N_MODEL BASED TROUBLESHOOTING(U)> MASSACHUSETTS Ve
TECH CAMBRIDGE ARTIFICIAL INTELLIGENCE LAB
ER ET AL. MAR 87 RI-M-893 miO-OS-g;sii;/’

*

SEEEE
Jdaa o

ummmunnuu

S EE

]
1 ——
]

v

MICROCOPY RESOLUTION TEST CHAR]

ANDAROS lm:A

e JALIONAL BUREAU OF ST

b

-

KRN

AD-A183 617

LholASIFIED

@

CETL® T a4t AT T 2F Ta 8L Whgs oo Eniored
READ INSTR
REPORT DOCUMENTATION PAGE sLrogt CO.’L:%Y':gn'so..
" < YT 1 &) 12 GOVY ACCRISION N0) RECIPEuT'S CaTa L 00 nyuueth
A.I. MEMO 893

¢ TiT € ene Subtitie)

Issues in Model Based Troubleshooting

S Yveq OF REPORT § PEMOD COVENED

T Ay TmOy,,

Walter Hamscher and Randall Davis

A.1. MEMO
¢ PEARPFOMNING ORG NEPONYT 4 uotR
] [Y ANY wye)

N00014-8S-K-0124

) SERFOAMING ORGANIZATION nAME A0 ADORESS
Arcificial Intelligence Laboratory

545 Technology Square
Caambridge, MA 02139

'Y COMTAOLLING 079 1CE waut and ADOAESS
Advanced Research Projects Agency

1400 Wilson Blvd.
Arlington, VA 22209

7 woweth or Sasls

13 AgrOAY gate
March 1987

NiIYORING ACENCY naul & ADOREIWI! diiteran: vam Conwolitng ONios)
Office of Naval Research
Information Systems
Arlington, VA 22217

Trz&a'ﬂu'v CLASS 7o/ Wie repon)

UNCLASSIFIED

wtduie’

] [AL 100 SYATRUMENTY 107 e Repere)

Distribution is unlimited.

DTIC

17 OisTRMOUTION STATEUENT (o e ebewes: antered in Blecd 0. H GNarant Sun Bepart)

A6 3 1

T IS TITMIETMD

None

ey and 'Guntily Wy Mesd sumbery

W alv 1€ - otgo M

Diaanosis, Troubleshe o rinag, Mo del Based Reas H Lo
PB 208?04LY ‘Conemms @ rovmee wid ¥ avcossay e ‘Gumntld vy Wosd aumben
vt im0 -’ 5> Me:® " 0 [N ' - [N '
KT o T w L ey vy e e Lt R M T [- 4
MR TR A ~ - . ™l ~ - 1
LM oK e e 1 . \ . X
)
m; ~e *t s M T z - -
e 1 ¢ N) I -]
r v, 0~ . f g
¢ oon
DD ..., 187} ¢cocemer cover .t ooemnire UNCLASS IS gD
| 20 BN FEERE I N
Cy® s C, sdB P CoV0n 0F Suet P ool Bow boe toee

« f o S

computational mechanisms used to implement these systems tend

to obscure two important facts. First, existing programs have
similar mechanisms for generating and testing fault hypotheses.
Second, most of these systems have similar built-in assumptions
about both the devices being diagnosed and their failure modes;
these assumptions in turn limit the generality of the programs.
The purpose of this paper is to identify the problems and non-
problems in diagnosis from first principles. The non-problems
are in generating and testing fault hypotheses about misbehaving
components 1n simple static devices; a small core of largely
equivalent techniaques covers the apparent profusion of existing
approaches. The problems occur with devices that aren't static,
aren't simple, and whose components fail in ways current programs
don't hypothesize and hence can't diagnose.

LR ADAALY

MU R PR %P

T & S S

"

K
~

Massachusetts Institute of Technology
Artificial Intelligence Laboratory

A.l. Memo 893 March, 1987
Issues in Model Based Troubleshooting

Walter Hamscher
Randall Davis

.

Abstract. To determine why something has stopped working. it’s helpful to know
how it was supposed to work in the first place. This simple fact underlies recent
work on a number of systems that do diagnosis from knowledge about the internal
structure and behavior of components of the malfunctioning device. Recently much
work has been done in this vein in many domains with an apparent diversity of tech-
niques. But the variety of domains and the variety of computational mechanisms
used 10 implement these systems tend 1o obscure two important facts. First, exist-
ing programs have similar mechanisms for generating and testing fault hy potheses.
Necond. most of these systems have similar built-in assumptions about both the de-
vices being diagnosed and their failure modes: these assumptions in turn limit the
generality of the programs. The purpose of this paper is to identify the problems
and non-problems in model based troubleshooting. The non-problems are in gener-
ating and testing fault hypotheses about misbehaving components in simple static
devices: a small core of largely equivalent techniques covers the apparent profusion
of existing approaches. The problems occur with devices that aren’t static. aren’t
simple. and whose components fail in ways current programs don’t hypothesize and
hence can’t diagnose.

Acknowledgements. This report describes research done at the Artificial Intel-
ligence Laboratory of the Massachusetts Institute of Technology. Support for the
laboratory ‘s artificial intelligence research on troubleshooting i« provided in part
by the Digital Equipment Corporation. and in part by the Advanced Research
Projects Agency of the Department of Defense under Office of Naval Research con-
tract NOOO14-85-K-0124. oo

{
, ‘
¢ Massachusetts Institute of Technology 1987 m:// ,‘

87 8 19

1 Introduction |

Programs for doing automated diagnosis from structure and behavior strive for ;
generality of various kinds. One aspiration is to have programs able to diagnose '
virtually any designed artifact in a particular technology. A more ambitious general-
ity is implied by the dream of building a general troubleshooter that could diagnose
(say) automobiles as well as analog circuits, simply by substituting differen: types
of components for each domain.

Our claim is that the dream is both closer and farther away than is commonly
appreciated. It is closer. because most existing programs use similar techniques and
the commonality suggests that a “domain-independent™ troubleshooting methodol-
ogy is within reach. It is farther away. because these same programs have built-in
assumptions about their domains which must be made explicit before they can be "
generalized. The difficult issues in this line of research do not arise in the methods g
themselves. but rather from the simplifying assumptions implicitly built inte them. '

A number of programs reason from structure and function to diagnose devices
in a variety of domains. using what appears to be a variety of techniques, includ-
ing INTER 'deKleer?76 . WATSON Brown76., SOPHIE {Brown82 . LOCALIZE First82,

Davis®4 ‘s program. DART Genesereth®f _ IDS Panf4 . LOX Scarl®5. and the
ATMS troubleshooter deKleer87 . .

The variety of domains and computational mechanisms found in these pro-
grams tends to obscure important similarities. One set of similarities concerns 3
troubleshooting techniques. These similarities can be made clear by describing
them in terms of the generate-and-test paradigm. illustrating the ways different
programs use the same kinds of knowledge.

A second important set of similarities concerns the assumptions that differ-
ent programs make about the kinds of components and faults to be encountered.
Among these assumptions are that components have no hidden state and that the
given representation of interactions between components is complete and correct.
These assumptions are often built into programs for the sake of efficiency. resulting
in important limitations. These limitations in turn constitute an agenda of open
problems in automated diagnosis.

. S _9_o _» o enq
.

8

4
.

Y

4% GH Y

&

e .

N .n‘ K BN aN ‘ll‘. " ‘|_‘| N S ‘f’ . "J" ‘..' v 2L \ ".\‘,\ WN ™ ".i ‘--\ "*\.." \'.‘-..\..'-._\'. .'_‘ N

» »!

