
-A193 617 ISSUES IN MODEL EASED TROUBLESNOOTING(U) MASSACHUSETTS 1/1
INST OF TECH CAMBRIDGE ARTIFICIAL INTELLIGENCE LAB
N HAMSCHER ET AL. MAR 67 AI-M-693 NOffI4-95-K-0124

UNCLASSIFIEDD/012/9 L

mhhEmhohEEmhEE
I.".mmmmml

I1.0 hI
= NA .- 2

11.25 1 14 16

MiCROCOPY RESOLUTeON TEST CHARI

L "LU f STANCAM 19W-A.

~~~ .4r 
s U*U

.% p~ 0~

8' * . . %

lip,



REPORT DOCUMENTATION PAGE 800a OPEIGro

119:11 %Vasc isUI 6a V *@ CC4660"O we I aIccet*$S CI 41 vast wga

A.I._MEMO_893 __________1___

T ~i. 5*sDI I n ?w*5le v o O 06000'r 6 a e. CO49

Issues in Model Based Troubleshootineg A.I. MEMO

Walter Hamscher and Randall Davis NOO0l4-8S-1(--Oc2wa

Arificieal I1nct~lligemnoce aLaboratory 4M6 O aiwwofl

545 Technology Square
-- Cambridge, MA 02139

I rno"T110 j1w11 069eca 1114111w &Naw 049 o a@@eg ' m s, sats,
0 AdacdResearch Projects Agency March 1987

1400 Wilson Blvd. iswwoo as
SArlington, VA 22209 27

14 "OwmYON1111 aS9ftcV NameS A eteelitswel afee... lown m~fee ease, Is "Cues"Iw CLA0W too we i

Office of Naval Research UNCLASSIFI1ED
0 Information System______________

Arlington. VA 22217 Me. Sruarpi&*TM%

S6 646I1111ouw S11119111441toe se 0.Ie.

Ditione i nimtd

0 *~ '~ .. in. emw m.IC

If n9V~seJsf STr0" lt we1es pea~ to esp JI #0 .

-. s !ut l s t. 4,s 4 .. *' is7

so ~ . so .9 goo -I

1111 $it' et", UW *A~i P J*S~C A 1V
go wo# t. aw #,f 8 *se ZsaS;MI.

11 Aso



computational mechanisms used to implement these systems tend
to obscure two important facts. First, existing programs have
similar mechanisms for generating and testing fault hypotheses.
Second, most of these systems have similar built-in assumptions
about both the devices being diagnosed and their failure modes;
these assumptions in turn limit the generality of the programs.
The purpose of this paper is to identify the problems and non-
problems in diagnosis from first principles. The non-problems
are in generating and testing fault hypotheses about misbehaving
components in simple static devices; a small core of largely
equivalent techniques covers the apparent profusion of existing
approaches. The problems occur with devices that aren't static,
aren't simple, and whose components fail in ways current programs
don't hypothesize and hence can't diagnose.

e.

%S

S

(a

S.

*5 * .% .. . 5 * ,. 5% . ' ''' ' " '



Massachusetts Institute of Technology
Artificial Intelligence Laboratory

A.I. Memo 893 March. 1987

Issues in Model Based Troubleshooting

Walter Hamscher
Randall Davis

Abstract. To determine why something has stopped working. it's helpful to know
how it was supposed to work in the first place. This simple fact underlies recent
work on a number of systems that do diagnosis from knowledge about the internal
structure and behavior of components of the malfunctioning device. Recently much
work has been done in this vein in many domains with an apparent diversit, of tech-
niques. But the variet. of domains and the varietN of computational mechanisms,
used to implement these systems tend to obscure tmo important facts. First. exist-
ing programs have similar mechanisms for generating and testing fault h\ pot heses.
Second. most of these systems have similar built-in assumptions about both the de-
\ices being diagnosed and their failure modes: these assuniptions in turn limit the /\

generalit, of the programs. The purpose of this paper is to identify the problems
and non-problems in model based troubleshooting. The non-problems are in gener-
ating and testing fault hypotheses about misbehaving components in simple static
devices: a small core of largely equivalent techniques covers the apparent profusion
of existing approaches. The problems occur with devices that aren't static, aren't
simple. and whose components fail in ways current programs don't h. pothesize and Vl
hence can't diagnose. ...

Acknowledgements. This report describes research done at the Artificial Intel- " .
ligence Laboratory of the Massachusetts Institute of Technolog.. Support for the
laboratory's artificial intelligence research on troubleshooting i'. provided in pari
b. the Digital Equipment Corporation. and in part b% tihe .duanced Researh -, -,

Projects Agency of the Department of Defense under Offict of Na'al Research ,on-
tract NOOO14-!S-K-O124. 4.

c Massachusetts Institute of Technolog. V9)7

87 8 19 060 1



1 Introduction

Programs for doing automated diagnosis from structure and behavior strive for
generality of various kinds. One aspiration is to have programs able to diagnose
virtually any designed artifact in a particular technology. A more ambitious general-
ity is implied by the dream of building a general troubleshooter that could diagnose
(say) automobiles as well as analog circuits, simply by substituting differen, types
of components for each domain.

Our claim is that the dream is both closer and farther away than is commonly
appreciated. It is closer, because most existing programs use similar techniques and
the commonality suggests that a -domain-independent" troubleshooting methodol-
ogy is within reach. It is farther awav, because these same programs have built-in '

assumptions about their domains which must be made explicit before they can be
generalized. The difficult issues in this line of research do not arise in the methods
themselves, but rather from the simplifying assumptions implicitly built into them.

A number of programs reason from structure and function to diagnose devices
in a variety of domains, using what appears to be a variety of techniques, includ-ing INTER deKleer76, WATSON Brown76, SOPHIE 'Brown82 . LOCALIZE First82,

Davis4 's program. DART Genesereth84 . IDS PanS4 . LOX Scarlgs . and the
ATMS troubleshooter deKleer87.

The varey of domains and computational mechanisms found in these pro-
grams tends to obscure important similarities. One set of similarities concerns
iroubleshooting techniques. These similarities can he made clear hb describing
them in terms of the generate-and-test paradigm. illustrating the ways different
programs use the same kinds of knowledge.

A second important set of similarities concerns the assumptions that differ-
ent programs make about the kinds of components and faults to be encountered.
Among these assumptions are that components have no hidden state and that the ..

given representation of interactions between components is complete and correct.
These assumptions are often built into programs for the sake of efficiency. resulting
in important limitations. These limitations in turn constitute an agenda of open
problems in automated diagnosis.

5,

.5.

5.5~S I

SS~* S

'S 2S



2

2 Diagnosis from Structure and Behavior

Given some observations of a misbehaving device, a description of its internal struc-
ture, and descriptions of the behavior of its components. we wish to find out which
components could have failed in such a way as to explain the misbehavior. A useful
way to decompose this task is to consider three separate tasks: (i) generating fault
hypotheses. (ii) checking those hypotheses for consistencN. and (iii) discriminating
among the consistent hypotheses on the basi.s of further probes or tests. This awtion
discusses each in turn.

It is necessary to make some initial definitions and assumptions, each of which
will be reexamined later.

A component is a part of a device. Diagnosis programs diagnose devices to
find faulty components. System is used interchangeably with "device- to refer to
a larger collection of components. such as a computer system.

