produced by the production FORMALS = (FORMALS+) are proper subsets

of the sentential forms produced by the production COMPOUND = (ELEMENTS), excluding

the empty compound statement. Since any number of identifiers may appear between the

parentheses, it is not practical during the parse to utilize look-ahead to determine the

presence of the token "J->". In effect, the parser first realizes it was parsing a

DENOTATION when it finds "j->". This problem was solved by designing the parser to

apply first the compound production when presented with this choice. If "j->" is later

found, the parser then backtracks 4 to the FORMALS production. The normal costs

associated with backtracking were not evident in this isolated case. As described below,

space trade-offs had previously been made and the parser was already working with an

abstract syntax tree. The root to the subtree containing the previously parsed compound

was simply passed to the FORMALS production to insure that the string could have been

14A purist would say that this instance of backtracking means that the PHI compier does not in fact
employ a recursive-descent parser.

21

produced by FORMALS. After ascertaining FORMALS, the parser now continues the parse

using the DENOTATION production.

The production QUALEXP = QUALEXP WHERE AUXDEFS required a deviation from

pure recursive descent parsing. The semantics of this production are such that a terminal

(e.g., an identifier) may be used prior to its definition. In itself, this does not present a

major problem for the compiler writer. However, this construct also changes the scope of

the identifier since the inner-most scope, in the form of the QUALEXP, is parsed first and

the parser then works its way to the outer-most scopes, the AUXDEFS. This problem is

analogous to that of mutual recursion in Pascal, without the benefit of the forward

declaration [Ref. 4:p. 213].

Originally, the parser was designed to output the parse tree in flattened form,

essentially a post-order walk of the tree. This design implemented traditional symbol-table

management routines. However, after obtaining a clearer understanding of the semantics

involved with the problems mentioned earlier, notably the production QUALEXP =

QUALEXP WHERE AUXDEFS, the authors realized a traditional symbol-table would be too

inefficient. Management of the table would take an inordinate amount of assets and be too

unwieldy to work with. The authors solved this problem by maintaining the status of the

parse in an abstract syntax tree so the output from the parser is now in tree form. This

permits information originally held in the symbol-table to be maintained in the tree itself.

The parser is able to analyze the source program by walking the tree and decorating the

nodes with required information. Maintaining a binary tree in memory does require more

space, but this is insignificant when compared with the benefits.

Interestingly, maintaining the parse in tree form presented several additional benefits.

The solution to the aforementioned problem of distinguishing between COMPOUND and

DENOTATION became trivial because it was now simply a matter of returning to the

appropriate subroot and rewalking the tree. Also, working with a binary tree permitted the

22

4

C

* *

authors to perform a modicum of optimization in the parser. It becomes relatively
0

straightforward to perform compaction on an actual tree. e

The authors think that this design offers maximum potential for future enhancements

of the PHI programming environment. One possibility would be to use this front-end to

drive a P-H interpreter. Modularization of the front-end in this manner simplifies

functional understanding of the front-end and should lead to increased ease of maintenance

and portability. To demonstrate portability, the authors recompiled the front-end and

executed it on a 68000 based processor. This was accomplished with no modifications to

the source program, just replacement of C run--time header files for the new target machine.

C. ERROR HANDLING

Tremblay and Sorenson [Ref. 3:p. 1831 classify error responses into three categories:

I. Unacceptable responses
I. Incorrect responses (error not reported)

a. Compiler crashes
b. Compiler loops indefinitely
c. Compiler continues, producing incorrect object program

2. Correct (but nearly useless)
a. Compiler reports first error and then halts

H1. Acceptable responses
1. Possible responses

a. Compiler reports error and recovers, continuing to find later errors if they exist
b. Compiler reports the error and repairs it, continuing the translation and producing a

valid object program
2. Impossible with current techniques

a. Compiler corrects error and produces an object program which is the translation of
what the programmer intended to write

In the prototype PHI compiler, the authors have implemented a limited form of error

recovery. The primary benefit of error recovery is to "prolong the compilation life of the

program as long as possible before the compiler gives up on the source program". [Ref.

2:p. III This allows the maximum number errors to be discovered per compilation,

shortening the edit, compile, debug cycle inherent to writing computer programs.

The authors analyzed the intended environment and use of the PHI compiler and

decided that lexical analysis and syntactic analysis were the most likely source of errors.
le

23

I'
-! * •. . a •

•

,• i - • ' - U ,.

Lexical errors basically involve invalid characters or incorrect tokens. Common examples

of these types of errors are unrecognized words, misspelled identifiers/keywords, or illegal

characters. Syntactic errors relate to incorrect structure of the program. These errors arise

when the programmer failed to follow the rules, productions, of the grammar. The form of

the program is wrong. [Ref. 9 :p. 226, Ref. 3 :p. 185]

One thing the error handler should not do is exacerbate the situation by reporting

bogus errors or executing an erroneous program. To insure erroneous programs are not

executed, the authors inhibited object file production if any errors were discovered. The

authors do not believe the compiler should allow code generation to continue, or even

begin, if the source program has errors. Often times one error leads to an avalanche of

errors being reported and this is extremely annoying to the programmer. The authors

attempted to minimize this situation, but found it impossible to eliminate completely

because some errors feed on others. To insure the programmer would not become

overwhelmed with error messages, the authors terminate the compilation after 10 errors.

Also, for programmer convenience, actual error messages are outputted instead of error

codes. The authors saw no justification in using a cryptic code when a plain language

message served much better. Since the authors anticipate students in functional

programming classes to be primary users of the P-I compiler, error messages have their

basis in the productions describing the PHI language. It is assumed that users of the PHI

compiler have an understanding of PHI's syntax.

24

I

• o . • - " " " " " "S. *. . . .- u . . .' : S.-.

III. BACK-END OF THE COMPILER

A. OVERVIEW

The back-end of the compiler consists of the semantic checker and code generator.

Semantic checking and code generation are completed in one pass, and the output is a

sequence of bytes, held in memory, which correspond to ASCII characters. These

characters are then written to a text file, which the assembler uses to output an object file.

This output is linked to the appropriate run-time routines to make a usable program. For

the current implementation, a RASM86 assembler and LINK86 15 linker are used.

B. RUN-TIME ORGANIZATION

Since PHI is a structured language with scoping and function calls, it lends itself to a

stack-oriented run-time architecture. The stack is set up to accomplish two tasks: 1) to

hold pointers to the current operands, and 2) to hold activation records for functions

currently in use. Both of these tasks are described below.

There is a 64 kilobytes limit on memory used while a program is running. This

limitation is imposed because the memory is addressed as an offset from a base address,

and the maximum offset is 64K. This space is competed for by the stack, current

variables, and constants (see Figure 3.1). The stack grows from the top of this space

down, and the variable space grows from the base of this space up, preventing wastage by

either component. Because PHI is a functional language, a value is returned from each

operation, and a pointer to this value is placed at the top of the stack. The returned value is

placed in the lowest available space in the part of memory assigned to variables and

constants. A heap allocation method is not currently used because 1) all data types

currently implemented use only one word of memory, and 2) there is no fragmentation of

15RASM86 and LINK86 axe trademarks of Digital Research. Inc.

25

memory because all types are currently static. If the next operation is a binary operation, a

pointer to the second operand is placed on the stack, and the operation takes place using the

two topmost pointers. The result is placed in memory, and the process begins afresh with

new operands. If the next operation is unary (such as the negation operation), no change

to the stack takes place and the variable in memory is altered as the program directs.

Addiress

64 Kb

Stack

4 TOS

Values

(Variables and

Constants)
0 Kb

Figure 3.1

Memory Organization

If the second operand of an operation is to be the result of a function call (e.g., "2 *

f(x)'), an activation record is placed on top of the pointer to the first operand and the

function's value is calculated. Then, the activation record is deleted and a pointer to the

function result is saved and placed at the top of the stack.

26

Static Link

Static Nesting Level

Pointer to Value Space

Figure 3.2
Activation Record

The activation record itself, Figure 3.2, contains three parts: the static link. the static

nesting level, and a pointer to the address in memory where the functions first %,anahle is

stored. The static link is a one-word pointer which points to the static nesting level space

of the previous activation record, and is used to traverse the stack from activation record to

activation record, i.e. a static chain. (Ref. 4 :p. 77]. The static nesting level and the pointer

to the base of the storage space for a scope's values are used to access vanahles and

constants. In this design, a two-tuple (B, L) is associated with each variable In this tmo-

tuple, B represents the static nesting level and L is the offset a, ithin that le eIl Wx

following the static chain for (current nesting level - target nesting levelI links. the

activation record of the scope of the target value can be accessed. Then. the address oif the

variable is calculated by adding L to the low address of the scope s variables. An altem.ire

method would have been to store the values directly in the stack hetween or .irhin

activation records. However, this is a messy process when dealing sith d,,namnc dati

structures such as sequences. Additionally, it is conceptually easier to di, ide the stick aind

the variables.

Functions are implemented as calls to assembly language subroutines ,th pr:'. ,

the arguments placed on the stack before calling the routine Lsing this %chere Ind no ng

the fact that PHI cannot have side effects, the implementation (it re-, jr',ion i,

straightforward. Whenever a function is called. its activation record i, placed on the ,takk

and pointers to its arguments are placed on top of the activation record If the tn,tion

275

recursive, the assembly language subroutine simply calls itself until the base of its

recursion is reached or until stack overflow is reached. Figure 3.3 shows an example of a

series of activation records called by a program with a recursive function. Note that the

data definition ("answer") has no arguments and simply calls the factorial function. The

factorial function, on the other hand, has an argument and it uses that argument as an

operand. So, a pointer to that value is put on the stack and the next operand, fac (n - 1), is

put on the stack as an activation record. When fac (n - 1) is evaluated, a pointer to its

return value is placed on the stack. This cycle of evaluation, pop activation record,

evaluation will continue until the data definition "answer" is evaluated.

Add s
64000 Answer

0 Activation Record
0ae Sa 0 (no actuals)

Fac (5)
SActivation Record

Ptr to Actual
Ptr to 5
63997

-, Fac (4)
3 Activation Record

Pu rn rialI
Ptr to 4

3 Fac (3)}Activation Record

0Kb
answer where answer - f'ac(5) where

tac(n) z-if n - 0then 1
else n * fac(n-) endif

Figure 3.3
Factorial Program and Activation Records

As an example of the code generated for function calls and recursion, the following

PHI program fragment is used : C (n) == ifn = 0 then I else C (n - 1) ' n endif.

28

This, of course, simply calculates the factorial of the integer n. Figure 3.4 is the

listing of the assembly language segment which is generated from this fragment.

A hin Assembly Language

0103 E94A00 0150 jmp al0000
a10001:

0106 B90000 mov cx,0
0109 E80000 E call i_formal
010C B80000 mov ax,0
010F E80000 E call iputvalue
0112 E80000 E call iequ
0115 E80000 E call igetvalue
0118 3D0100 cmp ax,1
011B 7509 0126 jne a10003
011D B80100 mov ax,1
0120 E80000 E call iputvalue
0123 E92600 014C jmp a10002

a10003:
0126 B90000 mov cx,0
0129 E80000 E call i_formal
012C B90000 mov cx,0
012F E80000 E call iform,,
0132 B80100 mov ax,1
0135 E80000 E call iputvalue
0138 E80000 E call isub
013B E80000 E call ppop
013E 51 push cx
013F 57 push di
0140 BB0100 mov bx, 1
0143 E80000 E call i_mov
0146 E8BDFF 0106 call al0001
0149 E80000 E call imult

a10002:
014C E80000 E call delscope
014F C3 ret

a10000:
Figure 3.4

Assembly Language Output from Factoral Program

The label "al0001" at address 0103 is the label of the subroutine which returns the

factorial. When it is called, pointers to the values of the arguments are placed on the stack.

If the subroutine is called before the base of the recursion is reached, a jump is made to

label a 10003. Then, the new actual value (n - 1) is calculated and placed in the low part of

memory, a pointer to the value is put on the stack, and the values are prepared for calling

29

by the next subroutine (lines 0126 to 0143). The factorial subroutine is then called again.

This process continues until the base of the recursion is reached; in this case a pointer to the

integer value is put at the top of the stack (line 011 D), and a jump is made to label a 10002.

Here, the subroutine "del_scope" tears down the activation record on the stack and puts a

pointer to the result of the function at the top of the stack. Clearly, recursion in the PHI

program can be implemented by a parallel recursion in the assembly language output of the

compiler.

Another feature of the output code shown in Figure 3.4 is that there is an unconditional

jump around the function (lines 0103 and 014F). This is a result of the decision to output

inline code in spite of the fact that functions can be called at random. There are both space

and time penalties to be paid for these jumps, especially since each function must have a

jump and label instruction bracketing it. However, the ultimate effect of all these jumps is

to get to the label at the bottom of the program. The result is that all but one jump/label pair

could be eliminated by an optimizer, making the penalty trivial. Another solution

considered was to generate code for functions and the "main" program separately, then

combine the two when printing the output from the code generator. This was not done for

reasons put forth in the section that describes the semantic analyzer.

Variable and constant storage is word oriented rather than byte oriented to take

advantage of the 8086 processor's 16 bit capability. Integers and naturals are both
.5

represented as single words, and booleans are represented as integers, either 1 or 0. While
this boolean representation is somewhat wasteful in terms of memory space, it allows for a

great deal of overlapping in certain subroutines used in function calling and comparisons.

It is planned to represent real numbers with two words of memory, and sequences using

linked lists. Neither of these types have been fully implemented; however, there are

provisions in the compiler for adding these features at a later date.

30

There is currently no dynamic allocation of registers. Some registers are used for

specific purposes; for instance, the SI register is used to mark the top of the program stack,

and of course the BP and SP registers are used to manage the machine's stack. In general,

arithmetic processes take place in the AX register, using other general registers as

auxiliaries as needed. When variable space is needed, the highest unused address space is

allocated and, when a function is finished, only the result is saved in storage; all other value

spaces are returned for use by the program.

Error handling is probably the simplest part of the run-time routines. Any run time

error such as overflow or division by zero errors will result in an appropriate error message

to the user (see Appendix 0 for a full listing of error messages). Then, program execution

will terminate and control is returned to the operating system.

C. SEMANTIC CHECKING and CODE GENERATION

The PHI compiler utilizes the recursive descent technique to perform semantic

checking and code generation in one traversal of the parser tree. In mos: cases, tree nodes

are filtered through the semcheck function, which calls various procedures based on the

name of the node. These procedures, in turn, call semcheck for each of their children,

and the process is repeated until the leaves of the tree are reached. The function semcheck

then returns a type (e.g., integer, real, boolean), which the parent node uses to determine

the semantic correctness of its subtree. With the information returned from the semcheck

function, the parent procedure can do one of three things: return a type, convert one node

to a different type, or declare an error condition.

Concurrent with semantic checking, code is generated. As noted above, this is

assembly language code written to a buffer in memory. If an error condition is declared,

however, a flag is set and code generation ends. Semantic checking will then continue until

the tree is completely traversed or ten errors are accumulated; then, the semantic checking

31

%'-

process terminates. Unlike the parser, the semantic checker makes no attempt at error

recovery; top-down checking simply continues normally from where the error was

detected.

Top-down semantic checking results in a neat, trim package for the back end of the

compiler. Unfortunately, there are some problems that pure top-down checking will not

solve. For instance, determining if there is a one-to-one match between formals and

actuals for a given function involves some detours from top-down checking, as explained

below.

The scoping rules of PHI provided the largest challenge to writing the semantic

checker. One solution is a multiplicity of stacks. The size of these stacks depends upon

the number of its constituents visible at any one time. Usually, the proper match for an

item is the one found closest to the top of the stack. However, because of the semantics of

the "and" construct, checks against the variable-stack do not always follow this

convention.

There are four stacks used by the semantic checker. the type-stack, the variable-stack,

the definition-stack, and the and-stack. All but the type-stack are implemented as linked

lists. This implementation sheds the disadvantage of static length arrays at the cost of a

slight increase in memory and temporal resources. The type-stack uses a fixed-length

array of 300 entries because 1) the basic types of real, boolean, integer, natural, and trivial

will be accessed most frequently, because they are the building blocks of every type and

sequence, and because they can be more easily accessed from an array than from a linked

list, 2) a list of 300 type entries should not impose an extreme burden on the programmer.

and 3) the planned implementation of sequences will be more straightforward if the

type-stack is an array.

32

.p . ., . , . . ,. .. . , .. ," ..' ..r *'¢,-m," ' ," ,; .' -':,' " " "t' °'' '
' 1

j Type Name # of Bytes Link to Next Type

Figure 3.5
Type-Stack Entry

The type-stack, Figure 3.5, is meant to hold both the basic type definitions and user

defined type definitions. This stack holds both the name of the type and the number of

bytes needed in memory to implement the type. At compiler initialization, it contains the
p.

five basic types and user defined types are added as they are encountered. The begin-end

construct of the language (not implemented yet) allows declared types to be visible over a

specified range. It is planned to implement this construct by setting a pointer to the top of

the stack upon encountering the begin node and then popping the stack to that point after
#4

both of the node's subtrees have been checked.

I [I °
Variable Type Formal Flag Node Pointer Link to Next Entry 0l

Figure 3.6
Variable-Stack Entry

The variable-stack, Figure 3.6, holds all of the variables, including function names,

currently seen by the semantic checker. Each entry holds a pointer to the hash table

containing labels, a type, a pointer to the tree node defining it, and a flag to designate

whether or not it is a formal. Whenever a variable name is encountered and the name is not

a call to a function and not a data definition, it is put into the variable stack. Then, when a

scope is exited, the variables local to that scope are dropped from the stack. For example,

after a function is defined, all of its formals are popped from the stack.

33

"N

Deiiio ye Formnals TeNoePointe Link to Next Entry'

I 1 LIL~I~fl ~ Pointer TreNd

Figure 3.7

Definitions Stack Entry

The definitions-stack, Figure 3.7, contains all of the function and variable definitions

visible in a given scope; e.g., the declaration C: $R * $Z -> $B would put the definition C

into the definition-stack. This entry would contain the type of C's return value (Boolean),

a pointer to the tree node that contains C, and a pointer to a linked list which contains its

argument types (Real and Integer). This last field will be null if the declaration is a data

definition. This stack grows and shrinks in the same way as the type stack.

The authors considered combining the definitions-stack and the variable-stack because

of the similarity between their fields. In fact, one of the primitive implementations was

designed in this way. However, this slowed down the search for both definitions and

variables considerably, and the overhead needed to implement these two as separate stacks

is small: three extra functions and one extra pointer.

The need for the and-stack is derived from the scoping rules imposed by the AND

construct. This construct allows a variable to be referenced before it is declared without the

benefit of Pascal's forward declaration or equivalent. This is true of other constructs in

PHI such as the WHERE construct. However, the AND construct cannot be parsed in such

a way that the semantic checker can see all variables before they are used, because either

subtree of the AND statement can define variables used by the other subtree. So, a program

such as the one depicted in Figure 3.8 needs a vehicle by which it can detect that the

variable d is defined later in the program. The and-stack is such a vehicle.

34

~~~~. , : :'€' " -, .,;.,.. .,..:. .... ,.: .''..',., , 'I. '



Where
Dataudef

Funauxdef Datauxdef

Cc(n) *

c (1) where c (n) == n * d
and d == 1

Figure 3.8
Tree With Forward Variables

When the semantic checker reaches the AUXAND node, Figure 3.8, a flag is set to

indicate that AUXAND has been traversed, and a pointer is set to the top entry of the

and-stack. "Notfound" is returned from the semcheck function when the variable d is

reached, but, since the AND condition has been set, a pointer to d is put in the and-stack.

Note that d is later defined in a data definition (DATAUXDEF node), and when both the left

and right subtrees of AUXAND have been checked, all variables in the and-stack are ..

checked against variables in the variable-stack. If a match is found, d is defined and

removed from the and-stack. In the event that a variable is not found when the AUXAND

node's complete subtree has been checked, an error condition (UNDEFINED VARIABLE)

would be set. The semantic checker would recognize this condition because the top of the

and-stack would not be equal to the mark placed at the top of the stack when the AUXAND

node was entered. Nested AUXANDS are possible, but they pose no problem because the

top of the and-stack is marked when the auxand node is traversed.

35



Variables and functions are represented in the run-time by a call to an assembly

language subroutine, and each subroutine must have a discrete name. Also, there are

several labels found throughout the program, and each of these must have a name. These

names are generated by the "name" function found in the sem u.c module. Each name

begins with the letter "a", followed by 6 digits. Examples can be seen in Figure 3.4.

SFunauxde

f (x,y) == x*y

Figure 3. 9

Tree for Function f

Function definitions presented a problem that was solved with a deviation from pure

top-down semantic checking. When a function defiition (FUNAUXDEF in Figure 3.9) is

encountered by semantic checker, the following procedure would be followed (see Figure

3.10 for the function definition entry):

check for definition-stack entry for 'T'
if not found

return (ERROR)
get a pointer to the first formal off
get a pointer to the first formal of definitions-stack entry

while both pointers <> Nil do

36

%%



-MVY~owS nl Z M VWWRAVLVW VLWV 19vW6W W J W~~rWWW W WF %V MW

p.I

put variable in varstack; use type pointed to by the formal list
advance both pointers

end while loop

if not (both pointers == nil)
return (FORMALS MISMATCH)

else
put "' in the variable-stack
return (Type of f = INTEGER)

end else
end.

left type = semcheck (Left Child) '
right type = semcheck (Right Child)

if (left type <> right type)
call a procedure which will either
convert the right type to the left type or set an error flag.

endif
end. S.

When a function is called with arguments, a similar process takes place (refer to

Figure 3.11):

acjjjjis: Input is a pointer to the actualist node
Output is error condition

Check defmifions-stack for "Y'
if "f" not found

set error (FUNCTION DEFINITION NOT FOUND)
'S

set elistptr to first element of element list '.

elist (elistptr) -

check var stack for "f"
if found,

generate code to call "r' .
if not found

if and-flag = TRUE
put "r' in the and stack

else
set error (FUNCTION NOT DEFINED)

end.

lop

gls: Input is a pointer to the element list node

if pointer->rptr <> nil
elist (pointer->rptr)

check type of element against corresponding formal type
if types don't match

set error (IMPROPER ARGUMENT TYPE)

37

I



else
generate code to put pointers to argument values on the run-time stack

f Integer

,.$Z

Formal

Types

Figure 3.10

Definitions-Table Entry For Function f

Type conversions are implemented in the semantic checker, albeit the code generator

does not yet support this feature. The function hnumconvert (half number-convert,

found in the module semO) will check to see if a conversion of the right subtree of a node

to the left subtree type should be accomplished. This is useful for function definitions,

where the body of the function may be converted to the type the function returns, but the

converse is not acceptable. In addition, the function numconvert (found in the semO

module) will convert either the left tree type or the right tree type of a node. This is useful

for certain arithmetic operations. The semantic checker considers integer-to-real and

natural-to-real conversions to be legal. Natural to integer conversions are not implicitly

done, since both of these types are represented in exactly the same way. On the other

hand, an attempt to return an integer value for a function which has a declared type of

natural will result in an error.

38

,,..:,-,.<. . .. .. . . .. .-.- - .



.

Actualist ,

Actualist
' Sp

~~~Elemenflist Com

f (1, 2)

Figure 3.11
Tree for Function Call

Variables of simple type (i.e, natural, integer, or real) need not be declared before use,

although such a declaration may be made. If a variable is undeclared when defined by a

data definition, the semantic checker will attempt to classify it. If the semantic checker

expects to find a boolean value, the variable is easily classified as a boolean and an entry is

put into the variable table. If a numeric variable is expected, the semantic checker will try

to type it as an integer; failing this, it will be classified as a real number. However, the

AND construct alters this somewhat. If a variable is used before it is defined by a data

definition, it must have been defined using the LETDEF construct.

As noted in the section on run-time, some thought was given to generating all

functions and data definitions to one buffer and the "main" program which calls these

functions to another buffer. However, this would be an inefficient use of memory space,

39

-6P -- A.* . OZ ff6

since one buffer might run out of space while the other is under-utilized. Although there is

a proliferation of jump calls in the output using one buffer, an optimizer could easily

eliminate all but one call, as noted above.

D. OPTIMIZATION

There is no optimization module implemented in the PHI compiler. In this section an

attempt will be made to identify three types of optimization which are suitable for

implementation. Also, a small dissertation on what optimizations should not be considered

is included.

The first suitable type of optimization is constant folding. The purpose of constant

folding is to eliminate multiple consecutive constants in arithmetic expressions [Ref 3 :p.

6121, and the function numconvert in module semO makes an excellent structure in

which to implement this optimization. This is because most arithmetic operations call this

function. It would be straightforward to put a function that tests the left and right children

of an operand node to see if they are constants, then perform the operation in the compiler

and generate code for a constant call. However, since the division operators do not call

numconvert, the constant folding function would have to be inserted in idiv and rdiv

also.