-

S

- e

L

'..'l,,-",a}.n",o l.uh

2 V0,

2 Diagnosis from Structure and Behavior

Given some observations of a misbehaving device. a description of its internal struc-
ture, and descriptions of the behavior of its components. we wish to find out which
components could have failed in such a way as to explain the misbehavior. A useful
way to decompose this task is to consider three separate tasks: (i) generating fault
hyvpotheses. (ii) checking those hypotheses for consistency. and (iii) discriminating
among the consistent hypotheses on the basis of further probes or tests. This section
discusses each in turn.

It is necessary to make some initial definitions and assumptions, each of which
will be reexamined later.

A component is a part of a device. Diagnosis programs diagnose devices to
find faulty components. System is used interchangeably with “device™ to refer to
a larger collection of components. such as a computer system.

The structure of a device can be thought of as a graph. with the components
represented as nodes and connections between components represented as arcs.
Terminal is used to mean a point where a component can be connected to others.

A suspect is a component whose misbehavior could possibly explain one or
more symptoms. For the moment. let a fault hypothesis be a specific misbehavior
hypothesized for a suspect.

As an example. the structure of a digital device might be represented with the
logic chips as “components,” the wires as “connections.” and the the pins on the
chips as “terminals.” A different representation of the same device might have
the components represent boolean logic gates, the connections represent electrical
connectivity through metal wires and pins. and the terminals represent the signal
inputs and outputs of the gates.

From the point of view of a diagnosis program, these are two equally valid
representations of “structure” for the same device. Suspects generated from the
two representations will be different, because the components and their connections
are different. but the diagnosis methods to be discussed are flexible enough to deal
with these and other notions of “structure.”

2.1 Hypothesis Generation

The generate-and-test paradigm requires that the generator of candidate solutions
be complete. in the sense that every potentially valid solution will eventually be
proposed. Given a device description, a complete generator of fault hypotheses could
be trivially built by exhaustively enumerating all components, since all suspects are
components. But not all components are valid suspects: suspects should explain
the observed symptoms without implying symptoms tha' were not observed. It
is advantageous to incorporate this constraint into the generator, so that fewer

A

ﬁ—<--—— bl W N EFEN BN T SN T
\

invalid suspects are proposed. There exist a number of progressively more elaborate
ways to use knowledge about the device's structure and its components’ behavior
to generate a more constrained set of hypotheses while preserving the required
property of completeness. In this section we begin with an extremely simple version
of hypothesis generation and develop these elaborations one at a time.

A discrepancy is a disagreement between an observation of a device's behav-
| ior and its expected fault-free behavior. For example, the adder-multiplier circuit
shown below presented with zeroes on all inputs is expected to produce a zero on
output F. An observation of anything else at that terminal constitutes a discrep-
| ancy. A program'’s first task is to determine whether any discrepancies exist. This
‘ can be done by simulating the device’s expected behavior given the inputs presented
and comparing the results to observations of the real device.

i A0 MuLT1 o [
| ‘ L
ADD-1 ———F . 0
B0
"' C-0—* MULT-2 Y o
D -0
ADD-2 +—— G 0
MULT-3 —— |
E-0— Z-0

Adder-Multiplier Example

Given these discrepancies. a simple. intuitively appealing way to find suspects
i to find all the components connected to a discrepancy via some path through the
connections. This makes sense because the suspect must be among the components
that could influence the expected value. and according to the model this influence
could only be exerted through the connections. Suspicion is “contagious,” in the
sense that a discrepancy observed at one of the terminals on a component implies
either that the component is malfunctioning, or that the component is normal but
some component connected to it is malfunctioning. Each of the other terminals of
the component yield further suspects and further discrepancies, etc. The problem
with this approach, however, is that in most cases following every connection means
that every component will be reached, so this is a poor strategy.

Intuition says that a better approach would be to identify the direction of causal-
ity in the device, and mark as suspects only those components that are “upstream”

%

z
."\ .

o TR r—

of discrepancies. In the example above. a discrepancy observed at output F would
make suspects of only the three components upstream from F. Knowledge about
components’ direction of operation can thus constrain the suspects generated. Com-
ponents that have identifiable input terminais and output terminals are said to have
directionality. This notion is not applicable in every domain; analog electronic
components such as resistors, for example, are not usually thought of as having
inputs and outputs. Nevertheless. the technique is appropriate in many domains.
so we will pursue some of its elaborations.'

One way to elaborate is with a behavior model. This is information about a
component that can be used to predict its response given its inputs. This can then
be used to constrain hypothesis generation: when a discrepancy is observed at an
output, we need move upstream only from those input: upon which the expected
output depended.

For example. suppose a digital OR gate is expected to get a 0 on input “A™ and
a 1 on input *B,” vielding a 1 on the output. The output of 1 in this situation
depends only on B's being 1. Hence. if the output is observed to be zero. only B
need be traced upstream.

T

0--A- Ot
OR Gate -1
1 - ~B-1

OR gate

There are different ways to implement this approach to generating suspects. One
method is to record dependencies whenever an output prediction is made. In the
OR-gate example, the reievant dependency would be created and stored with the
original deduction that the output should have been 1. Dependency based hypothesis
generation schemes follow these dependency records upstream from discrepancies.
Each component visited while tracing these dependencies back to pritnary inputs is
a suspect. Davis’ program stores explicit dependencies for this purpose. Another
method traces inputs upstream by computing the logical consequences of observa-
tions. in this example, we know that “if an OR gate s norial and one of its inputs
is 1. then its output is 1 © Since this output i~ observed to he something other than
1. then either the OR gate i+ not normal. or neither inpur 1s 1 Hence. either the
OR gate is not normal. or the B input was not 1 Hence, either the OR gate is
not normal. or the component upstream of B s not normal. ete DART exemplifies
this inference based method of comyj uting ~uspects LOX takes a similar viewpoint.
These various implementations of upstreain tracing yield i1entical suspects.

BT YV AAFRRPFT . W]

*The technique 15 aleo worth studying because 1t 1+ well grounded inantuition some of the programs 7.2
being surveyed assume 1t and «t can be generalized canily

.
3.2 _ YEN "9 5 27 AEAA LY

The notion of conflicting assumptions provides a more general framework than
the intuitive notion of upstream tracing. In this view. each discrepancy repre-
sents a conflict between expectations and observations. Assumptions about the
correct behavior of components are recorded at simulation time and underly those
expectations. The existence of a discrepancy means that the set of assumptions is
inconsistent and hence at least one underlying assumption must be false, i.e. ut least
one of the components assumed to be behaving correctly is actually misbehaving.

In domains for which components’ causal direction is the sole source of depen-
dencies, there is little distinction between the “upstream tracing”™ and “conflict-
oriented” views. The discrepancy at F in the adder-multiplier example vieids the
suspects ADD-1, MULT-1, and MULT-2 under both approaches. However, the
conflict-oriented view facilitates dealing with components having no directionality.
since it requires no distinction between inputs and outputs. neither for the individ-
ual components nor the device as a whole. So long as all values are predicted with
all the relevant assumptions being recorded, the technique will generate a complete
set of suspects.

The figure below shows a trivial circuit with two resistors. Suppose the potentials
at nodes X and Z are known to be 10 volts and 0. respectively. The voitage at node
Y i« measured to be 1 volt, instead of 5 as expected. This is a discrepancy. or more
accurately. it is a conflict between two assumptions. namely. that R1 and R2 both
have re<istances of 1 ochm. At least one of these assumptions must be false. hence
both resistors are suspects.

