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Chapter 1

INTRODUCTION

Even though light weight, high strength composites have been widely
used in the industries, rigorous analysis of stress distribution in s
composite which contains delaminations and/or broken fibers are still
lacking. The difficulties are due to the presence of stress singulari-
ties at the singular points such as the interface crack tip and the edg-
es of the broken fibers. Accurate predictions of the stresses near these
singular points are important not only for studies of fracture behavior
of materials but also for studies of general stress analysis. In find-
ing stress distribution in an entire specimen numerically by a finite
slement scheme, one may use regular finite elements everywhere except at
the singular points. At these singular points, special elements are
used in which the singular nature of the stress is given by an analyt-
ical expression.

The problem of finding the stress singularities at the apex of an
isotropic elastic wedge or notch was first considered by Knein (1926)
and Williams (1952) in which they assume that the stress distribution
under a plane-stress or plane-strain deformation can be expressed in
terms of a series of eigenfunctions of the form paf(w,é) where p is the
radial distance from the apex and the f is a function of the polar angle
¥ and the eigenvalue 5. For given wedge angle and homogeneous boundary

conditions at the sides of the wedge, there are in general infinitely

L4 L4 Ca W, = L
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many eigenvalues & and the associated eigenfunctions paf(w,é). Particu-
larly important in applications is when one or more of the 6's is neg-
ative and the stress is singular at the apex. It was shown that for a
two dimensional body under an external loading the negative & appears
when the wedge angle is larger than * and 6 = -1/2 is a double root when
the wedge angle is 27 (i.e. the case of crack). The technique is applied
to a crack along (Williams 1959, England 1965), and normal (Zak and Wil-
liams 1963, Cook and Erdogan 1972) to the interface and to other geome-
tries of isotropic composites (Bogy 1970, 1971, Bogy and Wang 1971,
Erdogan and Gupta 1972, Delale et al 1984). A systematic derivation of
the equation for finding the singularity 6 was given by Dempsey and Sin-
clair (1981).

Investigation of associated problems for anisotropic materials was
started by Sih et al (1965) and has become active only in the last dec-
ade (for example, Bogy 1972, Kuo and Bogy 1974, Delale and Erdogan 1979,
Sih and Chen 1981, Hoenig 1982). However, these studies are limited to
two-dimensional singular points. There are singular points which are
three-dimensional. Three-dimensional singularity analysis for isotropic
materials was first performed analytically by Benthem (1977,1980) and
Kawai et al (1977) and numerically by Bazant (1974) and Bazant and
Estenssoro (1977,1980). Extension to anisotropic materials and compos-
ites was considered recently by Somaratna and Ting (1986A,B). In Soma-
ratna and Ting (1986B) finite element schemes are employed to determine
the order of singularity at a three-dimensional singular point of any
geometry. In the other paper of Somaratna and Ting (1986A) the order of

singularity is determined analytically for the special case of tran-
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3 ’
sversely isotropic materials under an axisymmetric deformation. The sin- E
gular point is assumed to locate on the axis of symmetry. In present >

study, we consider the case in which the singular point is not on the

axis of symmetry. W
Fig.l shows the cross section of an axisymmetric body under an axi- §
symmetric deformation. The material is assumed to be transversely iso-
tropic with the z-axis being the axis of symmetry. We are interested in WY
the stresses near the singular point R. The associated problem for iso- )
tropic materials was investigated by Delale and Erdogan (1981) and g;
Delale et al (1984). However, their objectives are different from ours §J
and hence their series solution is different from the one presented i*
here. z:
A series solution for the problem is developed in Chapter II. yi.
After presenting the basic equations for transversely isotropic materi- i-
als under an axisymmetric deformation in Section 2.1, the general solu- kg
tion in the form of a power series in p is presented in Section 2.2. :$
Application of the stress-free conditions at the sides of the wedge i,‘
-}
leads to equations for the eigenvalue 6 and the coefficients in the pow- :$
8

er series. This is presented in Section 2.3. It is seen that the eigen-

L Sl

function associated with an eigenvalue 6 no longer contains a single

term paf(w,é). It also has the terms p6+1f‘(¢.6). p5+2f2(¢,6) “es

Therefore, the inclusion of the second and higher-order terms in the ;L
|
special element is not simply the inclusion of the eigenfunctions asso- e
ciated with the subsequent smallest eigenvalue 6. A similar situation Ky
(%)
occurs in wedge with curved sides under a 2-dimensional deformation };
(Ting 1985). The derivations presented in Section 2.2 and 2.3 are for ~
1‘:'
r_:
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4
the general case in which the two eigenvalues p,, p, of the elasticity
constants are distinct. The degenerate case in which p, = p, (of which
the isotropic material is a special case) is discussed in Section 2.4.
For 2-dimensional deformations, the displacement of the singular point R
(Fig.1) can be ignored for the singularity analysis. For axisymmetric
deformations, one cannot ignore the displacement of the singular point R
in the r-direction. A particular solution associated with the displace-
ment of the singular point is presented in Section 2.5, A difficulty
arises when & as well as 06+k, where k is a positive integer, is an
eigenvalue. In this case the higher order terms of the series solution
of the eigenfunction cannot always be determined. A modified solution
is required and is presented in Chapter III. We can see in Section 3.1
and Appendix B that the modified eigenfunction solution has the new
terms p6+k(1np)F‘(¢,6), p6+k+1(lnp)Fz(¢,6) eea Application of the
stress—free boundary condition is presented in Section 3.2. The solu-
tions of Chapter II are then applied to composite materials in Chapter
IV. The equations for general transversely isotropic materials and
degenerate materials are presented in Section 4.2 and 4.3, respectively,
and numerical examples are given in Section 4.4, For the singular point
which is the tip of an interface crack the displacement was found to be
oscillatory. This implies that the two crack surfaces inter—penetrate
each other. To avoid the unrealistic phenomenon a contact zone near the
crack tip is introduced in Chapter V. In Chapter VI the formulas for
singularities at an interface crack with contact zone are derived by
using the Stroh formalism. This alternate approach offers an analytical
solution for the singularity § which agrees with the numerical results

obtained in Chapter V.
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Chapter 11

EIGENFUNCTION FOR AXI-SYMMETRIC DEFORMATIONS

2.1 MATHEMATICAL FORMULATION

Let (r,0,z) be a cylindrical coordinate system with the z-axis as
the axis of material symmetry and let (ur,ug,uz) be the corresponding
displacement components. We assume that the deformation is axisymmetric
and ug= 0 so that u, and u, are functions of r and z only. Introducing
the displacement potential ¢(r,z) which gives u, and u, by (Elliott

1948, Green and Zerna 1954 and Kassir and Sih 1975)

%

- =2 - = 2.1)
ur or ’ uz n az .

where m i3 a constant to be determined, the stresses are obtained as

3% 3¢ 2% (2.2)

% T €41 3t MY or te,m 222

- %3¢ . (1] . 2%¢
AT = N AT

- 029 . % . ¢
92 % €1 5;? €is ;3; €aa ® ;;: ’

¢

atz- c“(l+n) rdz ’

in which cjj are the elasticity constants for the transversely isotropic

material. The equation of equilibrium are satisfied if
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. 2 1 e 0 2.3)
dr?  rdr p? 022

where

“C.y e Sya* (l*l)c“ (2.42)

+ (1+w)e,, - mc

p* -
|C

or, equivalently,

-a= =Su t e p - €ia t .4 . (2.4b)

2 2
(c|a + cca) P Cea Y €33 P

The second equality of (2.4a) and (2.4b) respectively yield

a? - 2 Ci3€Caq T Cya -1 ] m + 1 = 0, (2.5a)
2¢,,(e,, + c,))

pt + 2 [ €, €55 = €313 = 2¢,,6,, J P+ v o 0 (2.5b)
2c,,%,, €as .

It can be shown (Eshelby et al 1953) that p cannot be real if the strain
energy is positive definite. Therefore we have two pairs of complex
conjugates for p which will be denoted by p,, p,, p, and p, vhere an
overbar indicates the complex conjugate. The associated values of m are

denoted by m,, m,, »,, ;, respectively. From (2.5a) we note that
an, =1. (2.5¢)

Since (2.5b) is a quadratic equation in p? with real coefficients, if P,

are real and ;, “"s,n "=

is purely imaginary so is p,. Then m,, = )

H

m,. If and are not purely imaginary we may choose
2 ’ 2
P, "u+ive-p,, P, ™ ~u*iv=-p , (2.6)
R A T R R R B R R R R R N N
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where u, v are real. In this case » and m, are complex and m, = ;2. In n
view of the fact that the equations are linear, the general solution for

® is obtained by superposing ¢'s associated with p, 51, Py 52. We will ’
sssume that p, ¢ p,. The degenerate case in which p, = p, will be dis- dﬁ

cussed in Section 2.4 .

ah)

s

2.2 EIGENFUNCTIONS FOR SMALL p

,", ’, U

Let (r,z)=(a,0) be a singular point which may be the apex of a

wedge, notch, crack,or the tip of an interface crack. We now consider

y 2 88 Yy
Y A

the case in which a # 0. The case in which a = 0 has been studied by

Y

1

Somaratna and Ting (1986A). Using the singular point as the origin, we

define

Pl 3 % 4

Cyayeyys

X ™ r-a = p cosy , zZ = p siny . 2.7

-}

To find the esigenfunction for ¢ that is valid for small p, we rewrite

“ g
1y

A

B 4

equation (2.3) as

SN

¢ 1 2% 1 % s (2.8)

™8
~~

|

O'N
A d

T AP
ta s
Sl

g

Let

Lo@o -z (ZHkm, (2.9a)
a3

. L0 1 )
¢=¢ a é e k=0 a o~

k - (2.9b) :
Aék)‘tzé+k t+2 )

.
*" %o

Z=x+pz, (2.10) N
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where 0 is the eigenvalue and At(k) are constants to be determined. Using

equation (2.7) we have ?
xtzo+k-t+2, p6+k+2(co,¢)t§6+k-t+2 , (2.11)
¢t = cosy + p siny . (2.12) Qe

Therefore ¢(k) is of order p‘;ﬂ*z. By substituting equations (2.9) into

. and equatin e coefficients of x - , it can be shown that
(2.8) quating th fficients of xtz0*k-t+2 ;¢ be sh

P
(see Appendix A)
PRI S ) RPN (2.130)
Ay ETS Aol ’ ,
S
. 271 k-1 - 1 a1l (penyalk) (2.13b)
T S I vy [tae (tenagy] -
(t - k-lg L ) ,1) t
3
Hence the only unknowns are Agk) (k=0,1,2, ...) and & which will be
determined from the boundary conditions.
t
We will let the solution given by equations (2.9)-(2.13) apply to p 3
= p,. For p = p,, ;, and Ez we will use the same expressions except that '
A{k) is replaced by Bt(k), Ct(k) and Dék), respectively., Thus the general
solution for d’(k) is .
~
k - - - S+k— (2.14a) .
oK. tEb{Aék)th?*k t+2+3§k)xtzg+k t+2+cék)xtzf+k t+2 a :
{0tz >
Z, = x + pez (s=1,2) . (2.14b) .
Subtituting (2.14) into (2.1), we obtain o .

AR | - " w . I P - - ® .‘~ - q_'- - ™ e m SR UL R L )
",n".s":v"u“.".‘ .'."OK.U..O K ’\0,0‘0’.,;’!.‘.0‘00 l‘tlc“o'.t‘ ) n.“u .-..tl ‘." ‘-.' '.. - .’ \ ..‘ \\ te NV e ‘."



.

u?). { ; A(k) (5+k-1+2) + on(u% (teD)} xtz$h-tel (2.15)
k -1
sz B{R) (8+x-1+2) + 2 B{Y (t+1)} xtz§*k-t+l
+ ( 2 C(k) (3+k-t+2) + z Ct(t)l(t+1)} ‘ti{ﬁ-ul
k-1 )
+ { 2 D(“) (3+k-t+2) + !: nt(t{ (t+1)} tzg*k-t*l .
To simplify the expression, we will let
At(k). Bék). cék). Dék)' 0, if t>k , (2.16)
and rewrite equation (2.15) as
k
u;k). tEO [Aék)(6+k-t+2) . Aét%(t+1)] xtlg*k-t*l .. (2.17a)

where the dots stand for the similar expressions associated with p = p,,

;, and ;,. Likewise, we have

k
- .17
uék)- tEOAék)-‘p‘(6+k-t+2) xtzf¢k t+1 ., . (2.17b)

In substituting equation (2.14) into (2.2) for the stresses, we first
replace the terms 3¢/(rdr) in (2.2) by 23¢/3x* and 22¢/22° using equa-

tion (2.3). We then have

k
ar(k)- tgol-At(k)c“(l*-‘)P:(é*k-t"Z) (6+k't*l) (2-18.)

