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ABSTRACT

When a transversely isotropic elastic body that contains a notch or

a crack is under an axisymmetric deformation, it is shown that the

eigenfunction polution near the singular point is in the form of a power

series @ + 23~S ... in which i~ is the
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polar coordinate with origin at the singular point and c' is the eigenva-

lue, or the order of singularity. A difficulty arises when* 4as well as

F" i+k where k is a positive integer is also an eigenvalue. In this case

the higher order terms of the series solution may not exist. A modified

solution is required and is presented here. The modified solution has

the new terms p6+k(lnp)F(',), P5+k+l(ln)Fn(, ) ..(4- >s an applica-

tion, we consider the stresses near a broken fiber in a composite which

is under an axisymmetric deformation. The interface between the broken

fiber and the matrix also suffers a delamination. This creates stress

singularities at several points some of which require the modified

eigenfunctions presented here.
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Chapter I

INTRODUCTION

Even though light weight, high strength composites have been widely

used in the industries, rigorous analysis of stress distribution in a

composite which contains delaminations and/or broken fibers are still

lacking. The difficulties are due to the presence of stress singulari-

ties at the singular points such as the interface crack tip and the edg-

es of the broken fibers. Accurate predictions of the stresses near these

singular points are important not only for studies of fracture behavior

of materials but also for studies of general stress analysis. In find-

ing stress distribution in an entire specimen numerically by a finite

element scheme, one may use regular finite elements everywhere except at

the singular points. At these singular points, special elements are

used in which the singular nature of the stress is given by an analyt-

ical expression.

The problem of finding the stress singularities at the apex of an P

isotropic elastic wedge or notch was first considered by Knein (1926)

and Williams (1952) in which they assume that the stress distribution

under a plane-stress or plane-strain deformation can be expressed in

terms of a series of eigenfunctions of the form pbf(k,b) where p is the

radial distance from the apex and the f is a function of the polar angle

and the eigenvalue 6. For given wedge angle and homogeneous boundary

conditions at the sides of the wedge, there are in general infinitely

p%
pq

4..
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many eigenvalues 6 and the associated eigenfunctions paf( ,). Particu-

larly important in applications is when one or more of the 's is neg-

ative and the stress is singular at the apex. It was shown that for a

two dimensional body under an external loading the negative 6 appears

when the wedge angle is larger than r and 5 - -1/2 is a double root when

the wedge angle is 2w (i.e. the case of crack). The technique is applied

to a crack along (Williams 1959, England 1965), and normal (Zak and Wil-

liams 1963, Cook and Erdogan 1972) to the interface and to other geome-

tries of isotropic composites (Bogy 1970, 1971, Bogy and Wang 1971,

Erdogan and Gupta 1972, Delale et al 1984). A systematic derivation of

the equation for finding the singularity 5 was given by Dempsey and Sin-

clair (1981).

Investigation of associated problems for anisotropic materials was

started by Sih et al (1965) and has become active only in the last dec-

ade (for example, Bogy 1972, Kuo and Bogy 1974, Delale and Erdogan 1979,

Sih and Chen 1981, Hoenig 1982). However, these studies are limited to

two-dimensional singular points. There are singular points which are

three-dimensional. Three-dimensional singularity analysis for isotropic

materials was first performed analytically by Benthem (1977,1980) and

Kawai et al (1977) and numerically by Bazant (1974) and Bazant and

Estenssoro (1977,1980). Extension to anisotropic materials and compos-

ites was considered recently by Somaratna and Ting (1986A,B). In Soma-

ratna and Ting (1986B) finite element schemes are employed to determine

the order of singularity at a three-dimensional singular point of any

geometry. In the other paper of Somaratna and Ting (1986A) the order of

singularity is determined analytically for the special case of tran-



3

aversely isotropic materials under an axisymetric deformation. The sin-

gular point is assumed to locate on the axis of symmetry. In present

study, we consider the case in which the singular point is not on the

axis of symmetry.

Fig.1 shows the cross section of an axisymmetric body under an axi-
1SO.

symmetric deformation. The material is assumed to be transversely iso-

tropic with the z-axis being the axis of symmetry. We are interested in

the stresses near the singular point R. The associated problem for iso-

tropic materials was investigated by Delale and Erdogan (1981) and

Delale et al (1984). However, their objectives are different from ours

and hence their series solution is different from the one presented

here.

A series solution for the problem is developed in Chapter II.

After presenting the basic equations for transversely isotropic materi-

als under an axisymmetric deformation in Section 2.1, the general solu-

tion in the form of a power series in p is presented in Section 2.2.

Application of the stress-free conditions at the sides of the wedge

leads to equations for the eigenvalue 6 and the coefficients in the pow-

er series. This is presented in Section 2.3. It is seen that the eigen-

function associated with an eigenvalue 6 no longer contains a single

term p~f(,). It also has the terms p+ 1 f (,8), p8 +2f2(4,6) ...

Therefore, the inclusion of the second and higher-order terms in the

special element is not simply the inclusion of the eigenfunctions asso-

ciated with the subsequent smallest eigenvalue 6. A similar situation

occurs in wedge with curved sides under a 2-dimensional deformation

(Ting 1985). The derivations presented in Section 2.2 and 2.3 are for

.5.

.5.
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the general case in which the two eigenvalues p,, P 2 of the elasticity

constants are distinct. The degenerate case in which p, - p 2 (of which

the isotropic material is a special case) is discussed in Section 2.4.

For 2-dimensional deformations, the displacement of the singular point R

(Fig.l) can be ignored for the singularity analysis. For axisymmetric

deformations, one cannot ignore the displacement of the singular point R

in the r-direction. A particular solution associated with the displace-

ment of the singular point is presented in Section 2.5. A difficulty

arises when 6 as well as 5+k, where k is a positive integer, is an

eigenvalue. In this case the higher order terms of the series solution

of the eigenfunction cannot always be determined. A modified solution

is required and is presented in Chapter III. We can see in Section 3.1

and Appendix B that the modified eigenfunction solution has the new

terms p6 +k(1lnp)F,4,5), p6+k+l(lnp)F2 (4',5) ... Application of the

stress-free boundary condition is presented in Section 3.2. The solu-

tions of Chapter II are then applied to composite materials in Chapter

IV. The equations for general transversely isotropic materials and

degenerate materials are presented in Section 4.2 and 4.3, respectively,

and numerical examples are given in Section 4.4. For the singular point

which is the tip of an interface crack the displacement was found to be

oscillatory. This implies that the two crack surfaces inter-penetrate

each other. To avoid the unrealistic phenomenon a contact zone near the

crack tip is introduced in Chapter V. In Chapter VI the formulas for

singularities at an interface crack with contact zone are derived by

using the Stroh formalism. This alternate approach offers an analytical

solution for the singularity 6 which agrees with the numerical results

obtained in Chapter V.

,! m~ :yd.y:y .I-. . - ...
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Chapter II

EIGENFUNCTION FOR AXI-SYMKETRIC DEFORIMATIONS of

2.1 XA7BEHA7ICAL FOPJLATION

Let (r,e,z) be a cylindrical coordinate system with the z-axis as

the axis of material symmetry and let (ur,uo,uz) be the corresponding

displacement components. We assume that the deformation is axisymnetric

and uo- 0 so that ur and uz are functions of r and z only. Introducing

the displacement potential 0(r,z) which gives ur and uz by (Elliott

1948, Green and Zerna 1954 and Kassir and Sih 1975) .'

.,P.

u (2.1) -
r r i-

where m is a constant to be determined, the stresses are obtained as

c + ....0+c 2 (2.2)

c-+ c in-,
r ir 2rbr 13 bz2

Il,

(7r mc+ + C -- + C 1  a - a

1 2 br2 11 rar 13 az

a 24,a2

Vz c + c LO + c a -

( r+2) r z 
-

rz 44s r a  rbr ;z*'.

in which cij are the elasticity constants for the transversely isotropic

material. The equation of equilibrium are satisfied if
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+ 0 (2.3)

r2  rr p2 bz2

where

p - -c, I c, + (l+a)c, (2.4a)
ic12 + (l+U)c - ic33

or, equivalently,

-c + €p2  • a (2.4b)

(c13 + €44) p 2  c4 4 + c 33 pa

The second equality of (2.4a) and (2.4b) respectively yield

32 - 2 F C 1 1 C- -' -l1 + 1 W 0 (2.5a)
2c44(c 1 + c 4 4)

p * 2 , 3 31- C1 3 - 2c 13c 4 4 1 + ,___ . 0• (2.5b)
2  2c 33c 4 4  jP c 3 3

It can be shown (Eshelby et al 1953) that p cannot be real if the strain

energy is positive definite. Therefore we have two pairs of complex

conjugates for p which will be denoted by pl, P,, P 2 and P2 where an

overbar indicates the complex conjugate. The associated values of a are

denoted by a1, ;1, a, 2 2 respectively. From (2.5a) we note that

a I -2 1 . (2.5c)

Since (2.5b) is a quadratic equation in p3 with real coefficients, if p,

is purely imaginary so is p2. Then a 1 , a, are real and a- Ul$ a2

a 2. If p, and p2 are not purely imaginary we may choose

p, " u + iv -p2 , P 2  -u + iv " -P, , (2.6)

or

IOU .JL
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where u, v are real. In this case a, and a 2 are complex and m -. In

view of the fact that the equations are linear, the general solution for

0 is obtained by superposing O's associated with p,, Pl, P 2 ' P 2. We will

assume that p, 0 p2. The degenerate case in which p1 " P2 will be dis-

cussed in Section 2.4

2.2 EIGEJFUJICTIONS FOR SMALL pj

Let (r,z)i(a,O) be a singular point which may be the apex of a

wedge, notch, crack,or the tip of an interface crack. We now consider

the case in which a 0 0. The case in which a = 0 has been studied by

Somaratna and Ting (1986A). Using the singular point as the origin, we

define

xi-r-a -p cos , z -p sinO. (2.7)

To find the oigenfunction for 45 that is valid for small p, we rewrite

equation (2.3) as

_* 1 a - 1 _o I -x , (2.8)
- - - - - 2:( - )

ax P a '3 a+x 2x & ax 0(

Let

1 (2)- -1 k (2.9a)
* (0)_ : *(l)+ - ) - (k)

a a2  k0 a

k -t 2(2.9b) "
0 (k). M_ A(k) xtZb

+ k - +  -

t -o t ,: :

Z x + pz ,(2.10)

. -_,

" '" "• - " • d " " " J'.'./ .*-d " ' " •'-" "'','.-'.'/ .e'r • • .'..v'', -" " , *'# " • "" '.'"



where 6 is the eigenvalue and 4k) are constants to be determined. Using

equation (2.7) we have

xtzi+k-t+2. P~k42 (cost) trS+k-t+2 (2.11)

-cosO~ + p sin4O (2.12)0

Threor 4(k) iof rdr 6k2. By substituting equations (2.9) into

(2.8) and equating the coefficients of xtz5+k-t+2 , it can be shown that

(see Appendix A)

A(k) . 2t-1 A (k- ) - tA(k-)-. (t+l)AOO] (2.13b)At 2t t-1 2%.o+k-t+2) IL t1

Hene te olyunkown ar (k) (k-0,1,2, .. ) and .5 which will be

determined from the boundary conditions.