X = 10v observed

R1
111

Y = 5v expected. 1v observed

R2
19

(Z Ov observed

Voltage Divider Example

RGN

et

\'_ STt T e
LA Sl L AN

This simple example also illustrates a characteristic of devices composed of non-
directional components, which is that any single prediction may depend on a large
portion of the components working properly. As a result. hypothesis generation will
be unavoidably indiscriminate.

Given this variety of hypothesis generation techniques, the proper method to
use in a program can be suggested in part by the class of devices the program is
expected to diagnose. We have seen three techniques of increasing generality:

1. Upstream tracing is adequate in domains with simple, directional components.
LOCALIZE is able to use this technique thanks to the trivial behavior of neural
pathways in its domain. IDS uses it as well. in a representation that shows
only the intended direction of information flow between components in an
otherwise nondirectional device, thereby risking an incomplete generator.

2. Various mechanisms can constrain upstream tracing by using components’
behaviors. DART. Davis’ program, and LOX work in domains with moderately
complex yet largely directional component behaviors, thus motivating the use
of dependency-based and inference-based schemes.

3. Hypothesis generation can be broadly viewed as the task of finding conflicting
assumptions. The domain of analog electronic circuits involves mainly non-
directional components, hence INTER. WATSON. SOPHIE take this conflict-
oriented view, as does INTER's descendant. the ATMS troubleshooter.

2.2 Hypothesis Checking

Usually there are initial suspects that are locally consistent, but globally incon-
sistent. A suspect can be globally inconsistent either because it cannot explain
observed discrepancies or because its misbehavior would imply discrepancies that
were not observed. The purpose of hypothesis checking is to eliminate inconsistent
suspects using only the observations at hand. i.e. without performing any further
tests or internal probes of the device. As with hypothesis generation, there are
progressively more elaborate and powerful ways to use such observations. As be-
fore, let us begin with a simple technique for hypothesis checking and develop more
powerful elaborations of it one at a time.

One way to exonerate components is by using corroborations dekleer76
observations that agree with expectations. Intuition tells us that if an output of
a component is normal, the component is functioning correctly and its inputs are
normal. If those inputs were normal, then its immediate predecessors are function-
ing correctly, etc. This intuition is rarely correct, however It assumes that (i) the
input of a normal component can be determined ~olely from its output. that (ii)

CaTy e,

e e N e e e e e e e L

&

components only fail in such a way that misbehavior is detectable for every possible
input. Rarely are components so simple in their behavior that this method suffices:
LOCALIZE's domain of neural pathways is an exception

A more powerful method for using corroborations to detect inconsistencies
is fault envisionment: insert a hypothesized misbehavior and simulate to see
whether it matches all observations (both discrepancies and corroborationsj. Note
that this requires a predefined set of possible misbehaviors for each component type.
For example. a resistor in an electrical circuit may be faulted by being “shorted™ . the
resulting misbehavior is that its two terminals are forced to Lave the same voltage.
Any disagreement between the observed and predicted values rules out a hypothesis.
and suspects are exonerated by ruling out all the:r possible misbehaviors

An advantage of generalizing the notion of a “*behavior rmodel™ to incluce the
behavior of components when fauited is that dependent failures failure: that
occur when a failure in one component damages other components can be hy-
pothesized and their eflects predicted through fault envisionment Pan&4 .

A disadvantage of fault envisionment is that the number of ways components in
the domain can fail grows quickly with their physical complexity. In IDS Pang4 .
for example, analog electronic components such as resistors and diodes can be as-
sumed to fail only by having shorts or open circuits between two or more teriminals.
This works fine for components with 2 terminals. but becomes unwieldy when non-
nrimitive components or primitive components with more termmnals are considered:
an n-terminal component wiil have at least 2(2" n - 1) such failure modes.

A more general approach than either of the preceding relies on the obeervation
that a consistent hypothesic must account for all discrepancies. If there is more than
one discrepancy, and only a single failure is assumed. the set of consistent suspects
can be computed simply by the intersection of the suspect sets that arise from each
discrepancy. Moreover, in addition to accounting for all discrepancies. a consistent
suspect must also account for all corroborations, i.e. there must exist an assignment
of values to its terminals such that all. and only. the obtserved discrepancies are
produced. Constraint suspension 'Davis84 and similar techniqi es do this by. in
effect. attempting to infer what each suspects’ misbehavior would be if it were indeed
failing. The technique follows from the observation that the norn al behavior of a
component imposes a constraint on the values at its terminals. 1 the component
is working correctly then that constraint is in force; otherwise 'he constraint s
suspended. we simply don’t know the relation between the component’s terminals

Consider, for example, an adder, whose behavior can be capt ired 1n terms of
three rules: its output is the sum of its inputs; its first input 1s the difference of its
output and second input; and symmetrically its second input is tt« difference of 1ts
output and first input. The latter two rules capture what we ca: infer about the
values that appear on the terminals, not the directionality of the «tevice The adder
imposes a constraint on the values that can appear at its termir als. One way to

AR S I

T T T R I S A I S SR SR T W T I T VS Y

<
o
<
4
h
S
<
<
.1
¢
.
.
'1

implement a constraint is with rules, as in |Sussman80;:

A. IF input-1is X and input-2 is Y, THEN the output is X~ Y.
B. IF input-1 is X and the output is Z, THEN input-2 is Z-X.
C. IF input-2is Y and the output is Z, THEN input-1 is X.

But if the adder is not known to be behaving correctly, any combination of
values might appear at its ports, i.e., the constraint is suspended.

A suspect is consistent only if it is consistent for all other components to be
behaving correctly. In constraint suspension, a suspect is checked for consistency
by suspending its constraint and enabling the constraints associated with all other
components in the device. When any contradiction arises. the suspect is ruled
out: it cannot explain all the observations. For consistent suspects, constraint
suspension also makes hypotheses more specific by computing how the suspect must
have misbehaved. If no surh misbehavior can be found, the suspect is inconsistent.
Hence the technique can rule out many potential misbehaviors of a suspect at once.

Consider an example from Davis84 . The predicted outputs of this device were
F=12 and G=12. but instead F= 10 was observed. By tracing dependencies the
suspects are found to be ADD-1. MULT-1. and MULT-2.

A 3 — X 6 T
MULT-1 TJ
F"_‘—ﬁ CADD-] F 12 Expected
B 3- I ’ F - 10 Observed
C 24 MULT-2 Y 6
‘ _— T ==
S I S r |
D 2—t— [— L ‘
| ! | ADD-2 —-—G 12
-
MULT-3 ——
Eo3———— 6

Second Adder-Multiplier Example

Because MULT-3 is not a suspect. 2=6. then. because ADD-2 s not a suspect.
Y=6. Each suspect can now be checked for consistency by assuming that the other
components are OK. To check whether ADD-1 s faulty, we reason as follows: since
MULT-1 s OK. X=6. since MULT-2 is OK. Y28, hence the adder s misbehaving by
adding ¢ and 6 to get 10 If MULT-1 s faulty. then ADD-1 and MULT-2 are not. henee
X=4 and the multiplier 1s mishehav.ng by multip'ving 3 by 2 to get 4 Finally. if

........
........

[}
YEXXIL WO A |

......
..............
. .

£° 8°5,0°3 02 3" 0 a8 At e 0 b ol ol

£l
A,

>

MULT-2 is faulty, MULT-1 and ADD-1 are not, hence X=6 and Y=4: but the latter
is inconsistent with the earlier deduction that Y=6. therefore the suspect MULT-2
cannot explain the observations and is exonerated. The procedure not only rules
out all failures of MULT-2 at one stroke, but also produces useful information about
exactly how ADD-1 and MULT-1 are misbehaving if either of them is the true culprit.