The structure of a device can be thought of as a graph. with the components

represented as nodes and connections between components represented as arcs.
Terminal is used to mean a point where a component can be connected to others.

A suspect is a component whose misbehavior could possibly explain one or
more symptoms. For the moment, let a fault hypothesis be a specific misbehavior --

h\ pothesized for a suspect.
As an example. the structure of a digital devie might be represented with the

logic chips as -components," the wires as "connections." and the the pins on the
chips as -terminals." A different representation of the same device might have
the components represent boolean logic gates, the connections represent electrical
connectivity through metal wires and pins, and the terminals represent the signal
inputs and outputs of the gates.

From the point of view of a diagnosis program, these are two equally valid
representations of "structure" for the same device. Suspects generated from the
two representations will be different, because the components and their connections
are different, but the diagnosis methods to be discussed are flexible enough to deal
with these and other notions of "structure."

2.1 Hypothesis Generation

The generate-and-test paradigm requires that the generator of candidate solutions
be complete. in the sense that every potenltiall) valid solution will eventually be
proposed. Given a device description, a complete generator of fault hypotheses could
be trivially built by exhaustively enumerating all components, since all suspects are
components. But not all components arc valid suspects: suspects should explain
the observed symptoms without implying symptoms that were not observed. It
is advantageous to incorporate this constraint into the generator, so that fewer



3

invalid suspects are proposed. There exist a number of progressively more elaborate
ways to use knowledge about the device's structure and its components' behavior
to generate a more constrained set of hypotheses while preserving the required
property of completeness. In this section we begin with an extremely simple version
of hypothesis generation and develop these elaborations one at a time.

A discrepancy is a disagreement between an observation of a device's behav-

ior and its expected fault-free behavior. For example, the adder-multiplier circuit
shown below presented with zeroes on all inputs is expected to produce a zero on

output F. An observation of anything else at that terminal constitutes a discrep-

ancy. A program's first task is to determine whether any discrepancies exist. This
can be done by simulating the device's expected behavior given the inputs presented
and comparing the results to observations of the real device.

"- ADD-1 -F 0

A--00

B=O

AD- (0 0fL-

IMULT-3 AD2_

E --0 Z =0

Adder-Multiplier Example

Given these discrepancies. a simple, intuitively appealing way to find suspects
i to find all the components connected to a discrepancy via some path through the
connections. This makes sense because the suspect must be among the components
that could influence the expected value, and according to the model this influence
could only be exerted through the connections. Suspicion is "contagious," in the
sense that a discrepancy observed at one of the terminals on a component implies
either that the component is malfunctioning, or that the component is normal but
some component connected to it is malfunctioning. Each of the other terminals of
the component yield further suspects and further discrepancies, etc. The problem
% ith this approach, however, is that in most cases following every connection means
that every component will be reached, so this is a poor strategy.

Intuition says that a better approach would be to identify the direction of causal-
ity in the device, and mark as suspects only those components that are "upstream"

' .- ' ' J .'.. V : . ..r '> .'.: ."... ...: ....... ".-e-".. % . - - . '. , . .> .- -'. , -- -.



4

of discrepancies. in the example above, a discrepancy observed at output F would

make suspects of only the three components upstream from F. Knowledge about

components' direction of operation can thus constrain the suspects generated. Com-

ponents that have identifiable input terminals and output terminals are said to have

directionality. This notion is not applicable in every domain; analog electronic

components such as resistors, for example, are not usually thought of as having

inputs and outputs. Nevertheless, the tehnique is appropriate in man) domains.

so Ae will pursue some of its elaborations.]

One way to elaborate is with a behavior model. This is information about a

component that can be used to predict its response given its inputs. This can then

be used to constrain hypothesis generation: when a discrepancy is observed at an

output. we need move upstream only from those input! upon which the expected

output depended.
For example. suppose a digital OR gate is expected to get a 0 on input 'A" and

a I on input 'B," yielding a I on the output. The output of 1 in this situation

depends only on B's being 1. Hence. if the output is observed to he zero, only B

need be traced upstream.

OR (;a.,ti -(- I

OR gate

There are different ways to implement this approat h to generating suspects. One

method is to record dependencies whenever an output prediction is made. In the

OR-gate example, the relevant dependency would be created and stored with the

original deduction that the output should hale been I. Dependency bwsed hypothesis
generation schemes follow these dependency records upstream from discrepancies.

Each component visited while tracing thete dependencies back to primary inputs is

a suspect. Davis' program stores explicit dependencies for this purpose. Another

method traces inputs upstream by computing the logical (onsequences of observa-
tions. In this Example, we know that if an ON gate it, normhal and one of its inputs

is i. then its output is I " Since this output i.s ots irved to Ibe something other than

I. then either the OR gate i- not n,,rmal, or rneiter itpu' is I Hence. either the
ON gatle is not normal. or the H input 1s0 1ot He.nri,. cittier the OR gate is

not nornial. or the componert upstr, amn ot Ii i, iwt norriiml, etq DART exemplifies

this in/erence ba.ed method ()f (orij ,ting -.upect: LOX takes it similar viewpoint.

These various implementations of upstreamn Ira( Ingt yield i'enti, al suspects.

'The echnique is l6o wcerih st ud)n me be( jpe It a. * il r ' *a,, grwilf,1 i .ia me ,r (4 ehe progran's
being surveyed assume it and it (an t'e geiteralted e*i6hv

a



* 5

The notion of conflicting assumptions provides a more general framework than
the intuitive notion of upstream tracing. In this view. each discrepancy repre-
sents a conflict between expectations and observations. Assumptions about the
correct behavior of components are recorded at simulation time and underly those
expectations. The existence of a discrepancy means that the set of assumptions is
inconsistent and hence at least one underlying assumption must be false, i.e. at least
one of the components assumed to be behaving correct ly is actually misbehaving.

In domains for which components' causal direction is the sole source of depen-
dencies, there is little distinction between the "upstream tracing" and "conflict-
oriented" views. The discrepancy at F in the adder-multiplier example yields the
suspects ADD-I, MULT-1, and MULT-2 under both approaches. However. the
conflict-oriented view facilitates dealing with components having no directionality.
since it requires no distinction between inputs and ou t puts. neither for the individ-
ual components nor the device as a whole. So long as all values are predicted with
all the relevant assumptions being recorded, the technique will generate a complete
set of suspects.

The figure below shows a trivial circuit with two resistors. Suppose the potentials
at nodes X and Z are known to be 10 volts and 0. respectively. The voltage at node
Y is measured to be I volt, instead of 5 as expected. Thi- i, a dicrepancy. or more
a( ( urately. it is a conflict between two assumptions. nadl('k. that I? I and R2 both

ha- e re~istances of I ohm. At least one of these assumpl ions 1njst be false. hence

both resistors are suspects.

X = 1Ov observed

RI

In'
I

Y 5v expected. 1v observed

R2

Z Ov observed

Voltage Divider Example

N-



6l

This simple example also illustrates a characteristic of devices composed of non-
directional components, which is that any single prediction mak depend on a large
portion of the components working properly. As a result. hypothesis generation will
be unavoidably indiscriminate.

