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FOREWORD

The Fourth Army Conference on Applied Mathematics and Computing was held 27-30
May 1986 at Cornell University, Ithaca, New York, It coincided with the
formal opening of the recently established Mathematical Sciences Institute
(MSI). This meeting's seven invited speakers addressed the vital areas of
combustion, computational fluid dynamics, parallel computation, stochastic
analysis, multiple bifurcation, numerical solutions of partial differential
equations and problems in many scales of length and time in modern computing
enviroments, There were two special sessions that dealt with Stochastic
Algorithms and Computational Vision, and Probabilistic Methods in Solid
Mechanics. The one hundred and eight contributed technical papers covered
nearly the entire spectrum of basic research. Ouring the course of the
meeting several synergetic relationships developed, and the feedback from the
Army scientists was very positive.

As in previous meetings, this meeting provided its attendees a chance to see
the many scientific developments taking place in various Army laboratories.
Through these meetings, techniques developed at one installation are brought
to the attention of scientists at other places, thus reducing duplication of
effort. Another important phase of these meetings is presenting the members
of the audience an opportunity to hear nationally known scientists discuss
recent developments of their own fields.. This year the invited speakers
together with the titles of their addressés are listed below. These gentlemen
were more than willing to discuss various problems of special interest to
scientists in the Army agencies.

SPEAKERS AND AFFILATION TITLES OF ADDRESS

Professor K. G. Wilson Renormalization Groups and Problems
Cornell University in Many Scales of Length
Professor Richard Ewing Numerical Solution of Partial
University of Wyoming Differential Equations

Professor John Guckenheimer Multiple Bifurcation

Cornell University

Professor Eugene Wong Stochastic Differencial Forms
University of California, Berkeley

Professor Richard Karp The complexity of Parallel
University of California, Berkeley Computation

Professor A, F, Ghoniem Computing Unsteady Reacting Flows
Massachusetts Institute of Technology Using Vortex Methods

Professor A, J, M3jda High Mach Number Combustion

Princeton University
Smie
i1t |
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The benefits derived from these conferences depend a great deal on the host's
Chairman on Local Arrangements. The attendees at this meeting were fortunate
to have Professor G, S. S. Ludford, Director of the MSI, serving in this
capacity. He, together with members of his capable staff, provided all those
things, such as projection equipment, travel information, etc., needed for an
enjoyable and profitable symposium,

The Amy Mathematics Steering Committee is the sponsor of these Army
Conferences on Applied Mathematics and Computing. The members of this
committee were pleased, not only with the large number of contributed papers,
but also with the scientific quality of these papers. They are also pleased
to be able to provide the transaction of this conference. It is hoped the
scientific ideas contained therein will benefit not only those who were able
to attend the symposium, but also many others that did not enjoy that
privilege.
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Parameter estimation in probabilistic models of images

J. Marroquin, PEM, Mexico City, Mexico

Special Session Il - Probabilistic Methods in Solid
Mechanics - WH 1-101

Chairperson: Professor N. U. Prabhu, Cornell University
Ithaca, New York

Opening Remarks

Probabilistic finite elements and potential applications to
fracture

Wing-Kam Liu and Ted Belytschko, Northwestern University,
Evanston, Illinois

On computing stress intensity factors with uncertainty
Ram Srivastav, Army Research Office, Durham, North Carolina

Limit theorems for the size effect in the 1ifetime distri-
bution of a Fibrous Composite

S. L. Phoenix, Cornell University, Ithaca, New York
Break
Approximate Methods for Structural Reliability

Mircea Grigoriu and Arnold Buss, Cornell University Ithaca,
New York

Critical strains for adiabatic shear

Gerald Moss, Ballistics Research Laboratory, Aberdeen
Proving Ground, Maryland
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16:00

10:30

08:50

09:10

09:30

09:50

10:10

10:30

11:00

10:30

Banquet (Frepaid participants only)
Speaker: Dr, Herbert Hauptman. President and Research
Director, Medical Founcdation of Buffalo

Wednesday May 28, 1986
Registration - Warren Hall (WH)
Technical Session WMl - Electromagnetics - WH 1-201

Chairperson: Dr, Siegfried Lehnigk, Army Missile Command,
Redstone Arsenal, Alabama

Numerical computation of path integral representations of
scalar wave field propagators

Louis Fishman, Catholic University, Washington, D. C.
Scale invariant equations for Relativistic Waves

Richard Weiss, Army Corps of Engineers, Waterways Experi-
mental Station, Vicksburg, Mississippi

Relativistic wave equations for Real Gases

Richard Weiss, Army Corps of Engineers, Waterways Experi-
mental Station, Vicksburg, Mississipi

Hamiltonian perturbations of the nonlinear Schroedinger
Equation

Curtis R. Menyuk, University of Maryland, College Park,
Maryland

Solutions of a non-integrable Hamiltonian system

P. K. A, Wai, C. R, Menyuk, H. H. Chen, and Y. C. Lee
University of Maryland, College Park, Maryland

The effects of boundary conditions on Electromagnetic
pul ses

K. C. Heaton, Defense Research Establishment, Valcartier,
Quebec, Canada

Break

Technical Session WM2 - Solid Mechanics B - WH 1-101

Chairperson: Dr. T. W, Wright, Ballistics Research
Laboratory, Aberdeen Proving Ground, Maryland

xvii



08:30 -

08:50 -

09:10 -

09:30 -

09:50 -

10:10 -

10:30 -

08:30 -

08:30 -

08:50 -

0R:50

09:10

09:30

09:50

10:10

10:30

11:00

10:30

08:50

09:10

Discovery of the elastic parameters of a layered half-space
Paul Sacks, lowa State University, Awes, lowa

Stability of free-free columns

Julian J. Wu, Army European Research Office, London, UK

John D, Vasilakis, ARDC Benet Weapons Laboratory Watervliet
Arsenal, Watervliet, New York

On fatigue life prediction in thick-walled cylinders

S. L. Puand P, C. T, Chen, ARDC Benet Weapons Laboratory
Waterviiet Arsenal, Waterviiet, New York

Analysis of composite shrink fits-Tresca Material

Peter C. T. Chen, ARDC Benet Weapons Lahoratory, Watervliiet
Arsenal, Watervliet, New York

A shallowly curved shear-deformable beam element

A. Tessler and L. Spiridigliozzi, Army Materials Technology
Laboratory, Watertown, Massachusetts

Admissible elastic energy density functions for rubber-like
solids

I. Fried, Boston University; A. R, Johnson and C, J.
Quigley, Army Materials Technology Laboratory Watertown,
Massachusetts

Break

Technical Session - WM3 - Transonic Flow - WH 1-145

Chairperson: Dr, John Polk, Ballistics Research
Laboratory, Aberdeen Proving Ground Maryland

Solutions of the Transonic Flow Equations by Spectral
Methods

P. Hanley, C. Mavriplis, Massachusetts Institute of Technol-
ogy, Cambridge, Massachusetts and W. L. Harris University
of Connecticut, Storrs, Connecticut

A toolkit of symbol manipulation programs for variational
grid generation

Stanly Steinberg, University of New Mexico, Albuquerque and

Patrick J. Roache, Ecodynamics Research Associates,
Albuquerque, New Mexico
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13:30

13:30

13:50

14:10

09:30

09:50

10:10

10:30

11:00

12:00

13:30
15:50

13:50

14:10

14:30

A self-adaptive gridding for inviscid transonic projectile
aerodynamic computation

Chen-chi Hsu and Chyuan-Gen Tu, University of Florida
Gainesville, Florida

On computation of transonic projectile aerodynamics

Chen-chi Hsu and Nae-Hauer Shiau, University of Florida
Gainesville, Florida

Numerical simulation of supersonic flow over a rotating
band

J. Sahu, Ballistics Research Laboratory, Launch and Flight
Division, Aberdeen Proving Ground, Maryland

Improved numerical prediction of transonic flow

J. Sahu and C. J. Nietubicz, Ballistics Research Labora-
tory, Launch and Flight Division, Aberdeen Proving Ground,
Maryland

Break

General Session Il - WH 131

Chairperson: Dr, Billy Jenkins, Army Missile Command,
Redstone Arsenal, Alabama

Numerical Solution of Partial Di fferential Equations
Richard Ewing, University of Wyoming, Laramie, Wyoming
Lunch

Technical Session WAl - Nonlinear Analysis and Control A
- WH 1-145

Chairperson: Dr. William Jackson, Army Tank Automotive
Command, Warren, Michigan

Some stability results for advection- diffusion equations

F. A, Howes, Lawrence Livermore Laboratory, Livermore,
California

Spatial structure of time-periodic solutions of the
Ginzburg-Landau equation

Philip Holmes, Cornell University, Ithaca, New York

Dissipation in conservative systems
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Mark Levi, Boston University, Boston, Massachusetts

An analysis of the Duffing's equation through examination
of initial condition maps and Liapunov exponents

Charles Pezeshki and Earl Dowell, Duke University, Durham,
North Carolina

Poincare maps of a Journal bearing

P. J. Hollis and D. L. Taylor, Cornell University, Ithaca,
New York

The propagation of information and uncertainty in dynamical
systems

David F. Delchamps, Cornell University, Ithaca, New York
Extension of Sarkovskii's theorem

Walter Egerland, Ballistics Research Laboratory, Aberdeen
Provirg Ground, Maryland

Break

Technical Session - WA2 - Fluid Mechanics - WH 1-101

Chairperson: Dr, Miles Miller, Chemical Research and
Development Center, Edgewood Arsenal, Maryland

Fluid Motion in Liquid-filled shells

T. Herbert, Virginia Polytechnic Institute and State Univer-
sity, Blacksburg, Virginia

The evolution of subharmonic edge wavepackets on a sloping
beach

T. R. Akylas and S. Knopping, Massachusetts Institute of
Technology, Cambridge, Massachusetts

Theoretical and Simulation studies of surfactants at liquid
interfaces -

J. H. Thurtell and K. E. Gubbins, Cornell University
Ithaca, New York

Static capillary bridges: Global stability results for
symmetrization methods

Paul H, Steen, Cornell University, Ithaca, New York
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15:50

16:15

15:50

13:50

14:10

14:30

14:50

15:10

15:30

Rodlike particles in second-order fluid under simple shear

Bin Chuny, IBM, San Jose, California and Claude Cohen,
Cornell University, lthaca, New York

A unified approach to mass property computations in a solid
mode! environment with application to hydraulic structures

Fred T. Tracy, Army Corps of Engineers, Waterways Experi-
mental Station, Vicksburg, Mississippi

The Stokes Limit of the Flow in a rotating spinning cylinder

Raymond Sedney, Ballistics Research Laboratory, Aberdeen
Proving Ground, Maryland

Break

Technical Session - WA3 - Al and Expert Systems - WH 1-201

Chairperson: Dr. Ralph Harrison, Army Materials
Technology Laboratory, Watertown,
Massachusetts

A commonsense theory of nonmonotonicity

Frank M, Brown, Artificial Intelligence Research Institute
Austin, Texas

Multiobjective A*

Bradley Stewart and Chelsey White,University of Virginia,
Charlottesville, Virginia

Mathematical basis for expert reasoning
Forouzan Golshani, Arizona State University, Tempe, Arizona
Toward Optimal Feature Selection:Past, Present, and Future

W. Siedlecki and J. Sklansky, University of California,
Irvine, California

Introducing treatments into Test Procedures
D. W. Loveland, Duke University, Durham, North Carolina
On the errors that learning machines will make

A. W, Biemmann, K. C. Gilbert, A. Fahmy and B. Koster Duke
University, Durham, North Carolina
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15:30 - 15:50 A model of decision-making with sequential information-
acquisition with application to the file search problem

James C. Moore and Andrew B. Whinston, Purdue University,
West Lafayette, Indiana

15:50 -~ 16:15 Break

16:15 - 17:15 General Session IIl - WH 131

Chairman: Dr. Gary Anderson, Army Research Office
Durham, North Carolina

Multiple Bifurcation

John Guckenheimer, Cornell University, lthaca, New York

Thursday May 29, 1986

08:00 - 16:00 Registration - Warren Hal (WH)

08:30

10:30 Technical Session - THM1 - Statistics and Data Analysis -
WH 1-201

Chairperson: Major Rickey Kolb, United States Military
Academy, West Point, New York

08:30

08:50 On a measure of block design efficiency recovering inter-
block information

Walter T. Federer, Cornell University, Ithaca, New York

08:50 - 09:10 Computing asymptotic confidence bands for Nonlinear regres-

sion models

John J. Peterson, Syracuse University, Syracuse, New York
09:10 - 09:30 Applying statistical graphics to multivariate data

Steven J. Schwagger, Cornell University, Ithaca, New York
09:30 - 09:50 Unimodular dynamics of SF6 under coherent excitation

John C. England, Frederic A. Hopf and Charles M. Bowden, U.
S. Army Missile Command, Redstone Arsenal, Alabama

09:50 - 10:10 Testing Curve Fit

Royce Soanes, Benet Weapons Laboratory, Watervliet Arsenal
Watervliiet, New York
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11:00

The estimation of some network parameters in the pert model
of activity networks: Review and critique

Salah E. Elmaghraby, North Carolina State University,
Raleigh, North Carolina

Break

Technical Session - THMZ - Multiphase Flow - WH 1-101

Chairperson: Dr, Csaba Zoltani, Ballistics Research
Laboratory, Aberdeen Proving Ground, Maryland

On the two-phase Stefan problem with interfacial energy and
entropy

Morton E. Gurtin, Carnegie-Mellon University, Pittshurgh,
Pennsylvania

Stefan's Problem in a Finite Domain with constant boundary
and initial conditions

Shunsuke Takagi, Cold Region Research and Engineering
Laboratory, Hanover, New Hampshire

Thin film conductive coating for surface heating and decon-
tamination

S. S. Sadhal, University of Southern California, Los
Angeles, California, P. S. Ayyaswamy, University of
Pennsylvania, Philadelphia, Pennsylvania and Arthur K,
Stuempfle, Chemical Research and Development Center, tdge-
wood Arsenal, Maryland

The Poiseuille Flow of a particle-fluid mixture effective
viscosity

Donald A. Drew, Rensselaer Polytechnic Institute, Troy, New
York

Fluids in Narrow Pores: Computer Simulation and Mean Field
Theory

B. K. Peterson and K. E. Gubbins, Cornell University and
J. P. R, B, Walton, B. P. Research Centre, United Kingdom

Macroscopic and microscopic modelling of mushy regions
S. D. Howison, Oxford University, United Kingdom

Break
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09:10
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10:30

11:00

12:00

13:30

Technical Session THM3 - Optimization - WAH 1-14%

Chairperson: DOr, Ervin Atzinger, Army Materiel Systems
Analysis Activity, Aherdeen Proving Ground,
Maryland

Global Optimization using Automatic Differentiation and
Interval Iteration

Louis B. Rall, Mathematics Research Center, University of
Wisconsin, Madison, Wisconsin

Computing disjoint products efficiently

Michael 0. Ball, University of Maryland, College Park,
Maryland and J. Scott Provan, University of North Carolina,
Chapel Hi11, North Carolina

Classes of Greedy Matching Heuristics

M. D. Grigoriadis and B. Kalantari, Rutgers University, New
Brunswick, New Jersey

Optimization of stochastic systems via Monte Carlo simula-
tion

Peter W, Glynn, Mathematics Research Center, University of
Wisconsin, Madison, Wisconsin

Efficient sequencing of a four-circle diffractometer

Robert G. Bland and David F. Shallcross, Cornell Univer-
sity, Ithaca, New York

Optimal procedure for dynamic programs with complex loop
structures

A. 0. Esogbue, Georgia Institute of Technology and C. Y.
Lee, Institute of Technology, Taejon, Korea

Break

General Session IV - WH 131

Chairman: Dr. Stephen Wolff, Ballistics Research Laboratory
Aberdeen Proving Ground, Maryland

Stochastic Differential Forms

Eugene Wong, University of California, Berkeley

Lunch
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15:30

15:50

15: 50

13:50

14:10

14:30

14:50

15:10

15:30

15:50

16:15

13:30 -15:50

Technical Session - THA] - Nonlinear Analysis and Control B
- W4 1-14%

Chairperson: Dr. Norman Coleman, Armament Research and
Development Command, Dover, New Jersey

Stochastic filtering and control with wide bandwidth obser-
vation noise

Harold J. Kushner, Brown University, Providence, Rhode
Island

Adaptive Kalman Filtering for Instrumentation Radar
Charles K. Chui, Texas A&M University, College Station,
Texas and Robert E. Green, White Sands Missiles Range, New
Mexico

Optimal impulse correction of a random linear operator

P. L. Chow and J. L. Menaldi, Wayne State University,
Detroit, Michigan

Pulse arrival times for waves in turbulent media

P. L. Chow and J. L. Menaldi, Wayne State University,
Detroit, Michigan

Efficient Parailel Algorithms for controllability and
eigenvalue assignment problems

B. N. Datta and Karbi Datta, Northern I1linois University
DeKalb, Illinois

The transition from phase-locking to Drift in a system of
Two weakly coupled Van der Pol Oscillators

Tapesh Chakraborti and Richard H. Rand Cornell University,
Ithaca, New York

Design and implementation of a Multivariable control system
for Aircraft/Weapon Applications

Pak T. Yip and David Ngo, SMCAR-F SF-RC, ARDC Dover, New
Jersey

Break

Technical Session THA2 - NUMERICAL PDE - WH 1-101

Chairperson: Dr. Nisheeth Patel, Ballistics Research
Laboratory, Aberdeen Proving Ground, Maryland
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14:10

14:30

14:50

15:10

15:30

15:50

16:15

15:50

Domain Contractions around three dimensional anamolies in
spherical finite difference computations of Poission's
Equation

A. H. Zemanian and T. S. Zemanian, State University of New
York at Stony Brook, Stony Brook, New York

Upwind schemes and numerical solutions to the MHD Riemann
problem

M. Brio, C. C. Wu, S. J. Osher, A, Harten University of
California, Los Angeles, California

Finite-difference methods for polar coordinate systems

John C. Strikwerda and Yvonne Nagel Mathematics Research
Center, University of Wisconsin, Madison, Wisconsin

Adaptive Finite Element Methods for Parabolic systems in
one- and two - space dimensions

Slimane Adjerid, Rensselaer Polytechnic Institute, Troy and
Joseph E. Flaherty, Rensselaer Polytechnic Institute and
Benet keapons Laboratory, Watervliet Arsenal, Watervliet,
New York

Fast parallel algorithms via domain decomposition for
elliptic problems

J. H. Bramble, Cornell University, Ithaca, New York, J.
Pasciac, Brookhaven National Laboratory, Upton, New York
and A, H. Schatz, Cornell University, Ithaca, New York

A posteriori error estimation in a finite element method
for parabolic partial differential equation

J. M. Coyle and J. E. Flaherty, Benet Weapons Laboratory,
Watervliet Arsenal, Waterviiet, New York

An adaptive method with mesh moving and local mesh refine-
ment for time dependent partial differential equations

bavid C. Arney, United States Military Academy, West Point,
New York and J. [. Flaherty, Rensselaer Polytechnic Insti-
tute, Troy, New York

Break

Technical Session THA3 - Vortex Flow and Reaction-Di ffusion
- WH 1-201
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Chairperson: Mr, Arthur Stuempfle, Chemical Research and
Developmert Center, Edgewood Arsenal,
Edaewood, Meryland

Vortex Fission and fusion

Karl Gustafson, University of Colorado, Boulder. Colorado

Incipient singularities in the Navier-Stokes equations

Alain Pumir and E. Siggia, Cornell University, Ithaca, New
York

Numerical experiments for a convective reaction diffusion
equation

Tsu-Fen Chen, Howard A. Levine and Paul E. Sacks, lowa
State University, Ames, lowa

Finite element approximation of a reaction-diffusion equa-
tion

Satnam S. Khalsa, lowa State University, Ames, lowa
Interactive diagnostics and graphics for 2D vortex dynamics

C. Serin, M, Melander and N. Zabusky, University of
Pittsburgh, Pittsburgh, Pennsylvania

Vortex dynamics described by high order moment models
M. Melander, University of Pittsburgh, Pittsburgh, PA

High resolution, minimal storage algorithms for convection
dominated convection-diffusion processes

V. Ervin and W. Layton, Carnegie-Mellon University,
Pittsburgh, Pennsylvania

Break

General Session V - WH 131

Chairperson: Dr. Arthur Wouk, U. S. Army Research Office
Durham, North Carclina

The complexity of parallel computation

Richard Karp, University of California, Berkeley,
California
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Friday Msy 30, 1985

08:00

11:00 Registration - Warren Hall (WH)
08:30 - 10:30 Technical Session FM1 - Combustion - WH 1-201

Chairperson: Dr, Norman Slagg, Armament Research and
Development Command, Dover, New Jersey

08:30

08:50 The thermal explosion solution revisited

D. R. Kassoy and J. Beberness, University of Colorado,
Boulder, Colorado and J. F. Clarke, Cranfield Institute of
Technology, Cranfield, England

08:50

3

110 Detonation wave initiation by rapid energy deposition at a
confining boundary

D. R. Kassoy, University of Colorado, Boulder, Colorado, J.
F. Clarke, Cranfield Institute of Technology, England and
N. Riley, University of East Anglia, Norwich, England

09:10

09:30 A plane premixed flame problem with kinetics: existence
and stability results

Cl. Laine-Schmidt CNRS Ecole Centrale de Lyon, France and
Cornell University, Ithaca, New York

N9:30

09:50 The effect of structure on the stability of aetonations

J. D. Buckmaster, University of 111inois, Urbana, I1linois
and G. S. S. Ludford, Cornell University, Ithaca, New York

09:50

10:10 Limiting thermal jumps in temperature controlled exothermal
reactions

Paul W. Davis, Worcester Polytechnic Institute, Worcester,
Massachusetts, and Jagdish Chandra, U. S. Army Research
Office, Research Triangle Park, North Carolina

10:10

10:30 Plane propagation through a nonuni form mixture

A. Kapila and G. Ledder, Rensselaer Polytechnic Institute,
Troy, New York

10:30 11:00 Break

08:30

10:30 Technical Session FM2 - Computer Vision and Image Processing
- WH 1-145

Chairperson: Dr., Benjamin E. Cummings, Human Engineering

Laboratory, Aberdeen Proving Ground,
Maryland
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v- Mmensional Cherorasebhar T1iter for Image Restoration

A. ¥, Mahalanabis, Pernsylvania State University, Univer-
sity Park, Pennsylvania

A massively parallel architechture for a self-organizing
neutral pattern recognition machine

Gail A. Carpenter and Stephen Grossberg, Boston University,
Boston, Massachusetts

Cortical dynamics of three-dimensional form, color, and
brightness perception, a predictive synthesis

Stephen Grossberg, Boston University, Boston, Massachusetts
Object tracking using sensor fusion

Firooz Sadjadi and Mike Bazakos, Honeywell Systems and
Research Center, Minneapolis, Minnesota

Random field identification from samples

M. Rosenblatt-Roth, University of Maryland, (2 'lege Park,
Maryland

Approximation of two-dimensional fields with Markov meshes

M. Rosenblatt-Roth, University of Maryland, College Park,
Maryland

Break
Technical Session FM3 - Approximation and Computational
Complexity - WH 1-10!

Chairperson: Dr. Raymond Scanlon, Benet Weapons Laboratory
Waterviiet Arsenal, Watervliet, New York

Interpolation by bivariate quadratic splines

C. K. Chui, Texas A. and M, University, College Station,
Texas, H. Diamond, West Virginia University, Morgantown,
West Virginia, and Louise A, Raphael, Howard University,
Washington, District of Columbia

On the C2 Continuity of piecewise cubic Hermite Polynomials
with unequal intervals
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13:15

C. N. Shen, Benet Weapons Laboratory, Waterviiet Arsenal
Watervliet, New York

Views on the Weierstrass and the generalized Weierstrass
functions

M. S. Schlesinger, Office of Naval Research, Arlington,
Virginia, M. A, Hussain, and John Bandler, General Electric
Research and Development Center, Schenectady, New York
Analytics of period doubling

Paul Phillipson, University of Colorado, Boulder, Colorado

A fast algorithm for the multiplication of generalized
Hilbert Matrices with vectors

A. Gerasoulis, Rutgers University, New Brunswick, New
Jersey

Complexity in quantum chemical calculations for hypercube
processors

George F. Adams and Byron Lengsfield, Ballistics Research
Laboratory, Aberdeen Proving Ground, Maryland

Break

General Session VI - WH 131

Chairperson: Dr. Jagdish Chandra, U. S. Army Research
Office, Durham, North Carolina

Computing unsteady reacting flows using vortex methods

Ahmed F. Ghoniem, Massachusetts Institute of Techno1ogy.
Cambridge, Massachusetts

High Mach Number Combustion

Andrew J. Majda, Princeton University, Princeton, New Jersey

Concluding Remarks and Adjournment
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INTERACTIONS, BIFURCATIONS, AND INSTABILITIES
OF HYDRODYNAMIC SURFACES:
A CONFERENCE REPORT

Craig Fithian 3
Carl L. Gardner ?
James Glimm 1:2:3
John Grove ?
Oliver McBryan %/2:4
John Scheuermann

Courant Institute, New York University
New York, N. Y. 10012

Ralph Menikoff 3
David H. Sharp $

Los Alamos National Laboratory
Los Alamos, N. M. 87545

ABSTRACT

The method of front tracking has been demonstrated to provide high
resolution of hydrodynamic interfaces. A basic motive for developing this
method was to allow a study of the transition to chaos in the case of interface
instability. We also show that interactions of tracked waves and bifurcations
of interface topology can in certain cases be computed automatically.

These results are then applied to the study of jets and of fingers formed
by the Rayleigh-Taylor and Meshkov instabilities. A statistical model for the
chaotic regime, due to J. A. Wheeler and one of the authors (D.H.S.), is
presented, and its relation to the above computations is outlined.

We also discuss modifications of the front tracking method due to gravi-
tational and geometrical sourcc terms in the Euler equations, and work in
progress concerning use of equations of state for real materials.

the National Science Foundation, grant DMS - 831229,
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Department of Energy, under contract DE-AC02-76ER03077.
part by the Army Research Office, grant DAAG29-85-K-0188.
part by the Army Research Office, grant DAAG29-84-K-0130,

Work supported by the Department of Energy.



1. Introduction

Proof of scientific principle for the front tracking method has been established in a
series of papers by the authors and coworkers [1,2,3,4,5]). This m=thod has been
to a variety of problem areas, including oil reservoirs, shock tube experiments, astrophysics,
and detonation waves. Recent improvements of thh method allow comsideration of more
complex and interesting problems. Here we consider the interaction between tracked waves,
and interface instabilities in the compressible regime (including the Meshkov, Rayleigh-
Taylor, and supersonic jet instabilities). We also discuss modifications of the front tracking
method due to gravitational and geometrical source terms in the Euler equations, and report
on work in progress to allow for the effects of real equations of state.

2. A Description of the Front Tracking Method

Front tracking is an adaptive computational method for solving a hyperbolic system of
nonlinear conservation laws. In two-dimensional problems, a moving one-dimensional grid,
called the front, is fitted to and tracks selected waves in the solution. These waves can be
sharp discontinuities which exist as mathematical solutions of idealized physical equations
(e.g. the Euler equations) or waves for which physical quantities change rapidly but smoothly
over a fraction of a mesh length (e.g. chemical reaction fronts). For compressible fluid
dynamics, thcse waves include shock waves, contact discontinuities, material interfaces, phase
boundaries, slip lines, and chemical reaction fronts.

The front tracking code employs a finite difference method together with the tracking. of
selected waves to solve the two-dimensional Euler equations of compressible gas dynamics in
conservition form. The Euler equations for a compressible, inviscid gas can be cast in the
form of a general hyperbolic system of nonlinear conservation laws

w+ Vf(w) =0 (2.1)
by setting
m
i [%] and f(w) = | BER.,p . @2.2)
%(Eﬂ)

p is the mass density, m = pu is the momentum density, E is the total enex"gy density, and p
is the thermodynamic pressure. The total energy can be written as E = pe + where ¢

is the specific internal energy. The pressure, density and specific internal energy are related
by a caloric equation of state; thus only two of the three quantities are independent. Eqgs.
(2.1) and (2.2) express the conservation of mass, momentum, and energy.

The front divides the computauonnl grid into topologically connected interior regions
called components. The solution is computed by first propagating the front and then the solu-
tion in each component.

The front is advanced in two steps. First the Rankine-Hugoniot equations are used to
propagate the front normally by solving a nonlocal Riemann problem. Then tangential waves
are propagated along the front using a one-dimensional Lax-Wendroff method. At points
(called nodes) where discontinuity curves intersect, the propagation is defined by the solution
of shock polar equations, as a first approximation to solving a two-dimensional Riemann
problem. The propagation of the front for the Euler equations without source terms is
described more thoroughly in Ref. [4], while front tracking and two-dimensional Riemann
problems are {iscussed in Ref. [6].

The intericr regions between fronts are treated as initial-boundary value problems and
the solutions in these regions are computed using an operator split Lax-Wendroff finite-
difference method. The front and interior schemes are coupled in a strip of width one mesh



spacing on either side of the front.

3. Shock and Contact Wave Interactions

We distinguish between scalar and vector waves. The scalar waves such as contacts,
material interfaces, phase boundaries and concentration waves do not produce reflected
waves on interaction whereas the vector waves such ns shock waves in gas dynamics do. A
fairly general algorithm for resolving the interaction of scalar waves was presented in Ref.
[7], in the context of tracked saturation fronts in oil reservoirs. We show the type of com-
plex interface that can develop from a simple one in Fig. 3.1. We are also interested in the
interaction of (vector) shock waves with contact waves and with each other. As a model
problem for the study of this interaction, we consider a simplified version of the Meshkov
instability, in which a shock wave hits a contact having a small (sine wave) perturbation from
planar. After passage of the shock wave, this perturbation grows at first exponentially and
then linearly in time before coming to rest. The late time behavior is discussed in the next
section. Here we describe the sequence of shock interaction problems that take place in the
initiation process.