LOX uses a similar procedure, but also interleaves the generation and checking of
suspects, occasionaily allowing it to exonerate all the predecessors of an exorerated
suspect. The underlying intuition is that if the suspect can’t explain all the observed
discrepancies, then neither could its predecessors. This intuition is correct only in
the absence of reconvergent fan-out. The system diagnosed by LOX has enough
components (about 2000) and its structure is sufficiently free of reconvergent fan-
out that the check for this special case turns out to be advantageous. A similar
optimization is done by LOCALIZE with its 10,000 components organized into ‘argely
fan-in-free structures.

INTER and the ATMS troubleshooter perform a computation similar in some ways
to constraint suspension. As in constraint suspension. all observations propagate
their consequences uniformly throughout the device. Each discrepancy can result in
conflicts with the consequences of other observations. Hence there can arise several
overlapping sets of conflicting assumptions. i.e. several se:< of components. each of

‘6 which mus* contain at least one faulty component. Fach such conflict set may
be rediscovered several times. in contrast to constraint suspension. which in effect
stops after finding the first conflict. The figure below shows the conflicts that this
procedure discovers in the adder-imultiplier example. The intersection of these sets

| of conflicting assumptions 's the set of consistent suspects, MULT-1 and ADD-1.

! A 3
i F=12 Expected
B 3] F=10 Observed
l
L
C 2— MULT-2
|
D 2 J
L Go12
E-3
A
bk Adder-Multiplier Example Conflict Sets
R R X g R AL ST 43, OO

10

Saving conflict sets allows straightforward generalization to finding con-
sistent hypotheses about independent multipie faults by using set cover
instead of intersection, as is done through a variety of mechanisms in
'First82,Reggia83,Reiter85,deKleer87]. Any collection of components that contains
at least one element from each conflict — i.e. any set cover - would explain all the
discrepancies. By Occam’s razor, the preferred hypotheses are the minimal set
covers, i.e. those set covers having no subsets that cover all discrepancies. Note
that different set covers can be minimal and yet have different sizes; the notion of
minimality has to do with preventing the inclusion of extraneous suspects, not with
cardinality. Note also that constraint suspension as described above could be gen-
eralized to hypothesize and check hypotheses about multiple fauits by suspending
n-tuples of constraints, but without an explicit requirement that all conflict sets be
covered, such a generator would be needlessly unconstrained.

The purpose of hypothesis checking is to exonerate suspects. We have seen
five techniques for performing this check. The ordering below reflects increasing
generality due to differing information requirements:

1. Directly exonerating components by reasoning from corroborations. This re-
quires that the components in the domain have exceedingly simple behavior.
LOCALIZE, INTER, and SOPHIE used this technique in certain cases.

2. Fault envisionment (used in SOPHIE and IDS) requires the use of built-in fault
models for each component, and compares the simulation results to all obser-
vations.

3. Covering of suspect sets derived only from discrepancies requires the same
information as hypothesis generation. It is used by DART and {Ginsberg84]’s
related framework for multiple faults.

4. Constraint suspension, implemented in different ways in Davis’ program and
LOX, relies on the ability to infer components’ inputs from their outputs.

5. Covering of suspect sets derived from conflicts involving both discrepancies
and corroborations (as implemented in the ATMS troubleshooter) has the same
information requirements as those of constraint suspension, but has important
advantages for diagnosing multiple faults.

3.3 Hypothesis Discrimination

It is unlikely that an initial set of observations will be sufficient to yield a unique
fault hypothesis. These competing hypotheses can be discriminated by probing

examining previously unobserved terminals - or testing - changing the device's
inputs and reexamining its outputs. We first consider probe selection, then explore
test generation.

R R R R A U R RTINS T TR L L S N R
Y P e T Ty U P A A S T A S L A R "y

.

r".-‘.-;.
oS
»

L L At 4 .y Vo Al Al ad Al od ol ad - e

2.3.1 Probe Selection

Assuming uniform cost for all probes. probes should be ordered 1 a wav “tat
minimizes the expected number required. Probe selection s hased o the naight
that each competing fault hypothesis may imply a different ~e' of pred.ctons abou:
the device's response to its current inputs Picking the hesr probe b~ ceans
selecting that one whose set of outcomes and resulting cand-da'e e v 00
minimize the number of probes that will come after 1

Probe interpretation - updating outstanding hypotheses goaen "t o S

orobe is an extension o' hypottesis checking When us g ‘au o0 o e
‘he result of a probe is checked for consistency acamnst the prodotee o a
quantity under each possible fault hypothesss When usng o

“he result provides information that allows more tonstrant o a0 v 00w o g
the number of consistent «andida‘es For ethaer oy each cavtadare o o acw
sufficient information to reconstruct the consequences cotnginted for 0 “he
consequences of believing that all components not appearinig 1 “he a4t :1a'e are

normal. This suggests that an ATMS s an advantageous orgar sa® .o cav
predicted value can be indexed with the collect.or of warhing o e tar
support it

Since probes are generally consaideredenperns o 0 : e
extra computation to select the most plormatice oa o i L .

here two basic approaches <tructura approackes wo e
about device structure to select a probe point and iore o a0 s
approaches. which ignore device ~tructure ar e cstead s 0 0 .
for the various outstanding hypotheses and probe outicre

Structural approaches to probe selection are motivated . . K T
peting suspects tend to lie in groups As aresult o nforeat o oo v
connections hetween suspects were known “he hiypothese: Do 1 ae
quickly. Consider the now famiihiar adder multip er exasrjo 0 o0 M7y
ADD-1 are suspects. and they could he dieer rarate 0y S . v
were known Nothing needs 16 he known ahont e et s
the fact that X is a g()«)d place o probe <~ pran fran the o .

A simple structural approact. .« ‘o probe st resl
until a correct value 1s found at "hat point e ot e
correct mmput will have an ncorrect ot arsr e
Components with multiple inhinow o 0 qre s e
terminated along any branch where Yo eapecied L
essence of the guirded probe aigorth Hreouer 76

Additional power 1s availabie trom the ohservar oo tha

new dns‘rrepancnes Or corroborations at »lerr 4« 0r e o s ty . . A

result can eliminate more candidates thar "he corervat e . : -
¥ %

aiMrm . N1 gligws s Lhe g anlage of ' - g0 v wm e, -
MTER SeRwer’t ol wrod Qquuib od

~ ' ge'ed

st qe Lt v andidaien wud

0 et vl enenfihing tirars wear-t WTER . e a0 egt cedn e alue T

' o e it e cuppuwied Tha 8 e CLrae e egt e o amsumptsone

Q.o et g . . RN U I 'l‘l’.'tﬂ a ¢ ‘a a€e - .ooharsved weTe
e cara. e o AREE Y Y BUERRRPLY Al ' e e Tarwvie atues A
ISR e - a- e s~ o~ AT me . 'y LI [R o T 4 N‘.
« tait t R BRI EE ST e ‘ . -8 ®E Cws aume e
¥ e ar e e . a o g L WU S ', ‘. ;o ve ‘l;n:a\w
! dew 8 . BESEEE. AT S
~ a A, a e reshes @ v 3 - ag- ' “e
. W L ava a'w o te - L Y & - .- v gt
a' @ . g PR ’ . af LRSS » - [Y
\ “O‘u a, " e’ W e W s 4 e ‘e . w ' ‘a a . g
. L e e ‘., e et et tate . e e AP, " ve
e . : o' ge BN THRIE SF o SP c e T g a e 1 v arr pwe
- ‘e e € » ¢ - e, 10y LS Sl SRR)
LI T . LY RN L] e . @ ¢ s ~r P oapypteowgm ¥
» v LN 4
3 ~ i M) 4 s
. - PRERY « » e '
- [3
LY . a - - I . .. - . « < .
v ' - o ‘s » r ‘aw
LY —e Yooe - - . . PR T)
- . . a ¢ “r . ‘e . . e * .
res . Py Y « a . - . ‘e A S,
[. (¥ N . " A .-

- - * - ! & - 9 -
~) . . LI) 8 - v teg
P] » ¢ . W . N & v - R e “ F s e ° L33 8w
” . » . ‘. sy
. .

