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Abstract

A method is presented for using connectionist networks of simple computing ele-
ments to discover a particular type of constraint in multidimensional data. Suppose
that some data source provides samples consisting of n-dimensional feature-vectors,
but that this data all happens to lie on an m-dimensional surface embedded in the
n-dimensional feature space. Then occurrences of data can be more concisely de-
scribed by specifying an m-dimensional location on the embedded surface than
by reciting all n components of the feature vector. The recoding of data in such
a way is known as dimensionality-reduction. This paper describes a method for
performing dimensionality-reduction in a wide class of situations for which an as-
sumption of linearity need not be made about the underlying constraint surface.
The method takes advantage of self-organizing properties of connectionist networks
of simple computing elements. We present a scheme for representing the values
of continuous (scalar) variables in subsets of units. The backpropagation weight
updating method for training connectionist networks is extended by the use of aux-
iliary pressure in order to coax hidden units into the prescribed representation for
scalar-valued variables.
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1 Introduction

* A cormon objective in Pattern Recognition, Artificial Intelligence, and
Machine Vision is to discover good representations in which to describe
data. An important step in generating a good representation is to expose
constraint and remove redundancy in the description of sensory data. One
particular form of constraint that can occur over a collection of data is illus-
trated in figure 1. Here, some data source generates (z, y) data points. Ev-
idently, the source operates under some constraint because all data points
appear to lie on a one-dimensional curve. If one possesses knowledge of
th is curve then one may describe any given data sample using only a single
number, the location along the curve, instead of the two numbers required
to spell out the (z, y) coordinates.

This form of data recoding is known as dimenionality-redtaction [Kr-
ishnaiah and Kanal, 1982; Kohonen, 19841. In general, the problem is
to define a computational mapping between locations in an n-dimensional
feature space, and locations on an rn-dimensional constraint surface embed-
ded in the n-dimensional feature space, given a set of samples drawn from
the constraint surface. The purpose served by dimensionality-reduction
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Figure 1. Two-dimensional data samples constrained to lie on a
one-dimensional constraint surface. a. Through dimensionaOty-
reduction, the parameter, h, describes data in tersn of location on
the constraint surface. b. Data on (closed circles) and off (open cir-
cles) the constraint surface appears identical under dimensionality-
reduction by pure linear transformaation.
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is abstraction and simplification in the description of data. In general, a
dimensionality-reduced representation can be expected to make explicit de-
scriptive parameters capturing the natural degrees of variability inherent
to a clas of data, while it factors out redundancy latent among the original
measured features.

Most previous approaches to dimensionality-reduction in pattern recog-
nition assume a linear constraint surface. Then, the techniques of fac-
tor analysis, principle components analysis, or equivalently, the Karhunen-
Lo6ve expansion [Watanabe, 1965; Tou and Heydorn, 1967; Fukunaga and
Koonts, 1970; Kittler and Young, 1973], amount to first, rotating the n-
dimensional coordinate system to align with the data, and second, pick-
ing out the few dimensions that best account for the variance. Linear
dimensionality-reduction methods buy simplicity at a sacrifice of generality.
Clearly, they would not work for the constraint surface pictured in figure
1 because this constraint surface doubles back on itself in the embedding
space. Furthermore, dimensionality-reduction based on linear approxima-
tion to a constraint surface cannot accurately determine whether or not a
given, unknown, data sample does or does not lie on the constraint surface,
as shown in figure lb.

This paper presents a more general method for achieving dimensionality- -

reduction which allows the underlying constraint surface to curve to a con-
siderable degree. The method relies on the self-organizing properties of
connectionist networks of simple computing elements [Rumelhart, McClel-
land, et al, 1986]. The technique differs from that of Kohonen [1984], with
which it is compared in the discussion section. An earlier version of this
work appears in [Saund, 1988].