The other two optimizations are post-code generation optimizations. The first one

considered is jump optimization. This should be the most worthwhile to implement: if the

number of functions and data definitions is n, n > 0, there will be n - I unnecessary

unconditional jump statements and labels.

These jump statements can be eliminated by replacing the first "imp" statement %kith a

jump to the last label in the code; then, because "jmp" is not used for anything except to

circumnavigate functions and data definitions, all other unconditional jumps and their lahels

can be eliminated.

40

The last type of optimization is a formfl of peephole optimization (ccasionalk there

will be a -all ppush' statement followed b a call ppop statement This is unnece"Nar -.

and can be eliminated. The 80,6 assembly code equivalent of puih tollo'ed b. pop

should not occur in the present design

Dead code optimization eliminates code inside a jump Nwhen that :ode contains no

labels. It is not necessar, to implement this type otf optimization ith the current de,,g2.

since unconditional jumps are only used to bracket function, and detfninon, Hove'er. J

one accepts the premise that programmers occasionally make mistakes, it might Ic

wAonhwhde to keep track of which functions are called and elimnate code for those AhiL.h

are not. A message to the programmer concerning this circumstance ,ould he useful. to-,o

/

I

41

P0
._-._._ .-..'.%,€ -'AG~e,,-.

IV. RESULTS & CONCLUSIONS

A. RESULTS

The implementation described in this study demonstrates the design and

implementation of a compiler for the functional programming language PHI. Since this

implementation is a prototype, it does not possess all of the qualities desirable in a full

implementation. However, the necessary hooks are present and the design is mature

enough to allow expanding the prototype to a full implementation.

The PHI compiler front-end implements machine independent lexical and syntactic

analyzers. This implementation is complete and faithfully follows the syntax of PHI -

based on the design of the language as of 07 January 1987. In deciding which modules to

include in the front-end and back-end, the authors were originally guided by the traditional

methodology of placing the analysis functions in the front-end and generative functions in

the back--end Ref. 8:p. 201. However. as the design of the PHI compiler progressed, the

authors removed semantic analysis from the front-end and combined it with code

generation. This produced a one-pass semantic analysis/code generation phase.

The PHI compiler back-end implements a machine dependent one-pass semantic

analzer and Intel 8086 code generator. The semantic analyzer implements the basic

constructs of PHI: functions and data definitions may be defined, and the integer, natural

number. real number, and boolean types are fully implemented. Implementation of code

generation is congruent to that of the semantic analyzer. with the exception that the real

number data type has not been implemented.

42

.4A P. P "& ?,. I P.. #- . .. f. #% 4f,_, . /% * L.q i - - ' * ** 4 "I. -".. b

B. CONCLUSIONS

It is possible, using traditional technologies to design and implement a compiler for the

functional programming language PHI. It is not possible to utilize either pure recursive

descent or pure deterministic techniques for this implementation. The syntax/semantics of

the language forced a degree of non-determinism, and one instance of back-tracking was

required in the PHI compiler front-end.

The overall design is highly modularized facilitating the understanding of concept and

implementation. The authors think that this approach will greatly reduce maintenance costs

and provide greater flexibility in making changes and additions to the PHI programming

environment. It should be possible, for example, to use the front-end described in this

thesis to drive a PHI interpreter. Being able to abstract out this front-end and use it

without change should make the implementation of a PHI interpreter relatively simple.

Modularizing the design also increases portability of the compiler to other machines. To

demonstrate portability, the authors recompiled the front-end and executed it on a 68000

based processor. This was accomplished with no modifications to the source program, just

replacement of C run-time header files for the new target machine.

Removing the semantic analyzer from the front-end permitted coupling semantic

analysis with code generation. The fixed-length buffer design of the code generator is

suitable for this prototype implementation but should be redesigned utilizing dynamic

buffer allocation methods in follow on implementations. The authors think that utilizing a

single pass through the parse tree is practical for the basic constructs of PHI and believe

this methodology is suitable for future designs of the PHI compiler.

43

A

V. FURTHER RESEARCH

Further research may be broken down into two major areas: short and long range

projects. The former may be further broken down into two main areas: adding

unimplemented features and improving the PHI programming environment. On the other

hand, all long-range projects involve only the programming environment. All of these

areas are discussed below.

In the prototype of the PHI compiler, both Real and Compound variable types remain

unimplemented. Compound variable types consist of sequences, the Trivial type, user

defired types, and tuples. Although all of these are recognized by the parser, the semantic

checker will not recognize complex types and no code will be generated. The Real type is

recognized by the semantic checker, which can discern if conversion from an integer or

natural type should be accomplished; however, no code is generated to implement this type

in the run-time structures. Note also that operators which operate solely on complex types

and reals (e.g., the real divide and concatenate operators) are not implemented.

One other operator not implemented is the "1->" operator. In addition, argument

bindings, functionals, and FILEs are not recognized by either the semantic checker or the

code generator.

Short-range improvements to the PHI environment may come either after a full

implementation is accomplished or may be developed concurrently with the full

implementation. Admittedly, the current environment is analogous to instrumentation on a

helicopter: there is just enough to know that the system is running! The environment could

be improved by implementing the interactive mode of PHI, as opposed to the current batch

mode. A sample interactive session of PHI may be found in [Ref. l:pp 1-17]. Also, an

interpreter would be a good starting point toward developing a practical, working

44
t

environment for PHI. As noted above, the front end of the prototype compiler may be

adapted for this purpose; alternatively, due to the structual similarities between PHI and

LISP, an ambitious researcher may wish to write an interpreter in LISP.

One final short-range improvement which is not covered by either category would be

to allow more than 64K of run-time memory. It would be worthwhile to take advantage

of the large amount of memory most modern microcomputers have, especially since

sequences and recursion, upon which PHI is based, gobbles up memory with abandon.

When the PHI compiler becomes a serious user's tool, some long-range research will

become viable. Sophisticated input and output would be a vital consideration, and the

minimal 1/0 methods now in use would need substantial improvement. The most

ambitious researchers in this direction should consider a bit-mapped display with the

possibility of a syntax-directed editor. Also, based on the authors' limited experience in

PHI programming, a debugger would be a necessary tool for the serious programmer.

45

P

%

• - .,.,-r .-.. ;'°¢-''2--."...¢ ?--' '.; .4'. .: .. ¢ ¢ .¢ € € I € % ' p

' '' ' ' , ' " -, i ' " ' - "L -, ' , "° " ' - "" ' " ° U

LIST OF REFERENCES

1. MacLennan, B. J., Functional Programming Methodology. Practice and Theory, to
be published by Addison-Wesley, 1987,

2. Horowitz, E. and Munson, J. B., "An Expansive View of Reusable Software," IEEE
Transactions on Software Engineering, vol. SE-10, No. 5, September 1985.

3. Tremblay, J. and Sorenson, P. G., The Theory and Practice of Compiler Writing,
McGraw-Hill Book Company, 1985.

4. MacLennan, B. J., Principles of Programming Languages: Design, Evaluation, and
Implementation, Holt, Rinehart and Winston, 1983.

5. Bellot, P., "High Order Programming in Extended FP," in Lecture Notes in
Computer Science, vol. 201: "Functional Programming Languages and Computer
Architecture," edited by Jean-Pierre Jouannaud, Springer-Verlag, Berlin Heidelberg,
1985.

6. Backus, J., "Can Programming Be Liberated from the von Neumann Style? A
Functional Style and its Algebra of Programs," Communications of the ACM, vol.
21, No. 8, August 1978.

7. Clark, C. and Peyton Jones, S. L., "Strictness Analysis - a Practical Approach," in
Lecture Notes in Computer Science, vol. 201: "Functional Programming Languages
and Computer Architecture," edited by Jean-Pierre Jouannaud, Springer-Verlag,
Berlin Heidelberg, 1985.

8. Aho, A. V., Sethi, R., Ullman, J. D., Compilers Principles, Techniques, and Tools.
Addison-Wesley Publishing Company, 1986.

9. Calingaert, P., Assemblers, Compilers. and Program Translation, Computer Science
Press, 1979.

10. Knuth, D. E., Sorting and Searching, The Art of Programming, Vol. 3,
Addison-Wesley Publishing Company, 1973.

11. McKeeman, W. M., "Compiler Construction: An Advanced Course," in Lecture
Notes in Computer Science, edited by Goos and Hartmanis, Springer-Verlag, New
York, 1974.

12. Horowitz, E. and Sahni, S., Fundamentals of Computer Algorithms, Computer
Science Press, 1978.

w
46

BP!

APPENDIX A
THE FUNCTIONAL LANGUAGE PHI -D

(CONCRETE SYNTAX OF (D - 10/16/86)

GRAMMATICAL NOTATION:

C'

Both '{C1,C2 ,..~ and

{Cn}

Similarly, III... I Cn' and [:]mean atmost one of C I,,. Cn. The notation VC~

means zero or more Cs; 'C+' means one or more Cs; VCD ... ' means a list of one or more
Cs separated by Ds. Terminal symbols are quoted when they could be confused with
metasymbols.

Grammar:

BLI KBBLOCKBODY I
[ID) FORMALS =-QUALEXP

DEF ID :TYPEEXP
TYPE ID [FORMALS] s TYPEEXP

QUALEXP = {EXPRESSION AXDF

AUXDEFS = AUXDEF AND..

AUXD)EF [ID)] FORMALS -0 EXPRESSION

FORMALS = ID4OMLS.

EXPRESSION = [EXPRESSION VjI CONJUNCTION

CONJUNC71ON = [CONJUNCTION A I NEGATION

47

NEGATION = [RELATION

RELATION = [SIMPLEXP RELATOR] SIMPLEXP

RELATOR = =I I > I < I S I I EI)

SIMPLEXP = [SIMPLEXEP ADDOP] TERM

ADDOP = + I - I : I A j

TERM = [TERM MULOP] FACTOR

MULOP = I I/I+)

FACTOR = [+]pimary

RAY = APPLICATION }
PR4ARY PRIMARYAPPLICATION

APPLICATION = [APPLICATION] ACTUAL

(ID
DENOTATION
CONDITIONAL

ACTUAL COMPOUND
. ARGBINDINGIBLOCKI

FILE' CHAR + '

{CHAR *,
DENOTATION DIGIT + [.DIGIT +]

F ORMALS 1--* ACTUAL

CONDITIONAL = IF ARM ELSIF ... [ELSE EXPRESSION] ENDIF

ARM = EXPRESSION THEN EXPRESSION

[(ELEMENTS)
COMPOUND '{'ELEMENTS}'

< ELEMENTS >

ELEMENTS - [QUALEXP, .

OP
ARGBINDING [OP QUALEXP

QUALEXP OP

OP = [, I RELATOR I ADDOP I MULOP I!)

BLOCK BEGIN BLOCKBODY END

48

% . I5 J J~' 4 ~ a.' a' ~- .a~ ~.. * -**a

DEFS = DEF AND ...

TYPEEKP = TYPEDOM [-- TYPEEXP]

TYPEDOM = TYPETERM [+ TYPEDOM]

TYPETERM = TYPEFAC (X TYPETERM I

TYPEPRIMARY
TYPEFAC TYPEPRIMARY*

ID -c< TYPEEXP.

Io D
TYPEPRIMARY PRIMTYPE

(TYPEEXP)

PRIMTYPE = (I Z I N I1I 1 TYPE}

For batch use, a program is considered a BLOCKBODY; for interactive use it is considered a
SESSION:

SESSION = COMMAND +

COMMAND { UEXP

49

'p

S o!

- €- - -wr .- ii " • " • . ,

q" "" " " " " • N " % " - "

b

APPENDIX B
THE FUNCTIONAL LANGUAGE PHI- (

(CONCRETE SYNTAX OF (D - 03/03/87)

GRAMMATICAL NOTATION:
Sri

CIi

Both '(C:,C 2,. .,Cn)' and mean exactly one of C1 , C2 ,..., Cn.

CnSimilarly, '[Cl I1... I Cnf'and[I]nImean atm'ostOneOf Ci1 Cn. The notation 'C*'

means zero or more Cs; 'C+' means one or more Cs; 'CD ... ' means a list of one or moreCs separated by Ds. Terminal symbols are quoted when they could be confused withmetasymbols.

Grammar:

BLOCKBOY fLETDEFS ; BLOCKBODY

[I). :TYPEEXP (BE I IS }] [ID] FORMALS QUALEXPDEF [REC1f TYPE ID [FORMALS] TYPEEXP

{EXPRESSION AUDFQUALEXP WHERE AUXDEFS"-

AUXDEFS - AUXDEF AND ...

AUXDEF = [ID] FORMALS a EXPRESSION

FORMAIS { (FORMALS,...)
,

EXPRESSION = [EXPRESSION VI CONJUNCTION

CONJUNCTION = [CONJUNCTION A] NEGATION

50

5'

NEGATION = ']RELATION

RELATION [SIMPLEXP RELATOR] S[MPLEXP

RELATOR = = > JI -2! IE -Lt

SIMPLEXP = [SIMPLEXEP ADDOPI TERM

ADDOP ((+ I .I:I A I+1

TERM (TERM MULOPI FACTOR

MULOP x XII+ I -I ;I X

FACTOR + [RIMAR

APPLICATION
PRIAR PRIMARY APPLICATION}

APPLICATION = [APPLICATION] ACTUAL

ID [# 4TYPEEXP,
DENOTATIONI
CONDITIONAL

ACTUAL = COMPOUND
ARGBINDENG

FIL I STREAM iCHAR"'

' CHAR*

DENOTATION 1 DII+ DIIT

FORMALS 1--+ ACTUAL

CONDITONAL = IF ARM ELSIF .. (ELSE EXPRESSION] ENDIF

ARM = EXPRESSION THEIN EXPRESSION

L.E MENTS){ELEMENTS)
COMPOUND '{'EL.EMENTS

< LEMENTS >

ELEMENTS = [EXPRESSION,...

ARGBINDING = U{OP ACTUAL} '

OP = ,I RELATOR I ADDOP I MULOP I SUB)

51

I BLOCK = BEGIN BLOCKBODY END

DEFS = DEFAND ...

TYPEEXP = TYPEDOM (-* TYPEEXP I

TYPEDOM = TYPETERM f + TYPEDOM

TYPETERM = TYPEFAC [X TYPETERM]I

TYPEFAC = {TYPEPRDI1ARY *
ITYPEPRIMARY [ACTUAL]I

rID [w TYPEEXP, . f
TYPEPRIMARy = l(TYPEPIPRMTrYPE It (I ZI N I ITYPEI
For batch use, a program is considered a BLOCKBODY; for interactive use it is Considered aSESSION:

SESSION =COMMAND+

COMMAN L ET DEF
QUALEXPJ

5-)

%%- -

APPENDIX C
ASCII REPRESENTATION OF -

Reference ASCII

< LESS

eIN

0NOTIN

v V

A A

x *

/ /

A A
A ~I->

Ai A!i
T* T @

R$Rz $Z

N$N
B$B

1 $1

533

'C

535

53 i!

iV•uhU VWWuWvv R~v u m v - - -

APPENDIX D
THE FUNCTIONAL LANGUAGE-0

(RIGHT-RECURSIVE GRAMMAR)

Note: (.. means zero or more occurrences
(...) means one or more occurrences

n means from zero to n occurrences
(x I y) means either x or y, but not both

BLOCK ::- BEGIN BLOCKBODY END

BLOCK1ODY ::= LET DEFS; BLOCKBODY
QUALEXP

DEFS DEF (AND DEFS)a

DEF :: (ID)l FORMALS e QUALEXP
ID: TYPEEXPTYPE ID (FORMALS)' -TYPEEXP

QUALEXP ::- EXPRESSION (WHERE AUXDEFS)*

AUXDEFS ::= AUXDEF (AND AUXDEF)a

AUXDEF (ID) 1 FORMALS - EXPRESSION

FORMALS ::- (FORMALS (FORMALS))
ID

EXPRESSION CONJUNCTION (V CONJUNCTION)

CONJUNCTION ::- NEGATION(A NEGATION)

* NEGATION .._ () RELATION

RELATION SIMPLEXEP (RELATOR SIMPLrXP)

54

J. A . . w b ,t ,. . . . ° . .. - -**-**.-*** .. - . * . - .- ..

-. ~ W -W W-.I- 6r -~n-v w - - -

RELATOR .

LESS
GREATER

SIMPLEXP = TERM (ADDOP TERM)*

ADDOP = +

A

TERM = FACTOR (MULOP FACTOR)"

MLI.OP :
/

FACTOR + PRIMARY
-PRIMARY
PR IMAR Y

PRIMARY APPLICATION ! APPLICATION)"

"kPPLICATIO% = (AT AL)

ACT AL ID
DENOTATION
CONDITION AL
(OMPOUND
ARGB LN'DING
BLOCK

FILE *f(HAR" " (HAR an -S(II 2 \SCI[

' TF= T*(HARI " j* (HAR :an =\(II :, \S(lI
DIGIT) * D14 #IT .in 0

CDIGiT 1 * DI(IT,

FORMALS - ATI Al

DALF (ALF%IM \
ALI% %4 'in - . / \ / ,

f)\h)FT')%A - IF ARM % Ei.%IF F%1 I.%, F ., \ \%I)IF

F XPRUSSI' 1t% F4F %;,

COMPOUND I (ELEMENTS) 1

((ELEMENTS)')

< (ELEME-NTS) I>

ELEM4ENTS =QL'ALEXP(.QUALEXP).

ARGBL%-DLNG = op I
OP QLALEXP

[QUALEXP OP

op
RELATOR

TY PEEXP =TYPEDOM (4TYPEDOM)*

TYPEDOM = TYPETERM (+ TYPETERM).

TYPETERM =TYPEFAC (* TYPEFAC)s

TYPEFAC .=TYPEPRIMARY@

TYPEPRIMAR Y

ID <<TYPEEXP (,TYPEEXP)*>

nYPEPR IMAR Y =(TYPEEXP)

ID
PR IMTYPE

PR[IMTYPE

TYPE

FOR INTERACTIVE IMPLEMENTATION OF

SFSSIO% (COMMAND)*

()%liMD (DEE I QU ALXp);

APPENDIX E

ROCK COMPILER HEADER FILES

* THIS FILE CONTAINS HEADER FILES REQUIRED BY THE ROCK COMPILER *

* PUBLIC DOMAIN SOFTWARE

* Name scanner definitions
* File . scanner.h *

* Authors Maj E.J. COLE / Capt J.E. CONNELL *

* Started 10/10/86
* Archived 12/11/86
* Modified 01/10/87 - Update keywords JC *

This file contains definitions used by the scanner,parser, and *
* error recovery routines.

Modified 01/10/87 Corrections to comply with latest defin:tizns
* of the language and update keywords. JC

,.::_ 3se ceeF"-

V_.e YA3, ---

*:e .-e 7AYE
-e,. e AX L "N E

e :-e [ABLES:Z.-[-as. 7:-s ..: - .

/* General Token Types '/

/ Listing of symbols can be found at end of !is--

"* - -, .- <IN

4

= :." " e \z7

57

#define COMMA '7

#define LTPAREN 18

#define RTPAREN 19

#define EQUIV 20

#define ORLOG 21

*define ANDLOG 22

#define NEGLOG 23
*defi.e COLON 24

*define CAT 25
#define LTBRAKET 26

odeti.e RTBRAKET 27

#define LTSQ.. 28
#define RTSQUIG_ 29
#Oaefne EMPT_ LIT- 30

#define RTARROW 31
#define 7 NERTARROW 32
Odefine LITERAL_ 33
#define IDENTIFIER 34

#define CONSTANT_ 35
odefine REAL 36
Odef ne INTEGER 37

*deftine NATURAL 38
define BOOLEAN 39

$defilne TR:V:AL 40
#define CHAR 41
#define STRING 42
Je f ..e STAR 43
;iefine PCS 44

Odef ie NEC 45
olefine KW 46 /* KEYWORD

/* eof, error, unknown token, <o, <>, <, >-, >, =, +, -, *, %, , ;, ',
[, (,), " , \ , /\ ~, :, , [,], , }, '', ->, I->, literal,

identifier, constant, SR, $Z, SN, $B,$l, character, string, G,
unary plus, unary minus, keyword

/* Keywords */

lef 'e AND
tie'.7e BEZIN
le ELSE 2
le' e SE 3

die'--e E.NI 4
Ol e," 'e 7N:; 5
le, --e E. 6

lie ,p I R FA

lne' .- e

READ
•* - I7HEN 4

• -' . HERE .6

5X

Air -P6. .' 1 . N U U

#define CA'LOC(y,x; (Cxfl ca--cccy,s~zectx,
struct NStruct {~3.

char nare NAM7S:ZS- -e

struct NStruct ik

zyoedet stru;t NStr'u;ct Nar'eRec;
extern cnar *ca2ilccu;
extern cn a r 'lc;

*end, f

59

/ dr1'11 1 t*f1 rrtt tttwrtrd tt* tt tt .t . * . .tt

PUBLIC DOMAIN SOFTWARE

" Name parser definitions
,

" File parser.h
" Authors Maj E.J. COLE / Capt J.E. CONNELL
" Started 10/20/86

*" Archived 12/11/86
*" Modified 01/12/87 - update NodeStruct definition JC

This file contains definitions used by the parser

* Modified 01/10/87 - update NodeStruct to hold the type of the
* node

* .'rie' LE2

,cie! -e -E"-AN

-ie!'-e -4N::

tie'. -eeief:-e :EFN" -"

-ie' _r-e .- _ E F %',N"

*1e' e 7ATAA::X7 F
• : l e ':NA*'X-E; 9:

'1e.-e AJ'XAN:
N-e'--e AC7*,'A-: 3- 1; . #

*• e- -.:4MA: . 4

a' . : I

44

" YESX;N,

% . -

typedef 3-r-c NodeSt:.Ct Node~iec, 'a.

Nrzae~ec 'CreateN~oew

r Nocde Na.-e{

eror;/* d.urlg 5can an Carse

eXle7--1 arqrC7a; 9cOca fag - se -3<e

ex-er" /' clef seo fri <s-. jjs.n>

exterr 2nar a.C
ex-er Err:Han'a~ero;
ex~ern WreErrcrs;

I ~ ~ ~ ~ External Utility Functions ********~

ex'-er- NcdeRec -- reateNcoeHi

ex-,ern : ar *NOaeNa'neII;

ex'ern XaeNewRoo~)

ex-er saI
ex' ern 3x
exi-er - E~

ex-e:r -on ByPassfl;

41-c-ae cscaner.n>
*.-2c-e <errors.-

61

z

.0 .1 "0. J

A A v

* PUBLIC DOMAIN SOFTWARE *

* Name error file definitions
* File erors.h
* Authors Maj E.J. COLE / Capt J.E. CONNELL *
* Started 01/20/87
* Archived 04/07/87 *

* Modified

* This file contains definitions used by the error recovery routines. *
*ft*t******tf****f**ft****ftWWft*t****f*t*W*****ftW***t**ftft***W*W*ftw***

* Modified *

*ifndef MAXERRORS

#define MAXERRORS 10

/********************ft* PARSER ERRORS **********f*****ftt**** ft**

#define ERRO 0 . .or ' , w/o >'
define ERR1 1 / RESERVED FOR FUTURE USE
#define ERR2 2 /* '\ w/o '1' -- bad og'cal R */
#define ERR3 3 * I' w/o proper following onar
#define ERR4 4 /* invalid numeric constant
idefine ERR5 5 /* literal w/o ending
#define ERR6 6 /" unidentified cnar in Lrct file
*define ERR7 7 /f out of memory
#define ERR8 8 /* error in statement follzw:n;

/. 'xx'

#define ERR9 9 /* error in type definitzon
/" following xx'

#define ERR a 10 / onable to complete eval of
/* trhe blockooay

#define ERRb I * missing or -isplaced ; after
/* def-:nition

#define ERRc 12 /* invalid QjaExo
define ERRd 13 / invalid TypeExp
#define ERR-e 14 /* bad or mlss-nq forra-s
#define ERR f 15 P missing or mosplaceo
*define ERRg 16 / missing 1Z after TYPE
#define ERR h 17 * tad defin:t;ao after ANI
*define ERR i 18 * missing or bad A.x~ef after

/ WHERE
#define ERRj 19 * missing or -isplaced
#define ERRk 20 ;* error n processIng

• successive Act;als
#define ERR_1 21 / 'isslng .-tera after (eyw-r.

/ F:LE"
#define ERR m 22 / 'Lsstrq or .7va- o exc Cf'er

Keyword
*define ERR n 23 :F statement w KN::y
#define ERR o 24 ' error n for-a.s crene0; -

#define ERRp 25 -ssinq or -nva..i Z-a-:xv
, fo .owI-q zonma orp

*deflne ERR q 26 * error :n Ari"'d:-g - .