+al82(c, -¢,,) (1+1) (F+k-t+1)

+A{8) (e, e, ) (£+2) (t+ D)) xtzf*h-t &
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k
ofs I LA (e, ve, b (3+k-t42) (B4k-tsD)

-af¥]2(e, -c, ,) (1+1) (3+k-t+1)

-afk) (t42) (e+DIxt2{tRt + L

k - (2.18¢)
ofPe 2 -alMec, () (4r-t42) (+i-t+D)xtzEt 4 ¢

k - (2.184)
ag)-tg:o A Xsek-t+2) eal¥) k41D, (14m,)p, Bek-t+D)xt2*Kte .
9
In (2.18a) and (2.18c), the following identities which are obtained from
equation (2.4a) have been used:
®
€,, * ¢, mp?= —¢, (1+m)p? , (2.19a3)
€,y * c,,mp%= ¢, (1+m) . (2.19v)
[
2.3  DETERMINATION OF & AND A{K) ... p(K)
The problem reduces to the determination of ¢ and Agk) ng).
The stress-free boundary conditions st ¥ = a and a' are ®
o siny - o..cosy = 0 , (2.20a)
Opp8ind - o cosy = 0 . ®
Written in matrix notation, we have
NW) ¢=~0, W=a a), (2.20v)
L 4
vhere
siny -cosy 0 (2.21) °
N(Y) = )
~ 0 siny ~cosy
®

L SN St N 4 A X W O SR A
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o () (2.22)
D B %) T
o= kgb o, ¢ - asg) . (t =0,1,2 ...).
o)
From equations (2.18) we may write g(k) as, using equation (2.11),
) 3
g(k)' Paﬂ‘t‘_‘:o {Sy W, 0+k) St(k) +Ty (¥, 6+k) ﬂg)l“y,t (¥, 6+k) St(ﬁ} , (2.23)
in which
[ A ék) 1 (2.24)
@ -2
C ék)
| o) |
-(1+m )p? * * * (2.253)
§t(¢.5) = ¢, (6-t+2) (5-t+1) (1+m)p, * * * gt(w,a).
~(1+m,) ok X
2(°11-°12) * k% (2.25b)
It(¢.5) = (t+1) (5-t+1) | ¢, (1+m)p, * * * gt(¢.5).
0 .. 000
1 1 1 1 (2.25¢)

Up,8) = (42) (t+D (e, pme,,) [0 0 0 0| Q(¥,9).
O 0 0 0

In equations (2.25), the second column of the matrix is obtained from
the first column by replacing p, by p, (and of course m, by m,). The
third and fourth columns are, respectively, the complex conjugate of the

first and second columns. Qt(¢.6) is 8 diagonal matrix given by

. r AR gty & R TP LS a0 Sl Na? 1.* AP s BT AR X" L I R D T T PR, LI
.".l. .I. 0."0,‘ l"‘!.“.‘.‘ Q.l‘c.l Q.“l!..l ".I, e, ( J l. .uh N .n (] . f AI f‘ " 3 A B R “ VOV - |. v

v.r
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o
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Q W,8) = (cosy)tdiag [ 37T, 3t o, ot ] - (2.26)

sék) of equation (2.24) is related to sék_l) by using equatons (2.13).
Notice that equation (2.13a) can be regarded as a special case of equa-
tion (2.13b) if we use equation (2.16) and allow t = k in (2.13b). Thus

we have, for k21,

2t-1 1

K)a k-1 k-1)_ k 2.27

Sé ) 2t Sé-l )+ 2(84+k-t+2) [t2€ ) (t+1)3€+%]’ ( 2)
(t = k,k-1, ... ,1)

a®=0, if t>k. (2.27b)

As in (2.13) the only unknowns are § and ggk) (k=0,1, 2...).
Before we substitute (2.21)-(2.23) into (2.20b), we rewrite (2.23)

as, making use of (2.27b)

z(x)_ R i, (¢.6+k)g§k) (2.28a)
+t§1[§t(¢.8+k)+zt-1(w,6+k)+gt-2(¢.6+k)]gék)},
where we have defined
Up (¥,8+k) = 0, if t<0 . (2.28b)

Now substitution of (2.21), (2.22), and (2.28a) into (2.20b) for ¥ = a

and a' yields the following equations for ggk) :

K8 ¢{@= 0, _ (2.29a)

K
5(5+k)g£k)_ 'tglﬂt(a*k)2§k) x21) , (2.29b)

(R

(s

<

b=2i;ﬂEﬁbQQﬁiﬁQﬁiﬁiiiﬁii&ﬁitEﬁ}i&ﬁ&iiﬁiﬁiﬂ&i&ﬂ&iﬂ!ﬁKﬂiﬁ&i&i&i@
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in which
N(a)So(a,G) (2.30a)
é) = ~ o~ .
5( ) !(a|)§°(a"6)
N(a)[St(a,6)+Tt_l(a,6)+Ut_z(a,6)] (2.30b)
W,(8) = ~ ~ ~ ~ .
~t( ) !(ﬂ') [§t(a.06)+zt—1(a'|6)+Ht-2(a.,6)]
For s nontrivial solution of ﬂgk)' we see from (2.29a) that
Fx@1=0. (2.31)

Thus & is the eigenvalue of the matrix K and 550) is the associated
eigenvector. With § and SSO) obtained from (2.31) and (2.29a), (2.29b)
provides sgk) for k 2 1 and (2.27a) gives sék) for 1 s t < k.

When & is a simple root of (2.31), SSO) obtained from (2.29) is
unique up to an arbitrary msultiplicative constant. Sgk) for k > 1
obtained from (2.273) is unique in tcr;s of S§O) provided &+k is not a
root of (2.31). Therefore, when § is a simple root and 4+k is not a root
of (2.31), the eigenfunction ¢ associated with & is unique up to an
arbitrary muliplicative constant. If 4 is a multiple root, say a double
root of (2.31), and (2.29a) provides two independent 350)' we would have
two independent eigenfunctions each of which is unique up to a multipli-
cative constant provided d+k is not & root of (2.31). When 6+k is also
an eigenvalue of K, we see from (2.29b) that a solution for gsk) exists

if and only if

k 2.32a)
P, weomg® o @

PR e
A e

Y YOXN,
.- ‘ . .

o
%

P XA BRAAASNA N IR U R b A
ol NN g N e
. )4 i A _
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(Hilderbrand 1954) where the superscript T denotes the transpose and L

is the left eigenvector of 5(6*k)

ET 5(6#k) .0 . (2.32b)
1£ (2.32s) holds, ssk) exists but is not unique. However, the nonunique
portion of ssk) can be ignored because that portion is represented by
the eigenfunction associated with the eigenvalue 6+k. An example of this
case in 8 related problem can be found in Dempsey (1981), Zwiers et al
(1982), and Ting and Chou (1985).

I1f é+k is an eigenvalue of K and (2.32a) does not hold, a solution
for ssk) does not exist. In this case, the solution for ¢(k) cannot be
given by equation (2.9b). Instead, we use the folowing modified solu-
tion:

[
RO RS

k
(K) t,8+k-t+2 (2.33)
(1] tEoAt xz

in which Ask) is now assumed to depend on 4. This case will be discussed
in Chapter III. Equation (2.33) can also be used for second independent
solution when & is a double root of (2.31) but (2,29a) provides only one
independent sSO).

We see from equations (2.22) and (2.28) that for each eigenvalue &,
the stress has the terms p®f(y,d), p3*le, v, 8), p3*26,(4,8), ... Thus
the eigenfunction associated with an eigenvalue has infinite terms for
sxisymmetric deformations. We also see that if Re(d) < 0, the stress is

singular at o = 0. Thus Re(d) provides the order of singularity.

s M AT AP A T AR, Tyt AR gt a Ty g B S h s S N, N AR, Lt e gt e gt Pt et  tat .t
'l‘b ;f’u h'n'l..l.n,t.n 'l'l.o\n .l " ! ! LI Lo d ' ¥y 2, €, " 4, . *{( Yy ." '. '.‘f W ¥ N

e s W WY s 8% B

'

¢!

e . W
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(;
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2.4 DEGENERATE CASEm =m = ]
) When p, = p,, p must be purely imaginary. . This follows from equa-
tion (2.5b) and the fact that p cannot be real. By equation (2.4b) and
(2.5¢), we have m, = m, = 1. We cannot have m, = m, = -1 because this
‘ would make p real. By setting m = 1, the second equality of equation

(2.42) yields

117323

» (e 4% 2¢,,)" = ¢,,¢,, - (2.34)

Hence when equation (2.34) is satisfied, P, = P, and we have a degener-

ate case. The five material constants are now reduced to four by equa-

u tion (2.34). Introducing the new material constants v, u, v, and B, we
let
¢, ( A+ 2u) 8%, (2.35a)
€ys= (X + 2u)/8%, (2.35b)
Ced”™ B (2.35¢)
€, A, (2.354)
€yy” €,," 24, (2.35e)
in which
Am 2uv/(1 - 2v) . (2.35¢8)

Equations (2.35) satisfy (2.34). With (2.35), equations (2.5) give

p=Bi, a"1. (2.36)
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For isotropic materials we have 8 = v = 1 and v and u are the Poisson's
ratio and shear modulus, respectively.

In a degenerate case p, = p,, the terms associated with Bék) and

Dék) are identical, respectively, to the terms associated with Aék) and

Cék). We therefore need a new solution for Bék) and D{k). This can be

sccomplished by replacing the coefficients of Bék) and Dék) by their

derivatives with respect to p, and p, (Ting and Chou 1981B, Ting 1982).

Thus, for instance, equation (2.14a) becomes
k - - 5+k- (2.37)
o(®a tgb{Aék)ztzé+k t+2,cék)‘tzs+k t+2y

k - -
+ I, W axtdht LpR) 128 (p-eed)

where, since p, = p,, we have omitted the subscripts 1 and 2 for Z and
Z. Similarly, equations (2.17) and (2.18) are replaced by (noting that
8 in the Bék) and Dék) terms must also be differentiated with respect to

p by using equation (2.4b)),

> - 2,
k
+ tEb[Békk6+k-t+2)+n(k}(t+1)](5+k-t+1)zx 20+k-t
(2.38b)

k
ue 2 (aVB8i-B(W) (3-40)] (srk-tan) x5t

k
+ E, BVBi (brk-te) (ke Dzx 2R 4 L

(W

4

(:

(L

£.C.9 5 5




(2.39a)

k 3
32 o= T Vs -B{®) 2081 (+x-t+2) (5+k-t+1)

+A{E 29 (£+1) (+k-t+1) +alk)y (£+2) (t+1)1xtz8*K"t
k
+t§0 [ng)B’ (3+k-t+2) (S+k-t+ 1)+Bg‘,)12'y(t+1) (d+k-t+1)

+p{Ely (£+2) (t+1)] (54k-t) zatzd*k-t-14

k
-— °5k)'t‘:’0{ [At(k) (B’-Y) _Bt(k) 2vai] (5+k"t+2) (6+k't"l) (2. 39b)

h L)

-a{E] 27 (t+1) (B+k-t+1)-a{kdy (t+2) (t+1) I xt20*kt
k
+ 2, ({87 (3+k-t+2) (it 1) -3 ]2y (£+1) (Bek-te)

~B Ky (£+2) (t+1)] (3+k-t) zxt2¥*k-t=1s

k
o= 2 -0 +302(1-1)i871) (Brr-t+2) (Ber-te1)xt2H 7 (2.39¢)

3
2

k
- Z B erk-te2) (Brite1) ri-naat2tREL

(2.394)

—

k
5 oP- 2 1aPBi-s ) 1-20)] (Bri-t42)

+[afE]Bi-B{E] (1-20)] (t+1)} (3+k-t+1) xt20¥k"t

K
+t§b[3€k¥6+k-t+2)+n§§{(t+1)](5+k-t+1)(5+k-t)8izxtza+k-t_1+ -

In equations (2.38) and (2.39), the dots stand for the Cék) and Dék)
terms that are obtained from the Aék) and Bék) terms by replacing Bi and
Z by -Bi and Z, respectively. Equations (2.20)-(2.32) remain valid

except (2.25), which are replaced by

B  -2uBi+B’ (5-t) ¢~ lsiny * *
= 2u(8-t+2) (3-t+1) [Bi -(1-2)+(-0)BirTlsiny  * *| Q (¥, 8),
-1 -2(1-v)iB 1 -(-t) ¢t lsing * *

»
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TeW.9) (2.40b)
2y 2v(3-t) ¢t lsiny *
= 2u(t+1) (3-t+1) |Bi =(1-20)+(3-t)Bi¢ " lsiny * % Q ¥, 9),
0 0 0 o0
Up (v, 8) (2.40¢)
1 (3-t)¢ lging  * %
- 2uv(t+2) (t+1) (0 0 0 0| Q..
0 0 0 0

gt(w,é) is obtained from (2.26) with { = ¢, = {. The third and fourth
columns of the matrices in (2.40) are obtained from the first and second
columns by replacing Bi and { by -Bi and [, respectively. Equation
(2.27) remains valid because the order of the differentiation with

respect to p and x or z can be interchanged.

