
7
AD-F1183 552 TEN PROBLEMS IN RTIFICIL INTELLIGENCE(U) VLE UNIV 

j'
NEUN HVEN CT DEPT OF COMPUTER SCIENCE

RSCHANK ET AL. JAN 8? VALEU/CSD/RR-514
tWgaRSSlf i ISS I IE N4-40-K9 98 -I8 F/0 12/9NU



L2

I125 16

Rt1 I~,LtUTI4)h TfhY! .HARI

0-VA* % 4%*(M~ S

-WOW iW W W WU



FILE CWOP

In DTIC
SELECT ED

-AUG

IET VI

Ten Problems in Artificial Intelligence

Roger C. Schank Christopher C. Owens

YALEU/CSD/RR #514

January 1987

I~~~. -- '  -.... e"- . .I

YALE UNIVERSITY
DEPARTMENT OF COMPUTER SCIENCE

87 8 14 013
%f-rdX%



Yale University
Department of Computer Science

Ten Problems in Artificial Intelligence .g"

Roger C. Schank Christopher C. Owens

YALEU/DCS/TR-514

February 1987

-P

This work is supported in part by the Air Force Office of Scientific Research under grant

AFOSR-85-0343, and in part by the Defense Advanced Research Projects Agency under

Office of Naval Research grant N00014-85-K-0108. A..

V"~~~5~55~ i - -



SECURiT'm CLASSIFICATION OF THIS PAGE rBl,en list. I-f~recmj)

REOTDOCUMENTATION PAGE READ INSTRUCrioNs
REPOR IF.FORE CcOiPLItnNC. FORM

1. REPORT NUMBER -9 dVT ACCES~iIVN NO'1 3 RCCIPIENT'S CATALOG NUMGER

4. TITLE (and Subtile) S YEOF REPORT A PERIOO COvEREC

Ten ~ .i in Arti'Ficiz1 -:.lic.nCL _-1e5L-Lrch, Report
6 PERFORMING ORG RCPOAI NUMBER

7. AUTH4OR(&) 6. CONTRACT OR GRANT NUMUCR(s)

F',o7.c-r C. Schankd i-nc: Crictophair C. Owz ns NOWC 14-SE-K-C iO6

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROjECT. TASK

Y~ik Unv~rity Ccrut~ Eci~ ~AREA & WORK UNIT NUMBERS

'10 Hillhcuza Avanuz
NLV Ficven, CT 06E5520

11, CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

A c;v noied Re.search Pr'ojacts VAoncy JE~u&r 1E&7

1400 ilczon Soulavard13NUBROPAE
Arlin,.ton, VA 22209 13 UBE FPAE

14. MONITORING AGENCY NAME II ADDRESS(ilf fe,.,if from, Controli'ng Office) IS. SECURITY CLASS. (of this report) I

Off ice of Nzvid RatzuzrchI
Inforrmiticn Systras Fror.raiukzaia

Arlin -on, VA 22217 IS6ECL ASSIFICATION DOWNGRAOING

16. DISTHIBUTION STATEMENT (of this Report)

Approcv -d For public rel~eF.; disztribution unlimited

I7. OiSTRi.3uTION STATEMENT (of the abstract entered in lock JO. If different from, Report)

JJ

19 KEY WORDS (Continue on reverse side it necesary and ,ientify by block num~ber)

T'-hilIE~cphicL-1 Fo'uncation

2 A.TRC T (CnnIln.,e on aove,s. .,d, iI -tc,--&,SF- -- ol h,~~,I lbv ..j. k 0

bj i h- r-ci rrJn '-'-;h_r' v L-.1 .~~ cchan- a, -t,:h

DD ijAN 71 1473

. .. :.% I ' , F .



SECURITY CLASSIFICATION OF THIS PAoE(Moin Dae Entoro)

This pper discusses some problems that are currently of interest to the
field, and places them in the context of a more endurin6 question:
"What is intelliene?" It attempts to enumerate a few essential aspects
of intelligence that every human, animal or intelligent machine must,

to soem degree, exhibit.

' .

A

..

.. ..-. _ . ... ,....

By
-Diut 1b~fioz' /

A'DFb itiy Cl t es

0 iC D_t or0

SECuIqTY CLAS$IF CATION OF THIS PAGE(W?.en Dote Enrted)

Z 
%.4M-%



OFFICIAL DISTRIBUTION LIST

Defense Documentation Center 12 copies
Cameron Station
Alexandria, Virginia 22314

Office of Naval Research 2 copies
Information Systems Program
Code 437
Arlington, Virginia 22217

Dr. Judith Daly 3 copies
Advanced Research Projects Agency
Cybernetics Technology Office
1400 Wilson Boulevard
Arlington, Virginia 22209

Office of Naval Research I copy
Branch Office - Boston
495 Summer Street
Boston, Massachusetts 02210

Office of Naval Research 1 copy
Branch Office - Chicago
536 South Clark Street
Chicago, Illinois 60615

Office of Naval Research 1 copy
Branch Office - Pasadena
1030 East Green Street
Pasadena, California 91106

Mr. Steven Wong I copy
New York Area Office

715 Broadway - 5th Floor

New York, New York 10003, ,i

Naval Research lahoratorv 6 copies
Technical Information Division
Code 2h27

Washington, D.C. 2()375

Dr. A.1,. Slat'koskv ] co".

Commandant of the arine Corps

Code RD-I
Washington, I). C. 2() 3O,

(iffice ot %aval kiosparch I r r) .)
(~ode /j)5 *'

Codp', Is'

Arl iriton, \ir;inia 22217 %

'b.