We will let the solution given by equations (2.9)-(2.13) apply to p

-p,. For P - P2 ' p, and i 2 we will use the same expressions except that

i~~k~~is relae by t~) c~)ad , respectively. Thus the general

solution for 46(k) is

*(k) . k kx~~-+ tbkt2Ckx-~-+ (2. 14a)

46 2+(k+~k x

(k tjb+k-t+2J

-s wx + psz (s-1,2) .(2. 14b)

Subtituting (2.14) into (2.1), we obtain .
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u(k)" k k-I xtz6+k-t+I (2.15)

k k-i
+ j , Bk) (6+k-t+2) + I tk (t+l)1 xtZi+kt+l

tO tt-0

k k-i
+ t 0C(k)(5+k-t+2) + X C(k)(t+1)) xtj6+k-t+1

t-O tt.0 t+1

k k-I
+ (t)oD k) (6+k-t+2) + : D(k) (t+1)) xt-6+k-t+l

t=0 t t'0 t+lZ

wher thedotpsandfy thesila expressions asoiae wiii pe p2,and rewrite equation (2.15) as

W. k (k) t2+ ) (t~1) ] xtz+k -t+l + (2.17a)

t.0 t +

In ubtituting equation (2.14) into (2.2) for te stressed .we fir t

replace the ters 3-$(rb~r) in (2.2) by V-O/Wx and VO$/Wz using *qua-.,

tion (2 .3). We then have

k (k)  (2.18a)

2:[-Am cAk p(1+2 ) xt+kt41(~ktl

r tkO )44

+A(+k2(c, ,-c, )>t+l) (b+k-t+l> •%i

A(kl(=1 1-C )( t 2) 
i t 

l
) ] 

tzf 
k - t 

+ '

t

ONJ

V "V - - - *? .w-.--I . --- ;'*. .. . **.*-- U .. , .-,-
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C'IL (k)(,( 
.1 b

I I- A c4 (+m, )O+kt+2+kt+l)ft+(21c

rz Z0[A tkj+t+2)+(t+l)] 4fk-t+mip 6 k~~tfk Jld

In (2.18.) and (2.18c),tefloigintte whharobied ro

+: A1  p -C4 4 (+m(6+k, (2. 19a)l~

C12  [A t2 m 2  (+) .+ (2. 18d)

The2.8 prone redu8ces, t the detoin enaitns whfch ad oa ined from~

The stress-free boundary conditions at ~'-a and a' are

-ri4 arzco5i, - 0 , (2.20a)

O'rzsin4# - azcosv,' - 0 .

Written in matrix notation, we have

where

N ai) i sni -cos4, 0 1S (2.21)

1. 0 sin4' 0o~

.~. * - p * -~.* .g * j~ i~* *~. ;~.? . "0



Wk (2. 22)

(k) = (k) (t - 0,1,2 ... )
k" "rz

o(k)

From equations (2.18) we may write a(k) as, using equation (2.11),

k (223

(k). S+k tko St (, +k -(kk+Skk
~ .t(t (#,6+k)Stk+ t(#,6+k)S <+2 , (2.2t) t4

in which

A(k) (2.24)

() (k)
St (k)

Ct

D Wk

-(1+us)p2 * * * (2.25a)

St,8) c 4 4 (5-t+2) (8-t+l) (l+m)p 1  * , • Qt(¢,),

-(1+3s) * , *•

2(c -c ) * , 1 (2.25b)

It(¢ = t+)(-t+') €44(1+.,)p, t1,
0 0 0 0

1 1 1 1 (2.250)i~

-t(4,S) (t+2)(t+1)(c oc 0 0 0 0 Qt, w" p

0 0 0 0 1*E

In equations (2.25), the second column of the matrix is obtained from

the first column by replacing p , by p2 (and of course m by m2 ). The

third and fourth columns are, respectively, the complex conjugate of the

first and second columns. Qt(V,,) is a diagonal matrix given by
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2t(-,6) (cos4)tdiag -t .- t, (,)-t (r2)6-t ] (2.26)

qk) of equation (2.24) is related to Sktl) by using equatons (2.13).

Notice that equation (2.13a) can be regarded as a special case of equa-

tion (2.13b) if we use equation (2.16) and allow t - k in (2.13b). Thus

we have, for k-l,

.(k). 2t-1 (kl)+ -1 [( k- l ) -  (227a)(t 2tl)-l 2k6+-t+2(I2-270)l

(t - k'k-1, ... ,1)

(k)- 0 if t>k . (2.27b)
stu

As in (2.13) the only unknowns are 6 and 4q(k) ( k - 0, 1, 2 ...

Before we substitute (2.21)-(2.23) into (2.20b), we rewrite (2.23)

as, making use of (2.27b)

V(k). P 6+k IS Oa (V"5+03(k) (2.28a)

k+ [1 S t (,, 6+k) +Tt- 1 (4,, 5+k) +U t_ 2 (4, 5+k) I iqtk ) ,

where we have defined

Ut(V,6+k) a 0 , if t<O . (2.28b)

Now substitution of (2.21), (2.22), and (2.28a) into (2.20b) for = a

and a' yields the following equations for q(k) :

K(6) q4( 0). 0 , (2.29a)

k (2.29b)
K(6+k)S(k) - W(6+klk) ) (ktl)t0Il t(

I]
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in which

[ (a) S (a, 6) 1 (2.30s)
K (6) - L ) o )

[S tS(a, 6) +Tt o~6+U 2(,) 1 (2. 30b)
W (a) -I Jt2aa).t(5 N(a') [St (a', 6)+Tt-l (a', )U_ o ] "..

For a nontrivial solution of S(k) , we see from (2.29a) that

I 0(6) I-0. (2.31)

Thus 6 is the eigenvalue of the matrix K and S(O) is the associated
eigenvector. With 5 and S(0) obtained from (2.31) and (2.29a), (2.29b)

provides q(k) for k t 1 and (2.27a) gives g(k) for 1 S t S k.

When 6 is a simple root of (2.31), S,0) obtained from (2.29) is

unique up to an arbitrary multiplicative constant. S(k) for k 1

obtained from (2.27a) is unique in terms of S(0) provided 5+k is not a

root of (2.31). Therefore, when & is a simple root and 6+k is not a root

of (2.31), the eigenfunction 0 associated with 6 is unique up to an

arbitrary muliplicative constant. If 6 is a multiple root, say a double

root of (2.31), and (2.29a) provides two independent So( 0), we would have

two independent eigenfunctions each of which is unique up to a multipli-

cative constant provided 6+k is not a root of (2.31). When S+k is also

an eigenvalue of K, we see from (2.29b) that a solution for ok  exists

if and only if

Ttk (k) (2.32a)
LJ " t(6+k)k " 0 ",'

.%

.I
'.'.q

.~-q- S~iVN~ ***S55 WS 5
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(Hilderbrand 1954) where the superscript T denotes the transpose and L

is the left eigenvector of K(5+k)

LT K(6+k) - 0 (2.32b)

If (2.32a) holds, k exists but is not unique. However, the nonunique

portion of 3 ,k) can be ignored because that portion is represented by

the eigenfunction associated with the eigenvalue 6+k. An example of this

case in a related problem can be found in Dempsey (1981), Zwiers et al

(1982), and Ting and Chou (1985).

If 6+k is an igenvalue of K and (2.32a) does not hold, a solution

for 3 Ok) does not exist. In this case, the solution for *(k) cannot be

given by equation (2.9b). Instead, we use the folowing modified solu-

tion:

(k) k (k) t 6+k-t+2 (2.33)
J.At x Z

in which A k ) is now assumed to depend on 6. This case will be discussed

in Chapter III. Equation (2.33) can also be used for second independent

solution when 6 is a double root of (2.31) but (2,29a) provides only one

independent 0).

We see from equations (2.22) and (2.28) that for each eigenvalue 6,

the stress has the terms P6f(k,a), p'+lf,(,6), p6+2 f2(1,6), ... Thus

the eigenfunction associated with an eigenvalue has infinite terms for

axisymmetric deformations. We also see that if Re(b) < 0, the stress is

singular at p " 0. Thus Re(6) provides the order of singularity.



2.4 DEGEERATE CASE m, -m - 1

When p, - p2, p must be purely imaginary. . This follows from equa-

tion (2.5b) and the fact that p cannot be real. By equation (2.4b) and

(2.5c), we have a, M 12 a 1. We cannot have a, a a2 - -1 because this

would make p real. By setting - - 1, the second equality of equation

(2.4a) yields

(c,1 2c 4 4) M ,c . (2.34)

Hence when equation (2.34) is satisfied, p2 - p, and we have a degener-

ate case. The five material constants are now reduced to four by equa-

tion (2.34). Introducing the new material constants P, m, y, and 8, we

let

.p%"

C,, ( X + 2U) 8, (2.35a)

c 3" ( X + 2 u )03, (2.35b)

c€44 " , (2.35c)

€, , ,(2.35d)

C1- 2y , (2.35e) 1

in which

- 2A,,/( I - 2Y, ) . (2.35f)

Equations (2.35) satisfy (2.34). With (2.35), equations (2.5) give

pi"Bi, - 1. (2.36)

a P OV 4
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For isotropic materials we have B 1 and P and o are the Poisson's

ratio and shear modulus, respectively.

