

MICROCOPY RESOLUTION TEST CHART

Q	
9	

419 281 US ARMY LABORATOF MATERIALS LABORATOF

US ARMY LABORATORY COMMAND MATERIALS TECHNOLOGY LABORATORY

MTL TR 87-5

EIGENFUNCTIONS AT A SINGULAR POINT FOR TRANSVERSELY ISOTROPIC COMPOSITES WITH APPLICATIONS TO STRESS ANALYSIS OF A BROKEN FIBER

January 1987

YIJIAN JIN and T. C. T. TING Department of Civil Engineering Mechanics and Metallurgy University of Illinois at Chicago Chicago, Illinois 60680

FINAL REPORT

Contract DAAG46-85-K-0007

87

Approved for public release; distribution unlimited.

8 11

048

Prepared for

U.S. ARMY MATERIALS TECHNOLOGY LABORATORY Watertown, Massachusetts 02172-0001

REPORT DOCUMENTATION PAGE			READ INSTRUCTIONS	
REPORT NUMBER	2. GOVT	ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER	
MTL TR 87-5	ADA	q183614		
TITLE (and Subtitie)			S. TYPE OF REPORT & PERIOD COVERED	
EIGENFUNCTIONS AT A SI	NGULAR POINT FOR		Final Report $-4/1/85$	
TRANSVERSELY ISOTROPIC	COMPOSITES WITH	ŀ	Enrough 8/31/86	
APPLICATIONS TO STRESS	ANALYSIS OF A BRO	OKEN FIBER		
AUTHOR(a)			B. CONTRACT OR GRANT NUMBER(s)	
Yijian Jin and T. C. T	. Ting		DAAG40-03-K-0007	
PERFORMING ORGANIZATION NA			10. PROGRAM ELEMENT PROJECT. TASK	
Dept. of Civil Enginee	ring, Mechanics a	nd	AREA & WORK UNIT NUMBERS	
Metallurgy, Univ. of I	llinois at Chicago	0	D/A Project: 536-6010 P623222 V1/A-2585	
Chicago, Illinois 606	80		* F025222.R14A-2505	
I. CONTROLLING OFFICE NAME AN	D ADDRESS	F 17	12. REPORT DATE	
ATTN: SLCMT-ISC	chiology Laboratos	^{ry}	13. NUMBER OF PAGES	
Watertown, MA 02172-0	001		69	
4. MONITORING AGENCY NAME & A	DDRESS(il dillerent from Con	trolling Office)	15. SECURITY CLASS. (of this report)	
		{	linclassified	
		ľ	15. DECLASSIFICATION / DOWNGRADING SCHEDULE	
Approved for public r	elease; distributi	ion unlimit	15. DECLASSIFICATION/DOWNGRADING SCHEDULE	
Approved for public r	elease; distributi	ion unlimit	15. DECLASSIFICATION/DOWNGRADING SCHEDULE ed.	
5. DISTRIBUTION STATEMENT (of a Approved for public r 7. DISTRIBUTION STATEMENT (of a	nie Report) elease; distributi ne ebetrect entered in Block 2	ion unlimit	15. DECLASSIFICATION/DOWNGRADING SCHEDULE ed.	
Approved for public r	nie Report) elease; distributi ne ebetract entered in Block 2	ion unlimit	15. DECLASSIFICATION/DOWNGRADING SCHEDULE ed.	
Approved for public r 7. DISTRIBUTION STATEMENT (of A 7. DISTRIBUTION STATEMENT (of A	hie Report) elease; distributi he ebetract entered in Block 2	ion unlimit	15. DECLASSIFICATION/DOWNGRADING SCHEDULE ed.	
Approved for public r OISTRIBUTION STATEMENT (of n OISTRIBUTION STATEMENT (of n SUPPLEMENTARY NOTES *AMCMS Code: 693000.2	elease; distributi he ebetrect entered in Block 2 21506	ion unlimit	15. DECLASSIFICATION/DOWNGRADING SCHEDULE	
Approved for public r 7. DISTRIBUTION STATEMENT (of it 7. DISTRIBUTION STATEMENT (of it 8. SUPPLEMENTARY NOTES *AMCMS Code: 693000.2	elease; distributi ne ebetrect entered in Block 2 21506	ion unlimit	15. DECLASSIFICATION/DOWNGRADING SCHEDULE ed.	
Approved for public r Approved for public r DISTRIBUTION STATEMENT (of th SUPPLEMENTARY NOTES *AMCMS Code: 693000.2	hie Roport) elease; distributi he obstract entered in Block 2 21506	ion unlimit. 10, // different from	15. DECLASSIFICATION/DOWNGRADING SCHEDULE ed.	
Approved for public r Approved for public r DISTRIBUTION STATEMENT (of r SUPPLEMENTARY NOTES *AMCMS Code: 693000.2 KEY WORDS (Continue on reverse Elasticity	elease; distributi he ebetrect entered in Block 2 21506 nide if necessary and identify Eigenfunctio	ion unlimit 10, if different from by block number) ns	<pre>15. DECLASSIFICATION/DOWNGRADING ed. Report) Axisymmetric body</pre>	
Approved for public r Approved for public r DISTRIBUTION STATEMENT (of th SUPPLEMENTARY NOTES *AMCMS Code: 693000.2 KEY WORDS (Continue on reverse Elasticity Stress intensity	elease; distributi ne ebetrect entered in Block 2 21506 nide if necessery and identify Eigenfunctio Transversely	ion unlimit 10, if different from by block number) ns isotropic	ed. Report) Axisymmetric body	
Approved for public r Approved for public r DISTRIBUTION STATEMENT (of th SUPPLEMENTARY NOTES *AMCMS Code: 693000.2 KEY WORDS (Continue on reverse Elasticity Stress intensity Eigenvalues	elease; distributi ne ebetrect entered in Block 2 21506 ande if necessery end identify Eigenfunctio Transversely Composite ma	ion unlimit 10, if different from by block number) ns isotropic terials	ed. Report) Axisymmetric body	
DISTRIBUTION STATEMENT (of it Approved for public r DISTRIBUTION STATEMENT (of it SUPPLEMENTARY NOTES *AMCMS Code: 693000.2 KEY WORDS (Continue on reverse Elasticity Stress intensity Eigenvalues ABSTRACT (Continue on reverse of	elease; distributi elease; distributi ne obstract entered in Block 2 21506 21506 Eigenfunctio Transversely Composite ma	ion unlimit 10, if different from by block number) ns isotropic terials by block number)	<pre>15. DECLASSIFICATION/DOWNGRADING ed. Report) Axisymmetric body</pre>	
Approved for public r Approved for public r DISTRIBUTION STATEMENT (of f SUPPLEMENTARY NOTES *AMCMS Code: 693000.2 KEY WORDS (Continue on reverse Elasticity Stress intensity Eigenvalues	elease; distributi elease; distributi he obstract entered in Block 2 21506 Eigenfunctio Transversely Composite ma ide if necessary and identify Composite ma	ion unlimit. 10, 11 different from by block number) ns isotropic terials by block number) E SIDE)	<pre>ise. DECLASSIFICATION/DOWNGRADING ed. Report) Axisymmetric body</pre>	
Approved for public r Approved for public r DISTRIBUTION STATEMENT (of A SUPPLEMENTARY NOTES *AMCMS Code: 693000.2 KEY WORDS (Continue on reverse Elasticity Stress intensity Eigenvalues	elease; distributi he obstract entered in Block 2 21506 Eigenfunctio Transversely Composite ma ide if necessary and identify Composite ma	ion unlimit. 10, if different from by block number) ns isotropic terials by block number) E SIDE)	15. DECLASSIFICATION/DOWNGRADING ed. Report) Axisymmetric body	
Approved for public r Approved for public r DISTRIBUTION STATEMENT (of n SUPPLEMENTARY NOTES *AMCMS Code: 693000.2 KEY WORDS (Continue on reverse Elasticity Stress intensity Eigenvalues ABSTRACT (Continue on reverse a	elease; distributi ne ebetrect entered in Block 2 21506 21506 adde if necessary and identify Eigenfunctio Transversely Composite ma ide if necessary and identify (SEE REVERS	ion unlimit 10, 11 different from by block number) ns isotropic terials by block number) E SIDE)	<pre>ise. DECLASSIFICATION/DOWNGRADING ed. Report) Axisymmetric body</pre>	

.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (Man Date Entered)

Block No. 20

8-

ABSTRACT

When a transversely isotropic elastic body that contains a notch or a crack is under an axisymmetric deformation, it is shown that the eigenfunction solution near the singular point is in the form of a power series, $\rho_{\mu}^{(\mu)}$ ($\rho_{\mu}^{(\mu)}$), $\rho_{\mu}^{(\mu)}$, $\rho_{\mu}^{(\mu)}$

FOREWORD

This work is supported by the Army Materials Technology Laboratory (ANTL), Watertown, Massachusetts under Contract No. DAAG 46-85-K-0007 with the University of Illinois at Chicago, Chicago, Illinois. Mr. J. F. Dignam of the AMTL was the project manager and Dr. S. C. Chou was the technical monitor. The support and encouragements of Mr. Dignam and Dr. Chou are gratefully acknowledged.

1.5.55555

TABLE OF CONTENTS

ABSTRACT

ACKNO	TLEDGEMENTS PA	GE
I.	INTRODUCTION	1
11.	EIGENFUNCTION FOR AXI-SYMMETRIC DEFORMATIONS	5
	Mathematical Formulation	5
	Eigenfunctions for Small ρ_1 ρ_{15}	7
	Determination of δ and $A_{\Theta}^{(K)} \dots D_{\Theta}^{(K)} \dots \dots \dots \dots \dots$	10
	Degenarate Case $\mathbf{m}_1 = \mathbf{m}_2 = 1$	15
	Particular Solution for the Displacement of the Singular	
	Point	18
111.	MODIFIED EIGENFUNCTIONS	20
-	Modified Solution	20
	Determination of $q_{\bullet}^{(k)}$ and $q_{\bullet}^{\prime (k)}$	22
IV.	APPLICATIONS TO COMPOSITES	24
-	Singular Point in Composite Materials	24
	Determination of δ and $A^{(k)} \dots D^{(k)}$	24
	Degenerate Case	27
	Numerical Examples	27
۷.	EIGENFUNCTIONS AT AN INTERFACE CRACK WITH A CONTACT ZONE	30
	Unrealistic Phenomenon	30
	Singularities at Ends of Contact Zone in Interface Crack	30
¥1.	SINGULARITIES AT AN INTERFACE CRACK WITH A CONTACT ZONE	34
	Stroh's Formalism	34
	Basic Equations	35
	Interface Crack with a Contact Zone	38
VII.	CONCLUDING REMARKS	45
APPEN	IX A	47
APPEN	DIX B	49
BIBLI	GRAPHY	54

Chapter I

INTRODUCTION

Even though light weight, high strength composites have been widely used in the industries, rigorous analysis of stress distribution in a composite which contains delaminations and/or broken fibers are still lacking. The difficulties are due to the presence of stress singularities at the singular points such as the interface crack tip and the edges of the broken fibers. Accurate predictions of the stresses near these singular points are important not only for studies of fracture behavior of materials but also for studies of general stress analysis. In finding stress distribution in an entire specimen numerically by a finite element scheme, one may use regular finite elements everywhere except at the singular points. At these singular points, special elements are used in which the singular nature of the stress is given by an analytical expression.

The problem of finding the stress singularities at the apex of an isotropic elastic wedge or notch was first considered by Knein (1926) and Williams (1952) in which they assume that the stress distribution under a plane-stress or plane-strain deformation can be expressed in terms of a series of eigenfunctions of the form $\rho^{\delta}f(\psi, \delta)$ where ρ is the radial distance from the apex and the f is a function of the polar angle ψ and the eigenvalue δ . For given wedge angle and homogeneous boundary conditions at the sides of the wedge, there are in general infinitely

many eigenvalues δ and the associated eigenfunctions $\rho^{\delta}f(\psi, \delta)$. Particularly important in applications is when one or more of the δ 's is negative and the stress is singular at the apex. It was shown that for a two dimensional body under an external loading the negative δ appears when the wedge angle is larger than π and $\delta = -1/2$ is a double root when the wedge angle is 2π (i.e. the case of crack). The technique is applied to a crack along (Williams 1959, England 1965), and normal (Zak and Williams 1963, Cook and Erdogan 1972) to the interface and to other geometries of isotropic composites (Bogy 1970, 1971, Bogy and Wang 1971, Erdogan and Gupta 1972, Delale et al 1984). A systematic derivation of the equation for finding the singularity δ was given by Dempsey and Sinclair (1981).

Investigation of associated problems for anisotropic materials was started by Sih et al (1965) and has become active only in the last decade (for example, Bogy 1972, Kuo and Bogy 1974, Delale and Erdogan 1979, Sih and Chen 1981, Hoenig 1982). However, these studies are limited to two-dimensional singular points. There are singular points which are three-dimensional. Three-dimensional singularity analysis for isotropic materials was first performed analytically by Benthem (1977,1980) and Kawai et al (1977) and numerically by Bazant (1974) and Bazant and Estenssoro (1977,1980). Extension to anisotropic materials and composites was considered recently by Somaratna and Ting (1986A,B). In Somaratna and Ting (1986B) finite element schemes are employed to determine the order of singularity at a three-dimensional singular point of any geometry. In the other paper of Somaratna and Ting (1986A) the order of singularity is determined analytically for the special case of tran-

2

ゥ

3

9

ی

ŵ

Э

sversely isotropic materials under an axisymmetric deformation. The singular point is assumed to locate on the axis of symmetry. In present study, we consider the case in which the singular point is not on the axis of symmetry.

Fig.1 shows the cross section of an axisymmetric body under an axisymmetric deformation. The material is assumed to be transversely isotropic with the z-axis being the axis of symmetry. We are interested in the stresses near the singular point R. The associated problem for isotropic materials was investigated by Delale and Erdogan (1981) and Delale et al (1984). However, their objectives are different from ours and hence their series solution is different from the one presented here.

A series solution for the problem is developed in Chapter II. After presenting the basic equations for transversely isotropic materials under an axisymmetric deformation in Section 2.1, the general solution in the form of a power series in ρ is presented in Section 2.2. Application of the stress-free conditions at the sides of the wedge leads to equations for the eigenvalue δ and the coefficients in the power series. This is presented in Section 2.3. It is seen that the eigenfunction associated with an eigenvalue δ no longer contains a single term $\rho^{\delta}f(\psi, \delta)$. It also has the terms $\rho^{\delta+1}f_{1}(\psi, \delta)$, $\rho^{\delta+2}f_{2}(\psi, \delta)$... Therefore, the inclusion of the second and higher-order terms in the special element is not simply the inclusion of the eigenfunctions associated with the subsequent smallest eigenvalue δ . A similar situation occurs in wedge with curved sides under a 2-dimensional deformation (Ting 1985). The derivations presented in Section 2.2 and 2.3 are for

the general case in which the two eigenvalues p, p, of the elasticity constants are distinct. The degenerate case in which p₁ = p₂ (of which the isotropic material is a special case) is discussed in Section 2.4. For 2-dimensional deformations, the displacement of the singular point R (Fig.1) can be ignored for the singularity analysis. For axisymmetric deformations, one cannot ignore the displacement of the singular point R in the r-direction. A particular solution associated with the displacement of the singular point is presented in Section 2.5. A difficulty arises when δ as well as δ +k, where k is a positive integer, is an eigenvalue. In this case the higher order terms of the series solution of the eigenfunction cannot always be determined. A modified solution is required and is presented in Chapter III. We can see in Section 3.1 and Appendix B that the modified eigenfunction solution has the new terms $\rho^{\delta+k}(\ln\rho)F_1(\psi,\delta)$, $\rho^{\delta+k+1}(\ln\rho)F_2(\psi,\delta)$... Application of the stress-free boundary condition is presented in Section 3.2. The solutions of Chapter II are then applied to composite materials in Chapter IV. The equations for general transversely isotropic materials and degenerate materials are presented in Section 4.2 and 4.3, respectively, and numerical examples are given in Section 4.4. For the singular point which is the tip of an interface crack the displacement was found to be oscillatory. This implies that the two crack surfaces inter-penetrate each other. To avoid the unrealistic phenomenon a contact zone near the crack tip is introduced in Chapter V. In Chapter VI the formulas for singularities at an interface crack with contact zone are derived by using the Stroh formalism. This alternate approach offers an analytical solution for the singularity δ which agrees with the numerical results obtained in Chapter V.