In Fig. 3.2 we show a sequence of shock and contact fronts for a shock wave hitting an
interface between warm and cold air, while in Fig. 3.3 we show a similar sequence where the
interface separates air and SF at the same temperature. In both cases the shock is incident
in the lighter gas (the warmer air in Fig. 3.2 and the air in Fig. 3.3). Each simulation begins
shortly before the shock wave collides with the contact discontinuity surface. When the
shock wave reaches this surface it is transmitted through and reflected by the contact. The
contact discontinuity is in turn deflected by this interaction. We observe diffracted wave pat-
terns propagating away from the original point of collision as the shock continues to pro-
pagate into the gas interface. Eventually the shock wave will pass completely through the
contact discontinuity, and the reflected and transmitted waves will propagate away from each
other on opposite sides of the gas interface. In general this will produce complicated wave
interactions, but in our model we only track the transmitted shock and the reflected wave (if
it is a shock). This approximation assumes the other waves produced by this interaction are
weak enonzh not to require tracking.

The front tracking code is well suited for the propagation of interior points on tracked
curves, but must be extended to handle the complicated wave patterns that occur when two or
more waves interact at a single point. ‘In the shock-contact interaction each of the diffraction
paiterns consists of an incident shock colliding with a contact discontinuity producing
reflected and transmitted waves. Such a configuration will be called a diffraction node. The
analysis of the interaction between a planar shock wave and a planar contact discontinuity has
been discussed in detail in Refs. [8,9,10,11,6] and here we will only summarize these results
as they are applied in the front tracking code. In a neighborhood of a diffraction node we
ignore any curvature and replace the two colliding curves by their tangents. We next assume
that there exists a refcrence frame in which the flow near the point of interaction is steady.
Finally we restrict our attention to the so called rcgular reflection case in which the interac-
tion occurs at a single point, the transmitted wave is a shock and the reflected wave is either
a shock or a centered rarefaction wave. (More complicated configurations include Mach and
multiple Mach type reflections.) This assumption is valid provided the angle between the
incident shock and the contact discontinuity is sufficiently small. Since flow does not cross a
contact discontinuity, the stream lines on opposite sides of the interface must be parallel.
This means that the flow through the incident shock and the reflected wave must be turned
by the same amount as the flow through the transmitted shock. If we assume that the states
of the gas on both sides of the contact discontinuity ahead of the incident shock are known,
together with the strength of the incident shock (say the pressure jump across the shock),
then the Rankine-Hugoniot conditions together with this restriction provide a system of alge-
braic equations from which the pressure behind the reflected and transmitted waves can be
found (this solution may be multi-valued). This pressure can then be used to construct the
states behind the transmitted shock and reflected wave along with the angles at which these



waves meet the point of shock diffraction.

Since we are dealing with curved waves, this calculation is perfornied at each timestep.
The transformation to the steady frame of an individual diffraction node is found by a
geometric construction. The incident shock and the ahead contact discontinuity are first pro-
pagated separately, ignoring any interaction between the two waves. The intersection
between the two propagated curves is found and this is used as the updated node position,
from which a node velocity is computed. This velocity defines the transformation to the
steady frame of the node. New states and wave angles about the diffraction node are com-
puted and inserted into the tracked wave structures.

The geometrical construction of the node velocity is also important since it provides a
method of detecting wave interactions. When the original shock passes through the contact,
the ahead curves will both be short segments that will propagate past one another in the finite
time At. The propagated curves do not intersect and hence a node velocity cannot be com-
puted. At this point control is shifted to routines designed to identify and handle such
interactions.

4. Interface Instabilities

We have studied a series of related problems, each of which leads to fingering instabili-
ties or jets, with the penetration of a heavy material into a lighter ambient material. Followed
to late time, this leads to a chaotic mixing regime discussed in the next section. The series of
problems arise from different procedures to initiate this instability, as an accelerated surface
[12], supersonic jet [13], shock-contact collision [14], or Rayleigh-Taylor instability [15].
We have considered a range of density ratios up to 100:1 and accelerating forces, which for
the Rayleigh-Taylor problem are in the range of up to 10° to 10° g depending on the length
scale of the perturbation considered. The Mach numbers considered spanned a range of from
0.1 to 6.

The compressible Rayleigh-Taylor problem depends on three dimensionless parameters:
the density ratio D = -z—b, where p, is the density of the heavy gas just below the interface

a
(we assume gravity points up) and p, is the density of the light gas just above the interface;
the polytropic gas constant y (here we set y, = y, = 1.4) or other information to set the
equation of state for the heavy and light fluids; and a Mach number M defining the ratio of a
gravitational time scale to a sound speed time scale. M defines a dimensionless compressibil-
ity. We take M2 = 3-2)3-, where \ is the wavelength of the interface perturbation and ¢, is the
b

sound speed in the unperturbed heavy fluid. In Fig. 4.1 we show a sequence of interface
positions for a compressible heavy gas falling into a lighter gas with D = 2 and M2 = 0.5. In
this case the terminal Mach number of the bubble and spike is about 0.2. In Fig. 4.2 we show
the case of four symmetric bubbles and spikes, for D = 10 and M2 = 0.89. In Fig. 4.3 we
show a similar sequence for D = 10 and M2 = 0.89, in which there is a capture of the
smaller side bubbles by the larger central one. (For an interface with multiple modes, we
give the maximum value of M2.) We refer to the cases of single bubble dynamics and of
bubble capture as the one and two body problems of bubble dynamics; they are central to the
statistical model for the mixing regime discussed in the next section.

Computations of supersonic jets by Norman, Smarr, and Winkler (NSW) [16] have gen-
erated a great deal of interest, due to their qualitative agreement with observations and their
quantitative predictions. Since the radio telescope observations will become more detailed in
the near future, it is of great interest to compare computations of supersonic jets by different
methods. To this purpose, our computations using a "surface” front tracking method may be
contrasted with the results obtained by NSW using a "volume" front tracking method. We
find overall agreement in the wave structure of the computations, but find a marked differ-
ence in the details of the contact boundary between the jet and ambient gases. We believe



our method offers a higher degree of resolution of the tracked contact, since our method
tracks it as a sharp discontinuity rather than as a "smeared out” interface, and preserves the
integrity of the tracked front from step to step.

Fig. 4.4 displays the evolution to late time of a cylindrically symmetric Mach 3 jet. The
density ratio of jet gas to ambient gas is 10:1. y was set equal to 5/3. Note the presence of a
bow wave in front of the jet and of a terminal shock near the head of the jet beam,
by a rarefaction wave. This terminal shock system may explain the observed hot spots ter-
minntmg astrophysical jets. The contact shape displays large-scale Kelvin-Helmholtz rollup,
and the development of two-dimensional pinch waves.

§. The Mixing Regime

The late stages of a Rayleigh-Taylor unstable interface lead to a chaotic mixing regime.
The portion of the mixing layer adjacent to the heavy fluid is dominated by the mechanism of
bubble merger or amalgamation. A model for bubble merger due to J. A. Wheeler and one
of the authors (D.H.S.) [17] (a brief description is also contained in [18] ) has been analyzed
numerically. In the model, it is assumed that the interface is piecewue constant and lingle
valued, so that the bubbles are the piecewise constant intervals m the interface. A simple

scaling argument shows that the bubble velocity is z = const (gr)2 where r is the bubble
radius. The constant is a function of the dimensionless parameters of the problem and can be
determined numerically by the solution of the one body problem as discussed in the previous
section. When a large bubble moves sufficiently far ahead of a smaller bubble, the two are
forced to merge, with a new height set by conservation of mass. The merger height is then
determined numerically by a solution of the two body problem as discussed in the previous
section. In Fig. 5.1 we show a sequence of successive sample interfaces generated by the
numerical solution of this model, and in Fig. 5.2 we plot the average bubble velocity as a
function of time, for a specific choice of initial data consisting of a Gaussian distribution
about a uniform bubble size. One can see clearly the trend toward merger of bubbles and
the growth of larger bubbles at the expense of the smaller ones.

6. Front Tracking with Source Terms

Gravitation and cylindrical symmetry introduce source terms into the conservation form
of the Euler equations. In this section, we discuss the modifications necessary in applyirg the
front tracking method to problems with gravity or cylindrical symmetry.

With a gravitational force, Eq. (2.1) is modified by source terms:
w; + V-f(w) = §(w) (6.1)

0
. L',?"] 6.2)

In this case, E stands for the internal plus kinetic energy density. The gravitational potential
energy density has been shifted from the left-hand side of Eq. (2.1) and appcars asm-gin S .

The cylindrically symmetnc Euler equations can be written in the form (6.1) with

-

provided it is understood that V-f is to be interpreted with a flat metric in (r, z) coordinates

as df, + 9,1, , where
1 Pu, PN,
(= puitp | 4 ¢ = | P4 |

where

pu,u,
u(E+p)



With this interpretation,

P

U 1}
$= - :“: : (6.3)
E+p

The interior solver and tangential sweep with source terms are modified only by includ-
ing 8 in the finite difference equadons. The Lax-Wendroff method remains second-order
accurate even with the source term 8.

For the normal and tangential sweeps of the front, the Euler Eqs. (6.1) are split into
normal and tangential parts:

wy + 8:[(8-V)(w)] + 8:[(8:V)(W)] = 8, + 8,, (6.4)
where for gravity
0 0
S, = |rg, | and 8, = | pg, ].
m-g, mg,
and for cylindrical symmetry
n, pu, s, p‘:’a,
S, = -—r-l'ﬁ pu, and S, = ""—r-l'l pu, |
E+p E+p
The splitting method is first to solve the normal equations
w; + A-[(8-V)f(w)] = 8,, (6.5)
and then the tangential equations
w; + 8:((8-V)f(w)] = 8,. (6.6)

Eq. (6.6) is solved by a one-dimensional Lax-Wendroff method. The normal sweep is
further modified by an operator splitting method. For tracked shocks, the solution to Eq.
(6.5) is found by solving a nonlocal Riemann problem [4] for the homogeneous equation

w; + A-[(8-V)f(w)] = 0,
and then the corrections are added by solving
w,=8,.
For through-flow boundaries, Eq. (6.5) is solved by a one-dimensional Lax-Wendroff

method.

For centacts and wall boundaries the solution of the nonlocal Riemann problem in the
normal direction is modified to include the effects of source terms in the characteristic equa-
tions. If § = O the states at a contact or wall boundary may be updated by solving the
characteristic equations

dpxpcdu = 0 (6.7)
for characteristic wave speeds utc. With a non-zero 8, Eq. (6.7) becomes
dp xpcdu = S,dt, (6.8)

where S, = tpeg, for gravity, and S, = -5"-.93 for cylindrical symmetry. The finite
difference form of Eq. (6.8) is



P=poxpc(u=up) = S,dt, (6.9)

where the unsubscripted variablcs indicate the quantities at the head of the characteristic (at
time ¢+dr), the subscript 0 indicates the quantities at the foot of the characteristic (at time ¢),
and u=fw.

The node propagation algorithms are modified through Egs. (6.3) and (6.6); the
Rankine-Hugoniot jump relations are unchanged.

7. Real Equations of State

Much work has recently been devoted to the problem of implementing realistic equa-
tions of state for gas dynamical calculations. Commonly, scientific studies assume a polytro-
pic or gamma law gas equation of state; our goal is to extend our front tracking hydrodynam-
ics code to handle more general equations of state. Over the past year a considerable effort
was made to isolate and modularize the equation of state dependences in our gas dynamics
simulation program. This work has now been completed and the equation of state depen-
dences have been isolated to a relatively small number of subprograms such as the calculation
of pressures from densities and energies or the calculation of sound speeds. Furthermore
these subprograms have been written in such a way that the user may "plug in" additional
equations of state as they are developed. We are now in the processes of adding two addi-
tional equations of state to our gas code in addition to the currently supported polytropic
equation of state. These are the 30 called stiffened polytropic equation of state and the Los
Alamos National Laboratory table look up equation of state SESAME.

An equation of state is a functional relation between the thermodynamic variables that
describe the state of a gas. These variables include the density, pressure, temperature,
specific internal energy and the specific entropy of the gas. Only two of these variables can
be independent and the equation of state describes the remaining quantities when any two are
given. For example in the polytropic equation of state the specific internal energy e is given

bye= T—ZT)- where p and p are the pressure and density of the gas respectively and v is
a dimensionless constant greater than one. The temperature T of a polytropic gas is given by
the ideal gas law RT = % where R is a positive constant, The stiffened polytropic equation

of state is a generalization of the polytropic equation of state, where e = :—"l’;—: and

RT = A p° . As in the polytropic model R > 0 and y > 1 are constants. The additional

constant po 2 0 has the dimensions of pressure. If p, = O the stiffened polytropic model
reduces to the polytropic case. Stiffened polytropic equations of state have been used to
model metals. For instance, tungsten may be modeled with ¥y = 3.2 and p, = 1 Mbar over
a range of pressures from zero to seven Mbar.

Both the polytropic and the more general stiffened polytropic equations of state are
examples of simple analytic equations of state. Their implementation into a hydrodynamics
code is relatively simple and involves the calculation of various quantities such as the sound
speed and shock Hugoniots. Because of the simple nature of these models it is possible to
find explicit formulas for these quantities which allow for quick and accurate numerical calcu-
lations. Their main limitations are that real materials only approximately satisfy them over a
limited range of temperatures and pressures, and they do not include mechanisms for phase
transitions. The Los Alamos National Laboratory program SESAME is an attempt to over-
come these problems by using a tabular equation of state. Here we are given a rectangular
grid of densities and temperatures with the pressure and specific internal energy given at each
grid point (p, T). Pressures and energies at intermediate densities and temperatures can then
be found by interpolation.

One advantage of such a program is that it allows one to support a large number of
materials using the same basic software. In addition the table for an individual material may



be built by combining several different analytic models each with its own range of validity, or
by using directly measured experimental information. However such generality and flexibil-
ity exact a cost for a hydrodynamics code. Quantities which reduce to simple formulas for
the polytropic model must now be found by solving systems of nonlinear equations or dif-
ferential equations numerically. In particular the calculation of shock Hugoniots and adia-
batic (constant entropy) curves can become extremecly expensive. Since in any code which
involves the solution of Riemann problems (such as our front tracking code) these quantities
must be computed hundreds or even thousands of times each timestep, it is easy to see that
numerical simulations can be impractical on even the most advanced machines.

We are now in the process of developing an implementation of the SESAME program
into our gas dynamics code which will address these inefficiency problems by precomputing
as much as possible the quantities which are used repeatedly in the solution of Riemann prob-
lems. The original SESAME progrem already included a facility for inverting the given
tables into a format in: which the density and specific internal energy were the independent
variables. To this wc are adding inverted forms with pressure and density or pressure and
specific entropy as independent variables. In addition it is possible to precompute various
integrals which occur in the solution of the Riemann problem and include them as data in the
table. Our hope is that by applying these principles we will be ablc to achieve rates of solu-
tion to Riemann problems which are compsrable to those obtained for pplytropic or other
similar equations of state.
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Fig. 3.1 Plots of the oil-water interfaces for a well configuration consisting of 19
injecting wells (crossed ~uares) and 12 producing wells (cpen squares).
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Fig. 3.2 A shock hitting a contact discontinuity separating two masses of air at different
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Fig. 3.3 A shock hitting a contact discontinuity separa
contact discontinuity curve is given an initial shape :
incident from the air and has a pressure ratio of 10. The boxzed region in Fig 3.3

blown up in the next figure.
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Fig. 3.4 A blowup of a subregion of Fig 3.3b showing the incident shock colliding with
ahead contact discontinuity, producing reflected and transmitted shocks.
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Fig. 4.2 Density contours for the Rayleigh-Taylor instability for the case of four
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(a) time 0 (b) time 1 () time 2 (d) time 2.2
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Fig. 4.3 The Rayleigh-Taylor instability showing the capture of smaller side bubbles by
a larger central one.
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(a) time 0.7 interface plot (b) time 0.7 pressure contours
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Fig. 4.4 Plots of a cylindrically symmetric Mach 3 jet. The density ratio of jet gas to
ambient gas is 10:1.
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Fig. 5.1 A sequence of successive sample inéttm generated by the numerical solution
of a bubble growth model.
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Fig. 5.2 The average bubble velocity as a function of time, for a specific choice of initial
data consisting of a Gaussian distribution about a uniform bubble size.



NONLINEAR VISCOELASTIC MATERIALS WITH FADING MEMORY
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Abstract. The equations governing the motion of viscoelastic materials
with fading memory incorporate a nonlinear elastic-type response with a
natural dissipative mechanism. Our purpose is to discuss the subtle effects
of this mechanism in viscoelastic materials of Boltzmann type. Recent results
on the global existence and decay of classical solutions for smooth and small
data (in one space dimension) are reviewed for smooth and singular memory
kernels; for smooth kernels a number of such results can be generalized to
several space dimensions. A recent result on the development of singularities
in finite time for large data is discussed; several opan problems are
formulated. A program for a studying weak solutions for such systems,
including the development of numerical algorithms, is outlined.

1. Introduction. The equations governing the motion of nonlinear
elastic bodies are quasilinear hyperbolic systems for which smooth solutions
generally lose regularity in finite time due to the formation of shock fronts.
Some materials incorporate a nonlinear elastic-type response with a natural
dissipative mechanism, and it is important to understand the effects of the
dissipation on the behaviour of the solutions of the equations of motion.

The purpose of this lecture is to discuss the effects of the subtle
dissipative mechanism due to memory effects in viscoelastic materials of
Boltzmann type. This dissipation is more delicate than that exhibited by
viscoelastic materials of the rate type for which globally defined smooth
solutions exist, even for large smooth data.

The paper is organized as follows. In Section 2 we formulate
mathematical models for the motion of nonlinear viscoelastic materials and we
motivate the mathematical theorv. In Section 3 we survey recent results on
the global existence of smooth solutions for smooth and small data. 1In
Section 4 we present a recent result on the breakdown of smooth solutions for
large, smooth data and discuss briefly related open questions including those
regarding weak solutions and numerical methods (Remarks 4.8). We restrict our
attention throughout to one-dimensional problems and provide some references
for multidimensional problems. Moreover, we consider only a purely mechanical
theory, i.e. we neglect thermal effects.

2. Mathematical Models and Dynamic Problems. Consider the longitudinal
motion of a homogeneous one-dimensional body (e.g. a bar of uniform cross-

(')Raloarch sponsored by the U.S. Army Research Office under Contract No.
DAAG29-80-C-0041. This paper was begun while the author visited the
University of Paris IX and Heriot-Watt University.
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section) occupying an interval B in a reference configuration, which we
assume to be an equilibrium state, and having unit reference density. B may
be bounded or unbounded. Let u(x,t) denote the displacement at time ¢t of
a particle with reference position x (i.e. x + u(x,t) is the position at
time t of the particle at x). The strain which measures local stretching
is defined by € := u,(x,t). Let 0 denote the stress at time t of the
particle with reference position x (0 measures the contact force per unit
area). The balance of linear momentum yields the equation of motion

where subscripts denote partial derivatives and where f is an external body
force. In order to characterize the material, (2.1) is supplemented by a
constitutive assumption which relates the stress to the motion. In addition,
initial data, as well as suitable boundary data if B 1is not R, are adjoined
to (2.1). We remark that in a physical problem the cross-section does not
generally remain uniform as the bar is stretched. More realistic problems can
be treated by similar techniques.

If the body is homogeneous and purely elastic, the stress depends on the
strain through the constitutive relation o(x,t) = ¢(e(x,t)), where ¢ 1is a
given smooth function satisfying the assumptions (i) ¢ (0) =0, (i1) ¢'(0) > 0;
(i) reflects the fact that the reference position is taken as an equilibrium
state, and (ii) that the stress increases with the strain, at least near
equilibrium. The equation of motion (2.1) becomes the familiar, one-
dimensional, quasilinear wave equation

ey = 6(u,), + £ (x € B, t>0) (2.2)

if B is bounded it is assumed that the assigned boundary data and initial
data are compatible. For (2.2) there is no natural dissipative mechanism.
Indeed, lLax [33]), also MacCamy and Mizel ([37] and Kleinerman and Majda [31]
have shown that if $ is not linear, the Cauchy problem for (2.2) (f = 0)
does not generally possess globally defined smooth solutions, no matter how
smooth and small one takes the initial data u(x,0) and ut(x,O).

In a material with memory (such as certain polymers, suspensions, or
emulsions) the stress at a material point x and at time t depends on the
entire history of the strain at x. In 1874 Boltzmann (5] gave the following
linear constitutive law for small deformations in such materials

omm)-suxm)+f;munumm)-umbmnu,xcB,-~<t<~. (2.3)

In (2.3) B > 0 4is a given constant and m : (0,%) + R 1is a given positive,
smooth, nonincreasing function. We limit our discussion to the situation in
which m € L1(0,~), and we distinguish two cases:

(1) 0 < m(0) <=, (ii) m(0*) = 4= (2.4)

The function m is called a memory function. The fact that m > 0 and non-
increasing on (0,®) means that the stress "relaxes™ as t increases and the
memory term in (2.3) fades: deformations which occurred in the distant past
have less influence on the present value of the stress than those which
occurred in the recent past. In the applied literature m is often assumed
to be a finite linear combination of decaying exponentials with positive
coefficients (these expressions result from least equares approximations to
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experimental data). Such restrictions are neither desirable nor necessary.
Moreover, kinetic theories for chain molecules (15,46,53) and certain
experiments (32,28]) luggest that there are materials for which m is singular
as in (2.4)(i1i), m(t) ~ £ 4 as t+ ot v 0<Ca ¢ 1, m is positive,
nonincreasingon 0 < t < ®», and m decays rapidly at infinity. Stronger
power singularities at zero (x < 0) are also possible, but the resulting
mathematical theory for nonlinear materials consistent with our objectives is
incomplete at this time.

The assumption m ¢ L‘(O,u) implies that (2.3) is equivalent to

o(x,t) = cze(x,t) - f; m(s)e(x,t~-8)ds, x € B, —=» < t ¢ , (2.5)

where c2 := 8 + f; m(s)ds > 0 is a constant which measures the instantaneous
respongse of stress to strain; B > 0 is the equilibrium stress modulus. If
B > 0 the material acts like a solid, while if 8 = 0 it acts like a fluid.

A natural generalization of (2.5) to nonlinear materials is the
constitutive relation

a(x,t) = ¢(e(x,t)) - f; m(s)P(e(x,t-8))ds, X € B, = < t <® , (2.6)

in which ¢, ¥y : R+ R are assigned, smooth material functions which satisfy
$(0) = §(0) =0, ¢'(0) >0, ¥*'(0) >0 . (2.7)

The memory function m is positive, nonincreasing and integrable on (0,~)
as above. In the static case ¢€(x,t) =¢(x), o(x,t) = o(x), (2.6) reduces to

Tix) = ¢(E(x)) - (I; m(s)ds)¥(E(x)), xe€ B .

A natural assumption, appropriate for viscoelastic solids and crucial in the
analysis of global existence results (section 3), is to require that ¢, ¢
also satisfy

¢'(0) - ([ m(s)as)y'(0) > 0 ; (2.8)

(2.8) states that the equilibrium stress modulus is positive. The
constitutive assumption (2.6) is a particular case of a "simple material"™ (8]
which retains many important qualitative properties of more general material
models; moreover, the analysis of the resulting equation of motion is
relatively simple and complete.

The balance of linear momentum and (2.6) yield the equation of motion
t .
Uy = Oluy)y 1€ m(e=T)¥ (v (x,7)) &t + £, x € B, = <t <= , (2.9)

where f is a body force and where the change of variable t := t-s8 was made
in (2.6). The history of the motion is assumed to be known for t < 0 (the
history may, but need not satisfy (2.9) for t < 0). An appropriate dynamic
problem is to find a smooth function u : Bx (- ,») + R, satisfying (2.9)
for t > 0, and such that

u(x,t) =u(x,t) , xe€B, t< 0 , (2.10)
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where the history u:BX (=»,0] + R is a given smooth function; (2.9),
(2.10) will be referred to as a history value problem. If B is bounded or
semibounded compatible houndary conditions are adjoined to (2.9), (2.10).
Compatibility of the boundary conditions with the smooth data f and u \is
imposed in order to ;'reclude the propagation of singularities from the
boundary into the interior.

If m=2 0, (2.9) reduces to the quasilinear wave equation (2.2). At the
other extreme, if one formally sets m = =§', where § is the Dirac mass at
the origin, then (2.9) reduces to the parabolic equation

Ugg = Plugdge + 0(u )y + £

the term V¥(u,),, represents viscosity of Newtonian type if ¢ is smooth
and VY'(*) > 0. This equation possesses globally defined smooth solutions
even if the data are large [1,34].

Our objective is to discuss the strength of the dissipative mechanism
induced by the memory in (2.9) under physically reasonable assumptions by
studying the existence and the decay or growth of classical solutions of the
history value problem (2.9), (2.10). To motivate the mathematical results, we
follow Coleman and Gurtin [6] in their penetrating study on the growth and
decay of acceleration waves propagating into a one-dimensional viscoelastic
material with memory at rest. An acceleration wave solution u is similar to
a shock wave; the difference is that second rather than first derivatives of
u experience a jump acrosss the wave front. To apply the results of [6] to
(2.9), (2.10), we assume that ¢, ¥ are smooth, satisfy (2.7), £z 0, B = R,
and m is a smooth, regular kernel satisfying (2.4)(i). The wave front is a
smooth curve t = y(x), Y(0) =0, and u= 0 for t <y(x). In [6] the
problem of existence of acceleration waves is not discussed. Assuming that they
dc, an easy but tedious calculation shows that for (2.9) t = y(x) is a

straight line, of slope (o'(O))"vb, meaning that such waves propagate with
constant speed although (2.9) is nonlinear. Let the amplitude of the wave be
q(t) := [u.,], where ({u.,] is the jump in u,, across the line t =1y(x).

It follows from the computations in (6] that q evolves in accordance with the
Ricatti-Bernoulli equation

Sfa=a’ -8 , q0) =q , (2.11)

where g{ ='%E + c %;w c2 = ¢'(0), represents differentiation along the wave

front and where

A,._-.ti(.‘lz.a_;_z. , B-“(gf(;§°’ .
2(9'(0))

Thus if ¢"(0) < 0 (similar results hold for ¢"(0) > 0), and dg < B/A,
then every solution of (2.11) tends to zero as t + +». By contrast, if

M,
qg > + B/A, then q(t) + +° as ¢t * Ta, where To = %-log KE'?E > 0. The
0
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1
corresponding jumps in wu,, and u,, are given by [u,] = -[¢f(0)]’bQ(t)
and  [ug,d = [0'(0)]17 g ¢).

This result suggests the following conjectures regarding smooth solutions
of the history value problem (2.9), (2.10):

(1) The problem (2.9), (2.10) should have globally defined classical solutions
if the history v and the forcing term £ are sufficiently smooth and small in
appropriate norms. Moreover, such solutions should decay.

(i1) The smooth solutions of (2.9), (2.10) should develop singularities in
second derivatives in finite time if the smooth data are chosen sufficiently
large.

As will be summarized in Section 3, conjecture (i) has been established
rigorously by a number of authors in a number of physiczlly important cases of
(2.9), (2.10) for regular kernels (m(0) < =), as well as for sinqgular
kxernels (m(0%) = 4=), Conjecture (ii) has only been established for regular
kernels (see Section 4). Moreover, based on the discussion in Section 4, Remark
4.6, sinqular kernels m strengthen the dissipative mechanism of the memory in
(2.9) which suggests the possibility tuat for appropriate classes of singular
kernels, global smooth solutions will exist even if the data are arbitrarily
large; this interesting question is open.

Most of the results described in Sections 3 and 4 for smooth kernels
satisfying (2.4a) apply to more general one-dimensional viscoelastic models with
fading memory, e.g. a model for a solid, X-BKZ material [29,2]

t
u, = #lu), + [2, m(e-Tih(u (x,t),u (x,7)) dv + £, (2.12)

X € B, =0 ( t <» ,

Here ¢, m, and f are as in (2.9), while h : Rx R+ R is a smooth material
function, h(p,p) = 0 and the partial derivatives of h satisfy appropriate
sign conditions, at least at (0,0). If ¢ = 0, (2.12) models a K-BXZ fluid.
Under suitable assumptions, the energy method for proving existence results in
Section 3 and the method of characteristics used to prove blow-up results of
Section 4 yield similar results for this case as well. The energy method can
also be applied to prove existence for certain multidimensional viscoelastic
problems with fading memory (e.g. [13, Sec. 4], [30)). Yowever, to our
knowledge, the existence results described in Section 3 for singular kernels
satisfying (2.4(ii)) depend crucially on the special form of equation (2.9).

3. Existence of Classical Solutions. For discussion of the mathematical
results it is convenient to renormalize the memory function m. Define the
relaxation function a by

a(t) 1= [E m(s)ds, 0< t <= (3.1)

observe that if m is smooth, positive, decreasing and integrable on [0,~)
then a'(t) = -m(t) and

a is smooth, positive, decreasing and convex on (0,®) . (3.2)
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Analogous to (2.4) we distinguish two classes of kernels a:
(1) 0 < -a*(0%) <o , (11) -a'(0) = = ., (3.3)

Other normalizations of the memory m are possible; for example, the
relaxation function

G(t) :=¢'(0) - a(0)P*(0) + a(t)p'(0) , 0< t <= , (3.4)

where ¢, ¥ are the material functions in (2.6), is consistent with the applied
literature. Obgserve that G(») = ¢*'(0) - a(0)p*'(0) and G(0) = ¢ *(0).