2 Black-Box Dimensionality-Reducer

The "black boe depiction of a dimensionality-reducer is presented in figure
2. Each such box contains knowledge of one constraint surface in the feature
spece. At the bottom of the box enters the description of a data point in
terms of an n-dimensional feature vector. Out the top emerge n lines,
aad out the side, m more, where m is the dimensionality of the constraint
surfAKe. Each line can represent a bounded real number; for convenience
suppe that the feature coordinates are normalized so that all features

2
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Figure 2. Black-box dimensionality-reducer.

take values between 0 and 1.
The dimensionality-reducer operates as follows. If the numbers coming

out the top of the black box match those coming in the bottom, then it is
determined that the data point whose feature vector is given does in fact
lie on the constraint surface, and its location on the constraint surface may
be read on the m lines coming out the side (the dimensionality-reducer
implicitly creates a coordinate system for the constraint surface). If the
numbers coming out the top do not match the input feature vector, then it
is determined that the data point specified at the input does not lie on the

constraint surface. In this way a dimensionality-reducer carries out a form
of pattern matching between input data and a parameterized "template"
defined by the locus of points on the constraint surface.

This black-box dimensionality-reducer may also be used in the oppo-
site direction. That is, an m-dimensional vector specifying a location on
the constraint surface may be placed on the side lines an input, and the
dimensionality-reducer will then compute, and output at the top, the co-
ordinates of this data point in the n-dimensional feature space.

The contents of the black box dimensionality-reducer described in this
paper are a network of simple computing elements.

3
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3 Connectionist Networks

Recently, renewed attention has been directed to "connectionist" networks
of simple computing elements. It is believed that new developments in
training procedures applied to multilayer networks will overcome some of
the well-known objections to classical perceptrons [Rosenblatt, 1962; Min-
sky and Papert, 1969]. Of interest here are demonstrations by Hinton, et
1 [1984], and Rumeihart, et al [1985, 1986], that hidden units in multilayer
networks are able to attain abstract representations capturing constraint
in binary input data.

A prototypical example is the "encoder problem" (see figure 3). Here,
the activity, at, in a layer of eight output units is calculated from the
activity, aj in the middle layer of three units:

a,= f(a#,) = f witai + bb),(1

where wilh is the connection weight between the jth middle layer unit and
the kth output layer unit. bl is a bias input; it is omitted from succeeding
equations because it can be considered equivalent to the weight, w, from a
unit whose output is always 1. The activity in the middle layer is calculated
from the activity in the input layer in a similar way. The middle layer units
are called "hidden" units because their activity is not directly accessible
either at network input or output. Each unit's activity is bounded between
0 and I by f, which is typically a sigmoidal nonlinear function, for example,

1i

/(z) = I+e (2)

The goal of the encoder problem is to set the weights such that if any
single unit in the input layer is set ON (near 1), and the rest set OFF (near
0), the activity will propagate so that only the corresponding output unit
will be ON. Because data presented to the input layer is constrained, so
that only a subset of all possible patterns of activity in the input layer
ever actually appear, the information as to which unit is ON may be prop-
agated to the output layer through a middle layer containing fewer than
eight units. In particular, the three middle layer units may transmit the
information by adopting a binary code. Rumelhart, Hinton, and their col-
leagues have described a method, called backpropgaotion, for training a

4
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0output layer,

000I~E hidden layer. 3'

00000000 input layer,i
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Figure 3. a.Three layer connectionist network. Activity at the input
layer drives hidden layer, activity at hidden layer drives output layer.
b. Activity at a unit is computed am a semilinear futnction of the
weighted sum of the unit's inputs. c. Activity in an 843-8 network
trained for the encoder problem. Input is constrained so that only
one input unit is ON at a time. Activity at output matche. input.
The information as to which input in ON is able to be transmitted
via the hidden unit layer of only three units. Size of circle represents
unit's activity.
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network to achieve such behavior without directly specifying the behavior
of the hidden layer: repeatedly present the network with sample input and
allow activity to propagate to the output layer, observe the error between
the desired output and the observed activity at the output layer, and use
these errors to update the network weights. This technique is described in
more detail below.

Here we describe a method for extending the backpropagation weight
updating scheme for connectionist networks in order to perform dimension-
ality reduction over continuous-valued data.

4 Representing Scalar Variables

We must start by endowing networks with the ability to represent not just
the binary variables, ON and OFF, but variables continuous over some
interval. For convenience let this interval be (0,1).

One conceivable way of representing scalars in simple units is via a
unit's activity level itself. Since only one weight connects any middle-
layer unit to any given output unit, this strategy is clearly inadequate
for representing anything but linear relationships between variables. The
relationship between z and y in figure I is not linear, so the relationship
between z and some hidden variable, h, and between y and h must not
both be linear. Therefore, we instead use the following scheme.

