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1.0 INTRODUCTION 1

This document describes a technique for obtaining atmospheric extinction coeffi .
ficient profiles by using two lidars. With a single lidar, some assumptions must be made :
about the atmospheric conditions, since there is only one equation, but two unknowns. ;
One assumption sometimes made is that the aerosol distributions in the atmosphere are A
horizontally homogeneous. More frequently assumed is that the atmospheric backscatter-
to-extinction ratio is a constant. Even if this were true, this ratio would still have to be
determined.

With the two-lidar technique, no assumptions are necessary, since there are now
two equations and two unknowns. An additional advantage of the technique is that the
lidar constant resulting from geometric characteristics of the optics and the laser pulse .
energy need not be known. However, the lidar receiver gains must still be accurately y
calibrated. ]

A block diagram of a two-lidar system is shown in figure 1-1. The two lidars are
separated and pointed along nearly the same path, but in opposite directions. The second
lidar site has a sensor that detects when the first lidar is fired. This outputs a signal
through a delay circuit, which then triggers, or fires, the second lidar. Alternatively, with
appropriate time delay, a trigger signal could be sent via landline, to the second lidar. 3
The output of each lidar could be recorded at each site, along with an accurate time
reference; or the outputs from the two lidars could be recorded on a common recording
device, along with a time reference.
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Figure 1-1. Biock diagram of a possibie two-lidar system.
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2.0 MATHEMATICAL DERIVATIONS

2.1 EXTINCTION COEFFICIENT PROFILES

The quantity S(R) is the natural logarithm of the backscattered power received
from range R multiplied by RA2. If the two lidars are separated a distance d, as shown
in figure 1-1, and the origin is at lidar 1, the equation for S(R) for the first lidar is

R

SJ(R) = Ln(Cy;) + Ln[B(R)] — 2[0 o(r)dr, (1)

and that for the second lidar is

d

o(r)dr,

S5(R) = Ln(Cj3) + Lna[B(R)] — ZL (2)

where Cy | and C|, are the instrumentation constants for each of the lidars. The a(r) is
the extinction coefficient at range r, and S(R) is the backscatter coefficient at range R.

If equation 2 is subtracted from equation 1, we get

R d
S1(R) = S5(R) = Ln(Cy) — Ln(Cyy) — 2] o(r)dr + 2/ o(r)dr. 3)
0 R
Since
d d R
/ a(r)dr=/ o(r)dr —[ o(r)dr, (4)
R 0 0
equation 3 becomes
R d
S1(R) — S5(R) = Ln(Cj) — Ln(Cyp) — 4[ o(r)dr + 2/ o(r)dr. (5)
0 0
Taking the difference between equations 1 and 2 eliminates the backscatter
coefficient. Then, taking the derivative of equation 5 eliminates the requirement that
instrumentation constants C; and C;, be known, and we get
dS{(R) — dSy(R) = —4 o(R)dR (6)
or
dSz(R) dSl(R)
dR dR
o(R) = 2 : (7

The calibration curves for each of the lidar receivers are still needed. however. and
must be accurately known, since they affect the slope characteristics of the S(R) curves.
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Because the propagation for the two lidars is in opposite directions with respect to
the origin, the slopes of S{(R) and Sy(R) should have opposite signs under homogeneous
atmospheric conditions.

2.2 INTEGRATED EXTINCTION AND VISIBILITY

While integrated extinction can be obtained by integrating the extinction coefficient
profile, it can be obtained more directly. If equation 3 is written for two different
distances, R; and Ry, we get

Ry d
S1(Ry) — S5(Ry) = Ln(Cy ) — Ln(Cyp) — 4./(; o(r)dr + 2[0 o(r)dr (8)

and

R, d
Sl(RZ) - Sz(Rz) = Ln(Cl l) - Ln(Clz) - 4L a(r)dr + 2]0 a(r)dr. (9)

Subtracting equation 9 from equation 8 gives

R R;
[S1(R}) — Sa(R)] — [S{(Ry) — SZ(R2)1=—4/(; a(r)dr+4f0 o(r)dr. (10)

Using the following equation

Ry Ry R,
f o(r)dr =[ o(r)dr —[ o(r)dr, (11)
R 0 0

1
we get

Ry [S1(R) = S3(R])] — [S1(Ry) — Sy(Ry)]
o(r)dr= 4 . (12)
R

1

Again, the instrumentation constants drop out.