P PO
., PRI . tav .
\ . s coat .- .
. a M s - . s wet o ~“e "|-.
harte g ' » N B Y R . . N L S S P Y T
L LI ¢ . - L oge » N N [N a ‘8 LI ar

@

te eiptu eren of the act Lal faslure rate ectimates used are nexad!
& A probabibity must be assigned te each outcome A sqpie approach '« 1o
aco.gh T ract outcome the cum of the probab.iies of 1te faul' byportieses wi't
wtat © coansistent An o mportant detail is that not every fauit hy potheas miphes
a va ue tor cact measurabie cignal. hence a single hy pothesis ray be consistent with
ca cutiomes JdeRieer®nT deais with this by comput ng bhott jower and upper
B Cocammes pratiahihities
(I TR ese v EeInerts s \!rm‘!iﬂnrv\"rd T cotpuie for vact poss b arobe
e deqred cvpected calue of I The best probe to perforn, i« the one "hat nax - zes
v sanpeeteC value of « that on the average will achiece The greates mecotor
Yo ~ g6 o the hyvpothesis et reiative 16¢ its codt
Tt adiaitage o fhe decimion thearetn approach « one o genera iy pros des
o mar e ddormation aboat hoth G priers faiture rates and the reiat v d &ic 0
ot e probes and goneralizes 1o muttipke ndependant fa lure fa, ures ¢ ven

a rtalt oot probabniites 0 yjerds o Gptnia PrObInR ~1rategy omn average

232 Test (.eneration

T, . KT A ettt T i e et ngats that o et e SV Dtorne Wt
. Loy, RIS ¢ AN, s arieedts Wwe cal gat L A R Y R R A
Y " e omoalt s tre 'a 'y ol ponet” We tvw - ol et e o The
f L Re'eralor 0 Che tedpar of agita oot T The e et Tt gt th
o ra leser gt b getieTa 20
T 0. Rra M radt T e test geheralion e h!uqu(“ N ;a-'nd.ut tests o ow ot ot
rrge o tary fauite cather than Liagnostic specthesty A test can be ~aid 1o have

pee B 1ot 1 udicatles a1 ertor ondy whern one of a very ~mall number of com-
ioents s ety Ak ey ng spes oty noohe presence of a4 namber of competing

fa Lt tupeitenes v ak 1 o The protuen, of Choosing 4 good probe point the dea

Ra'tes torcral (oo wtase tes Lty s Tove of DEegat ce W e liifidale as tnany

e A AT NS SR
~1 . i A s A s T Tt et tator probaer, e] vt gt *he 1deas
e e w ottt ent wong Che po bablabits o Yapiure o, Ty nent noav tepend ni the
r o LA T4 T L Yenice ur b oere r Rk s om0t e wanipede tesnlare tend g
! e e quert oy wher | e L afge ullent: T wmhe: 1Y en v Ay cuTyes re
. LS Y X o T T O O T L T A L R A LA T oyttt

» - .. Ve e age e e’

(1] Poe
>0

'

A —— D

OR-1 F =1

! OR-2 —G =1

C - o——f——« NOT-1

Simple Test Generation Example

Suppose one fault hypothesis is that AND-1 is misbeha\ ing by responding with a
0 when both its inputs are 1. To construct a test focusing on AND-1, it is necessary
1o achieve 1's on both its inputs. hence achieve a 0 at input C. and achieve a 1 on X
either A or on B. Suppose we choose B- 1. Now the 1 must be propagated {rom F @
1o G. Ensuring that the output of OR-2 is sensitive to F requires a 0 on B. requiring
backtracking to the previous choice of B-1, and assigning 1 to A instead. The
resulting test assigns A- 1. B. 0 and C=0. expecting G=1 if AND-1 is unfaulted.

This combination of local propagations and backtracking is the essence of tradi-
tional test generation methods 'Breuer?6'. Propagating the expected outputs of the
tested component (o observable outputs is termed path senstization; this involves
the achievement of enabling values along the way. Achieving of values at the inputs
of the tested component is termed line justification and can be viewed as propaga-
tion of values upstream. with choices to be made and backtracking required when
conflicts arise. Such algorithms are exponential in the number of components (in-
deed. test generation for boolean circuits is NP-complete). Stated another way, test
generation is a conjunctive planning problem in which the different goals mutually
constrain one another.

Heuristic methods and dependency-directed backtracking have been applied
o test generation by a number of researchers. eg. Rutman72, Breuer?9, and
Geneserethsd 3

Not every test has diagnostic value. ldeally, the expected output will rely on
some. but not all. of the outstanding suspects. Just as in the probe selection
problem. ideally the value examined should depend on about half of the suspects,

OART ¢« piopositional representation of devices and the use of res.dution residue cbecures the
algorithin «omew hat

. D jsiniiekndtomitenltind ittt
|
|

® .

and depend on at least one of them to behave in the same way it was supposed to in
the original symptom case. Due to the difficulty of test generation. however, a test
with any diagnostic value is usually acceptable. DART, for example, keeps trying to
generate tests until it finds one that might possibly reduce the number of suspects.
and uses that.

A more direct approach to ensuring diagnostic value is to select exactly one
suspect as the focus of the test. and guide the procedure so that the test being
generated involves the fewest other suspects as possible, and ideally no others.
Note that it is impossible to always generate a test that relies on only one suspect.
Indeed. it may be suboptimal anyway in light of observations made earlier about
good probing strategies. This approach toward generating tests is illustrated in
Shirley83 which uses a number of heuristics for avoiding or neutralizing the effects
of suspects other than the focus.

Using these heuristics, Shirley83''s program is usually able to produce tests that
rely on only a subset of the suspects, and hence have diagnostic value.

2.3.3 Summary

) The purpose of both probe selection and test generation is to add new information
‘i that allows consistency checking to exonerate additional candidates. Depending on
what is possible and cost-effective in the domain. either probing or testing may be

used to gain this additional information. the conmon theme being that the best

action can be selected on the basis of how it is expected to affect the remaining hy-

potheses Different techniques make use of different information and vield different

results:

1. The guided probe technique can be used when possible failures are treated
as equally probable, and the cost of additional probes is proportional to their
distance from previous probes.

2. Probe selection based on comparing sets of assumptions underlying various
predictions can be used when failures are equally probable and probes have
equal cost.

3. Probe selection based on decision analysis subsumes a variety of strategies. It
can make use of all available quantitative information about relative failure
rates and probe costs. and can be generalized to deal correctly with multiple
faults.

4. Test generation via search requires information about ways to achieve desired

values on individual component outputs. The combinatorics of the problem
% also requires that heuristic guidance be provided to focus search toward those
primary inputs most easily achieved.