#define ERRr 27 off n 3ZZN ---.-i,.e-e-ei
2feat.re

62

VN -........ S S C V~ -.- . . . -..-. wrs -.'

#define ERR s 28
#define ERR-t 29
#define ERR u 30%
#define ERR v 3.
#de f ine ERR-w 32
#define ERR-x 33 .

#aefine ERR_y 34 /
#def ine ERR-z 35

/* NOTE: s through z reserved for future use ~

/ ** ** ** *** *** **SEMANTIC ERRORS****** ***********************/

#define ERR aa 35 /Numeric value expectea
#define ERR bb 35 /* Natural expected
#define ERR-cc 35 /* :nteqer o- natura- expected
define ERR_dd 35 ,' Error in Tuple Def-ini.t;cn
#define ERR ee 35 /* Undefined var 4n "anal' scocte
#define ERR_ ff 35 /* Function w/o f-unction aef
#define ERR_gg 35 /* Formrals mismatch
#define ERR hh 35 /* Undefined function
#define ERR-ii 35 /* Real Number expected
#define ERR~~ 35 /* invalid Constant P
4define ERR-kk 35 /* Boolean value Expectedr
#define ERR_-11 35 /* Boolean Operator Expected
#define ERR-nn. 35 1* Out of r-un-time mnemory space

Oendif

N A-A

* PUBLIC DOMAIN SOFTWARE *

* Name Semantic Definitions Header File *
* File Semcheck.h *

* Authors Maj E.J. COLE / Capt J.E. CONNELL *
* Started 01/01/87 *

* Archived 04/10/87 *

* Modified 04/13/87 "FILENAME" eliminated EC *

* This file contains the header file and definitions for the semantic *

* checker and code generator of the PHI compiler *

* Modified : 04/13/87 "FILENAME" eliminated; output path now *

* depends on user's input EC *
~************ ****** ** *****

***************************** Externals ***************** ******** /
#include <scanner.h>
#include <parser.h>
#include <errors.h>

#include <stdio.h>

******************************** Globals ****************************
#define NOTFOUND 0 /* Definition for findvar
#define UNTYPED 0 /* Type Definitions and sizes -/
#define BOOLEAN 1
#define BOL BYTES 2
#define REAL 2
#define REALBYTES 4
#define INTEGER 3
#define INT BYTES 2
#define NATURAL 4
#define NATBYTES 2

4define ERROR 0
#define MAXADDR 64000 /* Max # of bytes in var space

#define MAXTYPES 300 /* Max # of types in one scope
define CODESIZE 20000 / Max size of code buffer
#define START ADDR 0 /* Starting address for varspace
#define TYPE INIT 5 /1 Pointer to the last initial

/* typetable entry

define CNTRL Z 26 / Control Z ascii
#define ENDS-RING 0 /* String terminator
#odefine NUMBASE 48 /* Lowest ascii number
#define STACKSIZE 10000 / increase in stacK size
#define SIZEBUFFER 30000 /* Size of output buffer

sdefine ADD 1 / SeM CtecK codes f r ari- Lcs
sjefine SUB 2
#define DIVIDE 3
*define MULT 4

*define SEM ERR C /" FLag to indicate senan-c
/, error follows

*i'fdef NU LL
.define NULL '

send, f

64

~- .5.* .

- ~ ~ ~ MW IFW N' VV -WW 'rrwww "W UU *--- -- -

* Type Definitions

typedef 4mt. optype. /* Arithm'etic operations
?LAG, /* Generic flag type
PHI:YPE; /* rYPes founo i n language

typedef char stq 20!; /* Assembly language ccoae nares

typeaef struct and struct -andptr; /* Pointer to and---able entries

I ~~ Typetable Definitions ~*
typedef struct typenode 1' Typetable entries

char name [10];

int bytes;
struct typenode *typeptr;

itnode;

/ *************~****Formallist Definitions
typedef struct forrmnode (/* Formal stack

int name, type; /* fformname, formtype
strUct formrnode -link; /* Link for list

fnode;

* *****************Vartable Definitions
tvoedef struct varnode { 1 Entry for variJabie stacK

int type, /* varnarne, vartype
form, 1* Flag set if var is a f ornal
def; /* True If var is a definition

nodal nptr; /* ptr to defining node
Enode *fptr; 1* ptr to for~nals
strujct varnode *link; 1* Link for list

*varptr;

/ ******************Deftabie Definitions********
tycedef struct defnodej

mnt type; /* varnare, vartype
nodal nptr; /* ptr to oefini -nq node
fnode *fptr; 1* ptr to formals
struct defnode *link; / Li-n"k for list

*defptr;

/ ** ** ** ** ** ** * **And Definitions*************************/

strt ano struct /* Structure for and lists
1nodal ptr; /* Ptr to nodal' connain-o .ar -ae

int buffctr; /*Ptr to c-ffer wnere
/* na're _s ca- 'ea

struct and st.ruct -!ink; L' Lin fo Ke'l . S'

65

VS

* PUBLIC DOMAIN SOFTWARE *

* *

* Name : User Header

* File : user.h

* Authors : Maj E.J. COLE / Capt J.E. CONNELL *

* Started : 04/01/87 *

* Archived : 04/10/87 *

* Modified :*

* This file is the header file for the user interface module *

* (user.c) *

* Modified *

I****************************** Globals *******************************/

#define BUFFLENGTH 30 /* Max size of 4np-- fi-e a-e
/* directory

#define NOTFOUND 0
#define BSIZE 1000 /* :nput .ffer size
#define BLOCKSIZE 50 /* :npt bcC, size

#define BACKSPACE 8 /1 ASC:: Eoq:ivents
#define EOLN 13
*define ESCAPE 27

#define GETPROGRAM "Program to Compile -> " / Messaqes -z nsever
*define HEADER1 "ROCK COMPILER"
#define HEADER2 "Press Escape Key to Exit Compiler"
#cefine F:LE1 ERROR "File not Found"
*define FILE2 ERROR "Press ESCAPE to exit, any oth'er Key :o'-:.
def4.ne WAIT "Compiling: Please Wait"

taefine PAUSE "PRESS ANY KEY 'O CONTNUZE"

taefine ERRORFLE "errors.phi" "ex7t_ - -

66

% ',0" ,, % %. "* ''* .~ . . . -'.- - - - -,-" . ' .- m,,L , .-- .

APPENDIX F

ROCK COMPILER - MAIN MODULE

* PUBLIC DOMAIN SOFTWARE *

" Name Main Rock Module *

* File : Rockmain.c *

" Authors Maj E.J. COLE / Capt J.E. CONNELL *

" Started 01/06/87 *

" Archived : 04/10/87

" Modified 04/13/87 Output files put to vdisk EC *

* This file contains the following modules for the PHI compiler:

R Initial Semcheck Main *

Algorithm :
* This contains the main procedure for the phi compiler, in add-

ition to the initialization procedure & the main semantic checking *

procedure. The main module inits the program, sets up the screen *

by calling "user ()", & decides whether an error routine needs
to be called. It also closes out the input file.

The "semcheck procedure is designed to be called by any funzticn
* with a ptr to a parse tree node as an argument. It will then
determine which sub-module is necessary to check the node. *

"RInitial" presently has the function of initializing the type
* table. r

mdified : C4/13/87 Output files written to vdisk, "d:" EC

*************************** * Externals *******************************

- e- : C . n-'x' :3 -,' S*a 5 a:7_1 (), " n l izer 'cr cz _e ft?
P e?' t C31" C:ose c-.t '-.: ::oae e r lt

.se! ,"ser _n-er'ace
ser err wr:- 7- _nterlace

L -.jse Z . Cl se scr:e -'-e
Ct a~e 1, " h ne v:iec ilspla'! pa -e

-I ?.rscr ,," Move c2rs3r -o ste2c Le_ I:>3

'nsigned -,Lack STACKSIZE,

67

% 2

/ *****************R Initial

void-

(extern tnode, types A

strcpy (types [UNTYPED] .narne, "untyped") * Se, -P y
types [UNTYPED] .bytes = NULL;

strc~y (types (BOOLEAN) .nare, "booiean")
types [BOOLEAN) .bytes = BOLBYTES;
strcpy (types (REAL[.nane, .real"),
types [REAL] .bytes = REAL-BYTES;

strcpy (types [LNTEGERI.-are, "integer");
types [INTEGER] .bytes = :NTBYTES;

strcpy (types [NATIURAL) .name, "natural");
types rNATURALJ .bytes =NATBYTES;

/*******************SemChecker * ************

PHiTYPE
semcheck (ptr) /* BreaKS 5e-P'

nodal ptr;
(extern PRITYPE tkindef ~,trtarrow 0

-f-unid (), tid (), tconstant (), tactuallist U tacta-s
PHITYPE type;

switch (ptr->name)
case (ADD_)
case (SUB_)
case (MULT_)
case (RDIV_)
case (IDIVy_
case (COLON_)
case (CAT) type - arithop (ptr);

break;
case (POS-
case (MEG)j type = tprirnary (ptr);

break;
case (ORLOG_) type =tor (ptr);

break;
case (ANDLOG_ type =tand (ptr);

break;
case (NEGLOG_) type E negation (ptr);

break;
case (KINDEF) tkindef (ptr);

break;
case (RTARROW_) :type -trtarrow (ptr);

break;
case (LETDEF) :tletdef (ptr);

break;
case (KW_- + WHERE-) :type = twhere (ptr);

break;
case (AUXAND) :tauxand (ptr);

break;
case (DATAAUXDEF) tdatauxdef (ptr);

break;
case (FUNAUXDEF) type -tfunauxdef (ptr);

break;
case (FUNID) :type - cfunid (ptr);

creak ;
case (ACTUALLIST) type = tactuals (ptr);

break;
case (COMMA_)

68

.

-_ aan IAr. At III I I I I II I II l p - -• p--

- 1b en -or ,* As *-.

". * -b

APPENDIX G

ROCK COMPILER - SCANNER

7 F- 4-A-

*

- WS . *o

i 4 : Ke s

. 4....

pdr d, -. 7

-- ... - - 'rw'rnr'w.r~

SC. ~ " .I~ ~s -r, -- a' ' -

* ':w

<e<

d I S ~14-~

- i.- -ie- --

* A I A

~ -A -

- ~SL.d S

-' ~<$'. .- i'' ,:t- 'a -.

-if. N

44-' -

C - C -4- ~Ld

'ea e'I ~'i

1St' - ''' -. - A

- .- - -

dS4- V 'e'

dS4- - .- ' - -v
aSS ' - (A ' A -

ase ' '4- -. M~4.

aSS '4-' ' -

- '~~' -.

454- 4-'

aSS 4-' . -

154- '4

154- .- - - -

354- '4"' -,

'44- 4- -- -,

44-' 4-

- - 4- . '8-'

4- -A

'4- 4--

.34-3: -

-4-

.4-'

''4

'Ct&~aASdV.tPa -.. ~~C.tcvv *,1*M ~:,2JX-§d1dJk ~Ld2- .4' * a - a- .4 - - - a Ut

4se >e

re,' -r

,e-e

ret r- se I I

If ,or '. 3e " , t e , -

e-se '7(area. -., -

r-

-ase

-,e a

-aSe

-A - ..

re N ' , . 4 A

K 1 -dk

- ;e e r - - " .- ,: ,,

r ". - N:':E L A :

- e' .-. -:' A. ,

S' • l., - -. -, -e ,

'i

A,.ij '. *. - € -# .

~wwwvrnwwr

te 7 0

- A' -

* C..- - I

II j

4 -- -

- 4 * -

45-~~'

Mt

*'4 4- -

* * I

Mt

4.
Mt

4.

.4

4.

'1

*" °'*** *0 * * *000*00 *0o 0 Scanner Ut ilites 000**0000****00 /

* The.,s tC see if the input token is a keyword in the language. *
"f is, the function returns the numeric value cf the keyword. *

* f isr't, the function returns -1. Performs binary search of
S -eywr array - 0

" 'ST KEEP 7H:3 ARRAY :N ALPHABETICAL DBRER' ',

*K I.4r W. -

" - : % ." -. " "- - . ["A1",
*

> . . .' : '-*","; a P " ">

L" 13 ,.. IP

II

1

75

0

L %_'PL%

APPENDIX H

ROCK COMPILER - PARSER

* PUBLIC DOMAIN SOFTWARE *

* Name parser pt I
* File parserl.c

* Authors Maj E.J. COLE / Capt J.E. CONNELL
* Started 10/20/86
" Archived 12/11/86

* Modified 04/23/87 No longer set up to work with file of tokens.

* This file contains the following modules for the PHI parser:

* BlockBody() LetDefs() Defs() DefAnd() QualExp() *

* AuxExp() AuxDefs() AuxAnd() Formals() Expression() *

Algorithm : The main module calls BlockRody() to start the parse
* off. BlockBody in turn calls LetDefs() first and then
* QualExp() looking for a valid program. The remaining *

* modules in Pt's 1-3 are called by these when trying to
* validate a pargram. The results from the parse are ncw

, kept in an abstract syntax tree for type checking and
* cocie generation. Various utility functions are used
* to build the tree and simplify parsing the grammer.

* Modified : 12/26/86 Flattened tree output changed t7 abstraz:t
* syntax tree form. JC

01/10/87 Corrections to comply with latest lef..r.:7ns I
* of the language. JC
" : 0,1/27/87 Error Recovery added and files combined.
* : 03/20/87 Token buffer implemented for parser. C
* : 03/29/87 Changed manner errors are handled - required *

* for integration with back-end.
04/23/87 No longer set up to work with file :f t Kens.

* GetToken is caled directly thru FillBuff "

* .1e pa's e 4

76 . a 4 5 1 1

F ALSK. & t,- A',Se.

* PX KP .

76

-- st ise 1" cnql' rec a -se z...

no-as addresses

se 3*2FS:Z7E 1 _r ase -ave
r-ace aadress ofIr~ a, e-

* ~ ~ ~ ~ ~ o c :Z-,_rfe.c!e3J

*pc.o e, errorfi-.e; *wcor<_7 f--Ies

a r se:

\;I2e?e: oo
oxer -aL C_ z~csef. 2sI v ex' erna_ as-~

erreier7:s _o>

. 2 se~e~rzrf':el 7 ew-e ' cea-e,~

_e !KoE- "Drser., -

see ...

r S p

-- ISO et It

* *..*. * @. *t * * *.....

*es aps -rier wal.K t .le ree w r-c-) a5 *, s !'eait.
* .t pr- ts .)u rne -niie nrne . e s,:reern~:w

77

*-se

case :~
icase :ZNS-AN7
c:ase '.. 7 . L

,Ced7 iv* *.--i I,%..3

0et PC.e,

....

e ees

-- IP-.e' s

* ~(LETDEFS-- - . : EFS, 9C~'

-vils &*

* z.a~s *"

•

A~~ ~ ~ ~ A.'E F-%-

7-T- EFF"N E FAN:

-eel e°

. I

°,a

-I

A -, --

.KMA

A - A - -

Al
I
I

j
1

a

%%% *q%%%%%%%%%% A . *\ *. *.-,,**.* - .* - -~ - - - a a ta ta 'a.

fO-,.nd s37etn.;nq st : eeoi
cneck for more def's

/* any errors rave been. noeo,

so pOress on

Irots a otr to tree/; ~otree
* :.,~ -/* corrently 4crk-:ng w:.t.

<DEFAND> and <DEFS> '
Where "and <DEFS> "need not be present.

*Note: This function assumes root is not NULL upon entry

"]~~~:. o: AN, ~/* rounci "and" so f4X tree

zrz~SrV/ note 4t, try to fix
/* end ByPass AND
1* end DefAnd

I' root s a Ot otree, so7ree
7 /* c--- I orrently working wit .

<QUALEXP> <EXPRESSION> where <AUXEXP>
Where "where <AtJXEXP>" need not be present.

x re ss -or ,rom FR R) R errors already reporoen.,
N: attemnpt to press on

-1 O oA AO*P I 'ooking for wnere excress-L;
r C. Ko-w *FE) .?/*) , round onejoix tree
* .- ;: -ot~/'need AixExo foilowr: o Xz--z

i* end byPass HR

:.i.ex: Ix.ea or4s'

.3;* o~a.: - stre--r7 :-,

era Q -..aexv(l
............. *......***.****************

root I s a L r ee 5
~rer-y .crKL.-q

-'A'UXEXP> :: <AUXD-EFS> (where <AUXEXP>)* J.

81

N%%

f lag;

.f('lag - AuxDefs(root))! TRUE)) /* need at least one AUX:r-
ErrorHandlercline -no,ERR -i, /* note, try & f~x

(long)KW_+WHERE_);

-!(y?ass(KW_ WHERE_) /* looking for t e
Make~ewRoot~root, (XW_ + WHERE_),RIGHT); /* found one, fzx tree
AuxExp(&((root)->jptr)); /* need AuxExp following W~R

/* end By~ass(wHEREi

retuorn(flaq);
/* default - return re sul It of
/* first Auxteffs
/* end AuxExp

-xefs(root.)
/* root is a ptr to tree/subtree 'N:3oe~ec --root; I* currently working with

<AUXIDEFS> (<DATAAUAXDEF> I<FUNAUXDEF>) <AUXAND> *
Where '<AUXAND> " need not be present. *

flag;
* Ptr; /* address of data struct holding ~

/* identifier name

* r yPass(:D)ENT:FTER_))
'iP CreateNode(:DENTIFIER_); /* set up its side of subtree '

73'Y~assEQU~V_)) /* looking for 1D
- CreateNode(DATAAUXDEF); /* found -= t's a DATAAUXDE$F

-c)>p =temp; /* attach temp ptr to root
7 txPression(&((*root)->rptr)) TRUE) /* now need Exp

~rrander~in~noERRc,/I noteit, try & fix
(Long)KW_WHERE_);

1* end Bypass EQU:V-
/* not '==' so must oe :D F'CRXALS

-reateNode(FUNAUXDEF);
-. ptr - CreateNode(FtjN:D); /* will look for ID FORMALS

-. -. ptr->.ptr -temp; /* attach :D to FUNID
* -As(&rot)->7ptr->rptr) /* need the FORM.ALS

- s47,der(!ine _no, ERR _e, 1* note, try to fix

/* Looking for '-1,alreaoy
/createod2AXt

ii~ .*,'neea QualtExP on rt
- - ~~5 ,note tne errors, try -x

va <ai~e r -, .x, -I-- A&

A.xAna(root);

ret~r(R2E)any e~r-rs !.ave cee-
i* so Press -

'end A.xefs

A,;xAnd (root) !root :.s a vOtt -_ tr-ee 3 zS
NodeRec **root; 1* c.rrentiy WorKnq W t.

1* <AUXAND> :-and <AUXDEFS>
Where "and <AUXDEFS>" need not be present.
Note: This function assumes root is not NULL upon entry ~

iffiy~ass()(W_-AND_
YMakeNewRoct(root,AUXAND, LEFT-); /* ffound 'and" so f--x tree
iff((Aux~efs(&(*root)->rptr) !=TRUE))

ErrorHandler(line no,ERR h, /note it, try & ffix
(J1ong)KW_ +WHERE_)

1' end ByPass AND
1 end A',ixAnd

?r:*..a s root) /* root is a ptr to tree/sot:re U
NaceRec --root; I' currentl.y working w;.tn

1* <FORMALS> :=<ID> I('<FORMALS> ',' I) %1

Nooe;;eo t.emp, *workinqroot; /* temp ptrs to nodes n t-ree%

1" workingptr 7narcnes down the
/* t side off tne s..otree

f(O - By~assUDCEN7:F:ER _)) /* c~.ecki;nq ffor :~tan
root = C reateNode (ENT: :ER
root3c ->.naex P tr;

83

. - % -

-VOL

WV A',

* e-e

*e-1

*era 9y~ass L~?)
e' iefa-_' - -)re -f -.- e ac;'

FExcress~cnrc rot) I. rOot s a o0r iee .r- :ee
%odeRec **root; I'- currently WCr-n W.7

<EXPRESSION> :: <CONJUNCTION> (/<EXPRESSION>)*

_ f(f~ag - Coniunction(root)) -= TRUEJ)) l' ook for Con:,nctror'
if(Bypass (ORLOG_)) Iawill. recursively CneCK fC7
jMakeNewRoot(root,ORLOG_,LEFT; /* found, so fix root ffor re:',rrn

'i(Expression((,((*root)->rptrfl>'rRUE)) 1'- /\ w/o followi.ng Exp.
£ErrorHandler(1ine_no,ERR8, /* Just note -4,, no f-:x

(long)ORLOG_
return(ERROR_

Iend recursive searon
retirn(flaq);

I'- end Expression)

84

* PliBLIC DOMAIN SOFTWARE

Name parser pt 2
F-,.eparser2.c

A ;tnors : Ma:4 E.J. COLE /Capt 2.E. COINNELL

3-arted 10/20/86
*Arcr>ived 12/11/86
*M-;.tied 01/27/87 - Error Recovery added. JC

* hs ~ecc.nta~n the following3 module for****e;*HIparse:
* -r,,Junction() Negation() Relaticn() Pelat ,o(

3 SimpiLExp(AddOp() Mu 11OP () Term()
a Factor() Primary) Application)) ActuaA') f

Algo~rithm See parser part 1a

aMsdified 12/26/86 Flattened tree output changed to abstract

a syntax tree form. JO
01/10/87 Corrections to comply with latest definitions

of the language. JO
a 01/27/87 Error Recovery added and files combined. JO

exterr -n in -o /* globa. Var. .c-s c.rrer --n
/* no o sc,;rce prog f

?Xeit rtrket; '* global flaq - aids n a...;g
/ft ?4 deter 'nlst~c

on n(rooJ) I root is a ptr tz tree/s-=ttree
%N-oe~kec **aroot; /* cxjrrenz..y worKi'q wit.-

<CONJUNCTION> := <NEGATION> (\<CONJUNCTION>)* *

i flg- Negation(root)) -- TRUE) 1* look for Neqatic'. part
if (ByPass(ANDLOG /I will recursively c-ecx.'o

MakeNewRoot~root,ANDLOG_,LEFT); /* fou.d, fix root for ret.rn
.f(ocn4,urnct4on(&((*root)->rptri) TRUE) /. /\ w/o folowingq Neg.
* ErorHandler(1ine no,ERR8, /* :2st note it, no fix

(1onq)ANDL0C_);/ft
return)ERROR_);

/* end recu.;.s-ve search

/* end Con-junction)f

int
Neqat ion(root) /* root is a ptr tozree/subtree

NodeRec -root; /* oirrently wor-cn witn

85

d~~~~~..~~~L dI~. .fJfNXWfL2 f,& ~ - f -

*~~~ p E 2 T r - F1:U .

4 -1"p . -x IrP 4 A

* Whre<RELATOR <>MP IE<P I > Ie-e nztLet.ree

Noe reun th eaorvlevieTU i on

!dj -ByP'ss -. ' m
e, se I4.-.g-yas NE

e se~ .4 , '-qByaS(E

e~~~~ Arje'- f(fa -yas jW -1

e~~~se~~ -_fA('*B~ ssK .- -:

e~~~~se~~ .'.j ':5' .(WLE S_1

e' e '. -"(f a - y a s KW + R:,: -

~.s A ''tpe 4&e'>'~,4 4-~5J4,86

17 .7 A-

(SIMPLEXP> :~<TERM> ('A2.OP)<31MPLEXFP'*

* .~e .. x

/* era rec-rs.ve sear--

!end Sr-c.-xc

7*<A.DDOP> :: + I I I'

1* Returns the AddOp value vice TRUE if found 5

'aq-By~ass(ADD /* do notn.~ng

e-se if(fa-ByPass(COLON _H

e-Se f((f.ag-ByPass(CAT))

re--:nf~ag;/* return res.;- off searcn
/end AddOn 5

/5 <MULOP> := * /I % (i-div) *

Returns the MulOp value vice TRUE if found

ff (fflaq-ByPass(MULr /* do nct.nnq

elSe -f~((f~aq=ByPass(RDZV_))
e~se Lf((fflaq-ByPass(111

87

-P..d ".

. I..III.I...

* TERMJ> - FA7"DP- -M* M" .P-TEPJ4' *

se ID

7 .- a'- *6 -P

e..rd

.7 : r-_r**-k!r *a .) ;

rend

a t r root. 7 0 s r" I :
';. (de~ec I r "I :e -. w .

1*<FACTOR> [+I-)<PRIMARY>*

- s I at s;

i -a,; ByPass(ADD-_i)
*7c CreateNodle(POS _;

e-se _f(stat-,s - ByPass (SUB_)
*rcot - CreateNc~le(NEG _ ;

~(status) fo, * o

i~ mu.1DW/o fo.owiq e
ErrorHardier(line _ro,ERRB, -o'te :t, .- x

(iongjstatusj
return(RRORP._

ese return(7RJE);
e se return'.(P r ma ty (rootA * C(2eCK r-& *

I' enta FAC7CR

r r-a ry r ot) /ttot.s a p-,, to -ree'str-e-
Node~ec r root; c,. rure nty YWOr Kn- w?