Chapter II

EIGENFUNCTION FOR AXI-SYMMETRIC DEFORMATIONS

2.1 MATHEMATICAL FORMULATION

Let (r, θ, z) be a cylindrical coordinate system with the z-axis as the axis of material symmetry and let (u_r, u_θ, u_z) be the corresponding displacement components. We assume that the deformation is axisymmetric and $u_{\theta}=0$ so that u_r and u_z are functions of r and z only. Introducing the displacement potential $\phi(r, z)$ which gives u_r and u_z by (Elliott 1948, Green and Zerna 1954 and Kassir and Sih 1975)

$$u_r = \frac{\partial \phi}{\partial r}$$
, $u_z = \frac{\partial \phi}{\partial z}$, (2.1)

where m is a constant to be determined, the stresses are obtained as

$$\sigma_{r} = c_{11} \frac{\partial^{2} \phi}{\partial r^{2}} + c_{12} \frac{\partial \phi}{r \partial r} + c_{13} = \frac{\partial^{2} \phi}{\partial z^{2}} , \qquad (2.2)$$

$$\sigma_{\theta} = c_{12} \frac{\partial^{2} \phi}{\partial r^{2}} + c_{11} \frac{\partial \phi}{r \partial r} + c_{13} = \frac{\partial^{2} \phi}{\partial z^{2}} ,$$

$$\sigma_{z} = c_{13} \frac{\partial^{2} \phi}{\partial r^{2}} + c_{13} \frac{\partial \phi}{r \partial r} + c_{33} = \frac{\partial^{2} \phi}{\partial z^{2}} ,$$

$$\sigma_{rz} = c_{44} (1+m) \frac{\partial^{2} \phi}{\partial r \partial z} ,$$

in which c_{ij} are the elasticity constants for the transversely isotropic material. The equation of equilibrium are satisfied if

$$\frac{\partial^2 \phi}{\partial r^2} + \frac{\partial \phi}{r^2 r} - \frac{1}{p^2} \frac{\partial^2 \phi}{\partial z^2} = 0, \qquad (2.3)$$

where

$$p^{2} = \frac{-c_{11}}{mc_{13}} + (1+m)c_{44} = \frac{c_{13} + (1+m)c_{44}}{-mc_{33}}, \qquad (2.4a)$$

or, equivalently,

$$- \mathbf{m} = \frac{c_{11} + c_{44} p^2}{(c_{13} + c_{44}) p^2} = \frac{c_{12} + c_{44}}{c_{44} + c_{33} p^2}.$$
 (2.4b)

The second equality of (2.4a) and (2.4b) respectively yield

$$\mathbf{m}^{2} - 2 \left[\frac{c_{11}c_{33} - c_{13}}{2c_{44}(c_{13} + c_{44})} - 1 \right] \mathbf{m} + 1 = 0 , \qquad (2.5a)$$

$$p^{*} + 2 \left[\frac{c_{11}c_{33} - c_{13}^{2} - 2c_{13}c_{44}}{2c_{33}c_{44}} \right] p^{3} + \frac{c_{11}}{c_{33}} = 0.$$
 (2.5b)

It can be shown (Eshelby et al 1953) that p cannot be real if the strain energy is positive definite. Therefore we have two pairs of complex conjugates for p which will be denoted by p_1 , \overline{p}_1 , p_2 and \overline{p}_2 where an overbar indicates the complex conjugate. The associated values of m are denoted by m_1 , \overline{m}_1 , m_2 , \overline{m}_2 respectively. From (2.5a) we note that

Since (2.5b) is a quadratic equation in p^2 with real coefficients, if p_1 is purely imaginary so is p_2 . Then m_1 , m_2 are real and $\overline{m}_1 = m_1$, $\overline{m}_2 = m_2$. If p_1 and p_2 are not purely imaginary we may choose

$$p_1 = u + iv = -\overline{p}_2$$
, $p_2 = -u + iv = -\overline{p}_1$, (2.6)

where u, v are real. In this case m_1 and m_2 are complex and $m_1 = \overline{m}_2$. In view of the fact that the equations are linear, the general solution for ϕ is obtained by superposing ϕ 's associated with p_1 , \overline{p}_1 , p_2 , \overline{p}_2 . We will assume that $p_1 \neq p_2$. The degenerate case in which $p_1 = p_2$ will be discussed in Section 2.4.

2.2 EIGENFUNCTIONS FOR SMALL ρ

Let (r,z)=(a,0) be a singular point which may be the apex of a wedge, notch, crack,or the tip of an interface crack. We now consider the case in which a \neq 0. The case in which a = 0 has been studied by Somaratna and Ting (1986A). Using the singular point as the origin, we define

$$\mathbf{x} = \mathbf{r} - \mathbf{a} = \rho \cos \psi , \quad \mathbf{z} = \rho \sin \psi . \tag{2.7}$$

To find the eigenfunction for ϕ that is valid for small ρ , we rewrite equation (2.3) as

$$\frac{\partial^2 \phi}{\partial x^2} - \frac{1}{p^2} \frac{\partial^2 \phi}{\partial z^2} = -\frac{1}{\frac{1}{a+x}} \frac{\partial \phi}{\partial x} = -\frac{1}{\frac{1}{a}} \frac{\partial \phi}{\partial x} \frac{\nabla}{s=0} \left(\frac{-x}{a}\right)^s.$$
(2.8)

Let

$$\phi = \phi^{(0)} - \frac{1}{a} \phi^{(1)} + \frac{1}{a^2} \phi^{(2)} - \dots = \sum_{k=0}^{\infty} \left(\frac{-1}{a} \right)^k \phi^{(k)}, \qquad (2.9a)$$

$$\phi^{(k)} = \sum_{t=0}^{k} A_t^{(k)} x^t z^{\delta+k-t+2} , \qquad (2.9b)$$

$$Z = x + pz$$
, (2.10)

where δ is the eigenvalue and $A_{t}^{(k)}$ are constants to be determined. Using equation (2.7) we have

$$x^{t}z^{\delta+k-t+2} \rho^{\delta+k+2}(\cos\psi)^{t}\zeta^{\delta+k-t+2}$$
, (2.11)

$$\zeta = \cos\psi + p \sin\psi . \qquad (2.12)$$

Therefore $\phi^{(k)}$ is of order $\rho^{\delta+k+2}$. By substituting equations (2.9) into (2.8) and equating the coefficients of $x^{t}Z^{\delta+k-t+2}$, it can be shown that (see Appendix A)

$$A_{k}^{(k)} = \frac{2k-1}{2k} A_{k-1}^{(k-1)}, \quad (k > 0),$$
 (2.13a)

$$A_{t}^{(k)} = \frac{2t-1}{2t} A_{t-1}^{(k-1)} - \frac{1}{2(o+k-t+2)} \left[tA_{t}^{(k-1)} - (t+1)A_{t+1}^{(k)} \right] . \qquad (2.13b)$$
$$(t = k-1, \dots, 1)$$

Hence the only unknowns are $A_0^{(k)}$ (k=0,1,2, ...) and δ which will be determined from the boundary conditions.

We will let the solution given by equations (2.9)-(2.13) apply to p = p_1 . For $p = p_2$, \overline{p}_1 and \overline{p}_2 we will use the same expressions except that $A_t^{(k)}$ is replaced by $B_t^{(k)}$, $C_t^{(k)}$ and $D_t^{(k)}$, respectively. Thus the general solution for $\phi^{(k)}$ is

$$\phi^{(k)} = \sum_{t=0}^{k} \{A_{t}^{(k)} \times^{t} z_{1}^{\delta+k-t+2} + B_{t}^{(k)} \times^{t} z_{2}^{\delta+k-t+2} + C_{t}^{(k)} \times^{t} \bar{z}_{1}^{\delta+k-t+2} + D_{t}^{(k)} \times^{t} \bar{z}_{2}^{\delta+k-t+2} \}, \qquad (2.14a)$$

 $Z_{g} = x + p_{g} Z$ (s=1,2). (2.14b)

Subtituting (2.14) into (2.1), we obtain

8

7

3

0

2

3

Э

$$u_{r}^{(k)} = \left\{ \sum_{t=0}^{k} A_{t}^{(k)} \left(\delta + k - t + 2 \right) + \sum_{t=0}^{k-1} A_{t+1}^{(k)} \left(t + 1 \right) \right\} x^{t} z_{1}^{\delta + k - t + 1}$$

$$+ \left\{ \sum_{t=0}^{k} B_{t}^{(k)} \left(\delta + k - t + 2 \right) + \sum_{t=0}^{k-1} B_{t+1}^{(k)} \left(t + 1 \right) \right\} x^{t} z_{2}^{\delta + k - t + 1}$$

$$+ \left\{ \sum_{t=0}^{k} C_{t}^{(k)} \left(\delta + k - t + 2 \right) + \sum_{t=0}^{k-1} C_{t+1}^{(k)} \left(t + 1 \right) \right\} x^{t} \bar{z}_{1}^{\delta + k - t + 1}$$

$$+ \left\{ \sum_{t=0}^{k} D_{t}^{(k)} \left(\delta + k - t + 2 \right) + \sum_{t=0}^{k-1} C_{t+1}^{(k)} \left(t + 1 \right) \right\} x^{t} \bar{z}_{2}^{\delta + k - t + 1}$$

$$+ \left\{ \sum_{t=0}^{k} D_{t}^{(k)} \left(\delta + k - t + 2 \right) + \sum_{t=0}^{k-1} D_{t+1}^{(k)} \left(t + 1 \right) \right\} x^{t} \bar{z}_{2}^{\delta + k - t + 1}$$

To simplify the expression, we will let

$$A_{t}^{(k)} = B_{t}^{(k)} = C_{t}^{(k)} = D_{t}^{(k)} = 0, \text{ if } t \ge k,$$
 (2.16)

and rewrite equation (2.15) as

$$u_{r}^{(k)} = \sum_{t=0}^{k} \left[A_{t}^{(k)} \left(\delta + k - t + 2 \right) + A_{t+1}^{(k)} \left(t + 1 \right) \right] x^{t} Z_{1}^{\delta + k - t + 1} + \dots$$
(2.17a)

where the dots stand for the similar expressions associated with $p = p_2$, \overline{p}_1 and \overline{p}_2 . Likewise, we have

$$u_{z}^{(k)} = \sum_{t=0}^{k} A_{t}^{(k)} \mathbf{m}_{1} \mathbf{p}_{1}^{(\delta+k-t+2)} \mathbf{x}^{t} \mathbf{z}_{1}^{\delta+k-t+1} + \dots$$
(2.17b)

In substituting equation (2.14) into (2.2) for the stresses, we first replace the terms $\partial\phi/(r\partial r)$ in (2.2) by $\partial^2\phi/\partial x^2$ and $\partial^2\phi/\partial z^2$ using equation (2.3). We then have

$$\sigma_{r}^{(k)} = \sum_{t=0}^{k} [-A_{t}^{(k)} c_{44}^{(1+m_{1})} p_{1}^{2} (\delta + k - t + 2) (\delta + k - t + 1) + A_{t}^{(k)} 2(c_{11}^{-} c_{12}^{-}) (t + 1) (\delta + k - t + 1) + A_{t}^{(k)} 2(c_{11}^{-} c_{12}^{-}) (t + 2) (t + 1)] x^{t} z_{1}^{\delta + k - t} + \dots$$
(2.18a)

9

BUXXXX B

Bases 200

$$\sigma_{\theta}^{(k)} = \sum_{t=0}^{k} \left[A_{t}^{(k)} (c_{12}^{+}c_{13}^{-}m_{1}P_{1}^{2}) (\delta + k - t + 2) (\delta + k - t + 1) \right] \\ -A_{t+1}^{(k)} 2(c_{11}^{-}c_{12}^{-}) (t + 1) (\delta + k - t + 1) \\ -A_{t+2}^{(k)} (t + 2) (t + 1) \right] x^{t} Z_{1}^{\delta + k - t} + \dots$$
(2.18b)

$$\sigma_{z}^{(k)} = \sum_{t=0}^{k} -A_{t}^{(k)} c_{44}^{(1+m_{1})} (\delta + k - t + 2) (\delta + k - t + 1) x^{t} Z_{1}^{\delta + k - t} + \dots$$
(2.18c)

$$\sigma_{rz}^{(k)} = \sum_{t=0}^{k} [A_t^{(k)}(\delta+k-t+2) + A_{t+1}^{(k)}(t+1)] c_{44}(1+m_1) p_1(\delta+k-t+1) x^t z_1^{\delta+k-t} + \dots (2.18d)$$

In (2.18a) and (2.18c), the following identities which are obtained from equation (2.4a) have been used:

$$c_{11} + c_{13}mp^2 = -c_{44}(1+m)p^2$$
, (2.19a)

$$c_{13} + c_{33}mp^2 - c_{44}(1+m)$$
 (2.19b)

2.3 DETERMINATION OF
$$\delta$$
 AND $A_0^{(K)} \dots D_0^{(K)}$
The problem reduces to the determination of δ and $A_0^{(k)} \dots D_0^{(k)}$.
The stress-free boundary conditions at $\psi = \alpha$ and α' are

$$\sigma_{r} \sin \psi - \sigma_{rz} \cos \psi = 0 , \qquad (2.20a)$$

$$\sigma_{rz} \sin \psi - \sigma_{z} \cos \psi = 0 .$$

Written in matrix notation, we have

$$N(\psi) \sigma = 0$$
, $(\psi = \alpha, \alpha')$, (2.20b)

where

$$N(\psi) = \begin{bmatrix} \sin\psi & -\cos\psi & 0 \\ 0 & \sin\psi & -\cos\psi \end{bmatrix}, \qquad (2.21)$$

10

the state and and that the second of

$$\underbrace{\sigma}_{\omega} = \sum_{k=0}^{\infty} \underbrace{\sigma}_{\omega}^{(k)}, \quad \underbrace{\sigma}_{\omega}^{(k)} = \begin{bmatrix} \sigma_{r}^{(k)} \\ \sigma_{rZ}^{(k)} \\ \sigma_{z}^{(k)} \end{bmatrix}, \quad (t = 0, 1, 2 \dots).$$

$$(2.22)$$

From equations (2.18) we may write $\sigma^{(k)}$ as, using equation (2.11),

$$g^{(k)} = \rho^{\delta+k} \sum_{t=0}^{k} \{ \sum_{t=0}^{k} \{ \sum_{t=0}^{k} \{ \sum_{t=0}^{k} \{ (\psi, \delta+k) g_{t}^{(k)} + \sum_{t=0}^{k} \{ (\psi, \delta+k) g_{t+1}^{(k)} + \sum_{t=0}^{k} \{ (\psi, \delta+k) g_{t+2}^{(k)} \},$$
(2.23)

in which

$$g_{t}^{(k)} = \begin{bmatrix} A_{t}^{(k)} \\ B_{t}^{(k)} \\ C_{t}^{(k)} \\ D_{t}^{(k)} \end{bmatrix}, \qquad (2.24)$$

$$S_{t}(\psi, \delta) = c_{44}(\delta - t + 2)(\delta - t + 1) \begin{bmatrix} -(1 + m_{1})p_{1}^{2} & \star & \star & \star \\ (1 + m_{1})p_{1} & \star & \star & \star \\ -(1 + m_{1}) & \star & \star & \star \end{bmatrix} \xrightarrow{Q_{t}} (\psi, \delta),$$
(2.25a)

$$T_{t}(\psi,\delta) = (t+1)(\delta-t+1) \begin{bmatrix} 2(c_{11}-c_{12}) & * & * & * \\ c_{44}(1+m_{1})p_{1} & * & * & * \\ 0 & 0 & 0 & 0 \end{bmatrix} \underbrace{Q_{t}(\psi,\delta)}_{t},$$
(2.25b)

In equations (2.25), the second column of the matrix is obtained from the first column by replacing p_1 by p_2 (and of course m_1 by m_2). The third and fourth columns are, respectively, the complex conjugate of the first and second columns. $Q_t(\psi, \delta)$ is a diagonal matrix given by

$$Q_{t}(\psi,\delta) = (\cos\psi)^{t} \operatorname{diag} \left[\zeta_{1}^{\delta-t}, \zeta_{2}^{\delta-t}, (\overline{\zeta}_{1})^{\delta-t}, (\overline{\zeta}_{2})^{\delta-t} \right] . \qquad (2.26)$$

 $g_t^{(k)}$ of equation (2.24) is related to $g_t^{(k-1)}$ by using equatons (2.13). Notice that equation (2.13a) can be regarded as a special case of equation (2.13b) if we use equation (2.16) and allow t = k in (2.13b). Thus we have, for k≥1,

$$g_{t}^{(k)} = \frac{2t-1}{2t} g_{t-1}^{(k-1)} + \frac{1}{2(\delta+k-t+2)} \left[tg_{t}^{(k-1)} - (t+1)g_{t+1}^{(k)} \right], \qquad (2.27a)$$

$$(t = k, k-1, \dots, 1)$$

$$g_t^{(k)} = 0$$
, if t>k. (2.27b)

As in (2.13) the only unknowns are δ and $\underline{q}_0^{(k)}$ (k = 0, 1, 2...).

Before we substitute (2.21)-(2.23) into (2.20b), we rewrite (2.23) as, making use of (2.27b)

$$\underline{\sigma}^{(k)} = \rho^{\delta+k} \{ \underbrace{S}_{0} (\psi, \delta+k) \underbrace{g}_{0}^{(k)}$$

$$+ \underbrace{\Sigma}_{t=1} [\underbrace{S}_{t} (\psi, \delta+k) + \underbrace{T}_{t-1} (\psi, \delta+k) + \underbrace{U}_{t-2} (\psi, \delta+k)] \underbrace{g}_{t}^{(k)} \},$$
(2.28a)

where we have defined

$$U_t(\psi, \delta + k) \equiv 0$$
, if t<0. (2.28b)

Now substitution of (2.21), (2.22), and (2.28a) into (2.20b) for $\psi = \alpha$ and α' yields the following equations for $g_0^{(k)}$:

$$\frac{R(\delta)}{2} q_{0}^{(0)} = 0,$$
(2.29a)

$$\mathbb{K}(\delta + k) g_{0}^{(k)} = -\sum_{t=1}^{k} \mathbb{W}_{t} (\delta + k) g_{t}^{(k)} \qquad (k \ge 1) , \qquad (2.29b)$$

12

C

∽

in which

$$\underset{\sim}{\mathbb{K}}(\delta) = \begin{bmatrix} \underbrace{\mathbb{N}}(\alpha) \underbrace{\mathbb{S}}_{0}(\alpha, \delta) \\ \underbrace{\mathbb{N}}(\alpha') \underbrace{\mathbb{S}}_{0}(\alpha', \delta) \end{bmatrix},$$
(2.30a)

$$W_{t}(\delta) = \begin{bmatrix} N(\alpha) \begin{bmatrix} S_{t}(\alpha, \delta) + T_{t-1}(\alpha, \delta) + U_{t-2}(\alpha, \delta) \end{bmatrix} \\ N(\alpha') \begin{bmatrix} S_{t}(\alpha', \delta) + T_{t-1}(\alpha', \delta) + U_{t-2}(\alpha', \delta) \end{bmatrix}$$
(2.30b)

For a nontrivial solution of $g_0^{(k)}$, we see from (2.29a) that

$$[K(\delta)] = 0$$
. (2.31)

Thus δ is the eigenvalue of the matrix \underline{K} and $\underline{g}_0^{(0)}$ is the associated eigenvector. With δ and $\underline{g}_0^{(0)}$ obtained from (2.31) and (2.29a), (2.29b) provides $\underline{g}_0^{(k)}$ for $k \ge 1$ and (2.27a) gives $\underline{g}_t^{(k)}$ for $1 \le t \le k$.

