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Abstract -
ol
Researchers in Artificial Intelligence have had a difficult time defining the field's y
goals and assessing its progress. Some have focused on the task of modelling the human :
brain, others have focused on developing smart machines independent of the constraints
of psychological or neurological realism. Over the years the notion of what is an Al task ﬁ:ﬁ .
has changed, as problems once thought to be easy have turned out to be hard, and vice E:;
versa. This paper discusses some problems that are currently of interest to the field ::E'E
and places them in the context of a more enduring question: * What is intelligence?* It E; .
attempts to enumerate a few essential aspects of intelligence that every human, animal :::E
or intelligent machine must, to some degree, exhibit. "}.': :
Y
oV
Introduction oo
:-.';_\.
2008
Once, many people thought that the ability to play chess epitomized the kind c:f'
of intelligence a machine should have. Chess playing, it seemed, took genuine ARG
intelligence that couldn’t be simulated via any kind of trickery. If a machine j:&;’_:
could be made to play chess it would necessarily embody something interesting in ‘:_E

the way of intelligence. Now, however, machines are available for a few hundred
dollars that play a good game of chess, and the best machines play the game at

a world-class level. Yet nobody would call these machines truly intelligent in any

general sense. As an indicator of general intelligence, chess-playing skill has been

demystified. TN

Y
N
AN
Another task that, like chess playing. scems to be a mark of general intelligence, e
NN
. - . . AN
is the ability to translate text from onc language to another. A machine solution .b:'-
to this problem has been elusively “just around the corner™ since the earliest days DAEA
of Artificial Intelligence. If. due to some breakthrough, we could soon develop —_
RS
. . . - . . s,
machines that were good translators. would we be just as dissatisfied with their o
.
o+ -
'-':‘.-
e
AN
NG
AT




intelligence as we are with the intelligence of today's store-bought chess opponents?
There seem to be two classes of Al problems: problems that are unsolved aud
problems that, although solved, have turned out to have neither interesting nor
satisfying solutions. As one task after the next becomes amenable to a machine
solution, will our goal of creating machine intelligence continue to recede into the

future? Once a problem is solved does it stop being an Al problem?

We think not. We are dissatisfied with the chess-playing machines not because
chess-playing ability turned out to be a poorly-chosen task, but because we were
unclear about what we expected. As an engineering endeavor, the creation of
chess-playing machines has succeeded in that the machines play chess well. If this
does not satisfy us then AI must therefore be something other than the design
and development of machines that perform well on tasks generally considered to

require intelligence.

Does that mean that Al is psychology? One way in which chess-playing machines
fail to satisfy us is that they do not operate in a believably human way. They don’t
remember games. They don’t analyze their failures and learn from them how to
avoid similar situations in the future. Rather than say that the chess machines
turned out not to be “really” intelligent, we could instead say that they do not
satisfy us because they lack certain essential aspects of human intelligence. But
defining Artificial Intelligence as the attempt to precisely replicate the human
mind would fail to encompass a great deal of worthwhile Al research. In fact,
some Al researchers, although they are interested in intelligent behavior, couldn’t
care less about the human mind itself. Undoubtedly there are better methods for
accomplishing certain cognitive tasks than the methods nsed by actual humans,

andé "“ose who wish to build intelligent machines should not hesitate to use them.

No one other than a psychologist interested in the development of mathematical
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skills, for example. is likely to rush out to build a machine that computes by
counting on its fingers. Yet, the human mind remains the only kind of intelligence
that we can reasonably hope to study. In the human mind. we have an existence

proof of a working, comprehensive intelligence.

In placing great importance on psychological realism, however, one still has to
worry about computer programs, like the chess-player discussed above, that display
intelligence but yet are clearly in no way related to how humans function. Are
such programs intelligent? If one is not fully satisfied with either the engineering
of intelligent-seeming programs nor with the precise modeling of the human mind
as goals for Al then one must inevitably focus on the issue of the nature of
intelligence itself apart from its particular physical embodiment. One must ask
“What is intelligence?” apart from whether one is talking about human. animal

or machine intelligence.

Features of Intelligence

One way to examine the nature of intelligence is to list some features that we
would expect an intelligent entity to have. None of these features by itself would
define intelligence, indeed a being could lack any one of them and still be consid-
ered to be intelligent. Nevertheless each is an integral part of intelligence in some
fundamental way. Five features of intelligence that we shall briefly discuss here
are: communication, internal knowledge, world knowledge, intentional-

ity and creativity.