Wyt g e Ca T AT RN A A ey

v,

5. Test generation can also benefit from heuristics that try to prevent the test of
a particular suspect from depending on the proper functioning of competing
suspects. Such tests are more likely to yield different suspect sets and hence
have discriminatory power.

H

3 Assumptions and Limitations

The effectiveness of model-based diagnosis is inextricably bound to the appropri-
ateness of the models it is provided. Models of structure and behavior, like all
representations, involve simplifying assumptions; in this case the assumptions af-
fect both the completeness of the hypothesis generator and the discriminatory power
of the hypothesis checker. In the following section we discuss the<e assumptions.
focusing on those that are fundamental in the sense that to abandon thern would
result in uninformative or impractically expensive computarions. We also present
some guidelines about useful assumptions to make - in effec'. some general princi-
ples about constructing good models for troubleshooting.

3.1 The Completeness of the Hypothesis Generator

As noted earlier, a complete set of fault hypotheses can be generated trivially by
enumerating all components. But this or any other set of components is on'y com-
plete with respect to the model, not with respect to the real device. There are
two ways a hypothesis generator might be incomplete in this broader sense: (i) a
possible fault location is not represented among the component<: or {ii} <ome real
i.teraction between components is not represented among 1the connections. Both
r.istakes arise inevitably from built-in assumptions. often made because they are
realistic. but no less limiting.

3.1.1 Components Represent the Possible Fault Locations

Fault hypotheses generated by the methodology described above take the the form
of specifying one or more components that might be mishehaving. Hence. to choose
which parts of a device get represented as components is to choose which fault
hypotheses can be generated. Consider for example a circuit board. which ran fail
because a piece of metal etch is cracked. If the program i« to diagnose that fault
correctly. then the metal etch itself should be represented as« a component. otherwise
the program will fail to generate the hypothesis.

The process of elaborating the model to include more and more fault locations
need not be endless. Pragmatic limits on the level of detail that needs to be included
arise from the environment in which the automated troubleshooter operates. The
following two principles apply in general:

o The level of detail that a model includes should be lLimited by the pos<.bile
repairs. For example, there is little point in distinguishing the individual
transistors on a chip as separate components, since chips aren’t ucually re-
paired.

LI -
. * e ® ety g .r.e -

AT S N R e T et e e M ot as
y 2 :‘ LA AN I I N RPN LS. S W 'J\J\.‘\-'..INJ\‘A~ PO O

. 0 _s_ % s

18

o The level of detail should be limited by the distinguishability of the effects of
the faults. For example, if two wires run in parallel for some distance, and
all that the troubleshooter can do is measure voltages at one end, then shorts
between the wires at all points along that distance are indistinguishable in
their effects and can be represented as a single possitle short.

Even given a representation that is complete in this respect. however, the repre-
sentation of device structure as a graph, with the components represented as nodes
and connections between components represented as arcs, still reflects a bias about
the kinds of faults that will be represented. The representation doesn’t lend it-
self to representing faults that arise from the presence of things that shouldn’t be
present. For example, boards can fail because a spurious solder splash introduces a
connection between functionally separate signals (a “bridge fault™). Naively extend-
ing the representation of structure to diagnose such faults would result in adding
pseudo-components to represent the absence of solder - or. conversely. the pres-
ence of gaps between every pair of wires. While possible in principle. the idea is
counterintuitive and combinatorially explosive.

Fortunately, it isn’t necessary to represent all such fault locations explicitly; it
i< only necessary that the hypothesis generator propose them. The fault locations
can be represented implicitly in the graph. and created as needed by the hypothesis
generator from another representation. The intended presence of gaps between
wires. for example. can be derived from a representation of the physical layout of
the board. as in DavisR4 .

3.1.3 Connections Represent Interactions

Similar remarks apply to the connections that appear in the representation of device
structure and behavior. Just as the notion of “cornponent™ can be generalized to
the notion of “potential fault location,” connections can be used Lo represent any
kind of interaction. Because hypothesis generation mark~ as ~uspects only those
components reachable by following connections, any mis-ing interaction between
components means a possible loss of generator completeness. too.

For example. representing the behavior of cot..ponents as having a single direc-
tion of cause and effect is a useful abstraction for design purposes. Most digital
devices can be viewed this way and this abstraction is useful in diagnosis because

it reduces the number of suspects generated from cach discrepancy. But 1t can be
violated when components fail. Components can in fact influence their inputs. e.g a
faulty gate can ground its inputs. Diagnosing such fauits correctly requires a model
of the device that takes into account the fact that gates interact not only through
voltage. but also through current. More striking. in any device there are many
elactromagnetic and thermal couplings between components that can profoundly

U Lo d- a d o i f TR TRV AT R T AT AW U Y T TER T

-

influence their behavior, and yet are virtually never represented explicitly. For ex-
ample, high frequency signals on adjacent wires can interfere with each other. but
electrical schematics don’t normally show this interaction. nor the shielding that is
used to reduce it.

Ideally. the pragmatics of the tools available to the troubleshooting program
could be used to dictate the limits to the level of elaboration needed. as discussed
earlier. However, this appears to be more difficult to do for interactions than for
components. For example. it would appear that interactions that can't measurably
influeace behavior can be ignored. But “measurable influence” can be cumulative:
for example, while it is safe to assume that any given pair of gates on a chip
don’t interact through their power connections, all the gates on the chip together
may draw enough current to cause fluctuations in the power supply voltage. Such
phenomena are notoriously difficult to anticipate in engineering models. Since the
problem is one of modeling, model-based diagnosis inherits it.

3.1.3 Controlling Hypothesis Generation

A model that included all the connections through which components might possibly
interact would leave hypothesis generation underconstrained. Assume for a moment

t’ tm.at we were willing to temporarily sacrifice some completeness in the generator.
ir. return for the ability to generate fault hypotheses in a more constrained way.
Those models that provide the most constraint on hypothesis generation can be
characterized as follows:

e Models with sparse and unidirectional connections constrain hypothesis gen-
eration. When there is an identifiable direction of information flow in the
device, a model that assumes that the direction of flow is preserved in the
malfunctioning device will generate fewer suspects than a model in which the
information flow is not assumed to be preserved.

This principle appears implicitly in most of the programs surveyed. LOX and
LOCALIZE in particular diagnose systems with hundreds or thousands of components
successfully largely because the systems involved can be modeled as having rela-
tively sparse and mainly unidirectional connections. These programs build in the
assumption that whatever the underlying malfunction is, the intended directionaliiy
will be preserved.

Another way of controlling hypothesis generation is to use a hierarchic device
model. as in Davis84 and Genesereth84:. The program can generate and check
suspects among components at higher levels before examining their subcomponents.
Hierarchy is especially useful when it is strict and a single failure is assumed. since
all the subcomponents of an exonerated component are exonerated as well:

&2

-
-
GG

. L

- LT T I I TR N TR e e L Cegte et N
s e e e A T Y e e e e e ey A o e

A

¢ A model should be hierarchically organized. with strict decomposition of com-
ponents where possible.

A generalization of this idea is to start with a description of structure and
behavior adequate only to represent the most important faults. Faults that occur
“outside” that model will typically result in what appears to be intermittent or
multiple faults. For example, a digital gate that pulls down all its input signals
can appear Lo be caused by multiple faults in the gates that are supposed to drive
those signals; a bridge between wire X and wire Y can make both X and Y appear
intermittently grounded. When the only consistent explanation of a particular set of
symptoms seems to be multiple independent “normal” faults. an alternative. simpler
explanation can be sought in a second model adequate for representing more unusual
faults. Second and succeeding models can represent different fault categories among
their components and connections. This is done in Davis’ program with two models:
the initial hierarchic model represents only wires, boolean gates, and compositions
thereof; a second model includes physical layout information, from which possible
bridge faults can be hypothesized.