2.5 PARTICULAR SOLUTION FOR THE DISPLACEMENT OF THE SINGULAR POINT
For a two~dimensional problem, the displacement of a singular point
can be ignored for the singularity analysis. For an axisymmetric defor-
mation, one cannot ignore the displacement u, of a singular point. We
therefore consider (up,uz) = (u,,0) at the singular point (r,z) = (3,0)

where u, is a constant. A particular solution that yields this displace-

ment is
u= u,r/a, u,~ 0, (2.40a)
g.= gg= u,c, ,* ¢, ,)/a, 0,° 2u,c,,/a, o.," 0. (2.40b)
Let

¢
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c +e (2.42)

To satisfy the stress—free boundary conditions, equation (2.20b), we

superimpose equation (2.42) to (2.23) with é§ = 0 and write the stress as

ot k (2.43
g= g0 2, 2 (5000 er wngBlen vngl) ). )
Equation (2.20b) now provides the following equations for Sgk)
(k) g{k)- g(kj, k=01, 2, ...), (2.44)
in which
N( (2.45a)
b(o)- - ~ a) [ 4 ,
~ N(a') ~0
(2.45b)

K
p®= -2 wwg®, e,

and !t(k) is defined in equation (2.30b). Equation (2.44) has a unique
solution for sgk) if k is not an eigenvalue of K . If k is, then the

discussion presented near the end of Section 2.3 applies here.
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Chapter III \
MODIFIED EIGENFUNCTIONS -
3.1 MODIFIED SOLUTION
When 8 is a root of (2.29a), let n be the smallest positive integer )
for which é+n is also a root of (2.29a). Equation (2.29b) for k = 7 is -
]
m . _ () (3.1)
K(s+n)g, (Zp He (emge™ .
This has a solution for SS") unless
h
n 3.2)
!:Ttgl !t (6+")S€") +0, 3
where L is the left eigenvector
.
LT K(3+n) = 0 . (3.3) .
If (3.2) holds, a solution for 35") does not exist and the expansion for X
¢ given by (2.9) is not valid.
To obtain a valid expansion when (3.2) holds, we notice that if ¢
U
Y
given by (2.9) satisfies (2.8) so does 2¢/36. Therefore, in place of D
3
(2.142) we use
>
k
. 2 (k) t,8+k-t+2 (3.4) :
¢ bé{tEoAt xZ "'...} .
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)
in which Aék) ooe Dék) are now regarded as functions of & (Zwiers et al :;;
l-'
1982). 1f we carry out the differentiation in (3.4), we will have terms
AN
of the form x32P as well as x?2P(1n2). By substituting (3.4) into (2.9a) ;b
X
and then into (2.8), the coefficients of x32P and x32P(1nZ) wust vanish. i}
L [
The latter leads to (2.27). The former leads to the following equations —
which can also be obtained by differentiating (2.27) with respect to 4: E:i
:’..I
P
- .
’ - 4 -
(o 271 c-Dy 1 e D (a1’ (0 (3.5a) ~
3 2x 21 Tonetn [ (t+Dgesp” | ;
1 DR,
- c—————— (k-l)— <+ (k l.“i
Tonns Lt (t+Dq{¥] 1 , 3
for t = k, k-1, ... ,1, ::3
qE(k) =0, for t > k , (3.5b) :;
~ \.
l.‘,‘.
“~
where the prime denotes differentiation with respect to 4. Hence the ~4
only unknowns are qgk) and q;(k). k=0,1, 2..0. I,
-~ -~ n'_'l
A
When (3.2) holds and 7 is the smallest positive integer for which {::
'.‘
é+n is also a root of (2.29a), we may choose A
qék) =0, for k <%, (3.6) o
i
Substituting (3.4) into (2.1) and (2.2) and carrying out the differenti- ..
ation, we obtain new expressions for the displacements and stresses. szl
J'..
This is presented in Appendix B. :::
\"-
for the degenerate case in which p = p,, we use instead of (3.4) -
LN
. 2 (& )t sk-te2, . (k) t38vk-t+2 (3.7 R
¢ e — { T (A x"2 +Cptx'2Z ] A
26 t=0 't t o\
)
k ) .
¢ B (BM 2xt 28t Lip (W g 1280k (ui-tan))
t-

A 2 N AN AN I A AR A RN RN A NS
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Following the same argument, we obtain new expressions for the displace-

ments and stresses. This is also presented in Appendix B.

3.2 DETERMINATION oF 9$%) anp q (k)

The satisfaction of the stress-free boundary conditions leads to
the following system of equations which can also be obtained by applying
the operator p®*X(1np + 2/25) to (2.29) and setting the coefficients of

S+k

P and p5+klnp to zero. Thus we obtain from (2.29a)

JOITSN (3.8a)
K (g + R(®)gq;@=- 0, (3.8b)

and from (2.29b)

k
Ra+ g - "2 W G+ gf®), (x21), (3.8¢)

R’ (3+k) g M+ R(s+0) g, ®- -t§1{ Wl g W (segp ® 3, B89
where K and W are defined in (2.30).

Combining (3.5) and (3.8) with (3.6), we notice that (3.5) and
(3.8) are the same as (2.27) and (2.29) for k < 7, respectively, except
g;(k) now assumes the role of ggk)

For kK = 7 the problem reduces to solving the following system of

equations

5(6+n)2§”) =0,

..........
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. i (3.9b) h
K’ (3 g{M+ k(e g, ™ = - 2 Wy Gemgi ™. b
Equations (3.9) have an unigue golution for 35’7) if (Dempsey and Sin-

clair 1979) ey

7 di|5(6)|/d6i 0, (i=n-mn), (3.10) -~

where n and = are, respectively, the order and rank of 5 v )

It is rather difficult to prove or disprove equation (3.10) analyt- lu'
ically or numerically. Instead, we will regard (3.9) as a system of 8 Q
* equations for g_g"') and g;(") , and solve the system numerically. D

For k > 3, (3.8c) and (3.8d) give 39‘) and s;(k) . g
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Chapter 1V

APPLICATIONS TO COMPOSITES 3

4.1 SINGULAR POINT IN COMPOSITE MATERIALS

We now consider the axisymmetric composite whose cross section is

(9

shown in Fig.2. The two materials with axisymmetric interface SQ, RP are
assumed to be transversely isotropic with the z-axis being the axis of

symmetry. The interface makes an angle ¥, with the z = 0 plane. The

3
region SMRN is void and ¢‘ and W, are the angles the two free surfaces
{ RM and RN make with the z = 0 plane.

Since equations (2.9) is applicable to each material, we will use
the subscript 1 or 2 separated by a comma to identify the quantity which

, is associated with material 1 or 2. From equation (2.27) we notice that

the undetermined constants for material 1 are Agfz ces Dgfz while that

&

for saterial 2 are Agfg ces DS?Z . The eigenvalue & is the same for

both materials.

4.2 DETERMINATION OF & AND ASK} ... D(K}
» »
Using (2.20b), the traction—free boundary conditions at angles ¥ =

¥, and ¥, are

NWglo 4= 0, (s=1,2) ,
where
siny -cosy 0
N(y) = [ siny -cosy ] ’




(3 IR T ] [ e ek VNN NN NN . ¥, ¢ va ') ta ! 2" 3 Ai"
- U

25 2
W
o (¥ (4.3) "

et Z WP P | il :
o (k) )
Z,$ d

The interface continuity conditions at angle ¥ = ¥, are S
- - "
E(¢3)g,1 E(¢3)g’2 2 ’ (4-‘.) ‘:‘

IR 4.5 it

where .

- (k) (4.6)
R N R [] L GeLD)

~" - ~? ~)'
o ofh

Substitution of equations (2.17) and (2.18) into equations (4.1), (4.4) S

and (4.5) yields the following system of recurrent equations

<

x

K@ ¢{0=-0, (4.7a)

h JW 3
z -
-

v
=

NoaA
’

(4.7b)

Y

X
R0gM= - Zw (r0gM,  Gan

ey

.;;r

where

e e At A8, 4,

PN A

(4.8)

o . | 9
k) o | ~0° , (t = 0,1,2 ...) ,
* [sé‘."z

-
.
Y

5 Te
YV
- G, .

<, "-,5)’

in which the elements of géfl are Aéfz .o Dgfz (s = 1,2), and
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[ E(¢')§°’,(¢1.5) 9 - .9
NWS,,, (43,8 -NW)S, ,(,,0)
K(3) = ~ ~ ~ ~
= Eo,1(¢a’6) -Eo,z(¢3’6)
2 5(¢z)§o,;(¢z'5)
[ E(wt)[§t,1(¢1’6)+1t-1,1(¢|’6)+Et-2,1(¢1’6)] (4.10)
5) N(wa)[st.1(¢3’6)+Tt-1,1(¢:'6)+ut-2 1 ¥5,8)]
“ - ~ ~ ~ ~ ’
B Ge. Wy ) 4¥ey . W,08)
0

0
NW ISy, , Wy 4Ty, W, D)+ p (4, 8]
-[Et’2(¢3)6)+!t-1‘ ,(l//;,.a)]
E(wz)[Et,z(¢2’6)+zt°1,z(wz’6)+gt-2,z(¢z’6)]

In (4.9) and (4.10), St,s» Tt,s» Ut,s are defined in equations (2.25)
and Gy and V; are given by

1 1 1 1
_ - ] Qe W, 8+1) ,

m,p, ®m,P, ;';1 m,pP,

(4.11a)
Gy (¥,8) = (6-t+2) [

(4.11b)
gt(w,é) = (t+1) [

] gt (¢) 6+1) ’
where Qt(¢,6) is the same as the one in (2.26).

It should be pointed out that the recurrent relation for gék) given
in (2.27) applies to Sék) in (4.8). Therefore the problem reduces to
the determination of & and Agfl oo Dgfz (s = 1,2). For nontrivial

solution of 250) we must have

1 RG] =0 . (4.12)

‘t‘..‘l‘- '.‘lﬂ'l‘."‘n“’l .0"'p_| \’I.g u_l'.“l,l'l. (W) ‘ ».19%.%
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This provides the eigenvalue 6. For each eigenvalue 5, (4.7a) gives ﬂ£0)
while (2.27) and (4.7b) furnish sgk) (k = 1,2 ...). The discussion on

unigueness of solutions for ggk) presented in section 2.3 applies here.

4.3 DEGENERATE CASE

When p, = p, holds for one of the two materials or for both materi-

als, we use the expressions for displacements and stresses in (2.38) and
(2.39). Once again, the stress—free boundary conditions and the inter-
face continuity conditions yield the system of recurrent equations
(4.7). Equations (4.9)-(4.10) hold in which St,s» Tt s+ Up,s are defined
in equations (2.40) if material s (s = 1,2) is degenerate, while (4.11)

is replaced by

.