Communication: People can communicate with an intelligent entity. We can’t

talk with rocks or discuss our desires with trees, no matter how hard we try. With

dogs and cats we cannot express much, but we can at least express anger or
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pleasure N patter boow <t o by s et andersstand when vou disonss
phvsios with i Thos does not miean that e doesn 't understand anvthing abont
the physies of every dav Lfe ot sang v means be caanot commumcate his knowledge,
Your smmall chld meas know scme phvsios bt hiscussions of that subject will have
to be put an terms a4 b can anderstant T other words the easier it is to
commuuicate with «u ettty the more sntelligent 1t seems. Obviously there are
many excepticns It would be unfortinarte if. just Lecause vou were traveling in
a country whose native langpuage vou il not speak. evervone treated you as a
moron. Aiso, there are people whe are generally considered to be intelligent but
who are impossible to tik to  In general. however, communicative ability is a

sigmhcant and characteristie feature of intelligence.

Internal Knowledge: We expect intelligent entities to have some knowledge
about themselves. They should know what they know: they should know some-
thing about what they are thinkiug about. One wouldn't expect an intelligent
person to partially work out a <olution to a prohlem whose completion depends
upon some piece of knowledge that he knows he doesn’t possess and that he knows
he cannot reasonably acquire. Probably only humans reason about their own
knowledge this way: we have no way of knowing what dogs know about their own
mental state. We can program computers to reason ahont their own knowledge in
some rudimentary wavs, but their behavior is not very convincing. Unfortunately,
only the subjective critena of asking questions and observing behavior seem to be

useful in assessing this feature of intelligence.

World Knowledge: Intelligence also dependsupon an awareness of the ountside
world and an abiliry to ind and use information about the world when needed. It
nuplies having o memeory for past experiences. Anantelligent entity cannot treat

every experience as brand new: it st nnderstand new experiences in terms of old
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ones, building up its knowledge of the world as it processes each new experience.

Intelligent entities learn about the world from experience and observation.

Intentionality: Goal-driven behavior is another key feature of intelligence. In-
telligent entities know what they want and, often, how to get it. An oak tree has
relatively few goals, and correspondingly few plans for achieving those goals. A
person living in a complex social environment has many goals and plans. Sheer
number of plans, however, may not be a good measure of intelligence because a
computer could easily store arbitrarily many plans. The key to intelligent inten-
tionality has to do with how appropriately and flexibly plans can be applied to

novel situations.

Creativity: We assume that every intelligent entitity has some degree of cre-
ativity. In the weakest sense, creativity might mean only finding a new route to
one’s food source when the old route is blocked. Creativity can also mean using
a plan from one area of experience to achieve a goal in another. At its most im-
pressive, creative behavior has changed the world by giving people a completely
new framework in which to understand some class of phenomena, for example the
exposition of a new scientific theory like Newtonian mechanics, or the development

of a new means of artistic expression like linear perspective drawing.

If we wish to discuss artificial intelligence as opposed to general intelligence,
however, we must then ask how the five features described above might be incor-
porated into computer programs. In other words, what problems must the field
of Al address if it is to produce programs that exhibit communication, internal
knowledge, world knowledge, intentionality and creativity? Although the specific
problems that Al researchers have worked on have changed from time to time as
some tasks have come into fashion and others have temporarily or permanently

gone out of fashion, there are nevertheless a certain set of enduring problems. We
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now discuss ten of these problems that define the field as we see it today.

Problem 1: Representation

If people want to discuss memories, facts, objects, relationships or abstract ideas,
they must have a language in which to do so. Similarly if we want a machine to be
able to maaipulate knowledge, the knowledge must be represented in the machine
in some manipulable form. The point of representation is that computers do not
manipulate ideas, facts and concepts. Conventional serial computers manipulate
things like symbols, data structures and pointers. Connectionist models and other
neural-like systems manipulate connection strengths and activation levels. Some
future kind of computer architecture might manipulate some heretofore unenvi-
sioned class of object. In any case, the internally-manipulated structure must be
made to stand for whatever ideas, facts or concepts the system is being asked to
manipulate, according to some consistent scheme that allows the processes within

the machine to take on some meaning.