This approach leaves some issues unresolved. With a variety of different models
appropriate to different fault categories. it is unclear in what order the program
<hould try the models. One possibility is to try those that include the most a prion:
probable fault categories. Another would be to try those that are simpler. perhaps
as measured by a count of components and connections. ldeally. the program should
choose an appropriate model based on the particular symptoms at hand. though
the relevant criteria for such a choice is unclear. Nevertheless, a useful principle
remains:

¢ Layered models can be used to ensure that the simplest hypotheses are ex-
plored first, while retaining completeness overall, as each successive layer in-
cludes additional faults.

3.2 The Discriminatory Power of the Hypothesis Checker

The job of the hypothesis checker is to determine whether fault hypotheses are
consistent with all the observations of the device. The discriminatory power of the
checker is determined by its eflectiveness in distinguishing between consistent and
inconsistent hypotheses. There are three reasons why current diagnosis programs
fail to detect inconsistencies and thereby fail to yield unique diagnoses: (i) the
computational machinery is weak because it is usually based on local. component-
centered propagations (ii) some constraints present in the world are not represented
effectively in the device mode! (iii) the device is modeled in such a way that the
problem is inherently underconstrained.

RSy

- SRS S S
Ny ‘.r_.r-,_‘i_lA‘-t-._.L-.;.r-.'_f_.-.-L[_:_.

'

L)
MY

e,

(Y
X

&
2%

S

A O N T,

21

3.2.1 Detecting Global Inconsistencies via Local Propagation

In its most general form, checking the consistency of a fault hypothesis is a con-
straint satisfaction problem - we wish to find out whether or not there exists an
assignment of values to all the terminals in a device such that they are consistent
with the observations and with each other. For efficiency reasons. most of the
programs surveyed here rely on local propagation to solve this problem and hence
make inferences about one value at a time. A characteristic of all such approaches
is that they cannot always compute all the consequences of the observations; as a
result. contradictions may go undetected, resulting in the inappropriate survival of
inconsistent hypotheses.

This incompleteness typically occurs when a collection of constraints, each in-
volving n values needs n - 1 of those values assigned before it can deduce the last.
Such simultaneities occur in rings of constraints when each constraint has only n - 2
of its values assigned. One possible effect of the simultaneity is that even though
there is only one consistent set of assignments for the group, this goes undetected.
Simultaneities are common in non-directional domains and arise in directional do-
mains in structures with reconvergent fanout.

Simultaneities are amenable to a variety of techniques. including (i) relaxation.
a~ in the Gauss-Seidel method for solving linear svstems. (ii) enumeration over finite
~ets of possible assignments, (iii) propagation of symbolic expressions dekleerg0 .
or (iv) addition of additional constraints. perhaps encapsulating several compo-
nents (“slices™ Sussman80). Relaxation techniques are appropriate ir: continuous
domains. The second teclnique can be viewed as adding the capabilities and at-
tendant control problems of a full first-order theorem prover with equality. Sim-
ilarly, the third may involve an algebraic manipulator of considerable complexity
(e.g.MACSYMA). The technique of adding explicit nonlocal constraints, in contrast,
requires no additional propagation machinery, although it complements (i)-(iii).
Encapsulating groups of components with nonlocal constraints places the burden of
deadlock avoidance on the device model instead. This suggests another guideline
for a good model:

e Organizations of components that are likely to cause local propagation simul-
taneities. e.g. structures with reconvergent fanout. should be encapsulated to
break impasses wherever possible.

3.2.2 Hierarchy. Abstraction. and Constraint

The most straightforward way to use nonlocal constraints is to organize components
into a hierarchy, so that each component in the hierarchy has its own constraints.
These constraints may make use of behavioral abstractions not available at lower

Ay v ‘.‘ AT AT N W OF AT .y W, s"...’. AT ‘ 'l'-' ‘,e A -.--,-'_-

22

levels of structural detail. One common source of such a hierarchic description with
1ts accompanying behavioral abstractions is the device's design description.

The gates shown below. for example. are designed to function as a full-adder.
The full-adder’s composite behavior description is almost as simple as those of its
individual gates: the output, viewed as a 2-bit integer. is the sum of the inputs.
viewed as 1-bit integers. The vocabulary of integers. as opposed to bits. simplifies
reasoning about the constraints on this group of gates. For example. the full-adder
constraint can include a rule such as “if both outputs are 1. then all three inputs
are 1.7 This relationship would be difficult for a purely local constraint propagator
to discover from the gate level description. Other techniques for discovering such
relationships. such as constructing the truth table of the device. are combinatorially
impractical. The essential step is in choosing a vocabulary in which the behavior
becomes simple to express. but that choice appears difficult to automate.

A XOR
(OR-1

B —¢ ' XOR-2 sU'M

T ;]

! ! — !

CAND IR e :
R — a4 i ': ()Rl*‘ ()
L—fﬁn‘nzl T

« — ——__“——~—i—{‘ }

Full- Adder Structure

This example illustrates a particularly important way that a design hierarchy
can add useful constraints: abstraction can make it easier 1o infer component inputs
from their outputs. This helps all approaches to hypothesis checking (constraint-
based or otherwise) to detect inconsistencies. While “inversion” of behavior is
straightforward for simple components. components with many terminals or with
internal state are more challenging. If a« a consequence of behavioral complexity
the knowledge is incomplete. i.e.. constraints that invert hehav.or are maissing. not
all contradictions will be discovered Another characterist ¢ of a good model. then.
s

o Hierarchic decomposition should facilitate making inferences about compo-
nents’ inputs from their outputs.

PR AN WrY

N St S m

3.2.3 Hidden State

Devices whose components have time-dependent behavior can in principle be mod-
eled and diagnosed no differently from static devices. If behavior is described by
rules, for example, the rule language can be extended to include delayed responses
and other kinds of dependence on prior states. Hypothesis generation and checking
for such devices follows the familiar outlines. but a fundamental difficulty arises
when components have “hidden” state. In a memory chip with 1024 1-bit words.
1023 are hidden in the sense that the state can only be examined one word at a time.
The presence of hidden state typically results in inherently underconstrained prob-
lems: competing hypotheses cannot be discriminated because of ambiguity about
the device’s internal state.

Hamscher84 presents one example of this phenomenon in the digital domain.
To check whether a particular component could have misbehaved in a way that
not only explains all the observed discrepancies. but that is also nonintermittent.
requires inferring what its inputs and outputs must have been at every time step.
If the inputs to a suspect depend upon its behavior at a previous time, and it is not
possible to observe its intermediate state. it is impossible to rule out the suspect; the
problem i< inherently underconstrained. The figure below illustrates this abstractly.

(i Ob~ervable output from A at ime t]

l
1

\ at time ¢ - I‘J

(state component} Time

|

}I A at time ¢ J{

Observable output from A at time ¢

Unobserved State

If A is a suspect. but we know only its inputs at time t | and its output at
tine t. checking whether A is a consistent suspect requires inferring its output at
t 1 and inputs at t. To do this, however, requires knowing A's behavior, which
is unknown because it is a suspect. The problem is analogous to solving a system
NN of n linear equations in n -~ 1 unknowns; it is inherently underconstrained. As
noted. the only way to solve this is to add additional observations, preferably of the

W T e WA LM e WY L W
AT A A AU N PO A/

TATY U UWUTOSUT W TN g

24

intermediate state between ¢ — 1 and t. Similar remarks apply to domains in which
components’ states change continuously rather than discretely.!