When δ is a simple root of (2.31), $g_0^{(0)}$ obtained from (2.29) is unique up to an arbitrary multiplicative constant. $g_0^{(k)}$ for k > 1obtained from (2.27a) is unique in terms of $g_0^{(0)}$ provided δ +k is not a root of (2.31). Therefore, when δ is a simple root and δ +k is not a root of (2.31), the eigenfunction ϕ associated with δ is unique up to an arbitrary muliplicative constant. If δ is a multiple root, say a double root of (2.31), and (2.29a) provides two independent $g_0^{(0)}$, we would have two independent eigenfunctions each of which is unique up to a multiplicative constant provided δ +k is not a root of (2.31). When δ +k is also an eigenvalue of K, we see from (2.29b) that a solution for $g_0^{(k)}$ exists if and only if

$$L_{t=1}^{T} \sum_{k=1}^{k} W_{t} (\delta + k) g_{t}^{(k)} = 0$$
 (2.32a)

(Hilderbrand 1954) where the superscript T denotes the transpose and L_{\sim} is the left eigenvector of $K(\delta + k)$

$$L^{T} K(\delta + k) = 0$$
 (2.32b)

If (2.32a) holds, $g_0^{(k)}$ exists but is not unique. However, the nonunique portion of $g_0^{(k)}$ can be ignored because that portion is represented by the eigenfunction associated with the eigenvalue δ +k. An example of this case in a related problem can be found in Dempsey (1981), Zwiers et al (1982), and Ting and Chou (1985).

If $\delta + k$ is an eigenvalue of \underline{K} and (2.32a) does not hold, a solution for $g_0^{(k)}$ does not exist. In this case, the solution for $\phi^{(k)}$ cannot be given by equation (2.9b). Instead, we use the following modified solution:

$$\phi^{(k)} = \frac{\partial}{\partial \delta} \sum_{t=0}^{k} A_t^{(k)} x^t z^{\delta+k-t+2}$$
(2.33)

in which $A_0^{(k)}$ is now assumed to depend on δ . This case will be discussed in Chapter III. Equation (2.33) can also be used for second independent solution when δ is a double root of (2.31) but (2,29a) provides only one independent $g_0^{(0)}$.

We see from equations (2.22) and (2.28) that for each eigenvalue δ , the stress has the terms $\rho^{\delta}f(\psi,\delta)$, $\rho^{\delta+1}f_1(\psi,\delta)$, $\rho^{\delta+2}f_2(\psi,\delta)$, ... Thus the eigenfunction associated with an eigenvalue has infinite terms for axisymmetric deformations. We also see that if $\operatorname{Re}(\delta) < 0$, the stress is singular at $\rho = 0$. Thus $\operatorname{Re}(\delta)$ provides the order of singularity.

14

7

and the second second

2.4 DEGENERATE CASE m, = m, = 1

When $p_1 = p_2$, p must be purely imaginary., This follows from equation (2.5b) and the fact that p cannot be real. By equation (2.4b) and (2.5c), we have $m_1 = m_2 = 1$. We cannot have $m_1 = m_2 = -1$ because this would make p real. By setting m = 1, the second equality of equation (2.4a) yields

$$(c_{13}^{+} 2c_{44}^{-})^{3} = c_{11}^{-}c_{33}^{-}$$
 (2.34)

Hence when equation (2.34) is satisfied, $p_2 = p_1$ and we have a degenerate case. The five material constants are now reduced to four by equation (2.34). Introducing the new material constants ν , μ , γ , and β , we let

$$c_{1,2} = (\lambda + 2\mu) \beta^{2},$$
 (2.35a)

$$c_{33} = (\lambda + 2\mu)/\beta^3,$$
 (2.35b)

$$c_{13} = \lambda$$
, (2.35d)

$$c_{11}^{-} c_{12}^{*} 2\gamma \mu$$
, (2.35e)

in which

$$\lambda = 2\mu\nu/(1-2\nu) . \qquad (2.35f)$$

Equations (2.35) satisfy (2.34). With (2.35), equations (2.5) give

$$p = \beta i$$
, $n = 1$. (2.36)

A REAGAN SAMANA BERERA BURKERA BURKERA BURKERA BURKERA BURKERA BURKERA

For isotropic materials we have $\beta = \gamma = 1$ and ν and μ are the Poisson's ratio and shear modulus, respectively.

In a degenerate case $p_1 = p_2$, the terms associated with $B_t^{(k)}$ and $D_t^{(k)}$ are identical, respectively, to the terms associated with $A_t^{(k)}$ and $C_t^{(k)}$. We therefore need a new solution for $B_t^{(k)}$ and $D_t^{(k)}$. This can be accomplished by replacing the coefficients of $B_t^{(k)}$ and $D_t^{(k)}$ by their derivatives with respect to p_2 and \overline{p}_2 (Ting and Chou 1981B, Ting 1982). Thus, for instance, equation (2.14a) becomes

$$\phi^{(k)} = \sum_{t=0}^{k} \{A_{t}^{(k)} x^{t} z^{\delta+k-t+2} + C_{t}^{(k)} x^{t} z^{\delta+k-t+2}\}$$

$$+ \sum_{t=0}^{k} \{B_{t}^{(k)} z x^{t} z^{\delta+k-t+1} + D_{t}^{(k)} z x^{t} z^{\delta+k-t+1}\} (\delta+k-t+2)$$
(2.37)

where, since $p_1 = p_2$, we have omitted the subscripts 1 and 2 for Z and \overline{Z} . Similarly, equations (2.17) and (2.18) are replaced by (noting that m in the $B_t^{(k)}$ and $D_t^{(k)}$ terms must also be differentiated with respect to p by using equation (2.4b)),

$$u_{r}^{(k)} = \sum_{t=0}^{k} [A_{t}^{(k)}(\delta + k - t + 2) + A_{t+1}^{(k)}(t + 1)] x^{t} z^{\delta + k - t + 1}$$
(2.38a)
+
$$\sum_{t=0}^{k} [B_{t}^{(k)}(\delta + k - t + 2) + B_{t+1}^{(k)}(t + 1)] (\delta + k - t + 1) z x^{t} z^{\delta + k - t} + ...$$
$$u_{z}^{(k)} = \sum_{t=0}^{k} [A_{t}^{(k)}\beta_{i} - B_{t}^{(k)}(3 - 4\nu)] (\delta + k - t + 2) x^{t} z^{\delta + k - t + 1}$$
(2.38b)
+
$$\sum_{t=0}^{k} B_{t}^{(k)}\beta_{i} (\delta + k - t + 2) (\delta + k - t + 1) z x^{t} z^{\delta + k - t} + ...$$

The real Data Street as

$$\frac{1}{2\mu} \sigma_{r}^{(k)} = \sum_{t=0}^{k} \left[(A_{t}^{(k)} \beta^{2} - B_{t}^{(k)} 2\nu\beta i) (\delta + k - t + 2) (\delta + k - t + 1) + A_{t}^{(k)} 2\nu\beta i) (\delta + k - t + 2) (\delta + k - t + 1) + A_{t}^{(k)} 2\gamma (t + 2) (t + 1) \right] x^{t} z^{\delta + k - t} + \sum_{t=0}^{k} \left[B_{t}^{(k)} \beta^{2} (\delta + k - t + 2) (\delta + k - t + 1) + B_{t+1}^{(k)} 2\gamma (t + 1) (\delta + k - t + 1) + B_{t+1}^{(k)} 2\gamma (t + 2) (t + 1) \right] (\delta + k - t) zx^{t} z^{\delta + k - t - 1} + \dots$$
(2.39a)

$$\frac{1}{2\mu} \sigma_{\theta}^{(k)} = \sum_{t=0}^{k} \{ [A_{t}^{(k)} (\beta^{2} - \gamma) - B_{t}^{(k)} 2\nu\beta i] (\delta + k - t + 2) (\delta + k - t + 1) - A_{t}^{(k)} 2\nu\beta i] (\delta + k - t + 2) (\delta + k - t + 1) - A_{t}^{(k)} 2\gamma (t + 2) (t + 1) \} x^{t} z^{\delta + k - t} + \sum_{t=0}^{k} [B_{t}^{(k)} (\beta^{2} - \gamma) (\delta + k - t + 2) (\delta + k - t + 1) - B_{t+1}^{(k)} 2\gamma (t + 1) (\delta + k - t + 1) - B_{t+2}^{(k)} \gamma (t + 2) (t + 1)] (\delta + k - t) z x^{t} z^{\delta + k - t - 1} + \dots$$

$$(2.39b)$$

$$\frac{1}{2\mu} \sigma_{z}^{(k)} = \sum_{t=0}^{k} - [A_{t}^{(k)} + B_{t}^{(k)} 2(1-\nu)i\beta^{-1}] (\delta + k - t + 2) (\delta + k - t + 1)x^{t}z^{\delta + k - t}$$
(2.39c)
$$- \sum_{t=0}^{k} B_{t}^{(k)} (\delta + k - t + 2) (\delta + k - t + 1) (\delta + k - t)zx^{t}z^{\delta + k - t - 1} + \dots$$

$$\frac{1}{2\mu} \sigma_{rz}^{(k)} = \sum_{t=0}^{k} \{ [A_t^{(k)} \beta_i - B_t^{(k)} (1 - 2\nu)] (\delta + k - t + 2) + [A_t^{(k)} \beta_i - B_t^{(k)} (1 - 2\nu)] (t + 1) \} (\delta + k - t + 1) x^t z^{\delta + k - t} + \sum_{t=0}^{k} [B_t^{(k)} (\delta + k - t + 2) + B_{t+1}^{(k)} (t + 1)] (\delta + k - t + 1) (\delta + k - t) \beta_{izx} t^t z^{\delta + k - t - 1} + \dots$$
(2.39d)

In equations (2.38) and (2.39), the dots stand for the $C_t^{(k)}$ and $D_t^{(k)}$ terms that are obtained from the $A_t^{(k)}$ and $B_t^{(k)}$ terms by replacing βi and Z by $-\beta i$ and \overline{Z} , respectively. Equations (2.20)-(2.32) remain valid except (2.25), which are replaced by

$$\sum_{t} (\psi, \delta)$$

$$= 2\mu (\delta - t + 2) (\delta - t + 1) \begin{bmatrix} \beta^{2} & -2\nu\beta i + \beta^{2} (\delta - t) \zeta^{-1} \sin \psi & * & * \\ \beta i & -(1 - 2\nu) + (\delta - t)\beta i \zeta^{-1} \sin \psi & * & * \\ -1 & -2(1 - \nu) i \beta^{-1} - (\delta - t) \zeta^{-1} \sin \psi & * & * \end{bmatrix} Q_{t} (\psi, \delta),$$
(2.40a)

$$\begin{array}{ccccccccc}
 & T_{t}(\psi,\delta) & (2.40b) \\
 &= 2\mu(t+1)(\delta-t+1) \begin{bmatrix} 2\gamma & 2\gamma(\delta-t)\zeta^{-1}\sin\psi & * & * \\ \beta i & -(1-2\nu)+(\delta-t)\beta i\zeta^{-1}\sin\psi & * & * \\ 0 & 0 & 0 \end{bmatrix} \underbrace{Q_{t}(\psi,\delta)}_{zt},$$

$$\underbrace{\underbrace{\underbrace{}}_{t}(\psi,\delta)}{=2\mu\gamma(t+2)(t+1)}\begin{bmatrix}1&(\delta-t)\zeta^{-1}\sin\psi & \star & \star\\0&0&0&0\\0&0&0&0\end{bmatrix}\underbrace{\underbrace{}}_{t}(\psi,\delta).$$
(2.40c)

 $Q_t(\psi, \delta)$ is obtained from (2.26) with $\zeta_1 = \zeta_2 = \zeta$. The third and fourth columns of the matrices in (2.40) are obtained from the first and second columns by replacing βi and ζ by $-\beta i$ and $\overline{\zeta}$, respectively. Equation (2.27) remains valid because the order of the differentiation with respect to p and x or z can be interchanged.

2.5 PARTICULAR SOLUTION FOR THE DISPLACEMENT OF THE SINGULAR POINT

For a two-dimensional problem, the displacement of a singular point can be ignored for the singularity analysis. For an axisymmetric deformation, one cannot ignore the displacement u_r of a singular point. We therefore consider $(u_r, u_z) = (u_0, 0)$ at the singular point (r, z) = (a, 0)where u_0 is a constant. A particular solution that yields this displacement is

$$u_r = u_o r/a, \quad u_z = 0,$$
 (2.40a)

$$\sigma_{r} = \sigma_{\theta} = u_{0}(c_{11} + c_{12})/a, \qquad \sigma_{z} = 2u_{0}c_{13}/a, \qquad \sigma_{rz} = 0.$$
 (2.40b)

Let

S.

È,

19

(2.42)

$$\sigma_{0} = \frac{u_{0}}{a} \begin{bmatrix} c_{11} + c_{12} \\ 0 \\ 2c_{13} \end{bmatrix}.$$

To satisfy the stress-free boundary conditions, equation (2.20b), we superimpose equation (2.42) to (2.23) with $\delta = 0$ and write the stress as

$$\sigma = \sigma_{0} + \sum_{k=0}^{k} \rho^{k} \sum_{t=0}^{k} \{ \sum_{k=0}^{k} \{ \sum_{k=0}^{k} \{ \sum_{k=0}^{k} \{ (\psi, k) g_{t}^{(k)} + \sum_{k=0}^{T} (\psi, k) g_{t+1}^{(k)} + \bigcup_{k=0}^{T} (\psi, k) g_{t+2}^{(k)} \} \}.$$
(2.43)

Equation (2.20b) now provides the following equations for $g_0^{(k)}$

$$\overset{\mathbf{K}(\mathbf{k})}{\sim} \overset{\mathbf{q}_{0}^{(\mathbf{k})}}{\sim} \overset{\mathbf{b}^{(\mathbf{k})}}{\sim}, \quad (\mathbf{k} = 0, 1, 2, ...), \quad (2.44)$$

in which

$$\mathbf{b}_{\mathbf{x}}^{(0)} = - \begin{bmatrix} \mathbf{N}(\alpha) \\ \mathbf{N}(\alpha') \\ \mathbf{N}(\alpha') \end{bmatrix} \overset{\sigma}{\sim} \mathbf{0} , \qquad (2.45a)$$

$$b_{k}^{(k)} = -\sum_{t=1}^{K} W_{t}(k) g_{t}^{(k)}, \quad (k \ge 1), \qquad (2.45b)$$

and $\underset{t}{W_{t}}(k)$ is defined in equation (2.30b). Equation (2.44) has a unique solution for $g_{0}^{(k)}$ if k is not an eigenvalue of K. If k is, then the discussion presented near the end of Section 2.3 applies here.

Chapter III

MODIFIED EIGENFUNCTIONS

3.1 MODIFIED SOLUTION

When δ is a root of (2.29a), let η be the smallest positive integer for which $\delta + \eta$ is also a root of (2.29a). Equation (2.29b) for $k = \eta$ is

$$\mathbb{K}^{(\delta+\eta)} \mathbf{g}_{0}^{(\eta)} = -\sum_{t=1}^{\eta} \mathbb{W}_{t}^{(\delta+\eta)} \mathbf{g}_{t}^{(\eta)}.$$
(3.1)

This has a solution for $g_0^{(\eta)}$ unless

$$L_{t=1}^{T} \sum_{t=1}^{\eta} W_{t} (\delta + \eta) g_{t}^{(\eta)} \neq 0 , \qquad (3.2)$$

where L is the left eigenvector

$$L^{T} K(\delta + \eta) = 0 . \qquad (3.3)$$

If (3.2) holds, a solution for $g_0^{(\eta)}$ does not exist and the expansion for ϕ given by (2.9) is not valid.

To obtain a valid expansion when (3.2) holds, we notice that if ϕ given by (2.9) satisfies (2.8) so does $\partial\phi/\partial\delta$. Therefore, in place of (2.14a) we use

$$\phi^{(\mathbf{k})} = \frac{\partial}{\partial \delta} \left\{ \sum_{t=0}^{\mathbf{k}} A_t^{(\mathbf{k})} \mathbf{x}^t \mathbf{z}^{\delta + \mathbf{k} - t + 2_+} \dots \right\}$$
(3.4)

in which $A_{t}^{(k)}$... $D_{t}^{(k)}$ are now regarded as functions of δ (Zwiers et al 1982). If we carry out the differentiation in (3.4), we will have terms of the form $x^{a}Z^{b}$ as well as $x^{a}Z^{b}(\ln Z)$. By substituting (3.4) into (2.9a) and then into (2.8), the coefficients of $x^{a}Z^{b}$ and $x^{a}Z^{b}(\ln Z)$ must vanish. The latter leads to (2.27). The former leads to the following equations which can also be obtained by differentiating (2.27) with respect to δ :

$$g_t^{(k)} = 0$$
, for $t > k$, (3.5b)

where the prime denotes differentiation with respect to δ . Hence the only unknowns are $g_0^{(k)}$ and $g_0^{(k)}$, $(k = 0, 1, 2 \dots)$.

When (3.2) holds and η is the smallest positive integer for which $\delta+\eta$ is also a root of (2.29a), we may choose

$$g_t^{(k)} = 0$$
, for $k < \eta$. (3.6)

Substituting (3.4) into (2.1) and (2.2) and carrying out the differentiation, we obtain new expressions for the displacements and stresses. This is presented in Appendix B.

for the degenerate case in which $p_1 = p_2$, we use instead of (3.4)

$$\phi^{(k)} = \frac{\partial}{\partial \delta} \left\{ \sum_{t=0}^{k} [A_t^{(k)} x^t z^{\delta+k-t+2} + C_t^{(k)} x^t \bar{z}^{\delta+k-t+2}] + \sum_{t=0}^{k} [B_t^{(k)} z x^t z^{\delta+k-t+1} + D_t^{(k)} z x^t \bar{z}^{\delta+k-t+1}] (\delta+k-t+2) \right\}$$
(3.7)

Following the same argument, we obtain new expressions for the displacements and stresses. This is also presented in Appendix B.