1 (5-t+1) ¢ lsiny * % (4.14a)

Gy (¥,8) = (8-t+2)
~ L Bi Bi(o-t+1)¢{ lginy~3+4r * =

] gt (\L. 6"'1) ]

[1 (6-t+1) ¢ lsging * * (4.14b)

!t(w,a) = (t+1) L 0 0 0 0

] gt (¢| 6*1) .

Q¢ #,8) is obtained from equation (2.26) with { = ¢, = {. As in equa-
tion (2.40) the third and fourth columns of the matrices in equations
(4.14) are obtained from the first and second columns by replacing Bi

and { by -Bi and [, respectively.

4.4  NUMERICAL EXAMPLES

We present two examples in this section. In both exampls ¢, =

-180°, v, = 90° and ¢3 = -90° are taken.
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In the first example the material 1 and 2 are both isotropic so
that 8 = v = 1. We use v = 0.38, u = 0.3x10.psi for material 1 and v =

0.45, u = 0.3668x10‘p:i for material 2. Two negative 6's sre obtained:

6, = -0.432087 , 4, = -0.073520 .

5, is the same 83 p,  of plane strain problem obtained by Bogy (1971).
The coeficients of order zero which are complex-valued are as follows.

For &,

Agj{ = (0.3446-0.6786i)c. , B(®) = (0.4098+0.9122i)c, ,

Af?ﬁ = (0.1444-0.4991i)c_, B§°)

(0.4313+0.8995i)c‘ ’

and for §,,

A8®) = (0.1744-0.2567i)c, , B{®)

» 1

(0.8936-0.0208i)c, ,

A = (0.1576-0.1539i)c, , B{®) = (0.9986-0.0533i)¢c, ,
where ¢, and c, sre arbitrary multiplicative constants. C's and D's are
the complex conjugate of A's and B's respectively, because 5, and &, are
real.

In the second example material 1 is replaced by a transversely iso-
tropic material whose material constants are (with vnit 10°psi)

¢,, = 2.152, «¢,, =~ 0.5524 , ¢,, = 0.8115 ,

11

€,, = 34.49 , ¢, =0.8.

The corresponding p's and »'s are

§)
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- 0.1551; - 1.611i ol
p‘ . 1 p, . 1

m, = 55.02 , =, 0.01816 . !
Py
Again, two negative 4's are obtained: “f
&%
W)

8, = -0.484629 , &, = -0.299609 . ,
0l
"
The coeficients of order zero are as follows. For 3, -
'
.‘-\'
A{®) = (0.0486-0.0015i)c, , B{®) =(-0.2669+0.1983i)c, , =
A$0) =(-0.0429+0.4953i)¢, , B®) = (0.0351-0.9994i)e, , :
] 4 :"
-

“~
snd for &, ::
-
] o
) o
AS"’)‘ = (0.0405+0.0399i)c, , B{°) = (0.0330-0.5511i)e, , !
v

a8 = (0.2865-0.2931i)c, , BS®) = (0.9650+0.2621i)¢, . :
’ * ','

—
:;f

Since 5+k where k is an arbitrary integer is not a root of (4.12) for ;\

both cases, the solutions are unique up to the arbitrary constants c, :Cn

] and c,. ;h
The stress distribution obtained from the first term of the eigen- -{

'}

functions associated with 4 and 6, are plotted in Fig.3 - Fig.6. We z;

:

ﬁ normalize the stress by deviding by the singular factor pé and a multi- ;:‘
plicative constant ¢ to make the maximum stress equal to 1. ‘Ej
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Chapter V

EIGENFUNCTIONS AT AN INTERFACE CRACK WITE A CONTACT ZONE

5.1 UNREALISTIC PRENOMENON

We have discussed in Chapter IV the stress singularities at s sin-
gular point of an axisymmetric composite in which the free surfaces and
the interface surface intersect. When the two free surfaces make the
same angle with the plane z = 0, the free surfaces form an interface
crack, Fig.7. When the singularity § is a complex number, an oscillatory
phenomenon in displacement near the crack tip occurs and the two free
surfaces inter-penetrate each other. To avoid the unrealistic phenoms-
enon, we assume that a contact zone is presented near the crack tip. In
a real composite, the crack surfaces near the interface crack tip may,
under an external load, open or close with or without friction. The
associated problem for isotropic composites was studied for frictionless
contact and for contact with fri?tiqn by Comninou (1977A and 1977B).
Wang (1983) studied the partially closed interface crack for anisotropic
materials but the contact region is assumed to be frictionless. We will
use the asymptotic solutions (2.17),(2.18),(2.38) and (2.39) to study

the stress singularities at the both ends of the contact zone.

5.2 SINGULARITIES AT ENDS OF CONTACT ZONE IN INTERFACE CRACK
In Fig.7, AB is the contact zone, AC and AD are free surfaces, and

BE is the interface. We will call the singularity analyses around point

P "-;f.._-'. o .-.-‘.-,..' ’.:,_.(,'(__1_'./-./ .-._.-.\‘(_..-, '.'-'-'-'.u'-'-"-'-‘-'-'-"~'.'-'-“-(\"'\-"\.'ﬂ\'-' ..:_'.’~.{.‘-'...<"\'-‘. A
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A and point B, respe;tively, Case A and Case B. It should be noted that

there is only one independent angle in case A whereas there are two in

case B. Let 6 be the angle of orientation of the crack. In case A, ¥3
=60, y1 =60 + rand y2 = 6 - 7, In case B, Y3 is arbitrary.

Using the same notations we have used before, we have the following

boundary conditions for Case A:

E(lﬁs)g’,' 2 ’ (..1,2), (5. la)
NWe,, - NWJeg , =0, (5.1b)
£(¢3)2,1 - £(¢3)2,2 + §(¢3)2,1 =0, (5.1¢)
where
—a (5.2a)
£(¢) . [ lanw co;¢ ] '

0 siny[cosy+7(sgn t‘)sin¢] (5.2v)
§(¢0T - 0 -cos2y~7(sgn t,)sin2y
0 -cosy [siny~7 (sgn t)cosy]

In (5.2b) 7 is the coefficient of friction and sgh tg stands for the
sign of shear traction t,.

Substitution of (2.17) and (2.18) or (2.38) and (2.39) into (5.1)
yields a2 system of recurrent equations similar to (4.7) in which K and

Wy have the expressions:

§(¢1)§.0,|(¢1’6) 9. . (3.3a)
, NS, , (4y.8) SNWS, , (g, 8)
K(8) = D ,
~( ) g(¢,)§°',(¢,.5)+§(¢,)§°,‘(¢,.5) ~I1W,)6,, ,¥,,9)
0 §(¢,)§o',(¢2.6)

° :*-_‘[;af‘! .
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NW)E, |, ¥,,8) 0 ] 5.3
“ NWIEy, , (¥,,8) “NW,)Ey ,(¥,,8) v
W 6 - ~ ~ ~ ~
~t JWIF, , W O+HWE, , (4,,8) -~ )F ,W,,8)
2 E(¢2)Et’z(¢2.5)
-
In (S.Sb)g
Et,i(’p'a) - §_t,i(¢'6)+zt'l,i(’P'G)*Et-z,i(‘b'a)' (5.4a)
Et,i(‘p’a) = Et,i(¢'6)+!t-1,i(‘b’6)' (5.4b)
in which S, ,, Te,s» Ut,g» Gt,s and V¢ o are defined by (2.25) and s
(4.11) if the material s is transversely isotropic and by (2.40) and
(4.14) if material s is a degenerated material.
For Case B we have the following boundary conditions: 3
NGz, - N0)g,, - O, (5.50) |
JWDu,, - JWIu , +B@¥)Ig , =0, (5.5b) .
e
!(“‘3)2,' = E('ps)z,z =0, (5.5¢)
2" - 2'2 - 2 ’ (S-Sd) .
v
1
in which J and H are defined in (5.2). Again, (5.5) yield (4.7) in ’
which !
. -
NW)S, (.8 NW)s, ,@,,8 ] (5.6
NW,)S,, ,(,,8) “NW,)S, ,(,,9)
K(6) = ~ ~ ~ ~ . \
~ 90,1(“'3'6) =Go, 2 (¥, 9) 3
i(\ﬁ,)fo’,(%.é)*g(\b‘)fo"(\P,.é) ‘i(¢,)§°'2(¢2.5) :
, )
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NWIE,,@,,9) NWOE ,@,,0 | 65
NWJIE,, ¥,;,9) NWOE ,¥,,9)
Wy ()= N ~ :
- £, (50 0) Ft, . ¥y

IWIF W LOMMW)IE, W8 ~IW)F ¢,

It will be shown analytically in Chapter VI that & is real at both

ends of the contact zone. In other words, there is no oscillation of
the c;ack surface displacements near the singular points.

The stresses at both ends of a contact 2zone without friction are

computed numerically for a composite material which is similar to that

of Example 2 of Section 4.4. In this case & = -1/2(see Section 6.3).

é and a

We normalize the stresses by deviding by the singular factor »
multiplicative constant ¢ to make the maximum stress equal to 1. The
normalized stress distribution obtained from the first term of the

eigenfunction for Case A and B are plotted in Fig.8 and Fig.9, respec-

tively.
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Chapter VI

SINGULARITIES AT AN INTERFACE CRACK WITH A CONTACT ZONE

6.1 STROR'S FORMALISM

An alternative formulation for the order of singularities & at an
interface crack with a contact zone will be derived in this chapter. The
derivation is based on the Stroh formalism (Stroh 1958 and 1962). The
Stroh formalism, which ﬁas its origin by Eshelby (1953), provides an
elegant and powerful wmethod of treating a certain class of two-
dimensional anisotropic elasticity problems. Unlike the two-dimensional
anisctropic solutions developed by Green and Zerna (1954) which are
restricted to plane strain deformations, the Stroh formalism applies to
a wice variety of two-dimensional problems in which all three displace-
ment components are non-zero. Also, unlike the widely used Lekhnitskii's
approach (Lekhnitskii 1981) which breaks down for orthotropic materials
(Ting and Chou 1981A) and requires a special treatment (Ting and Chou
1981B), the Stroh formalism has no limitations except possibly for the
degenerate materials in which the eigenvalues of the elasticity con-
stants have a repeated root such as in isotropic materials. The problem
with degenerate materials, for which other formalism also have, can be
treated separately (Ting 1982). However, the Stroh formalism has since
been perfected by Barnett and Lothe (1973 and 1975).

It can be seen from Equations of (2.8) and (2.9) that the first

orcer solution of axisymmetric deformation is the same as that of plane-

e ) - ™ Tl s
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strain problem. Therefore, the order of stress singularities & of axi-
sympetric deformation at an interface crack with contact can be obtained

by Stroh formalism.