1* <PRIMARY> :- <APPLICATION> (!<PRIMARY>)

88

9a 71~ RA K

r* ceav' :i .. ~i' r

/* ena recrs.ve sea-

/end Pr r'4ry1

-cnat' -'3 7C' /* root is a pt-r to tree. s-rn ee %
NoeRez .rot; /I current -,y wor' .n -w- n

<APPLICATION> :- (<ACTUAL>)+ *

NodeRec *tnode: /* temp pointer to Z; ce

_f((flag - Act.al (root)) - RJE) /* look for an act..al
(~flag - Application &tnode)) == TRL-E) 1' look for an actuja. li-st
MakeNewRoct (root,AC2,A:LiST, ZE--T1;
(*root) ->,rptr = mnode;
li U*root)->rptr-name '= ACTUALLIST) 1* fix tree so all Act;al's

MakeNewRoot(&((root)->rptr), 1 hang to LEFT

AC=:L:,:-, LFT)/* end if(Applicatinnit-oe)
else if iflag -= ERROR_ /*1 invalid Act-aLlist

7-:rorHandler(ine-no,ERR k,NULL); /* note it, no fix

else retu;rn(TRUE); /* either valid Actu.aILi'st or
/* Just a single actu,.al.4

retur:n(flag); /* return ERROR_ or EALSE,
/* based on first look r

/* end Applicacion()

Actual (root) /* root is a ptr to tree/su.ctree
NooeRec **root; /* currently working with!

/* <ACTUAL> := <ID>l file<LITERAL>I<CONDITIONAL>I<BLOCK>I *
1* <DENOTATIQN>I<COMPOUND>I<ARGBINDING>

/* ptr to data str-uct holdinq tne
cng pmr; /* actual value of :D, REAL, etc

NodeRec t erm; /* ptr to temp node In the tree
int flag;

if ((ptr = yPass(::EN'F:ER M) I' checking for :D

89%

A. P- AL%- . f

*ro - reateNode(DEN:F:ER _)
(rci->inc.ex - pr

/ nlow IOOK !or :.1 - -A
f ByssI:.IERARRW_)) /* Note: -> AC7_AII s a

*<:ENC7AT:CN>
M4akeNewRoot(roct.L:NERARROW _,L-FT); /fO,..nd One SO f X -7ee

e-se / ,late it. '70 fi
-rroHanderli-e no,E.RR8,

(l'ong) Z:NERTAR~kOW_
re (ERRCR _

/I end e:se not. Act.,a'I
/I end if :.:NFRTARPCW

I' end if

,f (By?ass(KW *FIE _ *I found keyword F:L

*root - CreateNode(!(W_
if ((ptr ByPass(LT-ERAZ, m)

rep- CreateNode(L2TERAZ _); 1* attach follIow.'nq LE77RAL
tem~p ->index -pr
('root) ->tptr - temp;
ret,.;rn (TRUE)

/* end if Z.TERAL

e I se /* note it, no fix
nErrorHandler(li-ne noERR-l,NULL);
retu.rnERRORJ

/* end if F:L

if ((flag = Conditional(root)) ' FALSE)

return (flaq);

If ((flag - Block(rootl '= FALSE)
retujrn (flag);

/* Phi is nondeterci%_no't' .s
/* first check for cco-c;nos Onr -
/* if -> follows must see -f ne*
1* compound was actu.ally a fc7- a_;
/* list NOTE: Order may NC ce
/* changed!!

if ((flag -Compound(root)) -- TRUE)

if C ByPass(LINERTARROW_ return(TRUE);
else /* had "-" now need to see I

/* had Formals

tem~p -root; /* set var to be oassed by val, e
/* to IsFormals

if('IsFormaltemp)) /* just report it and press On
ErrorHandlier(iine_no,ERR_oNULL);

(*root)->name -FORMAL;
MakeNewRoot(root,LINERTARROW_,LEFT); /* found one so fix tree
if(Actuaj(&((root)->rprtr)) -- TRUE) /* look for trail AC;AL

return(TRUE) ;
else /* note it, no fix '

Errorliandler~line_no,ERR8,
(long) LINERTARROW_)

return(ERROR_)

/* end else ByPass LINERTARRO-W
else if(flag -- ERROR_)

return(ERROR-)

90

aqq

91

* PUBL 0A N S FTWARE
*Name parser pt 3
*File parser3.c
*Authors Mai E.J. COLE --apt _.E. :CNNELL:
*Started l0/&,C/86
*Archived 12'/11/86
*Modified 01/27/87 - Error Recov.ery added.

ft~ft**t~tf~ffttftt~tfftt~tf~fftt**tf**tfftftfttfftfftftft~*t ...tf

*This file contains the following modules for the PH: parser:
*Conditionall) Arm()1)k) CDrp7.
*Elements() Denotation() Arqsind() Dp()

TypeExp() Type~om() Type'rermi) TypeFacfw
* TypePrimary() PrirmTypeo)

Algorithm See parser part I

*Modified 12/26/86 Flattened tree output changed to abstract

syntax tree form. JC
01/10/87 Corrections to comply with latest definitiz-s

of the language. JC

01278 Error Reovryadedan ils omind.:

ft.nc_.;.e <parser.n>

exter. int rtbri~et; /* flaqa - a~ds

~a:qPH: dete!t~
extern irt .;.e no; / qona! var, co'rren- -r

n umiber of proqram

.,noton(root) root is a otr "o ee'
*NcaeRec **root; /* Current-y WorK!9 W.tn

/* <CONDITIONAL> ::- if <ARM> (elsif<ARM>)* (else<EXPRESSION)l endif

/* ptrs to temp nodes L77e-ree
*N-de~ec *tetr - NULL, Isubroot, *workinqptr;

,yPass(KW _ F))

* f(Ar-(4temp) '-TRUE)

:orHandler(Iine no,ERR _r (Ionq) IF-); /* note t, try to f.
-CreateNode(KW : F_); '* set jp root for retu;rn

(root) ->Iptr - temp; /* attach THEN exp to ront
workingptr - *root; /I 'cuve working ptr

wni e(ByPass(KW_- ELS:F
qsubroot - CreateNodleU(W ELSF)

*workinqptr ->rptr - Subroot,; *attac. E'_5: z) tree
.f (Arm(&tem.P) TRE

ErrorHand~er(1iine _no,ER)&_-, /* note .t,try & i
(IonqJELSIF-)

sbtrcnt -Iptr - temnp; I' attach 7HEN ex ' to w,:
wor<unqptr - workinqptr ->rptr; /* move wrKinq ptr down sct~e

/* end Whi1e _-LS:F
i'iByPass(KW _ - ELSE)_

92

7 AS -A

=e J~~ lei

7 n c s. a - r -C-

'-oe:ec **root;* *:..rret. -y wc7.

<ARMI> <EXPRESSION>then<EXPRESSION>

/* te-p p, N..L a -coe --

.(faq-Expressio' &te'.p).. an. error ::-y -:rec2.e- r

~atE~' '(KW *HEN .*SOK :r -HEN,t BJS,

-- y~asstKW_
* root - CreateNode(KW- 7HEN- H

(ro)-> .otr . erp;
-- (Expressio.(itenp) -= TRUE1
(*root) -> rptr - :emp;

e -se report1 anl -7y n.ress
.7rrrHan'd~er~line _no,ERR_-.,

L.ong) T'.N);
/* end begin if 7LEN

e- se /* report -;t anoi try to press z-
;-rrorHandier(line-noERR f, a

(lonq)KW_ .THEN_)

end Arrn)

Z.ctir Sot Iroot is a ptr i- ree s-c-re
N\aeRec **root; /* c-.rrently wcr±ing wL-n'

<BLOCK> :- begin <BLOCKBODY> end

if 3ByPassU(W + BEGIN_
*ot=CreateNode(KW- - B N); sets root for ret-urr ermn~rs

* have a-,eaay rceen reportea
if (B.ock~ody(&((root)->Iptr))'=- 7RU 1 1 7- -ok fzr BLOC!3C Y

93U

,F"N_ E'EK N-'SE:.EME N 7S > ' E EMEN 7
4 where <ELEMENTS> may te emnpty

-~~-,'~.--- ?AEN:ne C -7.

SeS

7 P ' f _R

-ees iroo Z) errors reportea via _aExc

r n Had er Ine~r no, ERR note It, no ':

Aroo ac NLL /* chec.K for enr)!:y car-oo-nas a77,
ro= CreateNocoe(7-?YOP'::) / Cocoonas W/ o ee-e7-s

e-se f((root)->name -- COM'MA-)(

(*root)-name -= IT
ret, r (PU'E)

/* end ifLS : ,

-3y.ass(STSEQUENCE_) /*)ny Ook for 'e7,
:,eeeiets (root); /* errors reported v~a QaE.
"-' ByPass (END_SEQUENCE_)

ErrorHander(.ine _no,_ERR_ f, /* note _4t & no x

'(*root -N"LL) /* now chneck for e~l"oty seo-ennes
root = CreateNode(EMPTYSEQUENCE); / sequences wI n-ut' l.e e-e-e7-5

e-se MakeNewRoot (root, SEQUENCE, RG(HT) ;

et~r7nVRUE); 1

*end ByPass ST-SE-'r' a

r et rn (7A*LS?_ /* none of the above %
/* end Comroou nd()

94

e-e~.s~rot, / oot S a

NroceRec **root; c r rrent 1y wor<._ -

<ELEMENTS> ::<QUALEXP> (,<QUALEXP>)*

=Qual'Exp(root)) == R.RCR

Wn._e(ByaSS(CY.MA_ rec.:sve.1

MakeNewRoot(root,C0M.MA_,'EFT); fc-.;'o a 2-:YYA

i E (Eerets(&((*root.)->rptr)} RE

ErrorHandler (line _no, ERR _p,

1f((*root)->rptr>lae '=COMMA_) f1x tree S7:~

MakeNewRoot (& C((root) -rptr),

CCMMA_, LEE); 7,et

end w _e ,-jss~""

ret urn C lag);

:eno:taz~on (root) - ~-S 7-

NcdeRec **root; C* !-_ -.

/* <DENOTATION> <LITERAL> I <CONSTANT> <FC-RIXALC
* where LITERAL is quoted(') string of zero or nmcre :A'

* where CONSTANT is an integer or decimal number
* NOTE: <FORMALS> 1-> <ACTUAL> was already ce7K e!

c ng

lf ~ct7 = yPass(_:7ERAZ_)

ror createNcdeL7ERALj)

(,root) ->noex

re:.rn (-RUE)

rcte-ateNoaeL'ERA'

r ,y'ass -:SAN-

. .J

A-M193 645 IRPLENENTATION OF R COMPILER FOR THE FUNCTIONAL 2/2
PEOOAAMMINO LRNOUAOE PHI(U) NAVAL POSTORADURTE SCHOOL
MONTEREY CR E J COLE ET AL. JUN 97

UNCLRSSIFIED F/O 12/5 ML

mohhhhEEmhEEEE
smEEEmhohhEEE

1.0

I1.25 14 11.6

MIC;ROC(iP' RESOLUTION TEST CNAR1

bLkBURLAU (IANOR~ ~A

%
% .

I' <ARGDINDING> : 'P (<OP><QUALEXP> I <QtJALEXP><OP> I<op>))

nt spftclalcAse;
Nod*Rec *teffp - NULL; I'temp ptr to node -.n -ree
Oe":er- n~t arqbind; I. global flag neeaea !o r-age

/IPH: aeter,.-nistic
f3yPassiLT3RAKE7) /I1 set qlcbal flag, needed to
argoind - TRUE; /* PH: determiis-_ic.
speciacase Bl(O_) Bl(U

s-flef r2 __K
Pr - r f (**spec .a . case - Ic arqbin'd I d\n. spec'alcase, .qbi nil

it (Co(rootl) /* begi.n Op comes first
_ .f (ByPass(RTBRAKE7_ /* lookinq for Cp;-

argbind - FALSE; 1* reset global flag
MakeNewRoot (root,ARGB!INlOP, LEFT);
return(7RUE); /- had I Op>

/* end if ByPass RTBRAK7E:
MakeNewRootrootARGLEADOP,LEFT); /* don't have 4ust an Op

~fUaUAD_ 4 :al)SU_))/* might be -/- +/- Qua!Exo
specialcase - FALSE; /* and don't want to accept

/* +/- +/- QuaiExp Op) later on
i!(fapExrootrp-tr--TRUE) 1 two cases where Qua!Exp co-,ldc

/I be TRUE -- OP><QUa!EXo>
if(ByPass(R7BRAKET_ /I or *(-<Qua!Exo><Op>

argbi'nd - FALSE; return (TRUE); /* reset global flag
else /* could be +/- PR:MARY .

.fspecialcase &4. Op(fitemp)
&& ByPass(RTBRAKET_1

i((*root)-lIptr)->rptr-(root)->rptr,
(*root) ->rptr - temp; /* now fix the tree
(H(root)->ptr)->name -- ADD _)?
(()root)->lotr)->name-POS)
(H(root)->iptr) ->namne - NEC_)
(*root)-> name -ARCTRAILCP; Cp> came last as a
argbind - FALSE; 1* reset globalf lag *

ret uirn (TRUE)
/* end else specialcase 6i IoU '

/* 6 RTBRAKET_'
/* end 2 cases where QualExo 7R'-'

arqb~nd - FALSE; 1* reset globaiflaq
ErrorHandler(line -no,ERR_q,NULL); /* report it, no fix
return(ERROR_);

1* end Op comes first
'f ((Qu,.alExp(root)) I- FALSE) /* found some-ning
*MaKeNewRoot (root,ARGTRAILOP, LEFT);
argbind - FALSE; /* reset global flag &
Lf)Op(&(root)->rptr)

66 ByPass(RTBRAKET_ H /* see if can continue
return ITRUE);

E-rrorHandler(ii-ne _no,ERR_q,NULL.); I' report it, no fix
return (ERROR-)

/* end if Qual_ xp com'es fi:rst
/end if ByPass LTBRAKET

ret..rn(FALSE); 1default, none of the above
/end ArgBindinqfl

96

-M__ mo -m -_

OD(root) /* root is a ptr to tree/s-uotree
NodeRec -root; /* currently working wt

1* <OP> :: ,I I<R.ELATOR> <ADDOP> <MULOP> *

if~flag = ByPass (COMMA_)
*root = CreateNode(COMMA_);

else if (flag = ByPass(SUBSCRI'PT_))
,root = CreateNode(SUBSCRIPT_);

else Lfiflag - Relatoro)
*root CreateNode(flag);

else if (flag AddOpo)
*root - CreateNode(flag);

else if(flag - MulOp(()
,root =CreateNode(flag);

retu,,rn(flag);
/* end Op

irnt
:ypeExp (root) /* root is a ptr to tree/s.-btree ~

NodeRec **root; /* currently working with 0

1* <TYPEEXP> :- <TYPEDOM> (-> <TYPEEXP>)

NodeRec *newroot; /* temp ptr to nodes in tr~e tree
nf lag;

if ((flag = TypeOomIroot)) TRU=
i f (ByPass(RTARROW_)) /* will recursively searc" o
inewroot - CreateNode(RTARROW_); /* more TYPEEXP's
..ewroot ->lptr - *root; /* fix root for return
*root = newroot;
f(TypeExp(&((root)->rpcrrf != TRUE)

ErrorHandler(lne no,ERR9, (long) RTARROW_)
return(ERROR_);

retnduecusivlseq)!
/0 ed reursve sarc
/* end TypeExp

/ ************************************

Type~om. (root) /* root is a ptr to tree'sst_-ree
NodeRec **root; /* currently working with-

1* <TYPEDOM> <TYPETERM>(+ <TYPEDOM>)* *

NoceRec *newroot; /* tem~p ptr to nodes in te tree
4.t flag;

'f ((flag = TypeTerm(root)) == -RUE)

f (ByPass(AD_ /. will recursively search, for
newroot = CreateNode(rYPEPTUS, /* "[Ore 7YPtEOM
newroot -lIptr = *root; /* fix root for return

97

-root = newroot;
if(TypeDom(&(('*root)->rptr)) != TRUE)

ErrorHandler~line no,ERR9, (long)ADD_);
ret-irn(ERROR_);

/* eid recursive search
return (flag);

I* end TypeDom))

4nt
TypeTermn(root) /* root is a ptr to tree/so,;tree ~

N4odeRec --root; /* currently working with '

1* <TYPETERM> :- <TYPEFAC>(I*I <TYPETERM>)* *

NodeRec *newroot; i* temp ptr to nodes in the tree
it flag;

i4f((flag - TypeFac(root)) =- TRUE)

if (ByPass(MUL-T_)) /* will recursively search for ~
newroot - CreateNode(TYPETIMESI; 1* more TYPETERM~S's
newroot ->lptr - *root; 1* fix root for return
-root - newroot;
if(TypeTerm(((*rOot)->rptrH ! TRUE)

ErrorM~andler(line no, ERR9,
(long) MU L

return(ERROR_);

1* end recursive search
return(flag);

/* end TypeTerrmo

int
TypeFac (root) 1* root is a otr to tree/s,;bt-ee ~

NodeRec **root; /* currently working with

1*<TYPEFAC> : <TYPEPRIMARY>@ I<TYPEPRIMARY> I1
<ID> «<' <TYPEEXP> (,<TYPEEXP>)* '>>' <ACTUAL>

Where «<TYPEEXP(,TYPEEXP,...) > and/or <ACT.UAL>
need not be present

NodeRec *newroot; /* temp ptr to nodes in the rree ~
4 t flag;

Ong ptr;

if(ptr - ByPass(IDENTIFIER_)
*root -CreateNode(IDENTIFIER_);
(*root) ->index -ptr;

if(ByPass(ST_SEQUENCE_)& ByPass(STSEQUENCE-))
ErrorHandler(line-no,ERR_r,NULL);
return(ERROR_);

/* end bypass <<
goto CHECK;

/* end if ~

if ((f'ag = TypePrimary(root)) ==TRUE)

goto CHiECK;
return (f lag); /* return either ERROR cr -ALSF

98

CHECK: if(ByPass(STAR_)
newroot - CreateNode(STARI;
newroot ->lptr - (*root);
*root - newroot;

1' end if STAR

return (TRUE); /* made it this far, all OK
I' end TypeFac))

/ *********************************w**

7ype~rimary (root) I' root is a ptr to tree/s~btree '
NodeRec **root; I' currently working with

1*<TYPEPRIMARY> :: <PRIMTYPE> I'(' <TYPEEXP> I'
1* NOTE: ID already checked in TYPEFAC()*

if(ByPass(LTPAREN_)
if(TypeExp(root) !=TRUE)

ErrorHandler(line no,ERR9, I'note it, no fix
(lonq)LTPAREN_)

'f (ByPass (RTPAREN_
return(TRUE) ;

else
iErrorHandier(line-no,ERR-f,

(ionq)RTPA.EN);
return(ERROR_);

I' end ByPass I(, '

if)PrirmType(root))
return (TRUE);

return (FALSE); I' default
I' en~d Type~r TaryV

4 ntA
?ri.mype(root) I' root is a ptr to *ree/s.b-ree

NodeRec -*root; I' currently working wln

/* <PRIMTYPE> ::- real I integer I natural I boolean I trivial Itype '

if(ByPass(REAL_))
*root = CreateNode(REAL_)
return (TRUE) 'en fEA

'f(By~ass(INTEGER_)
*root - CreateNode(INTEGER_)
return (TRUE);

I' end if :N~TEER

'f (ByPass (NATURAL_
*root - CreateNode (NATURAL_) ;

retu.rn.(TRUE);
I' end i'f NATURA7L

if)ByPass(BOOLEAN_)
*root CreateNode(BOOLEAN_)

99

return (TRUE);
/* end if BOOLEAN

if (ByPass (TRIVIAL_

i root - CreateNode(TRIVIAL);

rezurn (TRUE);
/* end if TR:V:AL

if (ByPass(KW- TYPEH

*root - CreateNode(KW_ TYPE-)
return (TRUE);

1* end if TYPE

return(FALSE); /* default - nocne of thie aocve

/* end PrimnType))

100

* PUBLIC DOMAIN SOFTWARE *

* Nave Parser Utilities
* File : parsr util.c *

* Authors : Maj E.J. COLE / Capt J.E. CONNELL *

* Started 01/26/87
* Archived : 03/03/87 *
* Modified 04/23/87 FillBuffer() now calls GetToken() direct. *

* This file contains the utility modules for the parser: *
* CreateNode() MakeNewRoot() ByPass() *

* FillBuff() IsFormal() IBall()
* NodeName() EnterName() FindName()

* Modified : 03/20/87 - Buffer Handling routines added - JC *
* 04/23/87 - FillBufer() calls GetToken() direct vice *
* working with intermediate file of tokens. *

* EnterName() and FindName() added to place *
* IDs, LITERALS, and CONSTANTS into the name *
* table. JC

oinc'ude <stdio.n>

#incl" e <parser.h>

extern nt ine _no; / global var, holds .Ine
/* of source prog

extern ...E p infile; /* global working file

/" :nit token'C0 to vaue o:~er
/* than NULL. Token> kots

o:nar to/en*KLN '="x": 1 length of the string.
NafmeRec "na-etatle-ABLES:ZE. ii, /" add I oecause ':O _s 7sz~s -e

"ErterNarne)

UTILITIES */

NodeRec
CreateNode(op)

NodeType op; /* operator type of nooe

/* Creates a tree node and returns the pointer (temp) to this node.

/* Accepts node type (op), an integer, and inserts it into the node.

NoaeRec *temp;

=e- CALLOCU.,NodeRec); /* create a node
te-p -> name = op;
temp -> In - line no;
temp - lptr (temp -> rptr) = NULL;
retrn (tenp);

/* end CreateNode(-

*1o i C1

Ya~eNewRoot (root,,type, sloe)

101

NodeRec **root; / old root of subtree - /

/I will turn into new root

int type, side; /I (type) is type of new root ,
/* (side) is side to art old roct ,

/* Creates a new working root for subtree. */
/* Old root is attached to lt/rt based on value of (side)

NodeRec -newroot;

newroot = CreateNode(type);
(side -- LEFT) ?

