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ABSTRAer

7 The probability distribution associated with the multisample CMRR generalized

sequential sampling process are obtained by using an analogy with a single urn
model. Some statistical features are also discussed.

/ ~1. INTRUON

T'he Capture/Marc/Release/Recapture (CMRR) sampling process is used

whenever informative data must be obtained in order to estimate the unknown size,

N, of a finite (and closed) population. The sampling design for such process is

Consider a population of finite size, N, such that during the study time it

changes neither in size nor in form; that is, the population is closed during the
study time. From this population, k (k is fixed and >2) random samples (without

replacement) are sequentially selected in the following manner:
The first random sample of (fixed) size m, (>1) is drawn, without replacement.

After the sample units are marked and the number mj=U1 is recorded they are

returned to the population before the second sample is drawn. Next, for each j For

(>2), the jth random sample of (fixed) size mj (> 1) is drawn, without replacement. &I

The sample units marked in earlier selected samples are immediately returned to the

population. The remaining Uj unmarked sample units are returned after being
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marked. The numbers mj and Uj are recorded. After the k samples have been

obtaned, the data

Dk =(U 1,...,Uk)

is observed. Note that the number of distinct population units selected in the whole

sample process is
Tk= Ui+...+Uk .

The objective of the present paper is to obtain the probability laws of Dk and Tk

by using an equivalent urn model. By urn model we mean random allocations of

balls to urns.
The CMRR sampling scheme has a long reference list (see Seber, 1986) which

starts with Craig (1953) and Goodman (1953), although, a related problem was

described earlier by Good (1950, p.73). The majority of the papers [viz.Samuel
(1968) and Sen (1982), among others] consider only the one-by-one case (i.e.,

ml=...=mk=l) and none of them presents the probability law of Dk, the raw data.

We believe that these restrictions are in fact necessary when difference equations

(the tool of many authors) are to be used to obtain these laws. The distribution of

Tk, for the general case of mj different from 1 for some j, is described in Johnson

& Kotz (1977, Section 5.3) where an analogy with the committee problem is used.

Also, in this text, no reference to Dk is made. In fact, for inferences about N, it is

enough to consider only Tk since it is a sufficient statistic for N in relation to Dk, as

show in Section 3. Note also that Tk and N are both positive integer numbers while

Dk is a non-negative integer vector of order k. We end this section noticing that the

sequence (Ui)i:i is not an exchangeable sequence which implies that it is not a

sequence of conditionally independent and identically distributed random variables.

Hence, Tk is sufficient in the broad sense. That is, the conditional distribution of

Dk given Tk is the same for every possible N.

2. ANALOGY AND NOTATION

Consider an imaginary one-to-one correspondence between population units

and urns; that is, a different urn is assigned to each one of the N population units.

Also consider m--ml+...+mk balls numbered in the following way: m, with the

number one, m2 with the number two, and so on up to mk with the number k.



To select, without replacement, m, population units to be marked corresponds

to randomly allocating to the urns the ml one-numbered balls, in such a way that no

urn receives more than one of these balls. To select, without replacement, the.

second sample of m2 population units corresponds to randomly allocating to the

urns the m2 two-numbered balls, in such a way that no urn receives more than one

of these balls. To count the number U2 of unmarked sample units (to be marked) is

equivalent to counting the urns, among the m2 ones that received the two-numbered

balls, with only one ball. Sequentially following this analogy, consider the jth

sample (j>l). To select, without replacement, the jth sample of mj population units

corresponds to randomly allocating to the urns the mj j-numbered balls, in such a

way that no urn receives more than one of these balls. To count the number Uj of

unmarked sample units (to be marked) is equivalent to counting, among the mj urns

that receive the j-numbered balls, the ones with only one ball. (Note that at the end

of this allocation process, it may happen that many urns are empty, some have only

one ball, and so on up to a very few having k balls.)

Following the above analogy, in the remaining part of the present paper, the

vector Dk=(UI,...,Uk) represents indifferently either the data obtained by the

CMRR scheme described in Section 1 or the data obtained by the urn scheme

described above. Before presenting the probabilities of interest, we introduce the

notation used.

As usual the indicator function of a set A is represented by IA(x). Also, let

N*= (0,1,...) be the set of non-negative integers.