6.2 BASIC EQUATIONS
In a fixed rectangular coordinate system (x,,x,,x,), let the

stress-strain law of an anisotropic elastic material be given by

9ij T Cijkn%k,n 6.1)

where repeated indices imply summation, Oijs Yks Cijkn are, respective-
ly, the stress, displacement and elastic constants and a comma stands

for partial differentiation. The equation of equilibrium are
oi5,5 = 0 - 6.2)
For the purpose of the present analysis, we assume that
up = 3,291/ (+1), (6.3a)
Z=x,+px,, (6.3b)

in which p, 6 and ay are constants to be determined. Substituting (6.3)

into (6.1) and (6.2) yields

Oxj - (cijkl + Pcijkz )akz‘s, (6.‘0)

fQ+p®R+RT) + p’1} a=0, 6.5)

where the matrices Q, R and T are given by

Qix™ ci1k1 » Rix = ¢i1x2 » Tix =¢j2x2 - (6.6)
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The superscript T stands for the transpose. Equation (6.5) provides
three pairs of complex conjugates for the eigenvalue p and the associat- C
ed eigenvector a. If p,, an, (m = 1,2,...,6) are the eigenvalues and
eigenvectors, we will let
2
Pp+3 = Ppn +  3m+3 = 3p » 6.7
where an overbar denote the complex conjugate. The general solution for
u as given by (6.3) can be written as
3 - (6.8a)
s = T (ap2a2a’! + hpdaza’D/(+D) -]
~ m- ~ ~
in which qg and hy are arbitrary constants and
, 9
2, = x, + ppx, = r(cosd + pypsinf) . (6.8b)
¢
In (6.8b), r and 6 are the polar coordinates. \
Let t; be the surface traction on a radial plane which makes an S
angle 6 with the x, axis. We then have
t; = -0;18inf + o;cos6 , 6.9)
-
or, using (6.4), (6.5), (6.6) and (6.8b),
1 (6.10a) ‘
t = - p2%,
Ay o -~ - '
where
b= (R+pDa . (6.10b) g
L)
A%
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The general solution for the surface traction can be written as (Ting :ﬁ
r 1986) -
|' &
|

; 1 3 - - (6.11) e,
- - 6 L]
L t r -El (‘iI-Blz-*1 + h-E-lﬁ”) . -J:
3
To derive the order of stress singularities, we need the expres- ::
-'\

sions of u and t a: 0 = ¢ and (¢ ¢ =) where ¢ is a fixed angle. Notic- p

~ -

’ ing that Z, of (6.8b) for 0 = ¢ and (¢ &t v) are related by (Ting and .
Chou 1981A), é?-

-

-

! Z,(¢ ¢ 1) = &2i7"z_(9) (6.12) N
;.1

and writing Z_(¢) as :€

g
’ 2,(8) = rigl®) , (a(®) = cosé + pysind , (6.13) -
”\
-~

(6.11) for 6 = ¢ and (¢ £ *) become ::

A

=

3 - - (6.14a) 3
’ 1@ =T rf qgrytdtl@ ¢ npurdtl@n
o

3 . . - - (6. 14b) N

| tetm =2 réleti (41 mg b t341 () + &*i (B DImy 28t 1(0)) . _
Similar equations can be written for u(é) and u(¢ & 7) of (6.8). Intro- i:i

J ducing the new coefficients Eﬁ
Y
N,

9 " q.§6*1(¢) . (m not summed) , (6.15a) i‘

a
W

h, = h-E5*1(¢) . (m not summed) , (6.15b) ’

and noticing that e2i (8+1)m o _ 2idm, Lo pave
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We may consider following boundary conditions:

t(3n/2) = 0 and t'(-%/2) = 0, (6.19)
tx/2) = t'@x/2) , (6.20a)
u,(®/2) = u;(x/2) , (6.20b)

t,=(sgn t,)k,t, and t =(sgn t )k, t at 8 = »/2 , (6.20¢)

where k, and k, are the coefficients of friction at x, and x, direction
and (sgn t,) and (sgn t,) stand for the sign of t, and t,, respectively.

By introducing the matrices

1 0 0 0 0 0 (6.21)
J=|0 0 0}, G=|-(sgntyx, 1 0],
0 0 0 -(sgn t )k, O 1

equations (6.20b,c) can be written in matrix notation as

el @) Ilu(x/2) - o’ (x/2)] + Gt(x/2) = 0 . (6.22)

Substituting (6.16) and (6.17) into (6.19), (6.20a) and (6.22) and set-

ting & = x/2 lead to

cié'lq + ¢ i%%pp = 0 (6.23)
ibTB7q" + (ibTEh - 0 | (6.24)
Bq + Bh = B'q" + B0, (6.25)

> aM L P . » - ageme ~p - - P e et O N R . .
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I[(Aq + Ah) - (A%q” + a’h")] + G[Bq + Bh) = O, (6.26)

Oy

Equations (6.23)-(6.26) consist of four homogeneous equations for
9, b, S' and E'. For a non-trivial solution the determinant of the
coefficient matrix must vanish. This provides the roots for 6. Instead

of finding the determinant, we eliminate EE and B'g’' from (6.23), (6.24)

~

and (6.25) to obtain
(eiaﬂ - e-i51r) (Bq - E,h’) = 0 . (6.27)
Hence either

(ei07 - e7idm) o 3; gindxr = 0, (6.28a)

which leads to integer ¢ or

Bq = B'h’ . (6.28t)

L

For the latter we substitute h, h' and q' obtained from (6.23), (6.24)

~

and (6.28b) into (6.26). We then have
{(Jlemi0m(aB"1- A"3"71) - oié7( 1~ A"3"71)) (6.29)

- [ei07 - ¢"iémG} Bq =0 .

sy

It can be shown (Ting 1986) that

AB~1 - ;’E"l = -(W + iD), (6.30a)

(6.30b)

.....

- A Y.
-----

vy ({1
LA )

- . .,

LSS T

Fal % o ]
b T

L® &
'

er e s
Yl Ve

W AR ¢

< XA 20



i R AR RD - PP SRR | 4 5 4 & . < Ly -0 gt S L] ] L] 4 - . M AN g .\

41
where W is real and antisymmetric, while D is real, symmetric and posi-

tive definite. Equation (6.29) now reduces to

{(JWw - G) - (cot éw)ID} Bq = 0. (6.31)

For a non-trivial solution of Es, we demand that

I QW -G - (cot 6w)£E ]=o0. (6.32)

If we expand the determinant, noticing that W is antisymmetric and mak-

ing use of J and G defined in (6.21), we obtain

(sgn t,)k W ,+(sgn t Dk W . (6.33)
D, +(sgn t )k D +(sgn t )k D . '

cot or =
2

We see that when the friction is absent, i.e., k, =k, = 0, 6 = ~-1/2 is

the order of singularity.
If we apply the above procedure to the case of transversely iso-
tropic materials under axisymmetric deformation, noticing that u, = t, =

0 in equations (6.19) and (6.20), we obtain the singularity

(sgn t )k W , (6.34)
+(sgn t )k D, :

D

For isotropic composites, it can be shown (Ting 1986) that

1-2v° 1-2v 1-»7

) D,, =

(6.353)

w|2.-( 1- ’ ’

1-»
+ —
M M

(6.35b)
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where v and u are the Poisson's ratio and shear modulus, respectively.

Equation (6.33) then reduces to
cot ém = (sgn t )k, B, (6.36a)

where B is one of the Dundurs constants (Dundurs 1970)

B - p(1 - 227 - ' - 2v) (6.36b)
) s =) + 471 - )
(I1) Case B

We may consider the following boundary conditions:

tx/2) = t'(®/2) and u(x/2) = u'(x/2) , (6.37)
) t(3n/2) = t'(-x/2) , (6.38a)
u,(3%/2) = u(-7/2) , (6.38b)
t,=(sgn t )k,t and t =(sgn t)k,t, , at 6 = 3w/2 . (6.38¢c)

Equations (6.38b,c) can be written in matrix notation as

£+ I Gr/2) - u'(-7/2)] + Gt(3x/2) = 0, 6.39)

where k,, k,, sgn t,, sgn t,, £ and E are the same as in Case A. Sub-
stituting (6.16) and (6.17) into (6.37), (6.38a) and (6.39) and setting

¢ = w/2 lead to

- ’
Bq + Bh = B'q '+
Ny

oy ey

tost

~ (6.40)
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' (6.41)

Ag + Ah = A'q"+ AR,
.i&'sq * e'i&ﬂ’ih - e'i6ﬂ’nlq’ + .iéf;’h” (6.42)
J[-(.iatAq + ."ia';h) + (.'i"A’q’ + .i&';’h')]' (6.‘.3)

- Gleid™pq + e id"pp] = 0 .

Equations (6.40)-(6.43) consist of four homogeneous equations for
9 2, 2' and E'. For a non-trivial solution, the determinant of the
coefficient matrix must vanish. This provides the roots for 5. Once
again, by algebraic operations, we obtain that & is an integer or the
root of following determinant

D g (6.44)

JW-G -(cot éw)G-JD
vwhere Q and ! are the same as in Case A.
If we apply the ahove procedure to the case of transversely iso-
tropic materials under axisymmetric deformation, noticing that u, = t 6 =

0 in equations (6.37) and (6.38), we obtain the singularity

-(sgn t )k W , (6.45)
D, ,*(sgn t:)kzosz

cot o =

When the friction is absent, i.e., k, = 0, 6 = -1/2 is the order of sin-
gularity.

For isotropic composites (6.44) reduces to

cot ém = - (sgn t, )k, B ,

R T O I I R L

g, . .
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where B is one of the Dundurs constants given in (6.36b). Equation
(6.46) agrees with the result obtained by Comninou (1978B).

We have verified that 6 obtained from (6.34) and (6.45) agreed with
that obtained from (4.12) for Case A and B, respectively. Since § is
real, the unrealistic inter-penetration of the crack surfaces does not

exist.
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Chapter VII

CONCLUDING REMARKS

The problem of stress singularity in a three-dimensional elastic
solid that contains axisymmetric notches or cracks and subjected to an
axisymmetric deformation has been reduced to a mathematically two-
dimensional problem. In this case, it has been shown that the eigen-
functions for the singularity associated with an eigenvalue J contain
not only the term p%£(,8), but also the terms pa+1£,(¢,6), p5+2f2(¢,6)
... where (p,¥) is the polar coordinate with origin at the apex of
notches or cracks. In the case of interface crack with a contact zone,
it can be seen from (6.34) and (6.45) that if 6 is an eigenvalue, so is
64k where k is an integer. For the high order terms of the eigenfunc-
tion solution, equations (4.7b) must be solved. Numerical calculation
showes that (4.7b) has no solution for k = 1. To obtain the high order
toé;c for k 2 1 the modified solution of (3.8), which is obtained by
differetiating (2.27) with respect to 5, has been used. A solution for
term k = 1 is thus obtained but (3.8¢c) and (3.84) have no numerical
solution for k = 2. To obtain the terms associate with k > 2 one has to
find the new‘ solutions by taking second or higher derivatives with
respect to 4.

From the numerical computations we present the following conclu-

sions
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(1) 1t is shown in Chapter VI that the first term in the eigenfuncion
series solution of axisymmetric deformation is the same as the solution
of plane strain problem. The singularity & of two isotropic materials
obtained by the formulas here agrees with the results of Bogy(1971) and
Lin and Mar (1976).
(2) When the material constants of two transversely isotropic materials
in a8 composite are chosen in such a way that they are very close to two
isotropic materials, the order of singularity obtained by the formulas
of transversely isotropic composite and of isotropic composite are very
close.

(3) The singularities obtained by the methods of Chapter V and Chapter

VI are exactly same.
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Appendix A

DERIVATION OF EQUATIONS (2.13)

Substitution of (2.9a) into (2.8) and noticing that o) s of

order 96+k+2’ we see that (2.8) is satisfied if

29 (o) 1 2'¢(0) (A1)
ox3? p? 2z? 0.

26X 1 % k-1 k-1-m 2¢ @ N (A2)
FYr - = 327 = § x 3 , k21 .

x p? %z m=o x

Thus each term in (A2) is of order p5+k. Using (2.9b) in (A2) we obtain

At uen)£tT1g 8kt tgl.«t(“)mt 1284kt41 (51g-t+2) a3
= "1 + J:: ’
where
J‘ - ‘glxk l-m 2 A(ll) ('+1)xlza+ﬂ“8+1 (a4)
k-1 A5
1, - nglxk 1-m 2 A(m) xS20rmstl s 42). (A5)
By letting s = t+m-k and interchanging the summations, we have
k-1 k-1 _ - (A6)
J‘ t- { 2 (t_k"'m"'l)At(E%m*.l}xt lza+k t+1’
k- l k-1
- - A7
3, = T T Al® xtT1z0kt  gyorag) . (A7)

2 t- n=k-t
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By setting the coefficients of the same terms in (A3) to zero, we obtain

k-1
(x) . (m) (48)
2 -z A,
t(trDalkle 2t (Ber-t+2)a{®) (A9)
k-1

" -t {(t-k+m+ l)At(!%ﬁ,+ 1+ (3+k~t+2) Ag.'.'i.,,.l .