In a degenerate case p, - pl, the terms associated with Bk) and

Dk) are identical, respectively, to the terms associated with A(k) and

C Wk). We therefore need a new solution for B k) and D k). This can be -

accomplished by replacing the coefficients of B1 k) and D~k) by their

derivatives with respect to p. and P. (Ting and Chou 1981B, Ting 1982).

Thus, for instance, equation (2.14a) becomes

W(k). t {k(k) tz 6+k-t+2+c(k) t-6+k-t+2} (2.37)
two t

(k W t+k-t+l+6(k) tz + k - t + l } (6+k-t+2)two t

where, since Pi 1 P2, we have omitted the subscripts 1 and 2 for Z and

Z. Similarly, equations (2.17) and (2.18) are replaced by (noting that

m in the S(k) and D(k) terms must also be differentiated with respect to

p by using equation (2.4b)),

W. k r,(kkS+k-t+2+A(k)t+] xt 6+ k - t + 1  (2.38a)

ur t[t t t+l(t+l)

tkL~ (k ,,- t +l(t+l)] (S+k-t+l)zxtZ 5 + k - t +..

A(k)ti ) ( 4v)] (6+k-t+2)xtZ +k-t+l (2.38b)

k (k) t 6+ -
+ t B (S+k-t+2) (S+k-t+l)zxtZ+k-t + 7

to, *
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(k)-+2 2-Y-+1 Bjy(t+ 1) (6+k-t+ 1)

1 4k)mz [k) ( 6+k 2  8 .j (+kt+2)(+-+1 23

k
1 I(). I[A(k)B ()(k2fti i(6+k-t+2) (6+k-t+1)xt 6 k (2.39b)

k

-BktOk1t+2)1 (6+k-t) (t6+ktxt 6 +tl

1 (k). 2: -Ak (k) v)J -'(6+k-+)6ktlxZ+ (2.39c)

YJA- " t-0o

+ (0~i-B~k (1-2k)] (t+l)) (6+k-t.1)xtz 6+k-t

In equations (2.38) and (2.39), the dots stand f or the C~)and D(k)t t

torms that are obtained from the 4k) and tem b epain i n

Z by -Oi and Z, respectively. Equations (2.20)-(2.32) remain validU

except (2.25), which are replaced by

21A(6 -t+2) (6-t+1) 8i -(1-20)+(-t0ir-1 sinV1' Qt * k 6) ,

-1 -1

-1 -(1-s)io (6-o sin



it (2. 40b)

- Uft+l) (6-t+1) jOi -(l-2v)+(6-0t)-sinik Qt Ok

0o 0 0 0

Et (4"(2.40c)

-f (t+2) (t+l1) 0 ( 0- 0 Q (4in)

2t(,6)is obtained from (2.26) With ti - r2 r. The third and fourth

columns of the matrices in (2.40) are obtained from the first and second

columns by replacing Oi and P by -Oi and T, respectively. Equation

(2.27) remains valid because the order of the differentiation with

respect to p and x or z can be interchanged.

2.5 FARTIOJLAR SOLUTION FOR TEE DISPLCFJIENr OF TEE SZhJULAR POINT

For a two-dimensional problem, the displacement of a singular point

can be ignored for the singularity analysis. For an axisymmetric defor-

nation, one cannot ignore the displacement ur of a singular point. We

therefore consider Cure uz) M (u 0 ,0) at the singular point (r,z) - (a.0)

where u. is a constant. A particular solution that yields this displace-

* sent is

urm u~r/a, uz= 0, (2.40a)

ar r 0U(C1,+ C1 2 )/a, C', 2uC3 1 /a, arzm 0. (2.40b)

Let
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Uo + 1 (2.42)

2 1

To satisfy the stress-free boundary conditions, equation (2.20b), we

superimpose equation (2.42) to (2.23) with 6 - 0 and write the stress as

Z o k ~k ( ~(,)k) +Ttk) k) +UtQ(k) (2.43)

Equation (2.20b) now provides the following equations for q(k) k~0A

K(k) q ( k) = b ( k ) ,  (k = 0, 1, 2, ... ), (2.44)

in which

N (a) (2.45a)b '%0)._;-
b (O),) ] , -'

W K (k) (2.45b)
b t1 Et(k)'S A

and Wt(k) is defined in equation (2.30b). Equation (2.44) has a unique

solution for .q k ) if k is not an ,igenvalue of K If k is, then the

discussion presented near the end of Section 2.3 applies here.

.4.
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Chapter III

MODIFIED EIGENFUNCTIONS

3.1 IVJDZFZED SOIJITION

When 5 is a root of (2.29a), let n be the smallest positive integer

for which 6+n is also a root of (2.29a). Equation (2.29b) for k " ' is

)() . _ (3.1)

This has a solution for un ) unless

LT 17)(7 (3.2)
Jm, Wt Wn")St

where L is the left eigenvector

LT K(+,) - 0 . (3.3)

If (3.2) holds, a solution for u) does not exist and the expansion for

0 given by (2.9) is not valid.

To obtain a valid expansion when (3.2) holds, we notice that if 0

given by (2.9) satisfies (2.8) so does W/6. Therefore, in place of

(2.14a) we use

$( ) . ) (3.4) (

m (k {1 k A(k)xtz6+k-t+2+ (3.4)

t-o t 0i
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in which A(k) ... D(k) are now regarded as functions of 6 (Zwiers et al

1982). If we carry out the differentiation in (3.4), we will have terms

of the form xaZb as well as xaZb(lnZ). By substituting (3.4) into (2.9a)

and then into (2.8), the coefficients of xaZb and xaZb(lnZ) must vanish.

The latter leads to (2.27). The former leads to the following equations

which can also be obtained by differentiating (2.27) with respect to 6:

St- 1 (k-)(t+l)'(k ] (3.5a)
12t t-1 (5+k-t+2) It _t+1

tq_- (tJ)q k
2(6+k-t+2)3 I It+'

for t - k,k-1, ,1 , ""

qt(k) -O, for t > k, (3.5b)

where the prime denotes differentiation with respect to 6. Hence the

only unknowns are q k) and qo(k), (k - 0, 1, 2...).

When (3.2) holds and 17 is the smallest positive integer for which 'J,

6+n is also a root of (2.29a), we may choose ."

q ( k) .0 for k < (3.6)

Substituting (3.4) into (2.1) and (2.2) and carrying out the differenti-

ation, we obtain new expressions for the displacements and stresses.

This is presented in Appendix B.

for the degenerate case in which p, - p2 , we use instead of (3.4)

Wk. k W k~tz6 k-t 2+ (k)xt-b k-t 21 (3.7) ..
T6 t.0 o

+ ,- [(k) xt. +k-t+l+D.(k)z tzb k-t~l] (6 k-t 2)I -
t~t x t t zx:-

K&DO %
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Following the same argument, we obtain new expressions for the displace-

ments and stresses. This is also presented in Appendix B.

3.2 DETEpAINA.TION OF q (k) AIV q "(k)

The satisfaction of the stress-free boundary conditions leads to

the following system of equations which can also be obtained by applying

the operator p5+k (lnp + B/Bt5) to (2.29) and setting the coefficients of

PS+k and 65+kln to zero. Thus we obtain from (2.29a)

- 0 ,(3.8a)

K"3q()+ ,(S)q"(O3). 0 ,(3. 8b)

and from (2.29b)

K(Zi+k)q(k) k -~w6k)q(k) k (31)c

K'(S+k).Sk) + K (6+k) so Wk. - 1; W'(e+k)q~k)+ wt(b+k)q*(k) (3.8d)

where K and Wtare defined in (2.30).

Combining (3.5) and (3.8) with (3.6), we notice that (3.5) and

(3.8) are the same as (2.27) and (2.29) for k < 71, respectively, except

' ()now assumes the role of q0k

For k - 1 the problem reduces to solving the following system of

equations

K-Si)q 0 ,(3.9a)3

J3

V.~.W ~ '.p~' w,~,,PV.u,~V~
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17 (3.9b)
K (6+)(q'7)+ K(6+,7)qo' ) - -go

Equations (3.9) have an unique solution for qo7) if (Dempsey and Sin-

clair 1979)

dilK(6)I/d6' , 0 , ( i - n - m ), (3.10)

ft.+

where n and u are, respectively, the order and rank of K.

It is rather difficult to prove or disprove equation (3.10) analyt-

ically or numerically. Instead, we will regard (3.9) as a system of 8

equations for q(?/) and q (17) , and solve the system numerically.

For k > '1, (3.8c) and (3.8d) give qOk) and qo ( k ) .

.

'b

f.%.

,',
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Chapter IV

APPLICATIONS TO COMPOSITES

4.1 SItMGLAR POINT IX COAPOSTE MATERIALS

We now consider the axisymmetric composite whose cross section is

shown in Fig.2. The two materials with axisymmetric interface SQ, RP are

assumed to be transversely isotropic with the z-axis being the axis of

symmetry. The interface makes an angle '3 with the z - 0 plane. The

region SMRN is void and V, and 42 are the angles the two free surfaces

RN and RN make with the z - 0 plane.

Since equations (2.9) is applicable to each material, we will use

the subscript I or 2 separated by a coma to identify the quantity which

is associated with material 1 or 2. From equation (2.27) we notice that

the undetermined constants for material 1 are A(k) ... Dok ) while that
for material 2 are A(k) D(k) The eigenvalue 6 is the same for

0,2 0," O.2 "

both materials.

4.2 MTE INA Z7ON OF 8 AND A(K. D(

Using (2.20b), the traction-free boundary conditions at angles -

0, and 42 are

N(s)a,,- 0 0 (s-1,2) , (4.1)

where

( sn -COS, o 1 (4.2)

0 in#v -co024
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(k) (4.3)
r,s

a's (k), (k) a (k)
"' kw0o., ,' ~,o Orz,s

a(k)
Z's

The interface continuity conditions at angle k - 43 are

( - - ,2 (4.4)

u, - 0 (4.5)

where

r (k) 1(4.6)
= 0 u (k) u(k)M r,s (s1,2)~ ' O u1 I(k) .