3.2 DETERMINATION OF Q(k) AND Q(k)

The satisfaction of the stress-free boundary conditions leads to the following system of equations which can also be obtained by applying the operator $\rho^{\delta+k}(\ln\rho + \partial/\partial\delta)$ to (2.29) and setting the coefficients of $\rho^{\delta+k}$ and $\rho^{\delta+k}\ln\rho$ to zero. Thus we obtain from (2.29a)

$$K_{0}(\delta) g_{0}^{(0)} = 0$$
, (3.8a)

$$\sum_{k}^{K'(\delta)} q_{0}^{(0)} + K(\delta) q_{0}^{\prime} q_{0}^{\prime} = 0, \qquad (3.8b)$$

and from (2.29b)

$$\underset{\sim}{\mathbb{K}}(\delta+k)\underset{\circ}{\mathbb{g}}_{0}^{(k)} = -\underset{t=1}{\overset{k}{\underset{\sim}{\Sigma}}} \underset{\sim}{\mathbb{W}}_{t}(\delta+k)\underset{\circ}{\mathbb{g}}_{t}^{(k)}, \qquad (k \ge 1), \qquad (3.8c)$$

$$\mathbb{K}^{(\delta+k)}g_{0}^{(k)} + \mathbb{K}^{(\delta+k)}g_{0}^{(k)} = -\sum_{t=1}^{k} \{ \mathbb{W}^{(\delta+k)}g_{t}^{(k)} + \mathbb{W}^{(\delta+k)}g_{t}^{(k)} \}, \qquad (3.8d)$$

where K and W_t are defined in (2.30).

Combining (3.5) and (3.8) with (3.6), we notice that (3.5) and (3.8) are the same as (2.27) and (2.29) for $k < \eta$, respectively, except $g_0^{\prime}(k)$ now assumes the role of $g_0^{(k)}$.

For $k = \eta$ the problem reduces to solving the following system of equations

$$K(\delta+\eta)q_0^{(\eta)} = 0$$
, (3.9a)

22

8 - XXXX83

$$\underbrace{\mathbb{K}}^{(\delta+\eta)} \underbrace{\mathbb{Q}}_{0}^{(\eta)} + \underbrace{\mathbb{K}}^{(\delta+\eta)} \underbrace{\mathbb{Q}}_{0}^{(\eta)} = -\underbrace{\sum_{t=1}^{\eta} \mathbb{W}_{t}^{(\delta+\eta)} \underbrace{\mathbb{Q}}_{t}^{(\eta)}}_{t}.$$
(3.9b)

Equations (3.9) have an unique solution for $g_0^{(\eta)}$ if (Dempsey and Sinclair 1979)

$$d^{i} [K(\delta)] / d\delta^{i} \neq 0$$
, (i = n - m), (3.10)

where n and m are, respectively, the order and rank of K.

It is rather difficult to prove or disprove equation (3.10) analytically or numerically. Instead, we will regard (3.9) as a system of 8 equations for $g_0^{(\eta)}$ and $g_0^{\prime(\eta)}$, and solve the system numerically.

For $k > \eta$, (3.8c) and (3.8d) give $g_0^{(k)}$ and $g_0^{(k)}$.

Chapter IV

APPLICATIONS TO COMPOSITES

4.1 SINGULAR POINT IN COMPOSITE MATERIALS

We now consider the axisymmetric composite whose cross section is shown in Fig.2. The two materials with axisymmetric interface SQ, RP are assumed to be transversely isotropic with the z-axis being the axis of symmetry. The interface makes an angle ψ_3 with the z = 0 plane. The region SMRN is void and ψ_1 and ψ_2 are the angles the two free surfaces RH and RN make with the z = 0 plane.

Since equations (2.9) is applicable to each material, we will use the subscript 1 or 2 separated by a comma to identify the quantity which is associated with material 1 or 2. From equation (2.27) we notice that the undetermined constants for material 1 are $A_{0,1}^{(k)} \dots D_{0,1}^{(k)}$ while that for material 2 are $A_{0,2}^{(k)} \dots D_{0,2}^{(k)}$. The eigenvalue δ is the same for both materials.

4.2 DETERMINATION OF 8 AND $A_{o,S}^{(K)} \dots D_{o,S}^{(K)}$

Using (2.20b), the traction-free boundary conditions at angles $\psi = \psi_1$ and ψ_2 are

$$N(\psi_{s})\sigma_{s}=0$$
, (s=1,2), (4.1)

where

$$N(\psi) = \begin{bmatrix} \sin\psi & -\cos\psi & 0\\ 0 & \sin\psi & -\cos\psi \end{bmatrix}, \qquad (4.2)$$

24

ť

Ĵ

Ċ,

$$\sigma_{n,s} = \sum_{k=0}^{\infty} \sigma_{n,s}^{(k)}, \quad \sigma_{n,s}^{(k)} = \begin{bmatrix} \sigma_{n,s}^{(k)} \\ r,s \\ \sigma_{n,z,s}^{(k)} \end{bmatrix} .$$

$$(4.3)$$

The interface continuity conditions at angle $\psi = \psi_a$ are

$$\sum_{n=1}^{N} (\psi_3) \sigma_{n,1} - \sum_{n=1}^{N} (\psi_3) \sigma_{n,2} = 0, \qquad (4.4)$$

$$u_{2,1} - u_{2,2} = 0, \qquad (4.5)$$

where

$$u_{n} = \sum_{k=0}^{\infty} u_{n}^{(k)}, \qquad u_{n}^{(k)} = \begin{bmatrix} u_{n}^{(k)} \\ u_{n}^{(k)} \\ u_{n}^{(k)} \end{bmatrix}, \qquad (s=1,2) .$$
(4.6)

Substitution of equations (2.17) and (2.18) into equations (4.1), (4.4) and (4.5) yields the following system of recurrent equations

$$K_{\alpha}^{(\delta)} = 0,$$
 (4.7a)

$$\sum_{k=1}^{k} (\delta + k) g_{0}^{(k)} = - \sum_{t=1}^{k} W_{t} (\delta + k) g_{t}^{(k)}, \quad (k \ge 1) ,$$
 (4.7b)

where

$$g_{t}^{(k)} = \begin{bmatrix} g_{t,1}^{(k)} \\ g_{t,2}^{(k)} \end{bmatrix}, \quad (t = 0, 1, 2 ...), \qquad (4.8)$$

in which the elements of $g_{t,s}^{(k)}$ are $A_{t,s}^{(k)}$... $D_{t,s}^{(k)}$ (s = 1,2), and

25

REVEAL BOTTON PRECORD

$$\mathbf{K}(\delta) = \begin{bmatrix}
\mathbf{N}(\psi_{1}) \sum_{0, 1} (\psi_{1}, \delta) & \mathbf{0} \\
\mathbf{N}(\psi_{3}) \sum_{0, 1} (\psi_{3}, \delta) & -\mathbf{N}(\psi_{3}) \sum_{0, 2} (\psi_{3}, \delta) \\
\mathbf{G}_{0, 1}(\psi_{3}, \delta) & -\mathbf{G}_{0, 2}(\psi_{3}, \delta) \\
\mathbf{0} & \mathbf{N}(\psi_{2}) \sum_{0, 2} (\psi_{2}, \delta)
\end{bmatrix}$$
(4.9)

$$\begin{array}{c}
0\\
-N(\psi_{3})[s_{t,1}(\psi_{3},\delta)+T_{t-1,1}(\psi_{3},\delta)+U_{t-2,1}(\psi_{3},\delta)]\\
-[g_{t,2}(\psi_{3},\delta)+V_{t-1,2}(\psi_{3},\delta)]\\
N(\psi_{2})[s_{t,2}(\psi_{2},\delta)+T_{t-1,2}(\psi_{2},\delta)+U_{t-2,2}(\psi_{2},\delta)]
\end{array}$$

In (4.9) and (4.10), $S_{t,s}$, $T_{t,s}$, $U_{t,s}$ are defined in equations (2.25) and G_t and V_t are given by

$$G_{t}(\psi, \delta) = (\delta - t + 2) \begin{bmatrix} 1 & 1 & 1 & 1 \\ m_{1}p_{1} & m_{2}p_{2} & \overline{m}_{1}\overline{p}_{1} & \overline{m}_{2}\overline{p}_{2} \end{bmatrix} Q_{t}(\psi, \delta + 1) , \qquad (4.11a)$$

$$\underbrace{\mathbf{v}_{t}}_{\sim t}(\psi, \delta) = (t+1) \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \underbrace{\mathbf{Q}_{t}}_{\sim t}(\psi, \delta+1) , \qquad (4.11b)$$

where $Q_t(\psi, \delta)$ is the same as the one in (2.26).

It should be pointed out that the recurrent relation for $g_t^{(k)}$ given in (2.27) applies to $g_t^{(k)}$ in (4.8). Therefore the problem reduces to the determination of δ and $A_{0,s}^{(k)}$... $D_{0,s}^{(k)}$ (s = 1,2). For nontrivial solution of $g_0^{(0)}$ we must have

 $| \mathbf{K}(\delta) | = 0$. (4.12)

This provides the eigenvalue δ . For each eigenvalue δ , (4.7a) gives $g_0^{(0)}$ while (2.27) and (4.7b) furnish $g_0^{(k)}$ (k = 1,2 ...). The discussion on unigueness of solutions for $g_0^{(k)}$ presented in section 2.3 applies here.

4.3 DEGENERATE CASE

When $p_1 = p_2$ holds for one of the two materials or for both materials, we use the expressions for displacements and stresses in (2.38) and (2.39). Once again, the stress-free boundary conditions and the interface continuity conditions yield the system of recurrent equations (4.7). Equations (4.9)-(4.10) hold in which $S_{t,s}$, $T_{t,s}$, $U_{t,s}$ are defined in equations (2.40) if material s (s = 1,2) is degenerate, while (4.11) is replaced by

$$G_{t}(\psi, \delta) = (\delta - t + 2) \begin{bmatrix} 1 & (\delta - t + 1) \zeta^{-1} \sin \psi & \star & \star \\ \beta i & \beta i (\delta - t + 1) \zeta^{-1} \sin \psi - 3 + 4\nu & \star \end{bmatrix} Q_{t}(\psi, \delta + 1),$$
(4.14a)

$$\underbrace{\mathbf{v}_{t}}_{\sim}(\psi,\delta) = (t+1) \begin{bmatrix} 1 & (\delta-t+1)\zeta^{-1}\sin\psi & \star & \star \\ 0 & 0 & 0 & 0 \end{bmatrix} \underbrace{\mathbf{Q}_{t}}_{\sim}(\psi,\delta+1).$$
(4.14b)

 $Q_t(\psi, \delta)$ is obtained from equation (2.26) with $\zeta_1 = \zeta_2 = \zeta$. As in equation (2.40) the third and fourth columns of the matrices in equations (4.14) are obtained from the first and second columns by replacing β i and ζ by $-\beta$ i and $\overline{\zeta}$, respectively.

4.4 NUMERICAL EXAMPLES

We present two examples in this section. In both example $\psi_1 = -180^\circ$, $\psi_2 = 90^\circ$ and $\psi_3 = -90^\circ$ are taken.

27

ESS.Y.CON

In the first example the material 1 and 2 are both isotropic so that $\beta = \gamma = 1$. We use $\nu = 0.38$, $\mu = 0.3 \times 10^6$ psi for material 1 and $\nu = 0.45$, $\mu = 0.3448 \times 10^6$ psi for material 2. Two negative δ 's are obtained:

$$\delta_1 = -0.432087$$
, $\delta_2 = -0.073520$.

 δ_1 is the same as p_1 of plane strain problem obtained by Bogy (1971). The coefficients of order zero which are complex-valued are as follows. For δ_1 ,

$$A_{0,1}^{(0)} = (0.3446 - 0.6786i)c_{1}, B_{0,1}^{(0)} = (0.4098 + 0.9122i)c_{1},$$

$$A_{0,2}^{(0)} = (0.1444 - 0.4991i)c_{1}, B_{0,2}^{(0)} = (0.4313 + 0.8995i)c_{1},$$

and for $\delta_{,,}$

$$A_{0,1}^{(0)} = (0.1744 - 0.2567i)c_2, B_{0,1}^{(0)} = (0.8936 - 0.0208i)c_2,$$

$$A_{0,2}^{(0)} = (0.1576 - 0.1539i)c_2, B_{0,2}^{(0)} = (0.9986 - 0.0533i)c_2,$$

where c_1 and c_2 are arbitrary multiplicative constants. C's and D's are the complex conjugate of A's and B's respectively, because δ_1 and δ_2 are real.

In the second example material 1 is replaced by a transversely isotropic material whose material constants are (with unit 10⁶psi)

 $c_{11} = 2.152$, $c_{12} = 0.5524$, $c_{13} = 0.8115$, $c_{33} = 34.49$, $c_{44} = 0.8$.

The corresponding p's and m's are

 $p_1 = 0.1551i$, $p_2 = 1.611i$, $m_1 = 55.02$, $m_2 = 0.01816$.

Again, two negative δ 's are obtained:

$$\delta_1 = -0.484629$$
, $\delta_2 = -0.299609$.

The coeficients of order zero are as follows. For δ_1 ,

 $A_{0,1}^{(0)} = (0.0486 - 0.0015i)c_{1}, B_{0,1}^{(0)} = (-0.2669 + 0.1983i)c_{1}, A_{0,2}^{(0)} = (-0.0429 + 0.4953i)c_{1}, B_{0,2}^{(0)} = (0.0351 - 0.9994i)c_{1},$

and for δ_{j} ,

$$A_{0,1}^{(0)} = (0.0405+0.0399i)c_2, B_{0,1}^{(0)} = (0.0330-0.5511i)c_2, A_{0,2}^{(0)} = (0.2865-0.2931i)c_2, B_{0,2}^{(0)} = (0.9650+0.2621i)c_2.$$

Since δ +k where k is an arbitrary integer is not a root of (4.12) for both cases, the solutions are unique up to the arbitrary constants c_1 and c_2 .

The stress distribution obtained from the first term of the eigenfunctions associated with δ_1 and δ_2 are plotted in Fig.3 - Fig.6. We normalize the stress by deviding by the singular factor ρ^{δ} and a multiplicative constant c to make the maximum stress equal to 1.

29
Chapter V

EIGENFUNCTIONS AT AN INTERFACE CRACK WITH A CONTACT ZONE

5.1 UNREALISTIC PHENOMENON

We have discussed in Chapter IV the stress singularities at a singular point of an axisymmetric composite in which the free surfaces and the interface surface intersect. When the two free surfaces make the same angle with the plane z = 0, the free surfaces form an interface crack, Fig.7. When the singularity δ is a complex number, an oscillatory phenomenon in displacement near the crack tip occurs and the two free surfaces inter-penetrate each other. To avoid the unrealistic phenomenon, we assume that a contact zone is presented near the crack tip. In a real composite, the crack surfaces near the interface crack tip may, under an external load, open or close with or without friction. The associated problem for isotropic composites was studied for frictionless contact and for contact with friction by Comminou (1977A and 1977B). Wang (1983) studied the partially closed interface crack for anisotropic materials but the contact region is assumed to be frictionless. We will use the asymptotic solutions (2.17), (2.18), (2.38) and (2.39) to study the stress singularities at the both ends of the contact zone.

5.2 SINGULARITIES AT ENDS OF CONTACT ZONE IN INTERFACE CRACK

In Fig.7, AB is the contact zone, AC and AD are free surfaces, and BE is the interface. We will call the singularity analyses around point

A and point B, respectively, Case A and Case B. It should be noted that there is only one independent angle in case A whereas there are two in case B. Let θ be the angle of orientation of the crack. In case A, ψ_3 = θ , $\psi_1 = \theta + \pi$ and $\psi_2 = \theta - \pi$. In case B, ψ_3 is arbitrary.

Using the same notations we have used before, we have the following boundary conditions for Case A:

$$N(\psi_{g})\sigma_{,s} = 0$$
, (s=1,2), (5.1a)

$$N_{2}(\psi_{3})_{2,1}^{\sigma} - N_{2}(\psi_{3})_{2,2}^{\sigma} = 0, \qquad (5.1b)$$

$$\int_{-\infty}^{\infty} (\psi_3) \psi_{1,1} - \int_{-\infty}^{\infty} (\psi_3) \psi_{1,2} + H(\psi_3) \phi_{2,1} = 0, \qquad (5.1c)$$

where

$$J(\psi) = \begin{bmatrix} -\sin\psi & \cos\psi \\ 0 & 0 \end{bmatrix}, \qquad (5.2a)$$

$$H(\psi)^{T} = \begin{bmatrix} 0 & \sin\psi[\cos\psi + \tau(\operatorname{sgn} t_{g})\sin\psi] \\ 0 & -\cos2\psi - \tau(\operatorname{sgn} t_{g})\sin2\psi \\ 0 & -\cos\psi[\sin\psi - \tau(\operatorname{sgn} t_{g})\cos\psi] \end{bmatrix}$$
(5.2b)

In (5.2b) τ is the coefficient of friction and sgn t_s stands for the sign of shear traction t_s.