One kind of representation might be to store an idea as English (or other natural
language) text describing the idea. Although this kind of representation makes it
very easy for a person inspecting the program to figure out what is being repre-
sented, it turns out to be a very difficult representation for computer programs
to manipulate. We would like problems of ambiguity, metaphor and ellipsis not
to permeate our representation scheme. The representation should neither hide
important similarities nor should it introduce similarities where none really exist.
The English language representations: *John took an aspirin.™, “John took a bus
to New York.” and “Johun took Mary to the partv.” are quite simlar, vet the

underlving coucepts are not. The aceidents of lanyuage nsage shonld ner confuse

internal representation of concepts. On the other hand. if one concept has been
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Y4
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9
l'('.n +
stored as “John took a bus to New York™ and another has been stored as “John
. . . . o ) . ’."‘
went to New York by bus”, the similarity is hidden from the system’s view. ::-::
1“"_'
¢ .Al
Conceptual Dependency, or CD [Schank 72] was an early attempt to represent :l:“‘{
NO1)
the semantics of actions in a clear, unambiguous form. CD expressed actions in g
terms of a dozen conceptual primitives and their interrelationships. For example, :‘,‘ T:l
“John took a bus to New York™ would be expressed using PTRANS, the primitive 4
W
¥
for physical transfer of location: )9
B s,
(PTRANS  (actor JOHN) 0
va
o X
(object JOHN) .;;S
Sl
~
(to NEW-YORK) W
(instrument BUS)) :-
" AN
o
while “John took an aspirin” would be expressed using INGEST: :-‘;‘:
=
(INGEST (actor JOHN)
(object (MEDICINE (TYPE ASPIRIN))) o
I
(to (MOUTH-OF JOHN))) R
N
CD is a theory of representing fairly simple actions. To express, for example, -
“John bet Sam fifty dollars that the Mets would win the World Series.” takes -’_"
about two pages of CD forms. This does not seem reasonable. We need more :::,‘}
complex structures to handle more complex actions, and much of our work in e
. . . +
representation has been directed at the problem of more complex events. Scripts }.;-'
c"‘-'
and plans [Schank and Abelson 77. Cullingford 78, Wilensky 78] were our earliest :_ -
rN-"
attempts to develop larger and more comprehensive representations. Social Acts Y
[Schank and Carbonell 78] represented the actions of institutions. Memory Orga- ’t'::
-
nization Packets {MOPs) further extended our representations into a more hierar- :)'.‘\
chical, interconnected type of memory [Schank 79, Lebowitz 80, Kolodner 80. Dyer :
\Y
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82) . Currently our work on representation centers on the knowledge needed to ex-
plain unexpected events. Explanation Patterns (XPs) are being developed to repre-

sent causal and explanatory knowledge [Schank 86,Kass 86,Leake and Owens 86)

Representation is a good benchmark against which to measure the progress of Al
programs. “Toy” domains like blocks world [Winograd 72}, [Winston 70| were fea-
sible because they were simple enough that existing representation schemes could
capture everything interesting about them. Al programs could develop without
being totally blocked on representation issues. As programs have moved from
these domains into more complex domains requiring real-world knowledge, how-
ever, representation has become a more difficult issue and remains one today.
The brittleness and non-extensibility of many systems is due to the impoverished,

sparse representation they embody.

Open topics for further work in the area of representation include the question of
whether there should be one general representation scheme for objects in memory,
or whether various mental processes should each use different representations for
the same piece of knowledge. If the former approach is taken, then one must
address the issue of how a memory representation can succinctly encode an object
or event before the system knows what it wants to do with the representation,
before it knows which cognitive process is going to use the representation and for

which purpose.

Problem 2: Decoding

If an intelligent system has some kind of internal representation scheme, then it also
must have some means of translating between what is going on in the world and

what is in its internal representation. The information we get from our senses (or
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the information a computer or robot might get from its sensors and input devices)
is not at the same level of abstraction as the conceptual processing that comprises
the kind of intelligence we usually think about. Our eyes do not talk to us in
terms of doorways, cliffs, onrushing cars, friends’ faces or any other conceptually
interesting aspects of the visual field; they tell us about patterns of light and
shadow. Our ears do not tell us what words we have heard, they tell us about
sounds. Taken as a whole, our senses do not directly tell us what is happening
around us, yet from the information given us by our senses we can derive this

information. This is what we mean by decoding.

Although we do not wish to dwell on natural language understanding issues to
the exclusion of the general problem of understanding, the task of working from a
natural language text to an internal representation highlights some of the problems

in decoding. Consider once again the word took :

John took a bus to New York.
John took an aspirin.

John took Mary to the party.

Our decoding scheme must be able to interpret these very similar sentences. both

using the principal verb took, into dissimilar internal representations.