Returning to the history value problem (2.9), (2.10), let the history u
be identically zero for t < 0. One then seeks a solution of the initial
value problem

t

U, =6(u ), + [~ a'(t=-1)¥(u (x,7)) dt + £, x € B, £ >0 , (3.5)
tt x’'x 0 X X

ulx,0) = ug(x), v (x,0) = u4(x), x e 7 , (3.6)

together with suitable and compatible boundary conditions if B is not R.
If the history u is not zero for ¢t < 0, the part of the integral in (2.9)
on (-»,0) is incorporated in f.

Global Existence of Classical Solutions. We next discuss global
existence and asymptotic behaviour for the Cauchy problem (3.5), (3.6) with
B = R, for smooth, small data, and for regular kernels a satisfying (3.2),
(3.3)(1). To simplify the exposition, we make the hypothesis

aeco,°), (-0%a® )y > 0 (0<ct <oy x =0,1,2,3) ,

- (3.7)
a' 7 0, and fo ta(t)at <= .

The results hold under assumptiors on a considerably weaker than (3.7). The
interested reader is referred to [13], [22]), [24], and the survey paper [23]
for the generalizations. The essential point is that kernel a ratisfies a,
a'y a" ¢ L1(0,W), the moment condition in (3.7), and is "stronjly positive"
on [0,»). The result for B bounded [13]) is somewhat simpler than for the
Cauchy problem (3.5), (3.6); in particular, the mement condition in (3.7) .s
only needed for the Cauchy problem (see remarks following Theorem 3.1 and the
outline of its proof).

Concerning ¢, ¥ assume

o, ¥ € C3(R), $(0) = $(0) = 0,
(3.8)

$'(0) > 0, ¥*(0) > 0, ¢°(0) - a(0)P*(0) > 0 ;
‘he latter is the analogue of (2.8) in the present normalization. Assume that
(i) £, fx,'ft € C([0,»); Lz(l))f\lr(lo.')i Lz(l)) and
(3.9)
(11) £ e L' (10,2)5 L2(R))r £, £, ¢ € L2([0,2)7 L3(R))
’ tH L x' ¢ He ’ 1 )
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and let ug, uq satisfy

2 : 2
u0 € Lioc(‘)' and u0 u1 € H (R) . (3.10)
To measure the size of the data define the quantities
o= o l2 n2 t||2 2 |2 "2
Uo(uo.u1) g f_m{uo + ug + ug + uy + u” o+ uj }(x)dx, and (3.11)

2

oo o0 1
. & f:}(x.t)dx + (fo(f.m f2(x,t)dx)/édt)2 (3.12)

F(f) := sup f:o{f2 + f
t>0

+ I3 ftm{fi + f: % Eit}(x,t)dxdt ;

The following result is a special case of Theorem 1.1 of [24].

Theorem 3.1. Let assumptions (3.7) - (3.10) be satisfies. There exists a
constant u > 0 such that for each Uy, uq, £ satisfying

U(ugsuq) + F(E£) < u2 (3.13)

the Cauchy problem (3.5), (3.6) has a unique solution u ¢ c?(r x [0,2)), and

no-z = co-2
Bt W W phmss ol 0 € C([0,®); L°(R)) N L ([(0,®); L°(R)) . (3.14)

Moreover,

2 2
uxx’ uxt,...,uttt € L' ([0,°); L' (R) , (3.15)
L5 T | (RO | + 0 in Lz(n) as t + =« (3.16)
xX xt tt — g
» oo = =
ux, ut, uxx' uxt' utt 0 uniformly on R as t » (3.17)

A similar result holds for t‘;:e history value problem (2.9), (2.10) with B = R.
The special case a(t) = ae” t, a > 0, X > 0, studied by Greenberg [18] for
B bounded, is carried out in [23] in the more complicated case when B = R.

Remark 3.2. Theorem 3.1 is a generalization of Theorems 1.1 and 4.1 of [13]
establishing small-data global existence results for analogous initial
boundary value problems corresponding to motions of bounded viscoelastic
bodies; Neumann, Dirichlet and mixed boundary conditions are treated. The
principal difficulty in proving Theorem 3.1 is that various Poincar®e
inequalities, not applicable to (3.5), (3.6) when B = R, are used in an
essential way in [13] to establish an a priori estimate similar to (3.26) from
(3.32) (see outline of proof following Proposition 3.4); the estimate (3.26)
is essential for completing the proof. The reader is referred to Hrusa [22]
for a discussion of general history value problems on a bounded interval.
Although technically extremely complicated, the generalization of the results
in [22] to the Cauchy problem is relatively straightforward.
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Remark 3.3. If § = ¢ equations of the form (3.5) have been studied by
MacCamy [35], Dafermos and the author [12], and Staffans [49] for bounded and
unbounded bodies. If Y = ¢, (3.5) admits certain estimates which do not
carry over to the general case V¥ ¥ ¢ (see [23]); there does not appear to be
any physical motivation for the restriction ¢ = ¢ for solids.

Outline of the proof of Theorem 3.1. An essential ingredient of any global
result is an appropriate local existence theorem. For reqular kernels a
satisfying (3.2),(3.3)(i), the idea is to iterate the sequence of linear
problems which treat the memory as a lower-order perturbation:

B, = 0T (W) + fg a'(t=T)b(w (x,T)) dt + £, xe R, 0 £< T , (3.18)
where T > 0, u satisfies the initial conditions (3.6), and where w is an
element of a suitably chosen function space X. By using fairly standard
enery estimates deduced from (3.18), requiring only very simple estimates of
the convolution term which do not use any sign information on the memory, it
is shown that the mapping S which carries w into a solution of (3.18) has
a unique fixed point for T > 0 sufficiently small. The proof is almost
identical with that »f Theorem 2.1 of [13]. The only significant difference
is that the proof in [13] is for x € [0,1] with Neumann boundary conditions
satisfied at x = 0 and x = 1; thus the Poincaré inequality enables one to
deduce estimates for lower order derivatives of u in L°([0,T); L (0,1))
from higher order derivative estimates. As far as local existence is
concerned when B = R, this causes no serious difficulties. One simply
expresses the lower order derivatives of the solution in terms of initial
conditions and time integrals of the higher order derivatives, yielding time
dependent bounds which, however, cannot be used for obtaining global
estimates. The result is:

Proposition 3.4. Let a, a', a" € L1 [0,2) and assume that ¢, ¥ € C3(R),
$'(0) > 0, and that there exists a number ¢ such that

$'(E) > ¢ for every £ € R . (3.19)

Concerning the data, let ug, ug satisfy (3.10), f satisfy (3.9)(i) and

assume that f , ¢ L1 ([0,»); LZ(R))- Then the Cauchy problem (3.5), (3.6)

has a unique solution ‘u defined on a maximal time interval [0,Tg)
satisfying

G oUW W s uu,u € COI0,Ty); L2(R)) . (3.20)

t XX xt A XXX xxt xtt ttt
Moreover, if
iy ftw{“i ¥ “: e u:tt = “itt}(x't’d“ £ % (3.21)
te[O,To)

then T, = +». By Sobolev embedding u € Cz(l.x IO.TO))-

In outline, the proof of the global result then proceeds as follows.
Define the equilibrium stress x by

X(E) := ¢6(E) - a(O)W(E), ¥ € R ; (3.22)
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observe that x ¢ CJ(I) and that x'(0) > 0 (by 3.8). Choose a sufficiently
small number § > 0 and modify ¢, ¥, and x outside [-§,5] such that

¢", ¥", x" vanish outside [-2§,26], and choose positive constants ¢, ¥, X
such that

$'(E) > ¢, ¥'(E) > ¥, X"(E) > x W € R . (3.23)

It is shown a posteriori that |u (x,t)| < § for all x e R, t > 0. By
Proposition 3.4 the Cauchy problem (3.5), (3.6), B = R has a unique solution
u on a maximal interval [D,To). The objective is to show that if (3.13)
holds with u > 0 sufficiently small, then (3.21) is bounded independent of
Tg: a standard continuation procedure implies T; = +°. Define

E(t) := max fw {uz + u® teset u> } (x,s)dx
- t X ttt
se (0, t]
(3.24)
t (> 2 2 2
+ IO fdw {uxx o, Aeerk uttt}(x,s)dxds ’
where °*+ represent the sum of the second and third derivatives not
explicitly written down. It is shown that if (3.13) holds for u > 0
sufficiently small, then E(t) is bounded. For this purpose define
N 2 2 2 .Y
v(t) := sup {ux tu ot uxt} (x,s8), Wt € [D,To) = (3.25)
x€R
se[0,t]
To prove the result one establishes the following key estimate
E(t) < P(Uo(uo,u1) + F(f)) + T(v(t) + v3(t))E(t), 0 < t< T0 ¢ (3.26)

where here and below I 1is a generic constant, possibly large, independent
of vy, uy, £, and Tp» We shall comment below only briefly how this is
accomplished.

Once (3.26) is established, the conclusions of Theorem 3.1 are obtained
as follows. Choose E, p > 0 such that

- -1 — 3/2 1 2 1=
E <82, T{zm?2 + 2B)77H <« L ru?< iF - (3.27)
Select the data ug, uqe f such that (3.13) holds for u chosen in
accordance with (3.27). The Sobolev embedding theorem implies that

vit) < (2E:(t))1/2 ¥ ¢ (0,T.) (3.28)
- ’ 0 . -

Therefore, it follows from (3.26), (3.27), (3.28) that for any ¢t ¢ [O,To)

with E(t) < E} we actually have E(t) < %—El By continuity E(t) < %fE,

¥t € [(0,T;), provided E(0) < %VE; the latter is insured by choosing u2
1 —

smaller if necessary so that (3.13) will imply E(0) < E'E' Then

E(t) < +E, vt ¢ (0,Ty), and (3.24), Proposition 3.1, and a standard

continuation method yield TO = 4o, One also has that (3.14), (3.15) hold,

and conclusions (3.16), (3.17) follow by standard embedding inequalities.

Moreover, (3.25), (3.27), (3.28) yield

1 _1
|ux(x,t)| < V(t) € (2E(£))2 < (E)2 < 8, e R, + e [0,2)
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and the proof is complete.

Establishing the estimate (3.26) is lengthy, delicate, and relies on the
correct sign of the memory {under assumption (3.7) or certain generalizations).
The energy method, combined with relevant properties of Volterra operators and
their resolvents, is employed. The estimates of derivatives of u appearing
in (3.24) are deduced from energy identities obtained directly from (3.5),
(3.6), and from the equation equivalent to (3.5):

t
u, = xfo ) + fo a(t=t)¥(u ), (x,7)dv

(3.29)
+ a(t)w(uo(x)x)x +f (xeR 0 t<T) ,

where T < Tys (3.29) is obtained from (3.5), (3.6) by an integration by parts
and use of (3.22). Useful identities for derivatives of u can only be obtained
by multiplying the equations by quantities which make it possible to estimate the
memory terms. A crucial role is played by the "quadratic integral form"

Q(w,t,b) := fg f:c w(x,s) f: b(s=-T )w(x,T)dtdxds, t > 0 ,

defined for b € L1 fO0,») and for every w € C([0,t]}; LZ(R)). In the first

energy identity, wﬁxch is obtained by multiplying (3.29) by Mux)xt and
integrating the equation over R x [0,T], Q arises with w = d)(ux)xt and

b = a. It is an important fact that kernels a satisfying (3.7) (indeed much
weaker assumptions) are positive definite on [0,#). To obtain the second
energy identity, one needs to take the forward time-difference of (3.29) and
integrate the resulting equation over R x [0,T]. To estimate the relevant
derivatives of u from a combination of the first two identities one needs
the following technical estimate: It is shown in [24; Lemma 2.5) that if a
satisfies (3.7), there exists a constant k > 0 such that

[E1° wlix,t)dxat < ¢ [° w_(x,0)dx + kQ(w, ,t,a)
0 -t t ’ e t ’ t' ’
(3.30)
+ % lim inf — Q(A w (t,a) , ¥Vte [0,T) ,
nt0  h2

where w ¢ c1([0,T]; Lz(l)) ¥ T > 0, and where the forward difference
operator A,w 1is defined by Apw(x,t) := w(x,t+h) - w(x,t). In the
application of (3.30), w(u )¢ and the forward difference operator 4y
is applied to equations (3 29). The proof of (3.30) also makes use of a
result of Staffans ((49, Lemma 4.2]). Using the two energy identities, and
(3.30), it is relatively straightforward to estimate all of the terms and
arrive at:

2

% 2 2 2 t (o 2
+ + + u
f—ﬂ {uxx e uxt uxxt uxtt}(x't)dx !0 I- xxt(x")dXd.

(3.31)
< T(UQ+F) + r(v(t)+v3(t))n(t) + r(/'u: +/F) /E(t), Vvt ¢ [0,T) .

istimates of [ (x,t)ax, [~ (x,t)ax, [5 [° (x,T)dxdt, ¥ t € [0,T]

~00 tt - ttt D ttt
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ig terms of the right side of (3.31) are obtained from (3.5). A bound for
— uxt (x,8)dxds can then be obtained by interpolation. Using the fact

tgat a car&ain resolvent kernel of a' 4in (3.5) is in L‘[O,ﬂ), Lemma 3.2

of [13] makes it possible to estimate ft_ u:xx(x.t)dx and

f: f:. u:xx(x,s)dxds. Combining these with (3.31) yields the estimate

ol 2 2 2 2 2 2 2
+ + + + + .
f {u u e T u + Uee ¥ U t](x,t)dx (3.32)

+ I; f:_ {uz a4 u:tt}(x.s)ds

< 1‘(u0 + F) + T(v(t) + vs(t))B(t)
+ r(/q +/F) YE(t), ¥ t € [0,T] .

The estimate (3.32) is implicit in the argument of [13]. It should be
observed that for problems on bounded intervals (Remark 3.2), it is a simple
matter to apply the Poincaré inequality to deduce the remaining estimates of
derivatives of u appearing in (3.24) and arrive at the final estimate (3.26)
directly from (3.32). However, to accomplish this task for (3.5), (3.6)
when B = R 1is quite tricky and involves additional properties of Volterra
operators and certain other of their resolvents. The reader is referred to
Lemmas 2.3 and 2.4, as well as the argument on pages 405-410 of (24] for
details. This part of the proof makes essential use of the assumption
a" ¢ L’[O,-) which is automatic when a satisfies (3.7), but cannot be
satisfied by singular kernels.
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For sinqular kernels satisfying (3.2) and (3.3)(ii), it is simpler to
restrict the analysis to the history value problem, (2:9), (2.10), with a
defined by (3.1), in which that history u satisfies the equation (and the
boundary conditions if B is bounded). This ensures that the compatibility
conditions between the history and boundary data, as well as compatibility
conditions between the derivatives of the history and the solution for t > 0
are satisfied. If u is a smooth solution of (2.9) and the kernel a is
singular, the integral in (2.9) is also a smooth function, but the integrals
]2. and fg have singularities at t = 0 which cancel. Thus if formulated
as an initial value problem the results would involve a singular forcing
term. For reasons explained below, global existence results for singular
kernels only hold for B bounded.

The principal difficulty wvhen dealing with singular kernels is
establishing a suitable local existence result. In Proposition 3.4 for
reqular kernels no hypothesis is made concerning the sign of the memory and
the size of the data. In the proof the memory is treated as a perturbation of
the elastic term ¢(u,), in (3.5). However, the proof makes crucial use of

the hypothesis a" ¢ LIOC[O.-) wvhich rules out singular kernels a
satisfying (3.2), (3.3)(ii).

Hrusa and Renardy (25, Theorem 4.1] recently obtained an elegant
extension of Proposition 3.4 for such singular kernels. They consider the

history value problem with the history satisfying the equation and the
boundary conditions for ¢ < 0. The singular kernel a satisfies the
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assumptions
a, a' ¢ L1(0,=); a(t) > 0, a'(t) < 0, a"(t) > 0, 0 < t < = (3.33)

in the sense of measures, and a" is not a purely singular measure; a certain
assumption on the Laplace transform of a is imposed in order to arantee
that the third derivatives of u are continuous with values in L4(0,1). The
material function ¢ is also required to satisfy ¢'(0) > 0, and the
technical assumptions regarding the forcing function f are strengthened.

The sign of the memory now plays a crucial role in the local analysis in which
one iterates a sequence of linear integrodifferential equations (compare with
(3.18))

Upp = ¢ (wlu,, + fi, a'(t-T)'(w Ju  (x,T)dr + £ (3.34)

vwhere u(x,t) = ka,t) for t < 0, and where w 1is an element of an
apropriately chosen function space. The singular kernel a satisfying (3.33)
is replaced in (3.34) by regular kernels ag defined by

as(t) gm fis ps(t)a(t+6+r)dr, 0<Ct<», 6§ >0 ,

where ps; 1is a standard mollifier supported in [-§/2,6/2]. _The analysis
with singular kernels is far more complicated because a" ¢/ L [0,), and

lagl 1 does not necessarily remain bounded as § ¢ 0. The engrgy estimates

are also considerably more delicate and to obtain them certain technical
lemmas concerning Volterra operators with kernels a satisfying (3.33) are
required (such kernels are known to be strongly positive definite [43]). It
is first shown that each linear problem (3.34) has a unique solution having
the required regularity by justifying passage to the limit as § + 0. Then a
contraction mapping argument for (3.34) is used in [25] to obtain the analogue
of Proposition 3.4 for w belonging to an appropriate function space. The
proof in [25) is carried out for B = (0,1] with Dirichlet boundary
conditions satisfied at x = 0 and x = 1; it is straightforward to obtain a
similar local result for B = R, because the local existence proof in [25)
avoids the use of Poincaré inequalities.

Using their local result, Hrusa and Renardy then obtain an analogue of
Theorem 3.1 for the history value problem (2.9), (2.10) and the (singular)
kernel a, defined by (3.1), satisfying (3.33) on bounded intervals. They
impose the requirement that the history and the solution satisfy Dirichlet
boundary conditions at x = 0 and x = 1 and that the history and forcing
term be suitably small. Their result ([25, Theorem 5.1]) is then a simple
extension of the proof of [13, Theorem 1.1] involving the modification of only
one estimate in_[13]; the modification uses a refinement of lemma 4.2 in (49],
because a" / L'[0,2) whenever a is singular. The fact that
a" / L1[0,~) makes it difficult to prove Theorem 3.1 for singular kernels
using the analysis in [25]). It is a challenging open problem to prove such a
result for singular kernels on all of space. '

4. Development of Sinqularities and Related Problems. In this section we
consider the Cauchy problem (3.5), (3.6) for regular kernels a, and we
discuss the development of singularities in smooth solutions in finite time
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for smooth but large data by using the method of characteristics. To avoid
technical complications we assume that the forcing term £ = 0 in (3.5), and

we study
Upp = #lu,), + a'*(u ), x€ R t >0 , (4. 1)

u(x,0) = ugix), u.(x,0) = uq(x), x e R , (4.2)

where * denotes the time convolution on (0,t]. The following result was
recently established by M. Renardy and the author [42], and independently by
Dafermos [10] for general memory functionals using a somewhat different
proof. The result can also be established by extending techniques of F. John
{27]) to quasilinear, first-order hyperbolic systems with lower order source
terms; however, the approach outlined below is more direct.

Theorem 4.1. let ¢,,¥ € C(R) let & satisfy (3.19) and let a be

smooth with a, a', a" ¢ Lloc[o'w)' In addition, let ¢"(0) # 0. Then for

every T4 > 0, there exists initial data “3' uy € cz(R) AL (R) such that

the maximal interval of existence of the smooth solution u of the Cauchy

problems (4.1), (4.2) cannot exceed T4. More precisely, if sup Iub(x)] and
xR

sup |u1(x)| are sufficiently small, while u@j(x) and uj(x) are

x€R

sufficiently large (with appropriate signs), then there exists a number

e < T, such that

sup , {|u__(x,£)] + Ju__(x,8)]} == , (4.3)
nx[o,t*) ' i xt
while
sup , {|ux(x,t)| + |ut(x,t)|} <o (4.4)
R [0,t )

For the special case V¢ = ¢, Hattori [21] has shown that if ¢" # 0 and
if the body B is bounded, then there exist data ug, ugq such that the
initial-boundary value problem (consisting of (4.1), (4.2) and compatible
Dirichlet boundary conditions) does not have a globally defined smooth
solution. However, his method does not enable him to characterize the data.
Ramaha [45] has recently obtained a blow-up result when ¢ = ¢.

For first-order model problems with fading memory, blow-up results
similar to Theorem 4.1 have been obtained by a number of authors (([38), [36],
[9]) by the method of characteristics. Existence of classical solutions for
small data for such models is discussed in [41]. The elegant method of
Dafermos [9] avoids use of characteristics; instead a maximum principle is
obtained and used.

Remark 4.2. The reader should observe that in Theorem 4.1 only the additional
hypothesis ¢"(0) » 0 is added to the assumptions guaranteeing the existence
of a local smooth solution of (4.1), (4.2) (Proposition 3.4). No sign
information on the kernel a is required. Assumption (3.19) is not
restrictive because it is shown that the supremum in (4.4) is in fact small.

The proof of Theorem 4.1 generalizes the approach of lLax (33] using the

method of characteristics and generalized Riemann invariants. We transform
(4.1), (4.2) to an equivalent first-order system as follows. Let w = u,,

34



vV o=ug define
g t=¢(wWw) -2z , 2z := =a'™(w) , (4.5)

and observe that o0 1is the stress-strain functionals (2.6). Since

$'(*) > 0, equation (4.5) can be solved for w, w = ¢'1(o+z) 1= g(0,2),

and g is a smooth function on R x R. As long as the solution u of (4.1),
(4.2) remains smooth, (4.1), (4.2) is equivalent to the system

v =9
2

g, = c (cv.z)vx +a'(0)y(g(o,z)) + a"*(g(o,2)) , (4.6)

z = -a'(0)¥(g(c,z)) - a"*y(g(o,z)) ,

v(x,0) = u,(x), 0(x,0) = ¢ (ug(x)), =z(x,0)= 0 , (4.7)

1
where the wave speed C(0,z) := [0'(g(cx,z))]/2 is a smooth function. The
system (4.6) is hyperbolic with eigenvalues C, -C, 0. We define generalized
Riemann invariants r, s by

r = r(v,0,2) t=v + &(0,2); 8 = 8(v,0,2) t=v =&(0,2); (0,2) := Io c_ ?55_'2) .

Thus v = 551, = Egly the correspondence is smoothly invertible because
¢ = c"! > 0. Observe that if a' z 0 in (4.1), z = 0 and g, C are
independent of z. In this situation r and s reduce to the Riemann

invariants for the system
Ve = 0y Oy = $° (0" N0V,

which can be transformed to the quasilinear wave equation. In the proof
r, 8, z are introduced as dependent variables and (4.6) is replaced by an
equivalent system obtained by differentiating r, s, z along the
characteristics C, -C, 0 respectively. One then differentiates the

quantities
o o

X X
p Vx+m,‘tt Vx m, and zx

along the C, =C, 0 characteristics respectively (observe that if a' = 0,

p=r,y, T= xx)' It is shown (see [42) for details) that to leading order the

characteristic derivatives of /Cop, /C 1 satisfy a coupled system of Ricatti

equations in o0 and T with coefficients which are smooth functions of

¥, 8, 2. The differential equation for z, is linear in o, 1, 2,, and it

is shown that =z, grows at most logarithmically. Blow=up in finite time is

established by lgowinq that r, 8, z remain in a neighborhood U of zero up

to the blow-up time, if they are small initially (i.e. if sup{|v(x,0)]| + |o(x,0)|}
R

is small), while v'(x,0) and o'(x,0) are sufficiently large (with

appropriate signs). Moreover, the hypothesis ¢"(0) g 0 provides upper and
lower nonzero bounds for the coefficients o and T in the Ricatti
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equations when r, s, z are in U.

Remark 4.3. A physical interpretation of conclusions (4.3), (4.4), coupled
with examples of Coleman, Gurtin, and Herrera [7), is that the strain remains
bounded but its first derivatives become infinite as t » t « Thus Theorem
4.1 suggests, but does not prove, the development of a shock front in finite
time.

Remark 4.4. Certain models for shearing flows of viscoelastic fluids can be
analyzed by the technique of Theorem 4.1. With v(x,t) denoting the velocity
of the fluid in simple shear, Slemrod [48] studies the problem

Vy = a'Q(vx)x, XeE€R t >0
(4.8)
v(x,0) = vo(x) s X €R

in the special case a(t) = et. Differentiation of the equation leads to a
Cauchy problem of the form (4.1), (4.2). Global existence for smooth, small
data follows from [12, Theorsm 4.1); see also Remark 3.3. Development of
sinqularities for large data is an easy application of Theorem 4.1 above.
Other popular models for viscoelastic fluids can be discussed by a similar
analysis. Slemrod [47] and Gripenberg [20] established similar results for a
different model of shearing flows for a viscoelastic fluid. If a = e't,
(4.8) as well as the problem studied in [47), can be transformed to the quasi-
linear wave equation with linear frictional damping for which finite time
blow-up for large data can be established by the method of Lax ({[33].

We close this section by discussing a number of open problems.

Remark 4.5. The techniques of proof of Theorem 4.1 and that of [{10] depend
crucially on the hypothesis ¢"(0) ¥ 0. The physically important situation
¢"(0) = 0, permitted in the finite time blow-up result for the quasilinear
wave equation (2.2) (with £ = 0) in {37], constitutes an interesting open
problem for (4.1), (4.2).

Remark 4.6. Singqular kernels _a aatisfying (3.2) and (3.3)(i1) ~a'(0%) = 4
violate the hypothesis a" ¢ L [0,2) which is crucial to the technique of
proof of Theorem 4.1 and that o? the similar result in {10). Indeed, there is
strong evidence based on the following arguments, that there may exist
singular kernels a such that (4.1) would have globally defined smooth
solutions, even if the data are arbitrarily large. These arguments suggest
that singqular kernels strengthen the dissipation induced by the memory. Thus
far it has not been possible to resolve this important open problem.

First, for smooth kernels with -a'(0+) finite, it follows from (2.11)
and the definition of the constant B that the diameter of the set of
points qq > B/A for which q(t) + 4= in finite time shrinks as m(0) =
-a'(0+) > 0 is increased. However, the derivation of (2.11) rests on the
assumption that m(0) = -a'(0%) remains finite. Second, there are
interesting results of Hrusa and Renardy [26] in their analysis of wave
propagation in linear vilco-elalticitg They study the linear history value
problem (2.9), (2.10) with ¢'(¢) =8 + [3m(r)at and ¥'(s) = 1,
u(x,t) 0, £t < 0, B =R, and they adjoin step jump initial data u(x,0),
. (x,0), x € R. They prove that if the memory m is smooth on ([0,2), the
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solution has discontinuities propagating along characteristics of the linear
wave equation u,, = c¢“u,, and a stationary discontinuity of higher order at
the initial step-jumps. For singular memory kernels the propagating waves are
smoothed out. The degree of smoothing increases as the kernel becomes more
singular; the stationary discontinuities remain.

Remark 4.7. There is numerical evidence concerning the development of
singularities in finite time for regular kernels a and large smooth data.
Markowich and Renardy ([39] used the Lax-Wendroff method to discretize the
hyperbolic part in (4.1) and the trapezoidal rule to discretize the integral.
They show that the method is second-order convergent and stable on any finite
time interval on which smooth solutions exist. For spatially periodic and
small Cauchy data, and for kernels a which are finite sums of decaying
exponentials, they prove second order convergence on [0,2). They also carry
out numerical experiments in the special case V = ¢ which exhibit the
formation of a singularity in finite time for particularly chosen ¢, a, and
suitably large u, and u4y. Their numerical solution exhibits but does not
prove the formation of shock fronts in u, and u, at the critical time.
Other numerical schemes merit investigation.

Remark 4.8. Weak Solutions. Remarks 4.3 and 4.7 motivate the study of weak
solutions for equations such as (4.1), (4.2) governing the motion of materials
with memory. Except for certain special situations valid for steady visco-
elastic fluid flows (Pipkin [44] and Greenberg [17)), there is no rigorous
theory for the existence of shock waves and acceleration waves. MacCamy [36],
Greenberg and Hsiao [19] have studied several aspects of weak solutions but
only for a single first-order conservation law with memory in one space
dimension. Dafermos and Hsiao [11] proved the existence of weak solution of
one-dimensional first-order quasilinear hyperbolic systems with memory using
Glimm's modified random choice method [16] with fractional steps. However,
their method requires assumptions of "diagonal dominance" which are not
satisfied in the case of the Cauchy problem (4.1), (4.2) modelling a
viscoelastic solid. They are satisfied for certain models of heat flow (see
[12)) and the specific model (4.8) for viscoelastic fluid flow).

In order to address the problem of weak solutions which would include
one-dimensional problems for viscoelastic solids of the form (4.1), (4.2), a
program has been initiated involving analytical techniques, the design of
numerical algorithms and numerical experiments. We consider the Cauchy
problem (4.1), (4.2) in the form of a first-order equivalent system. Let
w=u,vs=u. For classical solutions, (4.1), (4.2) is equivalent to the
system

W, = v

3 (4.9)
Ve = 0(W), + a'®(w), '
satisfying the initial conditions
w(x,0) = wo(x), v(x,0) = vg(x) . (4.10)

It is easy to show that a weak solution (in the sense of distributions)
of (4.1), (4.2) is a weak solution of (4.9), (4.10). It is straightforward
that the Rankine=-Hugoniot jump conditions for elastic shocks (a=0 in (4.1))
are also necessary for viscoelastic shocks.
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The Riemann problem is only partially understood for scalar first-order
consexrvation laws with memory [36), but not at all for the viscoelastic
problem (4.9), (4.10). Therefore it is difficult to use the random choice
method [16). If ¥ o ¢, define 2z = a'"(w). Then (4.9) tranasforms
to the hyperbolic system with lower order source terms:

we = vy
Ve = ¢(w), + 2, (4.11)
z, = a'(0)¥(w) + a"*(w) ,

with w(x,0), v(x,0) satisfying (4.10) and z(x,0) = 0. If ¢°'(*) > 0

(4.11) has the eigenvalues ¢ (0'(-)ﬁé and 0. If ¢°'(c) = a(ONW'(*) > O,
(4.11) has a uniquely determined steady state solution. Observe that
initially 2, = 0; one can solve the first two equations in (4.11) by various
techniques for conservation laws on the first time step, update 2z using the
last equation and proceed forward in time. Jointly with B. Plohr we
have initiated a study of various numerical algorithms for (4.11) in the
n .
special case a(t) = X a, oxp(-kkt), ay > 0, Ay > 0, including the Glimm
i=1
scheme with fractional steps. One objective is to establish existence of weak
solutions for small BV data. Another is to obtain implementable numerical
algorithms which can be tested on concrete problems.