Substitution of (2.17) and (2.18) or (2.38) and (2.39) into (5.1) yields a system of recurrent equations similar to (4.7) in which \underline{K} and $\underline{W}_{\underline{L}}$ have the expressions:

$$\mathbf{K}(\delta) = \begin{bmatrix} \mathbf{N}(\psi_{1}) \mathbf{S}_{0,1}(\psi_{1}, \delta) & \mathbf{0} \\ \mathbf{N}(\psi_{3}) \mathbf{S}_{0,1}(\psi_{3}, \delta) & -\mathbf{N}(\psi_{3}) \mathbf{S}_{0,2}(\psi_{3}, \delta) \\ \mathbf{J}(\psi_{3}) \mathbf{G}_{0,1}(\psi_{3}, \delta) + \mathbf{H}(\psi_{3}) \mathbf{S}_{0,1}(\psi_{3}, \delta) & -\mathbf{J}(\psi_{3}) \mathbf{G}_{0,2}(\psi_{3}, \delta) \\ \mathbf{0} & \mathbf{N}(\psi_{2}) \mathbf{S}_{0,2}(\psi_{2}, \delta) \end{bmatrix},$$
(5.3a)

$$\begin{split} & \underset{\mathsf{W}_{\mathsf{t}}(\delta)}{\mathsf{W}_{\mathsf{t}}(\delta)} = \begin{bmatrix} \underbrace{N(\psi_{1}) \underbrace{E}_{\mathsf{t},1}(\psi_{1},\delta)}{N(\psi_{3}) \underbrace{E}_{\mathsf{t},1}(\psi_{3},\delta)} & \underbrace{0}{-N(\psi_{3}) \underbrace{E}_{\mathsf{t},2}(\psi_{3},\delta)} \\ & \underbrace{N(\psi_{3}) \underbrace{E}_{\mathsf{t},1}(\psi_{3},\delta) + \underbrace{H(\psi_{3}) \underbrace{E}_{\mathsf{t},1}(\psi_{3},\delta)}{-J(\psi_{3}) \underbrace{E}_{\mathsf{t},2}(\psi_{3},\delta)} \\ & \underbrace{0}{-N(\psi_{2}) \underbrace{E}_{\mathsf{t},2}(\psi_{2},\delta)} \end{bmatrix} . \end{split}$$
(5.3b)

In (5.3b),

$$E_{t,i}(\psi, \delta) = S_{t,i}(\psi, \delta) + T_{t-1,i}(\psi, \delta) + U_{t-2,i}(\psi, \delta), \qquad (5.4a)$$

$$F_{t,i}(\psi,\delta) = G_{t,i}(\psi,\delta) + V_{t-1,i}(\psi,\delta), \qquad (5.4b)$$

in which $S_{t,s}$, $T_{t,s}$, $U_{t,s}$, $G_{t,s}$ and $V_{t,s}$ are defined by (2.25) and (4.11) if the material s is transversely isotropic and by (2.40) and (4.14) if material s is a degenerated material.

For Case B we have the following boundary conditions:

$$N_{2}(\psi_{1})\sigma_{1} - N_{2}(\psi_{2})\sigma_{1} = 0, \qquad (5.5a)$$

$$J_{2}(\psi_{1})_{\psi_{1}}, - J_{2}(\psi_{2})_{\psi_{1}}, 2 + H_{2}(\psi_{1})_{\sigma, 1} = 0, \qquad (5.5b)$$

$$N(\psi_3)\sigma_{,1} - N(\psi_3)\sigma_{,2} = 0, \qquad (5.5c)$$

$$u_{2,1} - u_{2,2} = 0$$
, (5.5d)

in which J and H are defined in (5.2). Again, (5.5) yield (4.7) in which

$$\mathbf{K}(\delta) = \begin{bmatrix}
\mathbf{N}(\psi_{1}) \sum_{0,1} (\psi_{1}, \delta) & -\mathbf{N}(\psi_{2}) \sum_{0,2} (\psi_{2}, \delta) \\
\mathbf{N}(\psi_{3}) \sum_{0,1} (\psi_{3}, \delta) & -\mathbf{N}(\psi_{3}) \sum_{0,2} (\psi_{3}, \delta) \\
\sum_{0,1} (\psi_{3}, \delta) & -\mathbf{G}_{0,2} (\psi_{3}, \delta) \\
\mathbf{J}(\psi_{1}) \sum_{0,1} (\psi_{1}, \delta) + \mathbf{H}(\psi_{1}) \sum_{0,1} (\psi_{1}, \delta) & -\mathbf{J}(\psi_{2}) \sum_{0,2} (\psi_{2}, \delta)
\end{bmatrix}, (5.6a)$$

9

13

3

$$\begin{split} & \underset{\sim}{\mathsf{W}_{\mathsf{t}}}(\delta) = \begin{bmatrix} N(\psi_1) \underbrace{\varepsilon}_{\mathsf{t},1} (\psi_1, \delta) & -N(\psi_2) \underbrace{\varepsilon}_{\mathsf{t},2} (\psi_2, \delta) \\ N(\psi_3) \underbrace{\varepsilon}_{\mathsf{t},1} (\psi_3, \delta) & -N(\psi_3) \underbrace{\varepsilon}_{\mathsf{t},2} (\psi_3, \delta) \\ \vdots \underbrace{\varepsilon}_{\mathsf{t},1} (\psi_3, \delta) & -\sum_{\mathsf{t},2} (\psi_3, \delta) \\ J(\psi_1) \underbrace{\varepsilon}_{\mathsf{t},1} (\psi_1, \delta) + H(\psi_1) \underbrace{\varepsilon}_{\mathsf{t},1} (\psi_1, \delta) & -J(\psi_2) \underbrace{\varepsilon}_{\mathsf{t},2} (\psi_2, \delta) \\ \end{bmatrix} . \end{split}$$
(5.6b)

It will be shown analytically in Chapter VI that δ is real at both ends of the contact zone. In other words, there is no oscillation of the crack surface displacements near the singular points.

The stresses at both ends of a contact zone without friction are computed numerically for a composite material which is similar to that of Example 2 of Section 4.4. In this case $\delta = -1/2$ (see Section 6.3). We normalize the stresses by deviding by the singular factor ρ^{δ} and a multiplicative constant c to make the maximum stress equal to 1. The normalized stress distribution obtained from the first term of the eigenfunction for Case A and B are plotted in Fig.8 and Fig.9, respectively.

Chapter VI

SINGULARITIES AT AN INTERFACE CRACK WITH A CONTACT ZONE

6.1 STROE'S FORMALISM

An alternative formulation for the order of singularities δ at an interface crack with a contact zone will be derived in this chapter. The derivation is based on the Stroh formalism (Stroh 1958 and 1962). The Stroh formalism, which has its origin by Eshelby (1953), provides an elegant and powerful method of treating a certain class of twodimensional anisotropic elasticity problems. Unlike the two-dimensional anisctropic solutions developed by Green and Zerna (1954) which are restricted to plane strain deformations, the Stroh formalism applies to a wide variety of two-dimensional problems in which all three displacement components are non-zero. Also, unlike the widely used Lekhnitskii's approach (Lekhnitskii 1981) which breaks down for orthotropic materials (Ting and Chou 1981A) and requires a special treatment (Ting and Chou 1981B), the Stroh formalism has no limitations except possibly for the degenerate materials in which the eigenvalues of the elasticity constants have a repeated root such as in isotropic materials. The problem with degenerate materials, for which other formalism also have, can be treated separately (Ting 1982). However, the Stroh formalism has since been perfected by Barnett and Lothe (1973 and 1975).

It can be seen from Equations of (2.8) and (2.9) that the first order solution of axisymmetric deformation is the same as that of plane-

34

3

strain problem. Therefore, the order of stress singularities δ of axisymmetric deformation at an interface crack with contact can be obtained by Stroh formalism.

6.2 BASIC EQUATIONS

In a fixed rectangular coordinate system (x_1, x_2, x_3) , let the stress-strain law of an anisotropic elastic material be given by

$$\sigma_{ij} = c_{ijkn} u_{k,n} \tag{6.1}$$

where repeated indices imply summation, σ_{ij} , u_k , c_{ijkn} are, respectively, the stress, displacement and elastic constants and a comma stands for partial differentiation. The equation of equilibrium are

 $\sigma_{ij,j} = 0 . \tag{6.2}$

For the purpose of the present analysis, we assume that

$$u_k = a_k Z^{\delta+1} / (\delta+1), \qquad (6.3a)$$

$$Z = x_1 + px_2$$
, (6.3b)

in which p, δ and a_k are constants to be determined. Substituting (6.3) into (6.1) and (6.2) yields

$$\sigma_{ij} = (c_{ijk1} + pc_{ijk2})a_k Z^{\delta}, \qquad (6.4)$$

$$\{Q + p(R + R^{T}) + p^{2}T\} = 0$$
, (6.5)

where the matrices Q, R and T are given by

$$Q_{ik} = c_{i1k1}$$
, $R_{ik} = c_{i1k2}$, $T_{ik} = c_{i2k2}$. (6.6)

The superscript T stands for the transpose. Equation (6.5) provides three pairs of complex conjugates for the eigenvalue p and the associated eigenvector a. If p_m , a_m , (m = 1,2,...,6) are the eigenvalues and eigenvectors, we will let

$$p_{m+3} = \bar{p}_m$$
, $a_{m+3} = \bar{a}_m$, (6.7)

where an overbar denote the complex conjugate. The general solution for u as given by (6.3) can be written as

$$u = \sum_{m=1}^{3} (q_{ma_m} Z_m^{\delta+1} + h_m \overline{a_m} \overline{Z_m^{\delta+1}}) / (\delta+1)$$

$$(6.8a)$$

in which ${\bf q}_{{\bf m}}$ and ${\bf h}_{{\bf m}}$ are arbitrary constants and

$$Z_{\underline{m}} = x_1 + p_{\underline{m}} x_2 = r(\cos\theta + p_{\underline{m}} \sin\theta) . \qquad (6.8b)$$

In (6.8b), r and θ are the polar coordinates.

Let t_i be the surface traction on a radial plane which makes an angle θ with the x, axis. We then have

 $t_i = -\sigma_{i1}\sin\theta + \sigma_{i2}\cos\theta , \qquad (6.9)$

or, using (6.4), (6.5), (6.6) and (6.8b),

$$t_{\sim} = \frac{1}{r} b Z^{\delta+1}, \qquad (6.10a)$$

where

b = (R + pT)a. (6.10b)

36

7

٩

Э

The general solution for the surface traction can be written as (Ting 1986)

$$t = \frac{1}{r} \frac{3}{r} (c_{m} b_{m} Z_{m}^{\delta+1} + h_{m} b_{m} Z_{m}^{\delta+1}).$$
(6.11)

To derive the order of stress singularities, we need the expressions of \underline{u} and \underline{t} at $\theta = \phi$ and $(\phi \pm \pi)$ where ϕ is a fixed angle. Noticing that $Z_{\underline{m}}$ of (6.8b) for $\theta = \phi$ and $(\phi \pm \pi)$ are related by (Ting and Chou 1981A),

$$Z_{\mathbf{n}}(\phi \pm \pi) = e^{\pm i\pi} Z_{\mathbf{n}}(\phi)$$
(6.12)

and writing $Z_{m}(\phi)$ as

$$Z_{p}(\phi) = r\zeta_{p}(\phi) , \quad \zeta_{p}(\phi) = \cos\phi + p_{p}\sin\phi , \quad (6.13)$$

(6.11) for $\theta = \phi$ and $(\phi \pm \pi)$ become

$$t(\phi) = \sum_{n=1}^{3} r^{\delta} \{ q_{n} \succeq \delta^{\delta+1}(\phi) + h_{n} \succeq \delta^{\delta+1}(\phi) \}, \qquad (6.14a)$$

$$t(\phi \pm \pi) = \sum_{m=1}^{3} r^{\delta} \{ e^{\pm i (\delta+1)\pi} q_{m} b_{m} \}_{m}^{\delta+1}(\phi) + e^{\pm i (\delta+1)\pi} h_{m} b_{m} \}_{m}^{\delta+1}(\phi) \} .$$
(6.14b)

Similar equations can be written for $\underline{u}(\phi)$ and $\underline{u}(\phi \pm \pi)$ of (6.8). Introducing the new coefficients

$$q_m = q_m \beta^{\delta+1}(\phi)$$
, (m not summed), (6.15a)

$$\hat{h}_{\mu} = h_{\mu} \bar{\zeta}^{\delta+1}(\phi)$$
, (m not summed), (6.15b)

and noticing that $e^{\pm i(\delta+1)\pi} = -e^{\pm i\delta\pi}$, we have

We may consider following boundary conditions:

$$t(3\pi/2) = 0$$
 and $t'(-\pi/2) = 0$, (6.19)

$$t(\pi/2) = t'(\pi/2)$$
, (6.20a)

$$u_1(\pi/2) = u_1'(\pi/2)$$
, (6.20b)

$$t_2 = (sgn t_2)k_2t_1$$
 and $t_3 = (sgn t_3)k_3t_1$, at $\theta = \pi/2$, (6.20c)

where k_2 and k_3 are the coefficients of friction at x_2 and x_3 direction and (sgn t_2) and (sgn t_3) stand for the sign of t_2 and t_3 , respectively. By introducing the matrices

$$J = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad G = \begin{bmatrix} 0 & 0 & 0 \\ -(\operatorname{sgn} t_2)k_2 & 1 & 0 \\ -(\operatorname{sgn} t_3)k_3 & 0 & 1 \end{bmatrix}, \quad (6.21)$$

equations (6.20b, c) can be written in matrix notation as

$$r^{-1}(\delta+1) J[u(\pi/2) - u'(\pi/2)] + Gt(\pi/2) = 0.$$
 (6.22)

Substituting (6.16) and (6.17) into (6.19), (6.20a) and (6.22) and setting $\phi = \pi/2$ lead to

$$e^{i\,\delta\pi}Bq + e^{-i\,\delta\pi}Bh = 0 , \qquad (6.23)$$

 $e^{-i\delta\pi}B'q' + e^{i\delta\pi}B'h' = 0$, (6.24)

$$Bq + Bh = B'q' + B'h'$$
, (6.25)

39

TELECOLO

C.C.C.S.S.S

NAME OF THE OWNER OF

$$J[(Aq + Ah) - (A'q' + A'h')] + G[Bq + Bh] = 0, \qquad (6.26)$$

Equations (6.23)-(6.26) consist of four homogeneous equations for g, h, g' and h'. For a non-trivial solution the determinant of the coefficient matrix must vanish. This provides the roots for δ . Instead of finding the determinant, we eliminate \overline{Bh} and $\underline{B'g'}$ from (6.23), (6.24) and (6.25) to obtain

$$(\mathbf{e}^{\mathbf{i}\,\delta\pi} - \mathbf{e}^{-\mathbf{i}\,\delta\pi})(\mathbf{Bq} - \mathbf{\bar{B}}'\mathbf{h}') = 0. \qquad (6.27)$$

Hence either

$$(e^{i\delta\pi} - e^{-i\delta\pi}) = 2i \sin\delta\pi = 0$$
, (6.28a)

which leads to integer δ or

$$\underline{Bq} = \overline{\underline{B}'h'} . \qquad (6.28E)$$

For the latter we substitute h, h' and g' obtained from (6.23), (6.24) and (6.28b) into (6.26). We then have

$$\{J[e^{-i\delta\pi}(AB^{-1}-\bar{A}'\bar{B}'^{-1}) - e^{i\delta\pi}(\bar{AB}^{-1}-\bar{A}'\bar{B}'^{-1})]$$

$$- [e^{i\delta\pi} - e^{-i\delta\pi}]G\} Bq = 0.$$
(6.29)

It can be shown (Ting 1986) that

 $AB^{-1} - \bar{A}'\bar{B}'^{-1} = -(W + iD), \qquad (6.30a)$

 $\overline{AB}^{-1} - A'B'^{-1} = -(W - iD), \qquad (6.30b)$

where $\underset{\sim}{W}$ is real and antisymmetric, while D is real, symmetric and positive definite. Equation (6.29) now reduces to

$$\{(JW - G) - (\cot \delta \pi) JD\} Bq = 0$$
. (6.31)

For a non-trivial solution of Bg, we demand that

$$(JW - G) - (\cot \delta \pi) JD = 0$$
. (6.32)

If we expand the determinant, noticing that \underbrace{W} is antisymmetric and making use of J and G defined in (6.21), we obtain

$$\cot \delta \pi = \frac{(\text{sgn } t_2)k_2W_{12} + (\text{sgn } t_3)k_3W_{13}}{D_{11} + (\text{sgn } t_2)k_2D_{12} + (\text{sgn } t_3)k_3D_{13}}.$$
(6.33)

We see that when the friction is absent, i.e., $k_2 = k_3 = 0$, $\delta = -1/2$ is the order of singularity.

If we apply the above procedure to the case of transversely isotropic materials under axisymmetric deformation, noticing that $u_3 = t_3 =$ 0 in equations (6.19) and (6.20), we obtain the singularity

$$\cot \, \delta \pi = \frac{(\text{sgn } t_2) k_2 W_{12}}{D_{11} + (\text{sgn } t_2) k_2 D_{12}} \,. \tag{6.34}$$

For isotropic composites, it can be shown (Ting 1986) that

$$W_{12} = -\left(\frac{1-2\nu'}{\mu'} - \frac{1-2\nu}{\mu}\right), \quad D_{11} = \frac{1-\nu'}{\mu'} + \frac{1-\nu}{\mu},$$
 (6.35a)

$$W_{12} = D_{12} = D_{13} = 0$$
, (6.35b)

41

CTATES C

1535353555

where ν and μ are the Poisson's ratio and shear modulus, respectively. Equation (6.33) then reduces to

$$\cot \delta \pi = (\operatorname{sgn} t_{,})k_{,\beta}, \qquad (6.36a)$$

where β is one of the Dundurs constants (Dundurs 1970)

$$\beta = \frac{\mu(1-2\nu') - \mu'(1-2\nu)}{\mu(1-\nu') + \mu'(1-\nu)} .$$
(6.36b)

(II) Case B

We may consider the following boundary conditions:

$$t(\pi/2) = t'(\pi/2)$$
 and $u(\pi/2) = u'(\pi/2)$, (6.37)

$$t(3\pi/2) = t'(-\pi/2)$$
, (6.38a)

$$u_1(3\pi/2) = u_1'(-\pi/2)$$
, (6.38b)

$$t_2 = (sgn t_2)k_2t_1$$
 and $t_3 = (sgn t_3)k_3t_1$, at $\theta = 3\pi/2$. (6.38c)

Equations (6.38b,c) can be written in matrix notation as

$$r^{-1}(\delta+1) J [u(3\pi/2) - u'(-\pi/2)] + Gt (3\pi/2) = 0, \qquad (6.39)$$

where k_2 , k_3 , sgn t_2 , sgn t_3 , \sum and \subseteq are the same as in Case A. Substituting (6.16) and (6.17) into (6.37), (6.38a) and (6.39) and setting $\phi = \pi/2$ lead to

$$Bq + \bar{B}h = B'q' + \bar{B}'h', \qquad (6.40)$$

STORES - DESCRIPTION - DESCRIP

$$\underline{Aq} + \underline{Ah} = \underline{A'q'} + \underline{A'h'}, \qquad (6.41)$$

$$\mathbf{e}^{i\delta\pi}\mathbf{B}\mathbf{q} + \mathbf{e}^{-i\delta\pi}\mathbf{B}\mathbf{h} = \mathbf{e}^{-i\delta\pi}\mathbf{B}\mathbf{q}\mathbf{q} + \mathbf{e}^{i\delta\pi}\mathbf{B}\mathbf{h}\mathbf{h}, \qquad (6.42)$$

$$J[-(e^{i\delta\pi}Aq + e^{-i\delta\pi}Ah) + (e^{-i\delta\pi}A'q' + e^{i\delta\pi}A'h')], \qquad (6.43)$$

Equations (6.40)-(6.43) consist of four homogeneous equations for g, h, g' and h'. For a non-trivial solution, the determinant of the coefficient matrix must vanish. This provides the roots for δ . Once again, by algebraic operations, we obtain that δ is an integer or the root of following determinant

$$\begin{bmatrix} D & W \\ \sim & \sim \\ JW-G & -(\cot \delta \pi)G-JD \\ \sim & \sim \end{bmatrix} = 0, \qquad (6.44)$$

where D and W are the same as in Case A.