Given this variety of hypothesis generation techniques, the proper method to
use in a program can be suggested in part by the class of devices the program is
expected to diagnose. We have seen three techniques of increasing generality:

1. Upstream tracing is adequate in domains with simple, directional components.
LOCALIZE is able to use this technique thanks to the trivial behavior of neural
pathways in its domain. IDS uses it as well. in a representation that shows
only the intended direction of information flow between components in an
otherwise nondirectional device, thereby risking an incomplete generator.

2. Various mechanisms can constrain upstream tracing by using components
behaviors. DART. Davis' program, and LOX work in domainb with moderately
complex yet largely directional component behaviors, thus motivating the use
of dependency-based and inference-based schemes.

3. H. pothesis genera',on can be broadly viewed as the task of finding conflicting
assumptions. The domain of analog electronic circuits involves mainly non-
directional components, hence INTER. WATSON. SOPHIE take this conflict-
oriented view, as does INTER's descendant, the ATMS troubleshooter.

2.2 Hypothesis Checking

Usually there are initial suspects that are locally consistent, but globally incon-
sistent. A suspect can be globally inconsistent either because it cannot explain
observed discrepancies or because its misbehavior would imply discrepancies that
were not observed. The purpose of hypothesis checking is to eliminate inconsistent
suspects using only the observations at hand, i.e. without performing any further
tests or internal probes of the device. As with hypothesis generation, there are
progressively more elaborate and powerful ways to use such observations. As be-
fore, let us begin with a simple tecihnique for hypothesis checking and develop more
powerful elaborations of it one at a time.

One way to exonerate components is by using corroborations deKleer76
observations that agree with expectations. Intuition tells us that if an output of
a conponent is normal, the component is functioning correctly and its inputs are
normal. If those inputs were normal, then its immediate predecessors are function-
ing correctly, etc. This intuition is rarely correct, however It assumes that (i) the
input of a normal component can he determined ,olelN from it., output. that (ii)



components only fail in such a way that misbehavior is detectable for every possible
input. Rarely are components so simple in their behavior that this method suffices;

LOCALIZE's domain of neural pathways is an exception

A more powerful method for using corroborations to detect inconsistencies

is fault envisionment: insert a hypothesized misbehavior and simulate to see

%hether it matches all observations (both discrepancies and (orroboratiorisj, Note

that this requires a predefined set of possible misbehav iors for each (omponent ty, pe.

For example. a resistor in an electrical circuit may be faulted bN being -shorted- the

resulting misbehavior is that its tvo terminals are forced to [ave the same voltage.
Any disagreement between the obstrved and predicted values rules out a hypothesis.
and suspects are exonerated by ruling out all the:r possible nisbehaviors

An advantage of generalizing ihe notion of a "beha\ ior riodel" to Jr:cluce the

behavior of components %hen faulted is that dependent failures failure: that

occur when a failure in one component damages other components can be hy-
pothesized and their effects predicted through fault envisionnient Pan84

A disadvantage of fault envisionment is that the number of ways components in
the domain can fail grows quickly with their physical complexity. In IDS Pan84 ,

for example, analog electronic components such as resistors and diodes can be as-

surned to fail only by having shorts or open circuits between t% o or mlori ,.rf inlals.

This works fine for components with 2 terminals, but become- un leld% %A her non-

)ritnii- ie components or primiti% e components w ii h more terrntina!k are corsiderei,

,in n-terminal component '&ill hav i at least 2 (2 " n 1) such failure modeS.

A more gneral approach than either of the preceding relies on the ob'er\ation
that a consistent hypothesi- must account for all discrepancies. If there is mor. than
one discrepancy, and only a single failure is assumed. the set of consistent suspects

can be computed simply by the intersection of the suspect sets that arise from each
discrepancy. Moreover. in addition to accounting for all discrepancies. a consistent
suspect must also account for all corroborations, i.e. there must exist an assigniment

of values to its terminals such that all. and onl\. the observed discrepdn( ies are

produced. Constraint suspension Davis84 and similar techniqi es do this by. in
effect, attempting to infer what each suspects' misbehavior would bf if it 'Aere indeed
failing. The technique follows from the observation that the norn al behavior of a
component imposes a constraint on the values at its terminals. I the component
is working correctly then that constraint is in force: otheri.se he (constrain.t

su.spended. we simply don't know the relation between the coporient' terrinnals
Consider, for example, an adder, whose behavior can be capt ired in ternis of

three rules: its output is the sum of its inputs: its first input is th, differeI(e of its
output and second input: and symmetrically its second input is it , difference of its
output and first input. The latter two rules capture what Ae ca:, infer about the
values that appear on the terminals, not the directionalit.O of the I.v ice The adder

imposes a constraint on the values that can appear at its terui, ,ils On. Aa% to



implement a constraint is with rules, as in jSussman8Oi:

A. IF input-i is X and input-2 is Y, THEN the output is X-Y.
B. IF input-I is X and the output is Z, THEN input-2 is Z-X.
C. IF input-2 is Y and the output is Z, THEN input-i is X.

But if the adder is not known to be behaving correctly, any combination of
values might appear at its ports, i.e., the constraint is suspended.

A suspect is consistent only if it is consistent for all other components to be
behaving correctly. In constraint suspension, a suspect is checked for consistency
b% suspending its constraint and enabling the constraints associated with all other
components in the device. When any contradiction arises, the suspect is ruled

out: it cannot explain all the observations. For consistent suspects, constraint
suspension also makes hypotheses more specific by computing how the suspect must
have misbehaved. If no su-h misbehavior can be found, the suspect is inconsistent.
Hence the technique can rule out many potential misbehaviors of a suspect at once.

Consider an example from Davis84 . The predicted outputs of this device were
F=12 and G=12. but instead F - 10 was observed. By tracing dependencies the
suspects are found to be ADD-1. MULT-1. and MULT-2.

0

A 3-LT- I
MLLTI . )F 12 Expected

B 3 F 10OObserved

C 2-- MILT-2 Y 6

D)2 F - ' i,

. AI)D-2 G 12

M I-LT- 3
F 3 -Z-6

Second Adder-Multiplier Example

Because MJLT-3 is not a suspect. Z-6. then. becduse ADD-2 is not a suspect.
Y-6. Each suspect can now be checked for consi!tenc, hN a-tuming that the other
components are OK, To check whether ADD- 1 is fakilt , we reaon as follows: since
S.JLT-I is OK, X6. since MJLT-2 is OK. Y-6. hence 'he adder is misbehaving b.
adding 6 and 6 to get 10 If MULT- 1 :s faulty. then ADD- I and !A.T-2 are o, heo,
1-4 and the multiplier is msshehav ng h niiitIpl\ ing 3 by 2 to get 4. Finally. if

ihWL ' 
4

" "" a" 'L aL~ "-,' - .f s'. '.
"

" %*% ,? *% S" ' S* -. - '.* ., .'. .. .. .. . . ".. . ° " . . - "



9

MULT-2 is faulty, MULT-1 and ADD-1 are not, hence X=6 and Y=4: but the latter
is inconsistent with the earlier deduction that Y=6. therefore the suspect MULT-2

cannot explain the observations and is exonerated. The procedure not only rules

out all failures of MULT-2 at one stroke, but also produces useful information about

exactly how ADD- I and MULT- 1 are misbehaving if either of them is the true culprit.