Each scalar feature value is represented as the pattern of activity ov r
a set of units, called a scalar-set, as illustrated in figi:re 4. The pal tern f
activity is determined by sampling a unimodal smearing function, , cei -
tered at the location along the (0, 1) interval corresponding to the intended
scalar value. The exact form of the smearing function is not important;
here, it happens to be the derivative of the function, f, of equation (2),
but other forms, such as the gaussian, may be used. The parameter, w,
controls the width of the smearing effect. This method for encoding scalar
values achieves a form of interpolation. Resolution of better than 1 part in
50 may be achieved using as few as eight units.

Any set of units whose activity pattern displays the characteristic uni-
modal form for encoding scalar values is said to exhibit "scalarized" be-
havior. The number expressed in a scalarized pattern of activity may be
decoded as the placement of the smearing function, S, at the location, z,

6 U 111''1 11116 -cZ 1 b.. -... .
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C.

. b.

Figure 4. a Scalar values between 0 and 1 are represented in scalar.
sets of units whose activity takes a characteristic pattern defined by
sampling a unimodal smearing functios, S.. The activity pattern
shown in this 12-unit scalar-set represents the number, .4. b. S.,
for several values of the smearing width parameter, w. c. Scalarized
activity in a two-dimensional scalar-set.
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within the (0,1) interval, that minimizes the least-square difference,

Q(a) = Y2(s.)- (3)

Two means are available for representing multidimensional vectors in
terms of scalar-sets. The most straightforward method is to provide one
one-dimensional scalar-set for each scalar component of the vector. How-
ever in order to perform dimensionality-reduction it is also necessary to
employ an alternative representation in which the scalar-set itself takes
the inherent dimensionality of the vector. For example, figure 4c shows a
scalarized pattern of activity over a two-dimensional scalar-set.

5 Training the Network

A three-layer connectioniat network configured to perform dimensionality-
reduction is illustrated in figure 5. A one-dimensional scalar-set is provided
at the input layer and at the output layer for each coordinate dimension of
the higher-dimensional feature space. The hidden layer is configured as a
scalar-set whose dimensionality matches that of the embedded constraint
surface. The input, hidden, and output layers of the network correspond
to the bottom, side, and top of the black box dimensionality-reducer.

Dimensionality-reducing behavior is achieved by virtue of the link weights
between successive layers of the network. These weights are established
using the backpropagation training procedure, which furnishes crucial self-
organizing properties during the training phase. Training consists of r,-
peated presentation of input activity/desired output activity pairs, where
the desired output is defined to be identical to input activity. At each
training trial, activity at the input layer is fixed according to the scalarized
representation for the coordinates of a dta sample expressed in terms of
the high-dimensional feature space. Activity propagates through the net-
work, sad the output layer activity is compared with that of the input to
create as output error vector. This error is used to update link weights
withia the network in such a way as to reduce the output error.

The bekl WopMeion method for updating weights in order to achieve
in amdbs iimt/eutput behavior may be derived by expressing the re-
hia ba s a.) a cost for error in output behavior, and b.) the
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strengths of individual weights in the network. Following Rumelhart, et al
[is"]5, dam cost

E 2 (4)

as the cost over all output units, k, of error between output a, and target
output, ti, summed over all sets of presentations, p, of input data. Weights
are adjusted a slight amount at each presentation, p, so as to attempt to
reduce E.. The amount to adjust each weight connecting a middle layer
unit and an output unit is proportional to (from (1) and (4))

clE = al, f(8&, hka')a,. (5)

Take
Awk= -7 6 pk!'(8&)aj (6)

as the amount to adjust weight wl, at presentation p. q is a parameter
controlling learning rate. lie

Adjustments of weights between the input and middle layers is propor-
tional to

8_. - cla, 8 ., (7)
8w a,, ask cla 8,,

- (6,if(*)w(t .) f'(Sj)i. (9)

Defning
6,, = ,1r(&) 1 ,. (10)

we arrive at a recursive formula for propagating error in output back
through the network. Take

Mbswtlat, this method for updating weights performs a localized gra-
dAMt dmest in error cost over weight space. By asserting an equivalent
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hidden layer error vector, bpi, the backpropagation step amounts to ana-
lyzing how each unit at the hidden layer contributes to error observed at
the output layer.