If we apply the shove procedure to the case of transversely isotropic materials under axisymmetric deformation, noticing that $u_3 = t_3 =$ 0 in equations (6.37) and (6.38), we obtain the singularity

$$\cot \delta \pi = \frac{-(\text{sgn } t_2)k_2W_{12}}{D_{11}^{+}(\text{sgn } t_2)k_2D_{12}} .$$
(6.45)

When the friction is absent, i.e., $k_2 = 0$, $\delta = -1/2$ is the order of singularity.

For isotropic composites (6.44) reduces to

 $\cot \delta \pi = - (\text{sgn } t_2) k_2 \beta$, (6.46)

43

تنتنئه

where β is one of the Dundurs constants given in (6.36b). Equation (6.46) agrees with the result obtained by Comninou (1978B).

We have verified that δ obtained from (6.34) and (6.45) agreed with that obtained from (4.12) for Case A and B, respectively. Since δ is real, the unrealistic inter-penetration of the crack surfaces does not exist.

44

222.00

Chapter VII

CONCLUDING REMARKS

The problem of stress singularity in a three-dimensional elastic solid that contains axisymmetric notches or cracks and subjected to an axisymmetric deformation has been reduced to a mathematically twodimensional problem. In this case, it has been shown that the eigenfunctions for the singularity associated with an eigenvalue δ contain not only the term $\rho^{\delta}f(\psi,\delta)$, but also the terms $\rho^{\delta+1}f_1(\psi,\delta)$, $\rho^{\delta+2}f_2(\psi,\delta)$... where (ρ,ψ) is the polar coordinate with origin at the apex of notches or cracks. In the case of interface crack with a contact zone, it can be seen from (6.34) and (6.45) that if δ is an eigenvalue, so is δ +k where k is an integer. For the high order terms of the eigenfunction solution, equations (4.7b) must be solved. Numerical calculation showes that (4.7b) has no solution for k = 1. To obtain the high order terms for $k \ge 1$ the modified solution of (3.8), which is obtained by differentiating (2.27) with respect to δ , has been used. A solution for term k = 1 is thus obtained but (3.8c) and (3.8d) have no numerical solution for k = 2. To obtain the terms associate with k > 2 one has to find the new solutions by taking second or higher derivatives with respect to δ .

From the numerical computations we present the following conclusions

45

200012202

RECORDER STATE

(1) It is shown in Chapter VI that the first term in the eigenfuncion series solution of axisymmetric deformation is the same as the solution of plane strain problem. The singularity δ of two isotropic materials obtained by the formulas here agrees with the results of Bogy(1971) and Lin and Mar (1976).

(2) When the material constants of two transversely isotropic materials in a composite are chosen in such a way that they are very close to two isotropic materials, the order of singularity obtained by the formulas of transversely isotropic composite and of isotropic composite are very close.

(3) The singularities obtained by the methods of Chapter V and Chapter VI are exactly same.

46

NAMES REPORT OF A

Appendix A

DERIVATION OF EQUATIONS (2.13)

Substitution of (2.9a) into (2.8) and noticing that $\phi^{(k)}$ is of order $\rho^{\delta+k+2}$, we see that (2.8) is satisfied if

$$\frac{\partial^2 \phi^{(0)}}{\partial x^2} - \frac{1}{p^2} \frac{\partial^2 \phi^{(0)}}{\partial z^2} = 0 , \qquad (A1)$$

$$\frac{\partial^2 \phi^{(k)}}{\partial x^2} - \frac{1}{p^2} \frac{\partial^2 \phi^{(k)}}{\partial z^2} = \sum_{\mathbf{m}=0}^{k-1} x^{k-1-\mathbf{m}} \frac{\partial \phi^{(\mathbf{m})}}{\partial x}, \quad k \ge 1 .$$
 (A2)

Thus each term in (A2) is of order $\rho^{\delta+k}$. Using (2.9b) in (A2) we obtain

$$\sum_{t=0}^{k-1} A_{t+1}^{(k)} t^{(t+1)} x^{t-1} z^{\delta+k-t+1} + \sum_{t=1}^{k} A_{t}^{(k)} 2t x^{t-1} z^{\delta+k-t+1} (\delta+k-t+2)$$

$$= J_{1} + J_{2} ,$$
(A3)

where

$$J_{1} = \sum_{m=1}^{k-1} x^{k-1} \cdots \sum_{s=0}^{m-1} A_{s+1}^{(m)} (s+1) x^{s} Z^{\delta+m-s+1},$$
(A4)

$$J_{2} = \sum_{m=1}^{k-1} \sum_{s=0}^{m} A_{s}^{(m)} x^{s} Z^{\delta+m-s+1} (\delta+m-s+2).$$
(A5)

By letting s = t+m-k and interchanging the summations, we have

$$J_{1} = \sum_{t=1}^{k-1} \{\sum_{m=k-t}^{k-1} (t-k+m+1) A_{t-k+m+1}^{(m)} \} x^{t-1} Z^{\delta+k-t+1},$$
(A6)

$$J_{2} = \sum_{t=1}^{k-1} \left\{ \sum_{m=k-t}^{k-1} A_{t-k+m}^{(m)} \right\} x^{t-1} Z^{\delta+k-t+1} (\delta+k-t+2).$$
(A7)

47

ير ک

2

2

CLAUSE CONTRACT

By setting the coefficients of the same terms in (A3) to zero, we obtain

$$2kA_{k}^{(k)} = \sum_{m=0}^{k-1} A_{m}^{(m)}, \qquad (A8)$$

$$t(t+1)A_{t+1}^{\binom{k}{l}} + 2t(\delta+k-t+2)A_{t}^{\binom{k}{l}}$$

$$= \sum_{m=k-t}^{k-1} \{(t-k+m+1)A_{t-k+m+1}^{\binom{m}{l}} + (\delta+k-t+2)A_{t-k+m}^{\binom{m}{l}}\}.$$
(A9)

Equation (A9) can be rewritten as, by letting m = s+k-t-1,

$$t(t+1)A_{t+1}^{(k)} + 2t(\delta+k-t+2)A_{t}^{(k)}$$

$$= \sum_{s=1}^{t} \{sA_{s}^{s+k-t-1} + (\delta+k-t+2)A_{s-1}^{s+k-t-1}\}, \text{ for } t \leq k-1.$$
(A10)

To express (A8) in the form of (2.13a), we replace k by k-1 in (A8) to obtain.

$$2(k-1)A_{k-1}^{(k-1)} = \sum_{m=0}^{k-2} A_{m}^{(m)}, \qquad (A11)$$

and subtract (All) from (A8). We have

$$2kA_{k}^{(k)} - 2(k-1)A_{k-1}^{(k-1)} = A_{k-1}^{(k-1)}, \qquad (A12)$$

which is idntical to (2.13a). Similarly, we replace k and t by k-1 and t-1, respectively, in (A10) which reduces to

$$(t-1) t A_{t}^{(k-1)} + 2(t-1) (\delta + k - t + 2) A_{t-1}^{(k-1)}$$

$$= \sum_{s=1}^{t-1} \{ s A_{s}^{s+k-t-1} + (\delta + k - t + 2) A_{s-1}^{s+k-t-1} \} .$$
(A13)

Equation (2.13b) is obtained when (A13) is subtracted from (A10).

Appendix B

MODIFIED SOLUTIONS IN SECTION (3.1)

We obtain, by differentiating equation (2.14a), (2.17) and (2.18) with respect to δ , the following modified solutions

$$\phi^{(k)} = \frac{\partial}{\partial \delta} \left\{ \sum_{t=0}^{k} A_t^{(k)} x^t z^{\delta+k-t+2} \dots \right\}, \qquad (B1)$$

$$u_{r}^{(k)} = \sum_{t=0}^{k} \{ [A_{t}^{(k)}(\delta + k - t + 2) + A_{t+1}^{(k)}(t + 1) + A_{t}^{(k)}] x^{t} Z_{1}^{\delta + k - t + 1}$$

$$+ [A_{t}^{(k)}(\delta + k - t + 2) + A_{t+1}^{(k)}(t + 1)] x^{t} Z_{1}^{\delta + k - t + 1} \ln Z_{1} \} + \dots$$
(B2)

$$u_{z}^{(k)} = \sum_{t=0}^{k} \{ [A_{t}^{(k)} m_{1} p_{1} (\delta + k - t + 2) + A_{t}^{(k)} m_{1} p_{1}] x^{t} Z_{1}^{\delta + k - t + 1}$$

$$+ A_{t}^{(k)} m_{1} p_{1} (\delta + k - t + 2) x^{t} Z_{1}^{\delta + k - t + 1} \ln Z_{1} \} + \dots$$
(B3)

$$\sigma_{\theta}^{(k)} = \frac{k}{t^{2}=0} \left[A_{t}^{\prime (k)} (c_{12}^{+}c_{13}^{-}m_{1}^{-}p_{1}^{2}) (\delta^{+}k^{-}t^{+}2) (\delta^{+}k^{-}t^{+}1) \right] \\ -A_{t}^{\prime (k)} (c_{12}^{+}c_{13}^{-}m_{1}^{-}p_{1}^{2}) (t^{+}1) (\delta^{+}k^{-}t^{+}1) \\ -A_{t}^{\prime (k)} (c_{12}^{+}c_{13}^{-}m_{1}^{-}p_{1}^{2}) (2\delta^{+}2k^{-}2t^{+}3) \\ -A_{t}^{(k)} (c_{12}^{+}c_{13}^{-}m_{1}^{-}p_{1}^{2}) (t^{+}1) x^{t} z_{1}^{\delta^{+}k^{-}t} \\ + \left[A_{t}^{(k)} (c_{12}^{+}c_{13}^{-}m_{1}^{-}p_{1}^{2}) (\delta^{+}k^{-}t^{+}2) (\delta^{+}k^{-}t^{+}1) \\ -A_{t}^{(k)} (2c_{11}^{-}c_{12}^{-}) (t^{+}1) (\delta^{+}k^{-}t^{+}1) \\ -A_{t}^{(k)} (2c_{11}^{-}c_{12}^{-}) (t^{+}1) x^{t} z_{1}^{\delta^{+}k^{-}t} x_{1}^{-} x$$

$$\sigma_{z}^{(k)} = \sum_{t=0}^{k} \{ [-A_{t}^{(k)} c_{44}^{(1+m_{1})} (\delta + k - t + 2) (\delta + k - t + 1) - A_{t}^{(k)} c_{44}^{(1+m_{1})} (2\delta + 2k - 2t + 3)] x^{t} z_{1}^{\delta + k - t} [-A_{t}^{(k)} c_{44}^{(1+m_{1})} (\delta + k - t + 2) (\delta + k - t + 1)] x_{1}^{t} z^{\delta + k - t} \ln z_{1} \} + \dots$$
(B6)

$$\sigma_{rz}^{(k)} = \sum_{t=0}^{k} \{ [A_{t}^{\prime (k)} (\delta + k - t + 2) (\delta + k - t + 1) + A_{t+1}^{\prime (k)} (t + 1) (\delta + k - t + 1) + A_{t}^{\prime (k)} (2\delta + 2k - 2t + 3) + A_{t+1}^{(k)} (t + 1)] c_{44} (1 + m_{1}) p_{1} x^{t} Z_{1}^{\delta + k - t} [A_{t}^{(k)} (\delta + k - t + 2) + A_{t+1}^{(k)} (t + 1)] c_{44} (1 + m_{1}) p_{1} (\delta + k - t + 1) x^{t} Z_{1}^{\delta + k - t} 1 n Z_{1} \} + \dots$$
(B7)

For the degenerate materials, we obtain from equations (2.37), (2.38) and (2.39)

$$\phi^{(k)} = \frac{\partial}{\partial \delta} \left\{ \sum_{t=0}^{k} [A_t^{(k)} x^t z^{\delta+k-t+2} + C_t^{(k)} x^t z^{\delta+k-t+2}] + \sum_{t=0}^{k} [B_t^{(k)} z x^t z^{\delta+k-t+1} + D_t^{(k)} z x^t z^{\delta+k-t+1}] (\delta+k-t+2) \right\},$$
(B8)

50

RESS.

LEVERAGE RELEASE DEPENDENCE DEPENDENCE

12.27

$$u_{r}^{(k)} = \sum_{t=0}^{k} \{ [A_{t}^{\prime}(^{k})_{\delta+k-t+2}] + A_{t+1}^{\prime}(^{k})_{\delta+1} + A_{t}^{(k)}] x^{t} z^{\delta+k-t+1}$$
(B9)
+ $[B_{t}^{\prime}(^{k})_{\delta+k-t+2}] (\delta+k-t+1) + B_{t+1}^{\prime}(^{k})_{\delta+k-t+1}] + B_{t}^{(k)} (2\delta+2k-2t+3) + B_{t+1}^{(k)} (t+1)] z x^{t} z^{\delta+k-t} + [A_{t}^{(k)} (\delta+k-t+2) + A_{t+1}^{(k)} (t+1)] x^{t} z^{\delta+k-t+1} \ln z + [B_{t}^{(k)} (\delta+k-t+2) + B_{t+1}^{(k)} (t+1)] (\delta+k-t+1) z x^{t} z^{\delta+k-t} \ln z \} + \dots$

$$u_{z}^{(k)} = \sum_{t=0}^{k} \{ [A_{t}^{\prime} {}^{(k)} \beta_{i} (\delta + k - t + 2) - B_{t}^{\prime} {}^{(k)} (3 - 4\nu) (\delta + k - t + 2) + A_{t}^{(k)} \beta_{i} - B_{t}^{(k)} (3 - 4\nu)] x^{t} z^{\delta + k - t + 1} + [B_{t}^{\prime} {}^{(k)} \beta_{i} (\delta + k - t + 2) (\delta + k - t + 1) + B_{t}^{(k)} \beta_{i} (2\delta + 2k - 2t + 3)] z x^{t} z^{\delta + k - t} + [A_{t}^{(k)} \beta_{i} - B_{t}^{(k)} (3 - 4\nu)] (\delta + k - t + 2) x^{t} z^{\delta + k - t + 1} \ln z + B_{t}^{(k)} \beta_{i} (\delta + k - t + 2) (\delta + k - t + 1) z x^{t} z^{\delta + k - t} + \ln z \} + \dots$$
(B10)