Z's

Substitution of equations (2.17) and (2.18) into equations (4.1), (4.4)

and (4.5) yields the following system of recurrent equations

K(5) q' 2(4.7a)

k(k) - (k) (4.7b) .K(S$+k)qolk ) " -k)SWk((k?) 1) k e
0k-tl

where

[,(k) (4.8)
2() . t,

t_ f(k) ar ( k,,) ..

in which the elements of tsare ts D(k) ( 1,2), and

-. -, , ~ ~; ~ ~.4.",'
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N(4,' )S (41 S6) 0 (4.9)

-O O, I (k' 5) 0,2(t#3,5)

0 N( 6k )S0  (1k 2'5
L 2 0,22

N( 6k Is k 5)T G )+ )(.0

0

- G

N( t')( 2 (43 ,5) +!t ,2 4'6
2 ..t,2 2 -t1, 2# .5)]2

In (4.9) and (4.10), St,' It,s, E!t,, are defined in equations (2.25)

an t and Vtare given by

-tk a (6-t+2) [ m p2 2 ](4.11a)
r1 1 1(41b

- (~1 [0 0 0 0 t~ 5 1)(.lb

where Qt(,k5 ) is the same as the one in (2.26).

It should be pointed out that the recurrent relation for t~k given

in (2.27) applies to 3()in (4.8). Therefore the problem reduces to

the determination of 5 and AOk) ... D(k) (s 1 12). For nontrivial

solution of qsoo) we must have

K (S) I 0 .(41)4
(4.12)
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This provides the eigenvalue 6. For each eigenvalue 6, (4.7a) Lives q,(O)

while (2.27) and (4.7b) furnish q(k) (k - 1,2 ... ). The discussion on

unigueness of solutions for 3 Ok) presented in section 2.3 applies here.

4.3 DMGNERAEW CASE

When p, - p. holds for one of the two materials or for both materi- %

als, we use the expressions for displacements and stresses in (2.38) and

(2.39). Once again, the stress-free boundary conditions and the inter-

face continuity conditions yield the system of recurrent equations

(4.7). Equations (4.9)-(4.lO) hold in which St,s, It,s , Ut,s are defined

in equations (2.40) if material s (s - 1.2) is degenerate, while (4.11)

is replaced by

2t' 6  
-. 6-12 (6-t~l) r'sini ** (4.14a) t

Gt (j,.) -(6-t+2) '-sn0 t 41/ 6+1) 1

i Oi(6-t+l)r-lsin4-3+ * *j

(t+l 1 ( , ] (4 .14 b) ,

is obtained from equation (2.26) with ", " ' . As in equa-

tion (2.40) the third and fourth columns of the matrices in equations

(4.14) are obtained from the first and second columns by replacing Oi

and r by -Oi and T, respectively. "

4.4 XU)IZRCAL EXMPLES

We present two examples in this section. In both exampls I, -

-180, 42 90 and -3 -90 are taken.
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In the first example the material 1 and 2 are both isotropic so

that 8 =  
- 1. We use v - 0.38, u - 0.3xl0'poi for material 1 and ' -

0.45, u - 0.3448x10'psi for material 2. Two negative 6's are obtained:

61 - -0.432087 , 6, M -0.073520

61 is the same as p, of plane strain problem obtained by 8ogy (1971).

The coeficients of order zero which are complex-valued are as follows.

For 61,

A(O) - (0.3446-0.6786i)c B!:) - (0.4098+0.9122i)c,0,1 I* 0,1

A(o) - (0.1444-0.4991i)c B() - (0.4313+0.8995i)c

and for 6

A( O) - (0.1744-0.2567i)c B( ° ) - (0.8936-0.0208i)c0,1 2 2 r

- (0.1576-0.1539i)c, B(:) - (0.9986-0.0533i)c,
0,A2 2 ,2

where c, and c2 are arbitrary multiplicative constants. C's and D's are

the complex conjugate of A's and B's respectively, because 6, and 62 are

real.

In the second example material 1 is replaced by a transversely iso-

tropic material whose material constants are (with unit l0'psi)

C 11 = 2.152 , c1 2 0.5524 , c 1 0.8115

€33 M 34.49 , c44 " 0.8

The corresponding p's and m's are
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P, a 0.1551i , p= - 1.611i

a -55.02 , 0.01816

Again, two negative 6's are obtained:

6- -0.484629 , 62 - -0.299609

The coeficients of order zero are as follows. For 6,

J-.

A!: )  (0.0486-0.0015i)c, ., ,() -(-O.2669+0.1983i)c1
0,I

A (o) =(-0.0429+0.4953i)c 1 , 8. - (0.03510.9994i)c,
0,2 ,2

and for 62,

_iA(°), - (0.0405+0.0399i)€c B(°) - (0.0330-0.5511i)€2' ,

- (0.2865-0.2931i)c B: ) - (0.9650+0.2621i)c
0,2 222

Since 6+k where k is an arbitrary integer is not a root of (4.12) for

both cases, the solutions are unique up to the arbitrary constants c,

and c.

The stress distribution obtained from the first term of the eigen-

functions associated with 61 and 62 are plotted in Fig.3 - Fig.6. We

normalize the stress by deviding by the singular factor p
6 and a multi-

plicative constant c to make the maximum stress equal to 1. ',

I'--
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Chapter V

EIGENFUNCTIONS AT AN INTERFACE CRACK WITH A CONTACT ZONE

3.1 UNEALISTIC PEJEWNOO

We have discussed in Chapter IV the stress singularities at a sin-

gular point of an axisymmetric composite in which the free surfaces and

the interface surface intersect. When the two free surfaces make the

same angle with the plane z - 0, the free surfaces form an interface

crack, Fig.7. When the singularity 6 is a complex number, an oscillatory

phenomenon in displacement near the crack tip occurs and the two free

surfaces inter-penetrate each other. To avoid the unrealistic phenom-
'I

enon, we assume that a contact zone is presented near the crack tip. In

a real composite, the crack surfaces near the interface crack tip may,

under an external load, open or close with or without friction. The

associated problem for isotropic composites was studied for frictionless

contact and for contact with friction by Couninou (1977A and 1977B).

Wang (1983) studied the partially closed interface crack for anisotropic

materials but the contact region is assumed to be frictionless. We will

use the asymptotic solutions (2.17),(2.18),(2.38) and (2.39) to study

the stress singularities at the both ends of the contact zone.

5.2 SIULARITIES A7 ENDS OF CCOY7ACT ZONE IN INTERFACE CRACK

In Fig.7, AB is the contact zone, AC and AD are free surfaces, and

BE is the interface. We will call the singularity analyses around point

7x: .



31

A and point B, respectively, Case A and Case B. It should be noted that

there is only one independent angle in case A whereas there are two in

case B. Let 0 be the angle of orientation of the crack. In case A, 4,3

Vi, 1 + r and #12 -0- iIn case B, 413 is arbitrary.

Using the same notations we have used before, we have the following

boundary conditions for Case A:

N 43)a 0 (,) a, "'2,0 (5.1b)

3(a), 2~(#3)2U,2 +H(k)43 1 (5.1c)

where

J()- sin4# cos# k (5.2a)

[ 0 sin4(cos4#+r(sgn t )sin#J 1 (5.2b)

H (4, 0 -cos21---r(sgn t,)sin24#[ 0 -cos4#(sinj-v'(sgn t,)COSOJJa

In (5.2b) r is the coefficient of friction and sgn t5 stands for the

sign of shear traction t5.%.

Substitution of (2.17) and (2.18) or (2.38) and (2.39) into (5.1)

yields a system of recurrent equations similar to (4.7) in which K and

Whave the expressions:

N(4, )S 1 k, 6) -N#) 0 2 #,

K(6) SO I k36 - (4 -), 2 4S6

j (4 1 (43 (k3 -SO2 I kV )

0 N( )S ( 6)
2 0 , .. O2 2

%-
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N(4,)En ( .5)~° (5.3b)

N ('P) t, (k3,-N 3"6  E-t(' 2t (4, 6)W.t (a)-
J 4 3/, Ft, , (43,8 +H (4 ) E£t, (4 3', 6) -J ( ) Ft , 2 (4 3, 6)

L 0 N (0 2) E t, 2 (41296)

In (5.3b) ,

Est , i (4,,5) - s ,i ( , ) * .t , ( , ) u - , ( , ) ,(5 .4 a )

I t, i ( -6 Gt , i (4,, 5) +V t_, (, ) (5.4b)

in which St,s, It,s, t, , Gt,s and Vt,s are defined by (2.25) and

(4.11) if the material s is transversely isotropic and by (2.40) and

(4.14) if material s is a degenerated material.

For Case B we have the following boundary conditions:

42,) Z,1 -20 (5.5a)

,,,- 2,., - 2o (5.5b)

(43)a -, I (3) 2 O, (5.5c)

10 -3 2 - o(5.5d)

in which J and H are defined in (5.2). Again, (5.5) yield (4.7) in

which

N(4, )S (k,,3) -N (4 )S . (41 9 ) (5.6a)
1 -0' 1 1 2 0O,2 2N (4,)S o ,,1 (4 .,'a) - N (4 .)S o , (4 3, S)

K(S) G -G
~ , (43-6) - o, 2 (43,, )

34 ,)GO, ) ( +H ).(4,, (4,.S) -J(O~ )G~, (41. a)
I .,0,I I . I .0,l1 ~ 2 -0,,2 2

J

U
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N , t t ,(41, ,9 ) N )  t , (1k , 6)( .6 b)
-t( )" t,' , 1  

-t,2 2

N (4 E'1(3 )-N(O 3 ) E t W V '6

J.( , Ft,(43)' 6 .t( ,) -F,)t,2(, , )

It will be shown analytically in Chapter VI that 6 is real at both

ends of the contact zone. In other words, there is no oscillation of
the crack surface displacements near the singular points.

The stresses at both ends of a contact zone without friction are

computed numerically for a composite material which is similar to that

of Example 2 of Section 4.4. In this case 6 = -i/2(see Section 6.3).