Boldrini (3, 4] used techniques of compensated compactness to study
elastic and viscoelastic problems including the system (4.9), (4.10). These
techniques were developed by Tartar ([50,51,52], Murat [40]) and DiPerna [14];
in [14) DiPerna succeeded to .extend these techniques and apply them to
establish the existence of déak solutions of the purely elastic one~dimensional
problem (i.e. (4.9), (4.10) with a = 0) on Rx [0,T] for any T > 0,
without restricting the size of the data. Boldrini [4) assumes that the
memory in (4.9) is small in the sense that

a := a(§,t), ¥v(¢) s=¢(°) + ug(*) , (4.12)

where § > 0, # > 0 are small parameters, g is a smooth function satisfying
the growth condition |g(w)| < x|w|, x > 0, ana a'(§,t) = 0(5),

a”(§,t) = 0(§) uniformly in ¢t. In place of (4.9) he considers the
regularized system

(4.13)
Ve = 0(w), + a’(§,°) * (9(w) +ug(w)), + evy,,

with initial data (4.10) (the Newtonian viscosity can be more general than

evxx), where € > 0 is a small parameter. Let "E,G,u' vE,G,u be a

solution of (4.9), (4.10) on RXx [0,T] for any T > 0. Boldrini gives
sufficient conditions which insure that there is a subsequence such that

+
+ &> x
e gt W Ve gtV oon Rx [0,7) as €, 8, u > 0% where

B o= O(e/2 5"). Moreover, w, v is a weak solution of the purely elastic
problem on R x [0,T]. The most serious of his assumptions is the crucial
hypothesis requiring the solutions w, S, Ve ,8,u of (4.13) to lie in &
uniformly in the parameter ¢, 6§, u. $ince the mewmory is a nonlocal operator,
this assumption is difficult to veritfy.
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Jointly with W. Rogers and T. Tzavaras, we are using compensatea compact-
ness techniques to establish the existence of weak solutions of (4.9), (4.10).
The special case § = ¢, but with the memory not small (i.e. a independent of
§) 1is tractable by these methods and the case | #¥ ¢ appears doable.
However, obtaining an invariant region in order to show that solutions of the
relevant regularized system lie in L° ig extremely difficult. It is of
interest to note that the existence of weak solutions of the Cauchy problem
for the model first-order scalar equation with memory

u, + Q(u)x + a"w(u)x = 0, xc R t >0
(4.14)
u(x,0) = ug(x) , xe¢R ,

where a, ¢, ¥ hase the same meaning as in (4.9), can be solved completely by
using the method of compensated compactness. The maximum principle proved by
Dafermos in [9] for classical solution of (4.14) makes it possible to prove
the needed L° estimates for solutions of the reqgularized problem (i.e.
(4.14) with €u,, on the right side in place of zero). This problem was
recently solved by Dafermos (oral communication). Unfortunately, it does not
appear that this approach can be extended to coupled two by two systems with
memory.
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RECENT DEVELOPMENTS IN NONSTRICTLY HYPERBOLIC CONSERVATION LAWS

Michael Shearer
Department of Mathematics
North Carclina State University
Raleigh, North Carolina 27695

David G. Schaeffer
Department of Mathematics
Duke University
Durham, North Carolina 27706

Abstract. Our continmuing study of nonstrictly hyperbolic 2x2 systems of
conservation laws is described. Preliminary results on shock formation
in a special case are given. The Riemann initial value problem is
discussed in the context of the four cases arising from the
classification of nonstrictly hyperbolic equations. The solution is
outlined in one of the cases, with a discussion of some of the new
features.

1. Introduction. In this paper, we describe recent progress in
understanding systems of nonlinear hyperbolic conservation laws whose

characteristic speeds coincide at some value of the state variable. Such
nonstrictly hyperbolic equations arise in modelling three phase flow in
porous media (the primary motivation for our work) [14]), in studies of
plane elastic waves [17), and in the Lundquist equations of
Magnetohydrodynamics (cf. [2]). Here we consider only 2x2 systems:

U

t+F(“)x'°-“<x<“'t>°', (1.1)

where U = U(x,t) € RZ and F: RZ — RZ,
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System (1.1) is hyperbolic if dF(U) has real eigenvalues AI(U) <
A2(U). Strict hyperbolicity fails at points U* for which AI(U*) =
A2(U‘). As shown in (14}, such a point U is generically an umbilic
point: i.e., dF(U’) is a mltiple of the identity, and A,(U) & 2,(U) for

Ur U near U'. This situation differs from that in [5,9], where the
form of the equations allows the presence of a curve of values of U for
which AI(U) = A2(U). We remark further that an umbilic point may be

regarded as an elliptic region that has been shrunk to a point. Indeed,
perturbing the equations near an umbilic point will in general produce a
small region in which the eigenvalues of dF(U) are complex (cf.
[2"'1‘]) .

In a neighborhood of an umbilic point, the properties of equation
(1.1) are strikingly different from properties of strictly hyperbolic
equations. In this paper, we discuss preliminary results on shock
formation, and present a sample of solutions of the Riemann initial vaiue
problem that is central to mumerical front tracking [3].

Properties of equation (1.1) near an umbilic point U‘ depend on the
form of the quadratic terms in the Taylor series expansion of F(U) about

U‘. To focus on these terms, consider purely quadratic nonlinearities Q:
Ut+Q(U)x=o,—~<x<~,t>o. (1.2)
In order that (1.2) be hyperbolic, we require that dQ(U) has real

eigenvalues for all U. Then, up to a linear constant change of variables
in U, we may take

Q(U) = ac(u) (1.3)

where

2 2

C{u,v) = aus/a + bu'v + uv (1.4)

(see [14]). With this result, we can classify variations in the
properties of equation (1.1) near an umbilic point in terms of the

parameters a,b.

As an indication of the effect of the umbilic point, consider
rarefaction curves for system (1.2). These are integral curves of the
right eigenvectors of dQ(U):

U = rk(U), where dQ(U)rk(U) = Ak(U)rk(U). (1.5)
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k = 1 or 2. There are three patterns of rarefaction curves, depending on
(a,b). One of these patterns splits into two cases by considering
directions of increasing characteristic speed Ak(U) (indicated by arrows

in Figure 2). The four cases are indicated in the (a,b) plane in Figure
1, with the corresponding rarefaction curves shown in Figure 2.

Figure 1. The (a,b) - plane.

il
B{(E\jf
TN

haN

Lanr 11 Cose IV

—— Slow waves
— fast waves

Fioqure 2. The rarefaction curves.
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Rarefaction curves give the values of centered piecewise smooth
solutions U(x/t), with x/t = Ak(U) . These special solutions are called

rarefaction waves. Waves associated with A1 are called slow waves, while
those associated with Az are called fast wvaves. In 13, we show how

rarefaction waves and shock waves are used to solve certain Riemann
problems. Note that the rarefaction curves are orthogonal trajectories
away from the umbilic point. The loss of rectangular geometry of the
rarefaction curves, due to the presence of the umbilic point, has a
profound effect upon the usual geometric construction of solutions of the
Riemann problem. Note that the characteristic speeds, when restricted to
their corresponding rarefaction curves, can have critical points:

rk(U) . vAk(U) =0 (1.6)

corresponding to the loss of gemuine nonlinearity. We refer to the lines
defined by (1.6) as inflection loci. There are three inflection loci in
Case I, and there is one inflection locus in Cases II-IV.

2. Formation of shocks. The usual strategy for studying shock
formation for strictly hyperbolic 2x2 systems is to use the Riemann
invariants to diagonalize the system. Results have been obtained even
when the equations are not genuinely nonlinear for all U [10,13].

Riemann invariants for equation (1.2) are known to exist only for
a=-1, b=0. In this case, we rewrite equation (1.2) using complex
notation z = utiv:

z+(22)x-o, —w<x<®, t>O0. (2.1)

t
Riemann invariants p, o for (2.1) are given by

Ww=p+ o, w= 23/2. (2.2)

The mapping (2.2) takes the coordinate system of Case I, Figure 1 onto a
rectangular grid. This corresponds to p, o being constant on their
respective rarefaction curves, diagonalizing (2.1):

Py ~ 2|z|px =0 ' (2.3)

o, + 2|z|°x = 0 - (2.4)

t

Following Lax [12], we differentiate (2.3) with respect to x (since
shock formation corresponds to |p | — ® or |o | — ®). If we introduce

a new variable
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q= |z|*%,, (2.5)

we find, after a straightforward calculation, that q satisfies the
equation

é“%-chn qz, (2.6)
z

where d/dt = 3 - 2|z|ax, and ¢ > 0 is a constant. Now p = constant in

(2.6), 80 we easily read off that ¢ — % « in finite time if pg > 0 at t
=0, i.e. 1f p(x,0) px(x,O) > 0 for some x. Similarly, if o(x.O)ox(x,O)

< 0 for some x, then (2.1) cannot have globally smooth solutions, due to
sup]ox(x,t)l —s @ in finite time.
X

These conditions for the nonexistence of globally smooth solutions
have the interpretation that the initial data should reverse the
orientation of the appropriate rarefaction curve. This is precisely the
situation that guarantees shock formation for strictly hyperbolic,
genuinely nonlinear equations. The reason the same conditions apply here
is that, for equation (2.1), the rarefaction curves of one characteristic
family do not encounter inflection loci of the other family.

For (a,b) # (-1,0), it is appropriate to use generalized Riemann
invariants [8]), in order to get a coupled system of Ricatti equations,

each equation having the form (2.6). The coefficient of q2 will not
however autamatically have a single sign for all t > 0, due to the
crossing of rarefaction curves and inflection loci of the opposite
characteristic family. It is not known how to describe the class of
smooth initial data giving rise to finite time shock formation, except in
the special case a = -1, b = 0 considered above.

. In this section, we present some

3. Solution of the Riemann problem

features of the Riemann initial value problem for equation (1.2), with Q
given by (1.3), (1.4). The Riemann problem consists of finding a
physical weak solution U(x/t) of (1.2) satisfying the initial condition

UL iftx<o0

UR ifx>0
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The solution consists of rarefaction waves and shock waves. The former
are smooth functions, with U taking values along one of the rarefaction
curves, while the shock waves are discontinuous solutions, which we take
to satisfy the Lax admissibility condition [11]). Generally, the solution
of the Riemann problem involves a slow wave and a fast wave, separated by
a constant value of U. Each wave may be composite, although for
quadratic nonlinearites we have shown that the only physical composite
waves are slow rarefaction-shocks and fast shock-rarefactions [15].

t

3
x
Figure 3. (RS)S solution of the Riemann problem.

A typical solution of the Riemann problem is shown in Figure 3. The
solution consists of a camposite slow wave (a rarefaction-shock, denoted
by RS), and a fast shock, denoted by S. We codify the solution for these
values of UL, UR by (RS)S. For a fixed UL' the set of UR that give rise

to (RS)S solutions forms a region in the UR plane. By considering all
possible cambinations of waves, for a fixed U , we build a picture of

regions in the UR plane. As UI. varies, these regions distort, and
coalesce (for example if the strength of one of the waves goes to zero).

We thus have UL sectors: for UI. in each sector, the pattern of uR

regions is qualitatively the same.
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Ficure 4. UI. sectors, Case III.

For Case III, the sectors are shown in Figure 4, and representative
Undiqrmmm:lnngmb. The heavy lines in Figure 4 indicate

values of UL for which comparatively major changes occur in the lJR
diagrems, mnoth.tnntcrnmwﬂtonimrdwwinﬂnun
diagrams. The intermediate state 01. between the two waves, lies on one

of the heavy lines in Figure 5, corresponding to slow waves. The knotted
linss represent overcompressive waves, in which the two waves used to
solve the Riemann problem touch, so that there is no intermediate state

Ul. Another role of the knotted lines is that the solution of the

Riemann problem is discontinuous with respect to DR across this line.

Specifically, the intermediate state 01 experiences a jump, from one
section of the heavy line to another section, as UR crosses the knotted

line. Note however, that the solution is continuous in thnt.1 norm, due
toﬂnto\uﬂuwottlnolmuﬂtutminﬁnunituunw

the knotted line.
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Figure 5. Patterns of UR regions, Case III.

A detailed interpretation of the diagrams, together with diagrams
for Cases Il and IV, is given in [15]). The main result here is that in
Cases II-IV, the Riemann problem for equation (1.3) has a unigque physical
solution that can be constructed graphically. A caomputer program to
automate this solution is being developed by E. Isaaceon, D. Marchesin
and B. Plohr. Our work on these Riemann problems involves a combination
of camputer grephics and Mathematical analysis, and owes much to a study
of the symmetric cases (b = 0 in (1.4)), given in (6,7) (see also [17]).
Case I presents special problems because the Lax admissibility condition
on shocks is too restrictive. As shown in [16], the solution of the
Riemann problem in Case I will in general require the admissibility of
certain undercompressive shocks. It is at present unknown how to
characterize theee, except in the special symmetric case of equation
(2.1), for which theRiemann problem is solved in [16].
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APPLICATIONS OF MATRIX FACTORIZATION IN
HYDRODYNAMIC STABILITY

Philip J. Morris
Department of Aerospace Engineering
The Pennsylvania State University
University Park, PA 16802

ABSTRACT. The matrix discretization of boundary value problems that occur
in hydrodynamic stability contain the frequency w and the wavenumber a of the normal
modes as well as other parameters. For most temporal stability calculations an algebraic
eigenvalue problem may be posed since w appears linearly. Spatial stability problems are
more complicated since the eigenvalue a appears nonlinearly. Problems of this type are
examined in this paper. The stability of a laminar boundary layer over a compliant wall is
considered. In this case the wavenumber appears to power four in the differential equation,
the Orr-Sommerfeld equation, and to power five in the wall boundary condition. A model
for the compliant surface is developed and the differential problem is defined. The matrix
methods applied to the solution of this problem are demonstrated on a model problem.
Eigenvalue spectra are calculated for the model problem and the boundary layer stability
problem. The methods for obtaining the eigenvalue efficiently depend on the factorization
of matrix polynomials. Various factorization schemes are considered including Bernoulli
and Traub iteration and Newton’s method.

1. INTRODUCTION. This paper is concerned with the application of matrix
factorization techniques to problems in hydrodynamic stability. A spectral method is
used to discretize the boundary value problem. Orszag [1] used a spectral approach to
obtain the eigenvalue spectrum of the Orr-Sommerfeld equation for Poiseuille flow. He
considered temporal stability in which the eigenvalue, which is the frequency of the normal
mode, appears linearly. Thus the probiem becomes an algebraic eigenvalue problem which
may be solved by a number of standard algorithms. The spatial stability problem is
more complicated since the eigenvalue, which in this case is the wavenumber of the normal
mode, appears to power four in the differential equation. However it is this problem that is
physically realistic in which fixed real frequency disturbances amplify convectively. For the
rigid wall boundary conditions of Poiseuille flow the boundary conditions are independent
of the eigenvalue. In this case the spectral discretization of the boundary value problem
yields an eigenvalue problem of the form:

[f: Awa'~t] a=o0 (1)
k=0

where a is the eigenvector of Chebyshev coefficients and a is the wavenumber. To recast
this problem as an algebraic eigenvalue problern Benney and Orszag |2] used the Compan-
ion Matrix Method which is described briefly below. This approach yields matrices which
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are four times the size of the original matrices A,;. Since the operation count of standard
eigenvalue algorithms, such as the QR algorithm, are of the order of N3, this approach is
computationally expensive. For this reason Benney and Orszag (2] chose to solve the tem-
poral eigenvalue problem und then used transformations, which are valid for small growth
rates to convert to the spatial stability case. It should be emphasized that if a local itera-
tion method is used to find the eigenvalue the spatial problem is no more complicated than
the temporal problem. However a good first approximation for the eigenvalue is required
and there is no guarantee that all unstable or critical eigenvalues will be found. Bridges
and Morris [3] applied methods based on matrix factorization to the eigenvalue problem in
Eq. (1). This technique converts the problem in which the eigenvalue appears nonlinearly
to one in which it appears linearly and is readily obtained by standard algorithms. The
resulting algebraic eigenvalue problem is of the same size as the original matrices so that
this technique is much more efficient than the Companion Matrix Method. The eigenvalues
yielded by this approach represent a subset of the eigenvalues of the entire problem Eq.
(1). They may be the subset of eigenvalues with either the greatest or smallest absolute
values. Bridges and Morris [4] examined the stability of the Blasius boundary layer with
this technique. However the only successful globally convergent scheme for this problem
was found to be the Companion Matrix Method. The reasons for this are discussed in this
paper and a successful application of the matrix factorization scheme is provided. Carpen-
ter and Morris [5] applied the matrix factorization scheme to the problem of the stability
of a laminar boundary layer over a non-isotropic compliant surface. Using the matrix fac-
torization scheme they were able to identify various modes of instability simultaneously.
However, it should be noted that the accuracy of any eigenvalue is improved if its location
is ki.own approximately in the complex plane.

In this yaper the formulation of the boundary layer stability problem over a compliant
surface is reformulated. In the new form there is no restriction on the degree or nature of
non-isotropy of the compliant surface. However, the major emphasis of this paper is not
this particular problem, but general problems of the same type. The interesting feature
of the compliant wall stability problem is that the eigenvalue appears to a higher power
in the boundary conditions than in the differential equation. Also that the domain of the
independent variable is unbounded so that the problem exhibits a continuous as well as a
discrete spectrum.

In the subsequent sections the boundary valu. oroblen: for the stability of a laminar
boundary layer on a non-isotropic compliant surface will be developed. A model problem
with many of the features of the real problem will be introduced. This problem is solved
by various methods including the Companion Matrix Method and by matrix factorization.
Various schemes for the factorization of matrix polynomials are examined. Calculations of
the eigenvalue spectrum and its subset, obtained from the matrix factorization approach,
are given for both the model problem and the compliant boundary layer stability problem.

3. TROBLEM FORMULATION. The efliciency and quietness of nnderwater
vehicles is affected by the nature of their boundary layers: a fully-laminar bourdary layer
providing the least drag and noise. A passive method for delaying boundary layer transition
to turbulence involves the use of a compliant surface. Early experiments by Kramer [6,7)
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ir.dicated a significant reduction in the drag on a vehicie with a comnpliant coating but until
recently experiments had failed to reproduce these results. However Gaster and Daniel [8]
showed that the growth of Tollmien-Schlichting instabilities can be reduced dramatically
by an appropriate choice of compliant surface. The compliant surface used was a silicone
rubber-based substrate with a latex skin. Since such a simple surface provided a reduction
in the growth of instabilities and gave good agreement with the predictions of linear theory
it is reasonable to examine other surfaces theoretically that could give further reduction
in the wave growth.

The production rate of fluctuation energy, whether in the early stages of transition
or for a turbulent flow, depends on the product of the Reynolds stress and the strain
rate of the basic flow. If these quantities: have unequal signs there is production and
if they have equal signs there is negative production or decay of the unsteadiness. In a
boundary layer production occurs close to the wall. Grosskreutz [9) proposed a nonisotropic
compliant surface that would force the production at the wall to be negative. Some stability
calculations for a model of this surface were performed by Carpenter and Morris [5]. A
revised formulation of this problem forms the boundary value problem discussed below.

A simple model for the surface is shown in Fig. 1. The nondimensional displacements
of the surface n and £ in the normal and streamwise directions respectively are related to
the angular displacement of the swivel arms 66, by

£6* = € 60 sind and  né* =€ 60 cosd. (2)

where 6° is the displacement thickness of the boundary layer. These relationships show
t..at the production term will be negative if the the swivel arms are directed towards the
flow direction and positive if the arms point downstream. The equation of motion for an
element of the surface in the direction normal to the swivel arm may be written
2 4 2
2 ;:;sa) = —B‘;—z:l cosd — K50 + Ebg;% sin 0 o)
— pocosf + ogcosf + 19 sind;

Pmb

z and y are the coordinates in and normal to the streamwise direction; p,, and b are the
density an< thickness of the plate; po, 00 and 7 are the pressure and the normal and shear
viscous stresses at the wall;B and E are the flexural rigidity and elastic modulus of the
plate; and K is the spring stiffness. Let the velocity fluctuations in the (z,y) directions be
(u¢,v) and seek a solution for the surface displacement in the form:

n = 116" exp|i(az — wt)). (4)
Continuity of normal and tangential motion at the wall then yields:
@ = 19(0) (5)

and
~1&w sin 09(0) = & cos U’ (0)9(0) + w cos 85'(0). (6)

55



U is the mean velocity of the boundary layer, primes denote differentiation with respect
to y and all quantities in eqns. (5) and (6) have been nondimensionalized with respect to
the freestream velocity Uoo, and the displacement thickness §*. The fluctuating stresses at
the wall may be related to the normal velocity fluctuation in the fluid using the linearized
continuity and momentum equations. If ¢ = o' then n and ¢ may be eliminated and the
wall boundary conditions may be written in terms of ¢ and ¢ alone:

& [Z'ﬁ cos? 0;(0)] +a® [g—; sin’ 0((0)]
cosé

+&2|(2@8in 0 - 3iU’(0) cos§) P Rg(o)]

-Hi[(-—— -@ )g(O) + (cosOU'(0)+:wsm0 '(0)]
+ [ (cos OU'(0) + i@ sin 0) "(0)
ol
oo sin @ cos 0((0)] =0, (7)
M
and
a&|cos 8U'(0) + i@ sin 0]9(0) + @ cos 8¢(0) = 0. (8)
where
pmb _ B _ Ké* __Eb
CM 6*’ CB = poU3°6" CK = PoUgo and CT = poU3°6"

R is the Reynolds numberUqy6* /v. It should be noted that & appears to power five in
eqn. (7). In ref. [5] a different form of the condition contained & to power six. Also eqn.
(7) is valid for all values of #. The velocity fluctuations in the boundary layer satisfy the
Orr-Sommerfeld equation which may be written in terms of ¢ and ¢ as,

"'+ A(y)¢’ + B(y)d =0,

9
' -¢=0, ©)
where
A(y) = —iR(aU - @) - 2a%
and
B(y) = iR(aU - w)a® + iaRU" + a*.
In addition the fluctuations are required to vanish at infinity:
#(y) =9'(y) =0 as y— oo (10)

In order to demonstrate the nurerical methods without the complexity of the algebra
involved in the problem given by eqns. (7)-(10) a model problem will be introduced.
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Though this problem does not have the stiffness of the Orr-Sommerfeld equation it does
have the correct nonlinearity of the eigenvalue in the equation and houndary conditions.
Consider the model problem:

d’¢ d¢

2—;2—-2aw£+02¢=0 z€[-1,1] (11)
#(1) =0 (12.0)

do _ '
a’$(-1) + 2=(-1) =0 (12.b)

The exact solution to this problem is given by,

¢(z) = Aexp(awz) [sinycosyz — cos ysin vz, (13)
where
¥y=ayl - w?,
with

tan[2a\/l—w2] = V1 -w?/(w+ a?). (14)
#(z) is approximated by a finite series of Chebyshev polynomials: '

N

b2) =Y aT(z). (15)

r=0

The formulae for the integrals of Chebyshev polynomials are much simpler than those
for the derivatives. Thus eqn.(11) is first integrated twice indefinitely with respect to
z. Prior to substitution of the series approximation this equation is perturbed by two
additional Chebyshev polynomials to prevent a trivial solution (see ref. [10]). Thus the
actual equation solved is,

é(z) —2aw/¢+a2//¢ (16)

=C12+ Ca+ n+1TN+1(2) + N2 TN +2(2).

When the series (15) is substituted into eqn. (16), and the houndary conditions (12) and
the coefficients of equal orders of Chebyshev coefficient are set to zero a matrix eigenvalue
problem is obtained.

{Coe® + C1a? + C3a+C3} a=0. (17)

a is the vector of unknown Chebyshev coefficients. The equations involving the zero-th and
first order Chebyshev polynomials, which would involve the unknown integration constants
C; and C3, are replaced by the series approximation to the boundary conditions in rows
N and N +1 of the matrix equation. It should be noted that the leading coeflicient matrix
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Co is singular since the only terms invoving a® occur in one boundary condition. Thus
the elements of Co may be written,

(0 0 0
0 0 0
B de : : : 18
. 0 o0 0 (18)
CNoO CN,2 CN,N+1
Lo o 0

In the next section several procedures for solving the ‘matrix eigenvalue problem (17) will
be described.

3. NUMERICAL METHODS. The Companion Matrix Method that was used
by Benney and Orszag [2] involves the definition of two new vectors,

ai=aa and a;=oa,. (19)

With these definitions the matrix eigenvalue problem may be written in block matrix form,

Cy, C; G, -Co 0 O a,
1 0 0|-af 0o 1o0]||[[a]=o0. (20)
0 ) | 0 0 01 a

Since Cy is singular this cannot be changed to an algebraic eigenvalue problem without
first introducing a transformation,

A=1/(a-3s). (21)

Then the problem is readily written as,

Al Az A3 ag
I 0 o0 |-XM|]|a]=0 (22)
0 1 0 a

Since the dimension of the block matrix is 3(N+1) x3(N +1) the computation time required
to find the eigenvalue spectrum is increased by a factor 27 over the linear problem. However
eqn. (17) may be factorized so that only a specific subset of the eigenvalue spectrum is
calculated.

Let eqn.(17), after the use of the transformation (21), be written,

{Ds(N)} a=o. (23)

If the matrix equivalent of synthetic division is employed on eqn. (23), then the factored
form of D3 is,

D3(4) = {Q:(N)} (A1 - ). (24)
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where Y is a solvent or factor of D3 and Q; is quadratic in A. It is readily shown that
eqn. (24) will only be satisfied if Y is a root of the matrix polynomial,

Y3+ A Y?AY +A3=0. (25)

Thus the eigenvalue problem reduces first to finding the roots of this matrix polynomial.

The method used by Bridges and Morris [3| that was proposed by Gohberg et al [11]
involves the use of Bernoulli iteration. This method which is an extension of the standard
algorithm for scalar polynomials consists of the iterative sequence:

Xiv1 + A1 X; + AX ) + A3X;.2=0, (26)
with
X() = X, =0 and X2 =1 (27)
Then,
lim Xn[Xn_I]“‘ = S]. (28)
n—oo

S, is the dominant solvent of D3, that is, the solvent that contains the eigenvalues with the
maximum modulus. The convergence of this algorithm is slow, though it can be improved
dramatically if an appropriate choice is made for the factor s in eqn. (21).

It is reasonable to seek quadratically convergent schemes to find the roots of the
matrix polynomial. However such standard scalar algorithms as Newton’s method are not
readily extended to the matrix polynomial. Consider the matrix polynomial,

Y?+C,Y+C; =0. (29)
If an iteration sequence is developed of the form,
Yirr =Y+ 4y, (30)
then it is readily shown that A; satisfies an equation of the form,
A/A + AB, =C,. (31)

Bartels and Stewart [12]| developed an algorithm to solve for A, in O(N?3) operations by
triangularizing the matrices A; and B,. A more efficient scheme was dev<ioped by Golub
et al [13] still requiring O(N3) operations. Ilowever if a higher order matrix polynomial is
considered such as given by eqn. (25) then the equation for A, is,

A + B;AC, + A;D; =E,. (32)

There does not appear to be a particular algorithm for solving this equation. Clearly higher
order matrix polynomials will lead to more complicated equations. However it is always
possible to construct a system of equations for the N2 unknown elements of A;. Since A,
is only a small correction in the Newton’s method it should not have to be evaluated with
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a high degree of accuracy. Thus with suitable preconditioning an iterative solution of eqn.
(32) might not be too lengthy. This possibility is being considered by the author.

The last algorithm to be considered is that developed by Dennis et al, {14]. This is
a two-stage algorithm based on the algorithm by Traub for scalar polynomials, ref. [15).
The algorithm consists of the construction of the equivalent of the G-polynomials,

Gn41(Y) = Ga(Y)Y - T{"Dy(Y)
where
G.(Y) =T{"v2 4 My 4+ 1V, (34)
The second stage of the algorithm consists of constructing the iterative sequence,
Yo = (ry”)@i ") (35a)
and,
Yit1 = Go(Yy)GL,(Y) (25b)

The first stage of the algorithm with Y given by eqn. (35 a) is equivalent to Bernoulli
iteration. The use of the second stage of the algorithm does not change the linear conver-
gence of the iteration but the asymptotic error constant may be made as small as desired
by increasing the number of first stage iterations. It would appear to be very desirable
to extend the iterative schemes based on the generalized G-polynomials of ref. [15] to the
matrix case. However this extension would require properties of matrix derivatives that
do not appear to be available.

In the next section some numerical examples of the application of these algorithms
will be given.

4. CALCULATIONS. First the model problem given by eqns. (11) and (12) will
be considered. Table 1 shows the eigenvalue spectrum given by the Companion Matrix
Method with A = 0.5 and N = 12, It can be seen that the spectrum contains N — 1
“infinite” eigenvalues. This corresponds to the fact that the leading coefficient matrix Cgo
has rank unity. The corresponding behavior for scalar polynomials is given by an “infinite”
root when the leading coefficient of the polynomial tends to zero. The roots on the real
axis are close to multiples of 7 as could be inferred from the eigenvalue relationship given
by eqn. (14). The roots away from the real axis occur in complex conjugate pairs.

