

MICROCOPY RESOLUTION TEST CHART MICROMAL BUREAU OF STANDARDS 1963-A

AD-A183 629

OFFICE OF NAVAL RESEARCH

End-of-the-Year Report

Presentations

for

Contract N00014-87-K-0131

R&T Code 4132016

"Design, Synthesis and Characteristics of Novel Polydiacetylenes Using New Analytical Techniques"

Dr. Sukant K. Tripathy

University of Lowell

One University Avenue Lowell, Massachusetts 01854

Reproduction in whole or in part, is permitted for any purpose of the United States Government.

This document has been approved for public release and sale: its distribution is unlimited.

87

 $\ddot{\mathbf{O}}$

SECURITY CLASSIFICATION OF THIS PAGE (Who	n Data Entered)	
REPORT DOCUMENTA	TION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
1		
4. TITLE (and Subtitle)		5. TYPE OF REPORT & PERIOD COVERE
Polymer in Nonlinear Optics		Technical Report
		February, 1987 - July, 19
		S. PERFORMING ONG. REPORT NUMBER
AUTHOR(S)		8. CONTRACT OR GRANT NUMBER(s)
Sukant Tripathy		
		N00014-87-K-0131
PERFORMING ORGANIZATION NAME AND AD	DRESS	10. PROGRAM ELEMENT PROJECT TASK
University of Lowell		AREA & WORK UNIT NUMBERS
Lowell, MA 01854		
1. CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE
Office of Naval Research		July 28, 1987
Arlington, VA 22217		13. NUMBER OF PAGES
4. MONITORING AGENCY NAME & ADDRESS(1)	different from Controlling Office)	15. SECURITY CLASS. (of this report)
		Unalpasified
		154. DECLASSIFICATION/DOWNGRADING SCHEDULE
DISTRIBUTION STATEMENT (of this Report)		
7. DISTRIBUTION STATEMENT (of the abstract o	ntered in Block 20, if different fro	m Report)
For unlimited distribution a	ind release	
SUPPLEMENTARY NOTES		
To be presented at the Confe	erence on emerging te	chnologies in materials
sponsored by American Instit	ute of Chemical Engi	neers, as an invited talk
at Minneapolis, MN, August 1	.8-20, 1987.	
KEY WORDS (Continue on reverse side if naces	serv and Identify by black our has	
Nonlinear ontics	, und ratifity by block humber)	
Side group induced processes		
Diacetylenes		
_		
Totoact Continue	and before the best of the	
Surface active diacetuler	ary and identify by block number) he where the electron	ic structure of the
sidegroups inductively couple	with the electronic	structure of the polymerized
backbone has been synthesized.	The fully polymeri	zed Langmuir-Blodgett
monolayers are expected to have	ve novel nonlinear op	tical properties. This
research is being pursued in 1	ight of significant	theoretical and experimental
findings established for singl	le crystalline polydi	acetylenes. In the
rolydiacetylenes that are bein	ng investigated, the	electronic structure of the
FORM NATE		
D 1 JAN 73 1473 EDITION OF 1 NOV 65 IS	OBSOLETE	\sim
	SECURITY CLA	SSIFICATION OF THIS PAGE (When Dete Ente

1225250 11222255 LULLA LANGERED

(INSPECTED)	Accession For
	TTES CONSE DECE INS Unum incol I Justic Section
POLYMERS IN NONLINEAR OPTICS	27 Distribution/
	Availability Codes
Sukant K. Tripathy * Department of Chemistry University of Lowell Lowell, MA 01854	Av til and/er Dist Special

Nonlinear optical properties of classes of polymers have recently received extensive attention. The possibility of their application in a number of optic techniques has led to new developments in material processing technologies and characterization and in anticipating new polymers with enhanced nonlinear optical properties. Large and fast third order nonlinearities have been reported for polymers such as Poly(benzbis-oxazoles), polyacetylene and polydiacetylenes¹. Polymers or composites with large second order effects have also been reported.

A large number of side groups may be synthesized and as a result of this variation in the side group structure one sees a tremendous variation in crystal morphology and extensive polymorphism for polydiacetylenes (PDA). This permits new approaches to their growth and processing. Two examples of these novel approaches are the use of Langmeir Blodgett film balance to grow diacetylene monolayers and thin film single crystal through solution techniques developed at GTE labs.

The diacetylene functionality is an extremely versatile vehicle for engineering at the molecular level. Polymerization in the solid state in a diacetylene monomer single crystal can be brought about by a variety of techniques including thermal and radiation induced polymerization. The polydiacetylene chain in the single crystal has a planar extended chain conformation and possesses a fully conjugated delocalized electronic structure. Extensive investigation has focussed on the 1-D electronic structure of these systems. Several ultrafast nonlinear optical signal processing schemes rely on a material's intensity dependent index of refraction as the basic nonlinear mechanism². In order to realize these concepts a material is needed with both a large and fast nonlinear optical coefficient with the additional requirement that the material is processible in the desired form (e.g. a waveguide). The PDA's possess one of the largest measured nonresonant third order nonlinear optical susceptibility and its response time has been measured to be no slower than a few femtoseconds.

On the basis of the properties of the PDA backbone alone one expects significant opportunities. The impact could be significantly broadened if in addition side group induced and initiated processes are included. Theoretical modelling by Tripathy and coworkers has indicated that attachment of side groups whose electronic structure can extensively renormalize the electronic structure of the backbone will substantially modulate the electronic properties of the backbone itself. From theoretical consideration dramatic possibilities are anticipated. Specific results from ongoing research and a broader overview of this emerging field of research will be presented.

. 🛋 .

- 1.) Carter, G.M., Chen, Y.J., Tripathy, S.K. (1983) Appl. Phys. Lett., 43 892.
- 2.) Lattes, A., Hans, H.A., Leonberger, F.J., Ippen, E.P. (1983) IEEE J. Quantum Electron QE-15 1718/
- 3.) Orchard, B.J and Tripathy, S.K. (1986) Macromolecules 19 1844.

* This work was supported in part by the Office of Naval Research.