Office of Naval Research 1 copy
Code 458
Arlington, Virginia 22217

Naval Electronics Laboratory Center 1 copy
Advanced Software Technology Division
Code 5200
San Diego, California 92152

Mr. E.H. Gleissner 1 copy
Naval Ship Research and Development
Computation and Mathematics Department
Bethesda, Maryland 20084

Captain Grace M. Hopper, [SNR 1 copy
Naval Data Automation Command, Code 00H
Washington Navy Yard,%
Washington, D.C. 20374

Dr. Robert Engelmore 2 copies

Advanced Research Project Agency
Information Processing Techniques
1400 Wilson Boulevard
Arlington, Virginia 22209

Professor Omar Wing 1 copy
Columbia University in the City of New York
Department of Electrical Engineering and
Computer Science%
New York, New York 10027

Office of Naval Research 1 copy
Assistant Chief for Technology
Code 200
Arlington, Virginia 22217

Computer Systems Management, Inc. 5 copies

130o Wilson Boulevard, Suite 102 %

Arlington, Virginia 22209

Ms. Robin D)illard cop)v
Naval Ocean Svstems Center
C2 Information Processing Branch (Code 8242)
271 atalina Boulevard
San Diego, California 92152

Dr. William Woods cop\'

5) Momilton treet

% 3

-~ .. % * °..9

p ,_% . % , , ,%_ .% ,% ,'v" ,j '.', V *. *' %_ -- ,% ' .% %-- -%% . q % *%'%,% % \, .' ' ',,% ' % .



Professor Van Dan I copy
Dept. of Computer Science
Brown University
Providence, RI 02912

Professor Eugene Charniak 1 copy
Dept. of Computer Science
Brown University
Providence, RI 02912

Professor Robert Wi]enskv I copy
Univ. of California
Elec. Engr. and Computer Science
Berkeley, CA 94707

Professor Allen Newell 1 copy
Dept. of Computer Science
Carnegie-Mellon University
Schenley Park
Pittsburgh, PA 15213

Professor David Waltz 1 cony
Univ. of Ill at Urbana-Champaign
Coordinated Science Lab
Urbana, IL 61801

Professor Patrick Winston . copy
mI I'T
545 Technology Square
Cambridge, MA 02139

Professor Marvin Minsky I copy
MIT
545 Technologv Squar-
Camhridge, MA 02139-

Professor Negroponte I copy
M IT
545 Technology Square
(Camhridpe, %1A 1)2131)

Profpssor Jerome Feldman I copy
I;niv, ot Rochester
Dept. of Computer Science
Rochester, NY 14627

Dr. Nils \ilsson I copy%.
Stanford Rosearch [ristitiite
'-1pnlo Park, CA ' . j25.

e- dl F_ e_. .I d% p. .



Dr. Alan Meyrowitz I copy

office of Naval Research
Code 437
800 N. Quincy Street ,I

Arlington, VA 22217

LCOL Robert Simpson 1 copy 0'
I PTO-DARPA
1400 Wilson Blvd
Arlington, VA 222U9

Dr. Edward Shortliffe 1 copy
Stanford University 4%
MYCIN Project TC-117
Stanford Univ. Medical Center

Stanford, CA 943U5

Dr. Douglas Lenat I copy

Stanford University
Computer Science Department

Stanford, CA 94305

Dr. M.C. Harrison 1 copy
Courant Institute Mathematical Scipence
New York University

New York, NY 10012

Dr. Morgan 1
University of Pennsylvania % r -
Dept. of Computer S ience [nfo. Sci.
Philadelphia, PA '14'.

Mr. Fred >. ,riffee copy

Technical \ivisor C3 Iivision
Marine (',rps )e\'e opi nt

an(! 't.i ;iltion ;onriar, .

Quanti,.o, VA 1 I .

1I. Virl. i ] tto copI Ir"O
LPonpram ',lanager
A F 0J l ', k . .-.'.'.I

Boll ir, ,\irtnre ase
1311i Idi T

Washi: nt , D( 2' 32

* .......-. .~ b b ~-...

. .A. . .A~ ....% % % %.% %



Abstract

Researchers in Artificial Intelligence have had a difficult time defining the field's

goals and assessing its progress. Some have focused on the task of modelling the human

brain, others have focused on developing smart machines independent of the constraints

of psychological or neurological realism. Over the years the notion of what is an AI task

has changed, as problems once thought to be easy have turned out to be hard, and vice

versa. This paper discusses some problems that are currently of interest to the field

and places them in the context of a more enduring question: 6 What is intelligence?" It

attempts to enumerate a few essential aspects of intelligence that every human, animal

or intelligent machine must, to some degree, exhibit.

Introduction

Once, many people thought that the ability to play chess epitomized the kind P.

of intelligence a machine should have. Chess playing, it seemed, took genuine

intelligence that couldn't be simulated via any kind of trickery. If a machine '.r

could be made to play chess it would necessarily embody something interesting in %

the way of intelligence. Now, however, machines are available for a few hundred

dollars that play a good game of chess, and the best machines play the gamt at -%

a world-class level. Yet nobody would call these machines truly intelligent in any

general sense. As an indicator of general intelligence, chess-playing skill has been

demystified. .

Another task that, like chess playing, seems to be a mark of general intelligence.

is the ability to translate text from one language to another. A machine solution

to this problem has been elusively "just around the corner since the earliest d;ays

of Artificial Intelligence. If. due to some breakthrough . we conld soon develop

machines that were good translators, would we be just A di.ssatisfied with their

%--..



2 6

intelligence as we are with the intelligence of today's store-bought chess opponents?

There seem to be two classes of Al problems: problems that are unsolved a,,d

problems that, although solved, have turned out to have neither interesting nor

satisfying solutions. As one task after the next becomes amenable to a machine

solution, will our goal of creating machine intelligence continue to recede into the

future? Once a problem is solved does it stop being an AI problem?

We think not. We are dissatisfied with the chess-playing machines not because

chess-playing ability turned out to be a poorly-chosen task, but because we were

unclear about what we expected. As an engineering endeavor, the creation of

chess-playing machines has succeeded in that the machines play chess well. If this

does not satisfy us then Al must therefore be something other than the design

and development of machines that perform well on tasks generally considered to

require intelligence.