Figure 2 shows the finite roots given in Table 1 as well as the roots obtained using
Traub iteration. The number of first and second stage iterations was 10 and 5 respectively.
The four eigenvalues closest to the value of the shift s in eqn. ' (21), which was 0.5, are
very accurately obtained. However the remaining eight eigenvalues do not corréspond to
the values given by the Companion Matrix Method. The reason for this is unclear though
the occurrence of the complex conjugates in this problem suggests that a dominant solvent
may not exist. However shifting the value of s to a complex value did not alter the result.
Thus the reason for the failure of the factorization scheme in this case remains unclear.
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In spite of the difficulties with the model problem it has served to illustrate the
numerical methods. These methods have heen applied to the more complex problem
posed by the Orr-Sommerfeld equation and the boundary conditions corresponding to a
non-isotropic compliant surface. Rather than detail the hydrodynamic properties of such a
surface a special case will be considered. It was mentioned earlier that Bridges and Morrig
[5] had difficulty in applying matrix factorization techniques for the rigid wall boundary
layer. The reason for this can be seen if the Companion Matrix Method is applied to the
boundary value problem given in Section 2 for the case of a massive wall; that is as Cps —
0o. In this case the compliant surface problem reduces to the rigid wall case. Figure 3 shows
the resulting eigenvalue spectrum for N = 24, R = 2240 and w = 0.05. This case gives 96
finite eigenvalues. The eigenvalues shown in Fig. 3 contain both discrete eigenvalues and
the Chebyshev approximation to the four branches of the continuous spectrum (see ref [16]).
It can be seen that many of the eigenvalues are clustered around a = 0. If no shift in the
eigenvalue, as given by eqn. ("'}, is used then the eigenvalues of the minimal solvent will
not include the discrete eigenvalue close to o = 0.3. The minimal solvent was sought in ref.
[4] and the discrete eigenvalue could not be obtained. The same spectrum of eigenvalues
is shown in the ¢ — plane in Fig. 4, where ¢ = w/a. The Tollmien-Schlichting instability
is indicated. One branch of the continuous spectrum forms a semi-circle in the ¢ — plane
between ¢ = 0 and ¢ = 1. The attempt by the finite Chebyshev series to approximate this
branch is seen clearly in this figure. If the eigenvalue problem is shifted by s = 0.3 then
Traub iteration gives the spectrum shown if Fig. 5. The dominant eigenvalues have been
sought using the iteration scheme given in Seciion 3. All of the eigenvalues associated
with the approximation to the continuous spectrum that gave values of ¢ close to zero
have been eliminated. The spectrum given in Fig. 5 was obtained with 5 first stage and
5 second stage iterations. No accurate computation times were obtained but the matrix
factorization scheme was considerably faster than the Companion Matrix Method.

In this section several examples of the application of matrix factorization schemes
have been given. It is clear that they offer a considerable advantage over other schemes in
the solution of eigenvalue problems in which the eigenvalue appears nonlinearly. It is also
clear that methods for factorizing matrix polynomials that have high rates of convergence
are still needed.
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Qyeal

Qimag

0.4406718E+00 0.4510956F. — 14
-.2992489E+00 0.1022875E+-01
-.2092489E+00 -.1022875E+-01
0.3186915E+01 -.2216713E—-08
-.3093725E+4-01 0.1475552E—-08
0.6838718E+01 0.1359535E+-01
0.6838718E-+01 13595355101
0.6186921E+01 0.2801617E--08
0.6912758E+-01 0.3878241E+01
0.6912758E+01 -.3878241E+01
-.6061245E+-01 0.1430764E—07
0.6813279E+01 0.7021262E+01

0.6813279E4-01
0.1049901E+02

~-.7021262E+-01
0.4074714E-07

-.6727921E+01 0.1523704E+01
-.6727921E4-01 -.1523704E+-01
-.6934206E+01 0.4003945E+01
-.6934206E-+01 -.4003945E 4 01
-.6876758E+01 0.7071108E-+01
-.6876758E+-01 -.7071108E+01
-.1046709E 102 0.5751595E 09
0.9339952E+01 0.1092799E +02
0.9339952E+01 -.1092799E+02
-.9412304E+01 0.1088636E+02
-.9412304E+01 -.1088636 E+02
0.1471219E+18 0.0000000E+-00
0.2924940E+16 0.0000000E+-00
0.1196801E+16 0.0000000E +-00
0.2813020E+16 0.0000000E +00
-.3321595E+16 0.0000000E+00
-.2542934E+17 0.0000000E+00
0.2955202E 116 0.0000000F + 00
0.1349990E+17 0.0000000E+-00
-.2681021E+16 0.0000000F-+00
-.3430352E+ 16 0.0000000E+00
-.4477007E+16 0.0000000E+-00

Table I Eigenvalues of model problem
w = v3/2, N = 12, tan(a) = 1/(V3 + 2a?)
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Fig. 1 Sketch of the compliant wall model.
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Fig. 2 Eigenvalues for the model problem. O , Companion Matrix Method; x ,
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Fig. 3 Eigenvalue spectrum for the Orr-Sommerfeld problem: a-plane. R = 2240,
w = 0.05, N = 24. Rigid wall case.
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ABSTRACT

Two methods for computing the effect of curvature on the speed of finite
reaction rate detonations are studied. One method involves fine grid compu-
tations using a method which gives a solution of high quality and is taker as
exact. The other is based on recent work by one of the authors (J.J.) in
which an asymptotic model for expanding detonation waves is presented aad
analyzed. Both methods assume cylindrical geometry.

The asymptotic model consists of a pair of quasi steady state ordinary dif-
ferential equations for the flow velocity and a reaction progress variable. The
equations are correct for large times and large radii. For each value of the
shock radius, the speed of the weak detonation is well defined as the solution
of a shooting problem between the shock and a critical point in the phase
plane. .

In this report we discuss the computational problems involved in applying
these methods. We further show numerically that the model equations are
accurate to first order in powers of the inverse radius. Finally, we discuss
how this new theory may be used in conjunction with the method of front
tracking to numerically solve detonation problems in which weak detonations
develop due to the curvature of the geometty.

1. Iatroduction

We study the influence of the radius of curvature on the speed of a cylindrically expand-
ing detonation wave with finite reaction rate. In doing so, we also study the transition from
strong to weak detonations in an expanding geometry. Finally, we study the effect of curva-
ture on the reaction zone. The central issue to be analyzed is the consequence of radially
induced cooling on the chemical reaction. See [7] for a review of this topic and more gen-
erally of the theory of detonations in the presence of endothermic effects.

Two numerical methods are used to solve this problem. First, a one dimensional ran-
dom choice computation with operator splitting for both the radial effects and the effects of
the finite reaction rate is employed. Since this method resolves the reaction zone numerically
(in contrast to [2]), it includes curvature effects on the detonation velocity. This method
gives an accurate solution for grids fine enough to capture the dynamics within the reaction

1. Supported in part by the Applied Mathematical Sciences subprogram of the Office of Energy

Research, U. S. Department of Energy. under contract DE-AC02-76ER03077.
2. Supported in part by the Army Research Office. grant DAAG29-85-K0188.
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zone. Next, we discuss the application of recent contributions by J. Jones [10], who derived
a system of quasi steady state ordinary differential cquations to describe expanding detona-
tions. We solve these equations numerically to find the wave speed and to resolve the reac-
tion zone. The solutions of Jones’ equations are found to be correct to first order in powers
of inverse radius thereby confirming and validating his analysis.

A motivation for this work was to enhance the front tracking algorithm (see {3]) to
allow calculation of curvilinear detonation fronts in their transition from strong to weak deto-

nations.

2. The Random Choice Computation

In this section, we discuss the solution to the equations of reactive gas dynamics with
finite reaction rates in a symmetric gecometry using the random choice method. The
Zeld’ovich-Von Neumann-Doering (ZND) model of detonations (see [7]) is used. For this
model, the equations of inviscid gas dynamics with cylindrical symmetry become

2.1) w + f(w)r = C-aG ,
where
m 3
P nsp
' L BT A
A —(e+P)
P
A
i S
\ 1] /
¢ ﬂ 3
r
0 m
0
C : G ot 1
. n (e+P)
X ( * ) pr
0
and \ J

0 for planar geometry
1 for cylindrical geometry .
"2 for spherical geometry

a

C and aG are respeciively, the source terms duc to combustion and geometry. In these
equations, p is the density of the gas, m is thc momentum density, P is the pressure and \ is
the mass fraction of burned gas (0 == A =< 1). The cnergy per unit volume, e, may be written
as

where « is the velocity and € is the specific internai encrgy. Assuming a polytropic equation
of state,
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P
€% ==—= 4 (]=A)g ,
p(y-1) ¢
with y > 1. In order to simplify the formulas, the polytropic constant, y , is assumed to
have the same value in the unburned, burned and reacting gas. The heat rcleased during
combustion is ¢; T is the temperature (T=P/p) and R(\,T) is the rcaction rate. We use

Arrhenius kinetics, which yiclds an infinite reaction length. Thus,

k(1 - \) cxp[——;‘:-J W T2,

s T<T
Y <

where k is the rate multiplier, and E is the activation energy. We introduce 7. , the critical
temperature below which the reaction rate is taken to be identically zero, in order to allow
for quenching and to climinate the cold boundary effect. That is, if there were no critical
temperature, the reaction rate would be positive even for cold gases. Then, the unburned gas
would begin to burn before the shock wave encountered it.

To solve this system numerically, we employ operator splitting {13]. At the start of a
time step, we solve the homogeneous system

(2.2) w + f(w)r =0

by the random choice method [9],[4]. The Newton’s method of [2] is employed to solve the
Riemann problems that arise in this computation. Next, we use the solution of eq. (2.2) as
initial data for the system of ordinary differential equations for the geometrical source terms,

(2.3) w = -aG,

Finally, we use the solution of eq. (2.3) as initial data to solve

wt—'C.

the equation for the source term due to chemistry. This sequential operator splitting calcula-
tion converges under mesh refinement. Colella, Majda and Roytburd [5] have used a three
part splitting in their fractional stcp method computations for reacting gases.

A plot of pressure vs. distance for a stable planar reaction is shown in Fig. 2a at the
start of a calculation, initialized with the steady state solution, and after several hundred time
steps using the method described above. In addition, reactions which have parameters
chosen to yield unstable detonations are modelled well by this method. In an example of an
unstable detonation, our results agree with those of Erpenbeck [6] , Mader [11] and Fickett
and Wood (8] (see Fig. 2b).

We note that when performing these calculations one must take care not to introduce
spurious effects due to the numerical modelling techniques. One should include cnough grid
points in the region of chemical activity in the reaction zone. Also, as the computation
progresses, the region of chemical combustion grows for the Arrhenius model of kinetics.
To deal with this problem, we eliminate the portion of the computational region more than a
certain distance behind the initiating shock wave. In doing so, care must be taken to elim-
inate only regions in which there are very small variations in the gas states. Introducing even
wcak waves into the teacting gas in this climination process is equivalent to releasing smag
amounts of cnergy on a slow time scale and can cause large crrors. ‘This phenomenon was
studied by Bdzil [1].
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3. The Asymptotic Method of Jones

In [10), J. Jones derived and analyzed a method of calculating the effect of curvature
on the speed of an expanding cylindrical or spherical detonation wave to first order in powers
of the inverse of radius of curvature. This theory also predicts the state of the gas through
the reacting region.

The radius of curvature of the detonation wave is assumed tc be much larger than the
length of the reaction zone, where the reaction zone length is taken to be the distance from
the initiating shock wave to the point at which 90% of the gas is burned. It is also assumed
that the reaction has proceeded for many reaction zone lengths so that initial transients are
climinated. Thus the run has settled down to a quasi steady state. Further, the state of the
unburned gas ahead of the shock i« constant with zero velocity. Through the methods of per-
turbation theory, climinating higher order terms, Jones derived the following system of ordi-
nary differential equations from eq. (2.1):

4y = DE(L = \) exp[— 5%] - e

z

3.1 u, = G w -
A = ROLT)
foi-w
=i+ I - -+ aly - DA

where ¢, represents the sound speed in the unburned gas ahead of the shock, ¢ is the speed

oj—

of sound of the reacting gas, ¢ = [yP/p} , x is the distance behind the initiating shock wave,

z is the radius of curvature of the shock, and : is the wave speed.

In the case of an undriven planar detonation, the reaction terminates at the Chapman-
Jouguet (CJ) point on the Hugoniot curve. This is a sonic point. That is, a point at which the
wave moves at sound speed with respect to the gas behind it. However, an expanding deto-
nation is weakened by expansion induced rarefactions coming from behind the shock and the
termination point for the reaction moves below the CJ point yielding a weak detonation. The
flow is subsonic behind a shock but supersonic behind a weak detonation. Thus, a transition
from subsonic to supersonic flow must occur in the reacting gas.

Since the denominator of the first of eqs. (3.1) vanishes at any sonic point, in order to
have a smooth transition through a sonic point, the numerator must also vanish there. The

transformation

Pt s 2
4 fc(.t')3 - v(x')?

where v = z=u , leads to the system

2=V 4
P
4

(3.2) v, = q(y - Dk(1 = A) exp[-'i?- <
. >

k, = %k(l - A) cxp[- F;"Y.]((: - v7)
=)
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where

cd=c2+ 1—;—1(1'2 - v) + q(y - DA

This transformation does not change the structure of the phase plane and the critical point
conditions for this system are the same as the conditions for a smooth sonic transition men-

tioned above. These conditions are:

(3.3) 9(y = Dk(1 = )) exp[— -b;?-] -
e

gl e
z =0
2

]
(=]

-
-

L - exp[- -‘?—7-](c2 -v)
¥ c

[}

el + -‘i;—‘(z'2 V) 4 qly = DN = e

From a computational point of view, eqs. (3.2) are easier to work with than eqs. (3.1), see
also [10].

To solve for the wave speed and resolve the reaction zone we proceed as follows. We
guess a value for v, (that is, vimmediately behind the initiating shock) and solve for the criti-
cal point of the system of ordinary differential equations (3.2) by iterating on A and v, using
the equations

2 o

v=[ 2 [c£+h—'-2—"i+q(v-l)§']}

y+1
(2 -v)ciexp [%]

gk(y - 1)z
which are derived from egs. (3.3), using the fact that v2 = ¢? at the sonic point. The square
root takes the same sign as z. We then integrate system (3.2) numerically with the initial
conditions

A=1-

v(0) = v,
A0) =0

to find the trajectory of the solution in the v — A plane for the given z. We update the
values of v, and z based on this trajectory by a bisection method until the trajectory passes
within a specified tolerance of the critical point. The solution is continued through the criti-
cal point by finding the eigenvectors there. The equation, see [10],

p\ 5 = pvv\

and the last of eqs. (3.2) are used to compute the pressurc and density through the reacting
region.

In Fig. 3a, we present the v— A phase plane portrait as well as the sonic locus for the
value of z which yields a sonic transition for the given data. The curve passes through the
critical point (S) after which the burning continues on the supersonic side of the sonic locus.

71



4. Results

In Fig. 4a, we compare a plot of the pressure, immediately behind the shock wave
which initiates the detonation, vs. time for a planar CJ detonation, computed by the random
choice method described in §2 (a = 0), with a plot of the results from a cylindrical computa-
tion (a = 1) and with the resulis of the method of Jones where the radius of curvature is
assumed to be the same as for the cylindrical computation at all times. The vertical error
bars give the highest and lowest values of pressure over each 100 time steps for the random
choice computations. As expected, the pressures computed by the two cylindrical methods
approach the planar CJ pressure just behind the shock as the radius of curvature increases.
We note that the random choice computations are initialized with the planar steady state solu-
tion and it takes some time for the initial transients to disappear in the cylindrical run. When
we initialized the random choice method with the results of Jones’ method at a small radius
the transients were much smaller but the results for larger radii were not significantly dif-
ferent from those of the planar initialization. A comparison of the pressures behind the
shock wave using thesc initializations is seen in Fig. 4b. In these computations, we elim-
inated the regions more than 3 reaction zone lengths behind the initiating shock wave.

To exhibit the validity of Jones’' method to leading order in inverse radius, we present,
in Fig. 4c, a plot of pressure behind the initiating shock wave vs. inverse radius for the
numerical methods described in §2 and §3. We also show the line predicted by the theory of
Jones for the leading order corrections to pressure due to curvature, based on computations
using Jones’ equations with very large radius of curvature. The oscillations in the random
choice computation are due to the numerical method and decrease with refinement of the
grid. A similar plot is achieved for the corrections of detonation wave speed due to curva-
ture (Fig. 4d). ‘

Fig. 4¢ shows the states of a reacting gas for a planar CJ detonation, for an expanding
cylindrical detonation using the method described in §2, and for the method of Jones at a
fixed time. We have plotted pressure vs. specific volume along with the unburned and
burned Hugoniot curves. It is plotted at a time when the radius of curvature is approximately
50 times the length of the reaction zone. The steady state planar wave is initiated by a shock
and moves down the Rayleigh line from A to CJ (the CJ point) as the reaction progresses.
This line, when extended, passes through the point representing the initial ahead state. The
detonation waves for the two cylindrical mcthods are initiated by weaker shocks, correspond-
ing to a lower pressure on the unburned Hugoniot (points F and D), and move down along
the curves shown to a weak dctonation. These curves do not terminate on the burned
Hugoniot curve since it is computed from a planar theory. Wood and Kirkwood [14] have
derived equations for the modifications of Hugoniot curves in a curved geometry. From Fig.
4c, we see the effect of curvature on the pressure just behind the shock and through the reac-
tion zone. These computations show that a 12.5-17.5% smaller jump in pressure at the shock
occurs in the curved geometry than in the corresponding planar calculation. Here the radius
of curvature was approximately S0 times the reaction zone width.

5. Conclusions

We ‘have shown that the derivation by J. Jones [10] of the corrections due to curvature
of the speed of detonation waves and the pressure behind the shock wave are correct to first
order in the inverse of radius of curvature. This validation was necessary since the passage
from the original system of partial differential equations (2.1) to the ordinary differential
cquations (3.2) has not been shown rigorously.

The advantage of using the equations of Jones is considerable. Solving for the wave
speed and the states of the reacting gas is usually accomplished in less than 10 CPU seconds
on the ELXSI. We note that the rapid computation of wave speeds will enable two dimen-
sional front tracking computations to be cxtended to include the effects of curvature on deto-
nation waves in the near future. Although not directly comparable, the one dimensional
computations with fully resolved chemical reactions, fine grids and Arrhenius kinetics,
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exhibited in Figs. 4a-e, require approximately 40 hours of CPU time on the same machine.
To avoid these slow computations, for practical computations one would normally use neither
resolved chemical reactions, nor fine grids, nor Arrhenius kinetics.

The enhancement of the front tracking method ([3),[12]) using Jones’ equations would
involve modelling the reaction zone as being infinitely thin. Based on the divergence of the
flow at each point on the detonation wave front, one would use the theory of Jones to find
the speed of propagation of the detonation front at that point and the state of the gas behind
the initiating shock wave as well as the state of the gas behind the completed chemical :eac-
tion. In this way, the transition from strong or CJ detonations to weak detonations cas be
modelled for two dimensional flows. This is not possible with the model employed in [2].
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Pressure
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0 . 10
Distance

Fig. 2a. A 1D Stable Computation. A plot of pressure vs. dis-
tance is shown for a planar detonation initialized with the steady
state ZND solution. The initialized reaction and the reaction
1200 time steps later are superimposed so that both fronts are at
the same location on the graph. The solution is clearly not de-
Jormed by the numerical method. The state ahead of the initiat-
ing shock (in units where the gas constant R = 1) has P = 100,
u = 0, p = 1.4. The heat release ,q, is 300; E = 100; T, = 215
and y = 1.1. The distance from the initiating shock wave to the
point where the gas is 90% burned is 0.75 and the grid spacing
is 0.012S.
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Fig. 2b. A 1D Unstable Computation. A plot of pressure
behind the shock initiating the detonation vs. time for the data
described in [11, pp. 18-19). The reaction zone was initialized
with length 1.75. The ahead state has p = 1,u = 0,p = 1.
g =S0,E=50,y=12,k=206. The speed of the initialized
wave is 1.265 times the CJ wave speed for the abead state. Grid
spacing is 0.05. The results are similar to those in [6] and [11].
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Fig. 3a. Phase Plane Portrait of the Reaction using Jones’
Equations. A plo: of the trajectory through the sonic point (S)
in the v — \ plane for the runs in the Jollowing figures when the
radius of curvature is 50 times the reaction sone length. The
sonic locus is also shown. A corresponds to the point behind the
initiating shock wave while B Tepresents the termination of the
the reaction as a weak detonation. '
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Fig. 4a. Effect of Curvature on Pressure behind the Initiating
Shock. A plot of pressure vs. time for planar and cylindrical
computations using the random choice method of 32 and the solu-
tion to Jones' equations where the radius of curvature is assumed
to be the same as for the cylindrical run by random choice. The
error bars show the range of values over each 100 time steps for
the random choice calculations. The ahead state has

p=300,u=0,p=14. The reaction zone has length I,
g =300,T, = 215,y = 1.1, E = 100 and grid spacing 0.01.
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Fig. 4b. Comparison of Initializations. The panels above show
Plots of pressure behind the initiating shock as a function of time
Jor the same cylindrically expanding desonation problem as in
Fig. 4a using the planar steady state initialization (a) and initial-
ization by solution to Jones's method at a small radius (b). These
two plots are superimposed in (c).
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Fig. 4c. First Order Corrections to Pressure. Pressure behind
the initiating shock wave is plotted against inverse radius for the
cylindrical computations of Fig. 4a. Also shown is the leading
order correction predicted by solving Jones' equations for very

large radii.
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Fig. 4d. First Order Corrections to Wave Speed. A plot of wave
speed vs. inverse radius is shown corresponding to Fig. 4c.



Pressure
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Specific Volume

Fig. 4e. Effect of Curvature on the Hugoniot Diagram. Pres-
sure is plotted against specific volume for the calculations used
in Figs. 4a-d. The unburned and burned Hugoniot curves are
presented as well as the path through the reaction zone for a
planar detonation (from A to C)) and cylindrical detonations
where the radius of curvature is approximately 59 times the
reaction zone length by the random choice method (from D to E)
and by Jones's method (from F to G). The pressure jump at the
Jront is reduced by 12.5-17.5% by the curvature.
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PRESSURE TRANSIENTS IN A CAVITY DUE TO
IMPULSIVE LOADS

C. Helleur

Defence Research Establishment, Valcartier, Canada

B. Tabarrok and R. G. Fenton

Department of Mechanical Engineering, University of Toronto

Abstract

The impact of a mass on a structural plate of a compartment
causes plastic and elastic deformations which can give rise to pressure
fluctuations of significant magnitude and duration due to the confined
nature of the compartment and the low damping forces in the gas.
This paper presents a procedure for calculating the pressure transients
in an enclosed gas from an impact.

The procedure uses a formulation which gives the equations of
motion in terms of a scalar momentum potential. This momentum
potential is physically interpretable as a pressure impulse. With this
formulation the transient pressure behavior of the gas is characterized
by a single partial differential equation which is the wave equation
in three dimensions. The spatial derivatives are treated by a finite
element technique to obtain solutions for an arbitrary geometry of
the enclosure.

The boundary conditions for the problem are that the normal ve-
locity of the gas is compatible with the prescibed velocity of the en-
closure walls. The rate of deformation of the wall resulting from the
impact is approximated by modelling the region in the form of two
concentric plastic hinges. Since the stress in the hinges must be at
the yield value, it is possible to approximate the plastic deformation
and hence the time history of the deformation.
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1 Introduction

The subject of a projectile penetrating the wall of a cavity has received a great deal
ol altention because of possible wllitary applications. A projectile which failed to
perforate was considered of little interest. llowever there is increased interest in the
transient response of an enclosed gas resulting from a mass imnpacting a cavity wall
since it may cause sullicient dellection of the wall Lo give rise to pressurc lluctuations
of significant magnilude and duralion.

This paper presenls a procedure for calculating the pressure transients in an
enclosed gas resulling from a deformation of the cavity wall, ‘L'le suitability of this
procedure to investigaling pressure Lransients resulting from an projectile impact
on the cavily wall is investigated.

2 IEquatiouns of Motion of a Gas

"The force balance on an element of the gas is shown in ligure 1. The components
of displacement in the z;, z3, z3 direction are déitoled as uj,u3, us respectively and
the pressure is denoled with a ‘p’.

Starting [rom Lhe force balance in the z;-direction we oblain

dp : 9u
b-(p+ aéi—ldzn))dz: dft: = pdz; dz; dz,—a-ﬁl (1)
which yields 2
ap d u;
s B g e TP 5
dz, v at? ( )
which can be generalized for the 'i’ direction
dp a’u‘
2 BEw AW, .
dz; aul ( )

These represent the equilibrivin equations of the gas. This formulation has the
disadvantage that one can have inlinite solutions for which u;, us,us are not zero
whercas the volumelric strain is zero (l.e spurious solulions).

Linpulse Formulation In order to reduce the problem Lo a convenient formn for
solving the pressure impulse formulation of rel. |1] and [2] (i.e. ¢ = [ pdt) is used.

The cause-ellec} relationship involving pressure impulse and the volumelric
strain is shown hcre as the rate of change in pressure equal to minus the bulk
modulus (K) times the volumelric strain (eya).

Ouy;  Ou +'8u;) (4)

é Wi ~Kew == K(az. * dz, dzs

‘I'his represeuts the conslitutive equations of the gas in terms of the pressure in-
pulse. 84




Differentiating eq. 3 with respect to z;,z3,zs respectively and substituting into
eq. 4, we obtain eq. 5

|
Vig = oad (5)
where C? = —
p

On a fixed rigid wall, the normal displacement and hence also the normal velocity
must vanish. For a surface which has a prescribed velocity V,, the normal component
of the velocity of the gas and the wall must match.

du, -
"=
Therefore it follows from eq. 3 that
99
an pVn (6)

This formulation has the advantage that it requires the solution of only one
equation and that the boundary conditions are in terms of velocity. Analytical
solutions to eq. 5 and eq. 6 can be found by classical means for cases where the
physical problem has a simple geometry and boundary condition.

3 Finite Element Model

Since we wish to be able to model cavities of arbitrary geometry, it is necessary to
solve the equation using finite elements. For this purpose it is useful to cast the
essential equations of the problem into a variational statement.
Using the complementary energy principle, the increment of work done by vio-
.lation of eq. 5 and eq. 6 results in eq. 7.
-1 1 d%q 10q
Vet g dv+/ =29 4 V,)6qds =0 7
/;/(p q+K6t2)q .(p8n+ )6q ds (7)
Using Green’s theorem, integrating with respect to time and integrating by parts
we obtain the required variational statement

7 (5 (2 + B2+ (22y) - 5 0y ava
+ /:[V,,&qu =0 (8)

The first integral is over the volume of the gas and the second integral is over that
part of the surface where the normal velocity V,, is prescribed.
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For use in cavities of arbitrary geometry an 8 noded isoparametric element
(ref. [3]) as shown in figure 2 is used. The six faces of the element can be quadrilat-
erals of arbitrary shape, however, the 4 edges of the quadrilateral must be straight.
The shape functions

Ny =1/8(1 — ay)(1 — a2)(1 — as)
N2 =1/8(1 — ay)(1 + az)(1 — as3)
Ns = 1/8(1 + ay)(1 + a3)(1 - as)
Ny =1/8(1 + ay)(1 — a3)(1 - a3)
Ns = 1/8(1 — ay)(1 — a2)(1 + as)
Ne = 1/8(1 — ey)(1 + a3)(1 + as3)
N7 =1/8(1 4+ ay)(1 + a3)(1 + as)
= 1/8(1 + ay)(1 — az)(1 + as) (9)

transform the z,, z,, z3 coordinates into the a,, a;, as coordinate system such that
the 8 node element is transformed into a regular cube. Since the elements are
isoparametric, the same shape function is used to interpolate the impulses ( eq. 10)
as is used to transform the coordinates.

q(ay, a3, a3) = [Ny, Np,...Ng] | B (10)
92
gs
The impulse gradient can be expressed in terms of the nodal pressure impulses.

(51} = [Bltg) (1)

The Jacobian matrix of transformation, represented here in symbolic form by the
letter J, allows us to transform the impulse gradient from the z;, z3, z3 coordinate
system to the a,;, a2, ay coordinate system.

30y = 2y (12)

The variational statement (eq. 8) has three terms. The first, shown in eq. 13,
can be reduced and integrated, using eq. 11 and eq. 12, to produce the stiffness
matrix [K,).

HIE 2 [{ o }] derdzsdzs = [ [ [{a)7(BIT(977(07")B}{g}||desdasdas

= S0 IK )} (13
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It is important to bear in mind that in eq. 13 we have the discrete form of the kinetic
energy and the dimensions of |K,| elements are velocity per unit momentum.

Consider the second term in the functional given in eq. 8. With a change in vari-
ables and integrating numerically using the Gauss-Legendre methods one obtains
eq. 14.

i(ﬂ)zd:t:ld:x:zd:n; 5{q} {N}T{N}|J|da,dagda3 {3}
K dt
=5{a}TlM,1{a} (14)

|M,.] is refered to as the element mass matrix but it should be noted that the
dimensions of Me elements are displacements per unit force. In reality Me is the
flexibility matrix.

Similarly the third term can be evaluated to produce the virtual work of the
prescribed velocities in discrete form as follows

/V 6qu—/ V6q\/ +( )2+(6z3)2 dz, dz,

= [[ Vas{a (N1 + (=} TIBITII; (I [ Buzs} |4y B

where {N,} = shape function on the face where V is prescribed
[B,] = gradient of shape function on the face where V is prescribed
[J,] = jacobian on the face where V is prescribed

Integrating using the Gauss Legendre method.