In implementation, a "momentum" factor is used to smooth the trajec-
tory in weight space. The actual weight adjustment used at iteration t is
given by

AW" (t) - Aw(t) + a W(t - 1), (12)

where a is a parameter controlling the rate of decay of the contribution to
Aw"P"" from previous data samples.

6 Auxiliary Error to Constrain Hidden Unit Activity

If all of the data presentations to scaler-sets at the input layer conform
to scalarized representations for the scalar components of the data vector,
then after a suitable training period the output will come to faithfully mimic
the input. Unfortunately, there is no guarantee that the hidden units will
adopt the scalarized representation in their !ra'smission of activity from
the input layer to the output layer. In general their coding behavior will be
unpredictable, depending upon the initial randomized state of the network
and the order of data sample presentation.

What is needed is a way to force the scalar-set at the hidden layer into
adopting the prescribed scalarized pattern of activity. For this purpose we
introduce an auxiliary error term, -y, to be added to the error in activity
at the hidden layer, 6,, which is propagated back from the error in activity
at the output layer (10). The network weights connecting the input layei
and the middle layer are now updated according to

A, = [A6, + (1 - ,)OM'(Mai,, (13)

where A (0 < A < 1) trades off the relative contributions of 6 and y. -y
must be of a suitable nature to pressure the hidden units into becoming
scalarized as the training proceeds. We compute -yj for the units of the
hidden layer scalar-set as follows.

We may view the activity over the set of units in a scalr-set as the
transformation, by the smearing function, S, of some underlying "likeli-
hood" distribution, p(j), over values in the interval, 0 < j < 1. The
activity in a scalar-set is the convolution of the likelihood distribution with

11
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the smearin function, sampled at every unit. Scalarized activity occurs
when the underlying distribution is the Dirac Delta function. The strategy
we suggest for adding auxiliary pressure to the scalar-set activity is sim-
ply to encourage scalarised behavior add some factor to sharpen the peaks
and lower the valleys of the likelihood distribution, to make it more like the
Delta function. A convenient way of doing this is to raise the underlying
distribution to some positive power, and normalize so that the total area
is unity. In the general case, if this procedure were repeatedly applied to
some distribution, one peak would eventually win out over all others. The
procedure is summarized by the following equation:

y(j) = (S* N {[S-' *a(j)]'})- a(j). (14)

The activity in the scalar-set, a(j), is deconvolved with the smoothing
function, S, to reveal the underlying likelihood distribution. This is raised
to the power, q > 0, and then normalized (by N). This new underlying
likelihood is now convolved with the smoothing function, S, and -y is taken
as the error between this result and the current activity in the scalar-set.

Now, on every training trial the weight updating term, 6, pressures
hidden units to adopt activities that will reduce the error between input
layer activity and output layer activity, while the auxiliary error term, -y,
pressures hidden units to adopt scalarised activity.

Ir an actual implementation, a(j) is not a continuous function, but
rather consists of the activity in the finite, usually small, number of units
in the scalar-set. Therefore the bandwidth available for conveying the un-
derying likelihood, p(j), is small; sharp peaks in p(j) are not representable
because high spatial frequency information cannot be carried in a. An al-
ternative expresion for -y, to substitute for (14), has been found acceptable
in practice: = N [ a(j)2] - a(j) (1i)

Thus, we square the activity in each unit, convolve this squared activity
in the w4dW-eet with the smearing function, S, then normalise so that
tke toal 4ctivity in the scalar-set sums to a constant. This procedure for
V ting "y, approximates the effect of encouraging scalarized patterns of
oVtiyfity in the scalar-set.

12
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7 Sculpting the Cost Landscape

As noted above, the network training procedure carries out gradient de-
scent. Weights are updated at each training presentation so as to reduce
the cost, E. This cost is high when activity in the output layer differs from
activity in the input layer, and, due to the auxiliary error term, -1, the cost
is high when activity in the hidden layer scalar-set does not conform to the
characteristic scalarized representation for scalar values. If, as is usually
the case, no prior knowledge of constraint operating upon the data source
is available, the network is initialized with random values for all weights,
and E will be large at the outset.