Equation (A9) can be rewritten as, by letting m = s+k-t-1,

t(t+1) A+ 2t (B+x-t+2)a{K) | (A10)

t
A OV O 2 Tt s B I

To express (A8) in the form of (2.13a), we replace k by k-1 in (A8) to

obtair.

k-2
2x-)a V- T a®, N

=0
and subtract (All) from (A8). We have
2kaf{®) - 2(k-1) Ak = Ak7D (A12)

which is idntical to (2.13a). Similarly, we replace k and t by k-1 and

t-1, respectively, in (Al0) which reduces to

(t-1)tal®* D+ 2(t-1) (s+k-t+2)alk7D (A13)

t-1
- .5 {sa3* K7t 1y (Gen-te2) a2k 71

Equation (2.13b) is obtained when (Al3) is subtracted from (Al0).
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Appendix B
MODIFIED SOLUTIONS IN SECTION (3.1)
E We obtain, by differentiating equation (2.14a), (2.17) and (2.18)
with respect to &, the following modified solutions
k
. 2 (k) t,8+k-t+2 (81)
¢ 35 { t‘:-:oAt x-Z +... ) ’
K = ra (K 2 (k) (k)7 _t,o+k-t+1 (82)
u, = tgo{[At (6"‘k"t"'2) + A t+1(t+l) + At ] X 2'
+ (AR (3+k-142) + A{K] (t+1)] xt28*k-ttlynz o+
ko, - (B3)
Uék)' t§0{[At(k)‘lpl(6+k_t+2) + At(k)-'p‘] xt2?+k t+1
+ A{®m p, (5+k-t+2) xtz0tk=t+linz 3 4+ |
(B4)

k
o= 2 -a{®e, (em,)pl (Brk-te2) (Bk-te)

+affP2(c, m¢, ) (t+1) (+k-t+1)
+agsB) (e, -, ) (1+2) (t+1)
-af®e, , (1+m,) p? (28+2k-2t+3)
salt]2(c, e, ) (+1)] xtzé*k-t

+ -af®c,, (14m,) p? (8+k-t+2) (5+k-t+1)
+af82(e, -¢, ) (t+1) (3+k-t+1)

A8 (e, e, ,) (642) (t+1)] xtz8*ktinz } + |,
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k 3
, . (BS) l".
) aék)- t§0[.At (k) (c”*c,am,p:) (8+k=t+2) (6+k-t+1) W
AP 2(c, e, ) (£+1) (3+k-t+1) ;:
-ac{B) (1+2) (t+1) 22
P +A§k) (c,,*c, m,p}) (25+2k-2t+3) N
~af82(c, -, ) (t+1)] xtzd*k-t 0%
+ L AR (e, ,+e, ,m,p?) (5+k-t+2) (5+k-t+1) 3
) -af82(c, ¢, ) (t+1) (5+k-t+1) >
-alk) (t+2) (t+1)) xtz8*K"tinz } + ]
t+ 1 1 ) -,
o
k (B6) &
, B6
) az(k)- t‘::o”-At(k)cu(lﬂn‘) (6+k-t+2) (6+k-t+1) i‘
-al®c,, (1+m)) (28+2k-2t+3)] xtzd*k-t 0%
-a{®c,, (1+m,) (3+k-t+2) (3+k-t+1)] xtz8*k~tinz } + . o
ey
k .
. . B7 N
a,(.g)-tgo{[At(‘%n—wz) (3+k=t+1)+ar %) (£41) (S+k-t+1) ®7 ~
“v
A
+afkX25+2k-26+3) +a{8] (t+1)] ¢, (1+m,)p, xt2d*k-E B
a
AR s+k-t+2) +a{8) (t+1) e, (1+m ) p, (3+k-t+1)xt28*k"tinz }+_ ., i
.
::,
g
a
For the degenerate materials, we obtain from equations (2.37), (2.38) :.\:"‘
and (2.39)
X v
LY
®. 2 (k) _t,5+k-t+2, (k) t,d+k-t+2 (B8) o
¢ Y { tzo[At x-2Z +Cy 'x"Z ]
k -
+ tz:o[Bt(k)zxtza*k't‘I*Dt(k)thzé"‘k‘t*l] (6“’k’t*2)} ,
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k
u{®- t§0{[A§(kla+k-t+2)+A§f§)(t+1)+A§*)]xtza**"*1 (59

+[B{ (RX+k-t+2) (3+k-t+ 1) +B{ {FXt+1) (G+k-t+1)
+B{kX28+2k-2t+3) +B{K] (t+1) ) zxt2 8kt
+ (Al B+k-t+2) +all] (4 1)) xt28 K"t 110z

+ BYs+k-t+2)+B{E] (t+1)] (s+x-t+ D zxt28** tinz} + ...

k
w= 2 (I W8 Gr-tr2 -8 W (3-00) Ger-eed) (810

+A{R)Bi-B{K) (3-4v) ] xtz8*k-t+1

+[B{ (K)Bi (5+k-t+2) (5+k-t+1)

+B{K)Bi (25+2k-2t+3)] 2xtz8+kt
+IAM®Bi-B{®) (3-41)] (5+k-t+2) xt28*K"t*11nz

+B{K)Bi (5+k-t+2) (S+k-t+1) zxt28*K"tinz} + ...

k 3 ’
oL o= 5 (1 ®87-8{ © 2180 (sri-t42) (o) (B0

AL S 2y (t+1) (Bri-t+ 1D +Ag SB) ¥ (142) (£41) ) xP200KE
+[Bf (W) * (3+x-t+2) (3+k-t+1) +B{ {P 27 (t+1) (3+k-t+1)
+B{ (B v (t+2) (t+1)] (s+k-t)zxt28*k"t"1

+ (AR 8*-B{¥) 2,81) (28+2k-2t+3) +a{k] 2y (t+1) ] xt20*k"T
+[B{K)B? ((25+2Kk-2t+3) (8+k-t)+ (5+k-1+2) (5+k-t+1))
+B§¥{27(t+1)(26+zk—zt+1)+8§¥}v(t+2)(c+1)]zxtz5*k-t'1
+[(Af®)87-B{K) 20B1) (5+k-t+2) (5+k-t+1)

wal8] 2y (t+1) (3+k-t+ 1) +a{khy (t+2) (£41)1xt28* K tinz
+[B{RIB” (5+k-t+2) (3+k-t+1) +B{E] 27 (t+1) (5+k-t+1)

B8y (t+2) (t+D)] (B+k-1)zxt28* %"t 11nz} + ...
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k
5% aék)-tgb{[(AZ(k)(B"v)-BE(k)ZVBi)(6+k-t+2)(6+k-t+1) (#12)

~Af P 29 (1+1) (B+k-t+1)-A{ By (t+2) (t+1) ] xtz8*k-t

+[B{ (KAB7-v) (5+k-t+2) (3+k-t+1)-B{ (P 2v(t+1) (5+k-t+1)

) -B{ B v (t+2) (t+1)] (3+x-t) zxt28+k-t-1

+[(A) B*-y)-B{R) 2:81) (25+2k-2t+3)-a{k] 29 (t+1) ] xt28*k-t

+[BEEXB ) ((3+k-t+2) (3+k-t+1)+(25+2k-2t+3))

r -B (%] 27 (t+1) (25+2k-2t+1)-B ]y (t+2) (t+1)) zxtz*k-t-1
+[Af®) @) -B{R) 2481) (5+k-t+2) (5+k-t+1)

-al8] 2y (t+1) (B+x-t+1)-A{k)y (t+2) (£+1) 1 xt28*k"t 1z

b +[B{¥XB" ) (5+k-1+2) (8+k-t+1)-B{K] 2y (t+1) (3+k-t+1)

-B{%ly (£+2) (t+1)]) (6+x-t) zxt28*k~t-11nz2} + |

(B13)

k
1 ,(k (k) n’ (K .a-1 +k-
5 ogt= T Iy W3 201-1) 71 (B+k-te2) Bor-ten)t28H

B¢ (KL3+k-t+2) (3+k-t+1) (3+k-t) zxt2é*k"t"1
- (AW 4B 2(1-1) iB™1) (25+2k-2t+3) xtz87R "t
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k
k ‘(k)g:_n”(k (B14)
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+(By W) (5+x-1+2) +B{{P (E+1)] (S+k-t+1) (3+k-t)BizxtzO*k "1
[A{MBi-B{®) (1-2r)) (25+2x-2t+3) Py
+(af81Bi-3{8] (1-20)) (t+1) ) st28*0-t
+ [lt(“l(aﬂ-toz) (S+x-t+1)+(28+2K-2t+3) (8+k-t))
+3{B] (t+1) (28+2x-2t+3)]1Bizatzd*k-t-1 5
s [ AW Bi-p{®) (1-25)) (5+k-1+2)
+(A{8]Bi-3{8 (1-20)) (1+1)] (3+k-t+1) xt28*k"t 0z
< [B{RXsen-t+2) 4 {5 (t+1)] (Bon-t+1) (Ben-1)Bizxt28** t-1ynz}e. . 2
?
)
»
v
’

1

g




54

;
o
N
BIBLIOGRAPHY .;\‘:
Sy
Barnett, D.M. and Lothe, J., 1973, "Synthesis of the Sextic and the Eg‘
Integral Formalism for Dislocation, Greens Function and Surface Waves $§:
in Anisotropic Elastic Solids," Phys. Norv., Vol.7, pp.13-19, gf
Barnett, D.M. and Lothe, J., 1975, "Line Force Loadings on Anisotropic Sﬁ
Half-Space and Wedges," Phys. Norv., Vol.8, pp.13-22. g;
Bazant, Z.P. 1974, "Three-Dimensional Harmonic Functions Near Termina- ;3
tion or Intersection of Gradient Singularity Lines: A General Numer- };
ical Method," Int. J. Eng. Science, Vol.l2, pp.221-243. Eé?
Bazant, Z.P. and Estenssoro, L.F., 1977, "General Numerical Method for §f
Three Dimensional Singularity in Cracked or Notched Elastic Solids," if
Fracture 1977, Proceeding of the 4th International Conference on Esf
Fracture, edited by Taplin, D.M.R., Univ. of Waterloo, Ontario, Cana- ;.A
da, Vol.3, pp.371-385. -:Z:
Bazant, Z.P. and Estenssoro, L.F., 1979, "Surface Singularity and Crack ?E
Propagation,” Int. J. Solids Structures, Vol.l5, pp.405-426. S
Benthem, J.P., 1977, "State of Stress at Vertex of a Quarter-Infinite ;S-
Crack in a Half Space,” Int. J. Solids Structures, Vol.l3, g E
pp.479-492. ;
Benthem, J.P., 1980, "The Quarter-Infinite Crack in a Half Space; Alter- E\
native and Additional Solutions," Int. J. Solids Structures, Vol.l6,
pp.119-130. <y
o
2
2
-3

) . - oo o A, et
e 0.. -. MY 1+ P 08 M N 7 ’\'.\"-A-l <., SRy "’ A

_;.- s '-";r .- et .



55
Bogy, D.B., 1970, "On the Problem Edge-Bond Elastic Quarter Plane Loaded
at the Boundary," Int. J. Solids Structures, Vol.6, pp.1287-1313.
Bogy, D.B., 1971, "Two Edge-Bonded Elastic Wedges of Different Materials

and Wedge Angles Under Surface Tractions," J. Applied Mechanics,
Vol.38, No.2, pp.377-386.
Bogy, D.B., 1972, "The Plane Solution for Anisotropic Elastic Wedge

Under Normal and Shear Loading", J. Applied Mechanics, Vol.39,

[ ¥

PP-1103-1109.

Bogy, D.B., and Wang, K.C. 1971, "Stress Singularities at Interface Cor-

‘ners in Bonded Dissimilar Isotropic elastic Materials," Int. J. Sol-

ids Structures, Vol.7, pp.993-1005.

: Comninou, M., 1977A, "The Interface Crack," J. Applied Mechanics,
Vol.44, pp.631-636.

Comninou, M., 1977B, "Interface Crack with Friction in the Contact
Zone," J. Applied Mechanics, Vol.44, pp.780-781.

Cook, T.S. and Erdogan, F., 1972, "Stresses in Bonded Materials with a
Crack Perpendicular to the Interface,”" Int. J. Engineering Science,
Vol.10, pp.677-697.

Delale, F., and Erdogan, F., 1979, "Bonded Orthotropic Strips with
Cracks," Int. J., Fracture, Vol.15, pp.343-364.