LOX uses a similar procedure, but also interleaves the generation and checking of

suspects, occasionaily allowing it to exonerate all the predecessors of an exorerated

suspect. The underlying intuition is that if the suspect can't explain all the observed

discrepancies, then neither could its predecessors. This intuition is correct only in

the absence of reconvergent fan-out. The system diagnosed by LOX has enough

components (about 2000) and its structure is sufficiently free of reconvergent fan-

out that the check for this special case turns out to be advantageous. A similar
optimization is done by LOCALIZE with its 10,000 components organized into largely

fan-in-free structures.
INTER and the ATMS troubleshooter perform a computation similar in some ways

to constraint suspension. As in constraint suspension, all observations propagate

their consequences uniformly throughout the device. Each discrepancy can result in

conflicts with the consequences of other observations. Hence there can arise several

overlapping sets of conflicting assumptions. i.e. severa! sce-' of components. each of

%h ih rmu, contain at least one faul" component. Each such conflict set may

be rediscoered several times, in contrast to constraint s!sipenion, which in effect

,tops after finding the first conflict. The figure below. shows the conflicts that this

procedure discovers in the adder-rviultiplier example. The intersection of these sets
of conflicting assumptions is the st of consistent suspects. MULT-1 and ADD-1.

A 3 V 6M U'LT- I

A D D- F=I2 Expected
3 F=10 Observed

C2 MULT-2 Y -6

D 2

D -- ADD-2 G 1=2
MULT-32__

E-3 Z 6

Adder-Multiplier Example Conflict Sets



Saving conflict sets allows straightforward generalization to finding con-
sistent hypotheses about independent multiple faults by using set cover
instead of intersection, as is done through a variety of mechanisms in
"First82,Reggia83,Reiter85,deKleer87]. Any collection of components that contains
at least one element from each conflict - i.e. any set cover - would explain all the
discrepancies. By Occam's razor, the preferred hypotheses are the minimal set
covers, i.e. those set covers having no subsets that cover all discrepancies. Note
that different set covers can be minimal and yet have different sizes; the notion of
minimality has to do with preventing the inclusion of extraneous suspects, not with
cardinality. Note also that constraint suspension as described above could be gen-
eralized to hypothesize and check hypotheses about multiple faults by suspending
n-tuples of constraints, but without an explicit requirement that all conflict sets be

covered, such a generator would be needlessly unconstrained.

The purpose of hypothesis checking is to exonerate suspects. We have seen
five techniques for performing this check. The ordering below reflects increasing
generality due to differing information requirements:

I. Directly exonerating components by reasoning from corroborations. This re-
quires that the components in the domain have exceedingly simple behavior.

LOCALIZE, INTER, and SOPHIE used this technique in certain cases.

2. Fault envisionment (used in SOPHIE and IDS) requires the use of built-in fault
models for each component, and compares the simulation results to all obser-
vations.

3. Covering of suspect sets derived only from discrepancies requires the same
information as hypothesis generation. It is used by DART and jGinsberg84j's
related framework for multiple faults.

4. Constraint suspension, implemented in different ways in Davis' program and

LOX, relies on the ability to infer components' inputs from their outputs.

5. Covering of suspect sets derived from conflicts involving both discrepancies
and corroborations (as implemented in the ATMS troubleshooter) has the same
information requirements as those of constraint suspension, but has important

advantages for diagnosing multiple faults.

4.3 Hypothesis Discrimination

It is unlikely that an initial set of observations will be sufficient to yield a unique
fault hypothesis. These competing hypotheses can be discriminated by probing

examining previously unobserved terminals - or testing - changing the device's
inputs and reexamining its outputs. We first consider probe selection, then explore
test generation.



2.3.1 Probe Selection

Assuming uniform cost for all probes, probes should hv ,rdere4 r, -"

minimizes the expected number required. Probe selettion *s t,,betl ui i'ir *14,-ghi

that each competing fault hypothesis maN Imply a different e, ,)re, I Wr ,,, s ,,

the device's response to its current input" Picking the l,'- pru,. '.-.:

selecting that one whose set of out(omes and re-tltfig .A ',1 i , ' 1 ..

ninimize the number of probes that %% il (orlw after I

Probe interpretation updating outstanding h [pot h,.-#- g .-

probe is an extension o' h.potf os:i he king %, hei , :i '

-he result of a probe i ch.ked for )n-iste t dt.airnit int ;i, 1.! '0

quantitx undt-r each possile fault hN pot he-'.-- 'b" hell i- rig

-he result provides informition thit alloo -nore on. rA tit

the number of consistent , andida-es For .t i(ei , N 1 4 1 (1 4.,

sufficient information to reconstruct the (4nseq. ,- te, ',,r . h,

consequences of believing that all components not appcaritx ;. "r, .a * 1*', at,

normal. This suggests that an AITMS is an advaiAg.(,,1- .rg : t,7I. . * '

predicted value can be indexed with the (oll.et,oi ot A h i , ,14

support it
Since probe- are genera&' ,l ,,t-e,, ,-: , '

e\1ra cotlipulatioll to ..ele. t I th r:,'.t .r11,4)r a',. ., . ,

here 1w,.o approa he,:- - ,,,ra. app,a 4t,

about de\, ice structure to select I ;)rIJt.[ ,lit ald :'.i It .,' ,

approac hes. which ignore de\,. -, , it ,r ar, 1 : - I - ,.

for the various outstanding h) pothes e- and pr..h., out, .

Structural approaches to probe sele( t ion are 1141.atel *"

peting suspects tend to lie in group- %' a re-uit ! rfor' ,t! r

connections between suspects were k4,,iwr "hen K |, h..- '-""

quickly Consider the no% famtii ar adder ritn l, ,r '- .i " •

ADD I are suspects, and t h,. ,, ho. Lt - Y . '' ,

%ere known Nothing need t he ,'- , .to,,i' , ';, .,k

the fact that X is a good platr ', , roh, - ;I A. ,.1

.4 simple structural approa t. ' ; ir,, ,-r-. :

until a correct value is found at "hat ; .t'i , ,j.4,,,

correct input will ha%e an tit orr, '' ,it;. ' .r,. ',* ,

('o1Tponent,, with mult pie IC , , ' .k 1, -\A

terfriinated along an) brart t! A .r, ',, ,t , ,

esselnce of the guided probw agr'lt,; fi, ,'r 7h

Addit ional power i a ailahi e r(f.' he -r x ,i' , . .!. t

new d icrepanc ies or t orrot rat o,) al -i ,. . .

re-sult can eliminate more randidate-'ttr. t e ,.-r,t , 'L



I Y ?iw *S. &toIa~ gw# 14 as Oaa j# a Wf,

0T1(S i k wvf 0 .t w'.d 4FAwIL -,i.'t *e~ rvitw* - sds- *

e *# 41 *? V'W t. 11 hl k T,. F9 ar . to I ." W o

%V t ax .l dt * . Jpj"ftv att a- .'q -. w u ,fttl wv

.9' ~ .- 4 ' 4.;Do.ft ' e -t * t~ .a ' ' p 1

Si *f s A~ w tf*.4 * ~ t* , hejtf

*& 44*'4£-'l''

4 a weft a

~ 4.-. .,~.* - 4.. -. __ . . -a.* . a 3.'

4 -.. 4.-- '..' ~ r *a~. *'a "-'i Al

*~~~~~f pw t * .g :.'- E-t 4 f t S a *** * " a

* - * ., . '' 44 a. '. *fft 6? & 4.'

'* .** ft.94£'. '~ * 4 . .' .ON

%Ab, .4.