Simple gradient descent methods commonly suffer from the problem
that there may exist local minima in the cost landscape that are far from
the global minimum. Once a network falls into a local minimum there is
nu escape.

The local minimum phenomenon has been reported by Rumeihart, et
al (19851, in normal binary-variable connectionist training, where the only
pressure to adjust weights comes from error between output and input
activity. It should perhaps not then be surprising to encounter local minima
in the dimensionality reduction problem, where we impose a cost factor due
to non-scalarlike behavior in hidden units, in addition to the normal cost for
output activity deviation from input. In effect, what we are doing is adding
two cost landscapes to one another. The weight adjustment that reduces
one cost component may raise the other. Figure 6 is a simple illustration
of one way in which adding two cost landscapes can create local minima.

Two strategies have been proposed for surmounting the local minimum
problem. One is simulated annealing in a Boltzmann machine (Kirkpatrick,
et al, 1983; Hinton, et al, 1984]. Briefly, simulated annealing allows the
training process to adjust weights probabilistically so as to increase cost.
This allows the procedure to jump out of local minima in cost. Boltzmann
machine learning can be slow, and it requires certain conditions on the
shape of the cost landscape in order to have a good chance of working.
We have not investigated its applicability to the dimensionality-reduction
problem.

Another strategy for skirting local minima involves changing the shape
of the cost landscape itself as training proceeds. The idea is to introduce
a parameter that makes the landscape very smooth at first, so that the

13
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b.

FiSure 6. a. Neithe of the coat landscapes shown has a local mini-
mum by itself. b. But if they are moved near one another and added,
local minims can be created in the resulting landscape.

network may easily converge to the local (and global) minimum. Then,
gradually reduce this parameter to slowly change the landscape back into
the "bumpy cost landscape whose minimum defines the network behavior
actually desired. A variant on this technique has been used by Hopfleld
and Tank [19651 to train networks to find good (but not optimal) solutions
to the traveling salemnan problem (see also [Koch, et al, 19651).

For the dimmasiemality reduction problem we take as the cost landscape
soothing parameter the parumeter, w, of the smearing function, S.. At
the begimiag of a training session, the activity in all scalar-sets describing
scala,-vadled numbers is smeared across virtually all of the units within
each sealar-set. Figure 4b illustrates the activity across a scalar-set under
a variety of asoodig p"ameter., w.

Tis ensbUy creates two related effects. First, it reduces the preci-
ain to wckh the data vahum presented as input activity, and sought by

ther -Ila erM term, are resolved. Thus, local kinks and details of any
ca b cm we constraining the input data are blurred over more or less,
J - '" uen w. Seco , under smeaing with a lag w, amoidlry eior

t h bbyae premm each unit's activity to be not too difmt
hm it afbse's activity. The activity in hidden unit layers is thereby
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encouraged to organize itself into adopting the scalanszed representation.
Training begins with the smearing parameter, W, set to a large value.

The parameter is gradually reduced to its final, highest resolution smearing
value according to a training schedule. Typically, a training protocol might
involve several thousand data-sampling/weighit-updating trials for each of
five intermediate values for w.

8 Performance

The performance of the connectionist dimensionality-reducer on two-dimensional
data constrained to lie on a one-dimensional constraint surface is illustrated
in figure 7. X's represent locations indicated by output activity computed
by the network when the input is drawn from points on the constraint curve;
the extent to which X's lie on the curve simply demonstrates that network
output conforms to input. Numbers shown are scalar value indicated by

k F scalarized activity in the hidden layer scalar-set for inputs sampled from

II 11,64

0.4output x__________ ___
9.0 h idden

935 0.9input X___________________________
9y

9. F3

a. ~ 9 .95

9. 91

Figure 7. a. One-dimensional constraint in two-dimensional data.
X's denote network output when input is taken from the constraint
curve shown. Numbers indicate scalar value at hidden layer for points
along constraint curve. b. Sample of network activity for one location
along constraint curve. Note that output activity matches input
activity, and that hidden layer scalar set activity takes a unimodal,
scalarised, pattern. 
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locations along the constraint curve. Due to the self-organizing character of
the training procedure, theme numbers progress in an orderly fashion from
one end of the constraint curve to the other. Figure 7b displays network
activity for one data point drawn from the constraint curve. Note that
output activity matches input activity, and that the activity of the hidden
layer adopts a unimodal, scalarized pattern. Note also that in this cae the
connectionist dimensionality-reducer captures the constraint surface even
though it doubles back on itself in both the z and y dimensions.