Does that mean that AI is psychology? One way in which chess-playing machines

fail to satisfy us is that they do not operate in a believably human way. They don't

remember games. They don't analyze their failures and learn from them how to

avoid similar situations in the future. Rather than say that the chess machines

turned out not to be "really" intelligent, we could instead say that they do not

satisfy us because they lack certain essential aspects of human intelligence. But --

defining Artificial Intelligence as the attempt to precisely replicate the human

mind would fail to encompass a great deal of worthwhile Al research. In fact.

some Al researchers, although they are interested in intelligent behavior, couldn't

care less about the human mind itself. Undoubtedly there are better methods for

accomplishing certain cognitive tasks than the methods iised by actual hmllans. ..

and '-"ose who wish to build intelligent machines should not hesitate to use them.

No one other than a psychologist in terested in the developlmcnt of in at ilmticia .

~J . 1 A A A . .AJ ,.A~ A P ~ P~A ql



3 .0g

skills, for example. is likely to rush out to build a machine that con putes by

counting on its fingers. Yet, the human mind remains the only kind of intelligence

that we can reasonably hope to study. In the human mind, we have an existence

proof of a working, comprehensive intelligence.

In placing great importance on psychological realism, however, one still has to

worry about computer programs, like the chess-player discussed above, that display

intelligence but yet are clearly in no way related to how humans function. Are

such programs intelligent? If one is not fully satisfied with either the engineering

of intelligent-seeming programs nor with the precise modeling of the human mind %

as goals for Al, then one must inevitably focus on the issue of the nature of

intelligence itself apart from its particular physical embodiment. One must ask

"What is intelligence?" apart from whether one is talking about human, animal

or machine intelligence.

Features of Intelligence

One way to examine the nature of intelligence is to list some features that we

would expect an intelligent entity to have. None of these features by itself would

define intelligence, indeed a being could lack any one of them and still be consid-

ered to be intelligent. Nevertheless each is an integral part of intelligence in sone °w

fundamental way. Five features of intellignce that we shall briefly discuss here

are: communication, internal knowledge, world knowledge, intentional-

ity and creativity.

Communication: People (;n commnicate witi ;n intelligvnt e ititv. We :1't

talk with rocks or disciiss our desires with trees, no inatt ,r how h ari we trv. With "

dogs and c;ats we cannot express much, but w. an at le,i.t v,'x m.tI,'r ,,r

20"

%**'**-*'*-'-
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1, 1 f-& Iure N Ili ittt-r , % 11 1! 1 1: 1: 1, 1- 1, 11 111 lr ir11 NA hen I ~ -1 111 i ISs

plivs.if. 'A it h IIi, Thi.. I- I, II-II I, iLtt 1".,e~ irlr t 1 1ivthrnlg aliolit

the 4h~s %#,fe~r% tla 'Ife- it I 1 lxi' III,~ lt' Adi rri t-, at II- knowledige.

Vur %iit'l ,'hill ri\ kni%-njo *'Iri jlix i, It 1l:-.i'-i of th'tt l.uilject wIll have

t, Let put 11n tfrrii-, 1 h1f1 li In ir Ir't ri l theIr w'ord..,. thev ea.le r I t Is to

11r1ini1ulfi Ate, %Aith ..I, elit% Ifth,[- inrii~t-1wnt it oi. )1vu'l there ar(

tiianv OeXiept 1( . It 'A 'uild ht, riffirt izi~tt if, jiit I~( aiise you Were traveling in

acoujnt rv wAh. .'.e riat i% . Liii gui '.1 '1. 11ti Ipa everyone trae yo a~s a

11oron1 A!!,(, there are ;,e- le 'Ali' Ir, voenerally onzsidered to he intelligent but

'Aho) are imipoLsJle t tik to, In general, however. (ornminicative ability is a

signrificant and( (htract eristv ifat iire of lintelligenlce.

Internal Knowledge: We expect int,-llgenit entities, to have some knowledge

about themselves. They sho uld know what they know: they should know some-

thing about wAhat thev art, hinkitig aboutii. One wouldIn't expect an intelligent

person to part iallv work out aI soluition to a problemi whose completion depends

upon some piece of kniowledge t hat het k nows he doesn't poss and that he knows

he (-an not re~soiiahIly acquiire. ProbA tly only humans rea-son about their own

k now ledge thiiis way : we ha-ve nII way oif knowing what (logs know about their own

mental state. We can prograin comnput er, to reason about their own knowledge in

somne rudimnenit;t rv ways, l1 'it their behavior is riot very convincing. Itnfortunrately.

only the suhjec tive, riteria of as~king qi#tioi'. :mid obsewrvinig behavior seem to be

useful In aissessingv this feat ire of intelliveio"'

World K nowledge: lntlligenic l. A 'Idorinl, lwii ;i ii awareniess of t lie mitside

world and anl athlhf t,, fid II, i, Mfrrrii;it ii1i Aholit the wo)rld whenl needed. It

imlehaviiiv - inm-'r% f-r I :.st xj~rino ,. All lilt( llit en1tity (Miinot treat

eve-ry experieril *i: brinil IIew; iwt i-idr~t~mii -% o x~rie I-Ili terms of old1



ones, building up its knowledge of the world as it processes each new experience.

Intelligent entities learn about the world from experience and observation.

Intentionality: Goal-driven behavior is another key feature of intelligence. In-

telligent entities know what they want and, often, how to get it. An oak tree has

relatively few goals, and correspondingly few plans for achieving those goals. A

person living in a complex social environment has many goals and plans. Sheer

number of plans, however, may not be a good measure of intelligence because a

computer could easily store arbitrarily many plans. The key to intelligent inten-

tionality has to do with how appropriately and flexibly plans can be applied to

novel situations.