Remembering the meaning of specific phrases like “take a car”, “take a plane”,
“take a train”, et cetera is one way this could be done, but that approach seems
wasteful of memory capacity. Furthermore, it fails to capture an important gener-
ality about the use of the language. The same knowledge that allows us to under-
stand phrases like “John took a bus.” also allows us to understand specific phrases
that we have probably never scen before, like *John took a hovercraft across the

Channel.” A more general approach to this decoding task is to have procedural
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"‘!
knowledge associated with words. For example the procedure for decoding took X
W,
might have, among other rules, something like: "::‘,:'
!
)
**If my object is the name of some mode of transportation, then o
instantiate a structure representing travel. If my object is the 'd;
e,
name of a medicine, then instantiate a structure representing '::',
) W,
ingestion. If my direct object is a person and my indirect object é::.::
is the name of some social occasion, then instantiate a structure .
l“‘
f
representing a social date....'’ Y

These procedures were called “requests” by [Riesbeck and Schank 76|, [Birnbaum .
and Selfridge 79] and others. Note that the knowledge contained in a request is ~
not just knowledge about language, it is knowledge about the world. An aspirin ,’.:‘E
is not a mode of transportation. A party is a social occasion to which people :"EE
customarily bring dates. This is an important point: The knowledge requirements :'t

of the decoding process cannot be isolated; the decoding process needs access to a "::
full range of knowledge about the world. As an example of the degree to which this E\E
knowledge is removed from knowledge about language use, consider the following "‘:
pair of sentences: ‘;'

0

At the end of his working day, the policeman took the bus home. :

At the end of his working day, the bus driver took the bus back - '

to the garage.
One of them is about traveling someplace by bus and the other is about driv- ‘::"’.
ing a bus someplace. It is our knowledge about policemen and bus drivers that ‘: v
allows us to decode these, not our knowledge about language. Our recent work EE\

on language understanding includes the MOPTRANS parser [Lytinen 84], which \ !
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explores the integration of linguistic and world knowledge, and Direct Memory
Access Parsing (DMAP), which makes the claim that decoding (or parsing) is
an integral part of memory organization and should not be a separate process

[Riesbeck and Martin 85,Martin and Riesbeck 86]

The principal problems in decoding are how memory can be arranged so that
the correct knowledge is brought to bear at the correct time during the decod-
ing process, and how the complexity of multiple, interacting, possibly conflicting

requests or interpretations can be controlled.

Problem 3: Inference

Exactly where the decoding task ends and where the rest of processing begins is
not clear. Continuing our saga of John on his bus, what, exactly, does the sentence
“John took a bus to New York.” mean” Does it mean that John went to New
York? Yes. Does it mean that John is in New York now? Maybe, if we haven't
heard information to the contrary. Does it mean that John wanted to go to New
York” Does it mean that John is not wealthy enough to own a car” Is John a bus
driver? A hijacker? There is a potentially infinite set of inferences that can be
drawn from a piece of input, and a large part of intelligent understanding is the

ability to draw a reasonabie set of them.

One way to make inferences is via inference rules and pattern matching, A
svstem can have a library of rules, each of which has a precondition side and an
inference side. When the precondition side is matched, the inference is generated.
An example of i such a rule could be: ~If someone travels to someplace, infer that

they had some business there™ or *If someone travels by busassune they do not

own a car.” These rules can be chained together by matching the inference of one
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rule against the preconditions of the next, so that a system could answer “Is John v,
Poor?” by chaining from “Poor people do not own cars” to “People who do not §
own cars travel by bus” to “John went to New York by bus”. This inference may &“
or may not be correct, there are also many other inferences that could potentially .!d
have been made at the same time from the same input. How well Al programs ﬁ:::
make reasonable inferences, how well they decide which inferences to make and ,}E: .'
how they decide how far to extend an inference chain are good ways to measure b, "
our progress against the inference problem. :,\:
Ry

The inferencing task highlights the importance of a good representation scheme. :5'
The representation for a class of events, for example travel, is a good place to index, Col
in memory, the inferences we wish to make whenever we encounter an event of ’\
that class. This approach was taken by [Rieger 75]. If our representation groups '-(F:-
together the events about which we wish to make similar inferences, then it is _‘z
serving the inference task well. If it scatters similar events throughout memory .(
then it is not.
e

Problem 4: Control of Combinatorial Explosion )
The problem with inferences is that there are too many of them to make. If, for ':ﬁ
example, we can make five inferences from a fact, and five more inferences from :}f
each of those inferences and so forth, then the combinatorial complexity of trying :'
to investigate inference chains of any length greater than a few steps becomes ?::::‘-'
overwhelming. Processing power is not infinite, either in people or in machines. ::5::
Conceptual Dependency avoided the worst of this problem by representing the ;,;,:.
world at a coarse enough grain size that the number of inferences remained small. ‘:'-
The problem was nevertheless there. A more general solution to this problem SEE
s::‘

o
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goes hand in hand with a solution to the problem of representations being too
low-level: As we represent more complex events and objects, we need to constrain
the undirected inferencing that we ask our systems to do. We need to structure

knowledge at a higher level of abstraction.