sof If



t'.-V pt 1L oCri if IthVM 1o .A1 lasluro rall 0-t fi:ate' up-.ed are rIo at

It, 4 pr tiali III % mruk tw~ w-sigried III" ear h wut 4ce 4 rpe appr(Ia.ti 141

.i V ,~I 1' #4 4111144 .Dbf !ht 'wm ()ft I tit pfk~)atiIJhC' IV kii ji) Ao je- * t;

t'' t r'~ci 4 k rnj.mportami detail I! that not e,,cr% fiiiij hfopothev i niplies

A 'I 4.0 04 ta n fle&aurat)4 %ignai. hente a singic h% pot he-,- TiA hew , wi!o-lt w 'it h

a- 'Ithle- i1rItrer 7 dca' I, At th,, h~ fpu tiwilt !(,,At, Ar (ppfc

£4 ' It 1, WTrIt I, I'' a gitoreA il1 ( '1 i I ( ,C t it 1 . 11) ot. 'l 'u

.%I o -,!'k p"ed A!i .atu it " The tI'c' ' prI or I to per fIorn is ItIh con 41 f a'~e 1.A' 7'ax it

* *)rq IPC & I Ir IW It A t Ihat ior, Itht a&Ota4 %%J' too hi 'fio 9'4 Alf-' 'u-, (it

40-0AAS a4 V' 'tof It" i'imlf thq'i'wI'tp Appri..A( h , 'bnt If go rlt'r2al-.*,o'

'A4 1.4' -ka 14~~ovT 'Ittili t"4 ti j pneT1 fail 041 'dl4- 11r,-i !tie Te'dI'.. di q1i.

,0 f joor. ;i. se.- anrd go rie-ralu . Iv to ITut pie n tid ty r l fit l u re Ia.e, ( %wl' e

4, 1'414 f 1! 1 I rtsitiIlit)l 'u- N IvA* at (-' 11& ;croftscr'g I rd1-g 0 f A% 0144tv

2 Test (e.nerabona

1: - 1 0 Of4 I I f 4* 1,. 11 - -1 '' %A 0' .IT t I

I 411t1(4 'A 1' goV go, %*'~

-1,4: , fa It &I it I haul iiagmcst .siprrftcift 4 #-1 t at, ti, -aid i tiaiit

I.- ti *is it~c .,t- '1 . r rr o r i I hv ri off. of a % r r It & )l niu i I f- O i m

"sjk %4.1! 4 ,e r Tilt e ' Pi" ts 1 1~. hC pr1'".eCi V~ 'If a TIiirniPir (If cmibi int

I dit I 'he prcctcio', ofl tlik)flg 4 go'e.4 jrchfe pit tt'i Idea

A Tit.4 4 0 i -'A . ii p 4j1i444 11 1, I,! 1 4. I'' , i 4h

* .s * r .. r '-n I ni ik * .rv i-it, . - - i .4 - n

* . *O I~ ' 4F I 4 ? 1141 l~., 11 i4*. ito:. 're

I jo - ofI itV A 1" t "t

r TOP~ **. 
OP *&.



B AND
OR-2 G=I

C 0 ,, NOT-1

Simple Test Generation Example

Suppose one fault hypothesis is that AND-i is misbeha% ing b) responding with a
0 when both its inputs are I. To construct a test focusing on AND-i, it is necessary
10 achie~e I s on both its inputs, hence achieve a 0 at input C. and achieve a I on
either A or on B. Suppose we choose B- I. Now the I must be propagated from F 0
to G. Ensuring that the output of OR-2 is sensitive to F requires a 0 on B. requiring
backtracking to the previous choice of B -I. and asigning I to A instead. The
resulting test assigns A- 1. 8- 0 and C=0. expecting G= 1 if AND-1 is unfaulted.

This combination of local propagations and backtracking is the essence of tradi-
tional test generation methods IBreuer?6. Propagating the expected outputs of the
tested component to observable outputs is termed pst snastnsat0on; this involves
the achievement of enabling values along the way. Achieving of values at the inputs
of the tested component is termed 1Ione justification and can be viewed as propaga-
tion of values upstream. with choices to be made and backtracking required when
conflicts arise Such algorithms are exponential in the number of components (in-
deed. test generation for boolean circuits ib NP-complete). Stated another way, test
generation is a conjunctive planning problem in which the different goals mutually
conitrain one another.

Heuristic methods and dependency-directed backtracking have been applied
to test generation by a number of researchers. e.g. Rutmanl2, Breuer79g, and
(,enesereth64 3

Not ever. test has diagnostic value Ideally, the expected output will rely on
Some. but not all. of the outstanding suspects. Just as in the probe selection

problem. ideall) the value examined should depend on about half of te suspects,

CART ppooua rt Fe pentatbom ol dvw. anJ the ssMe 4 rep,,sutim resid , ,,becrte lb.
alk ..la usn hat

AGOC1S 'S**

ez fz &WR1 " C5F&M e~e P:.z6.NzF fPZ4



* 15

and depend on at least one of them to behave in the same way it was supposed to in
the original symptom case. Due to the difficulty of test generation. however, a test
with any diagnostic value is usually acceptable. DART, for example, keeps trying to
generate tests until it finds one that might possibly reduce the number of suspects,
and uses that.

A more direct approach to ensuring diagnostic value is to select exactly one
suspect as the focus of the test, and guide the procedure so that the test being

generated involves the fewest other suspects as possible, and ideally no others.
Note that it is impossible to always generate a test that relies on only one suspect.
Indeed, it may be suboptimal anyway in light of observations made earlier about

good probing strategies. This approach toward generating tests is illustrated in
Shirley83 v hich uses a number of heuristics for avoiding or neutralizing the effects

of suspects other than the focus.
Using these heuristics, Shirley83"'s program is usually able to produce tests that

rely on only a subset of the suspects, and hence have diagnostic value.

2.3.3 Summary

The purpose of both probe selection and test generation is to add new information
that allo-sconsistency checking to exonerate additional candidates. Depending on
%%hat is possible and cost-effective in the domain, either probing or testing ma\ be
used to gain this additional information, the common theme being that the best
action can be selected on the basis of how it is expected to affect the remaining hy-
pot hese. Different techniques make use of different information and yield different
results:

1. The guided probe technique can be used when possible failures are treated
as equally probable, and the cost of additional probes is proportional to their
distance from previous probes.

2. Probe selection based on comparing sets of assumptions underlying %arious
predictions can be used when failures are equally probable and probes have
equal cost.

3. Probe selection based on decision analysis subsumes a variety of strategies. It
can make use of all available quantitative information about relative failure
rates and probe costs, and can be generalized to deal (orrectl\ .with multiple
faults.

4 Test generation via search requires information about %a.s to a(hiv'e desired
N alues on individual component outputs. The coni inatorics of the problem
also requires that heuristic guidance be provided to focus sear h toward thosu
primary inputs most easily achieved.



5. Test generation can also benefit from heuristks that try to prevent the test of
a particular suspect from depending on the proper functioning of competing
suspects. Such tests are more likely to yield different suspect sets and hence
have discriminatory power.