We normalize the stresses by deviding by the singular factor pa and a

multiplicative constant c to make the maximum stress equal to 1. The

normalized stress distribution obtained from the first term of the

eigenfunction for Case A and B are plotted in Fig.8 and Fig.9, respec-

tively.

f.€

p.,

,",-
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Chapter VI

SINGULARITIES AT AN INTERFACE CRACK WITH A CONTACT ZONE

6.1 STROR'S FORALIS$

An alternative formulation for the order of singularities 6 at an

interface crack with a contact zone will be derived in this chapter. The

derivation is based on the Stroh formalism (Stroh 1958 and 1962). The

Stroh formalism, which has its origin by Eshelby (1953), provides an

elegant and powerful method of treating a certain class of two-

dimensional anisotropic elasticity problems. Unlike the two-dimensional

anisotropic solutions developed by Green and Zerna (1954) which are

restricted to plane strain deformations, the Stroh formalism applies to

a wiee variety of two-dimensional problems in which all three displace-

ment components are non-zero. Also, unlike the widely used Lekhnitskii's

approach (Lekhnitskii 1981) which breaks down for orthotropic materials

(Ting and Chou 1981A) and requires a special treatment (Ting and Chou

1981B), the Stroh formalism has no limitations except possibly for the

degenerate materials in which the eigenvalues of the elasticity con-

stants have a repeated root such as in isotropic materials. The problem

with degenerate materials, for which other formalism also have, can be

treated separately (Ting 1982). However, the Stroh formalism has since

been perfected by Barnett and Lothe (1973 and 1975).

It can be seen from Equations of (2.8) and (2.9) that the first

order solution of axisymmetric deformation is the same as that of plane-

LC0.X'F'% NA '_R
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strain problem. Therefore, the order of stress singularities 6 of axi-

symmetric deformation at an interface crack with contact can be obtained

by Stroh formalism.

6.2 BASIC EQUATIONS

In a fixed rectangular coordinate system (x,,x2 ,x3), let the

stress-strain law of an anisotropic elastic material be given by

Oij - CijknUk, n  
(6.1)

where repeated indices imply summation, ° uj , Cijkn are, respective-

ly, the stress, displacement and elastic constants and a comma stands

for partial differentiation. The equation of equilibrium are

17ii,j - 0 .(6.2)

For the purpose of the present analysis, we assume that

uk - akZ 0+l/(6+l), (6.3a)

Z - x + px2 , (6.3b)

in which p, 3 and ak are constants to be determined. Substituting (6.3)

into (6.1) and (6.2) yields

"ij w (cijkl + Pcijk2 )akZ  (6.4)

{Q + p(R + RT) + p2 TI a - 0 , (6.5)

where the matrices Q, R and T are given by

Qik" cilkl Rik " cilk2 Tik -Ci2k2 • (6.6)

,. " - . .,.- . .- . . . .R- .
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The superscript T stands for the transpose. Equation (6.5) provides

three pairs of complex conjugates for the eigenvalue p and the associat-

ed eigenvector a. If pm, !m, ( 1 ,2,...,6) are the eigenvalues and

eigenvectors, we will let

Pm+3 P ' 8+3 w a., (6.7)

where an overbar denote the complex conjugate. The general solution for

u as given by (6.3) can be written as

3 - (6.8a)
-u - Z(qmaZa+ 1 + hm 1Z3+1 )/(6+1)

in which q. and h. are arbitrary constants and

ZM - x1 + pmx- - r(cosO + pmsin6) . (6.8b) 2

In (6.8b), r and 0 are the polar coordinates.

Let ti be the surface traction on a radial plane which makes an

angle 0 with the x, axis. We then have

ti M -oilsinO + ai2cosO , (6.9)

or, using (6.4), (6.5), (6.6) and (6.8b),

1 bZ+1 (6. lOa)
t -s -b

where

b (R + pT)a . (6.10b)

- --&



37

The general solution for the surface traction can be written as (Ting

1986)

3- (6.11)

r =-I -

J,

To derive the order of stress singularities, we need the expres-

sions of u and t a: 6 - 4 and (-0 ± w) where 4 is a fixed angle. Notic-

ing that Z1 of (6.8b) for 9 - 0 and (0 1 r) are related by (Ting and

Chou 1981A),

z(# t W) - e±i1z.(,) (6.12)

and writing Zm() as

ZA(4) " rr'(O) , r*(O) cosO + pmsinO , (6.13)

(6.11) for 6 - 0 azd (0' ± r) become

3 (6.14a)
t(4) - Z r6{ qukt6 1 4 a

tw Ir-

3 (6.14b)

t(-0 ± r) - r6(.0i(0+l) 71b '+1(') + e;i(6+1)whibr.i6()}

Similar equations can be written for u(O) and u(W ± ir) of (6.8). Intro-

ducing the new coefficients

m " qmrm+l(O) (a not summed) (6.15a)

ho M hma+l(o) , (m not summed) (6.15b)

and noticing that e~t i { + I) 7m -e~ib r 'we have

'VW

:,:1
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We may consider following boundary conditions:

t(w/2) -0 and t'(-w/2) - 0 (6.19)

t (w/2) - t '(#12) ,(6.20a)

U1 ~/)- 'w2 (6.20b)

t2-(sgn t,)k,t, and t 3=(sgn t 2)k~ti " at 9 - #12 , (6.20c)

where k 2 and k 3 are the coefficients of friction at x 2 and x 3 direction

and (sgn t. ) and (sgn t3) stand for the sign of t2 and t, respectively.

By introducing the matrices

r1 0 0]0 0 0] (6.21)

equations (6.20b,c) can be written in matrix notation as

r-1 (6+1)J1 u (r/2) - us' (w/2)] + Gt (T/2) = 0 (6.22)

Substituting (6.16) and (6.17) into (6.19), (6.20a) and (6.22) and set-

ting 0 - r/2 lead to

ei6wsq + e-i61Ih -0 ,(6.23)

*6Vq + ei6rB'h' 0 ,(6.24)

Bq + Bh -B'q' + B'h (6.25)

job 0
ea; -Q
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[(Aq + Ah)- (A*q + i.h*)] + G[Bq + Bh] - 0 , (6.26)

Equations (6.23)-(6.26) consist of four homogeneous equations for

q, h, q' and h'. For a non-trivial solution the determinant of the

coefficient matrix must vanish. This provides the roots for 6. Instead

of finding the determinant, we eliminate Bh and B'q' from (6.23), (6.24)

and (6.25) to obtain

(eia - e-iw) (q - B-'h' - 0 . (6.27)

Hence either

ibr- •") "  2i sin6r " 0 (6.28a)

which leads to integer 6 or

Bq- B'h" (6.28b)

For the latter we substitute h, h' and _' obtained from (6.23), (6.24) OK

and (6.28b) into (6.26). We then have
p,

[J[ei 6 7r(AB-l- A'B'-l) - eiSTr(TB-1- A'B'-1 )J (6.29)
N e -- - N .

-[ e*6r-'679 G) Bq -0 N.S

It can be shown (Ting 1986) that

AB- 1 - A-B " - - -(W + iD), (6.30a)

A -o 

A- AB - - (W - iD), (6.30b) .

N N N N

W~ ~ *~~ ~ '.~ . .. .~ v*.~* **~- *.* .. ,o,,~
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where W is real and antisymmetric, while D is real, symmetric and posi-

tive definite. Equation (6.29) now reduces to

{(JW - G) - (cot 6w)JDI Bq - 0 . (6.31)

For a non-trivial solution of q, we demand that

II (.W- G) - (cot 6r)JD | - 0 . (6.32)

If we expand the determinant, noticing that W is antisymmetric and mak-

ing use of J and G defined in (6.21), we obtain

cot 6 (sgn t2)k 2W 1 2+(sgn t )kW 3  (6.33)
D1 1 +(sgn t 2)k 2 D 1 2 +(sgn t 3)k 3 D 1 3

We see that when the friction is absent, i.e., k2  k2 3 0, 6 -1/2 is

the order of singularity.

If we apply the above procedure to the case of transversely iso-

tropic materials under axisymmetric deformation, noticing that u3 
= t 3

0 in equations (6.19) and (6.20), we obtain the singularity

cot 57 (sgn t2 )k 2 W1 2  (6.34)

DC,+(sgn t 2 )k 2 D12

For isotropic composites, it can be shown (Ting 1986) that

1-2y" 1-2v D 1-Y 1-Y (6.35a)

W - D 2 D 1 0 -0(6.35b)

",A
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where P and P are the Poisson's ratio and shear modulus, respectively.

Equation (6.33) then reduces to

cot 67r- (sgn t2)k20 , (6.36a)

where 0 is one of the Dundurs constants (Dundurs 1970)

,(1 - 2y) - iA'(1 - 2P) (6.36b)

(1 - ) + ,/(1 - V)

(II) Case B

We may consider the following boundary conditions:

t (r/2) - t" (r/2) and u(r/2) - u" (#/2) , (6.37)

t (3r/2) " t (-#/2) , (6.38a)

.h

u,(3w/2) - u (-w/2) , (6.38b)

t,=(sgn t2 )k 2 t, and t3 = (sgn t3)k3 t1 , at 0 - 3w/2 . (6.38c)

Equations (6.38b,c) can be written in matrix notation as

r-1(5+1)J[u(3/2) - u"(-/2)] + Gt(3r/2) - 0 (6.39)

where k2 , k3, sgn t2 , sgn t , J and G are the same as in Case A. Sub-

stituting (6.16) and (6.17) into (6.37), (6.38a) and (6.39) and setting

r / #'2 lead to

Bq + Bh -Bq'+ B h (6.40)
- - NN N

a'
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Aq + .h - Aq,+ Ah (6.41)

.i-wq + *6aw .. -i6 T'q' + ei6, ,' . (6.42)

J_(ei6 Aq + ,-i,) + (e-i&Aq. +i '" h')], (6.43)

- Gtei6WBq + .-i6 Bh - 0

Equations (6.40)-(6.43) consist of four homogeneous equations for

g, h, s' and h'. For a non-trivial solution, the determinant of the

coefficient matrix must vanish. This provides the roots for 6. Once

again, by algebraic operations, we obtain that 6 is an integer or the

root of following determinant

D W (6.44)

JW-G -(cot 6r)G-JD

where D and W are the same as in Case A.