Creativity: We assume that every intelligent entitity has some degree of cre-

ativity. In the weakest sense, creativity might mean only finding a new route to

one's food source when the old route is blocked. Creativity can also mean using

a plan from one area of experience to achieve a goal in another. At its most im-

pressive, creative behavior has changed the world by giving people a completely

new framework in which to understand some class of phenomena, for example the

exposition of a new scientific theory like Newtonian mechanics, or the development

of a new means of artistic expression like linear perspective drawing.

If we wish to discuss artificial intelligence as opposed to general intelligence,

however, we must then ask how the five features described above might be incor-

porated into computer programs. In other words, what problems must the field

of Al address if it is to produce programs that exhibit communication, internal .'..

knowledge, world knowledge, intentionality and creativity? Although the specific '

problems that Al researchers have worked on have changed from time to time as NO

some tasks have come into fashion and others have temporarily or permanently

gone out of fashion, there are nevertheless a certain set of enduring prol)hnil.. We

---------------------------------------------



6

now discuss ten of these problems that define the field as we see it today.

Problem 1: Representation

If people want to discuss memories, facts, objects, relationships or abstract ideas,

they must have a language in which to do so. Similarly if we want a machine to be

able to manipulate knowledge, the knowledge must be represented in the machine

in some manipulable form. The point of representation is that computers do not

manipulate ideas, facts and concepts. Conventional serial computers manipulate

things like symbols, data structures and pointers. Connectionist models and other

neural-like systems manipulate connection strengths and activation levels. Some

future kind of computer architecture might manipulate some heretofore unenvi-

sioned class of object. In any case, the internally-manipulated structure must be

made to stand for whatever ideas, facts or concepts the system is being asked to

manipulate, according to some consistent scheme that allows the processes within %

the machine to take on some meaning.

One kind of representation might be to store an idea as English (or other natural

language) text describing the idea. Although this kind of representation make, it

very easy for a person inspecting the program to figure out what is being repre-

sented, it turns out to be a very difficult representation for computer programns

to manipulate. We would like problems of ambiguity. metaphor and ellipsis not

to permeate our representation scheme. The repre,,entation shou ld no.ither hide'"

important similarities nor should it introduce similarities where none really exist,

The English language representations: 'John took an a.spirin.-. ".John took a bu,

to New York." and -.John took Mary to the party. are qtit,. uni l.tk, r\,-t th,-

underlying con epts are not The at(ilttt Off l,1gige I;ie . ll ' i 'T

internal representation of (n)1t1t. )i th,. htl,.r fitmi . if on' I' t li', I'n %

77
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stored as "John took a bus to New York" and another has been stored as "John

went to New York by bus", the similarity is hidden from the system's view.

Conceptual Dependency, or CD [Schank 72] was an early attempt to represent

the semantics of actions in a clear, unambiguous form. CD expressed actions in

terms of a dozen conceptual primitives and their interrelationships. For example,

"John took a bus to New York" would be expressed using PTRANS, the primitive

for physical transfer of location:

(PTRANS (actor JOHN)

(object JOHN) d

(to NEW-YORK)

(instrument BUS))

while "John took an aspirin" would be expressed using INGEST:

(INGEST (actor JOHN)

(object (MEDICINE (TYPE ASPIRIN)))

(to (MOUTH-OF JOHN)))

CD is a theory of representing fairly simple actions. To express, for example,

"John bet Sam fifty dollars that the Mets would win the World Series." takes

about two pages of CD forms. This does not seem reasonable. We need more

complex structures to handle more complex actions, and much of our work in

representation hasl been directed at the problem of more complex events. Scripts

and plans [Schank and Abelson 77. (ullingford 78, Wilensky 78] were our earliest

attempts to develop larger and more comprehensive representations. Social Acts

[Schank and Carbonell 78] represented the actions of institutions. Memory Orga-

nization Packets (MOPs) further extended our relresentations into a more hierar-

chical, interconnected type of nimory ISchank 79, Lebowitz 80. Kolodner 80. Dyer

,% %



82] . Currently our work on representation centers on the knowledge needed to ex-

plain unexpected events. Explanation Patterns (XPs) are being developed to repre-

sent causal and explanatory knowledge [Schank 86,Kass 86,Leake and Owens 86]

Representation is a good benchmark against which to measure the progress of Al

programs. "Toy" domains like blocks world [Winograd 72], [Winston 70] were fea-

sible because they were simple enough that existing representation schemes could

capture everything interesting about them. Al programs could develop without

being totally blocked on representation issues. As programs have moved from

these domains into more complex domains requiring real-world knowledge, how-

ever, representation has become a more difficult issue and remains one today.

The brittleness and non-extensibility of many systems is due to the impoverished,

sparse representation they embody.

Open topics for further work in the area of representation include the question of

whether there should be one general representation scheme for objects in memory,

or whether various mental processes should each use different representations for 'e

the same piece of knowledge. If the former approach is taken, then one must

address the issue of how a memory representation can succinctly encode an object

or event before the system knows what it wants to do with the representation,

before it knows which cognitive process is going to use the representation and for

which purpose.

Problem 2: Decoding

If an intelligent system has some kind of internal representation scheme, then it also

must have some means of translating between what is going on in the world and

what is in its internal representation. The information we get from our senses (or
%
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the information a computer or robot might get from its sensors and input devices)

is not at the same level of abstraction as the conceptual processing that comprises

the kind of intelligence we usually think about. Our eyes do not talk to us in

terms of doorways, cliffs, onrushing cars, friends' faces or any other conceptually

interesting aspects of the visual field; they tell us about patterns of light and

shadow. Our ears do not tell us what words we have heard, they tell us about

sounds. Taken as a whole, our senses do not directly tell us what is happening

around us, yet from the information given us by our senses we can derive this ,

information. This is what we mean by decoding.