(newroot ->Iptr - *root) : (newroot ->rptr = *root);
*root = newroot;

/ end MakeNewRoot/**

void
FillBuff(start)

long *start; /* which slot in the buffer
/- array to start the filling t

/* Requires the buffer array and buffer ptr to be previously defined. */
/* Fills the buffer with tokens by calling GetToken(). Buffer filled */
/* until 1) end of user prog reached or 2) end of the array reached */
/* If the token is a literal, id, or constant then EnterName() is
/* called to enter it into the nametable. */

/* Lastly, resets the buffer ptr to tokenbuff[O]. */

extern long tokenbuff[', *ptr;
tokennum; / identifies a token type

NarmeRec -nptr; /* ptr to structure of NameRec

ptr = start; /' intit ptr to travel thru buff

do
token-num - GetToken(token);
*ptr = token num;
*-ptr;

switch (token num)
case L1TERAL_
case CONSTANT
case DENTIFIER_

token[OJ - strien(token); / insert oegth of sting "/
if((nptr-EnterName(token)))

*ptr = (long)nptr; /- address of token
.pt";

else ErrorHandler(NULL, ERR7,NULL); /' HANDLE MEMORY OVERFLOW' "
break;

/* end case

default: /* do nothing
/ end switch

whle((token num I- EOF) &6
(ptr < &tokenbuff BUFS:ZE 1);

-P'
=

&-O~ert~u~f', ; /I reset the buffer ptr
• end Fi1Bufft)

102

long
ByPass(tgt)

int tgt;

/* Checks to see if the next token in the buffer matches the target. */

/* If so, then returns the token no. and increments the buffer */

/* pointer

extern long tokenbuff[l, *ptr;

if(ptr >- &tokenbuff1BUFSIZEI) /* see if at end of b'ffer
FillBuff(&tokenbuff[01); /* refill buffer

while(*ptr =- EOLN_)
++ptr; /* increment counter & skip
'-line no;
if(ptr == &tokenbuff[BUIFSIZEI) /* see if at end of buff

FillBuff(&tokenbuff[(0); /* refill buffer /
/* end while

if (*ptr != tgt)
return(FALSE);

-ptr; / otherwise, it was found

if(ptr -- &tokenbuff[BUFSIZE1) /* if at end of buffer
FillBuff(&tokenbuff[0); /" refill buffer

switch (tgt)
case LITERAL
case IDENTIFIER
case CONSTANT- /* return ptr to struct '/

return('(ptr)); / holding the token 5'

default: /* just return true
return (tgt);

/* end swithch -/

/* end ByPass("/

:sForral (root) /* root is ptr to subtree '
NodeRec *root; /* currently working wltn /

/* Required to make the language deterministic. Compound() returned */

/* TRUE and "I->" was subsquently found. Formal is a proper subset of */

/* the compounds so need to insure no errors in the formals. */
/* Performs a preorder search of the subtree. NOTE: assumes that root ,/

/* initially points to a non-null compound list. '/

*ifdef DEBUG

orintf("isformal entered, root->name = %d\n",root->name);
=f (root =- NULL) printf("root is nuil\n");
*endi

uf(root == NULL)

return (TRUE);

if(root->nare=-COMMA : roct->name==X1ENTiF7ER
root->name==EL:ST)

103

if((UsFormal(root->iptr))

&& (IsFormal(root->rptr)))

return(TRUE);

return(FALSE);
/" end Isfor-na.-

:3all(tgt,index)
int tgt, index;

/* Checks to see if the (index)th token in the buffer matches the
/* target. If it does returns TRUE else FALSE. Does not increment */

/* the buffer pointer. Checks for full buffer implemented in this */
/* manner to allow for future flexibility. Could have used simple */
/* heuristic of: */

/* if(ptr + (3*index) > &tokenbuff[BUFSIZE]) RefilBuffer; */
/* at the expense of generality */

extern long tokenbuffH], *ptr;
long -tptr;

if(ptr >- &tokenbuff[BUFSIZEI) / see if at end of buff if
FillBuff(&tokenbuff[OJ); /* so, refill buffer

/* start over if had to refill
:0_AGAIN: /* buffer during check for tgt

tptr - ptr; /* set working pointer

while(-tptr -- EOLN_)

i --tptr; /" increment tptr & skip EOLNs
f(tptr -- &tokenbuffB/UFSIZE) / see if at end of buff
goto REFIL; /* nedd to refill buffer and

/* then start over
/* end while

for(;index >1; --index) /- only enter for loop'f need ::o
switch (*tptr) / look more than one char ahead

case 'DENTIFIER / double skip because next
case CONSTANT-: /* entry is addr of element
case 'LTERAI : tptr -- 2; break;

case EOLN_:
while(*tptr - EOLN_)

-tptr; /* increment counter & sk4p

if(ptr -- &tokenbuff[BUFSIZE])
goto REFIL; /* refill buffer & start ever

/- end while
default: *-tptr;

/* end switch

if(tptr >= &tokenbuff[BUFSIZE) /* check if will overflow ouff
goto REFIL;

/* end for

f (*tptr !- tgt) return(FALSE);

else return(TRUE);

/- take what's left in buffer,
/* put at beginning, now ref--
/* rest of buffer

for(tptr - &tokenbuff(01;

ptr < &tokenbuff[BUFSIZE; ptr ,tptr--)
-tptr = -ptr; /* refill buffer fro current

FillBuff(tptr); /* posit to eno

104

9oto 0OAGAIN; /* refi2Iieio uffer, sc s-zar::
1* over
/* end 'Ba p

co"ar
NodeNare (ptr)

Node~ec *Ptr;
I* Accepts a ptr to a structure of NodeRec. Dereferences this node *I* to get a ptr to ,jtructure of NameRec which hold the string *I* containing the name of the value in NodeRec. Returns the name to *
/* calling routine

Na-e~ec *temp; 1* terrp ptr to cata str..or:
/* holding rame of

temp = (Name~ec *)(ptr->i;ndex);
return(temp->name *1);

/* end !JodeName()

N,.

105

~ ~j ' v,' ~.. V ~ N

APPENDIX I

ROCK COMPILER - ERROR HANDLER

/ ******R**********************************tt*t*t*t t* ~ ttttt*

* PUBLIC DOMAIN SOFTWARE

" Name Error Handler
* File . errors.c

* Authors Maj E.J. COLE /Capt J.E. CONNELL
* Started 01/20/87
* Archived 04/07/87
* Modified

* This file contains the execution modules for error recovery.
* ErrorHandlero, EatEm() -

* Algorithm: ErrorHandler() is called by other modules in the
* compiler. It insures the error count is updated and
* the* error is written to the error file. If required,
* ErrorHandler() calls EatEm() to gobble tokens tc get
* a known point in the parse. Used during error
* recovery. After MAXERRORS number of errors simply
* returns to calling routine.
*NOTE 'errorfile' must have been initially created before
* ErrorHandler() is first called - don't want to appenc

* to last times errors! *

* Modified :

#include <stdic.h>
n inc1.;ae <scanner.P>

i.nc .. de <errors.h>
exern *errorfile; /* working li:e

.n, n,;7errors - 0; runninq aley -- o er-rs
o" .nd - 1cca- .'ar

ar "errors: - (array of error -essaies
/" 2 'I "incomplete ->'"
/- * - "RESERVED FOR FUTUJRE USE",

2 "'\\' without followinq -'S og~za2 OR . .
3 • "'S' without followin ' ', 'N' 'z', '3',zr ''",
4 "invalid numneric constant ==> "

/" * / "literal without endinq -

/ 6 / "unidentified char in input prograr r> "

/-7 "MEMORY OVERFLOW CUR:NG COMP:LA:CN",
/* 8 " "error in statem.ent fo--owinq == ",
/ 9 * "error in type def initon followinq ==

/ a / "unable to coplete aef nition Of -occ er e"
* / ""isslnq or 7nispace ' after oefntion",
c " "vala aja'exp/exp not found in thie de-'a-xoe"',

106

... ~~~~~~~~~ ~~.......-...-.-.........--. -,, ' ., "- ' .

*:: atsr- ec :r -Ss S q"
* - it es :e :c~ter -s: !c>--w ceywc-rc YE'

* t-ac:.e ---c~ee let a..xle! tcllc wu-9 .eywcra AN--"
* -- 55 -ax'e' af-er <ev. rc a E

c*r -~ .. S-7 ,

-e7 - e f- 7IVM icestc r

-A-

*~~: -- .
IFv-i

- *

S~ -A XE

AL.-':- .C -'

AN -X --------

e: r"_.- s- r ~.

ened PrJ Ro _EXE>ES

r r
Iler::

107

execl("lrock.exe',"rock.exe"',NULL);
/* end 4-f no more -e-cry

fprintf(errorfile,"line %3d : ts
. ine-no,errorslerr-nol);

switch (err _no)
case ERR4:
case ERR5: fprintf(errorfi2.'e,"%s\n", (char Ilstr num); break;

case ERRE: fprintf(errorfil1e,"%.Js\n', (char *)str-nurn); break;

case ERRS: switch(str-nurn)
case LEQ fprintf(errorfil1e,1<-\n"); break;
case NEQ tfprintf(errorfil.e,"<>\n") ; break;
case GEQ_ :printf(errorfile,1">-\n"); break;

*case EQ fprintf(errortile,=\n); break;
case ADD fori4ntf(errorfile,"+*\n"); break;
case SUB_ : printfierrorfile,"-\n"); break;
case MULT_ : fprintf(errorfi4le,11*\n"); break;
case IDIV_ fprintf(errorfile,"%\n"); break;
case RDIV_ : printf(errorfile,"/\n"); break;
case SUBSCRIPT : fprintf(errortile,1"!\n"); break;
case ORLOG_ fprintf(errorfile,,"\\/\n"); break;
case ANDLOG_ fprintf (errorfile, "/\\\n11) break;
case NEGLOG fprintf(errorfile,11-\n"); break;
case COLON_ fpriJntf(errortile,"1:\n"); break;
case CAT_ fprintf(errorfile,"^\n'"); break,
case LINERTARROW_ fprintf(errorfile,'->\n"); break;
case (KW iGREATER) : fprintf(errorfile,"GREATER\n"); break;
case (KW_+IN_-) t printf(errortile,"IN~n"); break;
case (KW_-LESS_ : fprintf(errortile,"LESS\n"); break;
case (KW_ -NOTIN_) fprintf(errorfile,"NOTIN\n") ; break;
default:

fprintf (errorfile, "UNDEFINED error\n");
I' end switch case ERRS

break;

case ERR9: switch(str-nurn)
case ADD : fprintf(errorfile, "+\n'); break;
case MULT : pit~rcfi,*n); break;
case RTARROW_ fprintf(errorfie,"-\n"); break;
case LTPAREN_ fprintfierrorf'',(n); bek

default:
fprintt (errorfile, 'UNDEF'NED error\n");

1end switch case ERR9
break;

case ERR-f: switch(str-num)
case KW -_AND_:
case KW14+WHERE_

fprintf(errorfile, "==\n'1(
break;

case RTPAREN_
fprintf (errorfiie, ")\n");
str nunm-NULL; break; /* don't want to go to Et_

case RTSQUIG_:
fprintf(errorfile,")\n");
str num=NULL1; break; /* don't want to go to a-7:

case END SEQUENCE:

str num-NULL; break; 1* don't want to oo to ZatE_

108

PUT~~onMr r Inw r r-.-,a --

case KW_.END-
fPri"ntf(erroe,"4!eYWCRD EN\n"";
str nun .- KW_ ; break; sec -c fcr ca-I ia

case KW_'THEN :
fpr-4ntf(errorf.i-e, KEYWCRZ 7HEN\n");

break;

fpr itf (errorf':Ie, "U-NZ-F:NEZ error'";
end SWL.::' case 7E:k

creak;

c.ase FRR _: sw-:cn(str nc.:r
case ~

f ' r~ntf(errorfi'e,. -\n*; trea<;

case ELS:F
!orirntfcerrorf*e,"-LS:r\c"); D~rea.;

case ELSE_
~prt~eror~e,"ESE~"); oreax;

case THEN_

case BEG:N
~crferr~~e,'EZ:N"'~; break;

fprt f(errr f -e, errrcn";
/I ena swLcn case R-

KW - selt Vtr n. c cz ce c-isea
creak; a

.f err cc - ERR-a)
err-no < ERRaa i&

/* Increments token buffer pointer until tgt token i.s fzun.r.
/ft Use in error recovery to reach a known point in the pr~grar.

exter - ccq tckenc-.~if:,ll
ex-e: n: ne -nc;

D'' EB'JG

'e: "eatem! enterea, cr ti

wc-eiptr

case E2
*-otr; **e cd(

case S'

109

return;
*-ptr; break;

case EQUIV : switch ((int)*ptr)
case EQUIV_
case SEMI_
Case KW_-AND_
case KW_ +LET_ : return;
default: '-ptr;

break; /* end switch case EQU:V

case KW_-WHERE_ switch ((int)-ptr)
case KW +WHERE
case KW _AND_
case KW +LET_
case SEMI_ : return;
default : - ptr;
i break; /* end switch case WHERE

case KW -AND : switch ((int)*ptr)
case KW -AND_
case KW -LET-
case SEMI return;
default : -ptr;
} break; /* end switch case AND

case RTPAREN : switch ((int)-ptr)
i case RTPAREN_

case LTPAREN
case COMMA
case EQUIV_
case LINERTARROW_:
case KNW LET_
case KW -AND-
case SEM: return;
default : -ptr;

break; /* end switch case RTPAREN

case KW * :F
case 1W * ELSIF :
case KW + ELSE
case KW - THEN_ : switch((int)-ptr)

case KW + ELSIF
case KW + ELSE
case KW_- ENDIF_
case KW_+ THEN : return;

/ end switch case THEN, etc-ptr; break;
-

acase COMMA : switch ((intl-ptr
case COMMA

case LTPAREN_
case RTPAREN_

case LTSQUEG_
case RTSQU:G
case STSEQUENCE

case ENDSEQUENCE _
case SEMI_
case KW_ LET_
7ase KW -WHERE :
case KW * AND return;
lefault - - -ptr;

110

16
Iio~

break; /I end switch case COMMA

case KW_-END_
case KW_-BEGIN_ switch ((int)*ptr)

case KW_+END_

case KW_+LET :
case KW +WHERE

case KW_+AND :

case COMMA_
case RTPAREN_
case RTSQUIG_
case END SEQUENCE:
case SEMI- return;

default +rptr;
break; /* end switch case BEG:N/END

default
return;
return

/ end swithch
/* end while

/* end EatEm()

%%

LI

$1
.4

APPENDIX J

ROCK COMPILER - SEMANTIC CHECKER

* PUBLIC DOMAIN SOFTWARE *

* Name : Semantic Checker Module 0 *

* File : SemO.c *

* Authors : Maj E.J. COLE / Capt J.E. CONNELL *

* Started : 02/01/87 *

* Archived : 04/03/87 *
* Modified :

* This file contains the following modules for the PHI parser: *

* Hnumconvert Numconvert *

* Algorithm *
* This module contains procedures for type conversion. If the *

* rt child of a node may be converted to the lt type but the con- *

* verse is not true, "Hnumconvert" is called. If either side may be *

* converted, "numberconvert" is called *
*** *** ** ***

* Modified *
***I

******************************* Externals *****************************
#include <semcheck.h>

extern void terror ();
************ ********** hnumconvert ****************************/

PH:TYPE
.numconvert (Itype, rtype, ptr) /* Type conversions for tne

/* right side of t)'.e tree on-y
PRrTYPE Itype, rtype; /* Left and Right types
nodal ptr; /* Ptr to the root working witn

iextern void c ztor ; /* Generates code to convert

/* integer/natura. to real

if ((Itype =- BOOLEAN) && (rtype == BOOLEANI)
return (BOOLEAN); /* No type conversion neeoea

switch (Itype) (/* Predicate actions on type
case (REAL) : switch (rtype) /* side of node

case (REAL) : return (REAL); /- Matching types; no cony rea
case (INTEGER)
case (NATURAL) : / Generate code for convers cn

c ztor ();

return (REAL);
default

112

terror (ERR aa, ptr->In); f- No appropriate rnatcn; error
return (REAL); /* Rtn real so seantlc cnec c-Czt

case (INTEGER) : switch (rtype)
case (INTEGER) :

case (NATURAL) : return (rtype); /* Matching types, no cony rea
default :

terror (ERR_cc, ptr->ln); /* Can't convert fron real to
return (INTEGER); } /* so sanabag the progra-mer

case (NATURAL) :
if (rtype =- NATURAL)

return (rtype); /- Only one match poss w/o error '

else (
terror (ERRbb, ptr->In;
return (NATURAL);

default terror (ERRaa, ptr->In);
return (NATURAL);

• ************************ Numconvert ************************** /
PH!TYPE

numconvert (ptr) /* Do number conversions for
/* both left and rignt side

nodal ptr;
;PHITYPE Itype, rtype; 1 Left and right cnili types
extern PH:TYPE semcheck (;
extern void c ztor ();

!type = semcheck (ptr->Iptr); /* Get left type

if (ptr->rptr->narre - (KW - END:F)) /* Special zase of ".f" sequence
return (!type);

rtype - semcheck (ptr->rptr); 1* Get right type

if ((!type =- BOOLEAN) && (rtype == 30OLEANI) / No convers'on necessary

return (BOOLEAN);

switch (Itype) f /* Predicate actions on -- "-yoe
case (REAL) : switch (rtype)

case (REAL) : return (REAL); /* Types are sare; 7o acn-7 rea
case (:NTEGER
case (NATURAL) :* Generate code for -rt .-a

c ztor 0; /* to real convers-cn
return (REAL)

default : No converison ocss.oce
terror (ERRaa, p-r->rztr->ln ;
return (REAL);

case (NATURAL) switch (rtype)
case (REAL) - Corver' left s.oe

c ztor (;
return (REAL);

case (:NTEGER) :

return (INTEGER); * No oovers.o neoessar;
case (NATURAL) :

return (NATL'RAL; No oonvers'.on nezessari

terror (ERR aa, Otr->rvtr->in;
return (NATURAL)

113

case (INTEGER) switch (rtype)
case (REAL) /* Convert left s-;de

c_ ztor 0
return (REAL);

case (INTEGER)
case (NATURAL)

return (:NEGER); /* No conversi.on necessary
default:

terror (ERR -aa, ptr->rptr->jf.(;
ret.;r (NATURAL);

default
terror (ERR_aa, ptr->lptr->In); /* Types are not n.rei
return (NATURAL);

114

1%

PUBLIC DOM4AIN SOFTWARE

Name .Semcheck Module 1
File Seml.c

*Authors Maj E.J. COLE /Capt J.E. CONNELL
Started :01/02/87
Archived 01/10/87

*modified

*This file contains the following modules for the PHI parser:

Tletdef Trtarrow Tkindef
Twhere Tdataauxdef Tauxand
*Taridcheck Tauxand Ttypetimes

Algorithm:
*This module contains scoping procedures (Twhere and Tauxand)

*definition procedures (trtarrow, tkindef, ttypetimes) and the data
definition procedure.*

Modified :*

/ ***********************Externals ********** **

#- nc!i.de <serncheck.h>
*-4C.ie (str%:n.h> /I For "strcpy"

extern mnt typeptr; /* Typetable and pointer
extern tnode types
extern void terror ;

'node *fhead

/ ~ ~ ~ ~ ~ ~Tletdef***************/

'etdef (ptr) /* checxs types of bctn orancnes
nodal, ptr;

serncnecK Lptr->.ptr);
ser-neck (ptr->rptr);

/ ~ ~ ~ ~ ~ ~Trtarrow ***************

trtarrow iptr) Ret.rns type
no.da- ptr;
*"?...pr :type, rtype;

extern void putform)

type -semcheck (ptr->.:ptr1; /* !eCK 'Left: so-e L-,ve
rtype *seffcheck (ptr->rptr); ChecCK r .qh soie *IYpe

-f ((ptr->-'pt:r->name =- YPF7:ME:S)
optr->!otr->ae YEUf

(-type); C nly :. eftncde zt -

ret-.rn (rtypel;

115

void
tkintdef (ptri 1* Adds variable name to defstaCK

nodal ptr;
(extern defptr dethead;
extern void putdet U

PH:TYPE rtype;

rtype - semcheck (ptr->rptr);
puitdet (rtype, ptr->lptr); /* Put definition in defstack
defhead->fptr - fhead; /* Append formal types to entry '

fhead - NULL; 1* Ki411 fh'ead '

/ ~ ~ ~ ~ ~ ~Twhere ****************

PH TYPE
twhere (ptr) /* Senicheck where node

nodal ptr;
iPHITYPE type;

semchecker (ptr->lptr) ; /* Check leftside
type - semchecker (ptr->rptr); /* Check right side
return (type);

/ ***************** Tatauxdef**************/
void

tdatauxdef (ptr) /* WORKS FOR ONE FORMALS ONLY
nodal rtr;

iextern void c_store_code ,cjmp U
extern PHITYPE getdtype U
extern defptr finddef(;
extern char -name U
defptr d_ptr;
char *holder = mailoc (8), /* Temp holder for function narne

*nme - malloc (a);
PHITYPE rtype, /* Type of left and right nodes

type, /* Type of datadef
count =C

nme = strcpy (nine, nameU;
c-4P (nine);

holder - strcpy (holder, namefl); /* Calculate fiunction narne
c_start _proc (holder); /* Gen code for starting proc
rtype -semcheck (ptr->rptr); 1* Get type of right ptr

if (Ptr->lptr->name -- :DENT:F:ER_) i 1* Open can. of wcr7ms to typec ec.
/* if left is icenz.

if) (d t-finddef(ptr->Lptr-i.ndex)() j 1/ No prey oec! of this variab-e
ptr->'ptr->type - rtype;
putvar (rtype, ptr->Iptr);

e~se if (d_ptr->fptr -- NUZLL / * Prey dec! of var ~s data oef
ptr->lptr->type - getdtype (d -_tr;
type - hnuinconvert ipt->lptr-: ype,
rtype, ptr), ; Convert rt type it feas~c-e
putvar (type, ptr->lptr);

e'se /* Prev decl of Var IS anot ner va-
terror (ERR dd, ptr->!ptr->_n);

116

while (* (holder *count) != NULLZ) i/* Push piano :hrou.qn tne zcor
/- to copy strings

(ptr->Iptr->Iabel rcount:) =(,(holder coLun:));
--count;

c store _code ("ret\n'I); /* Generate ooce to end proceao.re*

o store code (nine); /* CANNOT 2'ST C ENDP2?CC ()'-ERPE;
/* NO SCOPE CHANGE:

c-store _code (11:\nl");

/ ** *** ** ** *** ** ** **And-Check************** ***************/

void
ano check (mark, ptr, mark _and) /* Check and-list for var o efs

varptr mark; /I Scope del:uiniter
and_ptr *mark-and, ptr;

extern varptr varhead;
extern int buff ptr;
extern char *code buffer;

_tbuff holder;
varptr vptr = varhead;

if (ptr !=NULIA { /* Ptr = NILL is base for recirs
and-Check (mark, ptr->!Iink, mark-and); /* of and-check
,;o 1* I~oop to eval'uate all proper

/* varptr entries
/* Check if eo'ual n are sn
/* and list &var u,:st
I' Not a f,.ncticn Jefuric7

ifiv ptr->niptr->4ndex==pt.r->ptr->indiexh
buff holder = buff ptr; /* Save code buffer pcounter
buff ptr = ptr->buffptr; /I Get location of varuaoe o
o call _proc (vptr->nptr->labe!); /* Generate code
buff otr = buff holder; /* Restore bu-ffer cte

if (*mark _and -= ptr) I. Taverse l-st
*mark- and = ptr->Li4nk;

del _and (ptr);
break;

if (v ptr -mark) break; 1* End of var lu;st reacneo

vptr = v_ptr->Iink;
while (TRUE); /* Exit is accoseo sn

/* creak in tne loco

da an d (pt r) * Senant'c :nec< '3r snonon

nnaptr;

extern F:AG and-flaq;
extern and-ptr and head;

- save and; /* Holder for ano f-a;
-aor a-; /* Mark too ent-ry _n --ne a

ant3 ctr- -ctr, nrark and =and head; M arx current_ 7eat ft ant ti

save ano = and flag; /ISave current ant_ "a--

and fag TRUE; /* Set and _flag

117

semcheck (ptr->Iptr); /I Semantic Check

mark - varhead;

semcheck (ptr->rptr)

andcheck (mark, and head, &mark and); /" Check all new fctn & data cefs

andflag - save-and; /* Restore and flag

tptr = and_head;

while (tptr 1= NULL) /* Traverse list until end

tctr - tptr->Iink;

if (mark and != and head) /- Undefine variables found
terror (ERRee, ptr->In);

****** **** ******************* TTypeTimes *****************************

PHITYPE
ttypetimes (ptr) /- Semantic check '*' when ised

/* for types

nodal ptr;
;extern void putform);
PRITYPE type;

putform (semcheck (ptr->Iptr)); /* Attach formal type to
/* formal list

if (type = semcheck (ptr->rptr)) /* Look for right type; if ,
/* end of insertions

putform (type)

return (NULL); /* Always return NULL;
/* This value is used by pare.:

118

Z7.

* PUBLIC DOMAIN SOFTWARE

* Name Semcheck Module 2
* File : Sem2.c

* Authors Maj E.J. COLE / Capt J.E. CONNELL
* Started 01/02/87

* Archived 04/10/87
* Modified

* This file contains the following modules for the PHI parser:* *

* Matchfor Tfunauxdef Tfunid
* Tactualist Tid Act Walk *

* Telist

* Algorithm : -

* This module contains the procedures needed to define and call
* functions. Tfunauxdef will set up the run-time structure of the fun-"
* ction, tfunid will check the semantics of the function, & matchfcr, *
* called by tfunid, checks for the proper type & number of formal pa- *
* rameters.

* Tactualist coordinates the checking of a function call. It uses * %
* both telist and act walk. Actwalk determines whether the number & *
* type of actuals is correct, and telist checks each element list and *
* returns its type. -

* Tid performs semantic checking for program variables.