If we apply the above procedure to the case of transversely iso-

tropic materials under axisymmetric deformation, noticing that u3 
= t3 -

0 in equations (6.37) and (6.38), we obtain the singularity

cot aw- -(sgn t 2 )k 2 W,2  
(6.45)

D11 +(sgn t 2)k2D12

When the friction is absent, i.e., k2 - 0, 6 - -1/2 is the order of sin-

gularity.

For isotropic composites (6.44) reduces to

cot 6w-- (sgn t)k 20 , (6.46)

_a
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where B is one of the Dundurs constants given in (6.36b). Equation

(6.46) agrees with the result obtained by Comninou (1978B).

We have verified that b obtained from (6.34) and (6.45) agreed with

that obtained from (4.12) for Case A and B, respectively. Since 6 is

real, the unrealistic inter-penetration of the crack surfaces does not

exist.

L N ...... ...
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Chapter VII

CONCLUDING REMARKS

The problem of stress singularity in a three-dimensional elastic

solid that contains axisymmetric notches or cracks and subjected to an

axisymmetric deformation has been reduced to a mathematically two-

dimensional problem. In this case, it has been shown that the eigen-

functions for the singularity associated with an eigenvalue 6 contain

not only the tern paf(#,5), but also the terms p6+1f, (4,,5), p6 +2f(4,5)

... where (p,i) is the polar coordinate with origin at the apex of

notches or cracks. In the case of interface crack with a contact zone,

it can be seen from (6.34) and (6.45) that if 6 is an eigenvalue, so is

6+k where k is an integer. For the high order terms of the eigenfunc-

tion solution, equations (4.7b) must be solved. Numerical calculation

showes that (4.7b) has no solution for k - 1. To obtain the high order

terms for k t 1 the modified solution of (3.8), which is obtained by

differetiating (2.27) with respect to 6, has been used. A solution for

term k - 1 is thus obtained but (3.8c) and (3.8d) have no numerical

solution for k - 2. To obtain the terms associate with k > 2 one has to

find the new solutions by taking second or higher derivatives with

respect to 6.

From the numerical computations we present the following conclu-

sions
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(1) It is shown in Chapter VI that the first term in the eigenfuncion

series solution of axisymmetric deformation is the same as the solution

of plane strain problem. The singularity 6 of two isotropic materials

obtained by the formulas here agrees with the results of Bogy(1971) and

Lin and Mar (1976).

(2) When the material constants of two transversely isotropic materials

in a composite are chosen in such a way that they are very close to two

isotropic materials, the order of singularity obtained by the formulas

of transversely isotropic composite and of isotropic composite are very

close.

(3) The singularities obtained by the methods of Chapter V and Chapter

VI are exactly same. '.

Ilk

.1

a'
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Appendix A

DERIVATION OF EQUATIONS (2.13)

Substitution of (2.9a) into (2.8) and noticing that 0 (k) is of

order pw+k+2 we see that (2.8) is satisfied if

a 24(°)  I a 2,0(o) 0(Al)

bx2 p2 
bza

b0 (k )  1 b2,0(k) k-i (A')
Ixk- l-m l(2

- l , k-l .d
p bz M-o x

Thus each term in (A2) is of order P k. Using (2.9b) in (A2) we obtain

k-i Z (t5k-+2ZA(k ) t ( t+l)xtlz 6 +k-t+l+ k A(k) 2 txt-lz6 +k - t+l + (A3)
two t+l twi t

M J1 +

where

k-i U-1 z6w~ (A4)
J, z ;xk--u l A(m)(s+l)xSZa+M-S+ 1U I" two s 1

k-i m (A5)
J2 w 1 xk-l -m  

0 A(m)xSZ+s+i(6+-s+2).

By letting s - t+m-k and interchanging the summations, we have

k-i k-i

- k- ) t-l 6+kt+()

k-uJ At +ml m=zt,5tk-tS x .

22t

, Y a ,,; \,,.' , ',' ?,, v ' , - -.-,,,',F - 'i -; '- ' .,
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By setting the coefficients of the same terms in (A3) to zero, we obtain

(k) k- (A8)
2kAk -W Az

k-i
W Z (tk=lAU+++6kt2Am

Equation (W9) can be rewritten as, by letting a - s+k-t-1,
A.

t -
si ssA+kt l+(a+kt+2)A: -tl) , for t 5 k-I.

To express (A8) in the form of (2.13a), we replace k by k-i in (AS) to

obtair.

2 ((k k)Ajil). k2( ) (All)
3 m 
MO- A

and subtract (All) from (A8). We have

2kA(k)- 2(k-l)A(kl)- ) (A12) .,

.04

which is idntical to (2.13a). Similarly, we replace k and t by k-I and

t-l, respectively, in (AlO) which reduces to

(t-1)tjt(k-1)+ 2(t-1)(6+k-t 2)A(-i)(A3

t t- (A3

t-1
MZ sA+k-t-l+(6+k-t+2)As+k-t-l

Equation (2.13b) is obtained when (A13) is subtracted from (AlO).

ofv

t % ,
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Appendix B

MODIFIED SOLUTIONS IN SECTION (3.1)

We obtain, by differentiating equation (2.14a), (2.17) and (2.18)

with respect to 6, the following miodified solutions

0 (k).k Ak)xtz6+k-t+2+... (B 1)

1: (A()(+k-t+2) + A(k(t+l) + A4k)j xtZb+k-t+l (2

r [t.0 +~t2 t A(t+l) ~tk~ 1

+~t l4kat6+kl.+2 xtZZ+k-ttllnZ1 ) +

+: [A(k)ckt2 ~

(k). k k) 4  (k) t )pk(t6l (B3)+3

u T, 11A.' 1 1 ) (kt+l))+ Atz 6+kt)x

+ A~k)c 4p (+. )p-t 5k-s2) 6.k-t+l)

At'P 1 1-c12)(t+2)(t+l) tz+ti i+

-A~k~ Oft)p2(3+2k2t+3

t 44 1
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t+~ c,+ ~mp) (2e)sk-2t+3)

(1)O~ 2 c~~~ 5kt2)6kt-)

-At (t+2) (t+) t 6 kl~

+A4k)(c4 (+sa ) (25+2k-2t3)tz+

+ A4k)c 4 ( +cm ) (+k-t+2) (+k-t+l) %~5 kln 1

f t 12 13 1-1

A~k 6+2)2t+34Xt+k)J c4 4 (1+p t,5

t+a

+z 2:0 -t c4 sIm)(-Dt 2.1 6 +k-t+l "-

_A~kc (11a (6+2k2t+3] xt6+k-

t 44 1*

C-A~~~~k~~c (1+ ;':.':a)(+k->l~ a'6+ -ln



() k kl k- 2)A k k]tbkt (B9)

Ur -two ((t (k+-t2+{ (tltk~t6kt

+[ ts (kl6+k-.t+2) (5+k-t+l)+Bt$lt+l) (b+k-t+l)

t k26+2k-2t+3) +B(t+1)Jz 1 z+~

+[(kP+k-t2)+A~:k (t+l)] XtZ6+k-t+li~.Z

~() (t (~8 6kt+)-~~(34)(+t2)B10

+ [B~(k) +k-t2) (kt+)(+-~~xZ+-~Z

t1k~ (6k2t+3)zt 6 k

(k) Bk k)i(+kt+2) 6+k+)(3-tZ6 +kt+) +BO

(ku 2: [A'(k) 2 B()2~)6kt2(5kt1
jz~ to t t

+Af(k)Pi-(k)-t+)]+kt+) +fl '~+)(+t1

+ [Bk) (6+k-2t+2)(6+k-t)+(6-t)(.k+1)

+B~2(t)o (26+2k2t+)+BxtZSykt+2 tl]xZ+

+B[A(t+) i-(+)](-p5+k-ztZ+2+ktlZ +tl

t t-
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6k) ke (k)2 (k)(12XMl(At (02--)-B' )2,,i) (6+k-t+2) (6+k-t+l)(12

+ r (k 0
2 t

.- At.+(1)- q6+kt6+k-t++kt-t+24) (t+) 6+k-t+1

+[B (BkW0 -- ) (6+k-t+2) (6+k-t+l1-4) (62k-2t+3))(+-tl

+ [B3 kO'. 1 ) ((6.k-t2) (6+k-t+) -B(2+k-t+)).-.1

+(k)., (0*-)-(k),i tSkt2 6(6-t (813

A(k)2~+l~)(kl) 8 1](26.t2)t,3)]xtZ6 kt V

+ [(ktk'-) 6 k(1) i8(S~k-t+B2t) (6+ktlt)n

-Bkl4~+k)t+)l (6+-t1) (t6k-t ~tz6+t i)

t+ +
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2j rxk) 2: (A Wi-3" Wk (0-20a) (6+k-t+2)(1)

rz t-o

* Bk(A +k8-tS)+(12) (tiJ att.)-z1~-

t i k (6t-.).$) (t~l)] (J~k-t.1) (6+kt)izzt6kt

4[(Atk)Oi-1k) (1-2)) (6+k-t)

t~ t



54

BIBLIOGRAPHY

Barnett, D.M. and Lothe, J., 1973, "Synthesis of the Sextic and the

Integral Formalism for Dislocation, Greens Function and Surface Waves '-

in Anisotropic Elastic Solids," Phys. Norv., Vol.7, pp. 13-19 . '

Barnett, D.M. and Lothe, J., 1975, "Line Force Loadings on Anisotropic

Half-Space and Wedges," Phys. Norv., Vol.8, pp.13-22 . %

Bazant, Z.P. 1974, "Three-Dimensional Harmonic Functions Near Termina-

tion or Intersection of Gradient Singularity Lines: A General Numer-

ical Method," Int. J. EnS . Science, Vol.12, pp. 221-24 3 . ".e

Bazant, Z.P. and Estenssoro, L.F., 1977, "General Numerical Method for

Three Dimensional Singularity in Cracked or Notched Elastic Solids," %

Fracture 1977, Proceeding of the 4th International Conference on

Fracture, edited by Taplin, D.M.R., Univ. of Waterloo, Ontario, Cana-

da, Vol.3, pp.37 1-385 .