$$\frac{1}{2\mu} \sigma_{\mathbf{x}}^{(\mathbf{k})} = \frac{\mathbf{k}}{\mathbf{t}_{=0}^{\infty}} \{ [(A_{\mathbf{t}}^{\prime} {}^{(\mathbf{k})} \beta^{a} - B_{\mathbf{t}}^{\prime} {}^{(\mathbf{k})} 2\nu\beta_{\mathbf{i}}) (\delta_{\mathbf{t}\mathbf{k}-\mathbf{t}+2}) (\delta_{\mathbf{t}\mathbf{k}-\mathbf{t}+1}) + A_{\mathbf{t}_{+}^{\mathbf{t}}\mathbf{i}^{\mathbf{k}}}^{\prime} 2\nu\beta_{\mathbf{i}}) (\delta_{\mathbf{t}\mathbf{k}-\mathbf{t}+1}) + A_{\mathbf{t}_{+}^{\mathbf{t}}\mathbf{i}^{\mathbf{k}}}^{\prime} 2\nu\beta_{\mathbf{t}}) (t_{\mathbf{t}}\mathbf{t})] \mathbf{x}^{\mathbf{t}} \mathbf{z}^{\delta_{\mathbf{t}}\mathbf{k}-\mathbf{t}} \\ + [B_{\mathbf{t}}^{\prime} {}^{(\mathbf{k})} \beta^{a} (\delta_{\mathbf{t}\mathbf{k}-\mathbf{t}+2}) (\delta_{\mathbf{t}\mathbf{k}-\mathbf{t}+1}) + B_{\mathbf{t}_{+}^{\mathbf{t}}\mathbf{i}^{\mathbf{k}}}^{\prime} 2\nu(\mathbf{t}+1)] (\delta_{\mathbf{t}\mathbf{k}-\mathbf{t}+1}) \\ + B_{\mathbf{t}_{+}^{\mathbf{t}}\mathbf{i}^{\mathbf{k}}}^{\prime} \gamma(\mathbf{t}+2) (\mathbf{t}+1)] (\delta_{\mathbf{t}\mathbf{k}-\mathbf{t}}) \mathbf{z} \mathbf{x}^{\mathbf{t}} \mathbf{z}^{\delta_{\mathbf{t}}\mathbf{k}-\mathbf{t}-1} \\ + [(A_{\mathbf{t}_{k}}^{(\mathbf{k})} \beta^{a} - B_{\mathbf{t}_{k}}^{(\mathbf{k})} 2\nu\beta_{\mathbf{i}}) (2\delta_{\mathbf{t}} 2\mathbf{k}-2\mathbf{t}+3) + A_{\mathbf{t}_{+}}^{(\mathbf{k}}\mathbf{t}^{\mathbf{k}}} 2\nu(\mathbf{t}+1)] \mathbf{x}^{\mathbf{t}} \mathbf{z}^{\delta_{\mathbf{t}}\mathbf{k}-\mathbf{t}} \\ + [B_{\mathbf{t}_{k}}^{(\mathbf{k})} \beta^{a} ((2\delta_{\mathbf{t}} 2\mathbf{k}-2\mathbf{t}+3) (\delta_{\mathbf{t}\mathbf{k}-\mathbf{t}}) + (\delta_{\mathbf{t}\mathbf{k}-\mathbf{t}+2}) (\delta_{\mathbf{t}\mathbf{k}-\mathbf{t}+1})) \\ + B_{\mathbf{t}_{+}}^{\mathbf{t}} 2\nu(\mathbf{t}+1) (2\delta_{\mathbf{t}} 2\mathbf{k}-2\mathbf{t}+1) + B_{\mathbf{t}_{+}}^{(\mathbf{k}} 2\nu(\mathbf{t}+2) (\mathbf{t}+1)] \mathbf{z} \mathbf{x}^{\mathbf{t}} \mathbf{z}^{\delta_{\mathbf{t}\mathbf{k}-\mathbf{t}-1}} \\ + [(A_{\mathbf{t}_{k}}^{(\mathbf{k})} \beta^{a} - B_{\mathbf{t}_{k}}^{(\mathbf{k})} 2\nu\beta_{\mathbf{i}}) (\delta_{\mathbf{t}\mathbf{k}-\mathbf{t}+2}) (\delta_{\mathbf{t}\mathbf{k}-\mathbf{t}+1}) \\ + B_{\mathbf{t}_{+}}^{\mathbf{t}} 2\nu(\mathbf{t}+1) (\delta_{\mathbf{t}\mathbf{k}-\mathbf{t}+1) + B_{\mathbf{t}_{+}}^{(\mathbf{k}}} 2\nu(\mathbf{t}+2) (\mathbf{t}+1)] \mathbf{z} \mathbf{x}^{\mathbf{t}} \mathbf{z}^{\delta_{\mathbf{t}\mathbf{k}-\mathbf{t}-1} \\ + [(A_{\mathbf{t}_{k}}^{(\mathbf{k})} \beta^{a} - B_{\mathbf{t}_{k}}^{(\mathbf{k})} 2\nu\beta_{\mathbf{i}}) (\delta_{\mathbf{t}\mathbf{k}-\mathbf{t}+2}) (\delta_{\mathbf{t}\mathbf{k}-\mathbf{t}+1}) \\ + A_{\mathbf{t}_{+}}^{(\mathbf{k}_{+}}} 2\nu(\mathbf{t}+1) (\delta_{\mathbf{t}\mathbf{k}-\mathbf{t}+1) + A_{\mathbf{t}_{+}}^{(\mathbf{k}_{+}}} 2\nu(\mathbf{t}+1)] \mathbf{x}^{\mathbf{t}} \mathbf{z}^{\delta_{\mathbf{t}\mathbf{k}-\mathbf{t}}} \\ + B_{\mathbf{t}_{k}}^{(\mathbf{k})} \beta^{a} (\delta_{\mathbf{t}\mathbf{k}-\mathbf{t}+2}) (\delta_{\mathbf{t}\mathbf{k}-\mathbf{t}+1}) + B_{\mathbf{t}_{+}}^{(\mathbf{k}_{+}}} 2\nu(\mathbf{t}+1)] (\delta_{\mathbf{t}\mathbf{k}-\mathbf{t}+1}) \\ + B_{\mathbf{t}_{+}}^{(\mathbf{k}_{+}}} 2\nu(\mathbf{t}+2) (\mathbf{t}+1)] (\delta_{\mathbf{t}\mathbf{k}-\mathbf{t}+2}) \mathbf{z}^{\delta_{\mathbf{t}\mathbf{k}-\mathbf{t}-1}} \\ + D_{\mathbf{t}_{k}}^{(\mathbf{k})} 2\nu(\mathbf{t}+2} (\mathbf{t}+1)] (\delta_{\mathbf{t}\mathbf{k}-\mathbf{t}+2}) (\delta_{\mathbf{t}\mathbf{k}-\mathbf{t}-1} \mathbf{z}) + \dots$$

. e

$$\frac{1}{2\mu} \sigma_{\theta}^{(k)} = \sum_{t=0}^{k} \{ [(A_{t}^{\prime} (k) (\beta^{2} - \gamma) - B_{t}^{\prime} (k) 2\nu\beta i) (\delta^{+}k^{-}t^{+}2) (\delta^{+}k^{-}t^{+}1) - A_{t}^{\prime} (k^{2}) (2\nu\beta i) (\delta^{+}k^{-}t^{+}2) (\delta^{+}k^{-}t^{+}1) - A_{t}^{\prime} (k^{2}) (1 + 2) (1 + 1)] x^{t} z^{\delta^{+}k^{-}t} + [B_{t}^{\prime} (k^{2} (\beta^{2} - \gamma) (\delta^{+}k^{-}t^{+}2) (\delta^{+}k^{-}t^{+}1) - B_{t}^{\prime} (k^{2}) (2\gamma (t+1) (\delta^{+}k^{-}t^{+}1)) - B_{t}^{\prime} (k^{2}) (\gamma (t+2) (t+1)] (\delta^{+}k^{-}t) zx^{t} z^{\delta^{+}k^{-}t^{-}1} + [(A_{t}^{(k)} (\beta^{2} - \gamma) - B_{t}^{(k)} 2\nu\beta i) (2\delta^{+}2k^{-}2t^{+}3) - A_{t}^{(k)} (2\gamma (t+1)] x^{t} z^{\delta^{+}k^{-}t} + [B_{t}^{(k)} (\beta^{2} - \gamma) ((\delta^{+}k^{-}t^{+}2) (\delta^{+}k^{-}t^{+}1) + (2\delta^{+}2k^{-}2t^{+}3)) - B_{t}^{(k)} (2\delta^{+}2k^{-}2t^{+}1) - B_{t}^{(k)} (2\gamma (t+2) (t+1)] zx^{t} z^{\delta^{+}k^{-}t^{-}1} + [(A_{t}^{(k)} (\beta^{2} - \gamma) - B_{t}^{(k)} 2\nu\beta i) (\delta^{+}k^{-}t^{+}2) (\delta^{+}k^{-}t^{+}1) - A_{t}^{(k)} (2\gamma (t+1) (\delta^{+}k^{-}t^{+}1) - B_{t}^{(k)} (2\gamma (t+2) (t+1)] x^{t} z^{\delta^{+}k^{-}t^{-}1} + [(A_{t}^{(k)} (\beta^{2} - \gamma) - B_{t}^{(k)} 2\nu\beta i) (\delta^{+}k^{-}t^{+}2) (\delta^{+}k^{-}t^{+}1) - A_{t}^{(k)} (2\gamma (t+1) (\delta^{+}k^{-}t^{+}1) - A_{t}^{(k)} (2\gamma (t+2) (t+1)] x^{t} z^{\delta^{+}k^{-}t} + [B_{t}^{(k)} (\beta^{2} - \gamma) - (\delta^{+}k^{-}t^{+}1) - A_{t}^{(k)} (2\gamma (t+2) (t+1)] x^{t} z^{\delta^{+}k^{-}t} + [B_{t}^{(k)} (\beta^{2} - \gamma) - (\delta^{+}k^{-}t^{+}1) - A_{t}^{(k)} (2\gamma (t+2) (t+1)] x^{t} z^{\delta^{+}k^{-}t} + [B_{t}^{(k)} (\beta^{2} - \gamma) (\delta^{+}k^{-}t^{+}1) - A_{t}^{(k)} (2\gamma (t+2) (t+1)] x^{t} z^{\delta^{+}k^{-}t} + [B_{t}^{(k)} (\beta^{2} - \gamma) (\delta^{+}k^{-}t^{+}1) - A_{t}^{(k)} (2\gamma (t+2) (t+1)] x^{t} z^{\delta^{+}k^{-}t} + [B_{t}^{(k)} (\beta^{2} - \gamma) (\delta^{+}k^{-}t^{+}1) - B_{t}^{(k)} (2\gamma (t+2) (t+1)] (\delta^{+}k^{-}t^{+}1) - B_{t}^{(k)} (2\gamma (t+2) (t+1)] x^{t} z^{\delta^{+}k^{-}t} + [B_{t}^{(k)} (\beta^{2} - \gamma) (\delta^{+}k^{-}t^{+}1) - B_{t}^{(k)} (2\gamma (t+2) (t+1)] (\delta^{+}k^{-}t^{+}1) - B_{t}^{(k)} (2\gamma (t+2) (t+1)] x^{t} z^{\delta^{+}k^{-}t} + [B_{t}^{(k)} (\beta^{2} - \gamma) (\delta^{+}k^{-}t^{+}1) - B_{t}^{(k)} (2\gamma (t+2) (t+1)] x^{t} z^{\delta^{+}k^{-}t} + [B_{t}^{(k)} (\beta^{2} - \gamma) (\delta^{+}k^{-}t^{+}1) z^{\delta^{+}k^{-}t^{-}1} + ... \}$$

$$\frac{1}{2\mu} \sigma_{z}^{(k)} = \sum_{t=0}^{k} \{-[A_{t}^{\prime}]^{(k)} + B_{t}^{\prime}]^{(k)} 2(1-\nu) i\beta^{-1}] (\delta + k - t + 2) (\delta + k - t + 1) x^{t} z^{\delta + k - t}$$

$$-B_{t}^{\prime}]^{(k)} (\delta + k - t + 2) (\delta + k - t + 1) (\delta + k - t) zx^{t} z^{\delta + k - t} - 1$$

$$-[A_{t}^{(k)} + B_{t}^{(k)} 2(1-\nu) i\beta^{-1}] (2\delta + 2k - 2t + 3) x^{t} z^{\delta + k - t} - 1$$

$$-B_{t}^{(k)} (\delta + k - t + 2) (\delta + k - t + 1) + (2\delta + 2k - 2t + 3) (\delta + k - t)] zx^{t} z^{\delta + k - t} - 1$$

$$-[A_{t}^{(k)} + B_{t}^{(k)} 2(1-\nu) i\beta^{-1}] (\delta + k - t + 2) (\delta + k - t + 1) x^{t} z^{\delta + k - t} - 1$$

$$-[A_{t}^{(k)} + B_{t}^{(k)} 2(1-\nu) i\beta^{-1}] (\delta + k - t + 2) (\delta + k - t + 1) x^{t} z^{\delta + k - t} - 1$$

$$-B_{t}^{(k)} (\delta + k - t + 2) (\delta + k - t + 1) (\delta + k - t) zx^{t} z^{\delta + k - t} - 1$$

$$\frac{1}{2\mu} \sigma_{rz}^{(k)} = \frac{k}{\Sigma_{0}} \left\{ \left[\left(A_{t}^{\prime} \left(k \right) \beta_{i} - \beta_{t}^{\prime} \left(k \right) \left(1 - 2\nu \right) \right) \left(\delta + k - t + 2 \right) \right. \right. \right. \right.$$

$$\left. + \left(A_{t}^{\prime} \left(k \right) \beta_{i} - \beta_{t}^{\prime} \left(k \right) \left(1 - 2\nu \right) \right) \left(t + 1 \right) \right] \left(\delta + k - t + 1 \right) x^{t} z^{\delta + k - t} \\
\left. + \left[B_{t}^{\prime} \left(k \right) \left(\delta + k - t + 2 \right) + B_{t}^{\prime} \left(k \right) \left(t + 1 \right) \right] \left(\delta + k - t + 1 \right) \left(\delta + k - t \right) \beta_{i} z x^{t} z^{\delta + k - t - 1} \\
\left[\left(A_{t}^{(k)} \beta_{i} - B_{t}^{(k)} \left(1 - 2\nu \right) \right) \left(2\delta + 2k - 2t + 3 \right) \\
\left. + \left(A_{t}^{(k)} \beta_{i} - B_{t}^{(k)} \left(1 - 2\nu \right) \right) \left(t + 1 \right) \right] x^{t} z^{\delta + k - t} \\
\left. + \left[B_{t}^{(k)} \left(\delta + k - t + 2 \right) \left(\delta + k - t + 1 \right) \left(2\delta + 2k - 2t + 3 \right) \left(\delta + k - t \right) \right) \\
\left. + B_{t}^{(k)} \left(t + 1 \right) \left(2\delta + 2k - 2t + 3 \right) \right] \beta_{i} z x^{t} z^{\delta + k - t} - 1 \\
\left. + \left[\left(A_{t}^{(k)} \beta_{i} - B_{t}^{(k)} \left(1 - 2\nu \right) \right) \left(\delta + k - t + 2 \right) \\
\left. + \left(A_{t}^{(k)} \beta_{i} - B_{t}^{(k)} \left(1 - 2\nu \right) \right) \left(\delta + k - t + 2 \right) \\
\left. + \left(A_{t}^{(k)} \beta_{i} - B_{t}^{(k)} \left(1 - 2\nu \right) \right) \left(t + 1 \right) \right] \left(\delta + k - t + 1 \right) x^{t} z^{\delta + k - t} \right) \left[n z^{t} z^{\delta + k - t} \right] \\
\left. + \left[B_{t}^{(k)} \left(\delta + k - t + 2 \right) + B_{t}^{(k)} \left(t + 1 \right) \right] \left(\delta + k - t + 1 \right) x^{t} z^{\delta + k - t} \right] \left[n z^{t} z^{\delta + k - t} \right] \right] \left[n z^{t} z^{\delta + k - t} \right] \left[\left(\delta + k - t + 2 \right) + \left[A_{t}^{(k)} \left(\delta + k - t + 2 \right) + \left[\left(\delta + k - t + 1 \right) \right] \left(\delta + k - t + 1 \right) x^{t} z^{\delta + k - t} \right] \left[n z^{t} z^{\delta + k - t} \right] \left[\left(\delta + k - t + 2 \right) + \left[\left(\delta + k - t + 2 \right) + \left[\left(\delta + k - t + 2 \right) \right] \left(\delta + k - t + 1 \right) \left(\delta + k - t + 1 \right) \left[\left(\delta$$

BIBLIOGRAPHY

- Barnett, D.M. and Lothe, J., 1973, "Synthesis of the Sextic and the Integral Formalism for Dislocation, Greens Function and Surface Waves in Anisotropic Elastic Solids," Phys. Norv., Vol.7, pp.13-19.
- Barnett, D.M. and Lothe, J., 1975, "Line Force Loadings on Anisotropic Half-Space and Wedges," Phys. Norv., Vol.8, pp.13-22.
- Bazant, Z.P. 1974, "Three-Dimensional Harmonic Functions Near Termination or Intersection of Gradient Singularity Lines: A General Numerical Method," Int. J. Eng. Science, Vol.12, pp.221-243.
- Bazant, Z.P. and Estenssoro, L.F., 1977, "General Numerical Method for Three Dimensional Singularity in Cracked or Notched Elastic Solids," Fracture 1977, Proceeding of the 4th International Conference on Fracture, edited by Taplin, D.M.R., Univ. of Waterloo, Ontario, Canada, Vol.3, pp.371-385.
- Bazant, Z.P. and Estenssoro, L.F., 1979, "Surface Singularity and Crack Propagation," Int. J. Solids Structures, Vol.15, pp.405-426.
- Benthem, J.P., 1977, "State of Stress at Vertex of a Quarter-Infinite Crack in a Half Space," Int. J. Solids Structures, Vol.13, pp.479-492.
- Benthem, J.P., 1980, "The Quarter-Infinite Crack in a Half Space; Alternative and Additional Solutions," Int. J. Solids Structures, Vol.16, pp.119~130.

- Bogy, D.B., 1970, "On the Problem Edge-Bond Elastic Quarter Plane Loaded at the Boundary," Int. J. Solids Structures, Vol.6, pp.1287-1313.
- Bogy, D.B., 1971, "Two Edge-Bonded Elastic Wedges of Different Materials and Wedge Angles Under Surface Tractions," J. Applied Mechanics, Vol.38, No.2, pp.377-386.
- Bogy, D.B., 1972, "The Plane Solution for Anisotropic Elastic Wedge Under Normal and Shear Loading", J. Applied Mechanics, Vol.39, pp.1103-1109.
- Bogy, D.B., and Wang, K.C. 1971, "Stress Singularities at Interface Corners in Bonded Dissimilar Isotropic elastic Materials," Int. J. Solids Structures, Vol.7, pp.993-1005.
- Comminou, M., 1977A, "The Interface Crack," J. Applied Mechanics, Vol.44, pp.631-636.
- Comminou, M., 1977B, "Interface Crack with Friction in the Contact Zone," J. Applied Mechanics, Vol.44, pp.780-781.
- Cook, T.S. and Erdogan, F., 1972, "Stresses in Bonded Materials with a Crack Perpendicular to the Interface," Int. J. Engineering Science, Vol.10, pp.677-697.
- Delale, F., and Erdogan, F., 1979, "Bonded Orthotropic Strips with Cracks," Int. J. Fracture, Vol.15, pp.343-364.
- Delale, F., and Erdogan, F., 1981, "The Axisymmetric Elasticity Problem for a Laminated Plate Containing a Circular Hole," Lehigh University Report, July.
- Delale, F., Kishore, N.N. and Wang, A.S.D., 1984, "Stress Analysis of a Composite Plate With Circular Hole Under Axisymmetric Bending" J. Composite Materials, Vol.18 No.5, pp.420-431.