* Modified :

*/************************* Externals *****************************.
*,nc2.e <semchec.-h>
'.t.ie <str n.q.> /4 "StrC~y"

ex ern t cde types '1;

e×xern varptr var!ead;
extern vci e terror (), c store code);

*/*************************** Globals ********************+****-,

Ln actua. count = C; /* count of a-- actas

***************************** Matchfor **************************--,

-atc f;:r inotr, oef) / Mats- for.a's
/* Called cy tf~.- n

soa.. nptr;
ae'ctr def; ,:tr - a' tarce

*.xzer-7 ong curr addr;
ex:ert fode *getfptr
exzer7 FLAG forT; * Ea; set wne7 :-a+

are gener3tea
'.-.-e "ptr = getfpzr def);

ao7- : 1

I

119

.. (u'ptr->narme -- DENT:FIER /* OnY one fr-

(rnptr->type) = tptr->type-;
nptr->addr - curr addr;

putvar (tptr->type, lptr);
rnptr -nptr->rptr;

totr =tt->-k

e-'se{ ~~

do
n ptr-!ptr->type = tPtr->type;
~p.--Itr->addr = cuir: addr;
curr addr = c.urr _addr

types t"ptr->Ztype. .bytes;

npr nptr->rpt:,;

tPtr - tPtr->Iink;
w~e(tr=NZZ)~(tpr~=N~ZH 1 ~a!- wnen- end reacneoi

1* oy eitner ptr

fon= FALSE;

f (npt r -N":LL ptr =N22:) /* One ptr Isnt a-- er-d :f r-;-

:t (FALSE); ,' Error nancieo nc -- n

e'se rer.;rn (7R2E);

,fo -,d

-'_a~xdef (pzr) /* ype cr-ec. fna-xaef
nodal ptr;

extern ong cu r: ador;

extern vcid ceno _proc .z'o ;
extern cnar *na.-e ;
extern rcca- nn.rcoflver7:U
r:nar -.- e = -alloc (8);

Yr .ze, rtype;
3rrt .r~., ar< varneac;

_,7r es _ado: = C~rr adla:;

.--e = s- rcpy (rmpe, name U;* arre ~r-ca>

ye=se7'cneCK(t-~tl
:ie=se!-ceCK (P~r->rprl;

_e (var ead->.ink '- :-arK) :E..-:ate f-.ra-3s -

varl - var? ead:
var.lead - a* ec->_K

tree (var'.);

C--)rt- *Convert _f 7eecec

ao: cres aco!; P ese- aaaresses

120

**** *** *** ***U *U* **. *** Tfunid * * * * * * ~ * * * *.U .. '

;:7 a Z- rISe arntiz C.eeCK ft-r

=xe- z7a 3-e c ->= .e

* 7 : . zeer -a-- tc-c

f -I f -t r r- t-rtt deh f Ma-. n nr-'

ese

, =r> pt - p =t~~ Qef->x yer /*a-eoc

(I. strI. r-ttarta

c starcnfor tptr--p -- 'e, /* Maz~c f :: alr

-e~r:,r 7?R ga

set-st2er

-(*> r_ cd (t-Sdde''

C- ~ r orc]e Z t z.-

Tell~st

1211

1211

nodal ptr;*
fnode *fptr;

i ptr->rptr NL)/* Recurse until! N ;ZZ ctr is n-
act _walk (ptr->rptr, fptr->'ink);

sercheck (ptr->lotr);
Lf (ptr->Iptr->name I=EZL'ST)

+-actual count; /* :ncr count only i.f left
/* sibli4nq is an :

c store-code ("call ppop\n"); I' Generate code to put aooresses
1' on the stazk

c store -code ("push cx\n');
c store-code ("push di\nll);

/ *********************TaCtuals***************

PHITYPE
tactuals (pir) /* Evaluate actualists

nodal ptr;
iextern void c _call proc ;
extern FLAG and_flag;
extern varptr findvar U
extern defptr finddef U
extern char *name 0;
defptr def - finddef (ptr->lptr->index) ; I~Detstack pointer
varptr var - findvar (ptr->Iptr->index); /* Varstack pointer
4nt count-_hold -actual-_count;
cnar *long-buff malloc (10); /* Buffer for long to string ton':
long convert; /* Conversion variable
fnode f1ptr;

actual-count 0 ;

If(def) I /* Definition found

If ((!var && and_flag) ilvar) /* Legitimate cases

fptr - def->fptr; /* Get a ptr to the fornal nodes
act_walk (ptr->rptr, fptr);
convert = actual _count;
c-store-code ('mov bx,);/* Generate code to put 4 of

/* actuals on the stack
stcl_d (long -buff, convert); /Long to string conversiocn
c-store-code (long_buff);

c_ store-code ("Wn);
ccallpo ("iov");

i f ((and flag) 66 (!var)) { M Cover "and" scoping ru.;es
add and (ptr->lptr);
c_call_proc (name M); /Holder for real nar!e

else
c-call-oroc (var->nptr->label); /* Gen code to call fncticn
actual count -count hold; /* Restore actual count
return (def->type);

terror (ERR_hnh, otr->ln(; I'Function nare not fou;no
return (NOTFOUND)

122

PH : Ti y E

nodaal p,::;
ex-e:nt 0:. -a

extef7 .: -4 r a
exte:- w:ar *nae H

ex:er-
ex- e:7 -IAZ :; 'a;
exter- Jarc: tu:

t :r

-- Jar,* ~:r :ze -Svan

ae. ~ ~ ~ ~ e = fz-:e cr-nex

add and o

ret.:: e::,oe :e~ *Let a-d r'et-:r- t-jze :e'--- -

e-se re:..r:n72N

e-se !,,.a , a,-
-C- -:37-' - -- 31:-*i...7~~e

e. sea
sase-

a - -3'.

ret.:- :e-ry e ar * e - a :a ie. -a

123

* PUBLIC DOMAIN SOFTWARE *

* Name : Semcheck Module #3 *

- File Sem3.c *

* Authors Maj E.J. COLE / Capt J.E. CONNELL *

, Started 01/02/87 *

Archived : 04/02/87 *

Modified *
** ***

* This file contains the following modules for the PHI parser:
* Trdivide Tidivide Tarithop *

* Tprimary Tconvert Tconstant *

* Tand Tor Tnegation *
* *

* Algorithm *

* This module contains the procedures necessary for implementing *
* arithmetic & boolean operators. Tarithop coordinates the semantic *
* checking of arithmetic ops by calling the proper function based *

* on the operator type. Trdivide & Tidivide handle semantic checking *

for real & int division, respectively. For all other arithmetic *
* ops, the numconvert procedure (sem0)is called to perform seman- *

* tic checking, then code is generated. *
* For each boolean operator, the appropriate child(ren) is checked*
* and code is generated for the operation. *

* In addition, tconstant checks the type of a simple constant by *

* calling convert, & then returns either the constant type or an error*

* Modified *

/**************************** Externals *******************************

* .tl.oe <semcneck.h>
--j..e <str-ng.n> /I For "strcrnp'"

x-ef'71 vo3 terror U;
exter7 vo~o cstore code i); /* Store as- lanquage otput

/ to a buffer

******* ********** ******** Trdivide *****************************/

t--i:.=e (ptr) / Division of real operands
!731a p--:;

* >::YPE _type, rtype;
ex-er- -LA3 err fo-.d;
ext-f- VO03 Z ztor (I ;

. =-.ze - semcnecK (ptr->lptr); /" Ceck left siae for type

.w t (.typei ,'Ya.e convs or locate esr rs
:ase (REAL) creak;
oase (INTEGER)
-ase (NATURAL)

o ztor (I;
creak;

-error (ERRaa, ptr-> ->L ; /" Lt ctil -ust rt- n -er: type
- *Error, no neea to qo tnr_ aoze"

124

rtype - semcheck (ptr->rptr); I" Check right side for type

switch (rtype) (
case (REAL) : break;
case (INTEGER)
case (NAT.tAL)

c_ ztor ();
break;

default : terror (ERR_aa, ptr->rptr->1n);
return; /* Error, no need to go thru acoze*

acode (ptr, REAL); /* Generate code /

/* ****** ******* ************ TIclivide *******************************
PHITYPE

tidivide (pcr) /I Semceck for integer oivision /
nodal ptr;

{PNCTYPE !type, rtype, type = NATURAL;

itype = serncheck (ptr->iptr); /* TypeCheck both sides /
rtype = semcheck (ptr->rptr);

switch (Itype) { /I Check it for Int/Natural Type -I
case (INTEGER) : type = :NTEGER;
case (NATURAL) :break;
default terror (ERR_cc, ptr->lptr->ln); / If not Int or Nat, error /

return (INTEGER);

switch (rtype) f /* Check rt for int/ Natura. type /

case (:NTEGER) type = INTEGER;
case (NNTCRALI: break;
default : terror (ERR_cc, ptr->rptr->ln); /* If not Int or Nat, error

return (INTEGER);

acode (ptr, type); /* Generate code -

return (type)

/************************* TArithop *****************************/

PHITYPE

arithop (ptr) /* Type Check Addition,
/* Multiplication, Sequence Cps U

nodal ptr;
iextern PHITYPE numconvert (;
int type;

switch (ptr->name)
case (ADD_: /* Addition fails throug n
case (SUB_ : /* Subtraction fails through -

case (MOLT_) if(type = numconvert(ptr)) {
acode (ptr, type);
return (type);l

else (
terror (ERR aa, ptr->in);
return (NATURAL);

125
IC

e

p

I

case (RDIV_) trdivide (ptr);
ptr->type - type;

return (REAL);

case (IDIV) : tidivide (ptr);
ptr->type - type;
return (INTEGER);

case (COLON_) break; /* Dummies for now,
/* but watch our smoke'''

case (CAT_) break; /" " "

* ************************* Tprinary **************
PHITYPE

tprimary (ptr) /- Handle unary or

nodal ptr;
PHITYPE type;

type - semcheck (ptr->rptr);

if ((type = INTEGER) &&
(type REAL) &&
(type !- NATURAL)) /* Check type of right node
terror (ERRaa, ptr->rptr->in); /* Type must be a number

else if ((ptr->name) -- NEG) (/* Negate operation

c store code ("call igetvalue\n"); /- Spew code
c_store code ("neg ax\n");
c-store code ("call iputvalue\n");

return (type); /* Note that no action Ls req
/* for unary "*"

PHITYPE
convert (string) /* Convert const to reai, coc-ean,"

/* or integer value

stg string; /* String to convert
;FLAG e - FALSE, /- True if "e" or "E" read

period = FALSE; /* True if a period has been read
int count - 0; /* Garden variety loop counter

if ((strcmpi (string, "FALSE")
&& strcmpi (string, "TRUE"))) /* If not boolean

while (string [count] != 0) (/ Loop until end of string

if (!isdigit (string [count])) (/* f character is not a digit

if ((string [count] == 'e') 1I

(string [count] -= 'E')) ("e" or "E" found

if (e) return (ERROR); / Cannot have two "ells
else (

e - TRUE;

if ((string [count i == '')/ "," or "-" cnaracter
(string [count - -=

-count;

126

else ..f (string~ count = . Dec Ta_ co7nt -z~r

4f Coeriod) ret-urn (ERRCR) ; /*cdnctt nave 'w3 cerLzcs
e'se peri.od -=R'Z

e'se retrn (ERROR);

.f (e per'od) return (REAL); :f na~e as ceer
certct r "e" -aeS re-i

(Strir = - return CEZF ER); Negat'Ve S.47 -ageS ir -t:ere

return~~n CN7RZ): tner n- -'zes,

ret..rn (BCC..EA4) ; I' f no': a n-ea _-Z~e3-

/ *******************TConstalt * ***********r*/

-constant (ptr) I' Hand-'e ccnstar.' 7oces
nodal Ptr;

extern out addr U
PH::YPE type; /* Constant type
%ameRec *totr; /* Constant nan-e

t ptr = ptr->irdex;

;f(type = convert (tptr->nare 1)) C/* Calculate type
Pt r->type = type;%
put_addr (ptr, type); I* Fill node & .ncre~en- acaoress
c I:const (tptr->nare I;
return (type);

terror (ER?_ jj, ptr->In); /* No legiti!nate cznstan- 7--

tand (ptr) /* Sem Ch.eck for Ittol 37.n czeP

nodal ocr;
??i:TYPE !type, rtype;

!type = sencheck (ptr->lptr);
rtype = semche ck (ptr->rptr);

_f ((type == BOOLEAN && rtype B= OOLEAN))C /* Both ohiliren ust e -7?.e3-

terror (7ERR _kk, ptr->ln);

c store code ('Ica;! land\n' ; /* 3enerate ccde
ret.urn (BOCLEFAN);

/ ~*******~***************Tor

to ct)*Sea ZC eoc fz7 :: _, 2-

rcaal otr;

i 'E:YE Ltype, rtype;

tZype = senoneck (ptr->lptr);
rt-ype =senr:neCK Cptr->rptr);

-: ('tYoe == BCOLEAN && roype ==BCCEAN)) /*oto on,_re- __S_ 1 C_ -li %-y

terror (ERR kK, Ptr-)ln);%

127

Np.

.

c-store-_ ode ('Ica-. or\rYl) :enerate zoae

ret~ri 3COLEA4);

/ ** **B ** *** ** * ** ** **Tnegat ion . ******a**** a

tnegatlOr (otr) Ser-a c-eCKfo 7eg r~
'noaal ptr:

f((seri~eck (ptr-)>rptr) BCCLEANj * Rt C*n o "s!! ce a cc.e37;

terror (ERR_ k, Dt:->_'nI

e-se c store code ('Ical! neqatonW:'Y; Sen code for coc-ea7- eeos'!L,--

ret,;rn (B00LEAN);

I

12-8

* PUBLIC DOMAIN SOFTWARE *

* Name Semcheck Module #4
* File Sem4.c *

* Authors : Maj E.J. COLE / Capt J.E. CONNELL *

* Started : 01/29/87 *

* Archived : 04/03/87 *

* Modified :

* This file contains the following modules for the PHI compiler: *

* Tif Tthen Telseif *

* Telse Tcomp A

* Algorithm

* This module contains the procedures necessary to implement the A
* "if-then-elseif-else" series of commands. Tif coordinates the seman-*
* tic checking by calling Tthen to check its left nodes, then calling *
* telse to check its right nodes. Telse will be called until the right*
* subtree runs out of "elses" and "elseifs". *

* Modified : *

***************************** Externals *******************************/

sinclude <semcneck.h>
include <stri-g.h> I' For "strcpy"

extern FLAG err found;
extern PHITYPE semcheck ()

extern char *name ();
extern void terror 0, c-store-char);

/**************************** Globals *****************************
cnar *if label = NULL;

/***************************** Tif ******f************************/*

PH:....
ptr) /* Semantic cnecker for "if" noce

nodal ptr: /* Ptr to the node
,extern PH:7YE nuconvert); :nt, Natural to rea cornvercer *

: 'E type; /* Return val..e type

-.f ('flabel -- NULL) if label = malloc (8);

lf aoel = strcoy (if_ label, name (); / Generate iacel
type = numccnvert (ptr); /* hec & cony i ana !- no ,es

c store code (if label); /* Cutput code if an error
/t asn't been fo^nd

c store code (":\n-);

ret .rn (type);

129

/ ~ ~ ~ ~ ~ ~Tthen ** ******* ******/

PHITYPE
tthen (ptr) 1* Sem checker for then node

nodal ptr; /* Pointer to t ''e node
iPH::YP7E !type, rtype; /* Type returned frcnr left
cnar *label =calloc (7,1)I; /* ju.mp for asmiangu.age coae
mar *holder cailoc (7,11);

strcpy (holder,if _Label);

if((Itype=semrcneck (ptr->Iptr)(! BOOLEAN) /* Left node contains condition;
I' must be a bolean

terror (ERR_!!, ptr->lptr->ln);

'''abel = stropy (if_ label,holder);
label = strcat (label, name ()); I' Get a label for assembly code ~
c store code ("call igetvalue\n--(; /* Print proper code
o-store-code ("cmp ax,4\n");
o-store-code ("Ane ");

o-store-code (label);
c-store-code(\n)

rtype = semcheck (ptr->rptr); /* Check right side

c-store-code ("imp 11); 1* Generate code
c-store-code (if-label);
o-store-code ("\n");
c-store-code (label);
c-store-code (":\n");

return (rtype) ; /* Right type is returnea

/ ** ** *** * ** * ** **Telseif** ****** **** ***********/

PH:TYPE
zelseif (ptr(/* Sem check for "elsei'f" node

nodal ptr; /* Ptr to the node
;extern PH ITYPE numconvert / * Function converts and ret-rns

/* left and right ty-oes
return (numoconvert (ptr));

telse (ptr) /* Sema checker for "ee'se" nooae
nodal ptr;

ret-urn (semcheck (ptr->lptr)); /* Return Left side:
/* rigflt side is always e:no:.

/ ********************Tcomp ****************

t=octP (ptr) /* Handle comparisons and
/* set membership operations
/* FOR :NTEGERs AND 3CCLEANS ZNY

noda 0:;
;extern PHMYPE numconvert (
PHITYPE type;

130

type = nurconvert (ptr); /* Check and convert f necessary
/* THIS IS FOR FUTURE USE WHEN

/" REALS ARE IMPIEMENTEZ

switch (tr- >natne) { / Check cases
/i WORKS ONLY FOR :NTEGERS AN:
/* BOOLANS --- NEES REA:-

case E_ c store code ("cai- iequ\n");
break;

case (NEQ_) c store code ("call ineqn");
break;

case (KW- LESS-:
c store coce i"cal. ilt\n");
break;

case (KW - GREATER-)
c store code ("call Iqt\n") ;

break;
case (LEQ) : c store code ("call iteq\n");

break;
case (GEQ) : c store cede ("cal! igteq\n");

break;
case (KW - :N):

c store code ("ca-', in\n";
break; -

case (KW * NOT:N_

c store _ode ("call notin\n");
break;

default terror (ERR II, ptr->lnj;
break;

return (BOOLEAN);

%%

I

'I.

Si

* PUBLIC DOMAIN SOFTWARE

* Name Semcheck Utilities.l *

* File Sem U.c
* Authors : Maj E.J. COLE / Capt J.E. CONNELL *

* Started : 01/02/87
* Archived : 04/03/87 *
* Modified : *

* This file contains the following modules for the PHI parser:

* Putvar Putform Makeform Findvar *

* Getfptr Getvtype Finddef Put addr -

* Name Getdtype Form Makevar *
* Putdef AndAlloc Add-And Del-And *

* Modified : *

***************************** Externals ***********************
#include <semcheck.h>
4include <string.h> /* for "stpcpy"/***************************** Globals ****************************/
FLAG err found = FALSE; /* True if an error found
-ong curraddr = START_ADDR; /* Next address to be used to

/* place a variable
ong currscope = START ADDR; /* Current scope
form = FALSE; /* True if formals beir; pzcesseo,
************************ Typetable Definitions *********

int typeptr = TYPE_:NiT; /* Ptr to last typetanle inser-
tnode types [MAXTYPES]; /* Typetable

************************* Vartable Definitions ** * * **** /
varptr varhead = NULL; /* Head of varlist J'ne<ea

/ *********************** Deftable Definitions *******************
defptr defhead = NULL; /" Head of deftacle iinKeo --s: -

************************ And List Definitions ************************* /
and ptr andhead = NULL; /* Head for and iLst
andflag = FALSE;

/****************************** Makeform* *********************,*******/

- ooe
-akeform C) / Create a forra- noae

ret rn ((fnode*) ca-loc (I, sizeof (fnode)));

***************************** Putform *********************************/
vo-d

put for- (type) / Pt type into for-al Its:
PHMTYPE type;

textern frde "fhead;
.ode - r.. = -akeform ,/ Make a fornal node

tracer; /I -racer for ..e for-a1 Ls-

132

.. %-r.- rj ' jj~ .'zJ. -.. . -. i ' . . . ',... - ." " * .. .r..'"- * ".-. " -r' *

In ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ a NEW WWI wwwq-' J1rbnio m"OV W' VIM-R"7mk Knn"mfrn ~ i

ptr ->type =type;

:.f (f~ead :=NULL) { -st alreaay ex-s~
tracer f head;

wnile (tracer->iink - NU:LL) rdent of >-sl

tracer = : racer- Iik;

tracer->:ink = otr; ,'= >sert Ncae

e-se '0> n. sero_

f ead = tr;
Otf->104K NU LL;

-'a<evar 1* Make 'toie for vars n.<ea _s:

retu;rn (struct var.ocie~i
ca'-oc (1, su zeof (str-.ct varode)j

/ ****~******************Putvar * **************/

Pc;,tzar (type, t-reenode) /* Pu.t variable 10 vartac-e

? type;
noca t reenca:e;

.extern . fo.,
Varatr Orr -s,(evar H

ptr->nptr =t reenode; 1~entry

0-r>type = type;
0-r->~r =lor7 Set forroaL flag

- 1(=varnead; *Set top of Lin~ed _'s:

varnead at r;

n-r= NULL; ,* 7ree ocloter srace
free (atr);

varat:a

m Iovar (va rna~ne) 1' r-.a var Invartacle
7- va zrnar-e;

* :afcatr at: = varhead;

,4n e (pt: I NULL) trave' .1SZ, Z3< for:3w --

(atr->notrr->,ndex varnaone) /* Brea.(Ifar-ao-e 11;.
retu.rn (pt:); R et.;rn cat: t rccer noI

:etr (N_-LL) ; NO tayc

133

/ *****************~~~*Getvtype * **************/

getvtype (ptr) /I ' et type of var .7n var staz:<
varptr ptr;

return (ptr->type);

/ ***********************Putdef * ************ **/

void
putde f (type, treeotr) 1* Put var -4n defi n1iirns -ac-e

?H::YPE_ type;
nodal. treeptr;

extern int form;

defptr ptr (stru~ct defnooe-lcaI!cK,sizeof (stru.ct defnode);

ptr->nptr =treeptr; / iIentry
ptr->type type;

otr->1ink =defhead; /' Set top of linkea ist
deffhead = otr;

otr = NUL-/I Free pointer space
free (t(

£~~&~~U~d********Finddef

d pt r t-n;

fetfptr (prn) /* Fein fr indfro oe a~

defrptr = tr; ad

return (o-tr ' r:)

reo eype .(pr n(tr /* Ret-,r typ o re var n :zL

oeptr =por; !nK

return (pr->type(

age_ and (ptr) / * Aedurnd _pt noe or d a

.dat optr; / Get typ nof ntntan :e :acl

-a..Ad-and -

extern andapor and_ teaa, andaaccH

extern tInt do iff c-,

and ptr a crr = and alloc (U;2oder for an- corf

a_pcr->butfotr = cuff ot r; neti Po crentou--7 -

a ctr->otr ptr :; .e- ctr to none ct-n var net

a ortn<=and _head; n noet

and nead apr

a ct-r = -l; szose of a z

free (aot;

and ctro

anaa~c U/* Creat e a node for ann :jso

retur;n C scrod: and struotfl o)alloc (:, si'zeof (struo ad tuo)

/ *******************~*** el and*** ***** ******* /

voi4d
oel and (ptr) / Delete entry into to.e ann z-st

and ptr ocr;
extern and ocr and~head;
and err search = and_head;

if (ptt '= and h-ead) i I* Case -f coont-er not eq_
1* first entry nlt

whi4le (search-ti!_nk t)/* Plane ptr on entry atone
'ttent-ry

search =searcn->link;

searoh ->lt nk = or-> _nk; /* Set noonoet

ese nd had =o--> o;/* Case Ott = toc i- ent ry Ln _st

norlin N2I. * CoLsoose of n7eenec nonae
free ot r(

/ ************************Terror /
'i d

oer ror (err nu.;n, line-nurn) I' Sen onetk errornan o
/* roi ne

in:err nu, ne nunr;
exoern E-rrrhandler U

err found = 'PUE; *Set err fon-= e
St-c none ncr7

7r.-r~andler (ln uerr nun:, SEM -.)3eer ro amfior

/ ****************Putaddr A

out anor ot, yce)nserts ott 300t@, ; -

varlac-e U
Ann inorenenos 7-rt
Assn7es no.ca_

no00al ctr; Poi mter to titer je

135

PHITYPE type; /* Node type

ptr->addr -curr -addr; I* Set node address

ptr->scope - curr scope;

curr addr -curr addr + (types [type] .bytes) ; /* Increment curr add.r by

/* bytes type needs

if (curr-addr > MAXADOR) /* Error if address exceeds

terror (ERR-mm, ptr->In);

/ *************************Name

char
,name C)/ Generate an appropriate na-e

/* for a label! Procea*.re

char -string = malloc (7), /* Holder for output

-strinql -malloc (7);

static long seed =10000;
/* Number to append to string

string ' a'; 1 String prefix

(string 1) ENDSTRING; f Insert string terminator

stci _d (string!, seed) ; /* Convert long seed to string -

string -strcat (string, stringi) ; f* Concatenate strings

.,seed; /* Incr int to avoid duplicat on

return (strinlg);

/ *************************Formnal * **********~***/

F LAG
formal (ptr) /* Returns true if the varnode

/* describes a formal.

varptr ptr;

if(ptr->form) return (TRUE);

else retturn (FALSE);

136I

d.4

APPENDIX K

ROCK COMPILER - CODE GENERATION MODULE

............. t.........