-,.%

. . . . . . . . . .. .. *&.p I,..p



* 17

3 Assumptions and Limitations
The effectiveness of model-based diagnosis is inextricably bound to the appropri-
aieness of the models it is provided. Models of structure and behavior, like all
representations, involve simplifying assumptions; in this case the assumptions af-
fect both the completeness of the hypothesis generator and the discriminatory poA er
of the hypothesis checker. In the following section we discuss these assunjptions.
focusing on those that are fundamental in the sense that to abandon therr, would
result in uninformative or impractically expensive computaions. We also present
some guidelines about useful assumptions to make - in effec'. some general princi-
ples about constructing good models for troubleshooting.

3.1 The Completeness of the Hypothesis Generator

As noted earlier, a complete set of fault hypotheses can be generated trivially by
enumerating all components. But this or any other set of components is only com-
plete with respect to the model, not with respect to the real device. There are
two ways a hypothesis generator might be incomplete in this broader sense: (i) a
possible fault location is not represented among the coTTIponents: or (i0 sormv real
i..teraction between components is not represented aymmg ifie Hou,. iolh
r'.istakes arise inevitably from built-in assumption:. often n!iddc twa ui, chv arv
realistir. but no less limiting.

3.1.1 Components Represent the Possible Fault Lo ations

Fault hypotheses generated by the methodology described aboie take the the form
of specifying one or more components that might be misbehaving. Hence, to choose
,Ahich parts of a device get represented as components is to choose which fault
hypotheses can be generated. Consider for example a circuit board. which can fail
because a piece of metal etch is cracked. If the program is to diagnose that faulh
correctly, then the metal etch itself should be represented as a component. otherwise
the program will fail to generate the hypothesis.

The process of elaborating the model to include more and more fault locations
need not be endless. Pragmatic limits on the level of detail that needs to be included
arise from the environment in which the automated troubleshooter operates. "he
following two principles apply in general:

e The level of detail that a model includes should b. Ihinited bN tht po-.,I.
repairs. For example, there is little point in dislinguishing the indi'idual

AN " transistors on a chip as separate components, since (hip, arctr'l uuall, re-
paired.



* The level of detail should be limited by the distinguishability of the effects of
the faults. For example, if two wires run in parallel for some distance, and
all that the troubleshooter can do is measure voltages at one end, then shorts
between the wires at all points along that distance are indistinguishable in
their effects and can be represented as a single possiLe short.

Even given a representation that is complete in this respect. however, the repre-
sentation of device structure as a graph, with the components represented as nodes
and connections between components represented as arcs, still reflects a bias about
the kinds of faults that will be represented. The representation doesn't lend it-
self to representing faults that arise from the presence of things that shouldn't be
present. For example, boards can fail because a spurious solder splash introduces a
connection between functionally separate signals (a -bridge fault"). Naively extend-
ing the representation of structure to diagnose such faults would result in adding
pseudo-components to represent the absence of solder - or, conversely, the pres-
ence of gaps between every pair of wires. While possible in principle, the idea is
counterintuitive and combinatorially explosive.

Fortunately, it isn't necessary to represent all such fault locations explicitly; it
i, only necessary that the hypothesis generator propose them. The fault locations
can be represented impliritl) in the graph. and created as needed by the h) pothesis 0
generator from another representation. The intended presence of gaps between
%ires. for example. can be derived from a representation of the physical layout of
the board, as in DavisM4 .

3.1.2 Connections Represent Interactions

Similar remarks apply to the connections that appear in the representation of device
structure and behavior. Just as the notion of "component" can be generalized to
the notion of "potential fault location," connections can h)e used to represent an>
kind of interaction. Because hypothesis generation mark, ab -uspects only those
components reachable by following connections, an) mis- ing interaction between
components means a possible loss of generator comipleteness. too.

For example, representing the behavior of coi;.ponents as hding a single direc-
tion of cause and effect is a useful abstraction for desigii purposes. Most digital
devices can be viewed this way and this abstratioi is useful iMi diagnosib because
it reduces the number of suspects generated fromi 'da l di,- rvpn( > Hut it ran be
violated when components fail (omponerit can in fart infl u emw their inputs. e.g a

fault gate camn ground its inputs. Diagnosing such faults (orrei 1l) requires a model
of the device that takes into account the fact that gates intertct not onl) through
vok&a. but also through current More striking, in any device there are man) %

elwtromagietic and thermal couplings bet~een components that can profoundly

.0 e



influence their behavior, and yet are virtually never represented explicitly. For ex-
ample, high frequency signals on adjacent wires can interfere with each other, but
electrical schematics don't normally show this interaction, nor the shielding that is
used to reduce it.

Ideally, the pragmatics of the tools available to the troubleshooting program
could be used to dictate the limits to the level of elaboration needed, as discussed
earlier. However, this appears to be more difficult to do for interactions than for
components. For example. it would appear that interactions that can't measurably
influeace behavior can be ignored. But "measurable influence" can be cumulative:
for example, while it is safe to assume that any given pair of gates on a chip
don't interact through their power connections, all the gates on the chip together
may draw enough current to cause fluctuations in the power supply voltage. Such
phenomena are notoriously difficult to anticipate in engineering models. Since the
problem is one of modeling, model-based diagnosis inherits it.

3.1.3 Controlling Hypothesis Generation

A model that included all the connections through which components might possibly
__ interact would leave hypothesis generation underconst rained. Assume for a moment

t -.at we %%ere willing to temporarily sacrifice some cOieenvs, in fh, generator.
jr. return for the ability to generate fault hypotheses in a uiore constrained %ay.
Those models that provide the most constraint on hvpoth~sis generation can be
characterized as follows:

e Models with sparse and unidirectional connections constrain hypothesis gen-
eration. When there is an identifiable direction of information flow in the
device, a model that assumes that the direction of flow is preserved in the
malfunctioning device will generate fewer suspects than a model in which the
information flow is not assumed to be preserved.

This principle appears implicitly in most of the programs surveyed. LOX and
LOCALIZE in particular diagnose systems with hundreds or thousands of components
successfully largely because the systems involved can be modeled as having rela-
tively sparse and mainly unidirectional connections. These programs build in the
assumption that whatever the underlying malfunction is, the intended directionality
will be preserved.

Another way of controlling hypothesis generation is to use a hierarchic device
model, as in Davis84 and Genesereth84:. The program can generate and check
suspects among components at higher levels before examining their subcomponents.
Hierarchy is especially useful when it is strict and a single failure is assumed. ;ince
all the subcomponents of an exonerated component are exonerated as well:

p,



* A model should be hierarchically organized, with strict decomposition of coal-
ponents where possible.

A generalization of this idea is to start with a description of structure and
behavior adequate only to represent the most important faults. Faults that oc(ur
-outside" that model will typically result in what appears to be intermittent or
multiple faults. For example, a digital gate that pulls down all its input signals
can appear to be caused by multiple faults in the gates that are supposed to drive

those signals; a bridge between wire X and wire Y can make both X and Y appear
intermittently grounded. When the only consistent explanation of a particular set of
symptoms seems to be multiple independent "normal" faults, an alternative, simpler
explanation can be sought in a second model adequate for representing more unusual
faults. Second and succeeding models can represent different fault categories among
their components and connections. This is done in Davis' program with two models:
the initial hierarchic model represents only wires, boolean gates, and compositions
thereof; a second model includes physical layout information, from which possible
bridge faults can be hypothesized.