The scripts used in SAM and FRUMP [Cullingford 78,DeJong 79] were an at-
tempt at this kind of structuring. The point of a script was to package together a
stereotyped sequence of events along with some inferences so that the whole entity
could be treated as one representation object. An example is the restaurant script,
which had in it CD forms corresponding to the sequence of actions one typically
expected at a restaurant, such as entering, being seated, ordering, eating, paying,
leaving a tip and leaving. While sitting in a restaurant, when the waiter arrives at
our table, all we need to do is recognize a script element rather than try to figure
out who this man is and why he is there. We know that we can order food or ask
questions about the menu because the restaurant script already contains, frozen
and ready to use, the inferences we will need. We don’t need to search memory for
inference rules in order to understand the sequence of events. For routine stories,
scripts reduced the general problem of understanding to a problem of matching a
script element. A more general overview of the basic idea of this kind of knowl-
edge structuring and packaging can be found in [Minsky 75]. More recently, more
hierarchical, modular and abstract knowledge structures have been developed in

response to some of the shortcomings of scripts [Schank 82].

As an example of the kind of control an AI program must have over its infer-
encing even in relatively simple stories, consider the following example, suggested

by Larry Birnbaum:

An undercover agent was tailing a suspect. The suspect walked into a hard-

ware store. The agent followed. After a few minutes in the store. the suspect
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began looking nervously at the agent, who was trying to look inconspicuous next >
to a display of ropes. The agent measured off some rope, took it to the counter, ":
) 1,
paid for it and left the store. N
nih
?'n'!‘
If we ask our understanding system why the agent bought the rope, we want )
1
it to realize that he didn’t want the rope at all. He merely bought the rope %’
because that is a typical, inconspicuous thing to do in a hardware store and because ™
"
he happened to be standing next to the rope when he became aware that his
quarry was nervous about him. No reasonable amount of inference off the low- g Y
level features of the scene could yield this understanding; a system would never :':."
v,
get to a state of understanding by starting from hardware stores or rope. At the ‘
same time, nothing in the Undercover Agent knowledge structures is going to say '
'.-:' :
anything specific about buying rope. Reasoning from the high-level construct of :5-:
.’:-
“looking inconspicuous” to match against the action of buying the rop'% places A
demands upon the tasks of matching and instantiation that we don’t know how =
to solve without asking the understanding system to search exhaustively through -'
) N
everything that it knows. N
oy
.\,-
Problem 5: Indexing %
i
o)
The difference between reasoning from primitive inference rules and reasoning -
from cases or larger knowledge structures like scripts can be summarized as the -,__:.'
=
2
difference between building a causal model and retrieving one. Presumably, saving "-':
: o . . : o
one’s analytic work and retrieving it later requires less processing than trying to e
develop a model from scratch. Once we know that we are in the restaurant script, ™
-
for example, we can easily place in context the appearance at our table of a man ,-:.\'-
AR,
with a notepad. c'{.
N
N
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If there is to be any advantage to retrieving complex causal models and other . ‘
knowledge structures rather than building them from scratch, then there must be ét
an efficient way to index structures so that the right one can be retrieved at the .'"
right time. If, on the other hand, it requires just as much work to look through by
memory to find a knowledge structure as it would to derive it from scratch, then i.:
memory must be reorganized so that the offending knowledge structure can be §J‘
found more quickly. :;?-
A way to look at this memory indexing process in people is to examine the phe- ;-:;.:
nomenon of reminding. A favorite reminding story is the “Steak and the Haircut” EE;'_
reminding, reported in [Schank 82]. Two friends were talking and one mentioned E:;
that he could never get his steak as rare as he wanted it. The other replied that N
that reminded him of a period of time, years ago, when he could never get his zz
hair cut as short as he wanted. The two episodes have little in common at the ’E-E
surface level, yet they share the thematic similarity of someone being unable to '. '
get something as extreme as he wanted it. In order to get reminded of the sec- -S:-
ond story by the first, the listener must first have abstracted from the details of E:,.'
the steak story to the underlying pattern (people not believing you when you ask :';
for something extreme?), and then retrieved the haircut story, which was indexed -
under that abstraction. j:
v
CYRUS [Kolodner 80] focused on the issue of how memory could be organized :.:
and indexed in order to answer questions whose answers were indirectly available i
within memory but which were not directly answered by any one fact in memory. \
.\--
Some aspects of the knowledge structure indexing and selection problem can ,:-_:
be solved easily and some cannot. With scripts, for example, physical location :\
and stereotyped objects play a strong role. If we hear about someone going into a -

»
restaurant, we can begin to infer that they will order a meal. If someone picks up a 5




telephone, we can assume they will make a call. Of course reasoning from physical
location is only a rough guideline, and it is often incorrect. A system embodying

this type of script selection would be tripped up by the following story:

"John needed to make a phone call. He had no change in

his pocket. Down the block was a diner. He walked into it."