* PUBLIC DOMAIN SOFTWARE

* Name Code Generation ModiLe
" File Code Gen.c
Authors Maj E.J. COLE / Capt J.E. C$ONNELL

• Started 02/06/87
Archived 04/10/87
Modified 04/13/87 Code output t -vdIsk

This file contains the foIlowing modules fzr the PH :.-pze:

* C Store Code C Start up C ff isert

CEnding Printcode C tor
Acode C Jmp -Start Pr:c
C I Const C I Form E nl- P r -
C I Op C Call Pr:•

* Algorithm
* This module contains the proced,.res neessary f-r :1e ;eroer3--
* C_startup initializes the run_time f ile, & -te semanti: :oe: er
* call the procedures as necessary. Note that " store_:+ie"
* genaric generator whizh will spew any string given as an ari

* output file.

fttffttffttffttfffttffttffttfftttffttffttffttfffttfftt~tfftf

• Modified 04/13/87 Code output to vdisk, ir--e "a:"
..............

ftt'11"ttf1"fff"'11t"1"1't*ft Externals

* _- e <se-c1ec:.>

/ffttfffttfffttfftttfftttffttfffttffftt ob~...................
7 - * .~-Ie oc.re: . -

137 e

137 g

• . * + .ftf . . •

er ~/*) Compute only -:f no error -7

wn_-e *s-rirg Ptri /Ul* Copy string cnar oy cnar
.(:oae c-ffer - ma-f ptr) *(~strin'g IP:,-;

o ~ei/I Gen code to insert 4rpcornanc,'
:nar -a-e;

z-store code (1"4,p
:- store code (name);

store code \"

/oo****e**e*~w*********C Start Proc

star oro (nae) Output name for start of asrn
/* language procedure

:nar -naire;

store code (name);
7store code (":\nl");

/ ** *** ** ** *** ** ** **C End Proc*****************************/

7 rzc3 Vnare /* Output name for ending an
/* assembly language proced,.re

-ar * na.me:

suo-re-code "o~de scoo~e\nf);
-s':re ode '"ret \"n

_- sore cooe 1 n crei

*o***o****,***********C Call Proc**************/

r,) 7mc (-. a-e, /* Output tall for an assen-oLy
/* language procedure

-ae;

s ore - cde -a~l~

S ole .C

f-I* t;e-erate za-I to 7tneger
.for-a- asoor onto staz-

re -cde "--cv 7x,

138

/ *********************C I Const************** *

vo id
c jconst (name) /* Output code for assigning an.

I* integer constant

char *name;

c store code ("mnov ax,")
c store code (name);
c store code (11\n");
c-store-code ("call i4putvalue\n",);

/ ***************************C I -OP *****************

void
Ci- op Cop) /* Output code for irnt arithi ocs

opcype op; /* Type of operation
extern void terrorC;

switch Cop) C0
case (ADD) c-cal:_proc C'iadd"C;

break;
case (SUB) c-call _proc ("isub");

break;
case (DIVIDE) :c call oroc C114divn');

break;
case (MULT) :c-cal: o-roc ("imult");

break;
default :return;

/ ***********~*****Startup****************/

c_startup (C Open and initialize files
code buffer =geomem CSIZEEBUFFER); /* Initialize buffer
o store-code C"ext rn initial near\n"); /* Write utilities needed
o-store-code C"exorn iadd near\n")
o _store code C"exton L su b inear\n");
c store code C"extrn imu .t near\n");
o store code C"extrn idivn near\n");
o-store-code C"extrn iequ near\n");
o store-code C"extrn i.neq near\n");
o _store code C extrn igt near\n"C;
o store-code C"extrn ilt near\n"()
o store code C"extrn land near\n"C;
c store _code C"extrn Icr near\n");
c store code C"extrn igteq near\n")
c store code C"extrn iputvalue :near\n'C ;
c store code C"extrn iiteq :near\n"C;
o store _code ("extrn igetvaiue -.near\n") ;
o st-ore-code C "extrn initial :near\n")C
o-store code C"extrn finis :near\n") ;
o store-code C"extrn print top near\,-");
o store-code C"extrn negation near\n");
c-store-code C *extrn i formal near\n");
o store-code C"extrn i mov near\n") ;
o store-code C"extrn ppush near\n"C;
c-store _code C"extrn ppop near\n");
c-store-code ("extrn add-scoce near\n) 1;
c store_code C"extrn del-scope near\n");
o stOre _code C"org 01O0h\n\n'C)
o store _code C"cseg\n') ;
c store code C"call initia.\n");

139

,P I Ir %
,,&L 2-

~' -~ '-- ~'~ KW~~~LJ. ~ VFS/(. s~.~lr CN pF ~ - 5 6

************************ C Print Code ******************************
void

c printcode /* Output code buffer to

/* secondary storage
etenchar prefix [};

int code; /* Output file

char holder'30];

strcpy (holder, "d:"); I' set up file narre

strcat (holder, prefix);
strcpy (prefix, holder); / save prefix & drive for f,: _se'

strcat (holder, "a.86");

code = open(FILENAME,O_TRUNC I O_WRONLY,NULL); /* Open file for writing and

/- overwriting only

write (code, codebuffer, buff_ptr); /* Write the buffer
close (code); /* Close the output file

*** ****** *************** C Ending ********************************/
void

c_ending () /* Ending for output code

if (!err-found) {

c_storecode ("call print _top\n");

/ Print address pointed to by */
/* top of program stack

c store code ("call finis\n"); / Routine to make clean ending
(codebuffer + (buff ptr)) = CNTRLZ; / if no error, put asm language

/- delimiter to file
c_print_code); /U Output code to a file

*************************** C ztor ********************************
void

c ztor () /* Gen code for cony nt to real
/ Empty now, but watch our snoke

/***************************** Acode ********************~*********

void
acode (ptr, type) /* NOTE : USES EMPTY STATEMENTS

/* FOR REAL OPERA::CNS
nodal ptr;
FLAG type; /* Generate code for arith cops

{extern void terror ()
int name;

nane = ptr->name;

switch (name) {
case (ADD_) : if (type REAL); /* Addition

else c iop (ADD);
break;

case (SUB_) : if (type =- REAL); /* Subtraction
else c_i_op (SUB);
break;

case (MULT_) : if (type == REAL); /* Multiplication
else c_ iop (MULT);
break;

case (RDIV) : /" Rea! Oivision
break;

140

case (IDV_ Ci_00 (DIVID); /* :nee D~visicr.
break;

141j

APPENDIX L

ROCK COMPILER - USER INTERFACE

/ **

* Name User Interface
* File User.C *

* Authors Maj E.J. COLE / Capt J.E. CONNELL *

* Started 04/01/87 *

* Archived 04/10/87 *

* Modified *

* This file contains the following modules for the PHI compiler *

* User-err Getname Progname *

* Print-header PClose User *

* Algorithm *
* This module contains the procedures necessary for the user in-
* terface. *

* ProgName gets the user's choice of program by calling GetName *

* Print header is called to print the initial screen display on con- *

* sole, & the User procedure is the overall coordinator of the inter- *

* face. *
* UserErr and P Close are both independent procedures. User Err *

* handles output in the event that an error or errors have been found.*
* P close is called by "Rock Main" to ensure the input file has been *

* closed. *

* Modified *

*********************************Exter *****************************na/

*include <user.h>
qinc!-de <dcs.> /* for "getch).
#inc>.oe <stdio.h>

extern void cirscr 0. mov cursor), lr window);

******************************** Globals ******************************/

-ar name 'BUFFLENGTHI, /* Name of So.rce f'Le
prefix fBUFFLENGTHI; / Prefix of so-rze file

FL fie; / File handle of sc-rce f'Ie

**************************** User Err *******************************

.ser err () /* Screen interface !Cr err:r .s -
;extern void cirscr U;

142

extern. 4nt num errors; I' Nu.Tber of errors fou.nd~E'errors; /* Error74-
_nt nu-nblocks,

I' Urber of -olocks to reao
count /* ZI'Generic loop variable

h~at *buffer malloc (BSZE),
no ut 1* eypressea after pajse

errors =foopen (ERRRFLE,"a")
for .-t f(errors,

nu.,;:ber of errors - %d\n", nun errors)
P;to US'I, errors); /*ut EOF rrarker to f-'-e

folose ierrors,;

C~rscr U
errors - fopen)ERR0RF:LE_, "

n..-mblocks =fread (buffer, BLOCKS:ZE, 20,errors); I' Read error rngs from error fi les''
I' BLOCKSIZE will allow whol'e
/file to be read at oncewnil-e ((buffer - court) := s)

putcnar ((buffer count)
'=count

pr int.f ("\n \n \n"(; I' Skip lines to qive appearance '

I' of user friendlinessP:ntf ("%s", PAUSE); /* Pause to qive user a chance to '
/* corntemnplate his errors 'pt getch 1 Eat keyboard input after pau.se

fclose (errors);
olrscr (

If (input ESCAPE) exit (1); I' !I' user pressedt escape,
/w exit t-he or ogram.

/ ************************Getnarne

;etn.-.e() I Returns the ;ser's choioe
/* of file to con.oile

- - /Single Input znaracterco nt 0 ; I' Buffer pointer

do
I' Loop, get file nare ltr by Itrif (oh = getch M) BACKSPACE) { I <- key is n rt

(count) {--count;
putonar (ch); I' Backspace
P..tonar (1 1); I' insert blank
putchar (oh); I' Eat last crar *ter is one

__ se f (ch =-ESCAPE) (Escape pressed; exit
c-rscr H;
exit (1);

e-se~~I f c</*Legitin:ate
onar read:;use ~ou.tc!%ar (oh);

nare count:- h

wni-e ((cou;nt <= BUF7LENG74) &
on ECLN);

*Loop u;nti_ Jouffer f-ll C

Sreturn presseo

143 I

u-name [count 0 . ; /* :nsert end ot szr~nq :nar

void
oroq/ Sae(et ieqizi.-ate progra7-.aL-e

do /I Loop ,;nti4 fopen f-inos
/* 2eqit namne

r _window (9,1,21,79); 1' Clear out lower window cf c
mov_cursor (10,2);
printf(~ZRM
getname ~
infile = fopen (unae, "Ir");

if (!infile) {/* Name not in current directo-rymov_cursor (20,33); /* Print user fr:.enc~y error -sgs
printf (FILE1 ERROR);
nmov-cursor (21, 16);
printf (FZLE2 _ERROR);

i(getch () -- ESCAPE) (/* Exit if ESCAPE pressed
cirscr (1;

exit (1);

?while)!.Infile); /* Repeat until correct file fond,
1* NOTE - escape exits --oo & pr ;71

printf (WAIT);

/ **** ** ** ** ** ** ******Print-header ************
'1oid

print _h eader)/* Print out header for user

cirscr (
-ov cu;rsor (1,33);
printf))HEADERI2;
rov cursor (2,24);
prmntf (HEADER2);

/ ***********************P Close
voi'd

olose/* Close out target file

'Close (infilel;

ser U/*
nvoke user interface

Z: n - 0;/* Luty integer
rrnt header ;
cozq name ;

wn--e ('(u _name d(ount = ' /* Copy root of -:n;t 'le -a-e
uname 'countl -- NULfL i /* -oOP .ntil ena of .-nouz

1* reached CR noIend cf st rs~relx zoun:, u name count'; /* reached, if no ex--ensicn

.Crefix con-n:= /* nserz ena of sz-rL:g %,s,-e

144

APPENDIX M

ROCK COMPILER - RUNTIME UTILITIES

;Name :Phi Runtime Utilities
*File U.a86

;Authors Maj E.J. COLE / Capt J.E. CONNELL
;Started :01/26/87*
;Archived: 16 Feb 87
;*Modified 16 Apr 87 Stack/Varspace Crash error check EC

ALGORITHMS

in -.t/0utput : mhe fi rst section of the program contains sotano oiu p~

2. Virtual Space: A virtual space is set up in the extra segmrent to ho>Jbc: -e
st ack .mTe :riddle4 of this space i4s denoted by the symbol "vats', and :rs.e
offset (± 32700 from vars . inthis implementation, the program stacx zrcws frzon
vats grow from tne cottomr. mhe virtual space is assumed to be mnade -pofwca

(two byt es), so only
even nurnbers mray be used to access it.

3. Stack: The stack pointer is the si4 register, which Is Ini: 1al-rea to 3-:
grows, -:ne si, register i.s redu.ced by two. ?pusn and ppop wil ousn1 an op 00 c

regstes. Push_one" and "Pop_one"l will push and pop single words to ano a

4. Addressing Program Vari'ables: Each program variable _s assugned a Awo %,~
scone and 0 is the offset fromn the base address of variables _n -nat scone.

n tne address of a variable given A.%

S ~. Scoi)ng: Initially the scope is set to 0: the global scope. The var-ac-e
space containing the outer scope, and the variable I'S Nest" contains tne c-rrenO
new scope is created, 'IS Nest" is increased by one, and th e three-tu;ple S

* i = Static CTink, pointing nesting level of the outer scone, N is the nest'no
is the oase address of display of variables for this scope.
When a scone is deleted, the top of the stack is saved, the too 3:satalmo
anc So ..unk and SNest are recalculated.

6 :nserting/Extracting Program Variables:'. "_Assign." w'--nsero' an _nteaer C:
scn contained in SNest when it is requested. "Iput.value1" w - Lrserm -.-e
r7esoponding tu.ple A on the stack. ":getvalu;eI will pco t6oe t.-e A off -jo-e-2
o-ne value of the integer pointed to by A.

.Modified :22 Feb 87 Add/del scope changed to save TOS. EC
16 Apr 87 Added check for stack/varspace crash, inc>'udes*

message to observer V

IN.

145

-. "W **-eDS. * *

Public Procedures

Public i mov
p-bilc i formal
p Lc tgetvalue
-b _c finis
uP i c ipucvalue

Public find_addr
public add_scope
Pb ic del scope

public initial
p;blic finis
:bLic ppush

pnblic ppop
P;0 _4c iassign

p bIc land
p blic iequ

public ineq

nublizcit
ouc.Acc isub
public lteq
pubc igteq
public negation
Public i4add
pu.bli4c su b
public irnu it
public idi4vn