Iazant, Z.P. and Estenssoro, L.F., 1979, "Surface Singularity and Crack

Propagation," Int. J. Solids Structures, Vol.15, pp. 4 0 5-4 2 6 .

Senthem, J.P., 1977, "State of Stress at Vertex of a Quarter-Infinite

Crack in a Half Space," Int. J. Solids Structures, Vol.13,

pp.479-492.

Benthem, I.P., 1980, "The Quarter-Infinite Crack in a Half Space; Alter-

native and Additional Solutions," It . J. Solids Structures, Vol.16,

pp. 119-130.

:J1

0..



55

Bogy, D.B., 1970, "On the Problem Edge-Bond Elastic Quarter Plane Loaded

at the Boundary," Int. J. Solids Structures, Vol.6, pp. 1287-13 13 .

Bogy, D.B., 1971, "Two Edge-Bonded Elastic Wedges of Different Materials

and Wedge Angles Under Surface Tractions," J. Applied Mechanics,

Vol.38, No.2, pp.377-386.

Bogy, D.B., 1972, "The Plane Solution for Anisotropic Elastic Wedge

Under Normal and Shear Loading", J. Applied Mechanics, Vol.39,

pp.1103-1109.

Bogy, D.B., and Wang, K.C. 1971, "Stress Singularities at Interface Cor-

ners in Bonded Dissimilar Isotropic elastic Materials," Int. J. Sol-

ids Structures, Vol.7, pp.9 9 3-10 0 5 .

Comninou, M., 1977A, "The Interface Crack," J. Applied Mechanics,

Vol.44, pp.6 31-636 .

Comninou, M., 1977B, "Interface Crack with Friction in the Contact

Zone," J. Applied Mechanics, Vol.44, pp. 78 0-7 8 1.

Cook, T.S. and Erdogan, F., 1972, "Stresses in Bonded Materials Uith a

Crack Perpendicular to the Interface," Int. J. EngineerinS Science,

Vol.10, pp. 677-697 .

Delale, F., and Erdogan, F., 1979, "Bonded Orthotropic Strips with

Cracks," mnt. J. Fracture, Vol.15, pp.343-364 .

Delale, F., and Erdogan, F., 1981, "The Axisymmetric Elasticity Problem

for a Laminated Plate Containing a Circular Hole," Lehigh University

Report, July.

Delal*, F., Kishore, N.N. and Wang, A.S.D., 1984, "Stress Analysis of a

Composite Plate With Circular Hole Under Axisymmetric Bending" J.

Composite Materials, Vol.18 No.5, pp. 4 2 0-4 3 1.

.. .. .: ,



56

Dempsey, J.P., 1981, "The Wedge Subjected to Tractions: A Paradox

Resolved," J. Elasticity, Vol.11, pp.1-10.

Dempsey, J.P. and Sinclair, G.B., 1979, "On the Stress Singularities in

the Plane Elasticity of the Composite Wedge," J. Elasticity, Vol.9,

pp.373-391.

Dempsey, J.P. and Sinclair, G.B., 1981, "On the Singular Behavior at the

Vertex of'a Bi-Material Wedge," J. Elasticity, Vol.11, pp.317-327.

Dundurs, J., 1970, Recent Advances in Engineering, edited by A.C. Erin-

gen, Gordon and Breach Pub., Vol. 5, pp. 203-206.

England, A.H., 1965, "A Crack Between Dissimilar Media," J. Applied

Mechanics, Vol.32, pp. 4 0 0-4 0 2 .

Elliott, H.A., 1948, "Three-Disensional Stress Distributions in Hexago-

nal Aeolotropic Crystals," Proc. Cambridge Phil. Soc., Vol.44,

pp.522-533.

Erdogan, F. and Gupta, G.D., 1972, "Stresses Near a Flat Inclusion in

Bonded Dissiaslar Materials," Int. J. Solids Structrues, Vol.8,

pp.533-547.

Eshelby, J.D., Read, W.T. and Shockley, W., 1953, "Anisotropic Elastici-

ty With Applications to Dislocation Theory," Act. Met., Vol.1,

pp.251-259.

Green, A.E. and Zerna, W., 1954, Theoretical Elasticity. Oxford Univer-

sity Press, Oxford.

Hilderbrand, F.B., 1954, Methods of Applied Mathematics. Prentice-Hall,

Englewood Cliffs, N.J.

Hoenig, A., 1982, "Near-Tip Behavior of a Crack in a Plane Anisotropic

Elastic Body," Engineerinh Fracture Mechanics. Vol.16. pp. 39 3-4 03.

a $ A: _



57

Kassir, M.K. and Sib, G.C., 1975, "Three-Dimensional Crack Problem," in

Mechanics of Fracture, Vol.2, ?4oordhoff, pp.336-342.

Kawai, T., Fujitani, Y. anid Kumagai, K., 1977, "Analysis of Singularity

at the Root of the Surface Crack Problem," Proc. Int. Conf. Fracture

Mech. and Tech., edited by Sib, G.C. and Chow, C.L., Vol.11,

pp.1157-1163.

Knein, M.. 1926, "Zur Theorie des Druckversuchs." Zeozt. Ang. Math.

Mach., Vol.6, pp.414-416.

Kuo, M.C. and Bogy, D.B., 1974, "Plane Solutions for the Displacement

and Traction-Displacemient Problems for Anisotropic Elastic Wedge," J.

Applied Mechanics, Vol.41, pp.197h203.

Lekhnitskii, S.C., 1981, Theory of Elasticity of an Anisotropic Body,

MIR Publishers, Moscow.

Lin. K.Y. and Mar, J.W., 1976, "Finite Element Analysis of Stress Inten-

sity Factors to Cracks at a Bimaterial Interface," Int. J. Fracture,

Vol.12, pp.52 1-531.

Somaratna, N. and Ting, T.C.T., 1986A "Three-Dimensional Stress Singu-

larities at Conical Notches and Inclusions in Transversely Isotropic

Materials," ASME, J. Applied Mechanics, Vol.53, pp.89-96.

Somaratna, N. and Ting, T.C.T., 19865 "Three-Dimersional Stress Singu-

larities in Anisotropic Materials and Composites," Int. J. EnS. Sci-

once, Vol. 24, No. 7, pp. 1115-1134.

Sih, G.C. and Chon. Z.P.. l'q8l, Cracks in Composite Mtaterials, Martinus

Nijhoff Pub., pp.8 7 -9 7 .

Sih, C.C.. Parts, P.C. and Irwin, G.R., 1965, "On Cracks in Rectilineary

Anisotropic bodies," Int. J. Fracture Mechanics, Vol.1, pp. 189-302.

Lill!



58

Stroh, A.N. 1958, "Dislocations and Cracks in Anisotropic Elasticity,"

Phil. KaS., Vol.7, pp.625-646.

Stroh, A.N. 1962, "Steady State Problems in Anisotropic Elasticity," J.

Math. Phys., Vol.41, pp.77-103 .

Ting, T.C.T., 1982, "Effects of Change of Reference Coordinates on the

Stress Analysis of Anisotropic Elastic Materials," Int. J. Solids

Structrues, Vol.18, pp. 139-152 .

Ting, T.C.T., 1984, "The Wedge Subjected to Tractions: A Paradox Re-

Examined," J. Elasticity, Vol.14, No.3, pp. 235-24 7 .

Ting, T.C.T., 1985, "Asymptotic Solution Near the Apex of an Elastic

Wedge With Curved Boundaries," Q. Appl. Math., Vol.42, No.4,

pp. 4 6 7 - 4 76 .

Ting, T.C.T., 1986, "Explicit Solution and Invariance of the Singulari-

ties at an Interface Crack in Anisotropic Composite," Int. J. Solids

Structures, Vol.22, No. 9, pp.965-983.

Ting, T.C.T. and Chou, S.C., 1981A, "Stress Singularities in Laminated

Composites," Proc. Second USA-USSR Symposium on Fracture of Composite

MaterialJs, G. Sih and V. Tamuzs, Editors, Noordhoff, pp.265-278.

Ting, T.C.T. and Chou, S.C., 19811, "Edge Singularities in Anisotropic

Composites," Int. J. Solids Structrues, Vol.17, pp.1057-1068.

Ting, T.C.T. and Chou, S.C., 1985, "Logarithmic Singularity of an Elas-

tic Composite Wedge Subjected to Out-of-the-Plane Extensional

Strain," Theoretical and Applied Fractural Mechanics, Vol.4,

pp.223-231.

Ting, T.C.T. and Hoang, P.H., 1984, "Singularities at the Tip of a Crack

Normal to the Interface of an Anistrupic Layered Composite," Int. J.

Solids Structures, Vol.20, pp.439-454.



59

Tong, P., Pian, T.H.H. and Lasry, S.I., 1973, "A Hybrid-Element Approach

to Crack Problems in Plane Elasticity," Int. J. Numerical Xech. in

EnS., Vol.7, pp. 29 7-308 .

Wang, S. S. and Choi, I., 1983, "The Interface Crack Between Dissimilar

Anisotropic Composite Materials," J. Applied Mechanics, Vol.50,

pp.169-178.

Williams, M.L., 1952, "Stress Singularities Resulting From Various

Boundary Conditions in Angular Corner of Plate in Extension," ASE J.

Applied Mechanics, Vol.19, pp. 526-528 .

Williams, M.L., 1959, "Stresses Around a Fault or Crack in dissimilar

Media," Bull. Seis. Soc. Am., Vol.49, pp. 199-204 .

Zak,A.K. and Williams, M.L., 1963, "Crack Point Stress Singularity at a

Bi-Materials Interface," J. Applied Mechanics, Vol.30, pp.142-143.

Zwiera, R., Ting, T.C.T. and Spilker, R.L., 1982, "On the Logarithmic

Singularity of Free-Ed&e Stress in Laminated Composite Under Uniform

Extension," ASHE J. Applied Mechanics, Vol.49, pp.56 1-569 .