[ Vabads = (g7 (7.} (15)

Having found the discrete forms of kinetic energy, complementary strain energy
and the virtual work of prescibed velocities, we can write the discrete form of the
Complementary Energy principle.

[ (30 IKda) - S IMIE - 5007 (V) ) a

Expressing the functional in terms of the global matrices and carrying out the
extremization we find the discrete equations of motion.

[K,{q} + [M,]{g} = [Vy] (16)

To check that element matrices are correctly computed and assembled, natural
frequencies of a cavity, modelled by different number of elements, were computed.
The test cavity is 2 unit cube for which the natural frequencies can be determined
analytically.

87



The first frequency is the zero frequency associated with a mode wherein the
impulse q is constant and the mode associated with the first two non-zero frequency
are standing waves for q, in the form of a cosine function.

The results of the investigation are shown in Fig. 3 as the convergence of the
computed natural frequencies to the known natural frequencies as a function of the
number of elements in the z;-direction. These results verify the correctness of the
element matricies as well as the connection process and give a good indication of
the order of accuracy one can expect from eight noded elements.

Solution of Transient Equation The matrix eq. 16 can be integrated using a
moving polynomial solution

{q} = {a1} + {a2}t + {as}t? (17)

Choosing equally spaced previous values of {q}, it is possible to solve for the {a}’s
of eq. 17 and substituting into eq. 16 to result in eq. 18.

(Mo +1K,)) {60} = (Va} + 55 1M (2ha-1{~{a-))

or

[4] {¢.} = {b} (18)

The response of the model is dependent on the number of elements used. To
evaluate these eflects we consider again the unit cube made up of two elements
in the z; and z3 direction and a variable number of elements in the z; direction.
A velocity is imposed on the central node of the z,, z3 face of the cube which is
initially at rest at time zero. The results are shown in Fig. 4 as the maximum
pressure in the cavity as a function of time for different numbers of elements in the
z; direction.

The response of the system will also vary with time step size(e.g. numerical
damping). To illustrate this a unit cube is again subjected to a velocity at its
center node. The results are shown in Fig. 5 as the maximum pressure in the
cavity versus time for various time sieps.

Due to the short time required for the cavity wall to reach its maximum ve-
locity, it is essential that the model be capable of simulating the higher frequency
components of the gas. This along with the fact that the mesh must be fine enough
to adequately represent the localized applied velocity, makes it necessary to use a
fine mesh and small time step. The large number of element will require a large
amount of computer storage but matrix [A] is eq. 18 need only be inverted once if
the integration time step is kept constant.
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4 Application to Cavity Impact

The pressure pulse arises from the boundary condition that the normal velocity of
the gas is compatible with the enclosed wall. Since this analysis was developed for
the purpose of estimating pressure transients in a cavity resulting from an object
impacting the cavity wall, a procedure for approximating the boundary conditions
resulting from an impact has been included.

Fig. 6 shows a blunt object striking a cavity wall at normal incidence. The de-
formation process is divided into two phases. In the first phase the bulge, modelled
by two concentric hinges, is accelerating until it attains the projectiles velocity. The
second phase consists of the hinge and projectile decelerating together.

It is possible to approximate the velovity V, and the times T, and Ty using a
procedure similar to that used in ref. [4]. The thrust on the target, F, is given by

F = [oy. + (V, - Va)*0)4,

where A, = cross-sectional area of the projectile
v, velocity of the projectile
Vi velocity of the bulge
oy, = constrained uniaxial yield stress

This allows us to approximate the velocity history of the projectile and the cavity
wall during the impact.

Fig. 7 shows the results for a 3 Kg projectile with a 60mm diameter and a
velocity of 1Km/sec striking a hemisperical cavity with a 1M radius and a thickness
of 30mm. The results are shown here as the pressure at the point of impact and
at a point located at the center of the cavity versus time. The results show that
severe pressures of very short duration will result.

5 Conclusion

In this paper a procedure for calculating the pressure transients in a cavity using
a finite element method has been demonstrated. The results shown in this paper
suggest that the procedure is suitable for determining the pressure transients in an
armoured vehicle subjected to an impact subject to the conditions that the striking
projectile does not perforate the cavity wall and that the velocity of the wall is
below the speed of sound in the gas. This is generally the case when a velocity of
a projectile is below the ballistic limit of a cavity wall.
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Computation of Weight Functions in Two Dimensional Anisotropic Bodies {
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Abstract

A finite element method introduced in (1] for computing Bueckner-Rice weight functions in finite bodies
is described and the singular fields for a semi-infinite crack in an elastic and anisotropic body is given. These
singular fields provided the required information for the computation of weight functions in anisotropic bodies
under plane deformations.

1. Introduction

A finite element procedure, introduced in [1], has provided a unified approach in computing the
Bueckner-Rice weight functions for all three fracture modes under either displacement, traction or mixed
boundary conditions. This finite element procedure [1] is simple to implement and the results [1] obtained for
two dimensional isotropic cracked solids are very accurate. In this study, this recently developed two and three
dimensional finite element method is applied, as particular cases, to determining the weight functions in
anisotropic bodies under plane deformations.

The synopsis of this paper is as follows. We first summarize in section 2 the finite element procedure
introduced in [1] for determining the weight functions. This finite element method is valid for both two and
three dimensional problems; however, in this paper, we shall concentrate on its two dimensional aspects. In
section 3, we present the weight functions for a semi-infinite crack in an anisotropic full space which are
required in the finite element procedure [1) for computing weight functions in anisotropic bodies.

2. Finite Element Method for Determining Weight Functions in Finite Bodies

Consider a two dimensional cracked body containing a single or a system of cracks. Let P be the specific
crack tip at which we wish to determine the stress intensity factors. A crack tip cartesian coordinate system
centered at P is employed with e; being a set of unit base vectors. Roman subscripts have range 1 to 3 and
summation convention is employed unless otherwise stated. We shall also usc an in-plane polar coordinatc
system (r,0) centered at the crack tip. Generalized plane deformation is assumed so that the stresses and strains
are functions of the in-plane coordinates only. The stress intensity factors for an anisotropic solid can be
defined by the traction vector acting on the plane directly ahead of the crack front as

= }l_l.l‘l’vrﬂ' sz(xl.O) m

where X, , K, , K4 are the mode /I (in-plane shear mode), mode / (in-plane opcning mode) and mode I/
(out-of-plane shear mode) stress intensity factors, respectively. The weight functions corresponding to the crack
tip P will be denoted as h;(x:P) and they are vecior-valued functions of position x. Under mixed boundary
conditions and body force loading, the stress intensity factors K; of P can be computed by [1.2]

K,=‘[T-h‘dA+Jt‘-UdA+1F-h,dv @

where T and U are the prescribed surface tractions and boundary displacements on the boundary Sr and S,
respectively; F is the prescribed body force ficld in the body with volume V; and t; ars the tractions generated
by the weight functions h;, cach interpreted as displacement field, on the boundary S, .

The weight functions h; (Bueckner [34] and Rice (S]) are universal functions for given crack
configuration, body geometry and material properties and are independent of loading systems. The stress field of
h; is in equilibrium with zero body force and it generates zero traction on all the crack faces and on the external
boundary Sy. On the external boundary S, where displacements are prescribed, the weight functions h; arc

t This research was supported by NASA and AFOSR under NASA Gramt NGL 33-018-003.
Dr.M.GnqhHudDr.A.Aummudniulmhmh,umpoaiwwiu.
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zero. The weight functions yield elastic fields which give rise to unbounded energy for any finite region
encompassing the crack tip P.

Let S, be a suitably small bounding surface in the body which isolates the crack tip P from the rest of
the body. The part of the body inside the surface §,, is referred to as region B and the remaining part of the
body is denoted as region A. The unit outward normal to the bounding surface of region B is n. In region B,
the weight functions h; are decomposed into modified singular displacements 0 and modified regular
displacements U, viz

..- = ." + ‘," (3)

The modified singular displacements U] are constructed so that
(i) they admit the same sing.larity as the weight functions h; at the crack tip P; and
(ii) they generate zero traction on the crack faces inside region B.
The modified regular displacements &, are taken (o be bounded at the crack tip P and they can be identified as
the displacements in elastic crack analyses. The singular stress fields, &/, of G and the regular stress fields, &/,
of U] are self-equilibrating and they gcnerate zero tractions on the crack faces inside region B .

It is noted that the modified singular displaccments @ defined as such do not lend themselves to a unique

construction in general. Indecd, it is the non-uniquencss in their construction which allows us to make judicious
choices of B - we can choose @ to correspond to the simplest possible crack geometry.

2.1, Variational Principle for h; and ©/

The weight functions h; in region A and the modificd regular displacements &/ in region B of the cracked
body under consideration can be determined by the finite element method introduced in (1). This finite element
method is based on the following minimum principle [1).

Define a functional H as
Hb 0] = [w(e;) av +£w(t,-’) dv- [(-6/n)-0dA  (no sumon i) @)
A S

where €; and &/ are the strain fields corresponding to b; in A and 0 in B respectively and w is the elastic

strain energy density. The functional // is bounded and it is a functional of h; in region A and G/ in rcgion A .

It has been proven in [1] that among all possible ficlds h; in region A and G, in region B which

(i) satisfy the strain-displacement relations; and

(i) make h; zero on the external boundary S, and equal to the sum of §’ and @/ on the internal boundary S,
where ] are considercd to be given;

the true ficlds (h;)" in region A and (&))" in region B minimize the functional H.

An implementation of this variational principle within the context of a displaccment-based finite element
method is given in [1] and this implecmentation can be incorporaicd into standard lincar elastic finite element
program with little programming efforts. This proccdure is very similar to standard finite element methods and
it involves prescribing
(i) nodal forces comresponding to the tractions —&;n on the intcrnal boundary ;.

(ii) nodal "effective” body forces [1] for the elements in region A which are adjacent to the internal boudnary

S e and
(iii) zero tractions and displacements on the external boundaries Sy and S, respectively.

The nodes inside region B, including those on S, are interpreted as nodal unknowns for the modified regular
displacements 0 and the remaining nodes represent the nodal valués of the weight functions h; .

Thus, in employing this procedure to determining weight functions in two dimensional anisotropic bodies,
we first have to choose some modified singular displacements 6 which satisfy the conditions delineated above.
The simpliest candidates for this purpose are the weight functions of a semi-infinite crack in an anisotropic full
space. They are given in the following section by ways of Rice’s [S-7) crack front variation approach.
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3. Weight Functions for a Semi-Infinite Crack in an Anisotropic Full Space

First, consider a crack in an elastic anisotropic solid of finite extent. The encrgy release rate G for the
anisotropic solid may be expressed in term- of the stress intensity factors as [6-8]

G =K3 A;] Ki (5)

where A is symmetric and positive definite; it depends only on the clastic constants; and it can be related to the
pre-logarithm energy factor of a straight dislocation line in an uncracked solid, lying parallel to the crack front
in the cracked body. Thc energy releasc ratz G can also be decomposed additively into three components, G;,
according to Irwin’s concept of virtual crack extension [9] as
3
G = Jim2 [00,0) Ltxr-82.0) - w(er-8a0) 1 ey (n0 sumon )

where 0;5(x,,0) is the traction acting on the e,-plane ahead of the crack tip and ¥; (x;-8a,0,) and ¥;(x,—8a ,0_)
are the displacements on the upper and lower crack face respectively. It is customary to refer to G, G and G
respectively as mode //, mode / and mode Il energy rclease rate. Thus, for an anisotropic body, G; can be
related to the stress intensity factors via

3
Gi=YK: A K; (no sumon i)
j=l
For an isotropic body, A is diagonal and eqn (5) rcduces to the familiar Irwin rclation
1~ V2 2 1+v 2
= 6
G E (K] + K22) + E K3 ( )

under plane strain conditions. Here, v is the Poisson's ratio and E is the Young's modulus.

Adopting Rice’s [5] crack front variation concept, let the anisotropic cracked solid be subjected under two
linearly independent loading systems denoted by / and I/ respectively. @' and Q7 are the gencralized loads
and ¢’ and ¢” are the comresponding work conjugate generalized displacements for the two loading systems.
Suppose both loading systems are applied to the cracked body simultanecously. The change in strain energy dus
to virtual displacements 8¢’ and 8¢, and virtual crack front variation 8a at fixed exicrnal forces is

U =Q' 8¢' + 0" 8¢" - K; A;; K; 8a ™
where U is the strain energy and a is the crack length. From lincarity, we may write

K; = k(@) Q' + k@) Q"

¢’ =Cpy(@)Q' +Cry(a) Q" @®)

q" =Cy @) Q' + Cuua) Q"

where k/(a) and k//(a) are the respective geometric dependent part of the stress intcnsity ‘actors induced at the
crack tip when loading systems / and /I are applied individually to the cracked taiy. The C's are the
compliances. A Legendre transformation of eqn (7) gives

U - Q'q' -0"q"y=-q'8Q" - ¢"80" - G8a ©

The left hand side of eqn (9) is a perfect differential and this enables us to obtain the following reciprocal
relation,

39"(0'.0"a ) _ | KA K ) (10)
i da o .o" aQ" Qe
Eqn (8) can be used to compute the derivative on the right hand side to obtain
r
p:) un
-gr] 4 i =2 A; (K EF Q' + Kk Q) )

The interpretation of eqn (11) is as follows [S). Suppose that we know the complete solution, in particular,
kXa) and Cyy;, when loading system / is applied. Setting Q" = 0 in ¢qn (11), we obtain
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x ,
[-‘i‘l—] =2K/ Ay k! (12)
o' .g"=0

It is noted that by knowing the solution for loading system /, we can compute every term in eqn (12) except k.
Thus, when eqn (12) is multiplied through by Q”, we arrive at a useful relation

[ ] =2K/ A; K (13)
Ql QII =0

for the stress intensities induced by non-zcro loading system I/ alone.

In order to demonstrate how this relation is used, let the displacement fields u,, u, and u, be three
solutions to the elastic boundary value problem corresponding to the respective loading system Qf, 0% and Q3
which are linearly independent of each other. For our discussion, it suffices to assume that each loading, Q/,
induces nonzero stress intcnsity K/ alone at the crack tip. Employing these three solutions to relation (13), we
obtain

dq!"

o" =5 =S Ajm Kn (14)

] Q' . Q” =0
where

S,-,-=2K~'8~ (no sumon i)
and §;; is the Kronecker delta. Since S;; is diagonal and positive definite, it admits the inverse St 7 viz

-
2k!

Thus eqn (14) can be inverted to obtain the important relation

K=" [A{}' ! [a';:"] ] (15)
G aa Ql .QII =0

Rice [5] has observed that the bracketed terms on the right do not depend on the nature of loading system / and
hence they are universal functions for the given crack configuration, body geometry and elastic properties. In
fact, these functions can be identified as Bucckner’s [3] weight functions, h;, namely

St = 5, (no sumon i)

du
_| -1 99m
7 SR = (16)

and the stress intensity factors can be computed by eqn (2) given above for a gencral loading system which
consists of surface forces, boundary displaccments and body forces. For the casc of symmetrical mode /
loading in an i§otropic solid, eqn (16) reduces to the same expression as given by Rice (5],

M duyx.a)
2 Kya) da
with M being related to the appropriate elastic constants. The singular stress ficlds, o, of the weight functions
h; can also be composed from the stresses, @, , of u,, as

o~ ‘
- “

b, =

o/ =Aj; S5

In order to employ eqns (16) and (17) to determine the weight functions and their corresponding stress
fields for a semi-infinite crack in an anisotropic full space, we shall follow the plane anisotropic elasticity
formulation, originally devcloped by Stroh [10,11], and subsequently used by Barnett and Asaro [8); and Ting
and coworkers [12-14], among others, to obtain three linearly independent solutions for the semi-infinite crack.

With respect to the coordinates introduced, the ficld equations for the anisotropic solid are
i 1 au,~ $ Dui
“%=3 ox; ax
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au,,

Cij = Cijtm %, (18)
% _o
ax,-

where u = u(x,xy); € = €(x,,x2); and & = &(x,x,) are the displaccments, strains and stresses respectively and
plane strain conditions are assumcd. A general solution to the cquations in (18) is, [10,11]

u=Af() (19)

with z = x, + px,, and A and p are complex. Substituting the gencral solution into egns (18), the stresses can
be expressed as

=4
Ctdz

T = [Cijkl +p Ciipa ] A
Equilibrium can be satisfied if
[Cnu +p (Cinz+ Cizr) + P2 Cizaz ] Ay =0 (20)

For non-trivial A, the determinant of the brackcted terms would have to be zcro and this lcads to a sextic
characteristic equation for the roots p. Eshclby ct al. [15] have shown that there arc no real roots to this
characteristic equation and thus the roots occur in complex conjugate pairs. Following Stroh [10,11], we shall
introduce a complex vector L,

L; =t3=(Cizx1 + P Cind Ax (21a)
or

L=~ (Cinra+ P! Cit) A (21b)
Equation (20) can then be recasted as

- Ci3j2 Ciu A +Cha Ly = p A; (22a)

[sz Citm2 Cmz1 — Cimni ] Ay -CijppCia Ly =p L; (22b)

These equations are in the form of standard eigenvalue problems with p being the cigenvalue and the vector {

A | L ) being the eigenvector. Standard procedures (e.g. EISPACK [16]) can be employed to extract the
cigenvalues and the eigenvectors efficiently. Since the eigenvalues are all complex, we shall order them such
that p, would have positive imaginary part and p, are their complex conjugates. Greek subscripts have range 1
to 3 but they do not conform to the summation convention. The comresponding cigenvectors will be denoted by
A, and L, with complex conjugates A, and L,. Assuming that all the cigenvalucs p,, are distinct, the general
solution u and o can be expressed as a linear combination of all the eigenvectors as

w=2Re 3 Ag folzo

a=]

[+]

3
o=2Re Y 1,4

o] dz,
The cases of repeated roots for p, can also be treated by using methods given by Ting and Chou [12]; and Ting
[13] to construct the appropriate eigenvectors.
Introducing three vectors M (Stroh [10,11]) which are the reciprocal of L, such that
M, - Lp =80

The three lincarly independent solutions for a semi-infinite crack, with each solution w; corresponding to one
stress intensity factor K; being induced at the crack tip alone, can be written as [14]

2r

3 .
u‘.=—\[-_—K,-RCZ(M(,~e,-)A(,§(,"2 (no sumon i)
R ax]
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and the respective stresses are

K 3 : L
c;:\[z_’:;Re“%(Ma-e,-)taﬁa'm (no sum on i)

where
Ex=¢c0s 0 + pgy sin O

Eventhough the eigenvectors A4, Ly are determined to within arbitrary constants from eqns (22a,b), the products
of the components of A,, and Mg are uniquely determined. The displacement and stress derivatives with
respect to crack length can be derived by employing the following relations

2 _3r 5, 3

P "% o 3 08
-g—;-:-cose
®_ sng
oa r
to obtain
du; K 2 -12 s
Y S \meeE,(Ma.ei)A"a" (no sum on i) (23)
dac; i d - .
- YT Rcé(Ma'ei)tuﬁa (no sum on i) 24)

The matrix A which is related to the pre-logarithm encrgy factor of a straight dislocation lying parallel to crack
front front can be expressed in terms of A, and M, as (Stroh [10,11])

A'=27 B @
with
=1 & — =
B=T Z[AaMa-AaMa]
o=l l

where the terms in the bracket arc dyadic products of the respective vectors.

Thus, once the Stroh’s cigenvalues p, and the Stroh’s eigenvectors A, and L, are computed for a given
anisotropy of the body under consideration, the weight functions h; and their associated singular stresses o for
a semi-infinite crack can be obtained by using eqns (23-25) in eqns (16) and (17).

In the finite element implementation of the variational principle discussed in section 2, we would choose
the modified singular displacements &; and stresses &; to be those corresponding to the semi-infinite crack
geometry obtained above for all weight function computations in 2-D.

LY

References

[1] T.-L. Sham, to appear in /nternational Journal of Solids and Structure (1986).
[2] H.F. Bueckner, to appcar in /nternational Journal of Solids and Srructure , (1986).
(31 H.F. Bueckner, Zeitschrift angew. Math. Mech., 50(1970) 529-533.

{41 H.F. Bucckner, Field Singularities nnd Related Integral Representations, Mcchanics of Fracture I:
Mecthods of Analysis and Solution of Crack Problems, Noordhofl, Leyden (1973) 239-314.

[5]1 J.R. Rice, International Journal of Solids and Structure , 8(1972) 751-758.
[6] J.R. Rice, Journal of Applied Mechanics, 52(1985) 571-579.
[7]1 J.R. Rice, International Journal of Solids and Structure , 21(1985) 781-791.

100



(8]

191

(10]
(11]
(12]
(13]
(14)
(15]
[16)

D.M. Bamett and R.J. Asaro, Journal of the Mechanics & Physics of Solids, 20(1972) 353-366.
G.R. Irwin, Journal of Applied Mechanics, 24(1957) 361.

A.N. Stroh, Philosophical Magazine, 3(1958) 625-646.

A.N. Stroh, Journal of Mathematical Physics, 41(1962) 77-103.

T.C.T. Ting and S.C. Chou, /nternational Journal of Solids and Structure , 17(1981) 1057-1068.
T.C.T. Ting, International Journal of Solids and Structure, 18(1982) 139-152.

T.C.T. Ting and P.H. Hoang, International Journal of Solids and Structure , 20(1984) 439-454.

J.D. Eshelby, W.T. Read and W. Shockley, Acta Metallurgica, 1(1953) 1.

Marrix Eigensystem Routines - EISPACK Guide, 2nd edition, B.T. Smith cl at., Springer-Verlag (1976).

101



MICROMECHANICS 0OF SHEAR BANDING IN HIGH STRENGTH STEEL

Dennis M. Tracey, Colin E. Freese, and Paul J. Perrone

Mechanics and Structures Division
U. S. Army Materials Technology Laboratory
Watertown, Massachusetts 02172-0001

ABSTRACT

The work is directed to the void softening mechanism of
shear banding in ductile high strength steels., Elastic-plastic
anslyses of the field near a pair of interacting voids were
conducted using a finite element formulation and 1large scale
computational facilities. Results suggest dramatic intensifica-
tion of strain between interacting voids. The nature of void
interaction was found to be significantly different in the cases
of nominal shear and uniaxial extension, consistent with experi-

mental observations of void linking.

INTRODUCTION. Shear banding is a serious mode of degradation of

high strength steel loaded into the plastic range and important
design issues require an understanding of its causes. Con-
trolled shear experiments have demonstrated that 1localization
into narrow shear bands occurs at a material characteristic
strain level. Banding occurs under both high-rate and quasi-
static loadings. Once strain localizes, continued deformation
to fracture occurs under decreasing applied stress. Hence,
there is an underlying strain-softening mechanism »associated
with the banding event. In high rate loadings, thermal
softening results from the heat of plastic deformation and near-
adiabatic conditions. Thermal effects are insignificant in slow
loading and thus other softening mechanism(s) must be involved.
Metallographic investigationsl of sectioned shear specimens
of high strength 4340 steel have found evidence that microscopic
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voids play en important role inh shear banding. Voids were
observed at debonded grain refinement particles (0.1 micron size
scale) and microcracks were found linking neighboring voids. It
is speculated that the microcracks develop by coalescence of
smaller scale voids which nucleate at strengthening particles sas
a result of the local strain intensification of the dominant
pair.

In an attempt to elucidate the role of voids in the
localization event, two-dimensional plane strain elastic-plastidg
analyses were conducted to establish the field solution between
a pair of interacting voids under three different nominally
uniform strain fields. The loadings considered were simple
shear, uniaxial tension, and combined shear with extension.
While the specified kinematic 1loadings represent nominally
uniform strain fields, in the vicinity of the voids the stress
and strain are found to be extremely complex with substantial

interaction features.,

NUMERICAL FORMULATION, The nonlinear elastic-plastic analysis

wae norfnrmed using an incremental finite element Formu]ntion.2

Classical non-hardening Prandtl-Reuss constitutive theory was
employed. The mesh used in the analysis is displayed in Fiqure
1. It consists mostly of quadrilaterals each subdivided into
four linear strain triangles by its diagonals. As drawn, thers
are approximately 3000 degrees of freedom in the mesh. Symmetry
allows a single quadrant to be analyzed in extensional loading,
and in simple shear, one-half of the mesh is sufficient.

Loading was specified by displacement conditions on the
outer boundary. In simple shear, the boundaries were
constrained against motion in the y-direction, while displace-
ment in the x-direction was specified as a linear function of y.
In uniaxial extension, the boundaries were constrained agoainst
displacement in the x-direction, while y-displacement was
specified as a linear function of y. The combined mode loading

considered was a superposition of the simple shear and uniaxial
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extension kinematic boundary conditions. Nominally, the simple
shear problem involves no normal strain, while the uniaxisal
extension problem nominally involves no shear nor contractional
components of normal strain.

The assumed displacement method of finite element analysis
was used so that the problem at each load step was to find the
vector of displacement increments Aui. If we consider
components i=l1 through m-1 as the specified non-zero boundary
values and denote them as Aui*, the stiffness equations for the

degrees of freedom m through n take the form:

KTm .... KTn Aum m-1 . -Krni
: °. : = E : Aui (1)
Knm ... Knn Aun i=1 -Kni

The stiffness matrix K is assembled from element stiffness

matrices k which have the form

szp_ngdv (2)

where B follows from the displacement interpolation function and
D is the incremental constitutive matrix relating stress and

strain increments,

A€ =B Au (3)
A0 = D pe (4)

It is the constitutive matrix D which is the source of the
nonlinearity of the formulation. The rate form of the
constitutive law has D dependent upon current stress state. If
the current state is within the yield surface, then D
represents linear elastic behavior. If the current stress state
is on the yield surface, then D represents the ability of the
material to plastically flow in the direction normal to the
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yield surface. As load is increased, the stress distribution
changes and the zone of plasticity expands. Thus, the appropri-
ate D at a point continuslly changes.

In our numerical analysis, finite values are necessarily
specified for the 'increments of the boundary displacements Aui*.
Thus, the appropriate D at each qgrid point will change within
the load increment. An implicit approach is employed whereby 2
step average 0 is used that sccounts for yielding, stress
changes along the yield surface, and possibly unloading within
the step. The solution for the increments Aui is gained using
a successive approximation iterative procedure. At each iterate
Auij, an average D is formed, if necessary, at each grid point,
as follows:

p® = r_ 0%+ (1-f) (0°' - 260 0" (5)

The weighting factor fe and average yield surface unit normal n
are defined in terms of Auij. gel is the elastic constitutive
matrix and G is the elastic shear modulus. The vector n is
defined so that the stress state at the end of the increment
satisfies the yield condition. The issue of stress scaling and
associated load imbalance common to tangent approaches is not
encountered in the implicit formulation.

Regardless of formulation, finite load steps involve a load
path discretization error. This error was controlled by
employing an adaptive 1load incrementation procedure. The
size of the load increment (scale factor adjusting the magnitude
of specified components Aui*) is altered during the iteration t%
satisfy a condition on the stress solution. The condition
dictates that the maximum deviatoric stress change (along the
yield surface) accompanying plastic flbw should equal a
specified fraction of the uniaxial yield stress Y. In the
results presented, this stress change fraction was specified
equal to 0.05. Using a convergence test that has successive

iterations with a relative difference in stress increments less
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than 0.001, typically 4 iterstions are found necessary at cach
loed step. Typical solutions which trace plasticity from first
yield to general yield conditions involve aporoximately 50 1load
steps. Hence, it is common to perform in the order of 200
solutions to the stiffness equation (1) in 8 particular load

case analysis.

NUMERTCAL SOLUTIONS. We discuss here details of the sclution

for the void pair shown in Figure 1 under three different modes
of imposed strain. In cach of the thrce analyses conducted, the
solution history was incrementally traced from the point of
first yield to the onset of general yielding throughout the band
containing the voids.

First, we consider the colution for the case of imposed
nominal shear. General yield in this case occurs at a shear
strain slightly below the yield strain value (YA/3)/G. The
plastic zone development is illustrated in Figure 2. Elements
with a stress state satisfying the Mises yield condition eare
drawn at nominal strain levels of 60, 77, and 91% of the yield
strain, First yield occurs at the surfaces of the the voids at
positions roughly 45 degrees from the ligament, The imposed
strain at first yield was found to ecqual 49% of the yield
strain, suggesting an elastic concentration factor approximately
equal to 2.C. As the plastic zones at the void surface grow, =
separate distinct zone develops along the ligament. A mechanism
for extensive local straining is possible once the zones link.
Figure 3 illustrates the fact that on the ligament, the strain
is fairly uniform over most of the load history. However, once
general yielding conditions are achieved, maxima develop at a
distance roughly C.3D ahead of the voids. Fiqgure 4 is a plot of
local strain (maximum on the ligament) divided by nominal strain
as a function of nominal strain. The plot demonstrates the
surge in local straining that occurs once the plastic mechanism
is established. The strain intensification rate reaches a value

in excess of 30 once general yielding is achicved.
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In the case of uniaxial extension, the nominal stress state
is triaxial tension. For Poisson's ratio of 0,3, which was the
value used in these analyses, yielding in the baﬁd without voids
occurs at the uniaxial strasin value of 1.3 Y/E. The plastic
zone at & strain level of 1.27 Y/E is drawn in Fiqure 5a. The
fully developed plasticity region is restricted to the void
region at this nominal strain level. Figure 5b shows those
elements which satisfy the near-isocloric condition which hszs
the megnitude of the normal strain increments differing by less,
than 6%. At this strain level, the stress data along the
ligament agrees very well with the Jlogarithmic spiral slipline
stress distribution, Figure 6. Consistent with the plastic zone
development, the strain maximum is at the void surface in this
problem throughout the loading history.