Although we do not wish to dwell on natural language understanding issues to

the exclusion of the general problem of understanding, the task of working from a
VP

natural language text to an internal representation highlights some of the problems

in decoding. Consider once again the word took:

John took a bus to New York.

John took an aspirin. %

John took Mary to the party.

Our decoding scheme must be able to interpret these very similar sentences, both

using the principal verb took, into dissimilar internal representations.

Remembering the meaning of specific phrases like "take a car', "take a plane',

"take a train", et cetera is one way this could be done, but that approach seems

wasteful of memory capacity. Furthermore, it fails to capture an important gener-

ality about the use of the language. The same knowledge that allows us to under- -.

stand phrases like "John took a bus." also allows us to understand specific phrases

that we have probably never seen before, like "John took a hovercraft across t he

Channel." A more general approach to this decoding t;sk is to have procedural %

%
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knowledge associated with words. For example the procedure for decoding took

might have, among other rules, something like:

'If my object is the name of some mode of transportation, then

instantiate a structure representing travel. If my object is the

name of a medicine, then instantiate a structure representing

ingestion. If my direct object is a person and my indirect object

is the name of some social occasion, then instantiate a structure

representing a social date .... "

These procedures were called "requests" by [Riesbeck and Schank 76], [Birnbaum

and Selfridge 79] and others. Note that the knowledge contained in a request is

not just knowledge about language, it is knowledge about the world. An aspirin

is not a mode of transportation. A party is a social occasion to which people -

customarily bring dates. This is an important point: The knowledge requirements

of the decoding process cannot be isolated; the decoding process needs access to a e.

full range of knowledge about the world. As an example of the degree to which this ,

knowledge is removed from knowledge about language use, consider the following

pair of sentences:

At the end of his working day. the policeman took the bus home. "

At the end of his working day, the bus driver took the bus back

to the garage.

One of them is about traveling someplace by bus and the other is about driv-

ing a bus someplace. It is our knowledge about policemen and bii drivers that

allows us to decode these, not our knowledge about language. Our recent work

on language understanding includes the MOPTRANS parser [Lytinen 84], which .

Np
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explores the integration of linguistic and world knowledge, and Direct Memory

Access Parsing (DMAP), which makes the claim that decoding (or parsing) is

an integral part of memory organization and should not be a separate process

[Riesbeck and Martin 85,Martin and Riesbeck 861

The principal problems in decoding are how memory can be arranged so that

the correct knowledge is brought to bear at the correct time during the decod-

ing process, and how the complexity of multiple, interacting, possibly conflicting

requests or interpretations can be controlled.

Problem 3: Inference

Exactly where the decoding task ends and where the rest of processing begins is

not clear. Continuing our saga of John on his bus, what, exactly, does the sentence

'John took a bus to New York." mean'? Does it mean that John went to New

York? Yes. Does it mean that John is in New York now? Maybe, if we haven't

heard information to the contrary. Does it mean that lohn wanted to go to New

York.' Does it mean that John is not wealthy enough to own a car? Is John a bus

driver? A hijacker? There is a potentially infinite set of inferences that can be

drawn from a piece of input, and a large part of intelligent understanding is the

ability to draw a reasonable set of them.

One way to inake infervii(es is viai infervem c rul s aid l tt,,rn natlhing. A

svster can havei a library of rules. each of which havs a pirecond ition side and an

infference side. When the preconditin 1, ni'ithe,l the inference jsi generated.<

An example (,f a sudh a rml'' ,ul,] b'e: -If S',ne,,,e. travels t, sneul, . ij'r that

they had sonfm, h iIies there.- r 'If ,,,,I,,rI rrn;v', lv lu. ,. ,,s, , th y I u et

ow a car." These rule., can 1w chained t-vft hcn k~ ffmar11, hr the infr'n' of on. I
%..

• =," • .. . " ." . 0 ,. " " ." . . " '."d . . . , " " . . . 1". " " . . . . • " @ ',t° . ,P.
%a" % ° "." , 

"
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rule against the preconditions of the next, so that a system could answer "Is John

Poor?" by chaining from "Poor people do not own cars" to "People who do not

own cars travel by bus" to "John went to New York by bus". This inference may

or may not be correct, there are also many other inferences that could potentially

have been made at the same time from the same input. How well Al programs

make reasonable inferences, how well they decide which inferences to make and

how they decide how far to extend an inference chain are good ways to measure

our progress against the inference problem.

The inferencing task highlights the importance of a good representation scheme.

The representation for a class of events, for example travel, is a good place to index,

in memory, the inferences we wish to make whenever we encounter an event of

that class This approach was taken by [Rieger 75]. If our representation groups

together the events about which we wish to make similar inferences, then it is

serving the inference task well. If it scatters similar events throughout memory

then it is not.

Problem 4: Control of Combinatorial Explosion

The problem with inferences is that there are too many of them to make. If, for

example, we can make five inferences from a fact, and five more inferences from

each of those inferences and so forth, then the combinatorial complexity of trying

to investigate inference chains of any length greater than a few steps becomes

overwhelming. Processing power is not infinite, either in people or in machines. ,h

Conceptual Dependency avoided the worst of this prolblem by representing the

world at a coarse enough grain size that the nuimbler of inferences, remain', small..

The problem was neverthieless there'. A miore general so] ]tion to th)i (proisp i %ee

Al

.1'
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goes hand in hand with a solution to the problem of representations being too

low-level: As we represent more complex events and objects, we need to constrain

the undirected inferencing that we ask our systems to do. We need to structure

knowledge at a higher level of abstraction.