This approach leaves some issues unresolved. With a variety of different models
appropriate to different fault categories, it is unclear in what order the program,.
should try the models. One possibility is to tr% those that include the most a priori
probable fault categories. Another would be to try those that are simpler. perhaps
as measured by a count of components and connections. Ideally. the program should
choose an appropriate model based on the particular symptoms at hand. though
the relevant criteria for such a choice is unclear. Nevertheless, a useful principle
remains:

* Layered models can be used to ensure that the simplest h)potheses are ex-
plored first, while retaining completeness overall, as each successive layer in-
cludes additional faults.

3.2 The Discriminatory Power of the Hypothesis Checker

The job of the hypothesis checker is to determine whether fault hypotheses are
consistent with all the observations of the device. The discriminator) power of the
checker is determined by its effectiveness in distinguishing between consistent and
inconsistent hypotheses. There are three reasons why current diagnosis programs
fail to detect inconsistencies and thereby fail to yield unique diagnoses: (i) the
computational machinery is weak because it is usually based on local, component-
centered propagations (ii) some constraints present in the world are not represented
effectively in the device model (iii) the device is modeled in such a way that the

problem is inherently underconstrained. "

, .o . leG~o...................-....................-......'......"........-...........,........"..'--,..



21

3.2.1 Detecting Global Inconsistencies via Local Propagation

In its most general form, checking the consistency of a fault hypothesis is a con-
straint satisfaction problem - we wish to find out whether or not there exists an
assignment of values to all the terminals in a device such that they are consistent
with the observations and with each other. For efficiency reasons, most of the
programs surveyed here rely on local propagation to solve this problem and hence
make inferences about one value at a time. A characteristic of all such approaches
is that they cannot always compute all the consequences of the observations: as a
result. contradictions may go undetected, resulting in the inappropriate survival of
inconsistent hypotheses.

This incompleteness typically occurs when a collection of constraints, each in-
volving n values needs n - I of those values assigned before it can deduce the last.
Such simultaneities occur in rings of constraints when each constraint has only n - 2
of its values assigned. One possible effect of the simultaneity is that even though
there is only one consistent set of assignments for the group, this goes undetected.
Simultaneities are common in non-directional domains and arise in directional do-
mains in structures with reconvergent fanout.

Simultaneities are amenable to a variety of techniques. including (i) relaxation.
a, in the Gauss-Seidel method for solving linear svstemrs, (ii) enumeration over finite
-et! of possible assigrirnenis. (iii) propagation of symbolic vxprcsiorn, deKleersO

or (iv) addition of additional constraints. perhaps ef(apsulating several compo-
nents (-slices" Sussman8() ). Relaxation techniques are appropriate in continuous
domains. The second technique can be viewed as adding the capabilities and at-
tendant control problems of a full first-order theorem prover with equality. Sim-
ilarly, the third may involve an algebraic manipulator of considerable complexity
(e.g.MACSYMA). The technique of adding explicit nonlocal constraints, in contrast.
requires no additional propagation machinery, although it complements (i)-(iii).
Encapsulating groups of components with nonlocal constraints places the burden of
deadlock avoidance on the device model instead. This suggests another guideline
for a good model:

e Organizations of components that are likely to cause local propagation simul-
taneities. e.g. structures with reconvergent fanout. should be encapsulated to
break impasses wherever possible.

3.2.2 Hierarchy, Abstraction, and Constraint

The most straightforward way to use nonlocal constraints is to organize components
into a hierarchy, so that each component in the hierarchy has its own constraints.
These constraints may make use of behavioral abstractions not available at lower



22

levels of structural detail. One common source of such a hierarchic description with
it. accompanying behavioral abstractions Is the device's design description.

The gates shown below, for example, are designed to function as a full-adder.
The full-adder's composite behavior description is almost as simple as those of its
individual gates: the output, viewed as a 2-bit integer, is the sum of the inputs.
viewed as I-bit integers. The vocabulary of integers. as opposed to bits. simplifes
reasoning about the constraints on this group of gates. For example. the full-adder
constraint can include a rule such as -if both outputs are i. then all three inputs
are 1. This relationship would be difficult for a purel% local constraint propagator
to discover from the gate level description. Other techniques for discovering such
relationships. such as constructing the truth table of the device. are combinatoriall)
impractical. The essential step is in choosing a vocabular. in Ahich the behavior
becomes simple to express. but that choice appears difficult to automate.

.... ()()R--l {

B3 XOR-2 S UM

- -- OHM?-I -(0

A N)- -

(_.

Full-Adder Structure

This example illustrates a particularly important wa) that a design hierarchy
can add useful constraints: abstraction can make it easier to infer component inputs
from their outputs. This helps all approaches to hypothesis checking (constraint-
based or otherwise) to detect inconsistencies. While -inversion" of behavior is
straightforward for simple components. components with manN terminals or with
internal state are more challenging If a- a consequence of behavioral (omplexit%
the know'ledge is incomplete. i e.. constraints that ,nert b ,havior are Missing. not

all contradictions will be discovered Another rharicterist ( of d good model. then.
is

tHierarchic decomposition should facilitate making inferences about coinpo-
nentsa inputs from their outputs.

*J."



A'- % 23

3.2.3 Hidden State

Devices whose components have time-dependent behavior can in principle be mod-
eled and diagnosed no differently from static devices. If behavior is described by
rules, for example, the rule language can be extended to include delayed responses
and other kinds of dependence on prior states. Ilypothesis generation and checking
for such devices follows the familiar outlines. but a fundarmental difficulty arises
when components have "hidden" state. In a memory chip with 1024 1-bit words.
1023 are hidden in the sense that the state can only be examined one word at a time.
The presence of hidden state typically results in inherently underconstrained prob-
lems: competing hypotheses cannot be discriminated because of ambiguity about
the device's internal state.

I|amscher841 presents one example of this phenomenon in the digital domain.
To check whether a particular component could have misbehaved in a way that
not only explains all the observed discrepancies. but that is also nonintermittent.
requires inferring what its inputs and outputs must have been at every time step.
If the inputs to a suspect depend upon its behavior at a previous time, and it is not
possible to observe its intermediate state. it is impossible to rule out the suspect: the
pro llerrim inherently underconstrained. The figure below illustrates this abstractly.

W)# r~abhl, output from A at ir-ne I I

k at time t - I

(state component) Time

Aat timet i

Observable output from A at time f

Unobserved State

If A is a suspect. but we know only its inputs at time t I and its output at
time t. checking whether A is a consistent suspect requires inferring its output at
t I and inputs at t. To do this, ho%%ever, requires knowing A's behavior, which
is unknown because it is a suspect. The problem is analogous to solving a system

.. 1,, of n linear equations in n - I unknowns; it is inherently underconstrained. As
noted, the only way to solve this is to add additional observations, preferably of the

* " tq,,,.+ ." €i" ,' ' ' " 1.+ ' r,,' ' ' ,' ' ' .. 'P P " ".., ' x.Z,.++, ' .Z , +.+ , Z€,++', ., ,A.. .+,?



24

intermediate state between t - I and t. Similar remarks apply to domains in which
components' states change continuously rather than discretely.'

The inherent ambiguity of collections of components with hidden state suggests
that for pragmatic reasons, levels of detail at which the distinct components are
'isible should be suppressed. For example, a group of components that can't be
discriminated among using the observation tools available to the diagnosis program
-hould be abstracted into a single component with simple behavior. In principle, it is
possible to describe any device at such a behaviorally and temporally abstract level
that delay can be ignored, feedback loops encapsulated into primitive components,
and hidden state abstracted away. While a completely state-free model may discard
too much detail, the following guideline still offers useful assistance:

e A good model minimizes hidden state.