7

9

3

0

3

- Dempsey, J.P., 1981, "The Wedge Subjected to Tractions: A Paradox Resolved," J. Elasticity, Vol.11, pp.1-10.
- Dempsey, J.P. and Sinclair, G.B., 1979, "On the Stress Singularities in the Plane Elasticity of the Composite Wedge," J. Elasticity, Vol.9, pp.373-391.
- Dempsey, J.P. and Sinclair, G.B., 1981, "On the Singular Behavior at the Vertex of a Bi-Material Wedge," J. Elasticity, Vol.11, pp.317-327.
- Dundurs, J., 1970, Recent Advances in Engineering, edited by A.C. Eringen, Gordon and Breach Pub., Vol. 5, pp.203-206.
- England, A.H., 1965, "A Crack Between Dissimilar Media," J. Applied Mechanics, Vol.32, pp.400-402.
- Elliott, H.A., 1948, "Three-Dimensional Stress Distributions in Hexagonal Acolotropic Crystals," Proc. Cambridge Phil. Soc., Vol.44, pp.522-533.
- Erdogan, F. and Gupta, G.D., 1972, "Stresses Near a Flat Inclusion in Bonded Dissimslar Materials," Int. J. Solids Structrues, Vol.8, pp.533-547.
- Eshelby, J.D., Read, W.T. and Shockley, W., 1953, "Anisotropic Elasticity With Applications to Dislocation Theory," Act. Met., Vol.1, pp.251-259.
- Green, A.E. and Zerna, W., 1954, Theoretical Elasticity, Oxford University Press, Oxford.
- Hilderbrand, F.B., 1954, Methods of Applied Mathematics, Prentice-Hall, Englewood Cliffs, N.J.
- Hoenig, A., 1982, "Near-Tip Behavior of a Crack in a Plane Anisotropic Elastic Body," Engineering Fracture Mechanics, Vol.16, pp.393-403.

Kassir, M.K. and Sih, G.C., 1975, "Three-Dimensional Crack Problem," in Mechanics of Fracture, Vol.2, Noordhoff, pp.336-342.

- Kawai, T., Fujitani, Y. and Kumagai, K., 1977, "Analysis of Singularity at the Root of the Surface Crack Problem," Proc. Int. Conf. Fracture Mech. and Tech., edited by Sih, G.C. and Chow, C.L., Vol.11, pp.1157-1163.
- Knein, M., 1926, "Zur Theorie des Druckversuchs," Zeit. Ang. Math. Mech., Vol.6, pp.414-416.
- Kuo, M.C. and Bogy, D.B., 1974, "Plane Solutions for the Displacement and Traction-Displacement Problems for Anisotropic Elastic Wedge," J. Applied Mechanics, Vol.41, pp.197-203.
- Lekhnitskii, S.G., 1981, Theory of Elasticity of an Anisotropic Body, MIR Publishers, Moscow.
- Lin, K.Y. and Mar, J.W., 1976, "Finite Element Analysis of Stress Intensity Factors to Cracks at a Bimaterial Interface," Int. J. Fracture, Vol.12, pp.521-531.
- Somaratna, N. and Ting, T.C.T., 1986A "Three-Dimensional Stress Singularities at Conical Notches and Inclusions in Transversely Isotropic Materials," ASME, J. Applied Mechanics, Vol.53, pp.89-96.
- Somaratna, N. and Ting, T.C.T., 1986B "Three-Dimensional Stress Singularities in Anisotropic Materials and Composites," Int. J. Eng. Science, Vol. 24, No. 7, pp.1115-1134.
- Sih, G.C. and Chen, Z.P., 1981, Cracks in Composite Materials, Martinus Nijhoff Pub., pp.87-97.
- Sih, G.C., Paris, P.C. and Irwin, G.R., 1965, "On Cracks in Rectilineary Anisotropic Bodies," Int. J. Fracture Mechanics, Vol.1, pp.189-302.

<u>ስለት የሱስር እና እና የርሰራ እንደ የርሰራ እንደ ስር እንደ ስር እን</u>

- Stroh, A.N. 1958, "Dislocations and Cracks in Anisotropic Elasticity,"
 Phil. Mag., Vol.7, pp.625-646.
- Stroh, A.N. 1962, "Steady State Problems in Anisotropic Elasticity," J. Math. Phys., Vol.41, pp.77-103.
- Ting, T.C.T., 1982, "Effects of Change of Reference Coordinates on the Stress Analysis of Anisotropic Elastic Materials," Int. J. Solids Structrues, Vol.18, pp.139-152.
- Ting, T.C.T., 1984, "The Wedge Subjected to Tractions: A Paradox Re-Examined," J. Elasticity, Vol.14, No.3, pp.235-247.
- Ting, T.C.T., 1985, "Asymptotic Solution Near the Apex of an Elastic Wedge With Curved Boundaries," *Q. Appl. Math.*, Vol.42, No.4, pp.467-476.
- Ting, T.C.T., 1986, "Explicit Solution and Invariance of the Singularities at an Interface Crack in Anisotropic Composite," Int. J. Solids Structures, Vol.22, No. 9, pp.965-983.
- Ting, T.C.T. and Chou, S.C., 1981A, "Stress Singularities in Laminated Composites," Proc. Second USA-USSR Symposium on Fracture of Composite Materials, G. Sih and V. Tamuzs, Editors, Noordhoff, pp.265-278.
- Ting, T.C.T. and Chou, S.C., 1981B, "Edge Singularities in Anisotropic Composites," Int. J. Solids Structrues, Vol.17, pp.1057-1068.
- Ting, T.C.T. and Chou, S.C., 1985, "Logarithmic Singularity of an Elastic Composite Wedge Subjected to Out-of-the-Plane Extensional Strain," Theoretical and Applied Fractural Mechanics, Vol.4, pp.223-231.
- Ting, T.C.T. and Hoang, P.H., 1984, "Singularities at the Tip of a Crack Normal to the Interface of an Anistropic Layered Composite," Int. J. Solids Structures, Vol.20, pp.439-454.

- Tong, P., Pian, T.H.H. and Lasry, S.J., 1973, "A Hybrid-Element Approach to Crack Problems in Plane Elasticity," Int. J. Numerical Mech. in Eng., Vol.7, pp.297-308.
- Wang, S. S. and Choi, I., 1983, "The Interface Crack Between Dissimilar Anisotropic Composite Materials," J. Applied Mechanics, Vol.50, pp.169-178.
- Williams, M.L., 1952, "Stress Singularities Resulting From Various Boundary Conditions in Angular Corner of Plate in Extension," ASME J. Applied Mechanics, Vol.19, pp.526-528.
- Williams, M.L., 1959, "Stresses Around a Fault or Crack in dissimilar Media," Bull. Seis. Soc. Am., Vol.49, pp.199-204.
- Zak,A.K. and Williams, M.L., 1963, "Crack Point Stress Singularity at a Bi-Materials Interface," J. Applied Mechanics, Vol.30, pp.142-143.
- Zwiers, R., Ting, T.C.T. and Spilker, R.L., 1982, "On the Logarithmic Singularity of Free-Edge Stress in Laminated Composite Under Uniform Extension," ASME J. Applied Mechanics, Vol.49, pp.561-569.

Э

Fig.3 The normalized stresses from the first term of the eigenfunction associated with δ_1 of Example 1

ç

Fig.4 The normalized stresses from the first term of the eigenfunction associated with δ_2 of Example 1

in the second second

E22222

Fig.6 The normalized stresses from the first term of the eigenfunction associated with δ_2 of Example 2

Restration

CC SULLY IN

Fig.7 Cross section of an axisymmetric composite that contains an interface crack with a contact zone

66

MANNA BUCKE

SUNNA MARKEN

Fig.8 The normalized stresses from the first term of the eigenfunction in Case A of an interface crack with frictionless contact

ርሳራ ሚቆሻ አም<u>አ</u>ብኤ ግሥር ሌ ግሥር ሌ

ションションション

Fig.9 The normalized stresses from the first term of the eigenfunction in Case B of an interface crack with frictionless contact

A CONTRACT OF A CONTRACT OF

68

SYNAM REPORT REPORT

South States and States

Fig.10 Cross section of an axisymmetric composite that contains a vertical interface crack with a contact zone

DISTRIBUTION LIST

PAULAN DAY

BANNARA BANANA BANANA BANANA BANANA PANANA BANANA

No. of Copies Office of Deputy Under Secretary of Defense for Research and Engineering (ET) ATTN: Mr. J. Persh, Staff Specialist for Materials 1 and Structures (Room 3D1089) The Pentagon Washington, DC 20301 Office of Deputy Chief of Research Development and Acquisition ATTN: DAMA-CSS 1 The Pentagon Washington, DC 20301 Commander U.S. Army Materiel Command ATTN: AMCLD, R. Vitali, Office of Laboratory Management 1 5001 Eisenhower Avenue Alexandria, VA 22333 Director U.S. Army Strategic Defense Command ATTN: DASD-H-L, M. Capps 1 DASD-H-L, Dr. S. Proffitt 1 DASD-H-H, R. Buckelew 1 DASD-H-E, J. Katechis 1 P.O. Box 1500 Huntsville, AL 35807 Director U.S. Army Strategic Defense Command ATTN: DASD-H-Y, Col. K. Kawano 1 DASD-H-W, Dr. E. Wilkinson 1 DASD-H-W, J. Papadopoulos 1 DASD-H-W, S. Brockway 1 P.O. Box 1500 Huntsville, AL 35807-3801 Director Defense Nuclear Agency ATTN: SPAS, Maj. D. K. Apo 1 SPLH, J. W. Somers 1 SPLH, Dr. B. Steverding 1 Washington, DC 20305-1000 Director Army Ballistic Research Laboratories ATTN: DRDAR-BLT, Dr. N. J. Huffington, Jr 1 DRDAR-BLT, Dr. T. W. Wright 1 DRDAR-BLT, Dr. G. L. Moss 1 Aberdeen Proving Ground, MD 21005

No. Charles

1

1

1

1

1

1

1

2

1

1

1

¢.

LOCCESSAD

NUCCESSED

7

Commander Air Force Materials Laboratory Air Force Systems Command ATTN: LNC, Dr. D. Schmidt Wright-Patterson Air Force Base Dayton, OH 45433

Commander

BMO/ABRES Office ATTN: Capt. S. Opel Norton Air Force Base, CA 92409

Commander

Air Force Materials Laboratory ATTN: AFML/MBM, Dr. S. W. Tsai Wright-Patterson Air Force Base Dayton, OH 45433

Commender

Naval Ordinance Systems Command ATTN: ORD-03331, Mr. M. Kinna Washington, DC 20360

Nevel Postgraduate School ATTN: Code NC4(67WT), Prof. E. M. Wu Monterey, CA 93943

Commander

Naval Surface Weapons Center ATTN: C. Lyons C. Rowe Silver Springs, MD 20910

Defense Documentation Center Cameron Station, Bldg. 5 5010 Duke Station Alexandria, VA 22314

Aerospace Corporation ATTN: Dr. R. Cooper P.O. Box 92957 Los Angeles, CA 90009

AVCO Corporation Government Products Group ATTN: Dr. W. Reinecke P. Rolincik 201 Lowell Street Wilmington, MA 01997

and the surges

ETA Corporation ATTN: D. L. Mykkinen 1 P.O. Box 6625 Orange, CA 92667 Fiber Materials, Inc. ATTN: M. Subilia, Jr. 1 L. Landers 1 R. Burns 1 **Biddeford** Industrial Park Biddeford, ME 04005 General Electric Company Advanced Materials Development Laboratory ATTN: K. Hall 1 J. Brazel 1 3198 Chestnut Street Philadelphia, PA 19101 General Dynamics Corporation **Convair** Division ATTN: J. Hertz 1 5001 Kearny Villa Road San Diego, CA 92138 General Research Corporation ATTN: Dr. R. Wengler 1 Dr. R. Parisse 1 J. Green 1 5383 Hollister Avenue Santa Barbara, CA 93111 Hercules Aerospace Corporation ATTN: Dr. S. W. Beckwith (X2F5) 1 P.O. Box 98 Magna, UT 84044-0098 Kaman Sciences Corporation ATTN: Dr. D. C. Williams P.O. Box 7463 1 Colorado Springs, CO 80933 Ktech ATTN: Dr. D. Keller 1 911 Pennsylvania Avenue, N.E. Albuquerque, NM 87110 Lawrence Livermore National Laboratory ATTN: Dr. W. W. Feng 1 P.O. Box 808 (L-342) Livermore, CA 94550

<u>@#2#@#3#@#@#0#@#3#3#3#8#@#3#3#3#3#3#</u>

No. of Copie.

Lehigh University Institute of Fracture and Solid Mechanics ATTN: Dr. George C. Sih 1 Packard Lab, Bldg. 39 Bethlehem, PA 18015 Los Alamos National Laboratory ATTN: Dr. W. D. Birchler, Mail Scop G787 1 Henry L. Horak 1 Los Alamos, NM 87545 Martin Marietta Aerospace ATTN: V. Hewitt 1 Frank H. Koo 1 P.O. Box 5837 Orlando, FL 32805 Massachusetts Institute of Technology Department of Aeronautics and Astronautics 1 ATTN: Prof. T. H. H. Pian (Room 311, Bldg. 73) Cambridge, MA 02139 Pacifica Technology, Inc. 1 ATTN: Dr. Ponsford P.O. Box 148 Del Mar. CA 92014 Radkowski Associates ATTN: Dr. P. Radkowski 1 P.O. Box 5474 Riverside, CA 92507 Rohr Industries, Inc. 1 ATTN: Dr. T. H. Tsiang MZ-19T P.O. Box 878 Chula Vista, CA 92012-0878 Sandia Laboratories ATTN: Dr. W. Alzheimer ł Dr. M. Forrestal 1 Dr. E. P. Chen, Div. 1524 1 P.O. Box 5800 Albuquerque, NM 87115 Southwest Research Institute ATTN: A. Wenzel 1 8500 Culebra Road San Antonio, TX 78206 SPARTA, Inc. ATTN: J. Wonacott 1 J. Glatz 1 1055 Wall Street Suite 200 P.O. Box 1354 La Jolla, CA 92038

No. of for as

NEWLY DEFENSE PERSON DEFENSE

Discrete Constant Distribution Discrete Statistics

Terra Tek, Inc. ATTN: Dr. A. H. Jones 1 420 Wakara Way Salt Lake City, UT 84108 University of Washington ATTN: K. Y. Lin 1 FS-10, Guggenhein Bldg. Seattle, WA 98195 Director Army Materials Technology Laboratory ATTN: SLCMT-BM, J. F. Dignam 1 SLCMT-BM, S. C. Chou 5 SLCMT-BM, L. R. Aronin 1 SLCMT-BM, D. P. Dandekar 1 SLCMT-ISC 1 2 SLCMT-IML Watertown, MA 02172

AND AND AND A

	and, and grant Marketine Automation	bitations homoduratis 2313-4001 Elaboracricas AT & 3 2002.40 POMPT Fod Themstend I SOTROFIC CONFIG	
		WITH APPLICATIONS TO STUDIO MALINES OF A MADELY FIRES Itilian Jia and T. C. T. They	
Gitl Angianering. at the allungs 1111 also at Quangs	Car Maria Comparito matariale	Department of Civil Engineering. Needentce and Netallurgy Metversity of illingie of Calenge	Eury Tearto Composition perfection
8	Trueseraly Lectropic Rigentuction		freementy Letropic Repermentions
R. Th 87-5. January 1989. 69 No. sectors: Missá-Bi 4-4601 34-4610 4/1/Bi to 2/31/Bi	tires signiarity	Tembert Mapert HT. TT 07-5, Journey 1907, 69 pp. 111ue-141o, Contrast MARGE-65-5001 B/A Projest 166-6010 Pisai Bap., L. 4/1/65 to 0/11/65	Time relations
7 Instruction along the matter a mich of a line of the second	and is make a sel- the standar paint is a side (p. st to to the standar (p. st to to the st	When a transmer saly instructe alastic budy that ansates a second a supervised by the dama that the dama that the grant the grant the grant that the grant t	the or a cruck is under an act- tion mor the adaptive point is 0.01 is mind (p. 01 is the
fflaulty arises when 0 as well as 144 where 1 14 a. Is this was, the higher order terms of the se) salution is regulary and is presented here. The met	a positivo integer in price minites any ma Milad minites her the	atomicatly. A difficulty arises and 1 to will as for the also as domains. In this man, the higher order form o also. A medified ministen is regulared to provided bare.	The state states and the states of the state states and state
a pir (10.4). p ⁻¹ (10 pir ₂ (10.4) is an applied and Plane 10 compariso dias 11 and 24 applied to bream filter and the minis also affers a black to bream filter and the minis also affers a black to standard piloto and of dia reguler the medit	tion, to conflor the bris defendition. The limiton. Nis conflor in dependention pr-	and force of "(is p)r ((p.d), p ⁻¹ (is p)r ((p.d) is a forcess must be breast Piner is a support with is units a interfue between the breast fiber and the mitrix also auffre forces displayities at annual putte and the mitrix also auffre forces displayities at annual putte and a dish required and here.	amplication, we available the subgrandicie defaurition. The s defautation. This water to andified eigenfunctions pre-
de Testander Laboricary	3	8.3. Any Mearicle Teamlay Laboratory	3
Machanatics (0117-000) 16 11 - A Single an Polity 17 - Externet contextreme	001 44 DIG		001.409 (J.130)
		UTH APPLICATIONS TO STRENG MIALTER OF A DADREW FILMON	
Citil Regimentag.	14 MAR	bestrieset of Civit Bagimering. Neutrales and Netallarg	Lay New to
Litterte et Diese	Computed metarials Francomity introduc New motions	Bedversity of Illiands at Chicago P.O. Bas 434 Chicago, H. 468 80	Composito minimiale Preservati Lotragio Rignet motione
RL 72 87-3. Journey 1987, 69 pp. Januari Millau-16-5 4007 14 4010 4/1/18 to 2/31/18	liber relationed Broom algolarity	Teminical Report MTL T: 87-5, January 1967, 69 pp. 111us-thla. Contract MAR46-15-5-4007 D/A Project 314-4010 Fimil Report. 4/1/68 to 8/31/66	Tiber relationed Birres displicitly
It introduce along to the their contribution for the first the first of the first	which is make a sub- transformed to the second sec	When a transmoothy instruction static body that mandam a superstrict accounting. It is any that the discretion of $f_{1,1}^{(1)}$ and $f_{2,1}^{(1)}$ and $f_{2,1}^{($	the standard is made in the standard is the st

ł

)

NAMAN

5

₹

and the second a second second by the second second second to a second the second second second second

120000

s'