Under a state of combined extension anc¢ shear, with €

nom

equal to Y yielding occurs when the two strain components

’
reach the JETLe 0.98 Y/E. The plastic zone and near-isocloric
region are drawn in Figqure 8 for a strain level slightly
exceeding this nominal yield value. In this problem, plastic
7nnes grow from the void surfaces slightly skewed from the
ligament. The separate zones from the voids merge by the
development of a narrow plastic reqion between them oriented in
the loading direction. The normal and shear stress distribu-
tions are provided in Figqures 9 ond 10. As general yield
conditions are reached, the maximum normal stress is se-n to
shift to the center of the linament. While the maximum shear
stress is at or near the ligament center throughout loading, its
value can be seen to at first increase and then decrease as
general yield conditions are approached. An interesting aspect
of the f'nal shear stress distribution is the flat, near-zero
valued regions near the voids, indicative of prevailing
logarithmic spiral regions there. The streain distributions for
this case show the maximum normal strain at the void surfaces at
the beginning of loading. The maximum shifts to the center of

the ligament once general yielding is achieved. The shear
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e

strain is maximum at the ligament center throughout loading in

this problem.

SUMMARY, The numericel solutions suggest that the interaction
between voids in elasstic-plastic deformation fields depends
strongly upon the nominal streining mode. It can be readily
inferred that the nature of the interaction is also strongly
dependent upon the orientation of the voids with respect to the
principal strain directions,

For the simple shear loading (with the void centerline
aligned with the shear direction) the majority of the ligament
experiences a reasonably similar strain history with magnitudes
significantly in access of epplied strain. The minimum strain
region is at the void surface in this loading case. Cn the
contrary, under uniaxisl]l extension normal to the void
centerline, the void surface experiences the maximum strain
levels throughout the loading history. In combined loading, the
strain distribution was shown to change character, first from
void surface straining to strain maximum at the ligament center,

once the plastic zones of the voids merge.
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FIGURE 1 - Pair of voids in deformation band
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FRACTALS, FRAGMENTATION, AND FAILURE

Donald L. Turcotte
Department of Geological Sciences
Cornell University
Ithaca, NY 14853

ABSTIRACT. Many applied problems exhibit a fractal character; a necessary
condition is that the fundamental phenomena be scale invariant over a reason-
ably wide range of scales, In many cases a renormalization group approach can
give an applicable solution. A specific example is fragmentation. The number-
size distribution for fragments often satisfies the power law fractal relation.
A renormalization group approach can be used to obtain the fractal dimension
assoclated with catastrophic fragmentation. The renormalization group approach
can also be applied to the failure of a fractal network. A gridded network can
be constructed that obeys fractal geometrical constraints. The elements of the
network are given a statistical distribution of strengths. Stress transfer
from failed elements to adjacent sound elements is an essential feature of the
analysis. The renormalization group approach specifies a catastrophic failure
criteria for the network. An example of an application is the failure of a
stranded cable that has been constructed according to fractal constraints.

1. INTRODUCTION. It is recognized that there are a variety of scale
invariant processes in nature; the concept of fractals provides a means of
quantifying these processes. A fractal distribution can be defined by

N - D (1)

where N is the number (of objects) with a characteristic linear dimension
greater than r, and D is the fractal dimension. The original definition of a
fractal [1) related the length (perimeter) P of a coastline (or topographic
contour) to the length of a yardstick r by

P = nNr - N'D (2)

Typical coastlines or topographic contours have D = 1.2 - 1.3,

2. _FRAGMENTATION. A material can be fragmented in a variety of ways.
Rocks can be fragmented by joints and weathering. In this case the distribu-

tion of fragment sizes is likely to be determined by the preexisting planes of
weakness in the rock. Fragments can also be produced by explosives. Again
preexisting planes of weakness may determine the distribution of fragment
sizes. Fragments can also be produced by impacts. Impacts are likely to have
played a dominant role in determining the number-size relation for asteroids
and meteorites.

A variety of statistical distributions have been used to correlate the

number-size data on fragments. However, in many cases a power law relation was
determined. Some of these results are given in Figure 1. Included are data
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for broken coral (2], an underground nuclear explosion [3], and a basalt frag-
mented by an impacting projectile [4]). Other examples have been tabulated by
Turcotte [5].

FIGURE 1. Dependence of the number
of fragments N with a linear dimen-
sion greater than r on r. Data for
broken [3]), and basalt fragmented by
an impacting projectile [4]). The
best fit fractal dimension D defined
by (1) is given for each example.

The applicability of a fractal distribution indicates that fragmentation
is scale invariant over a wide range of scales. In order to model fragmenta-
tion we will use the renormalization group approach. For simplicity we will
consider a cube of material with a linear dimension h as illustrated in Figure
2. This cube is referred to as a cell that is divided into eight cubic ele-
ments each with a dimension h/2. Attention is now focused on one of the cubic
elements, and it becomes a cell of dimension h/2 at order 1. This cell is then
divided into eight first-order elements each with a dimension h/4 as illus-
trated in Figure 2. The process is repeated at successively higher orders.

B R

FIGURE 2. 1Illustration of the

2R renormalization group approach to
-%if— ’,/” fragmentation. A zero-order cubic

1 cell with dimension h is divided

h into eight cubic elements with

a dimension h/2. Each of these

9] elements becomes a first-order cell

o and is divided into eight first-

order elements with dimensions h/4.

jo—h — The process is repeated to higher

orders. .

The basic hypothesis of the renormalization group approach is the assump-
tion that the probability that a cell will fragment into eight elements is the
same at all orders. If initially there are Ny cubes of dimension h, the number
remaining after fragmentation is No’ = (1-p.)Ng. The number of fragments with
dimension hy = h/2 is Ny = 8 p.(1-p.)Ng, the number of fragments with dimension
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hy = h/22 is Ny = (8pc)2 (1-p.)Ng, and generalizing the number of fragments

with dimension h, = h/2"P is Ny = (8pc)n (1-pc)Ng. The generalized form can be
written

h
1n ;n - -nln2 (3)
n
1n No,- n 1n(8p,) (4)
And eliminating n gives
1In(8p )
A E R -
En En In 2
No’ “ln 3
Comparison with (1) gives
In(8p )
bie Sl (6)
In 2

Thus the fractal dimension D is directly related to probability that a fragment
of a given size is broken into smaller elements. The probability p, is depend-

ent on the specific model chosen but the fractal dimension is independent of
the model.

We next determine a specific value for D by specifying a fragmentation
model. Following Allégre et al. [6] each element in a cell is hypothesized to
be either fragile or sound. It is necessary to determine a condition for the
probability that a cell is fragile p, in terms of the probability that an
element is fragile pp;). In each cell there can be zero to eight fragile
elements; there are 2® = 256 possible combinations. Excluding multiplicities,
there are 22 topologically different configurations.

We hypothesize that the sides of a fragile element form planes of weak-
ness. If the sides of fragile elements form an internal plane through the
cell, the cell is assumed to be fragile. Examples of sound and fragile cells
are given in Figure 3. In each case there are four fragile elements (shaded).
In "a" no internal planes of weakness cut the cell, so it is sound; in "b" both
a horizontal and a vertical plane of weakness cuts the cell and it is fragile.

FICURE 3. Each cubic cell contains
four fragile elements (shaded) and
four sound elements. In "a" the
cell is sound, and in "b" the cell
i b is fragile.
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The probability P’ that a cell is fragile is related to the probability P
that an element is fragile by

pn-3pg+1 32p71+88p+1-96p+1+38p+1 (7)

The dependence of p,, on p,, is given in Figure 4. The straight line Pn = Py
is also included. The points O and 1 are stable fixed points of the system.
The iterative relation crosses the straight line at p, = pp41 = Pc = 0.490.
This is an unstable fixed point that separates the region of stable behavior
from the region of unstable behavior. The critical probability p. corresponds
to catastrophic fragmentation of the object. Assuming that each fragmented
cube breaks into eight pieces we find from (6) that p, = 0.490 corresponds to
D= 1.97.

Pn

0.5+ = e
o Bt EIGURE 4. Probability of fragility

at order n, p,, as a function of the
probability of fragility at order
n+l, pn41, from (7). The critical
probability p. corresponding to
catastrophic fragmentation is 0.490.
° 03 P 1 The corresponding fractal dimension
it from (6) is 1.97.

e

1 . The renormalization group technique can also be
applied to the failure of a fractal network [7,8]. The network is modeled as
the fractal tree illustrated in Figure 5. Failure is associated with the
application of a vertical load V to the tree. Each branch is given a random
strength such that the probability of failure of the branch under load v is
given by a Weibull distribution

Py = 1 - exp(-(v/vg)d) (8)

where vg is a reference load. For each pair of branches the probability of
failure of both is P12. one is 2 P;(1-P;), and neither is (1- P1)

FICURE 5. Illustration of a fractal
tree. The heifht of the n+h level
is hy = h/2"°%; the number of
branches at the n+h level is 20,
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However, we hypothesize that if one branch fails, the load is transferred
to the adjacent branch in the pair. The second branch may suffer induced
failure due to this transfer. We use the conditional probability P; ;, that an
unbroken branch already supporting a load v will fail when an additional load v
is transferred to it from an adjacent broken branch. The probability that a
pair will fail is given by

n-lPl - nP12 + 2 npl (i,nyl) ﬂp2 1 (9)

The conditional probability is given by

np,_.Np
nP - _2_1 (10)
2,1 1-Tpy

where "P, is the probability of failure under load 2v. For the second order
Weibull distribution given in (8) we have

an - 1-(1-“P1)a (11)
Combining (9), (10), and (11) gives

n-lp) = 2p) [1-(1-Ppp)%] - mp,2 (12)
This is a failure condition for a pair of branches.

It is implicit in the renormalization group approach that the failure
condition (12) is applicable at all levels of the fractal tree. The dependence
of “*lPl on nPl is given in Figure 6. Again the characteristic S-shaped curve
is obtained, and the straight line “°1P1 = NP is included. Two stable points
are 0 and 1 and the unstable fixed point is "p; = “'IP; - Pl* = 0.2063. The
corresponding value of the critical load from (8) is V" ~ 0.4806Vy. It is
interesting to note that this critical load is considerably less than the mean
strength of a branch that is v = 0.8862v from (8).

10r
o8
i
“ =
1
A A
s | FIGURE 6. Probability of fajilure of
a branch at the n-1 level ™ 1p;, as
o2 a function of the probability of
- Jpﬁ failure at the n level, "Py, from
0 SRR SRy (12). The critical probability P,
0 o0 o0 08 00 0 corresponding to catastrophic
R failure is 0.2063.
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Abstract

In this article we present a brief sum-
mary of the numerical solution of a system
of random Volterra integral equations. The
methods we use are (i) Newton's method and
(1i) successive approximation method. Based
on the simulation, we discuss the mean and
variance of the solution of a system of random
Volterra integral equations.

*Supported by U.S. Army Research Contract No. DAAG29-85-G-0109.

lDepartment of Mathematics and Computer Science, Atlanta

University, Atlanta, GA 30314.

2Center for Computational Sciences, Atlanta University,
Atlanta, GA 30314; Department of Mathematics, Morehouse
College, Atlanta, GA 30314.

3Ignition and Combustion Branch, U.S. Army Ballistic Research

Laboratory, Aberdeen Proving Ground, Maryland 21005.

123



1. INTRODUCTION

: The study of random Volterra integral equations and their
applications, is an active area of research in probabilistic
analysis. However, the numerical treatment of a system of
random Volterra integral equations is yet to be explored.

For a recent survey of approximate solution of random inte-
gral equations we refer to Bharucha-Reid and Christensen [4].
For the  numerical treatment of random integral equations we
refer o Bharucha-Reid [3,5]), Becus [2], Christensen and
Bharucha-Reid (6], Lax [8,9,10], Medhin and Sambandham [11,12],
Sambandham [14,15), and Tsokes and Padgett [16]. Among

other methods of successive approximation, stochastic approxi-
mation methods, method of moments, method of averaging,
projection method, Newton's method, etc. are used to obtain
the numerical solution of random integral equations. Most

of the results in the literature are linear or one dimen-
sinal equations. For the numerical treatment of deterministic
integral equations we refer to Baker [l1].

In this article we consider a system of random Volterra
integral equations. By an application of successive approxi-
mation method and Newton's method, we examine the method of
obtaining the numerical solution of a system of random Volterra
integral equations. We organize our article as follows.

By an application of Newton's method and successive approxi-

mation method, we devel-~p useful numerical procedures respec-
tively in Sections 2 ana 3. In Section 4 we include a short

discussion.

2. NEWTON'S METHOD

In this section we use Newton's method to obtain the
numerical solution of a system of random Volterra integral
equations.

Let (Q,F,P) be a complete probability space and let X be
a separable Hilbert space with 4inner product (+,*). A mapping
T: Q x X » X is said to be arandom if and only if the function
<T(w)x,y> is a scalar valued random variable for every
X,y € X. In other words, T(w) is a random operator if and
only if T(w)x is an X-valued random variable for every x ¢ X.
A random operator is {inear if T(w)(axl + Bx,) = aT(w)x; +

BT(w)x2 a.s. for every X 01X, € X and scalars a,B8. T(w) is

said to be bounded nrandom operatorn if there exists a non-
negative real-valued random variable M(w) such that for all
X)Xy € X, HT(w)xl-T(w)xZII s M(w) ||x,-%,]| a.s. If T(w) is

a bounded random operator on X, then 71l(w) is a random
operator which maps T(w)x into x a.s. T(w) is said to be

inventible if T-l(w) exists., If T(w) is an invertible random
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operator which is bounded, then T-l(w) is a bounded random
operator also.

Now let us consider the random operator equation
T(w)x(w) = x(w), where T(w): @ x X » X is a random nonlinear
operator. For our purpose it is enough if T(w) is defined on
an open set U of X. Let T(w) be continuously differentiable
a.s. and let xo(w) -+ U be an X-valued random variable such

that [I-T' (w)x ] : i x X + X be defined and bounded, where
T'(w)x is random. it follows from the theorems of Hans [7]
and Nashed-Salehi (13] that [I-T'(w)xo(w)]-1 is a random
bounded linear operator .

Let k(w). £ + (0,1) be a real valued random variable;
and let T0 (w) be a bounded linear random operator such that
||'r Liw) (-1 (w)xg(w)] - I|| < k{w) < 1., We denote by
B(xo,r) the collect1on of all X-valued random variables x(w)
such that x(w) ¢ U and Hx(m)-x (w)]] < r. Then if

Tyt (w) [1-T(w) )xy(w) || s r(l-k(w)),

there exists random variable x(w) e B(xo,r) such that
T(w)%(w) = x(w) a.s. (that is %X(w) is a fixed poia’ of T(w)),
and the sequence of X-valued random variables defined by

X 40 (@) = % (0) = Toh(w) [T-T(w) 1x, (u), (2.1)

n=20,1,2,..., converges to x(w) a.s. For further discussion
on this line we refer to [5,12].

As an application, we implement the above method to the

following system. Consider
t
fl(tlw) = gl(t:w) + of kl(tlTr“’)Ml(Tffl(le)lfz(le)rV (w))dr

(2.2)
t
fz(t.w) = gz(t.w) + of kz(t.T.w)Mz(T,fl(T,w).fz(r.w).vz(w))dr.

where the solution vector is (fl(t,w),fz(t,w)) and the functions
gy ki’ vy i =1,2 are assumed to be well defined so that

(fl(t,w),fz(t,w)) exists with probability 1. Let
t
X k
r’i‘(t,w) % f’i‘(t,w) o of Ry (€, T,0)M; (T, £, (T,0) , £5(T,0) v, (0))d

= gi(t,w), i = 1,2, k = 05112'3'ooo (2.3)

125



t
Xt = 5 Doyt ay MGt (e K (0, vp () eX r,w)

0 1l
+ k,(t,T,w)o._ M, (1 fk(T w) fk(T w),v (w))ek(r w)ldr
l ’ 14 vz 1 ’ l ’ ’ 2 ’ ’ l 2 ’
= ri(t,0) (2.4)
t
sg(t,w) - J’ [kz(t,T,w)alez(r,fi(T,w),fg(r,w),vz(w))et(ryw)
+ Ry (e T 003y My (1] (T,0) ,£5(T,0) v, () €5 (T 0) e
= rS(t,w) (2.5)
where

k=20,1,2,...

iy
alei(t,vl,vz,v) = EVI Mi(t,vl,vz,v)
-
aszi(t,vl,vz,v) = 3;; Mi(t,vl,vz,v)
i=1,2,.
Now we set
\
f§+1(t,w) ff(t,w) ex (t,0)
k = k - k 'k=0'l'2’.o¢
f2+l(t,w) £3(t,w) €5 (t,w) (2.6)

According to Newton's iteration (ft(t,w),fg(t,w)) converges to
the solution of (2.2).

For numerical procedure, integrals in (2.3)-(2.5) can be
evaluated by any suitable numerical procedure, for example,
collocation or quadrature method.

Example 2.1: In the following example we illustrate
the above procedure. Let
t
£.(8) + [ t(1-1) [£2(1)+£, (1) +v(w)1dT = g, (t,0),
1 0 1 2 1

(2.7)
t
£(8) +  (E=T)[£) (1) 4£3(1)+v(w) 1At = gy(t,0).
Then (2.3)-(2.5) reduce to
126



t 2
rS(t,w) = £y(6) + J EAU L] (4w e - gy (t,)
(2.8)
Ko = 500 + S (e-1) 185 )+fk2( y+v(w) )d (
2(t,w 2 2 T (1 o (T)+v(w Jdr - g9, t,w)

3 4 5

g (tiw) =t + t? - 5w 5w By Rew)
tz t3
gz(t,w) = ] + -+ 7 ¢+ R(w)
t
€S (t,w) - df{2t(1-r)fﬁ(r,w)eﬁ(t,w)+t<1-r)cg(:,w)}dz = ry(t,0)
(2.9)
t
eX(t,w) - dr{(t-r)eﬁ(r,w>+2(t—r)fﬁ(r,w)eg(r,»)}dx = rs(t,w)
0 0
(f,0t ,w), 50 ,w)) = (R(w)hl+R(w)) (2.10)

Using (2.6), (2.8)-(2.10) the numerical solution of (2.7) can
be obtained.
Let N(m,oz) denote normal distribution with mean m and

variance 02 and U(a,b) denote uniform distribution in the
interval (a,b). 1In our numerical experiment we have taken as
follows:

Example 2.1 (a): v(w) € N(0,.002%), R(w) € U(-.001,.001)

Example 2.1 (b): v(w) ¢ N(0,.02%), R(w) ¢ U(-.01,.01)

Example 2.1 (c): v(w) ¢ N(O,.022), R(w) € U(-.1,.1)

Example 2.1 (d): v(w) e N(O,.22), R(w) € U(-.1,.1).

We used trapezoidal rule in (2.8) and (2.9) for numerical inte-
gration. Our simulation results are presented in Tables 2.1 -
2.4 and Figures 2.1 - 2.4. These results are based on 30
samples and in each sample iteration was repeated until

1£5* (¢, 0) -5 (£,0) | < .001, & = 1,2. In Figures 2.1 - 2.4,
cooco and ++++ denote respectively E(fl(t,w)) and E(fz(t,w))

and ¢+« and denote repsectively V(fl(t,m)) and

VL, (t,0).
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Table 2.1.

V(o) ¢ N(0,0.002%), R(w) ¢ U(-0.001,0.001)

t E(fl) V(fl) E(fz) V(f,)
1l .009964 .000004 <999676 .000004
10 .099967 .000004 .999681 .000004
20 .199975 .000004 .999693 .000004
30 .299988 .000003 .999712 .000003
40 .400006 .000003 .999739 .000003
50 .500026 .000003 .999774 .000002
60 .600036 .000003 .999800 .000002
70 .700045 .000003 .999827 .000001
80 .800039 .000003 .999829 .000001
90 .900031 .000003 .999811 .000001
100 1.000028 .000003 .999764 .000001
Table 2.2.
viw) € N(O,O.OéETj R(w) € U(-0.01,0.01)
t E(fl) V(fl) E(fz) V(fz)
1 .009639 .000361 .996755 .000388
10 .099666 .000360 .996789 .000380
20 .199741 .000355 .996884 .000357
30 .299841 .000344 .997024 .000319
40 .399931 .000329 997175 .000272
50 .499988 .000310 .997310 .000218
60 .599987 .000290 .997383 .000163
70 .699914 .000271 .997331 .000114
80 .799772 .000256 .997067 .000079
90 .899621 .000244 .996521 .000064
100 .999542 .000240 .995575 .000082
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Table 2.3.

V(w) ¢ N(0,0.02), R(w) € U(-.1,.1)

t E(fl) V(fl) E(fz) V(fz)
1 .009639 .000361 .996755 .000388
10 .099663 .000360 .996785 .000380
20 .199736 .000355 .996876 .000357
30 .299834 .000344 .997012 .000319
40 .399922 .000323 .997160 .000272
50 .499974 .000310 .997288 .000218
60 .599971 .000290 .997355 .000164
70 .699886 .000271 .997282 .000115
80 . 799745 .000255 .997014 .000079
90 .899590 .000244 .996455 .000065
100 .999513 .000239 .995503 .000083

Table 2.4
v(w) € N(0,0.2), R(w) ¢ U(-.1,.1)

t E(fl) V(fl) E(fz) V(fz)
1 .006387 .036141 .967551 .038808
10 .096353 .036049 .967691 .038019
20 .196225 .035588 .968063 .035683
30 .295926 .034612 .968529 .031979
40 .395261 .033163 .968807 .027200
50 .494169 .031373 .968641 .021754
60 .592422 .029403 .967498 .016252
70 .690021 .027502 .564827 .011429
80 .787226 .025913 .960106 .008192
90 .884353 .024770 .952363 .007708
100 .982290 .024262 .940524 .011188
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Fig. 2.1: Example 2.1 (a).
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Fig. 2.2: Zxanple 2.2 (b) .
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Fig. 2.3: Example 2.1 (c).
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Fig. 2.4: Example 2.1 (d).
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3. SUCCESSIVE APPROXIMATION

In this section we use successive approximation for the
numerical treatment of a system of random Volterra integral
equations. In the following we state a few useful results from
Tsokes and Padgett ([16]. Let Cg be the space of all continuous

functions from R, into Lz(Q,A,P), where (Q,A,P) is a proba-
bility space, such that

[x(t,w) || = {élx(t.w)lzdP(w)}l/z < 2g(t),

where t ¢ R, z2 0 and g is continuous function on R .. Let
Ce be the space of all continuous function from R, into
LZ(Q,A,P) with the topology of uniform convergence on the

interval (0,T] for any T > 0. Consider the random integral

equation
t
x(t,w) = h(t,w) + J k(t,t)f(1,x(1,w))dT, (3.1)
0

where the following hypothesis hold.

(1) The function (t,t) - k(t,T) from the set A = {(t,1),
0 s T s t < =} onto R is continuous.

(ii) There exists a number A > 0 and a continuous function
(on R+) g(t) > 0 such that

t
/ |k(t,w) [g(t)dT s A, t e R
0

(iii) f(t,x) is a continuous vector-valued function for
t ¢ R, [[x(t,w)|] s p, such that £(t,0) e Cq and

||f(t,x(t,w))-f(t,y(t,w)) “ s Ag(t) “x(trw)"Y(tlw) “
where A > 0.

(iv) h(t,w) is a bounded continuous function on R.+ with

values in Lz(Q,A,P).

Then there exists a unique random solution
x(t,w) e Cc(R+,L2(Q,A,P) of (3.1) such that

1/2

lIx(t,w) ||, = sup(/|x(t,w) |2ap(w) }/2 < o (3.2)
t20 Q

for t ¢ R, as long as |[h(t,w) ||, A and ”f(t'w)llcg' are small

enough. For detail proof refer to [l1l, 16]. The method we
use is Picard type successive approximation. We use a modified
version of [16] to deal with systems and applied the results
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to write a discrete version of the successive approximation.

We apply the method in the following example to obtain
the numerical solution of a system of random Volterra integral

equations.

Example 3.1: Let

E
! Te-T[xz(T,w)+sin xl(r,w)]dr,
0

-~

xl(t,w) = al(t,w) +
(3.3)

t
xz(t,w) = az(t,w) + % J’ eT-t[xl(T,w)+cos xz(t,w)]dt,

where
a (t,w) =t - % (14r,y(w))t2e™® + 7 7%t cos (t+r) ()
R L e
-« T e 51n(t+r1(w)) + vy e sin rl(w) + rl(w),
a,(t,w) = ; - } (t+r) (0)) - % (1-rl(w))e‘t 2 % cos (1+1, (w))
+ % cos(1+r2(w))e-t + ry(w).

By discretization (3.3) can be written as

n-1 -1

x§+l(1n,w) = al(rn,w) + % iio T;e n[xg(Ti,w)+sin xt(ri,w)] x
(t..,,-T.)
i+l 1 (3.4)
n-1 T.-T
x§+l(rn , W) = az(rn,w) + % .Z el n[x]{(‘ri,w)+cos xg(ti,w)] X

i=0
(Ti41774)
k = 0'1'2'...

Theoretical solution of (3.3) is (tl+rl(w),l+r2(w)). (3.4)

can be simulated until |x§+l(t,w)-x§(t,w)] € gy & W 1,2,

For our numerical experiment we have assumed as follows:

Example 3.1 (a): rl(w),rz(w) € N(O,.0022).
Example 3.1 (b): r,(w),ry(w) e N(0,.02%),

Example 3.1 (c): r,(w),r,(uw) « N(0,.2%).
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Example 3.1 (d): rl(w),rz(w) € U(-.001,.001)

Example 3.1 (e): rl(w),rz(w) e U(-.01,.01)

Example 3.1 (f): rl(w),rz(w) € U(-.1,.1).

We have presented our simulation results in Tables 3.1-3.6 and
Figures 3.1-3.6. These results are based on 30 samples and
each iteration was repeated until |x§+l(t,w)-x§(t,w)| < .001,
i =1,2. In Figures 3.1-3.6, ccco and ***+ denote respec-
tively E(xl(t,w)) and E(xz(t,w)) and °+++ and denote

respectively V(xl(t,w)) and V(xz(t,w)).

4. DISCUSSION

The foregoing techniques demonstrate the usefulness and
simplicity in applying Newton's and successive approximation
methods to a system of random Volterra integral equations.

Our numerical results show that mean of the sample solutions
converge to the mean of the theoretical solution when variance

decreases.

Other statistical parameters one can look at is risk
functionals, confinement probability, skewness, kurtosis,
correlation, etc. of random solutions. Also distribution of
the numerical solution at different time units may be of
interest.
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Table 3.1

1)) Tyl « N(0,0.002%)

t E(xl) V(xl) E(xz) V(xz)

1l .009867 .000030 1.009701 .000002
10 .097103 .000031 1.001172 .000004
20 .197879 .000032 1.001358 .000005
30 .300248 .000029 1.001692 .000005
40 .404133 .000029 1.001025 .000004
50 + 508920 .000027 1.007050 .000004
60 .615807 .000033 1.007915 .000005
70 .724170 .000029 1.007578 .000004
80 .833203 .000037 1.007702 .000006
90 .943027 .000028 1.007992 .000005
100 1.052344 .000031 l.b08623 .000004

Table 3.2
r)(w) ,ry(w) € N(0,0.02%)

t E(x,) V(x,) E(x,) vix,)

1 .008556 .000357 1.018219 .000181
10 .098695 .000656 .999261 .000364
290 197177 .000569 1.000663 .000513
30 .300128 .000444 1.003236 .000471
40 .404506 .000341 .995288 .000448
50 +509057 .000333 1.004797 .000441
60 .615514 .000486 1.014265 .000542
70 .725338 .000466 1.909957 .000383
80 .832995 .000515 1.008462 .000647
90 942605 .000335 1.006821 .000461
100 1.044258 .000323 1.006896 .000408
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Table 3.3

r, (W) ,rp(w) € N(0,0.2%)

t E(x,) V(x,) E(x,) V(x,)
1 -.004550 .046929 1.012795 .009134
10 .114598 .060710 .980120 .036398
20 .190134 .050747 .993800 .051145
30 .298866 .040816 1.018676 .046974
40 .408112 .030350 .937967 .044455
50 .510469 .032418 .981624 .043917
60 .612422 .043692 1.077264 .054399
70 .736662 .046105 1.032924 .038294
80 .830384 .043630 1.015674 .064831
90 .937779 .032423 .994332 .045982
100 .962477 .045704 .988586 .047095
Table 3.4
r)(w),ry(w) € U(-0.002,0.002)
t E(xl) V(xl) E(xz) V(xz)
1 .010000 .000024 1.009160 .000000
10 .096964 .000023 1.001347 .000000
20 .197954 .000024 1.001442 .000000
30 .300235 .000024 1.001595 .000000
40 .404107 .000025 1.001491 .000000
50 .508935 .000025 1.007220 .000000
60 .615796 .000027 1.007402 .000000
70 .724064 .000026 1.007389 .000000
80 .833179 .000028 1.007598 .000001
90 .943050 .000027 1.008064 .000000
100 1.052986 .000027 1.008703 .000009
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Table 3.5

rl(w),rz(w) e U(-.02,.02)

t E(xl) V(xl) E(xz) V(x2)
i .009886 .000067 1.002753 .000018
10 .097296 .000070 1.001005 .000032
20 .197930 .009%2068 1.001496 .000040
30 . 299994 .000065 1.002268 .000038
40 .404240 .000057 .999945 .000038
50 .509209 .000047 1.006492 .000041
60 .615406 .000063 1.009133 .000044
70 .724278 .000061 1.008070 .000035
80 .832759 .000075 1.007418 .000052
90 .942839 .000056 1.007543 .000039
100 1.050695 .0027065 1.007700 .000030
Table 3.6
rl(w),rz(w) € U(-.2,.2)
t E(xl) V(xl) E(xz) Vix,)
1 .008749 .003090 .951389 .003010
10 .100586 .004457 .997168 .003305
20 .197686 .003644 1.002044 .004044
30 .297588 .003728 1.008994 .003835
40 .405573 .002929 .984492 .003804
50 .511933 .002624 .999228 .004051
60 .611481 .003274 1.026460 .004380
70 .726380 .004078 1.014866 .003524
80 .828506 .003568 1.005627 .005222
90 .940660 .003556 1.002309 .003895
100 1.027694 .003709 .997618 .004123
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APPROXIMATE METHODS FOR
STRUCTURAL RELIABILITY

Mircea Grigoriu and Arnold Buss
Department of Structural Reliability
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Ithaca, N.Y. 14850

ABSTRACT. Structural reliability can be defined as the
probability that a random process X(t) remains in a domain of
safe structural performance during a reference period. The
process can model material properties, environmental loads, or
outputs of mechanical systems subject to random inputs. In the
time-independent case X(t) = X and reliability can be approximated
from a scalar quantity, the reliability index. This approximation
is evaluated for Gaussian and non-Gaussian vectors and safe
domains of various shapes. In the time-dependent case
reliability is approximated by the mean rate at which X(t)
crosses out of the safe domain. ¥hen X(t) is non—-Gaussian it
can be approximated by a memoryless transformation of a Gaussian
process, called a translation process. Translation processes
have identical marginal distributions and sirilar crossing
properties as the original process X(t). The approximate method
of reliability analysis based on translation processes is
applied to several non-Gaussian processes and safe domains.