Figure 8 illustrates a case in which a connectionist dimensionality-
reducer is able to discover a constraint surface given noisy training data.
During training, data samples were drawn randomly from the band pic-
tured. Shown slightly offset from this band, numbers indicate hidden
scalar-set encoding of locations along the constraint curve found by the
dimemionality-reducer (indicated by x's).

Figure 9 shows succesfl dimensionality-reduction given relatively sparsely
sampled data. During training, data samples were drawn, at random, only
from the points shown by X's. After training, the dimensionaity-reducer
nonetheless correctly interprets data at all locations along the length of the
curve. Empirical investigation indicates that during training the constraint
curve must be sampled no more sparsely than approximately three data
points per hidden layer unit.

Some types of constraint surface cannot be discovered by the connec-
tionist dimensionality-reducer. These are curves that double back on them-
selves radically. Figure 10 illustrates a case where hidden layer activity does
not display & scalarised pattern of activity representing an orderly progres-
sion of scelar vaubu for successive locations on the constraint curve. The

am for t failur is that points such as pi and p: in figure 10 appear
id n ble to the network early in the training procedure when S.
cause very heavy smearing of their coordinate representations. They are
tb.,e a&Migned similar encodings in the hidden unit layer. As w is d*-
cresd, later in te trAsini n procedure, the network remains stuck in a
l" miaimum of trying to encode both pa and p2 using nearby hidden
calar values, whem in fact it turns out that they are on opposite ends of

the costraiat curve and so should be assigned very different encodings in
t e hidden layer scalar-set. The cost landscape sculpting strategy does not
work when, as the landscape smoothing parameter is decreased, the global
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Figure 10. Unsuccessful dimensionality-reduction. When the con-
straint surface doubles back on itself radically, initial alignment of
the network's early rough approximation to the data is not untan-
gled as smearing width parameter w decreases later in the training
protocol. a. Numbers indicating best scalar-value interpretations of
hidden layer activity do not progress in an orderly fashion from one
end of the constraint curve to the other. b. Sample of network activ-
ity, after training, for one location on the constraint curve. Hidden
layer does not display ecalarised pattern of activity.

minimum in cost suddenly appears in a very different location in weight
space from where the previous local minimum had been. Clearly, then, a
network cannot be proved to converge to dimensionality-reducing behav-
ior in the general cme, which includes pathologically contorted constraint
surfaces. However, once the training procedure is completed, it is a straight-
forward matter to detect whether or not dimensionality-reduction has been
achieved, simply by sampling the data source, and determining whether
the network maps input activity into (nearly) identical output activity via
properly scalarlsed hidden layer activity.

Prior to training a dimensionality-reducer, it is important to select a
dimensionality for the hidden layer to match the inherent dimensionality of
the surfae constraining the data. The connectionist dimensionality-reducer
provides no mewn for doing this automatically. However, again, it is easy
to detect whether the constraint surface is of inadequate dimensionality,
because under this condition a network will converge to a state in which
It dof not conetly map activity at the input layer to (nearly) identical
activity at the output layer in terms of a unimodal, scalarised pattern of
attlVity at the hidden layer.
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The method expands readily to larger high-dimensional feature spaces
simply by adding more scalar-sets at the input and output layers to rep-
resent additional scalar components of the feature vector. Figure 11 illus-
trates the n = 3, m = 2 case. Figure Ila is the true underlying constraint
surface. Figure lib represents network output for input data drawn from
the constraint surface. Figure 11c illustrates network output when activ-
ity corresponding to successive (hl, h2 ) pairs (0 < hi < 1, 0 < h2 < 1) is
injected directly into the hidden layer.