If atmospheric conditions were homogeneous, this could be used to calculate
visibility by using the equation

3.912(Ry — Ry)

Vis = R2 . (13)
o(r)dr
R

1

which is the Koschmieder relationship with the extinction coefficient replaced by an
average extinction coefficient over the interval R to R,.
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3.0 EXPERIMENTAL MEASUREMENTS

3.1 EQUIPMENT SETUP

The lidars used for these measurements were visioceilometer lidars (Lentz, 1982)
operating at a 1.06-um wavelength with a nominal pulse energy of about 10 mJ and a
pulse width of 6 nsec. The two lidars were set up at opposite ends of a |-km path and
pointed towards each other. Lidar #025090 (#0) was located at building 323, about 30
to 35 meters above the ocean surface. Lidar #025091 (#1) was at building 593 at about
130 to 135 meters above the ocean and southeast of building 323. Lidar #0 was pointed
about 3 or 4 meters above lidar #1, and lidar #1 was pointed about 3 or 4 meters west
of lidar #0.

A test sequence usually consisted of 25 shots at approximately 45-second to -
minute intervals. This was controlled by how fast the data for each shot could be
recorded. Timing of the lidar shots was coordinated over a radio link to ensure that the
two lidars were fired within about | second of each other. The data were recorded at
each site on Memodyne cassette recorders for subsequent processing.

3.2 LIDAR CALIBRATION

Lidar #1 was calibrated in March 1986 (Ferguson & Paulson, 1986). and the
calibration was found to agree closely with the calibration curve provided by the
manufacturer. While lidar #0 was not calibrated at that time, the two lidars were later
fired together along a common path. The receiver gain constants of lidar #0 were then
adjusted so that a least-squares fit to a straight line of the S(R) returns agreed, on
average, for the two lidars, for about 25 lidar shots. An example of this is shown in
figure 3-1.

While the gain constant for lidar #0 appeared to be steady, the DC-offset value
varied considerably.

3-1
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Figure 3-1 Comparison of S(R) curves for the two hdars over a common path.
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4.0 DATA ANALYSIS

Data were taken on 27, 28, and 30 October 1986 during conditions of reduced
visibility. (See figures 4-1 and 4-2.) Data were also taken on 4 November 1986, when
visibility was quite good. The raw data were adjusted for receiver calibration and were
range-compensated to produce S(R) curves for each of the examples. Additional
examples are found in Appendix A. Evidently, many of the atmospheric irregularities
one lidar sees are also seen by the other. If the two lidars had been aligned exactly on
the same path, this agreement would probably have been even better. However, they
probably should not be pointed directly at each other. Even if the pulse from one lidar
did not damage the detector of the other, it would probably saturate the detector to the
point where it would not record the return from its own pulse.

Additional improvement might have been obtained if the time delay between the
two lidar shots had been reduced to a small fraction of a second. The lidar separation of
0.9825 km is accurate to within one 7.5-meter range cell.

To try a slightly shorter path, on 28 October lidar #0 was relocated south of
building 323, near a radar site. In this case, the lidar separation was 0.6375 km.

4.1 EXTINCTION COEFFICIENT PROFILES

In applying equations 6 and 7, the differences between S|(R) and Sy(R) were
calculated first, then the derivative as a function of range was taken to obtain extinction
coefficient profiles. Some data smoothing was necessary, however, before taking the
derivative. Usually 11-point running averages were used to accomplish this. This is
equal to an 82.5-meter running average.

Theoretically, the slope of the S(R) difference curves should never go positive, and
the extinction coefficient should never be less than zero. However. minor differences in
what each lidar sees may cause the extinction coefficient profile to sometimes dip slightly
below the zero line. Better signal-to-noise ratios for the two lidars might reduce this
effect.

A range increment of 15 points was used in calculating the derivatives of the S(R)
difference curves. This corresponds to a running range interval of 112.5 meters.
Figures 4-3 and 4-4 show examples of S(R) difference curves for 27 and 30 October.
respectively, along with the corresponding extinction coefficient profiles. These
correspond to the S(R) curves for data set 2 in figure 4-1 and for data set 3 in figure 4-2.
Other examples are included in Appendix B.