60

z

Z~if.V r

a' *1

N

SCr sII 

'A,

Fig.1I Cross section of an axisyninetric body that contains notches[

''p.,

I'



61

Material 1

M Material 2

2

Fig.2 Cross section of an axisymmetric composite that contains notches

3



62

1 .4
I .4 I .4

I .4 a
I .4a

*
* I

4-

I
I

.4

o'rz
-. A

4
.

'0 a 4..a
U a

a 4' .~.

a a

-. 4 a
* a
S a
* a
L

4
J a

.5

/1
4,.

4-

a N?
a1: 'aA

a
I a
I a
I.
I. .4,.
* a '4

I 4..
I

a
I

0-

-180 -90 0 90
angle ~'

4-

Fig.3 The normalized stresses from the first term of the elgenfunction

associated with 6, of Example 1

~. d

~44

4..'

.4
.4.
4-

'~ ~~ '--



63

U0 0

L

-90C 9

anl

Fig4 henomaize srese fomthefisttem f te igmfncio

assoiate wih ofExamle



Flow= wvwv~w WN111M~rlrl 1r W7 Ar IL IL-*JI

64

% %

CIL

I%
I%

Sa
Sr

* 9%

I SS -9 0g

an

Fig 5 T e orm liz d tre ses fr m t e f rs te m o t e e gen un tio I

asoiae wih orxml

0 rNz



65

or I

-180 90 S
anleV

F i . Th o m l z d s r seIr m t e i s e m o h i e f n t o

asoiae wih62o xmlI

PLA &A



E 

0

tz Z

Material I

II"

laterial 2

II 

"'

I II

C D

Fig.7 Cross section of an axisymmetric composite that contains an

inte rface crack w ith a contac t zone "

.2A.

#9.

a.

* ~. S 5-



angle

' /1 - --

F ig Th nomlie stese frmtefis emofteeg fnt

in Cas A of anitraecakwthfitols •t

S* Q I

ti
w

I

-90 0 90 1 C 270 .

angle

Fig.8 The normalized stresses from the first term of the eigenfunction

in Case A of an interface crack with frictionles$ cantact i

'S

'S

"d

d~ (~V V s-v *-.,..# 5 S



68
'I

* V"

oo a

f B 
.-,a

f. j. :
0 ,ao

"Q [ "
U 0 

"a

e e oa

• r

** ar
-e 0.

• ,a* a
-* a 0 C27 .
Lr(I,

f~ g 9 he or al~ ed ltr ll l f om the f ~ lt er of th e ~ en unc io
i n C o l e I o f a n i n t e r ac c r c i h r c t o l s c n a t

aqp-

a.

.-

"" " : ,'', , .," € ,', , ,- , , ' '',,' " ' ,,./ '€ :,,,,,,',,; . .,,. . . .. , .\, , ..... -,--. -.....a-



69

E0

t E

II

I Material 1 II Material 2II

I _.4'

I
II

l *C

0

Fig.lO Cross section of an axisymmetric composite that contains a

vertical interface crack with a contact zone

d, * V ~ 4 ~ 1( . ,. ~- f V4~.. k3



DISTRIBUTION LIST

Office of Deputy Under Secretary of Defense N.o ois

for Research and Engineering (ET)
ATTN: Mr. J. Persh, Staff Spa..ialist for Materials

and Structures (Room 3D1089)
The Pentagon
Washington, DC 20301

Office of Deputy Chief of Research Development
and Acquisition

ATTN: DAMA-CSS
The Pentagon
Washington, DC 20301

Commande r
U.S. Army Materiel Comand
ATTN: AMCLD, Rt. Vitali, Office of Laboratory Management
5001 Eisenhower Avenue
Alexandria, VA 22333

Director ;

U.S. Army Strategic Defense Command

ATTN: DASD-H-L, M. Capps
DASD-H-L, Dr. S. Proffitt
DASD-H-D, R. Buckelew
DASD-H-E, J. Katechis1

P.O. Box 1500
Huntsville, AL 35807

Director 4

U.S. Army Strategic Defense Command
ATTN: DASD-H-Y, Col. K. Kawano

DSD-I-W, Dr. E. Wilkinson
DASD-H-W, J. Papadopoulos
DASD-H-W, S. Brockway

P.O. Box 1500 2
Huntsville, AL 35807-3801

Director
Defense Nuclear Agency
ATTN: SPAS, Maj. D. K. ApoI

SPLH, J. W. SomersI
SF141, Dr. B. SteverdingI

Washington, DC 20305-1000

Director ,

Army Ballistic Research Laboratories
ATTN: DIDAR-ILT, Dr. N. J. Huffington, Jr

DRDAR-BLT. Dr. T. W. Wright
DIDAR-BLT, Dr. G. L. Noss

Aberdeen Proving Ground, ND 21005



No.
Commander
Air Force Materials Laboratory
Air Force Systems Co mand
ATTN: JIC, Dr. D. Schmidt
Wright-Patterson Air Force base
Dayton. OH 45433

Commander
INO/AIRLS Office
ATTN: Capt. S. Opel
Norton Air Force lase, CA 92409

Cosmnder
Air Force Materials Laboratory
ATTN: AFML/HM, Dr. S. W. Tsai
Wright-Patterson Air Force Base
Dayton, OH 45433

Commander

Naval Ordinance Systems Command
ATTN: ORD-03331, Hr. H. Kinna
Washington, DC 20360

Naval Postgraduate School
ATTN: Code NC4(67WT), Prof. E. H. Wu
Monterey, CA 93943

Comander
Naval Surface Weapons Center
ATTlN: C. Lyons I

C. Rowe I
Silver Fprinas, HD 20910

Defense Documentation Center 2
Cameron Station, Bldg. 5
5010 Duke Station
Alexandria, VA 22314

Aerospace Corporation
ATTN: Dr. I. Cooper
P.O. box 92957
Los Angeles, CA 90009

AVCO Corporation
Government Products Group
ATTN: Dr. W. leinecke 1

P. lolincik I
201 Lowell Street
Wilmington, HA 01997

2

%



-- es
ETA Corporation
ATTN: D. L. Mykkinen 1
P.O. Box 6625
Orange, CA 92667

Fiber Materials, Inc.
ATTN: M. Subilia, Jr. 1

L. Landers 1
R. Burns 1

Biddeford Industrial Park
Biddeford, ME 04005

General Electric Company
Advanced Materials Development Laboratory
ATTN: K. Hall I

J. Brazel 1
3198 Chestnut Street
Philadelphia, PA 19101

General Dynamics Corporation
Convair Division
ATTN: J. Hertz 1
5001 Kearny Villa Road
San Diego, CA 92138

General Research Corporation
ATTN: Dr. R. Wengler 1

Dr. R. Parisse 1
J. Green 1

5383 Hollister Avenue
Santa Barbara, CA 93111 h

Hercules Aerospace Corporation
ATTN: Dr. S. W. Beckwith (X2F5) -
P.O. Box 98
Magna, UT 84044-0098

Kaman Sciences Corporation
ATTN: Dr. D. C. Williams
P.O. Box 7463
Colorado Springs, CO 80933

Ktech
ATTN: Dr. D. Keller
911 Pennsylvania Avenue, N.E.
Albuquerque, NM 87110

Lavrence Livermore National Laboratory
ATTN: Dr. W. W. Feng 1
P.O. Box 808 (L-342)
Livermore, CA 94550

3



of Cc:....
Lehigh University
Institute of Fracture and Solid Mechanics
ATTN: Dr. George C. Sih

Packard Lab, Bldg. 39
Bethlehem, PA 18015

Los Alanos National Laboratory
ATTN: Dr. W. D. 8irchler, Mail SLop G787

Henry L. lorak 1
Los Alamo., 3M 87545

Martin Marietta Aerospace
ATTN: V. Hevitt 1

Frank H. Koo 1
P.O. Box 5837
Orlando, FL 32805

Massachusetts Institute of Technology
Department of Aeronautics and Astronautics
ATTN: Prof. T. R. H. Pian (Room 311, Bldg. 73)
Cambridge, MA 02139

Pacifica Technology, Inc.
ATTN: Dr. Ponsford
P.O. Box 148
Del Mar, CA 92014

Radkovski Associates
ATTN: Dr. P. Radkowsk1
P.O. Box 5474
Riverside, CA 92507

Rohr Industries, Inc.
ATTN: Dr. T. H. Tsiang

HZ-19T
P.O. Box 878
Chula Vista, CA 92012-0878

Sandia Laboratories
ATTN: Dr. W. Alzheimer I

Dr. H. Forrestal .
Dr. E. P. Chen, Div. 1524 1

P.O. Box 5800
Albuquerque, NM 87115

Southvest Research Institute
ATTN: A. Wenzel
8500 Culebra Road
San Antonio, TX 78206

3

SPARTA, Inc.
ATTN: J. Wonacott 1

J. Glats 1
1055 Wall Street
Suite 200
P.O. Box 1354
La Jolla, CA 92038 4



VVV wwwwwmu W V

No. ot .

Terra Tek, Inc.
ATTN: Dr. A. H. Jones
420 Wakara Way
Salt Lake City, UT 84108 ,

University of Washington
ATTN: K. Y. Lin
FS-10, Guggenhein Bldg.
Seattle, WA 98195

Director
Army Materials Technology Laboratory
ATTN: SLC4T-BM, J. F. Dignam

SL rT-BM, S. C. Chou 5
SLCHT-BM, L. R. Aronin I
SLCOT-BM, D. P. Dandekar 1
SLCMT-ISC 1
SLCMT-IML 2

Watertown, MA 02172

55

.1



I6I IlJ| I i i I i I i i] e-I ,I" 3 ~uI.,1I. ,mill

y .' '.1 -,. !il .

It-, Ii:! _r'g .:ui °.

Ij S

I . i , ,i I, . , E,,,.:I
21~15J~ 

%

I I 
lI 

.

/ l 3il'i i

RUj i, !j .. j~ :,. .

I ,,, , I i,.,II., .

I, . ,, f'-, I i -. - "+l ';

Illi , , .,+l I !I ,! , S'.:I ' ju

, " ii a I I " . .. ii,~ l i

S~ SI

*! . -. , A SS S S S.. . ..



Ale 4p 4p 0 q .. lp
.7 -T 1