In general, for j2l, the random vector Dj=(U 1,...,Uj) has its observed vector

represented by dj=(uj,...,uj). Analogously, for Tj=U 1+...+Uj, we have tj=

ul+...+uj. Since the population size, N, is unknown, it is convenient to use the

notation P(Dj=djlN=n) and P(Tj=tjlN=n) for the probabilities of Dj and Tj,

respectively. The reason for this is the fact that the range of Tj (of N) depends

strongly on the unobserved value of N (observed value of Tj).

3. MAIN RESULTS

Given the urn model described in the last section, the following probability

statements become straightforward:
(i) Given mie N*, P(U 1 =uj1N=n)=l, for any n,:mr=ui=ti, otherwise is equal to

dJ.
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zero; and (ii) For j>l and mje N*, P(Uj=uj IN=n,U=ulU 2 --u 2 ... ,U.- 1=uj-

-(n-j-,i -I ) [ (n) -1f\uj /mi-uJt mj,

for any n~max(m,... mj) and max (mi,...,mj)tj:5min mi+...+mj,n), otherwise
is equal to zero.

The only difficulty one may have in understanding the above statements is with
the restrictions of n and tj given in (ii). Note however that to assign mj (jl) balls
to mj distinct urns one must have n:mj for all j1. On the other hand, since tj is
the number of distinct chosen urns up to the jth stage, it must not be smaller than the
number of distinct urns chosen in any stage. Also tj can neither be greater than the
total number of urns, n, nor than the maximum possible number of distinct urns up
to the jth stage, ml+...+mj. Finally, it is not difficult to conclude that the sequence
(Tk)k? l is a very interesting Markov Chain (given (N=n)). In fact, it is a
submartingale since, for j> 1,

(Sen ,1982; (2.3), introduced a related property for the one-by-one case.)
The following important result is a direct consequence of these probability

statements. Recall that m-mi+...+mk, u=tl=ml, dk=(Ul,...,Uk), tj=uI+...+Uj ,

and ujr, (0,I,...,mj), for j=2,...,k.

3.1 Theorem: For all k.2 and neN* such that n~max~ml,...,rr),

(tk)" (tk j Mi-

P(Djffdj IN=n}-- k nIBOt)
11- (mn ) (uj)!

where B=(xe N*; max{(m1,...,mk):5xmin(m,n).

The proof of this result is very simple. To obtain the joint distribution of U1,
U2,..., and Uk (the distribution of Dk), we need only to consider the product of the
conditional probabilities introduced by (i) and (ii) above.

The following lemma is a generalization of a result described by Feller (1968),
where the case of ml=...=mk=l is considered. In fact it indirectly introduces the
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distribution of Tk. Let Pe(mi,...,mk;n) represent the probability that, at the end of
the allocation process, exactly e (e N* ) urns are empty.

32 Lemmae For all k>1 and ne N* such that nmax(ml,...,mk),

(n) n-_ i - k n-i
Pe(m1, .... mk;n}= k n Ee

N(n) i=O j=1 j

where E=(xe N*; n-min{m,n).x.-max(ml,...,mk)).

ErooL For i=1,...,n, let Ai be the event "the ith urn is empty at the end of the

allocation process." Hence, for 1 kl<...:ki. n, P(Akjr)...rAki IN=n}

kk[(n'i) [ (n)}

k
On the other hand, P(A l u...uAnIN=n) Y (-1)i-17iP{Ak=)...nAki IN=n},

i= 1
where Ii indicates the sum over the set ((kl,...,ki);1. kl<...<_ki-.n) which is

composed by (,) points. We can then conclude that Poml,.....m k;n)

1P(Alu...uAn IN n 0( 1)i ) l(n -. " JJ I(n.)
-= j=l jj) m ~:m

where I(n!m) is the indicator of n.5m. Replacing n-e for n in the above expression,

we notice that Po(ml,...,mk;n-e) j (mj)! is the number of points favorable

to the event "exactly e fixed urns are empty at the end of the allocation process."