publi.c printtop

I/O Procedures *
;* *

• ************************print**har************************* **** ****

~~~~ ~~print _char ****************

;Print a char to the screen

;assumes letter to be printed is in dl register

nrirnt _char:

pusP. ax ;save registers
mov ah,06 ;put int vector
int 21h
pop ax
ret

* * * ** Eoln *

;Prints end of line character to the screen

eoln: mov di, I0 ;Moves appro ascii valles t3

call print _char ;.BM specific
mov dl, 13
call print_char
ret

• Print Num *
;Prints, as a number, the value found in the bx register

146



pr-:ntn~u': push ax

a" s: bx

cvc cx, ;Bas t.e s-.n

ne ax ;Negate

srnal- cr'no bX, C0 ;cest -ess '-a7'

civ_ 00D: 70V ax, bx ;D.v de cx by cx
xor dx, ax ;Set .;c ax re gisrer

d~v C~x
ccp ax, 0
:-e p loop ncc zerc.
r'av ax, Cx ;Otherwise, aecr ::x Cy 3:"-Dr cf
Mov Cx, C .

xar cix, dx
d--v cx
rnav Cx, ax ;Mcv ax 'to Cx ana c~~
jcp div_ :cp

1_000c: mocv ax, bx ;Ma.'n prin~ting 1g

xcr ax, d~x ;Set '.p Jx reg -ster
div Cx Zve
70cV .x, dx ;Move remainaer cc rx
ada ax, 48 ;Add f-cr asc-'u
7nov dx, ax
call printchar
xcr dx, dx ;3e,: ,;p dx 'or cuvrs -
ccov ax, cx ;DZ'vde base va-'e cy
70V cx, :
d-;v cx
-'cV CX, ax
c:-p ax'! ;:f 'case val.e :, e c c-c
ine p lop;Ee continue

add bx, 48 ;Print fina-. va-.;e
'70v dx, bx

ca-- eoc ;End of :uce

pcp ax I
ret

.*****************Print tap*** ** ****** *****

;Prin,-ts the space pointed ta by the top tuple of the program stack

c -c:.c: -'cv d s

-'cv Jx, va:"sd-; ;.,ec nescLnc -eve-

'~Cvx, vars a 1cvzse T

1i47



call fjr'd addr ;Mcv address L7cs eq
rnov di, cx
!rov bx, vars dil ;Mov n-ur fror accress cx

ret
********************print s

;assumes address of is in the dx register
;assumes string ends with a "$' sign

pusn ax ;save rec ;s~er
m'cv ah, 9
n t 2 !h

pop ax
:ret

Stack Procedures

***********~***~*~**Ppush*** *** **** *** ***.

;Pushes values from cx (offset) and di (nesting level)

COos: 7ov vars :s:,,cxtc'e - st

sub s', 2 7C: sacK nc--er
:ov vars 'si., di- Nest- -eve- s~ac

su;b Si, 2 -stac., cc-7er

cr!np si, cu.rr acdor ;The-- f-.: snac7< zarsca:e -fas-

0q p_retu;rn ;ccras.. -C e:-0
7-cv dx, offset c-as:- ;Se str-7'q f r errc;r -essae

ca'- ori-t. s
cal- finis ;a xc

o retu;rn: ret

**********************Push one **************

;Push a single integer from cx register to the program stack

n re :-n ov vars si;, cx P-t WC7C s7:ac

s..;b s1, 2 . . S-iaCK PC-c ef

;Pop values from the program stack to di (nesting level) arnd cx (zffse, 2

Cadd si,2 ;se- -cn-:

-0v cx, Vars, su et.se

ret

********************Pop One

,.Pop a single integer from the stack to the cx register

aaa s4, 2 encclme
-0V Cx, Vars s ;3e' wcrc

148

%'



ret

Varspace Management Procedures

; ********'************** IAssign ****************'************
;Assign an integer value to a variable space in current scope
;Assumes value is in ax; offset is set to current max offset

:as s an: c , s l_ n<
;aei statiLc -ink

su 1i,2 ;oecre-en- --- c o- % a e z ~ 3
7 --, di, vars 'dL ;-Cr zase accress
aaa aI, -ax of set ;aaa offset,

-ov vars dL,', .aX ;-rv n7cer in-7 a a-c73s .

acd ax of.sez,2 ;.. -ax cf'se: anc :. er ... .....
aad curr adcr,2
rec -

* ************************ Igetvalue

;Pop the stack and move the integer value pointed to into the ax
register

icetva..,e: Cal, PCCp; ;Get es ing -eve-* ana ffe

-ov dx, di
a . .. find addr ;Set addr of (S Nest, Max_ -

7rov al, CX

r'ov ax, vars ii' ;Get in'eqer ia__e
ret .-

* *********************** Iputvalue ***************************'*

;Takes an integer from AX register, puts its value into varspace,

;then puts its address on the top of the stack

-pt; i e: -.cv --x, s-nest ;Set stati-c nest--n; -e'7e- '

.ov cx, -ax-offset
ca>. f'.d oadr ;Get addr cf c :3 _es:, Max -

:rcv a ,C
rOv 'as s , ax ;? C va-,e nri -e-zry-
nCv di, s nest

-ov cx, Tax offset

caLL ppsc ;Store S Nest, Max 2>;e-

aod 7axoffset, 2 ;:nc :-ax offset ara c- rr azr

aaa c;rr addr, 2
t7el

; -I

Scoping Procedures *

********************** Find Addr ***********************************

;Returns address of variable at nesting level dx, offset cx to :x rez

f ;se: L, s 'in- ;Set adar of :,rrent s-a-, -

' . _,ccp: c-p es:vars .i: ,;x ; S C( vf.i-e S 7.0, x

149

-""



add di, 2
mov di, es:vars~di) ;Else jump to next scope ano¢ z
imp findloop

f out: sub di,2 ;Calc ptr to base addr of scope ari
add cx, es:varsjdi( ;AaO -f se:
ret

********************* Add Scope ***********************************v

;Start new scope by adding static link, starting address, & nesting

level

add-scope: mov cx, s_ ink ;Get static 'in
inc s nest
mov di, s nest ;Get new nesting 'eve,
call ppush ;Save link and level
rnov cx, curraddr
mov di, max offset
call ppusn ;Save c,rr addr
mov :.ax offset, 0 ;Re initialize max offset

aov Iink, S.

add s_ ink,6
ret

******************* DelScope ************************************
;Deletes a scope

del scope: call ppop; ;Save top of stack
mov dx, di
call find addr
push cx ;Save absolute address :f -zs
dec snest ;Reduce nesoing leve-
mov si, s linK ;Decrease st otr to c'rre:: --
sub si, 4
mov cx, es:vars (si
nov max_offset, cx
Tov bx,2
mov cx, es:vars si o<
Tov curraddr, cx
add si, 6
1nov cx, es:vars sl
nov Si_ - cx :et :rent s-i--:

pop di
mov ax, es:vars 'di ;Oes:e.
call iputvalue
ret

Begin/End Procedures

*** Initial *

;initialize the stack and variables
;must initialize cx to base of stack heap before calling this

mcv si, SPAC T7CP ;:n.z.. zs "
-cv di,C
nov cx, 0
caI ppush ;P;s- case s-;L p :
ret

150

CNVXN 61' J P ' .



finis***********fni

rnov ax, Q4cOCh ;end proced~re

:ret

Booleans

* ** ** *** ** ** *** **Negation************ *****

;Negates a boolean value

n~egation: call igetvaluje ;Get ccoean
crnp ax, ~
jne zero
mov axO
;cp p 7:0 t en~d

zero: rnov ax'l
p: call iputvalue ;St.;f boo-ea. & 0_, a--3:
ret

* *********~*********Lor *****************

;Takes logical or of two booleans and stacks address cf answer

.or: call -.getval*ue ;get :st ccc..ea7 :;.f
req

mov bx, ax ;save ccc--ea-
call igetvaiu.e ;get 2rd val..e S-r '--e r

-r ax, ox ?e~fr 3
CaLl ipu;tvalue ;P.t va-e .arscna-, i
ret

* ~ ~ ~ ~ ~ ~Land * * * * * * * * * * * * * * * * *

;Takes logical and of two booleanS and stacks address of answer

-cnx, ax ;SaVe .a

:a - -ecvja.. e ;;P- sec3 -a.. -s .

;.akes 1:gical equal of two i-'niegers and stacks address :f answer 3
- . :73.. geva-.e :e *.

-'vCx, ax :$a.'e' a

ax. cx

151

* ** *** * .. -~* a.-.. *. * ~d'~' ..n



• et e Iet tt t •e e~t 'neq * * . .. .****** t

;Takes logical not equal of two integers and stacks address of answer

.-eq: ca .- ,:e---.a.e ;get !St int Off StaCK t -_n= e cx rea

-rv Cx, ax ;save va_.e

-a. .ge-va.e ;get second va..e .s.-q sac< s r
:c ax, Cx

"-e z q. ; ,.-p if eqa la

-c. ax, FALSE ;p.. fa.se va.;e into varspace
: -a_. [D,1','a. e ;P-t va., e into varsPace, a aarr s-a7K

-eq c: -Cv ax, -:', c..t true va-..e rt varsoace
-P a.
re.

.**************#********* ilt ******************

;Takes logical less than of two integers and stacks address of answer
;Returns true if first value is less than the second value

"_t: :a-- ge- va--e ;get ',s- _nt Off stacK tc 'I.e :-x :P;

"C',v cX, ax ; save vaL e

:a-- .qe-va.,e ;get 2.d vae s-ng -'.e staCK C-r
7-p ax, ox ;Cc-pare
je -ess ;.urrp if less

-ov ax, :.'_E ;put false va-.ie into varspace

:a .- a-..e ;Put val..e into varspace, ada7 : -az<

'ess: -ov ax, 'AL3 ;p'i 'r.;e va'.e -:to varsnace
-P 7or

!'e,

Igt ****** *** ***********

;Takes logical greater than of two integers and stacks address of answer
;Returns true if first value is greater than the second value

c: cx, ax ;save va-.e

.. ge-va.e ;ge- seccna va.-e _i _-
ax, ox ;Com-pare

re :eater -nar ;_!-p if jreater ra

-v ax. '.' ;c 'alse vae va:sz a e

- - - -. -. ' .c, ALSF ; rt v a.e .7,-D va s a:e

7'e,

; .... 1teq
;Takes logical S of two integers and stacks address of answer
:Returns true if first value is less than or equal to tte second v:a'ue

Cx, IX save Va.e
i1. ;4e* :r1 V1. s.-.ee

152



ONE ONwuwu wWWW-iWWw• -- -- -

mov ax, TRUE ;put false value into varspacecon2: call iputvalue ;Put value into varspace, addr on s-:ar<
ret

lteq: mov ax, FALSE ;put true value into varspace
Imp con2
ret

************************ Igteq *********************************
;Takes logical a of two integers and stacks address of answer;Returns true if first value is greater than or equal to the second
value

.gteq: call igetvalue ;get !st nt off stack to t-e cx regmov bx, ax ;save valuecall igetvaiue ;get second value using stack otrcmp ax, bx ;Compare
jl gteq ;Jump if greater than or equal tomov ax, TRUE ;Pout false value into varspacecon3: call iputvalue ;Put value into varspace, adar on stacK
ret

gteq: mov ax, FALSE ;put true value into varspace
jmp con3
ret

Integer Operations 
,******* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

****** ** ** ***** * * *** Iadd ***********************************

;Adds two integer values
;Assumes offset off second value is in SI register
;Offset of first value is at the top of the stack

a0 : call igetvalue
7ov ox, ax
zall igetval.e ;First value to cx reg:ster
aca ax, ox ;Perform addition
:o err ;:f overflow, run r-e error

ca, oP.tvalue ;Put integer into varspace
ret

r: -ov ox, offset add err ;Error hanler for overflow
za_ pr::.: s
oal ec.n
oa..
ret 

p

*a******* *ISub*

;Subs two integer values
;Assumes offset off second value is in SI register
;Offset of first value is at the top of the stack

.s YD ox. cx~ t ai e

.0 c. oxv se :: rs- va...e 0 -:x reg-s-er
; o ax, oX ;Perfcr- s%.o~a--

153

A€.

%.



jo errs;if. overflow, run tine error

call i4putvalue ;Put integer into varspace

errs:. mov dx, offset sub-err ;Print error message on overflow

call finis
ret

;Multiplies two integer values
;Assumes offset off second value is in SI register
;Offset of first value is at the top of the stack

call igetvalue
mov bx, ax
call ig9etvalue ;First value to cx register
imu! bx ;Perform mult, result in AX
jc errl ;if carry set, run time error

call i4putvalue ;Put integer into varspace
ret.

err!: mov dx, offset mul-err ;put error message in dx register
call print _s ;print it
call eoln
call finis ;end
ret

.********************IDivn*****************

;Divides two integer values, result in varspace, address of result
stacked
;Offset of first value is at the top of the stack

_a;.vn: push cx ;Save Registers
oush dx
call igetvalue ;Get divisor
mov bx, ax ;Mov divisor to bx

call. iqetvalue ;Get dividend to ax

xor dx, dx ;Set dx to 0
mdv ci, I ;cl and ch are negative f-Laqs
mov ch, 1
cmp bx, C

*-q test2 ;bx is positive, no action n-eeaea
I F-e err-d ;bx is 0, ERROR

*neg cl ;bx is negative, c- f-ag neqa- eo
neg bx ;bx is made positive

~eo2 cmp ax,0 ;test dividend
ge dicop ;dividend >- C, no ato

neg ch ;ax is negative, oh .aq -eqza-ea
neg ax ;ax is made pcsit-,ve

c r, - sub ax,bx ;loop and count sxirac-:z ns
c-p ax, C

acne ;if ax -ess than C^, dcn e
acx ;Store res,,;! .n ox

--p dlco p ;cor~tlnue loop

154



done: nov al, cI cn an c-
ch

crop al, 0
jge dend ;If prouct not negative, no azc-cn
reg dx ;else negate answer

dend: ov ax,dx
pop dx
c0c cx

call iputvalue ;P:t integer into varspace
ret

errd: nov dx, offset div err ;010 error -essage in ox register
call print s ;prnt It

call eoln

call finis ;end
ret

Function Calling Procedures

* * **** * ** ** * ** *** ** * *** * ** ** * ** i mov ******************** ** * *******°

; Movs integer or boolean actuals with addresses at the top of stack to

; the lowest addresses within a scope
; Assumes bx has number of actuals needed to be moved

_ cv: pop ret addr ;Save i cov's return aodress
call add-scope P

sort: op dx ;ncv addresses to ox and cxi recs
pop cx
call find addr ;Set virtual adress of tre Inteoer
Mov d:, cx
rov ax, es:vars d :Se- ax for ass . r
:a l Iassqn
ae;o dx
cp dx,3
rne strt

push ret aadr ;Restore I nov's ret-rr adress

ret

• **************** I formal ************************************

;Puts a formal to the top of the stack
;Assumes offset of formal in cx register

i f:r-a: 7cv di,0
-ov di, snest dil :Cet res--n eve.
,all ppush ;P.sn offset i7o -est nr : a-<
ret

Variables *

-sec

155

.' : ..[ .,[;,' ' ,.,... ,, ?, ... . .. ... . . ... -.,.,. ,,."., -r,.



WUW ItV W M W -

*************************~**** Constants ******************************

TRUE EQU 1
FALSE EQU 0
SPACE TOP EQU 32700 ;Top of memory space

************************* Integer Variables

-ax offset dw 0 ;Maximum current cf'ses w/.n scope
curr addr dw -32700 ;Current traximum address

s 'inrk dw SPACE-TOP ;Current aadress of staic
s _nest: aw 3 ;Crrent sza:lc nestlnq -eve-

ret addr dw 0
************************** Error Messaages *

div err db 'DIVISION BY ZERO, FOOL:'
db '$'

-u err db 'MULTIPLICATION OVERFLOW, CD-OT:'
db 'S'

add err db 'ADDITION OVERFLOW, D:MW:T!'
db '5'

sub-err db 'SUBTRACTION OVERFLOW, NITWIT'
db '5'

crash db 'STACK/VAR:ABLE SPACE CRASH'
db 'S

************************ Error Messaages *

e seq
vars dw 0

end

156

1 * ,. ~~%*V ~ *...-Leh*



APPENDIX N - TEST SUITE

SIMPLE TESTS OF FUNCTIONS AND VARIABLES

let c: $Z -> $Z;
c (20) where c (n) == if 1 = 2 then 3 * n

else 3 + n endif

--Simple "Hello I'm Alive Test"

let c" Z -> $Z;
c (1 * 2) where c (n) == n * 3

-- Test for expression in functions's formals

let c : $Z -> $Z;
c (k + 2) where k == 2 and

c (n) == if n = 1 then n * 3 else n + 4 endif

-- Test for expression in function's formals

TESTS FOR RECURSION

let c $Z -> $Z;

c (k * 2) where k == 2 and c (n) =- n * 3

-- Test for expression in function's formals

let c: $Z -> $Z;

c (0) where c (n) == if n = 0 then I else c (n - 1) * n endif

-- Test for recursion in functions

let c" $Z -> $Z;

c (5) where c (n) == if n = 0 then I else c (n - 1) * n endif

-- Test for recursion in functions

let c $Z ->$Z;

157

*1

*1

5, -S 'p........



c (3) where c (n) ~=if n = 0 then 1 else n * c (n - 1) endif

-- Test for recursion in functions

let c :$Z -> $Z;

c (7) where c (n) == if n = 0 then 1 else n * c (n - 1) endif

-- Test for recursion in functions

TESTS OF COMPLEX FUNCTIONS, INCLUDING BOOLEANS AS

ARGUMENTS AND RESULTS

let c : $Z ->$B;

c (1) where
c (n) == n =6

-- Test for booleants in function

let c: $Z * $Z* $Z -> $Z;

c(2 - 1,3,4) where c(n,m,x) ==n *m *x

--Test for multiple arguments

let c :$Z ->$B;
letd$Z-$;

c (1) where
c (n) == 1 = d(l) where

d(k) == k

-- Test for chaining in functions

let c :$Z -> $Z;
let d:$Z ->$Z;
let e :$Z -> $B;
c (3) where

c (n) == I + d(n) where
d(k) = if e(1)
then k else k + 1 endif

where e (k) =-- k = 3

-Test for nesting in functions

158

ff



let c: $Z -> $Z;
let d: $Z $Z;
let e :$Z ->$B;

c (3) * 10 where
c (n) == 1 + d(n) where

d(k) == if e(l)
then k else k + 1 endif
where e (k) == k = 3

-- Test for nesting in functions, result multiplied by constant

let c: $Z -> $Z;
let d $Z $Z;
let e :$Z ->$B;

c (3) * c(4) where
c (n) == 1 + d(n) where

d(k) == if e(1)
then k else k + 1 endif

where e (k) == k = 3
and b == 10

-- Test for two functions, same definition
-- Also, test for extraneous variable defined at end of program

let c $Z ->Z;
let d $Z $Z;
let e $B ->$B;

c (3) * c(4) where
c (n) == 1 + d(n) where

d(k) == if e(2 = 3 A 4 =5)
then k else k + 1 endif

where e (k) =- k

-- Test for boolean expression as an actual

TESTS FOR "AND" AND "WHERE" NESTING AND COMBINATIONS

let c $Z -> $Z;
let d $Z -> $Z;

c (3) * b where b == 10 and
c (n) == n * d (n) where

d (n) == 3

-- Test for nesting in functions

159

*1

'm
J
d



let c" $Z -> $Z;
let d $Z -> $Z;

c (3) * b where b= 0 and
c (n) == n * d (n) where

d (n) == 3 * e where e == 10

-- Test for nesting in functions

let c: $Z -> $Z;
let d $Z -> $Z;
let e: $Z -> $Z;

c (3) + b where b == 10 and
c (n) == d (1) + if n = e (1) then 2 else 10 endif

where e (k) == -1 and
d (g) == g +5

-- Test for nested wheres and ands

let c : $Z -> $Z;
let d :$Z-> $Z;
let e : $Z ->$B;

c (3) where
c (n) == 1 + d(n) where

d(k) == if e(1) then k else k + 1 endifwhere e (b) == b = 3

-- Test for nesting in functions

let c : $Z -> $Z;
let d: $Z;

c(5) where c (n) == d
and d== 10 *5

-- Test for single and statement
-- Test for datadef declaration

let c $Z;
let d $Z;
let e $Z;

c where c == (d + l0 + e where e 10)

160



and d== 10

-- Test for Multiple ands

let c : $Z,
let d: $Z;
let e : $Z;

cwhere c==d +10+e
and d ==10
and e == 10

-- Test for Multiple ands

let c: $Z -> $Z;
let d $Z -> $Z;
let e: $Z -> $Z;

c(5) where c(n)==d(n) + 12
and d(s) == 10 + s

-- Test for Multiple ands using functions

let c: $Z -> $Z;
let d :$Z $Z;
let e $Z $Z;

c(5) where c(n)==d(n) + 12
and d(s) 10 + e (s)
and e(k) == 20 + k + t where t == 100

-- Test for Multiple ands , nested wheres

let c $Z;
let d $Z;
let e $Z;

c where c = d + 10 + e where
e == 10 and d == 10

--Test for Multiple ands

.1
let c $Z -> $B;
let d :Z -> $B;let k $Z ->$Z;

161 I

il



c(1) A d(2) where
c (n) == n = 3 and

d (n) ==(1 = k (n - 1) where
k (1) 1 + 10)

-- Test for proper use of "and" and implementation of
-- Parens

let c $Z -> $Z;
let d :$Z ->$Z;
let e: $Z -> $Z;

c(5) where c(n) == d(n) + 12 where k == 100
and d(s)= 10 + e (s)
and e(k) ==20 + k

-- Test for Multiple ands, multiple wheres and formal/variable collisions

let c : $Z -> $Z;
let d : $Z -> $Z;
let e : $Z -> $Z;

c(5) where c(n) == d(n) + 12 where k = 100
and d(s) == 10 + e (s) where t == 100
and e(k) =20 + k + t

-- Test for Multiple ands, multiple wheres and formal/variable collisions

let c $Z -> $Z;
let d :$Z ->$Z;
let e: $Z ->$Z;

c(5) where c(n) == d(n) + 12 where t == 100
and d(s) = 10 + e (s) where t == 120
and e(k) ==20 + k + t

-- Test for Multiple ands, multiple wheres and formal/variable collisions
-- Also test to see if the proper "t" (120) was picked up

letc : $Z * $Z $Z;
let d : $Z * $Z ->$Z;
let e $ Z * $Z ->$Z;

162



c(5, 1) where c(n,m) == d(n,m) + 12 where t == 100
and d(s,z) == 10 + e (s,z) where t == 120
and e(k,1) == 20 + k + t + 1

-Test for Multiple ands, multiple wheres and formal/variable collisions
-Test specifically for functions with multiple arguments

let c $Z -> $Z;
let d$Z-$;
let e: $Z -> $Z;

c(5) where c(n) == d(n) where t ==100
and d(s) ==(e (s) where k == 2)
and e(k)==20+ t

-- Test for Multiple ands, multiple wheres and formal/variable collisions

let c $Z -> $Z;
let d$ Z
let e: $Z ->$Z;

c(1 0) where c(n) == d(n) where t ==I 100
and d(s) == e (s) where k == 10
and e(r) == 20 + r + k

-Test for Multiple ands, multiple wheres and formaul/variable collisions

let c $Z -> $Z;
let d Z
let e:$ Z

c(l0) where c(n) == d(n) + t where t == (r * 100 where r == 2)
and d(s) == e (s) where k == 10
and e(r) == 20 + r + k

- - Test for Multiple ands, multiple wheres and formal/variable collisions

let c :$Z -> $Z;I
let e :Z SZ
let f $N->$Z;

c(l0) where c(n) == d(n) + t where t == (r *100 where r ==2)

and d(s) == e (s) where k ==10

and e(r) ==20 + r + f (r)16



and f(r) == r

-Test for Multiple ands, multiple wheres and formal/variable collisions

let d $Z ->$Z;

let e $Z ->$Z;

let f: $N ->$Z;

c(10) where c(n) == d(n) + t where t == (r * 100 where r == 2)
and d(s) == e (s) where k == 10
and e(r) =20 + r + f (r)
and f(r) ==k

-- Test for Multiple ands, multiple wheres and formal/variable collisions

let c: $Z ->$Z;

let d $Z ->$Z;

let e: $Z ->$Z;

let f: $N ->$Z;

c(10) where c(n) == d(n) + t where t == (r * 100 where r == 2)
and d(s) == e (s) where k == 10
and e(r)==20 +r +f(r)
and f(r) =ifr = 0then 100 else f (r - 1) endif

-Test for Multiple ands, multiple wheres and formal/variable collisions
-Test for if-then-else collisions with multiple ands, wheres

let c: $Z -> $Z;
let d :$Z-$Z;
let e $Z -$Z;

let f$ Z
let zebra: Z

4(10) where c(n) = d(n) + t where t == (r * 100 where r == 2)
and d(s) == (e (s) where k == 10
and e(r) ==20 + r + f(r) + zebra

*and f(r) =ifr =O0then 100 else f(r - l)endif
and zebra = 0

-Test for Multiple ands, multiple wheres and formal/variable collisions
-Test for if-then-else collisions with multiple ands, wheres

let c $Z->$Z;
let d :$Z-$Z;
let e: $Z ->$Z;

164

'fePU* P9' ~ ~ ~ ~ ~ ' %



c(5) where c(n) - d(n) + 12 where t --= 100
and d(s) ==(10 + e (s) where k --= 100
and e(k) == 20 + k + t)

-- Now the use of parenthesis here - if they are removed, the program will
--bomb because t will be undefied

ERROR TESTING

Letx :Sz;
let j:$Z.
let i:Sz;

i where 1 ==x'j
and x -=5 and j =0

-- Gives Division by Zero run nine error

let b:$b;
let :SZ;
let j:$z.
let n:Sn;
letx Sz.

if b then i
elsif -(b / b) then j
else x endhf where oo

b == -2 where
i ==2.

and where j
and where z == 69

Gives two paner errors line 13 and 14, undefired and
-- where foUowing 'and"

letfac SN >$N.

faL 15 where fac (n ==i fac (n I,

Check for stack overflow

too much wheme too mu.h -= I (XN) i(I1)

Check for Mulopbcanon Overfkm

x much wher too much -= 4M09) M ONOi

Check for Additon overfflo

dr, d 0 . A v



too_much where too-much == -30000 - 30000

-- Check for Subtraction Overflow

let c $Z -$B;
let d $Z ->$B;
let k :$Z-> SZ;
let g $Z-> $Z

c(l) A d(2) where
d (n) == (I = k (n - 1) where

k (1) = I + 10) and
c (n) == n = 3

-- Test for proper use of comments, note that there is no
delimiter on the second line of comments, as there should

-- be

MISCELLANEOUS TESTS

let b:$b.
let :$Z.
let j:$z.
let n:$n.
let x: $z

if (b V -b) then
elsf (b V -h) then j
el e x endif where

b - =2 where

and j -2
and x -- 69

Test for not construct. boolean constructs

let h Sh.
let SZ.
let j Sz,
let n Sn
let x z.

e Isf --4b 1 -b) then j
cekei "endd where

h == i=2 where

and j -=2

* ._ * . S



-should give 2
-Check and, or, notand, notor
-- Check if, else, elseif
-Especially, check all in combination

let a:SZ,
let b:$z;
let y:$n.
let x: Sz;
let f: $n'Sn->$n;
let times :S*n>n

f(30,30) where
f(a,b) == times(a,b) where

times(x,y) = y
-Multiargurnent Checking
-Natural Type Checking

let a:$Z,
let b:$z;
let y:Sz;
let X: $Z;
let f: Sz*$z->Sz:
let imes :S*n>z

f(30,4) where
f(a,b) == times(a~b) where

times~x,y)
if( 1 ) then x%y

else 2 endif end
-Integer Division Checking

let c $Z -> $B3
let d$Z-$B
let k :SZ->$SZ;
let g: Z-

c(l) A\ d(2) where
d (n)== (I = k(n - 1)where

k (1) 1= + 10) and
c (n) ==n = 3

*Test for proper use of "and" and mplementation of
-Parens

167



APPENDIX 0 - ROCK COMPILER USER'S MANUAL

I. Installation

The rock compiler program comes on a 5.25" disk with all
public domain programs necessary to run it. To install this
program on another floppy disk or a hard disk, use the following
procedures:

1) Change the system drive to the disk drive containing the

floppy disk.

2) Type "INSTALL", followed by a space and the drive and
directory on which you want the program installed.

Note that the Rock compiler uses three unsupplied files to
operate: RASM86, LINK86, and your choice of word processor. The
RASM86 and LINK86 programs must be installed on the same
directory as the compiler.

1I. Running the Compiler

a. Type in "ROCK" and wait for the screen display shown in
figure 1 to appear.

ROCK COMP[LER
Press Escape Key to Eut Compiler

Program to Compile ->

Figure 1

b. When the prompt appears, type in the file name of the
source file you want to compile, then press return. The
compiler will accept directory specifications in the
file designation. If the source file is found, the
compilation will begin immediately, and the screen will
appear as shown in figure 2. If the file is not found.
the screen will appear as shown in figure 3.

168

! e ' " #'i~ , ". " " , , : : , , " ;.", , ' , :- , ;-.'-:,-.-'-':--g--"'" --



c. If a successful compilation takes place, the prompt for
a source file reappears. If the compilation is not
successful, error messages will appear on the screen,
and a copy of these messages can be found in a file

ROCK COMPILER
Press Escape Key to Exit Compiler

Program to Compile -> SQRT.PHI

Compiling: Please Wait

Figure 2

ROCK COMPILER
Press Escape Key to Exit Compiler

Program to Compile -> NOTFOUND

t-le no( Found
Press ESCAPE to exiL any ofher key to continue

Figure 3

named Errors.Phi. A typical error display is shown in
figure 4. After perusing the errors, you may press any
key to return to the prompt for a source file.

Ih9I

. ••. . . .. • , .• . . , i""'.. .. , ' , ',' ',- ' p.'b .' (' ', , , " "-N "



ROCKY ERRORS

line I formals list missing or error in formals list
line I msplaced or missing-
nunber of aror - 2

PRESS ANY KEY TO CONTINUE

Figure 4

d. If compilation is successful, both an .exe and an .obj
file wdl be created In the event that an error
occurs, neither file wdl be created.
WARNING If you choose to compile two programs with the
same prefix, ensure you save the first one before
compiling the second one. otherwise, the second
compiation will overwrite the output file of the first
compilaton.

e To cleanly stop the compiler. press the ESCAPE key any
time the system &Aks for an input. If you have started
to compile a program and you need a "panic" exit. press
'Control-Break" If you ao this. the cursor will not

reappear on the screen However. you can get it back by
running the ROCK program again and making a normal exit

Iii. Error Handling

Errors am divded into two categones those found dunng
compilation and those found during run time The following two
sections list the errr messages from both categones which you
night encounter Each message includes a brief synopsis of what
cause% the error

COMPILER ERRORS

Mesale Explanaton

incomplete 1-> Either an I or I was tound
where 'I > was expected

" without following /. A single baickslash *as tound
logical OR as V *her a logical or con,,ru.t

(V) was expected

17()

, '1 ~t ~'' *' "-'/" ' ""* :Y ' ' ';"'* '' -



$ without following An incomplete type declaration was found.
'R','N','Z','B',or

invalid numeric An illegal constant vas found;constant => 3. in this example, "3."

literal without ending An unterminated literal was
found, or a literal spanned
more than one line.

unidentified char A character with no meaning wasin input program ==> # found in the source file; #', in this example.

,MEMORY OVERFLOW The source program is too bigDURING COMPILATION for the host machine to compile.

error in statement
following -=> An illegal statement follows

the specified character. *, in the example.
error in type 

'definition following ==> * An illegal type definition follows the

specified character; '*' in the example.
unable to complete An unspecified error was founddefinition of blockbody after LET, and the compiler isafter keyword LET so completely sandbagged that

it cannot recover.

missing or misplaced ',' A declaration, preceded byafter definition "LET", was not followed by a semicolon
valid qualexp/exp An invalid expression was found
not found in the def/auxdef

valid typeexp not found An expression defining ain the def type was either missing or incorrect,
formals list missing Formals were expected but not found.or error in formals list or formals were incompletely specified.

misplaced or missing ) A PHI keyword or delimiter i4as
expected or not found. )' in the example

at least one identifier TYPE found without an identifier
must follow keyword TYPE I
unable to complete Improper or no expression founddef/auxdef following following ANDkeyword AND

171 
,

'S

~~ I



missing or invalid auxdef Improper or no definition following
after keyword WHERE WHERE

missing or misplaced Formals found without closing
closing paren in formals parenthesis.
list

error in processing One actual was found, but an
multiple Actuals error was spotted in a subsequent actual.

missing literal FILE was found without a file-
after keyword FILE name being designated.

missing or invalid A keyword was spotted, but the
exp following KEYWORD following expression was illegal.

IF statement w/o ENDIF No ENDF to close off an IF statement.

error in formals "1->" found, but the formals
preceding I-> list preceding it contained an error.

missing or invalid A list of elements was found
QualExp following with an illegal expression in it.
COMMA operator

error in ArgBinding An improper expression in an
.check QualExp argument binding was found, or
or closing bracket the closing bracket on an argument binding

was not found.

OZONE LEVEL I - Unimplemented feature found.
for 19.99 the feature can be
implemented in 1999

NUMERIC VALUE EXPECTED Non-numeric type found where a
numeric type was expected.

NATURAL EXPECTED Natural type was not found where
it was expected.

IN'rEGER OR NATURAL EXPECTED Either an integer or natural type
is proper. but neither was found

ERROR IN TUPLE DEFINITION A tuple is improperly defined
the source file used improper
types or number of types in defining
the ruple. This can also mean
a single variable was improperly defined

UNDEFINED VARIABLE An undefined variable was found
IN AND SCOPE in one of the two branches of an

172

• .. . .. , -- . t. . -• P ,".'-,'. ¢ ,#" ?,e'',;,',,; ,*" " -, , '......'. . .'.....''. *. ',.,.,-.h. ,*. %% ,':p. *. " . *-.-q "*b %%f'*- 
,' - -x'

%
, 4



in its scope.

FUNCTION WITHOUT A function was defined without a
FUNCTION DEFINITION declaration of its type and formals.

FORMALS MISMATCHED Formals in a function definition
are not the same in either type or
number as those in the function's declaration.

FUNCTION CALLED WITHOUT No function definition found for
FUNCTION DEFINITION the function called.

REAL NUMBER EXPECTED An incorrect type was found where
a real number was expected.

INVALID CONSTANT An invalid constant was found.
EXPRESSION

BOOLEAN VALUE EXPECTED A boolean value was expected, but
none was found.

BOOLEAN OPERATOR EXPECTED A boolean operator was expected,
but none was found.

OUT OF RUN-TIME Not enough space to accommodate the
MEMORY SPACE program during run-time.

RUN-TIME ERRORS

DIVISION BY ZERO Division by zero attempted.

MULTIPLICATION OVERFLOW A multiplication operation resulted in
a numeric value outside the language limits-

ADDMON OVERFLOW An addition operation resulted in
a numeric value outside the language limits.

SUBTRACTION OVERFLOW A subtraction operation resulted
in a numeric value outside the
language limits.

STACKA'ARIABLE SPACE CRASH The stack overwrTote the variable space.

.°%i

-U.t

I0

6I'

~~ K .~~ q ,



INITIAL DISTRIBUTION LIST

No. Copies

1. Library, Code 0142
Naval Postgraduate School
Monterey, California 93943-5002

2. Chairman, Code 522
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943

3. Computer Technology Programs, Code 37 5
Naval Postgraduate School
Monterey, California 93943

4. D. L. Davis, Code 52Dv I
Departmnent of Computer Science
Naval Postgraduate School
Monterey, California 93943

5. B. J. MacLennan, Code 52M.1 I
Department of Computer Science
Naval Postgraduate School
Monterey. California 93943

6. Capt. J. E. Connell. USMC 3 '4

05 Jack Ray Park
Wentzville, Missouri 63385

7. Maj. E. J. Cole. USMC -1
156 I-aviland Rd
Ridgefield. Connecticut 06877

8. Defense Technical Information Center 2'
Cameron Station
Alexandria, Virginia 22304-6145

174



-r %. -r V 04 .w r