However, the tractability of discovering many-dimensional constraint
surfaces degrades quickly as the dimensionality of the hidden layer con-
straint surface increases. The amount of data that must be analyzed in
order to establish a constraint surface increases as the power of the sur-

face's dimensionality, and the cost in terms of network links and nodes
increases accordingly. To give an idea of computing costs, a training pro-
tocol of 2000 trials for each of five values of the smearing parameter, w,
takes approximately 30 minutes for the n = 3, m = 1, case, with resolution
of eight units per scalar-set, on a Symbolics 3600 lacking floating point
hardware, while the n = 3, m = 2 case takes three hours.

To illustrate the application of dimensionality-reduction to real data,
figure 12 shows a set of bananas that were originally described in terms of
six properties crudely measured on the banana shapes, such as the distance
between the ends and average curvature of various contour segments. By
training a connectionist dimensionality-reducer on these data samples, the
bananas were found to lie on a two-dimensional constraint surface in the
six-dimensional feature space. The organization of this constraint surface
is illustrated in the figure; bananas are placed on a plane according to
their respective two-dimensional coordinates. Note that banana shapes
are organized on the basis of very subtle differences in their geometrical
properties.

Although the reduced dimensionality representation concisely encodes
the essential parameters of variability among members of the data class
falling on a constraint surface, the lower-dimensional coordinate axes do
not necessarily align with interpretations of these parameters preferred by
human observers. For example, the horizontal and vertical axes of figure
12 roughly correspond to curvature of the lower part of a banana, and
banana size, respectively, however, the dimensionality-reduction training
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procedure run again on the same banana data might mirror reflect these
axes, or rotate them an arbitrary amount in the plane.

9 Discussion

The connectionist dimensionality-reducer is able to capture a wide class of
lower-dimensional constraint surfaces embedded in high dimensional feature
spaces, even when the constraint surface curves to a considerable degree.
The important distinction from previous, linear transformation approaches
to dimensionality-reduction is that the connectionist approach enables the
system to maintain a great deal of knowledge about constraint on the data
source reflected in data samples. This knowledge is contained in the weights
between units in successive layers of the network. Note that nowhere is
the constraint surface described explicitly; its shape remains implicit in
the weight connections. In contrast, only a few parameters are available
to a linear transformation, which must therefore approximate a complex,
curving constraint surface by a linear surface.

Analysis of a dimensionality-reducing network after the completion of 4-

training indicates that local regions of the hidden layer scalar-set map t'-
local regions of the constraint surface, in a topology-preserving fashion.

Figure 13. Local regions of a hidden-layer scalar set represnt local
ngions of the embedded constraint surface, in a topology-preserving
fskaon. for example, regions on a two-dimensional constraint our-

wo an repsented by local patches of the hidden layer scalar-set.
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For example, a data sample drawn from the constraint surface at the loca-
tion shown in figure 13 would give rise to scalarized hidden layer activity
centered at a corresponding location in the hidden layer scalar-set.

The connectionist dimensionality-reducer described here bears modest
commonality with the method of Kohonen (19841. Kohonen's method,
which is based on his theory of the topographic mappings achieved by
cells in the brain, also uses a large number of simple computing elements in
whose connections are contained knowledge of a constraint surface. How-
ever, his method uses a very different type of self-organizing algorithm that
confounds the shape of the underlying constraint surface with the proba-
bility distribution of data samples over that surface. The present method
differs from Kohonen's in the employment of the backpropagation scheme
for training multilayer networks, and in the explicit use of the landscape
smoothing parameter, w, to avoid local minima during training. The rep-
resentation of scalar values in sets of units by use of a smearing function is
similar to "value unit" coding described in [Ballard, 1986.

10 Conclusion

We have presented a mechanism for performing dimensionality reduction
over data constrained to lie on a lower-dimensional surface embedded in
a high-dimensional data feature space. A technique is given for represent-
ing in connectionist networks the scalar components of continuous vector-
valued data. An auxiliary error pressure is introduced in order to pressure
hidden units in the network into adopting this representation for scalar
values.

This method has been shown capable of capturing lower-dimensional
constraint surfaces which curve to a considerable degree. The network con-
structed by this method organizes and maintains knowledge of constraint
latent in a set of data in order to encode information in a more concise
representation than its original description as a high-dimensional feature
vector. The connectionist dimensionality-reducer may also be viewed as a
means for performing pattern matching to a variable, parameterized, pat-
tern template given by the locus of points comprising the constraint surface
in the embedding feature space.
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