Delale, F., and Erdogan, F., 1981, "The Axisymmetric Elasticity Problems
for a Laminated Plate Containing a Circular Hole," Lehigh University
Report, July.

Delale, F., Kishore, N.N. and Wang, A.S.D., 1984, "Stress Analysis of a
Composite Plate With Circular Hole Under Axisymmetric Bending'" J.

Composite Materials, Vol.l18 No.5, pp.420-431.

..............................
......

.......
-------------



RN RN R T P T U T VN A TR U R T Y XA RN AN ARG K NTA) 3 TR R FY) YAty VUV NV Y I'l‘.|'|‘

W
56 Y.
Dempsey, J.P., 1981, "The Wedge Subjected to Tractions: A Paradox ?:"
’ Resolved," J. Elasticity, Vol.ll1l, pp.1-10. ;:
Dempsey. J.P. and Sinclair, G.B., 1979, "On the Stress Singularities in i’
‘ the Plane Elasticity of the Composite Wedge," J. Elasticity, Vol.9, {1
| pp.373-391. 3
\'
Dempsey, J.P. and Sinclair, G.B., 1981, "On the Singular Behavior at the fE
Vertex of a Bi-Material Wedge," J. Elasticity, Vol.ll, pp.317-327, ;’
Dundurs, J., 1970, Recent Advances in Engineering, edited by A.C. Erin- ﬁ:
"
gen, Gordon and Breach Pub., Vol. 5, pp.203-206. Ei
England, A.H., 1965, "A Crack Between Dissimilar Media," J. Applied &'
Mechanics, Vol.32, pp.400-402. :
Elliott, H.A., 1948, "Three-Dimensional Stress Distributions in Hexago- 5;'
nal Aeolotropic Crystals," Proc. Casbridge Phil. Soc., Vol.&44, 3
pp.522-533. ;:_:
Erdogan, F. and Gupta, G.D., 1972, "Stresses Near a Flat Inclusion in if:
Bonded Dissimslar Materials,”" Int. J. Solids Structrues, Vol.8, %:
pp.533-547. f{:
Esheldby, J.D., Read, W.T. and Shockley, W., 1953, "Anisotropic Elastici- ;E.
ty With Applications to Dislocation Theory," Act. Met., Vol.l, ;5\
pp.251-259, '.-_;-_
Green, A.E. and Zerna, W., 1954, Theoretical Elasticity, Oxford Univer- Z?E
sity Press, Oxford. E?T
Hilderbrand, F.B., 1954, Methods of Applied Mathematics, Prentice-Hall, :{
Englewood Cliffs, N.J. ‘5;
Hoenig, A., 1982, "Near-Tip Behavior of a Crack in a Plane Anisotropic i
Elastic Body," Engineering Fracture Mechanics, Vol.16, pp.393-403. H;T




57

Kassir, M.K. and Sih, G.C., 1975, "Three-Dimensional Crack Problem,” in
Mechanics of Fracture, Vol.2, Noordhoff, pp.336-342.

Kawai, T., Fujitani, Y. and Kumagai, K., 1977, "Analysis of Singularity
at the Root of the Surface Crack Problem," Proc. Int. Conf. Fracture
Mech. and Tech., edited by Sih, G.C. and Chow, C.L., Vol.ll,
pp.1157-1163.

Knein, M., 1926, "Zur Theorie des Druckversuchs," Zeit. Ang. Math,
Mech., Vol.6, pp.414-416.

Kuo, M.C. and Bogy, D.B., 1974, "Plane Solutions for the Displacement
and Traction-Displacement Problems for Anisotropic Elastic Wedge," J.
Applied Mechanics, Vol.4l, pp.197-203.

Lekhnitskii, S.G., 1981, Theory of Elasticity of an Anisotropic Body,
MIR Publishers, Moscow.

Lin, K.Y. and Mar, J.W., 1976, "Finite Element Analysis of Stress Inten-
sity Factors to Cracks at a Bimaterial Interface,” Int. J. Fracture,
Vol.12, pp.521-531.

Somaratna, N. and Ting, T.C.T., 1986A "Three-Dimensional Stress Singu-
larities at Conical Notches and Inclusions in Transversely Isotropic
Materials," ASME, J. Applied Mechanics, Vol.53, pp.89-96.

Somaratna, N. and Ting, T.C.T., 19868 "Three-Dimerisional Stress Singu-
larities in Anisotropic Materials and Composites,” Int. J. Eng. Sci-
ence, Vol. 24, No. 7, pp.l1115-1134.

Sih, G.C. and Chan, Z.P.. 1981, Cracks in Cosposilte Materials, Martinus
Nijhoff Pud., pp.87-97.

Sih, G.C., Paris, P.C. and Irwin, G.R., 1965, '"On Cracks in Rectilineary

Anisotropic Bodies,” Int. J. Fracture Mechanics, Vol.l, pp.189-302.

“p € '.S" Py L gV, S WS

R A R N S L SR e
AV AR G N SR TR S OGO (X

o/

.....



4 O R R T I OO O MO SO e Ol RO O (TP VROV O YOR TP ST WOE RO FOLRUCT N WO

’ =
o

58 f¢

Stroh, A.N. 1958, "Dislocations and Cracks in Anisotropic Elasticity," 'J

' Phil. Mag., Vol.7, pp.625-646. ?
Stroh, A.N. 1962, "Steady State Problems in Anisotropic Elasticity," J. ;z

‘ Math. Phys., Vol.4l, pp.77-103. ;g
’ Ting, T.C.T., 1982, "Effects of Change of Reference Coordinates on the ;’
Stress Analysis of Anisotropic Elastic Materials," Int. J. Solids iﬁ

Structrues, Vol.18, pp.139-152. '¢:

Ting, T.C.T., 1984, "The Wedge Subjected to Tractions: A Paradox Re- :“

Examined,” J. Elasticity, Vol.l4, No.3, pp.235-247, :;

Ting, T.C.T., 1985, "Asymptotic Solution Near the Apex of an Elastic }&

Wedge With Curved Boundaries," Q. Appl. Math., Vol.42, No.4, ::

pp.467-476. Ef

Ting, T.C.T., 1986, "Explicit Solution and Invariance of the Singulari- k%‘

i

ties at an Interface Crack in Anisotropic Composite," Int. J. Solids

5

“r m

Structures, Vol.22, No. 9, pp.965-983.

g

-7

el

Ting, T.C.T. and Chou, S.C., 198lA, "Stress Singularities in Laminated

Composites," Proc. Second USA-USSR Symposium on Fracture of Composite y:/
Msterials, G. Sih and V. Tamuzs, Editors, Noordhoff, pp.265-278. E{;
‘ Ting, T.C.T. and Chou, S.C., 1981B, "Edge Singularities in Anisotropic ;.»
Composites," Int. J. Solids Structrues, Vol.17, pp.1057-1068. :ﬁ
Ting, T.C.T. and Chou, S.C., 1985, "Logarithmic Singularity of an Elas- ;;
‘ tic Composite Wedge Subjected to Out-of-the-Plane Extensional ;?
Strain," Theoretical and Applied Fractural Mechanics, Vol.4&, ;:3
pp.223-231. EE‘
Ting, T.C.T. and Hoang, P.H., 1984, "Singularities at the Tip of a Crack ::
Normsl to the Interface of an Anistrupic Layered Composite," Int. J. N

Solids Structures, Vol.20, pp.439-454.




59

Tong, P., Pian, T.H.H. and Lasry, S.J., 1973, "A Hybrid-Element Approach
to Crack Problems in Plane Elasticity," Int. J. Numerical Mech. in
Eng., Vol.7, pp.297-308.

Wang, S. S. and Choi, 1., 1983, "The Interface Crack Between Dissimilar
Anisotropic Composite Materials," J. Applied Mechanics, Vol.50,
pp.169-178.

Williams, M.L., 1952, "Stress Singularities Resulting From Various
Boundary Conditions in Angular Corner of Plate in Extension," ASME J.
Applied Mechanics, Vol.19, pp.526-528.

Williams, M.L., 1959, "Stresses Around a Fault or Crack in dissimilar
Media," Bull. Seis. Soc. Am., Vol.49, pp.199-204.

Zak,A.K. and Williams, M.L., 1963, "Crack Point Stress Singularity at a
Bi-Materials Interface," J. Applied Mechanics, Vol.30, pp.142-143.

Zwiers, R., Ting, T.C.T. and Spilker, R.L., 1982, "On the Logarithmic
Singularity of Free-Edge Stress in Laminated Composite Under Uniform

Extension," ASME J. Applied Mechanics, Vol.49, pp.561-569.




R A DWW UNPA UAE P URT AP LPW LRI LTAIY USE L WPTCU YA SUAPICA PP VLN YOS LPSUNTA YOL WU TOR WL b, WO PO Y l‘u'lg!
"

)

l"

XA

60 ¢

—
S———
——
L, ]
——
L
» «
o

.
o

v
-
-

SN

g

-

Lo ]
L 4 s
EEEL

” &

. eele
-'l.l.

TV L

k4

e I 4
o LA
Lol

i~

."'

Py
Prasanmy
- —
Ap——
p—
Py
T
P

hd
.
L

ST,

Fig.l Cross section of an axisymmetric body that contains notches

SRS

N
¥
N

-~
~ - o . - - - LA ] UN
R LR CORG NN, (IR 1,0t LIS 06 (R 7 % LT RUSAGES, CF, TR W




Z

!
I
|
|

Material 1

Material 2

T
—

|
|
|
I

Fig.2 Cross section of an axisymmetric composite that contains notches

W

(&)



D SR % e 7+ R CNARIAIA R TN S AR OSSO 4 JDahCutul o . DK 4o
S, N h\%l‘ ™ L o, d-u 4 = \b\Fw o, -‘0 LA \- \n\ . -- .\...-..\-.. - I\J-) & \-'--th(-\f‘\ \An.. - ’, .-. \- \q \. \P\! USRS ... ..u \.-\-’ U *. -. .-. .-’.-P\f. ln:\ﬂ tﬁ ‘«.’%‘m h\u 2, !\ . »
P o
K »
-.m
)
3 < ..rn
2 =
- c l’
< ~ c .
O 3
L .
] [«
3 - %
- o )
- ) k'
“. [ ] -fu
L
-, =] .
. - . v
- ° .
- E. .n-L
- bt l‘
e -
5 e .-
K -
7 "
k -
: [
; ]
=4 —
-
h [+ %
. .m [ E
N m - “
: s “ ™
v " -
" o
]
et -
- o
. "
N =
i o el
' e -
. N! -_— e}
] [ ] [ ]
— ’ E -
[] [ [ ]
o
/V ' —— . 3 m =
N o
. [ 4 [
N 1 £ "
- <
A ) d Uv \ $83418 "~
R [« ]
“w




T ‘ ‘

-180 -90 C 90
angle ¢

Fig.b The normalized stresses from the first term of the eigenfuncti.on

associated with 6, of Example 1




64

<
Q
2
~
) -
[
[
-
]

ol’

2
o
)
‘T‘ 1 )
-180 -90 80
angle v
Fig.5 The normalized stresses from the first term of the eigenfunction

associated with 6‘ of Example 2

LIRS A I LI B AR S TN SN T S L
TP A S I Y I o )

.. .
PSR Y ot

AT A A
A o

o -".‘f;. l.;-

2 ALl AL,
55

r
’s

> 4

v fe w4

PR

’

LR R I B
. o
x5

|

el
o

S

[ 3e3° J

PN

7

Y XY
LA

i ‘(&- "l' ."," ‘.' ..'.n

; " lf-..t',r:":.‘:’-:.l

e [
C XA

’c.'l.‘ s. \. ﬁ' ':‘

4

»

S



' '4-—v"”

L )
\/
'S

L
‘\
]
y *.
Py | ) L Y
L) ]
Q '
") '
L}
~ ]
" .
" L}
8 [}
5 :
" L}
L}
L]
]
]
]
]
1
]
[ ]
[} ar
9r2
¢ 3
n 1
-180 -S0 90
angle ¢

associated with &, of Example 2

LIPS ]

LIPE T »
i, J L .‘-".: AN

[y

Fig.6 The normalized stresses from the first

AT ;™ - - » ] - -y -
X ! . EN

term of the eigenfunction

-

65




) -
IO OO >

66

Material 1

-~
-

Fig.7 Cross section of an axisymmetric compos:te that conta . ns ar

interface crack with a contact z0ne

W

R TN

s

PN

AR

“.."\.