A system reasoning from physical locations would assume that John was about to
order a meal. Furthermore, the more abstract patterns, which are the ones that
buy a great deal of processing and inferential power, are the most difficult to index
so that features derived from a story would be good retrieval cues. How would
a system notice an instance of revenge? Of a double-cross? Of a love triangle?
Indexing abstract patterns so that they can be retrieved when appropriate is an

important memory organization problem to solve.

Problem 6: Prediction and Recovery

A good example of how these structures and patterns are applied to the task
of understanding is found in the processes of expectation and prediction. If an
understanding system is constantly trying to use its active knowledge structures
to predict what will occur next, then the system is in effect no longer asking =what
1s going on here?” It is instead asking “How does this event match the expectations
that have been set up by my active knowledge structures.™ This is a narrower,
more specific question. and it is easier to sec how a system might answer it. Given
a good set of predictions, a predictive understander’s job is to match input against

its predictions rather than to analyze the input from scratch.

Of course these predictions are not always going to be correct. Sometimes

they will be wrong because the understander has misunderstood what is actually
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happening and has activated the wrong knowledge structure. Sometimes they will
be wrong because, although the right knowledge structure is active, a genuinely
bizarre event has occurred. Or the prediction could have been fulfilled, but in
some way that the understander failed to notice. When people fail in an attempt
to understand something, they do not simply give up and spout an error message,
they attempt to recover from the failure and continue processing. Obviously, our

machines should do the same.

Predictive failures are not the only kinds of failures from which people can
recover. Plan execution failure occurs when a plan step either fails to achieve
its desired goal, is unexecutable, or has undesirable and unexpected side effects.
Memory retrieval failure occurs when we look for a knowledge structure to package

a certain event or set of events and are unable to find one.

Recovering from any of these types of failures by backtracking is a non-theory.
For one reason, the combinatorics of this approach are impossible. Furthermore,
the approach is not executable in real time under real resource constraints. Once a
robot has walked off a cliff, it cannot backtrack and try its next option. A system
must anticipate and avold plan failures, and it must take advantage of the learning
opportumty offered by failure. Failure conveys a tremendous amount of informa-
tion in that properly analvzing a failure suggests not only appropriate recovery
strategies, but also strategies for avoiding the failure-inducing situnation in the
futnure. Failure allows us to learn new predictive knowledge structures, new plan-
ning rules or new memory retrieval strategies. The CHEF program [Hammond 86)

explored this process in the planning domain.
At the simplest level of failure recovery, a knowledge structure can have rules

that specify.if a certain tvpe of failure occurs. to use a different knowledge struce-

ture. For xample,if we walk into a restaurant and the expected hostess does not

17




materialize but there is a counter, we can assume that we are in a fast-food restau-
rant and activate the fast-food restaurant knowledge structure with its different
set of expectations, inferences and event sequences. As we shall explain below, a
more sophisticated failure recovery strategy is available as well, one that has the

added benefit of enabling a system to learn new knowledge structures.

Problem 7: Dynamic Modification

Of course none of the knowledge and memory organization needed for understand-
ing is built in; it must be acquired. Humans change as a result of their experience,
augmenting their store of knowledge, reorganizing their memories, forming gen-
eralizations. Learning is a quintessentially human capability, yet, aside from an
occasional peripheral appearance it has been conspicuously absent from Al pro-
grams until very recently. A program was limited to the stock of knowledge with
which it started, which meant that our understandine systems could be given the
same story over and over again, and the pro¢ram would treat each occurrence
as though it were reading a totally new story. gaining neither any efficiency in

understanding nor any generalized knowledge as a result of its experience.

Earlier we showed how ge'ting reminded of a relevant knowledge structure was
a lazy way to understand a new episode in that. to the extent that the new episode
was similar to the class of old episodes represented by the knowledge structure,
a system could understand by -hlling in the blanks™ in the knowledge structure
rather than by doing new analvsis from scratch. Similarly, a lazy way to learn new

knowledge structures is to modify old ones slightly in order to fit new data.

A good model for this kind of knowledge <tructure revision is explanation. When

people have a predictive fuilure in understanding, they are surprised. Things aren’t

18

x

-
-
-

r?'{ﬁl

LA

,n.
o

A
.-"'u s .\‘:l‘

)
»

!___
WA

.