The scripts used in SAM and FRUMP [Cullingford 78,DeJong 79] were an at-

tempt at this kind of structuring. The point of a script was to package together a

stereotyped sequence of events along with some inferences so that the whole entity

could be treated as one representation object. An example is the restaurant script,

which had in it CD forms corresponding to the sequence of actions one typically

expected at a restaurant, such as entering, being seated, ordering, eating, paying,

leaving a tip and leaving. While sitting in a restaurant, when the waiter arrives at

our table, all we need to do is recognize a script element rather than try to figure

out who this man is and why he is there. We know that we can order food or ask

questions about the menu because the restaurant script already contains, frozen

and ready to use, the inferences we will need We don't need to search memory for

inference rules in order to understand the sequence of events. For routine stories,

scripts reduced the general problem of understanding to a problem of matching a

script element. A more general overview of the basic idea of this kind of knowl-

edge structuring and packaging can be found in [Minsky 75]. More recently, more

hierarchical, modular and abstract knowledge structures have been developed in

response to some of the shortcomings of scripts [Schank 821.

As an example of the kind of control an Al program must have over its infer-

encing even in relatively simple stories, consider the following example, suggested

by Larry Birnbaum:
J"

An ,ndercover agent was tailing a suspect. The Suspect wadked into a ha rd-

ware store. The agent followed. After a few iniinutes in the store,. the suspe(t

V% %

- . .- e_ 4.
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began looking nervously at the agent, who was trying to look inconspicuous next

to a display of ropes. The agent measured off some rope, took it to the counter,

paid for it and left the store.

If we ask our understanding system why the agent bought the rope, we want

it to realize that he didn't want the rope at all. He merely bought the rope

because that is a typical, inconspicuous thing to do in a hardware store and because

he happened to be standing next to the rope when he became aware that his

quarry was nervous about him. No reasonable amount of inference off the low-

level features of the scene could yield this understanding; a system would never

get to a state of understanding by starting from hardware stores or rope. At the

same time, nothing in the Undercover Agent knowledge structures is going to say

anything specific about buying rope. Reasoning from the high-level construct of

"looking inconspicuous" to match against the action of buying the rop* places

demands upon the tasks of matching and instantiation that we don't know how

to solve without asking the understanding system to search exhaustively through

everything that it knows.

Problem 5: Indexing

The difference between reasoning from primitive inference rules and reasoning

from cases or larger knowledge structures like scripts can be summarized as the

difference between building a causal model and retrieving one. Presumably, saving

one's analytic work and retrieving it later requires less processing than trying to

develop a model from scratch. Once we know that we are in the restaurant script,

for example, we can easily place in context the appearance at our table of a man

with a notepad.

'.]
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If there is to be any advantage to retrieving complex causal models and other

knowledge structures rather than building them from scratch, then there must be

an efficient way to index structures so that the right one can be retrieved at the

right time. If, on the other hand, it requires just as much work to look through ti

memory to find a knowledge structure as it would to derive it from scratch, then .06

memory must be reorganized so that the offending knowledge structure can be

found more quickly.

A way to look at this memory indexing process in people is to examine the phe-

nomenon of reminding. A favorite reminding story is the "Steak and the Haircut"

reminding, reported in [Schank 82]. Two friends were talking and one mentioned

that he could never get his steak as rare as he wanted it. The other replied that

that reminded him of a period of time, years ago, when he could never get his

hair cut as short as he wanted. The two episodes have little in common at the
.- -

surface level, yet they share the thematic similarity of someone being unable to

get something as extreme as he wanted it. In order to get reminded of the sec- %

ond story by the first, the listener must first have abstracted from the details of

the steak story to the underlying pattern (people not believing you when you ask

for something extreme?), and then retrieved the haircut story, which was indexed

under that abstraction.

CYRUS [Kolodner 80] focused on the issue of how memory could be organized

and indexed in order to answer questions whose answers were indirectly available

within memory but which were not directly answered by any one fact in nemory.

Some aspects of the knowledge structure indexing and selection problem (an .

be solved easily and some cannot. \With scripts, for example, physical location .

and stereotyped objects play a strong role. If we hear about someone going into a

restaurant, we can begin to infer that they will order a meal. If sOllol('e pick. ill) a



telephone, we can assume they will make a call. Of course reasoning from physical

location is only a rough guideline, and it is often incorrect. A system embodying

this type of script selection would be tripped up by the following story:

"John needed to make a phone call. He had no change in

his pocket. Down the block was a diner. He walked into it." . -

A system reasoning from physical locations would assume that John was about to

order a meal. Furthermore, the more abstract patterns, which are the ones that

buy a great deal of processing and inferential power, are the most difficult to index

so that features derived from a story would be good retrieval cues. How would

a system notice an instance of revenge? Of a double-cross'? Of a love triangle'?

Indexing abstract patterns so that they can be retrieved when appropriate is an

important memory organization problem to solve.

.

.P.

Problem 6: Prediction and Recovery P%

A good example of how these structures and patterns are applied to the tausk i

of understanding is found in the processes of expectation and predictioIn. If an

understanding system is constantly trying to use its active knowledge stru('ture -

to predict what will occur next, then the system is in effect no longer asking -what

is going on here?" It is instead asking "How does this event match the expectat ii.-

that have been set up by my active knowledge structures.- This is a narrwer.

more specific question, and it is easier to see how a s'stein might anwer it. (;iVen"

a good set of predictions, a predictive understander's job is to match iipuit against

its predictions rather than to analyze the input from scratch.

Of course these predlictions are not always going to be correct .,oinetinies Ii
they will be wrong because the undrstander has misunderstood what is actluallv

%"._"
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happening and has activated the wrong knowledge structure. Sometimes they will

be wrong because, although the right knowledge structure is active, a genuinely

bizarre event has occurred. Or the prediction could have been fulfilled, but in

some way that the understander failed to notice. When people fail in an attempt

to understand something, they do not simply give up and spout an error message,

they attempt to recover from the failure and continue processing. Obviously, our

machines should do the same.