PN

'Il

v . =
P

o e e e
-

S YYVAL
s A 4

&

a8 S
0




i
6 »
-

)

.

»

L)

1)

Al

‘U

‘.‘ A

8 )

~ 2

(4 g

[} .

. +

- -

[
]

'

'l

<

\

“

‘

'

-9C 0 90 18C 270 <

angle ¢ :'.:

>

¥

Fig.8 The normalized stresses from the first term of the eigenfunction )

in Case A of an interface crack with frictionless contact -

.

A

- -
O LR W TV, My CHDNEALUS i S PRV W



68

0

stress / (cp‘)

-0.8

-
-90 0 90 18C 270
sngle ¥

fig.9 The normalized stresses from the first term of the eigenfunction

in Case B of an interface crack with frictionless contact

R L S s P T e L T IR

3 P2
=% 2 5

. e
-t A

-

O T v 8
.'5,., S

3
-

Y

L

[

.

. 8
v

ES A
o

AR
LA

- %N
£

“~n
Nl

_‘{

» -"’-'-

&

LJ

XX XA

R

AR

.'\- '..-'\-.

AR )

.,



69

— — -l
[ 2]

* )
B LI
| ™
v, ll/\#, ®
l I
]
| Material 1 il Material 2
]
l " ¢3 ®
l n\
» A \ _
| [/
2
®

L r
o —— — — a——— — — —— —— — e
w
Fig.10 Cross section of an axisymmetric composite that contains a ®
vertical interface crack with a contact 2one
P

LN ) o o, of y o G 4 o o ) o o 1
LA NN LAY ,...!..A‘a ¥ .A...l. (Y M ,.,,|,'




DISTRIBUTION LIST

Office of Deputy Under Secretary of Defense
for Research and Engineering (ET)
ATIN: Mr. J. Persh, Staff Spe<.ialist for Materials
and Structures (Room 3D1089)
The Pentagon
Washington, DC 2030}

Office of Deputy Chief of Research Development
and Acquisition

ATTN: DAMA-CSS

The Psntagon

Washington, DC 2030l

Commander

U.S. Army Materiel Command

ATTN: AMCLD, R. Vitali, Office of Laboratory Managesment
5001 Eisenhower Avenue

Alexandria, VA 22333

Director

U.S. Army Strategic Defense Comsand

ATTN: DASD-H-L, M. Capps
DASD-H-L, Dr. S. Proffict
DASD-B-B, R. Buckelew
DASD-H-E, J. Katechis

P.0. Box 1500

Huntsville, AL 135807

Director

U.S. Army Strategic Defense Command

ATTN: DASD-H-Y, Col. K. Kawano
DASD-H-W, Dr. E. Wilkinson
DASD-R-W, J. Papadopoulos
DASD-H-W, S. Brockway

P.0. Box 1500

Huntsville, AL 35807-380!

Director

Defense Nuclear Agency

ATTN: SPAS, Maj. D. K. Apo
SPLH, J. W. Somers
SPLE, Dr. B. Steverding

Washington, DC 20305-1000

Director

Army Ballistic Research Laboratories

ATTN: DRDAR-BLT, Dr. N. J. Huffington, Jr
DRDAR-BLT, Dr. T. W. Wright
DRDAR-BLT, Dr. G. L. Moss

Aberdeen Proving Ground, MD 21005

No., of Copies

MO B Xl “.'."l,"t v “‘..“nl 'I".,, '._' “."' A .1‘ h .A’ """f'f .‘..' ‘e el

[

\\\\l‘

%S i'n\"-

SN A A SN

&

PRECRON )
oo

. \‘)

AR,

- -



Commander

Air Force Materials Laboratory
Air Force Systems Cosmand

ATTR: LNC, Dr. D. Schaidt
Wright-Patterson Air Force Base
Dayton, OH 45433

Commander

BMO/ABRES Office

ATIN: Capt. S. Opel

Norton Air Force Base, CA 92409

Commander

Air Force Materials Laboratory
ATTN: APML/KBM, Dr. S. W. Tsai
Wright-Patterson Air Force Base
Dayton, OH 45433

Commander

Naval Ordinance Systems Command
ATTN: ORD-03331, Mr. M. Kinna
Washington, DC 20360

Naval Postgraduate School
ATTN: Code NC4(67WT), Prof. E. M. Wu
Monterey, CA 93943

Commander
Naval Surface Weapons Center
ATTN: C. Lyons
C. Rowe
Silver Springs, MD 20910

Defense Documentation Center
Cameron Station, Bldg. 5
5010 Duke Station
Alexandria, VA 221314

Aerospace Corporation
ATTN: Dr. R. Cooper
P.O. Box 92957

Los Angeles, CA 90009

AVCO Corporation
Government Products Group
ATIN: Dr. W. Reinecke

P. Rolincik
201 Lowell Street
Wilaington, MA 0199’

No.

J

O

v)

)

(§3

FA o

P-gP g

L X A

P2ty

e I N y ¥R

o




M. s~ rsjies
ETA Corporation
ATTN: D. L. Mykkinen 1
P.0. Box 6625
Orange, CA 92667

Fiber Materials, Inc.

ATTN: M. Subilia, Jr. 1
L. Landers 1
R. Burns 1

Biddeford Industrial Park
Biddeford, ME 04005

General Electric Company

Advanced Materials Development Laboratory

ATTN: K. Hall 1
J. Brazel 1

3198 Chestnut Street ' '

Philadelphia, PA 19101

General Dynamics Corporation

Convair Division

ATTN: J. Hertz 1
5001 Kearnmy Villa Road

San Diego, CA 92138

General Research Corporation

ATIN: Dr. R. Wengler 1
Dr. R. Parisse 1
J. Green 1

5383 Hollister Avenue
Santa Barbara, CA 93111

Hercules Aerospace Corporation

ATTN: Dr. S. W. Beckwith (X2F5) 1
P.0. Box 98

Magna, UT 84044-0098

Kaman Sciences Corporation

ATTN: Dr., D. C. Williams

P.0. Box 7463 1
Colorado Springs, CO 80933

Ktech
7 ATIN: Dr. D. Keller 1
911 Pennsylvania Avenue, N.E,

Albuquerque, NM 87110

Lavrence Livermore National Laboratory

ATTN: Dr. W. W. Feng 1
P.0. Box 808 (L-342)

Livermore, CA 94550




w. ©f Cozle.

Lehigh University
Institute of Fracture and Solid Mechanics Py
ATTN: Dr. George C. Sih 1
Packard Lab, Bldg. 39
Bethlehem, PA 18015

Los Alamos National Laboratory

ATIN: Dr. W. D. Birchler, Mail Siop G787 1
Henry L. Borak 1

Los Alamos, NM 87545

O

Martin Marietta Aerospace

ATTN: V., Hewitt 1
Frank H. Koo |

P.0. Box 5837

Orlando, FL 32805

Massachusetts Institute of Technology

Department of Aeronautics and Astronautics

ATTN: Prof. T. H. H. Pian (Room 311, Bldg. 73) 1
Cambridge, MA 02139

©

Pacifica Technology, Inc.

ATTIN: Dr. Ponsford 1

P.0. Box 148

Del Mar, CA 92014 >

Radkowski Associates

ATTN: Dr. P. Radkowski 1
P.0. Box 5474

Riverside, CA 92507

‘A

Rohr Industries, Inc.

ATIN: Dr. T. H. Tsiang 1
MZ-19T

P.0. Box 878

Chula Vista, CA 92012-0878

Sandia Laboratories

ATTN: Dr. W. Alzheimer 1
Dr. M. Forrestal 1 ]
Dr. E. P. Chen, Div. 1524 1

P.0. Box 5800

Albuquerque, NM 87115 v

Southwest Research Institute

ATTN: A. VWenzel 1
8500 Culebra Road

San Antonio, TX 78206

SPARTA, Inc.
ATTN: J. Wonacott |
J. Glatz 1
1055 Wall Street
Suite 200
P.0. Box 1354 2
La Jolla, CA 92038 4 :

. . 0y g - .
e e Tty Jo ‘.',“‘ DA S l ' A ON OO A '




Terra Tek, Inc.

ATTN: Dr. A. B. Jones
420 Wakara Way

Salt Lake City, UT 84108

University of Washington
ATIN: K. Y. Lin

FS-~10, Guggenhein Bldg.
Seattle, WA 98195

Director

Army Materials Technology Laboratory

ATTN: SLCMT-BM, J. F. Dignam
SLCMT-BM, S. C. Chou
SLCMT-BM, L. R. Aronin
SLCMT-BM, D. P. Dandekar
SLCMT-1SC '
SLCMT-IML

Watertown, MA 02172

N
.

S

N r= bt s LN

Ot \,.\. R AT AR L A NN
A h A A A

Y -
P b

)

[y z
5 ‘Js;'

e L%
oy '::~ A

a’ e s 8
/.')

1Y
P

, .,1.
L IR

e/

v
[}

"l’:“ s

s ag §

R

-

PR 'I‘I"‘-"f.

)
D
ALY

.
A

13



FOR TRAMSVERSE.Y I[SOTSOPIC OOMPOSITES
end T. C. 7. Ting

WITH APPLICATIONS TO STRESS ANALYSIS

OF 4 DROKEEN PIDgR

It jssa Jin

Lllus-thie. Contraet DAMDAS-00-E-0007

8/4 Projest 536-6010

SIOENFUSCTIONS AT A SENOWLAR ONTY
Depertasat of Civi)l Eaginsering.

Noshanics and Metal lurgy
Yatversity of llliacis ot Chicege

Ystertovs Mnasschusetts 02173-0001
fiasl Bepu. L. 4/1/08 te WL/ GBS

O. Bex G348
Qisage. B S50

9.8. Mruy Materials Toshaslegy Lederatery
Seshatenl Repert MTL TR 07-5, Jammsey 1967, 69

gaztsszzaig

70 SThERS A BB

7 4 SEOULAD POINT
IBOTROPFIC CONIUS ITHD

terteovs Massschusetts 931730002

1llve-tdls. Contract DAASES-083-K-0017

0/4 Prejost 3344010
fianl Beport. 4/1/05 te WL/ 8

§.5. Arug Materials Teshmslegy Leberstery
1 . L]
Techatcal Beport NTL TN 87-3, Jamuwary 1967, 69 pp.

oaiet
-y teras
otresese
iaterfhes
stress
sented

-

that
solar soerdimate with origis st the siagular

'}
':“"(.u 1] A
ther § anpe
[£1 oad
oral at

atorface bstueen Lhe brekes
t

wmae. the b

.o.?ﬂ *.0),

(0.8),

In thie
od sclutien is

{la )P

dofernatios. it o
[} .:“.t

oy terss
»

1

»

e

s treasversely jsetreple elestic body that csatains o

Wes
ayanetrie

srity. 8 diffiouity erisee whea

ia the ferm of o paner seri
ese stngularities s

10 aa eigeavalue.

tresses Aser & brokea

siot .

siagul

gliv3diagg
i ihn !

C. 1. Niag

Tembasiagy Loberetary

Ustertans lnstachusetts 932173-000)

/3/08 te WL/ S

ead T.
s LTS

115, Contraot DA2S4S- 08-§ 0087

700 TRMESYERSHEL T SOTROPIC OIS ITHD
UITH APRLICATIONSG T0 STREBS A BB
oF 4 SASEEN 71088

5/8 Prejost 334 4010

SIOENUECTIONS 5T 4 SHOGLAS PONDY

T IT
i 3‘;23}{533;

glivt
it

3. Army Material
1)tas I3
11)ae-
Piasl Report.

R ETET

QQQQQ

A \I\ f\"‘ L%

R

permit tully legible teproduction
r oy o it

Copy availnble to DTIC does no

VAR RATN ¢ X XA N ALY

A A A $AY

-

PN
» & a ",

2T



+ 1
L] LA™ 3
DR

N LIS )
SN y
R Cagttig s,
R ¥ '-"1'-. I