The inherent ambiguity of collections of components with hidden state suggests
that for pragmatic reasons, levels of detail at which the distinct components are
visible should be suppressed. For example, a group of components that can’t be
discriminated among using the observation tools available to the diagnosis program
should be abstracted into a single component with simple behavior. In principle, it is
possible to describe any device at such a behaviorally and temporally abstract level
that delay can be ignored, feedback loops encapsulated into primitive components,
i and hidden state abstracted away. While a completely state-free model may discard

too much detail, the following guideline still offers useful assistance:

! e A good model minimizes hidden state.

‘Haviag components with hidden rtate also increases the computational cost of generating dis-
criminating tests Achreving a particular set of inpute at an embedded component, for e~ample.
might require finding a complex input sequence that sets the states of certain components wrthout <
Arst urbhing there

LA
LY
[hrX

4 Conclusion

| Existing programs for automated diagnosic of devices from hrss r e foes
| much in common despite apparent differences of domain and mnechanier e - a o
similar procedures to generate and check fault hypotheses and ~iniar i1 ar o
due to their representations of the devices they must diagrc.e The heer o 4re
‘ suggests that domain-independent diagnosis from frer proc pec a0y
| The second indicates that there remains a substantial agerda of oper. et v
| Fault hypotheses are typically generated by examining a trace of “he exjie e
behavior of the device. Hypotheses are then checked for consistenc, v ter o0
explicit simulation or by attempting to deduce a specific component 1~ oo
by reasoning from external observations back to the embedded componer®
The effectiveness of both phases depends crucially on the device mode~ Fo-
example. the completeness of the generator depends on the level of deta.l of the
components; the number of hypotheses generated for each discrepancy deperna. s
the type and density of component connectivity: the power of the reasoning rmact 1
ery that rules out inconsistent hypotheses depends in part on whether rfire- e
about components’ inputs can be made from their inputs
o Subetantial problems remain 1o be addressed. Most of the prograr- w0
ts “toy T examples, and there is evidence to suggest that scaling ap to dea w0 0
plex and highly connected device- mayv be dificult. both from the <tarap..
computational complexity and froimn the standpoint of knowledge engineer g ot
eral principles for constructing good models exist. but they remaim few ket and
in some cases contradictory because of the difficulty of reconciling the inderiving
goals of ensuring completeness while utilizing the constraints that the troubleshoot

ing domain provides.]
Acknowledgements)
Discussions through various media with Meyer Billmers (DEC). Michae Foioet
(Columbia). Michael Genesereth (Stanford). Harold Haig (MIT). Tom Knight i~y 1.
bolics), Willie Lim (MIT), Jeff Pan (Schlumberger), Ramesh Patil {MIT! Char.e- 1
Rich (MIT), Mark Shirley (MIT), Howard Shrobe (Symbohcs}. Reid ~irmons "

Williams (MIT). Radl Valdés-Péres (CMU). Jeffrey Van Baalen {MITi and Peng
Wu (MIT) were helpful. Discussions with Johan deKleer {Xerox PARtU were oee
pecially helpful. Acknowledgement does not imply agreement with opinior~ <> ated
herein.

&

(MIT). Ethan Scarl (MITRE). Peter Szolovits (MIT). Daniel Weld (MIT. H-an 1

References

Hre e M et A bt ar Nagnosr gt d Netrabte /kn' "
ingatas “gstems p 14T 149 ¢ ampoter scwnee Proas 1978

Heim:

Aol eerti)

el eern’

borein?

(,eneseret hA4

Coinsherghy

tre ¢ M A New oriep s 0 Aot aes lea rg o ID‘r|| « .y
. * pmputer Qidod [recign v mguta Fitilrrmir v el gund
bR ALY ¥ T - Nesrr # e & el [A N) g A pany n'v""\

and | .svembtwiurg 979

Hrom: & 1 Ywaltfatite Ancovirdgge avse Heasaning end the Lo
air atror o Farivers Toehe o4 Reper AL TR W2 MIT Artilie n

cte .gecce [atwratary 19TE

Hraom: s R R Hurton ang de Riww: Podagngw sl Netures
.anguagr arc Knowmiedge b gineering Tee briques .n SOPHIF | 1]
and 1l 1) Sieenan a1~ Hromrt bds 'wteihgent Tutoring
~yiterms Araderns. Preso New Yk 'R 277 282

s H b agramt Rea o g Watedd o ~ee
t- . L Y 24 [T | PR [

N e wa fetheat. g e balo
\'O yee LG ot "4 per ! \”' \" DY "“!l" re | FRRl & |

AT

de Rieer | and (. | Sussman Propagatson of { anstramts Ap
piwwd to { teuit Synthess /nte-nafirngd /ouenal of + 1rewst Thoory
%2127 164 Apnl 1980

Ade Kiwwt] and B € Wiilarms [hagneming Moyitiple Panhe Te
appear 1 AetiRcra Intelirgerice (AT

Firer MR H) Weime: ~ Mol ndes a- 4R 0 Mhiller | O A},
17 F ¢ imputer Aacisted | ovahizat-om o P cipheal Nervoys Sydtem
Lesinone omputer. gnd Hiomed-rai Res.areh 15681 525 543 e
rember | QRY

tenece-eth M R The | oo of fhage [0 voip ora i Nptornated
Iagnosic dctifrerad Intecngence 2001 40 1l Dherember 1904

fansherg M | (oentrrioriuals Stanford Knowiledge Sivetem.
Laboratory Report KS1 ¢ 43 Department of ¢ cmputer Sewnce
Xranford | niveruty

| 3

Hamschersd Hamscher W (" and R Davis Candidate Generation for Devices
with State An Inherentiy | nderconstrainedg Problemi In Proceed-
tngs of 4 14/ 84 \ustin TN\ pages 142-147 AAA] August. 1984

Pannd Pan. J Q.ahtatine Reasorang with Deep-ievel Mechanisiu Models
for hagn ses of \Mechanism Fairures 1n Proceedings of (7414-%4.
Derver Colorado pages 295-301 [EEE. December 19x9

Reggiand Reggia. J A . D ~ Nau_and P Wang A \ew Inference Methoa for
Frame-Based Expert Systems In Proceeding: of 444/ %9 Wa-h-
ington. DC . pages 333-337

Re rerm3 Reiter R 4 Theory of [hagnosis from Firt Privciples Department
of Computer Science. [niversity of Toronto and the Canadiar In-
stitute for Advanced Research, December 1985

Rutman??2 Rutman. R A Fault-Detection Test Generation For Nequential
Logic by Heuristic Tree ~earch IEEE Conputer Research Paper
R-72-187 1972

O Soan s Toate b R Jamaesan and o b A e e

and olar n Metrod Apphed o Lo O gon L oaarg or rrg
~pace ~hyttie In rocecdinigs of 11OV 20 oo Angetes €N Gage
114116 ICAL Aagust 19%5

Starieymsd shirley M H . and Randal! Davis Genorating Distinguisting Tests
based on Hwerarchical Models and Symptom Information I IEEE
International (‘onference on Computer [Design. 1983

S issman®0 sussman. ;6 J . and (. | Steele Constraints A lLanguage tor

Exprescing Almost-Hierarchical Descriptions Aretaficial Intelligerice
14¢1) 140 January. 1980

h
1
L & W A B AR RPAT A\ WP W R N VRPN JC’

NOZAIAN2ON
J:f.):' II\I

A7