Predictive failures are not the only kinds of failures from which people can

recover. Plan execution failure occurs when a plan step either fails to achieve

its desired goal, is unexecutable, or has undesirable and unexpected side effects.

Memory retrieval failure occurs when we look for a knowledge structure to package

a certain event or set of events and are unable to find one.

Recovering from any of these types of failures by backtracking is a non-theory.

For one reason, the combinatorics of this approach art- impossible. Furthermore,

the approach is not executable in real time under real resource constraints. Once a

robot hals walked off a cliff, it cannot backtrack and try its next option. A system

must anticipate and avoid plan failures, and it must take advantage of the learning

opportunity offered by failure. Failure convey'; a tremendous amount of informa-

tion in that properly analyzing a failure suggests not only appropriate recovery.

strttvg i.s, but also strategies for avoiding the failure-ind ucing situation ini the

fuiture. Failure allows is to learn new pre lictive knowledge structures, new plan-

iig rules or new memory retrieval strategies. The CHEF program [Hammond 861

explored this process in the planning domain.

At the simllst level of failure recovery, a knowledge structure can have rules

that 'xpeify. if a certain type of filure occurs, to is, a different knowledge struc-

ture. For xanile, if we walk into a rctaurat and the expectec( hostess does not

%-
.'-

*I.
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materialize but there is a counter, we can assume that we are in a fast-food restau-

rant and activate the fast-food restaurant knowledge structure with its different

set of expectations, inferences and event sequences. As we shall explain below, a

more sophisticated failure recovery strategy is available as well, one that has the L

added benefit of enabling a system to learn new knowledge structures.

Problem 7: Dynamic Modification

Of course none of the knowledge and memory organization needed for understand-

ing is built in; it must be acquired. Human- change as a result of their experience. ,

augmenting their store of knowledge, reorganizing their memories, forming gen-

eralizations. Learning is a quintessentially human capability, yet, aside from an

occasional peripheral appearance it has been conspicuously absent from AI pro-

grams until very recently. A program was limited to the stock of knowledge with

which it started, which meant that our ,nderstandin, systems could be given the

same story over and over again, and the program would treat each occurrence

as though it were reading a totally new story. gaining neither any efficiency in

understanding nor any generalized knowledge as a result of its experience.

Earlier we showed how ge ting reminded of a relevant knowledge structure wa. .

a lazy way to understand a new episode inl that. to the oxtelnt that ih new episode

was similar to the class of old episode's represnt-ed bv tihe knowledge struicture.

a system could understand v -filling in the blanks- ill the knowledge strmctu n

rather than by doing new analysis from so ratch. Similarly. a lazy way to learn new

knowledge structures i to modify old ones lightlY inl order to fit ne.w data.

A good model for thi-s kind ,)f knowlede t riicture re.vi-in is XllaIi.tit. Xhen,

people have a predlictiv failure inl indlerrtmi,ling. th,\ are urprised. Things aren't
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as they expected. They recover by explaining to themselves what is going on,

which results in both an understanding of the current situation and a revised set

of predictive knowledge structures to use in the future..-

At Yale, we have been studying this phenomenon by asking people to make

up explanations in response to the Swale story. Swale was a well-known and

extremely successful three-year-old race horse who was suddenly and unexpectedly

found dead in his stall. Although no explanation was immediately offered in the

newspapers, certain possible explanations were frequently given. Maybe Swale % %

was killed for the insurance money. (This turned out to be improbable, as he was ,.

under-insured.) Maybe he was killed by the owner of a competitor. (No evidence

of foul play was discovered.) Maybe, like Jim Fixx, the author of books on jogging

who died of a heart attack, he had some kind of hidden heart defect that was *

brought out by the strain of competing in horse races.

The point of mentioning these explanations is that they were not developed from

scratch by chaining together primitive rules. People seem to explain by making -.

reference to remindings, or to frozen patterns of causal reasoning. We have been

calling the frozen causal patterns Explanation Patterns, or XPs. Our approach is

that the key to explanation is getting reminded of a relevant XP and applying it".

rather than trying to build an explanation from scratch. This approach controls

what would otherwise be an inference problem with impossible combinatorics.

Making an explanation allows an understander to focus on which features of an

episode are causally relevant and therefore interesting. Implicit in our knowledge

structures and knowledge packaging relationships is the notion that causal rela-

tionships underlie the packaging links. If causality is the glue that holds memory

packages together, then causal analysis of input episodes is essential to the ta.sk

of analyzing a predictive failure and using it to modify the predictive knowledge

0 4r
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structures responsible for it.

Trying to get a system to make explanations opens up a set of interesting prob-

lems. Where should the knowledge derived from the explanation be indexed, so

that the predictive or other failure could be prevented? How far should the expla-

nation be generalized? How should explanation patterns be indexed in memory,

N.,.How should input episodes be analyzed to select features that would be likely

retrieval cues.

Problem 8: Generalization

Another kind of learning comes not from analyzing failures, but from noticing

regularities and patterns in the world and drawing generalizations from them. If 0 ee

people see the same sets of features co-occurring often enough, they will learn

the generalization that they occur together. Winston's concept-learning program

[Winston 701 used positive and negative examples to induce the definitions of struc-

tures in the blocks-world domain. The IPP program [Lebowitz 801 augmented its

store of predictive knowledge structures by noticing and remembering the gener-

alities across stories that it read.

Noticing regularities is a good source of anomalies that, once explained, can be e%.r

added to a system's store of knowledge. A problhni with liIing inductiol Without

explanation is that it is not particularly powerfil coinqpar,-,l t the kinlt i ,,,i ,.r"

learning that people actually do. ()n the one hand ,,,, ,' ,t ' ,'nralltiv, iII

one or two trials that an inductive machine woul tak, mtuch l,,nrer to iioti,#.