Recall that the total number of possible allocations of m balls in n-e urns is

1 (n")(mj)! . Since, among the n urns, there are (n) ways to choose e urns,

we finally have Pe(ml...,mk;n)

Po(m,...mk;n-e) ()jfl (nmj)!

which concludes the proof. 
•

The following result is a direct consequence of the above lemma and is the

main result of this paper.
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3.3 Theorem: For all k2:1 and neN* such that nr-max(ml,...,mk},

()[k (n) "k
P(Tkft IN--nf)= t ('m 2: (- I)t'i(i).ll-- IBMt.

j= I " J i=0 J= I 1

To prove this result we only need to note that if t is the number of distinct

nonempty urns, then (n-t) is the number of empty urns. Hence, a direct application

of Lemma 3.2 produces the desired result. Another consequence, relevant for

statistical purposes, is stated next.

3.4 Corollmy; For inferences about N, the random variable Tk is a sufficient

statistic with respect to Dk . The conditional probability of (Dk=dk) given {Tk=t)
has the following expression:

P ( Dk=dk ITk=t) =P { Dk=dk Tk=t, N=n)

k k-I={j (uj)! n'1 ti., i: r" I. (t)- F i ) it(tk) "-
•={ u2! Mj-uj) 't i!(t-i)! j=imj)

(Recall that the last factor is the indicator of (Tk=t 1.)

That Tk is a sufficient statistic follows from Theorem 3.1 and the well-known

Factorization Criterion. Equivalently, sufficiency is also a consequence of the fact

that the above conditional probability is the same for all possible values of N. This

probability is directly obtained from the expressions introduced in Theorem 3.1 and

Theorem 3.3.

4. COMMENTS AND CONCLUSION

The factor
kK(n;t 0 (n-t)'I' (mj n,

hat appears in the probability expressions of Dk and Tk, is called the likelihood

kernel since it is the smallest factor of these expressions that depend on the value

of n, with the remaining ones independent of n. To obtain maximum likelihood

estimates and to perform Bayesian analysis, this kernel is the only sample entity that

must be considered. In Leite (1986) these statistical methods are discussed in

detail.
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Finally, notice that another kind of data could be produced by the urn model

described above. For instance, consider the vector (XO,X1,...,Xk), where Xi (Oi
<k) is the number of urns with exactly i balls at the end of the allocation process. In

terms of population units, Xi is the number of individuals captured exactly i times.

Recall that Tk=Xl+...+Xk and XO=N-Tk. With respect to these data, is Tk still a

sufficient statistic? The answer is again yes. Clearly, after the value t of Tk
has been recorded, all kinds of nonempty urns must be among these t,

independently of any possible particular value N may assume. Hence, Tk must be

sufficient. To formalize this conclusion we state the following result, the proof of

which we shall omit since it would follow the same steps of the ones presented

here.

4.1 Theorem: For all k 2 and ne N* such that ntmax~ml,...,mk},

P(XI=xl,...,Xk=xkIN=n)
k -

--K(n;t)fj_ (mj)! (xj)!} h(xl ....,Xk)IB(t),
j= I

where: (a) the elements of (xl,...,xk) take values on {0,l,...,k} and satisfy the

equations xl+2x2+...+kxk--m and xI+...+Xk=t ; and (b) h(xl,...,Xk) is the number

of ways in which m balls can randomly be allocated in t urns so that x, urns receive

one ball, x2 urns receive 2 balls, and so on up to xk with k balls.

Here also, by a direct application of the factorization criterion, we conclude that

Tk is sufficient. To prove the above result one may need to follow Feller (1968)

where the one-by-one case is considered.

We have shown that up to a particular stage, say k, the only relevant
information about the unknown parameter of interest, N, is contained in T or

equivalently in the likelihood kernel. If, in the place of a fixed stopping step, k,

one considers a random stopping rule, the above kernel still would be the minimum

sufficient statistic. For example, analogously to the negative binomial rule,

suppose that t is fixed a priori and k is the number of steps required to obtain t. In

terms of randomness, k and t would change roles; that is, k would be the

observation of a random variable and t would be the fixed constant. Hence, any
desirable good inference about N must rely on a painstaking analysis of the

_I
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likelihood kernel, K(n;t). If a random stopping rule is used, instead of CMRR, the

sampling scheme is called Capture/Recapture sampling process.
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