Ty
Yy

e e 2

~ .

KRR TN
. ... ’, R
\ ®_ b

L% R

}
54 %

.....
. . / /
Sl

...,
A
Sy

oyt
: "il“a{'v.’ﬁ

)
‘st

‘ s
-'.'f’f

~ 7

.
\

s,

RS




)
o
i
19 s‘:
"~
u':’
as they expected. They recover by explaining to themselves what is going on, 23
which results in both an understanding of the current situation and a revised set __'.:':
of predictive knowledge structures to use in the future. _:';.:
e
At Yale, we have been studying this phenomenon by asking people to make ;‘ -
up explanations in response to the Swale story. Swale was a well-known and :Eg
extremely successful three-year-old race horse who was suddenly and unexpectedly E-:‘:'E
found dead in his stall. Although no explanation was immediately offered in the .
newspapers, certain possible explanations were frequently given. Maybe Swale ::..:E
was killed for the insurance money. (This turned out to be improbable, as he was :{ZE
under-insured.) Maybe he was killed by the owner of a competitor. (No evidence t:._
of foul play was discovered.) Maybe, like Jim Fixx, the author of books on jogging _’-j._
who died of a heart attack, he had some kind of hidden heart defect that was .’
brought out by the strain of competing in horse races. \'
Iy
| The point of mentioning these explanations is that they were not developed from s
scratch by chaining together primitive rules. People seem to explain by making
reference to remindings, or to frozen patterns of causal reasoning. We have been xY
calling the frozen causal patterns Explanation Patterns, or XPs. Our approach is r
that the key to explanation is getting reminded of a relevant XP and applying it M‘E
rather than trying to build an explanation from scratch. This approach controls -.':
what would otherwise be an inference problem with impossible combinatorics. :.":'-'
Making an explanation allows an understander to focus on which features of an .
episode are causally relevant and therefore interesting. Implicit in our knowledge :.'
structures and knowledge packaging relationships is the notion that causal rela- u:.' |
tionships underlie the packaging links. If causality is the glue that holds memory ::.
packages together, then causal analysis of input episodes is essential to the task -',-
of analyzing a predictive failure and using it to modify the predictive knowledge _j,.
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structures responsible for it.

Trying to get a system to make explanations opens up a set of interesting prob-
lems. Where should the knowledge derived from the explanation be indexed, so
that the predictive or other failure could be prevented? How far should the expla-
nation be generalized? How should explanation patterns be indexed in memory”
How should input episodes be analyzed to select features that would be likely

retrieval cues.

Problem 8: Generalization

Another kind of learning comes not from analyzing failures, but from noticing
regularities and patterns in the world and drawing generalizations from them. If
people see the same sets of features co-occurring often enough, they will learn
the generalization that they occur together. Winston's concept-learning program
[Winston 70] used positive and negative examples to induce the definitions of struc-
tures in the blocks-world domain. The IPP program [Lebowitz 80] augmented its
store of predictive knowledge structures by noticing and remembering the gener-

alities across stories that it read.

Noticing regularities is a good source of anomalies that, once explained, can be
added to a system'’s store of knowledge. A problem with using induction without
explanation is that it is not particularly powerful compared to the kind of concept
learning that people actually do. On the one hand people notice generahities in
one or two trials that an inductive machine would take much longer to notiee
On the other hand inductive machines, simply by correlating features. make gen-
eralizations that people would never make. IPP. for exaraples conld erroneonss

“learn” that bombings in India alwavs kill exacthy two peoples somplv by <aviny
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the features that multiple stories happened to have in common. Whenever possi-
ble, forming generalizations by using explanations to identify causally significant

features is a stronger method.

Problem 9: Curiosity

As a combined experiment and exercise we once presented to a class of graduate
students, a newspaper story about a teenage suicide car bomber who had been
captured before he had the chance to destroy his target. We presented the story
one sentence at a time, asking the students at each pause to propose questions
that they would like to see answered. The questions were exactly as would be
suggested by a model of understanding based upon prediction and substantiation
of predictions. At each pause, listeners were ready with questions directed towards
confirming, modifying or refining a partial theory of what the story was about.
Although graduate students in a scientific discipline are probably more explicit
about forming and evaluating hypotheseses than are most people, their behavior

is still representative some general process.

Cats, small children, and even some adults, are curious. They ask questions
about what they see, they wonder about what they hear, and they object to
what they are told. This is a natural result of a system making predictions and
wondering why those predictions fail. One view of curiosity is that a system is
curious if it devotes processing effort to identifying gaps in its knowledge base and

seeks to fill them.