On the other hand inductive niachin .., i jl N Iv irr,ttiii, ftir,'-, i..k,' iz,'t- -n-

eralizations that people woull never iii;ike. IPP. fr x;mI ,l.. mill 'rr ' ,,.'

learn that bhonii inw , in hli;t always kill , tx, 't I, ,.,. tin I.N t\ p..s itl'i, %

%
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the features that multiple stories happened to have in common. Whenever possi-

ble, forming generalizations by using explanations to identify causally significant

features is a stronger method.

Problem 9: Curiosity

As a combined experiment and exercise we once presented to a class of graduate

students, a newspaper story about a teenage suicide car bomber who had been

captured before he had the chance to destroy his target. We presented the story

one sentence at a time, asking the students at each pause to propose questions

that they would like to see answered. The questions were exactly as would be

suggested by a model of understanding based upon prediction and substantiation

of predictions. At each pause, listeners were ready with questions directed towards

confirming, modifying or refining a partial theory of what the story was about.

Although graduate students in a scientific discipline are probably more explicit

about forming and evaluating hypotheseses than are most people, their behavior

is still representative some general process.

Cats, small children, and even some adults, are curious. They ask questions

about what they see, they wonder about what they hear, and they object to

what they are told. This is a natural result of a system making predictions and

wondering why those predictions fail. One view of curiosity is that a system is

curious if it devotes processing effort to identifying gaps in its knowledge base and

seeks to fill them.

Our work on explanation [Schank 861 deals with some qu(estions pertaining to

uuriosity, nanmelv how a systeim shoutld identify what is worth wondering about

and h1"w hvpot he"ses should be generated and tested. We h:ve also explored the

'a
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use of curiosity, the underlying stimulus for learning, in education itself [Schank

and Slade 85].

Problem 10: Creativity
;,

One story that was facetiously offered in explanation of the abovernentioned Swale

episode was that Swale died from a heart attack resulting from the excitement of .1

anticipating what his future life on the stud farm would be like. Although this is

a ridiculous explanation from a reasonable, factual point of view, we nevertheless

like it because it somehow seems funny and creative.

What we see in these creative explanations is the ability to intelligently mis-

apply explanation patterns. A creative explainer can start with an inappropriate

pattern, for example the folklore that too much sex can result in early death. Al-

though on the face of it, this pattern cannot apply to race horses because they

are typically not bred until they are retired from racing, it is a departure point

for modification. It is reasonable that indexing into memory with race horses and

sex should retrieve knowledge about stud farms, which, although not immediately

applicable, can be relevant. Since the stud farm phase of a horse's life occurs after

his active racing career, and since Swale died at the peak of his career, there cannot

be a direct causal connection. Future events can, however influence present events

via the effects of anticipation. This is a general rule that is useful, for example,

in analyzing stock price movements in reaction to events that are predicted but

have not yet happened. Reasoning about the effects of anticipating the stud farm,

an explainer could predict excitement. Excitement can be connected to death via

stress-induced heart attacks.

By taking an inappropriate Explanation Pattern and modifying it to fit the

%. ..
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current episode, we derive an explanation that is creative and humorous. Of

course the same process can yield useful explanations as well. The use of the

Jim Fixx reminding to explain Swale's death is also a creative act. Using an

explanation about joggers to explain race horse death is an example of the same

kind of misapplication and modification that we discussed above. The explanation

cannot apply at first because Swale, not being a human, cannot be a jogger. A

creative explanation system could, however, use the causal knowledge about how

being a jogger connected to Jim Fixx's death. This knowledge lets the program

ask the question: "Is there anything a race horse does that has the same causal

significance to Swale as jogging held to Jim Fixx's death, namely that it was a

source of physical exertion?" With this narrow a search task, it is not difficult to

derive the explanation of a heart attack brought on by excessive physical strain

involved in racing. This adaptation of inappropriate patterns is at the heart of

what we wish to study in creativity. This work is reported in more depth in

[Schank 86].

Creativity, whether in the artistic, scientific or problem-solving domain, involves

using something in a novel and unexpected way. A creative piece of engineering

design might involve using a part, structure or material in a new way. Similarly,

creative problem solving might involve using a technique from one field in solution

of a problem in another. Creative explanation and understanding involves taking

a pattern or knowledge structure and modifying it to fit events other than the ones

for which it was originally derived.

The problem of creative reasoning, which at first seems mystical and far removed

from that which can be implemented on a machine, reduces to two sub-problems,

retrieval and adaptation. These are difficult problems, but they are in principle

amenable to a mnechanistic appro;ich. Althoiighi it is ternpting to say that be- .

%I %. %%
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ing creative means relaxing the constraints on retrieving and matching memories,

it is not this simple. Human and machine processing power is not infinite so

randomly trying one inappropriate pattern after the next is schizophre,.n.c rather

than creative. The important aspect of creative understanding is to be intelligent

about which "inappropriate" structures to use: to have a memory that returns a

reasonable set of near-miss candidate patterns.
N.?

Conclusions

Which problems are most important? All of them are important of course. But IWO%

the tasks associated with learning must pervade and inform work on the other

problems. Al has made considerable progress in defining what it is that is learned.

Now it is time to demand actual learning of our programs.

The problems we have listed here are not meant as the ultimate definition of

what Artificial Intelligence is or should be. They are instead a set of goals and

benchmarks that we might use. We do not want to argue that people in the field

should work directly on these more abstract issues rather than on programs that

addresses a particular concrete task. Setting out to write a program that performs

well on some real task, for example, translating languages or learning how to

play chess, is essential. It is probably a more reasonable research strategy than

trying directly and abstractly to write a program that "uses remindings" or "acts

curious". But, letting work towards concrete tasks be guided and informed by

these abstract problems, and measuring completed Al work in terms of how well

it addresses them, is a way to avoid the problem of ending up with programs that

performs well without having anything at all interesting to say about intelligence

or mind.

% N N
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