'Having romponentp with hidden utate aio increases the computational co4t of generating dis-
rriminattng tetp Achieving a particular wc o( inputs at an embedded romposm, fr erample.
might rqutre inding a complex input ,equence that sets the 4ates of cenr aim compomeats without
4M ui n ther*

Loc L7 . %.V



4 Conclusion

Existing programs for automated diagnosi. of 'de% it -~ trotri hir- jot

much in common despite apparent difference- of domain in(4 irt harn;,r I -it
silar procedures to generate and che k fault h pot he,*- 4n tiri '.t " I'

due to their representations of the devtcef. the> -nust '1iagi~c-t P'h ti-1 i
'uiggests that domain-independent diagno-io. from fir- pr r- p P, - A--,-%

The second indicates that there remains a substtitidl agtdA (If t.-t. J,

Fault hypotheses are typically generated bN examining a Trace of -he
behavior of the device. Hypotheses are then rchecked for 4onsisteni.
explicit simulation or by attempting to deduce a specitP rornponew, r,! '

b% reasoning from external observations back to the ernbroddd (01t1)WI Ti

The effectiveness of both phases depends crucilall% on t he de%~ ifc# rmodev

example. the completeness of the generator depends on the ie~eI of ieiV .)t 'fliv

components; the number of hypotheses generated for each disc(repanc% 4ilep To- ,
the type and density of component connectivity: the power of t he rea-soning t:,d(i

er% that rules out inconsistent hypotheses depends in part on whethe rf Ori'
about components' inputs can be made from their inputs

Silbt ant a! problems remain to he add resed. Nllo'i )I hefit '~at;

_t '**ex rrp'les, and t herc is e,.'idf-rnce to suggest Ithat N aliig 1p To -if t

tje (and highl% con tiected de% icc- ma% bc d if i Itl. both frfi 'i t h. t ~
computational complexity and from the standpoiit of kno" ledge enxinevr-T) I

eral principles for constructing good models exist. but the.% ruinniii fv%. ike 1,: t .

in some cases contradictory because of the difficulty of reitonciding t he ttr~ !I1
goals of ensuring completeness while utilizing the constraints that the trouhl*-.hool
ing domain provides.

A cknow ledgemnents

Discussions through various media with Meyer Billier' (D)EC). \111 hdil 1F'.
(Columbia), Michael Genesereth (Stanford), Harold Haig (MITL. Toni Knight - 1
bolics), Willie Lim (MIT), Jeff Pan (Schlumberger), Ramesh Patil (MITi. (hair r'
Rich (MIT), Mark Shirley (MIT), Howard Shrobe (Symbolic,). Rieid '.rt 'T-n-

(MIT), Ethan Scarl (MITRE). Peter Szolovits (MIT). Daniel Weld 11T Ian
Williams (MIT). Rai~l Valdis-Pires (00U). Jeffrey Van Haalen (Nt r ,t ,ii i g
Wu (MIT) were helpful. Discussions with Johan deKleer (\erox IPAt H. %#.-
pecially helpful. Acknowledgement does not imply agreemnent %1th opinion -,tied
herein.

VXU



:#rri sipw ;ag 4 j 44h I TW '% 1 %Mf r..

I*. * f )f. i~ . 'V ad'~ r ' * 4P- 'Of 10I J&a

f tded v~ *Iq few dW ill f'.~g 'Frve f.*d

,oil ct t.fg .t I o - R-t - % R V I r ~ -

*angaW Ave~ Kr--m&4 1! I, ginsw-ng Tev lrrques it '4)PNIPF 1 11

1 111 I .narj a-,t Heim I' Ft .e.skq "fdgels Tit-
'~,P. %, lbsiffetn Ppi, N" N wth 16' i 2

%It -rw '' 4 0i, '04 1., %111 T q., a ta

*tkere T ftiI le MUev I anti 4. uasman PFvwwaatkvrw 4~ nmi.ratntg %W

;uWO Ie st Ifr ull vnqt* 1It'II"611"eAd /nb-e vis cot s rftC
tIV 1Z 64 %prit 1980

Irk ~r%7 4v Kwet J and R ( AilIharm Domarwr, Ml,pe 'anh- rt,
appear r 4vfirtai 1IrdSiogfvis r r'~

9' ~ ~ I r'a9vis 4 ~4 H j '%ciw - % I "lrr a- 1 N 14 %4hl' (
11 f . .VTplijrV %4%k t4% d I els 4jj41 1 o" 'fol F" P h 9e aI N'%' "Ir, %% le

I e " 0'ei 14 , ,e n#-ee t - - R I het 1, ," 1 114 f ) (it -r ' T1 %. ~ '1 aTI Poll

I liagnoE% t- 4-titfii /pgugg 241 1 01 1 W I I W.~r I 4

famfloIW735@ (.1natiri asra, m I iftoli. ''1v~ff K-Iff"Irer el;tvem

Labof alt.r% Reporl KSI "6 63 IDvpar 11w Sr 4 trylfv~.itV 41 if nt

AlanforduI nivertsit



* 27

HIatirti herO44 Hanmwher A C and R D~av is and,:l. t .*rreat itj for Icejcee'
*t %late 4in lnherpnilk I niderconsir~iIneo Problem lIn 1'rceed-
trip~ P1 4 A 41-84 kustiii TV piage~-1 AAAL August. 1984

'ArI Pan. J Q ,aliati%- ReaMsrtng kA ith D"e p- lve t I MtfhanistII Model,

for IDiagn,,se of N1echanisru Faa' ires In~ I'7.i(,dig., of (A'414-

IDcr.er ( blorado page-, 2wi-301 F.. .E1 DiitNirmer l')xi

RrakA: Reca J A D - au. and P %% ang Ai \,-%% Inferene Mlet hoc for
Frame-Based Expert S~strrs In Prwrediag. of 4.0-1. %%cth-

inglon DC. pagm 333-337

H. '.rf- Reiter R 4 Theory of 1)iagvosis froint Vir4r Irsmapitr' Diipar, mvion

of Cormputer Sciaence. I nau ersat% of Troronrto, dud he ( arttidiii. hi-
mitte for Advanced Re~aarch, December li9

RHkt rIAn72 Rutman. R A Fault-[)ctertion T"t G;eneration~ For !%eqlanta

Logic 6% Heuristic 'Tree *-arrh IUI. omputTer er PA;IVr

R-7.2-l'.7T 1972

'I! I 1~o Rp.;e J. in ic, if~ ie' I4o r.

,Ipa(* hu- ta Iti '"riotlm.. ofl~ I I. - .~.-~~g

414-141 Ii(A. 4 CIAuI 190

1t:,rip% 1,3 !%hirlt-) \4 H an(I Randall IDa'a .a afniI,.trgA-1Ii ii

ba&d on Hwrarchicai MIodels and SniP1T]w Informaticiny If. JJ
/lnlr"6110s.I (OVIferfnee On, (COMPUIPF 1)e.in. 1983

=i-..nianM0 !-ussmrri, (; J .and (1' 1. - tele ( onsraiiit' k I.dusgu.lge fon

IExpre%.ig rimoti- Hicrarr haral Ie-,. rip' iwin, 4rfria Irife'igei er

14111 1 40. Januar%. 19W)



%i %|TvvI I

dFo

vI%