Our work on explanation [Schank 86] deals with some questions pertaining to
curiosity, namely how a svstem should identify what is worth wondering about

and how hypotheses should be generated and tested. We have also explored the
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use of curiosity, the underlying stimulus for learning, in education itself [Schank -
Y
F
and Slade 85]. . -
o
i
Problem 10: Creativity &
T~
Ax ;
3
One story that was facetiously offered in explanation of the abover entioned Swale '::
,
)
episode was that Swale died from a heart attack resulting from the excitement of o~
anticipating what his future life on the stud farm would be like. Although this is ;
L
N\
a ridiculous explanation from a reasonable, factual point of view, we nevertheless '{"
like it because it somehow seems funny and creative. ::
What we see in these creative explanations is the ability to intelligently mis- g
apply explanation patterns. A creative explainer can start with an inappropriate E"-
.
pattern, for example the folklore that too much sex can result in early death. Al- "

though on the face of it, this pattern cannot apply to race horses because they

e
Ly

i are typically not bred until they are retired from racing, it is a departure point

for modification. It is reasonable that indexing into memory with race horses and

WAorss

sex should retrieve knowledge about stud farms, which, although not immediately

applicable, can be relevant. Since the stud farm phase of a horse’s life occurs after

K

L0 14
e %y Sr e

his active racing career, and since Swale died at the peak of his career, there cannot

be a direct causal connection. Future events can, however influence present events ':
via the effects of anticipation. This is a general rule that is useful, for example, ;\.
in analyzing stock price movements in reaction to events that are predicted but :‘»:

"
have not yet happened. Reasoning about the effects of anticipating the stud farm, :'J:
an explainer could predict excitement. Excitement can be connected to death via ”._
stress-induced heart attacks. :E

By taking an inappropriate Explanation Pattern and modifying it to fit the

PV
NN




current episode, we derive an explanation that is creative and humorous. Of
course the same process can yield useful explanations as well. The use of the
Jim Fixx reminding to explain Swale’s death is also a creative act. Using an
explanation about joggers to explain race horse death is an example of the same
kind of misapplication and modification that we discussed above. The explanation
cannot apply at first because Swale, not being a human, cannot be a jogger. A
creative explanation system could, however, use the causal knowledge about how
being a jogger connected to Jim Fixx’s death. This knowledge lets the program
ask the question: “Is there anything a race horse does that has the same causal
significance to Swale as jogging held to Jim Fixx’s death, namely that it was a
source of physical exertion?” With this narrow a search task, it is not difficult to
derive the explanation of a heart attack brought on by excessive physical strain
involved in racing. This adaptation of inappropriate patterns is at the heart of

what we wish to study in creativity. This work is reported in more depth in

[Schank 86].

Creativity, whether in the artistic, scientific or problem-solving domain, involves
using something in a novel and unexpected way. A creative piece of engineering
design might involve using a part, structure or material in a new way. Similarly,
creative problem solving might involve using a technique from one field in solution
of a problem in another. Creative explanation and understanding involves taking
a pattern or knowledge structure and modifying it to fit events other than the ones

for which it was originally derived.

The problem of creative reasoning, which at first seems mystical and far removed
from that which can be implemented on a machine, reduces to two sub-problems,
retrieval and adaptation. These are difficult problems, but they are in principle

amenable to a mechanistic approach.  Although it is tempting to say that be-
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ing creative means relaxing the constraints on retrieving and matching memories,

it is not this simple. Human and machine processing power is not infinite. so
randomly trying one inappropriate pattern after the next is schizophrewuic rather
than creative. The important aspect of creative understanding is to be intelligent
about which “inappropriate” structures to use: to have a memory that returns a

reasonable set of near-miss candidate patterns.

Conclusions

Which problems are most important? All of them are important of course. But
the tasks associated with learning must pervade and inform work on the other
problems. Al has made considerable progress in defining what it is that is learned.

Now it is time to demand actual learning of our programs.

The problems we have listed here are not meant as the ultimate definition of
what Artificial Intelligence is or should be. They are instead a set of goals and
benchmarks that we might use. We do not want to argue that people in the field
should work directly on these more abstract issues rather than on programs that
addresses a particular concrete task. Setting out to write a program that performs
well on some real task, for example, translating languages or learning how to
play chess, is essential. It is probably a more reasonable research strategy than
trying directly and abstractly to write a program that “uses remindings” or “acts
curious”. But, letting work towards concrete tasks be guided and informed by
these abstract problems, and measuring completed Al work in terms of how well
it addresses them, is a way to avoid the problem of ending up with programs that
performs well without having anything at all interesting to say about intelligence

or mind.
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