4.2 INTEGRATED EXTINCTION AND VISIBILITY

Equation 12 was used to get the integrated extinction between 0.12 and 0.81 km
for each lidar shot on 27 and 30 October, and 4 November. On 28 October. these
distances were 0.12 and 0.51 km. Additionally, equation 13 was used to show what the
visibility would have been if the atmospheric conditions had been homogenous. The
results are shown in tables 4-1 and 4-2.

The results show improving atmospheric conditions on 28 and 30 October over
those on 27 October and very good visibility conditions on 4 November. This agrees
with what was observed visually.

4-1




AVERAGED S(R)

AVERAGED SiR)

DATA SET @2
10,27 /B6

LB Solid L1 Dotted

Range Zero at BLDG 323
Separation=.9825 km

RANGE (km)

DATA SET 4
L 1027 786

L® Solid L! Dotted
Range Zero at BLDG 323
Separation=.9825 km

Figure 4-1
and dotted I

RANGE (km)

Examples of S(R} data for the two-lidar method. Solid line s for idar #0,
ne 1s for hdar #1 Curves are 3-point running averages.
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Figure 4-2. The same as figure 4-1, but for 30 October 1986. The vertical scale is
expanded compared to figure 4-1.
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Table 4-1. Values of integrated extinction from 0.12 to 0.81 km for 27 October 1986 and
from 0.12 to 0.51 km for 28 October 1986. The visibilities are an indication of what the
visibility would have been if atmospheric conditions had been homogenous.
Date Data Set Integrated Extinction Visibility (km)
10/27/86 2 0.953 2.83
3 0.737 3.66
4 0.635 4.25
5 0.715 3.78
6 0.791 341
7 0.653 4.14
8 0.766 3.48
9 0.920 2.93
10 1.178 2.29
11 1.058 2.55
12 1.077 2.51
13 0.831 3.25
14 1.007 2.68
15 0.953 2.83
16 1.020 2.65
17 0.949 2.84
18 0.792 3.41
19 1.132 2.38
20 0.973 2.17
21 0.851 .17
22 0.993 2.72
10/28/86 2 0.228 6.68
3 0.326 4.68
4 0.234 6.52
5 0.279 5.47
6 0.254 6.02
7 0.259 5.90
8 0.204 7.48
9 0.285 5.36
10 0.254 6.00
12 0.154 9.91
13 0.211 7.22
14 0.256 5.96
15 0.233 6.56
16 0.222 6.88
17 0.176 8.65
18 0.193 7.89
19 0.268 5.69
20 0.250 6.10
21 0.251 6.07
22 0.227 6.73
23 0.297 S.14
24 0.310 493




Table 4-2. Integrated extinction from 0.12 to 0.81 km for 30 October 1986 and
4 November 1986. The visibilities indicated show what the visibility would have
been if atmospheric conditions had been homogeneous.

Date Data Set Integrated Extinction Visibility (km)

10/30/86 2 0.402 6.71
3 0.413 6.54
4 0.400 6.75
5 0.478 5.64
6 0.409 6.60
7 0.407 6.64
8 0.433 6.24
9 0.425 6.36
10 0.469 5.76
11 0.457 5.91
12 0.422 6.40
13 0.458 5.90
14 0.381 7.08
15 0.357 7.57
16 0.353 7.64
17 0.412 6.55
18 0.429 6.29
19 0.428 6.31
20 0.458 5.89
21 0.447 6.04
22 0.430 6.28
23 0.399 6.76
24 0.376 7.18
11/04/86 2 0.180 14.96
3 0.415 6.50
4 0.184 14.65
5 0.079 34.11
6 0.191 14.10
7 0.111 24.24
8 0.154 17.52
9 0.240 11.24
10 0.212 12.74
11 0.156 17.30

......

......
----------------
.....




5.0 TEST OF A LIDAR INVERSION ALGORITHM

The results from the two-lidar approach can be used to evaluate lidar inversion
algorithms. One of these algorithms requires that a value of extinction coefficient be
known, or estimated, for a point at maximum range (Klett, 1981). The equation is

EXP (S — S;,)/k|
a(r) = : (14)

1 ‘m
LI i. [ EXP|(S — S,,)/k]dr’
r

m

where o (m) is the extinction at maximum range, and k is taken as 1. This equation must
assume that the backscatter-to-extinction ratio remains constant as well as that o (m) be
known. Although there have been attempts to improve on this technique (Klett, 1985),
the method used in equation 14 will be studied here.

Since the two-lidar method provides an extinction coefficient profile between the
two lidars, a value of extinction coefficient can be chosen from opposite ends of the
profile. The value is used as the far-point extinction coefficient, ¢ (m), for each of the
lidars. This has been done for several lidar shots and for equation 14, used with the
corresponding separate S(R) profiles. The lower graph in figure 5-1 shows some results
for data set 4 on 30 October 1986. The two lidars agree quite well, but the curves do not
closely follow that of the two-lidar method shown in the upper graph. Another example
for data set 2 on 27 October 1986 is shown in the lower graph of figure 5-2. Here there
are some differences between the two extinction profiles, although they tend to agree in
general. They do not follow the two-lidar extinction coefficient profile very well, though.
Figure 5-3 for the following data set shows major differences between the extinction
coefficient profiles for the two lidars, while figure 5-4 again shows some agreement.

In most cases, the extinction coefficient profiles from the stable inversion method do
not agree well with the extinction coefficient profile produced by the two-lidar method. It
also appears that the extinction coefficient profiles calculated separately with the two lidars
disagree widely from one data sample to the next. This occurs even though the calcula-
tions of the coefficient profiles use the same S(R) data that were used in the two-lidar
method to obtain the far-point extinction coefficients used in equation 14. One possible
explanation is that the backscatter coefficient may be varying along the propagation path.
Some computer-generated S(R) curves were used to test this.

Figure 5-5 shows a known extinction coefficient profile in the upper graph and a
known backscatter coefficient profile in the lower graph. For each of the two lidars, these
profiles were used to generate S(R) curves with a separation equal to that used in the
experiments. These two S(R) curves were used in the dual-lidar method to obtain the
extinction coefficient profile shown in figure 5-6. Note that it agrees well with the profile
used to generate the data.

The two S(R) curves were then used with the far-point, or stable. inversion
method to obtain extinction coefficient profiles for each of the lidars. The results are
shown in figure 5-7. While the two curves have the same general shape. one is much
larger than the true extinction coefficient profile, and the other is much lower.

Variation in the dc offset for lidar #0 might shift its extinction coefficient profile
slightly up or down, with respect to that of lidar #1. but this should not affect its shape.
The dc shift should have no effect, however, in the case of the two lidar method.
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Figure 5-1 Comparison of extinction coefficient profiles using the “stable inversion
technique” with the results from the two-lidar method.
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6.0 SUMMARY

A method has been described here for obtaining extinction coefficient profiles and
integrated extinction between two points. This method uses two lidars set up at opposite
ends of a propagation path and pointed toward each other. No assumptions need be
made about the aerosol distributions, since two equations are available to solve for the
two unknowns. With accurately calibrated lidars, once the extinction coefficient profile is
determined, the results can be used to separately calculate backscatter coefficient profiles
for each of the lidars. These can then be compared.

Limited tests of the far-point inversion algorithm method of obtaining extinction
coefficient profiles show large differences from that obtained by the two-lidar method, as
well as large differences between the two lidars. A test of the two methods with known
computer-generated S(R) data suggests that this is caused by the backscatter coefficient
varying along the propagation path. The study merits further investigation.

While the visioceilometers used here were useful for demonstrating the two-lidar
technique, a better system is needed. In particular, higher-energy output is needed to
provide better signal-to-noise ratios and to allow a greater range separation. Second, a
more automated method of firing the lidars and recording the data is also needed.
Accurate system calibration is required, too. In addition, the visioceilometers have many
unnecessary circuits that introduce needless delays in the system and noise into the
output.

The two-lidar technique will not provide slant-path visibilities on a routine basis.
However, when properly implemented, it may be a useful research tool for studying
atmospheric aerosol characteristics when used with other atmospheric-measurement
techniques.
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APPENDIX A J
EXAMPLES OF S(R) CURVES FOR THE TWO LIDARS
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APPENDIX B

EXAMPLES OF S(R) DIFFERENCE CURVES
AND EXTINCTION PROFILES
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