J.INTRODUCTION. Consider a structural component of strength
X2 subject to an uncertain axial load of X1 The reliability of
the component is equal to the probability PS = PEX1 < X2§ and can

be determined from the probability content of the safe domain
D = §(x1,x2):x1-x250§. The component fails with the probability

PF = 1-Ps.
X = (xl.xz) of uncertain parameters is n-dimensional and can be

time—-dependent. The safe domain D = 3x: g(x)<0% is a region in R
and the boundary dD = $x: g(x)=0% of D is usually refered to as
the limit state.

In general reliability problems the vector

The objective of this paper is to examine and evaluate
approximate methods for calculating the reliability Ps in general

reliability problems involving time—-invariant and time—dependent
random vectors X. It is assumed in the analysis of time-
dependent problems that failure occurs at the first excursion out
of the safe domain. Thus, failures due to changes in material
characteristics under constant stress or damage accumulation
caused by repeated loads are not investigated.
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II.TIME INVARIANT PROBLEMS. First let X be a Gaussian
vector. Without loss of generality it is assumed that X has

independent components of zero mean and unit variance. The
reliability is

Py = jD¢<x>dx )

-n/2

in which ¢(x) = (2n) expi—xgxii. The determination of PS in

Eq. (1) usually requires numerical integration and, as a result,
is impractical when n>3. However, the reliability can be
obtained in closed form in two cases corresponding to safe
domains bounded by hyperplanes and hyperspheres. It is #(8) for
linear limit states at a distance B from the origin and Fx 8
n

for spherical limit states with radius g centered at the origin.
¢ and Fx denote, respectively, the standard Gaussian

n
distribution and the chi distribution with n degrees of freedom.

The reliabilities corresponding to linear and spherical
limit states can be employed to develop probability bounds for
general domains. Consider, for example, the safe domain D in
Figure 1 and let Xq be the point of 9D closest to the origin,

assumed to be unique. This point is usually refered to as the g-
point and is at a distance 8 = |xo| from the origin. If D is

convex and the function g(x) can be differentiated, the
reliability PS is bounded by

Fy (8 < Pg s (P (@

The bounds Fx and ¢(g) on PS are attractively simple. However,
n

they become less informative as the dimension of the space n

increases,as shown in Figure 2. Therefore, other methods are

needed to approximate Ps.

The most accurate approximation available for PS is based on

an asymptotic evaluation of the integral in Eq. (1) as the
distance 8 to the g-point increases indefinitely. It can be
shown that P, can be approximated asymptotically as g + by [1]

n-1 —%
Pp o = #(-B) I:I (1-k,) (3

in which ki are the principal curvatures of the g-point assumed
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to satisfy the conditions 1>k12k22...2kn_1 when B = 1. The same
asymptotic result can be obtained for PF if the limit state is

approximated in a small neighborhood of the g-point by a
quadratic tangent to the limit state at Xg- Equation 3 can be

generalized to the case where the limit state has finitely many
g-points. In this case PF is asymptotically equal to a sum of

terms as in Eq. (3) corresponding to each g-point.
Figure 3 shows the asymptotic probabilities of failure in
Eq. (3)., PF a* 2and the actual failure probability, PF for

varioué elliptécal gomains with limit states
(xl/a) + (xz) = B~. As expected, the ratio of these

probabilities approaches unity as g increases [1]. It is
approximately one for large values of a because the problem
becomes one—dimensional, in which case PF - is equal to PF’

An alternative method for calculating PF can be based on a

simulation approach. Brute force simgéation is impractical
because PF is usually smaller than 10 . However, an efficient

simulation method can be developed to estimate PF’ Assume for
simplicity that the function g specifying the limit state is the
quadratic form

Z=g(X) =X aX+b X+e (4

The Gaussian vector X can be expressed as X = AR in which A_is a
random vector uniformly distributed on the unit sphere in R and
R is a chi random variable with n degrees of freedom.
Conditional on A = A, the quadratic form is

Zla=2" = QT a M RP+ @ MR+ (5)

The conditional probability of failure is
Pp(a) =P2 2>0 | A=2>3% (6)

and can be calculated by
PR = Fy (rj QD) + 1 = Fy (rp(0) ™

when, e.g., the roots rk(l), k=1,2, of

(lT a l)r2 + (QT 2) r + ¢ = 0 are positive and rl(g) < rz(a D s
An estimator of the probability of failure PF is
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N ;
e TR j§=:1 Ppl £7) ey

in which &(j) are samples of A and N denotes the number of these

samples.

Tables 1 and 2 show values of ﬁF obtained in two samples of

size N=100 for safe domains characterized by two quadratic forms:

4 =B 3 - 2
Z = Xl + X2 X1X2 (fy/fo) (9
and
n
i=1

The first form corresponds to the von Mises strength criterion
wvhile the second one corresponds to a non-central chi-square

n
variable with non-centrality parameter p = Z p?. From the
i=1

tables, ﬁp satisfactorily approximates PF in both cases.

When the components of X are independent but do not follow
Gaussian distributions, the techniques discussed in this section
can still be applied if the x—space is mapped into a new space
according to the transformation

o= gt F, (X)) (11)

in which Fi is the distribution of Xi. The variables Ui are

independent and follow standard Gaussian distributions. Figure
4, from reference [1] shows exact values of PF and asymptotic

approximat%ons of the probability of a safe domain defined by the

condition Z Xi - n - adn where the variables Xi are independent
i=1

identically distributed exponential random variables with unit

mean. The asymptotic approximation is also satisfactory in this

case.

Techniques are also available to map vectors of dependent
non-Gaussian variables into Gaussian vectors with independent
components. Following such transformations one can directly
apply any of the methods developed for Gaussian vectors.
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.TIM EPENDENT PRO MS. Consider a process X(t) defined

t
X(t) = joh(t-«)gqm)dr (12)

in which Y(t) is a stationary Gaussian vector process in R® with
independent components. The process X(t) can be thought of as
the response of a linear system with unit impulse response
function h to the input g(Y(t)). On the other hand, if h in Eq.
(12) is & (the Dirac delta function), then X(t) = g(Y(t)) is a
memoryless transformation of the Gaussian process Y(t). As in
the time—-invariant case, the safety condition requires that X(t)
be smaller that an allowable threshold during a time period 7.
The reliability PS(T) can be approximated by

Pg(7) = PiX(0) < 0% expi-7 v(0)3 (13 )

in which v(x) is the mean rate at which X(t) crosses a level x
from below. Note that the reliability PS(T) depends only on the

mean upcrossing rate v(x) and the marginal distribution of X(t).
Three special cases in which h = & are now considered.
First, let Y(t) be a univariate Gaussian process and g be the

identity function. Then X(t) coincides with Y(t) and, according
to the Rice formula [6],

2
v(x) = [&y/2r0yJexpi-[(x-my)/oy] /23 (14)

in which my and ox2 are the mean and variance of X(t) and 6§ is
the variance of X(t).

Second, let Y(t) be a univarjate Gaussian process with zero
mean and unit variance and g = Fx o$, where Fx is any continuous

distribution. The process X(t) in this case is called a
translation process, and the marginal distribution of X(t) at any
time t is Fx. If Y(t) is stationary and differentiable, so is

X(t). The standard deviations of the derivatives of these
processes are related by OY = n&x/ox, in which

n= §E[g'(Y(t))2]§—x. The constant n is generally close to unity
[3]. The mean upcrossing rate of X(t) can be obtained from Eq.
(14) and is
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-1 2
v(x) = [6y/2n]expi-lg (x)] /2%

. 1 2
= [noy/2noylexpi-[e (x2] /2% . (15)

In this case v(x) depends only on Fx and éx.

Consider any process that can be partially specified by its
marginal distribution and covariance function. Such a process
can be approximated by a translation process having the correct
marginal distribution and covariance function. The mean
upcrossing rate of this process can be approximated by Eq. (15).
In many cases the translation approximation is conservative,
meaning that it overestimates the actual value of v(x).

A third type of memoryless transformaticn of Y(t) is
X(t) = YT 2 (&) + T Y(t) +c (16)

Two special cases of this quadratic form are examined. Consider
first the time-degendent Eorm of the von Mises criterion that
requires X(t) = Yl(t) + Yz(t) - Yl(t)Yz(t) be smaller that a

limit value x, where Y(t) = (Yl(t),Yz(t))T is a bivariate

Gaussian process with independent components having mean zero and
unit variance. The mean upcrossing rate of X(t) is [2]

v(x) = [6/n3/2](2x/3)1/2 e—2x JR(Z + cos u)x exp3x cos uf du
0 17

From the density of X(t) a translation approximation may be
obtained. Table 3 compares mean upcrossing rates U for the

translation approximation with the exact mean upcrossing rate in
Eq. (17). The translation approximation is seen to be
conservative for modgrate to large thresholds. As another

example, let X(t) = § Yj(t)2 be a chi-square process with n
J=1
degrees of freedom in which Y(t) = (Yl(t),...,Yn(t)) is a

Gaussian vector whose components are independent identical
univariate Gaussian processes with zero mean and unit variance.
The mean upcrossing rate is

v(x) = &y [x/2rn]* £(x) (18)

where f(x) = (x/Z)n/z—le—x/2/2F(n/2). Table 4 gives ratios of v
to the mean upcrossing rate Vo based on the translation
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approximation. The translation approximation is conservative for
large thresholds,and this observation is correct asymptotically
as x»o [2].

In addition to the translation approximation, one can
develop approximations analogous to the asymptotic approximations
given in section II. These will not be pursued here, and the
interested reader is refered to the relevant literature [1,5].

Now consider the more general case in Eq. (12) in which h is
a function which vanishes for t<0. Since g is nonlinear, g(Y(t))
is non-Gaussian and so is X(t). Direct determination of the
probability law of X(t) from Eq. (12) is usually impractical. An
approximation is preferred to estimate mean crossing rates of
X(t). The approximation can be based on the simplified
representation m+s(t)Z of Y(t) in which Z is a vector of
independent standard normal random variables, m is a mean vector,
and

s, (t)

s(t) = ) (19
s ()

where §j(t), j=1,...,n are vectors of sines and cosines with

appropriate coefficients. In the special case in which g(y) = y2

the process X(t) is the following quadratic form

X(t) =2 Ta(t) Z + bT(t) Z + e(t) (20)

In contrast to the form in Eq. (16), the coefficients of this
quadratic form depend on time and they operate on the random

vector Z, while in Eq. (16) the coefficients are constant and
operate on the random vector process Y(t). One can derive the

characteristic functions of X(t) and (X(t),X(t)), which can be
used to find the marginal density and mean upcrossing rate of

X(t) [2].

The representation in Eq. (20) can be applied to estimate
the response of a structure to wind loads that are proportional
to the square of the wind speed Y(t). It is assumed that the
structure is modeled by a simple oscillator with response

function h(s) = expE—cuosisin(uds)/wd, s>0, where vg = uo[l—az]x'

As a numerical example, Y(t) is taken to have mean 6.57 and
discrete “~um given in table 5. The system parameters are
Z = 0.0r 6.28. The marginal density of the response X(t)
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is illustrated in figure 5. Mean upcrossing rates are found by
the translation approximation and by the joint characteristic
function method. A comparison of these in in table 6. As in the
other cases considered, it is seen that the translation
approximation is conservative with respect to the exact mean
upcrossing rate.

IV.CONCLUSIONS. Approximate methods have been examined for
the reliability analysis of time—-independent and time—dependent
problems. Probability bounds and asymptotic approximations have
been developed for the estimation of the reliability of time-
invariant structural problems. On the other hand, the
reliability estimates for the time—-dependent problems have been
based on mean crossing rates out of a domain of safety and on
translation approximations of these crossing rates. The
translation approximations have been found to be conservative in
the cases examined.
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Table 1. Exact and Estimated Values of PF in Eq. (9)

B
fy/fO Pp Sample 1 : Sample 2
1 5.75 101 5.81 x 101 5.68 x 10 1
2 1.37 x 10°¢ 1.41 x 1071 1.34 x 1071
3 1.83 x 10°° 1.85 x 10°° 1.77 x 10°°
4 1.37 x 1073 134 x 1073 1.30 x 10°°
Table 2 Exact and Estimated Values of PF in Eq. (10)
Pp
\o/B PF - Sample 1 Sample 2
0.0 1.61 x 1070 1.61 x 10°° | 1.61 x 107°
0.4 3.57 x 1073 7.02 x 103 6.84 x 10 °
0.8 2.19 x 10°L 2.92 x 101 | 2.64 x 107!
1.0 5.80 x 101 6.21 x 10> | 5.80 x 107!

Table 3. Exact and Approximate Mean Crossing Rates
for the von Mises Criterion

x v v/vT
1 2.49 x 101 1.25

1.07 x 1071 0.96
9 1.98 x 10°° 0.87
16 1.90 x 1073 0.83
25 9.42 x 1070 0.81
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Table 4. Exact and Approximate Values of Mean Crossing Rates
for the Chi Square Process

™ n = 1 n = 2 n =5

X v . v/vT v v/vT v v/uT

o | 9.685x10 = | 1.08 | 7.34x10 = | 1.05 | 4.87x10 2 | 1.03

3 | 1.16x120° | 0.87 | 7.31x1072 | 0.88 | 3.56x107% | 0.89

6 | 1.39x1073 | 0.84 | 4.81x107% | 0.84 | 8.49x107° | 0.84

o | 1.66x10°% | 0.83 | 2.86x107* | 0.81 | 1.46x107% | 0.83

Table 5. Power Spectral Density of ¥Wind Speed

wy 0.25 0.75 1.25 1.75 2.25 3.25 4.75 6.25 7.75 9.25
Ch 1.26 0.34 0.20 0.13 0.11 O0.14 0.09 0.07 0.05 0.05

Table 6.

Exact a~d Approximate Values of Mean Crossing Rates
for a Structure Subject to Wind Load

X v v/v

0 6.15 x 101 1.00
2 1.12 x 1071 0.81
4 7.47 x 1073 0.74
6 3.18 x 1074 0.70
8 1.02 x 1072 0.65
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Figure 3. Ratios of Asymptotic to Exact Values
of the Probability of Failure for
Elliptical Safe Domains.
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Figure 4. Exact and Asymptotic Values of the
Probability of Failure for Exponential
Random Variables.
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Figure 5. Marginal Density of the Response of a
Linear System to Wind Load.
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THE THEORY OR RANDOM WAVE OPERATORS

Marc A. Bergen
Carnegie Mellon University
Pittsburg, Pennsylvania

§1. Introduction and Overview: ZAn Operational Ito Calculus

In order to describe the method of random characteristics
we begin by considering cases which lead to the classical

m

second order ItOo-theory. Let o: R'W =+ R™ be of class

Cg', and let X = x0 denote the vector field X := 0 » V. As
usual e'xp denotes the mapping f(x) i+ £(£(1;x)) where
E(t;x) satisfies df/dt = o(€), £(0) = x. The Banach space
on which exp(X) acts is C(]RT) with the supremum norm, IRT
being the one point compactification of R". It is clear
that exp(tX), t ¢ R, is the group generated by X. . Observe
that we are allowing time, t, to run backward and forward.

Let 6(t) be standard one-dimensional Brownian motion.

The mgf of 6(t) is given by
' l 2

Jxo(e) _ 2 %°

E e : xe R, t>0. (1)

We can ask about the validity of (l) if x were to be replaced

by X above. Let us examine what each side of (1) would then

mean. On the left-hand side exe(t) would represent the random
wave operator f(x) b f(£(6(t);x)), and so Eexe(t) would be
the operator

f(x) b fm.f(i(z;x))p(z,t)dz, (2)

where p is the Gauss kernel p(z,t) = 1//27t exp(-zz/zt) . On

the right-hand side we would have the semi-group operator

exp(%— txz) , generated by %— xz. In fact with this interpre-

tation (1) does remain valid when x is replaced with X.
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The easiest way to see this is to use the fact that p is the
fundamental solution of Ju/st = % Bzu/azz. Thus, upon inte-

grating by parts, one sees that

uix,t) = /o (e*Xf) (x)p(z,t)az (3)

satisfies the evolution equation du/dt = % qu, u(0) = f£,

It is interesting to interpret this representation (2)

for the semi-group geometrically, in terms of the charac-
teristics {. The domain of influence of a region D c:mm,
at any time t > 0, is that region spanned by the charac-
teristic curves which pass through D at time zero. (Recall
that "time" along the characteristics runs both backward
and forward.)

Next leto:]Rm+1Rm,lsks9.,be£suchmapsof

k
class Cl and correspondingly let X, = X =90, V. 1If
b k Oy k
g(t) = (el(t),...,ei(t)) is standard f-dimensional Brownian
motion then
) _ 1 2 £
E exp(<x, 6(t)>) = exp(z t Zxk): x ¢ R", t > 0. (4)

Now we can ask about replacing x = (xl,...,xi) with X =

(xl,...,xk) in (4). At this point we already know what
interpretation both sides of (4) would have. Here the random
wave operator under consideration would be exp(<X,6(t)>),

and the semi-group under consideration would be the one
generated by %~Zx§. This time the answer is YES (the replace-

ment X + X in (4) is valid) if the xk commute, but NO in
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general.
= i
Example I: Xl = X, E;I » X2 = 3;;

E exp(<X,0(t)>):
1l
f('x) > £R2 f(xl+zlx2+-2- z,2,, x2+22)p(zl,t)p(zz,t)dz
exp (3 t(xi + X2)):

£(x) b E £(x) +x,0, (t) +f§ 8,(s)d8, (s), x,+0,(t)).

2

What is in fact true, however, is that for small t,,
Eexp(<X,6(t)>) is very close to exp(%-t in), in the sense
that

£ _ 1 2
I Eexp(<X,6(duj)>) = exp(z t zxk). (5)
0
If T(t) denotes the operator IE exp(<X,6(t)>) then the product

integral here indicates a Riemann-type strong limit

t
N T(du) = st -1lim I T(Ain), (6)
0 n i
where 0 = tOn < tln M ype € t\)nn = t forms a partition of
[0,t), &;, = t;, - t;_y, 2nd lgm mix b;n, = 0. We shall see

that (€) follows from a version of Chernoff's product
formula ([8) which allows for variable step.size. (See Pierre
and Rihani [18].)

Actually for the case at hand where 6 is Brownian motion,
one can interchange the expectation and product integral

in (5) ’
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t t
N Eexp(<X,6(du)>) = E I exp(<X,d6(u)>), (7)
0 0

thereby unveiling sample path behavior. At this point to
arrive at (7) we are exploiting the stationary independent

increment property of Brownian motion. The product integral

on the right in (7) is now a sample path limit, indicated by

t
I exp(<X,dé(u)>) = st-1lim I exp(<X,Ain6>), (8)
0 n i

where the partitions 0 = t, < ¢t € 335 £ % = t are as

On 1n

above, and Aine = e(tin) - e(ti-ln

v_n
n
). This resembles McKean's
injection set-up for Lie groups [13, §4.8). In fact if
the vector fields xk, l <k s 2, belong to a finite dimen-
sional Lie algebra (e.g., ok(x) = ka for mxm matrices Mk)'
then this fits precisely into McKean's set-up. The st-lim
in (8) indicates a strong limit in the bounded linear opera-
tor sense, but we also need to specify the probabilistic mode
of convergence. In what sense is the sequence of random
variables
t
|| expi<X,a, 6>)f - N exp(<X,d6(u)>) f|
L] ln
i 0
converging to zero, for each f ¢ CCRT)?
There is a nice concise way of describing the operator
n exp(<x,Ain9>), appearing on the right-hand side of (8).

i
Let '™ @enote the piecewise-constant function y ‘™ (1) =

C(n)

8/4 t ST St and let (1;%) denote the solu-

Ain in’ "i-ln
tion of dE(n)/dr = 2w£n)(t-t)ok(£(n)), E(n)(O) = x. By a

simple time scale one sees that
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T exp(<X,A, 65): £(x) b £(£™ (£:%)). (9)
i in

Observe that applying the operators in the order

n6>)

! exp(<X,Avnn6>)...exp(<X,A2n9>)exp(<X,Al

(application proceeds from right to left) leads to the time
reversed evolution

£0x) b £8) ()38 (Bpnree (6, (A, 41x)).0a)))),
starting from Ev and working back to 51, where £i(r;x)
denotes the solugion of dEi/dT = ZAinek/Ain °0k(£);
Ei(O) = xX. The time reversal here can be straightened out,
though, by reversing time in the Brownian motion instead.
Thus, if 8(1) = 6(t) - 6(t-1) then v'™ (t-1) = I, B/E, ,
Ei-ln < T € Ein' and ) refers to the reversed partition

B. ™ =% coe
in V,—1in

Under the additional assumption that the

first partial derivatives of o are uniformly Lipschitz con-
tinuous, Stroock and Varadhan [21] have shown that for the

sequence of dyadic partitions Yy o ® [Znt] +1, tin = i/2n,

0 si s [Znt], t, 5= t one has the convergence in distri-
n

bution £(n) => { where E_is the solution of the Stratonovich

stochastic differential equation
df = Zo, (€) °aB,, £(0) = x. (10)

(This is one of the advantages of using the vector field form
1 2 2

5 Zxk, rather than the form ££aija /axiaxj + Zbi a/axi,

for the generator. Namely, the Ito stochastic differential
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equation for its underlying diffusion corresponds simply to
the above Stratonovich equation. On the other nand the
vector field form is restrictive ~-- not every generator has

this form, even if we allow an additional first order term

X, as done below.) One should identify g(n)

0
(9) as ‘the solution of the equation obtained from (10) by

appearing in

replacing 8§ with its piecewise linear interpolant passing
through the interpolation points (Ein'g(Ein))’ 0siswv.
(C£. Wong and Zakai [23].) .Thus we discover the form that
our limiting operator in (8) ought to have:

t

N exp(<X,d6(u)>): f(x) b £(£(t;x)), (11)
0

where £ is the solution of (10). It is this type of operator

we refer to as a "random wave operator." When considered
t

in terms of two parameters II, these operators form a random
s

two parameter semi-group (with stationary independent
increments, much like Brownian motion on a Lie group).

The representation (11) ought properly to be understood
as "the fundamental theorem of calculus" for the product
integrals of this form. It shows that the product integral
obeys a certain differential equation (namely (10)), when
considered as a function of its upper limit, and thus
obviates the necessity of resort to partitions 0 = tOn <
tln S t\,nn = t for its evaluation. In fact, it relates
the calculus of these product integrals to the technically

rich and easily mastered second order, or Ito calculus.
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The product formula (5) has implications concerning
the support properties of exp(% thi). For z ¢ IRR let us
denote by £(t1;x,2z) the solution of df/dt = szok(g),
£(0) = x. Observe then that T(Ain) from (6) can be expressed
as

T(Ain): f(x) b fnglf(E(l;x,z))p(z,Ain)dz, (12)

wnere we have introduced the notation p(z,t) = Hp(zk,t).
Thus in order that x ¢ supp T(Ain)f there must exist a set
Cec ]Rl of positive Lebesgue measure, for which £(l;x,2z) ¢
supp £, V 2z ¢ C. We refer to C as a control set, through
which £ can be controlled to go from x (at time zero) into
supp f (at time one). By a simple time scale we see that
E(l;x,2) = E(Ain;x, z/Ain), and we can use C/Ain to control
§ so as to enter supp f at time Ain (rather than time one).

Extending this argument we can represent

2 T(Ain): = (13)
v
n (1) : .
£x) b S, Sgettx, e, B mp(z!) a, yaz ()
IR” x,..xIR v,h in 1
(1) (vn) 2
where £(1;x,2 7 ae ) = £(t;x,y ) denotes the solution
of dg/dt = IyE(1) 0, (€), £(0) = x, and yF(n) = 2N E s
t & Ein’ Here we use the notation Z for (z(l),...,z(vn)).
(v )
Thus for each choice z(l),...,z A" ]R2 we associate the

piecewise constant function wz which takes the value z(l)

over the interval [Ei-l 'Ein) obtained from the given

n
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partition. (Recall that Ein =& =t ) The controls,

v.-in’
n
then, here are functions y: [0,t) -+ IRY which are piecewise

constant over the fixed partition intervals [t,

l-ln’tin)'

Each such function can be uniquely associated with some

2 ¢ Isz e xIRz, and we use the notation wz to denote this
correspondence. The action of the control y is given by the
differential equation d¢/dt = Zwk(r)ok(g). It foilows from
(13) then that x ¢ supp Q T(Ain)f only if there exists a set
C c IIR2 - T XIRQ of pos;tive Lebesgue measure, for which
E(t;x,wz) ¢ supp £, Y2 ¢ C. That is, we need to use wz

to control the process { so as to go from x (at time zero)
into supp f (at time t). Furthermore, if £ > 0 then this
control criterion is also a sufficient condition for

X € supp g T(Ain)f'

Letting n > «» in (6) effectively picks up all piecewise
constant, or step functions y. (Especially if our techniques
allow us to use arbitrary partitions. Otherwise we may be
restricted, say, to dyadic step functions -- with dyadic
step intervals.) The product formula (7) then implies that
X € supp‘exp(% € in)f only if there exist step function con-
trols y, through which { can be controlled so as to go from
X (at time zero) into supp £ (at time t). It is clear from
the equation df/dt = Zwk(r)ok(g) that this property is in
fact independent of t > 0. Weﬁsee from a time scale that

if § can be controlled to get to supp £ at time t, then it

can be controlled to get to supp f at any other time t°'.

166



However, we leave the "time t" requirement in the above
support-control condition, since it will be important when

we add on a first order vector field X., and describe

0
supp exp(t(% in + xo)). There the support-control condi-
tion will not be independent of t.

Using the representation (10), (11) we see that this
support-control condition above in fact amounts precisely
to the Stroock-Varadhan characterization for the support of
a diffusion [21]. Their result establishes that the support

of the diffusion £ satisfying (10) is precisely the.closure

of the set of n ¢ C([O,w),ng‘) for which there exists a step

function yY:{0,») =~ IRR such that dn/dr = Zwk(r)ok(n),
n(0) = x.
Example II: X = 2x : + x 2 X, = x .

¥ 1 z'anc_l 15x2' 2 3'53?3"

The propagation is confined to hyperbolic cylinders. 1If
supp £ lies in one or both parts of the wedge
a s xi - 2x§ < b on one side (above/below) of the X Xy
plane, then so does supp exp(% t(xi + xg))f.

Our next interest is in extending (7) to a product

integral representation for the general linear evolution

equation

ou

— 1

2 - (L in(t) + Xy (€)Ju + a(x,t)u + b(x,t), (14)

where the vector fields xk(t) = xo (t) = ok + V now come from
k

time dependent mappings ok(x,t) from R" x [0,o) » Bg‘,
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0 s ks 2. To begin with we need to identify exp(X + a(x)),
where X = 0 * V is a vector field, and a: R’ + R is a
bounded measurable mapping. Since we want exp(t(X + a(x)))

to be the group generated by X + a(x) we define
exp(X+a(x)): £(x) b £(£(1:x))exp(/ga (£ (1:x))dr) (15)

where, as above, £(1;x) is the solution of d§{/dt = o(£),

£(0) = x. Consider now the product

i i S T T U T LT

involving the f-tuple of time dependent vector fields X(t) =
(Xl(t),...,xﬁ(t)) along with xo(t) and the mapping a(x,t).
A careful "keeping track of things" reveals that this is

the random wave operator
£(x) b f(g(n)(t;x))exp(fg al® (M) 0y t-n)an),

‘n) : . (n)
where ¢ (1;x) is the solution of 4§ /dt =

2™ (=0 0™ (6™ t-n) + i @™ e-1), £ (0) = x and

for ticin 5T < Y44
A,

6
in

A , ’

(n) (n)
o] (1) = ¢ (o o A
ia k k i~

(n) 4

(n) o i
a (x,1) --a(x,ti_ln).

By reversing time it is easy to see that &‘n)(r;x) = E(n)(t-T;x)
where E(n) satisfies dE(n)/dT = -zvé“)(f)oén)(i‘“),r) -

oén)(E(n),T), E(n)(t) = x. Thus one expects the product
t

integral I exp(<X(u),do(u)- + [xo(u) + a(x,u)]ldu) to he the
s
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random wave operator
£(x) » £(E(s;x))exp(Sa(E(Tix), 1)aD),

where £(1;x) satisfies the backward Stratonovich differential

equation
dt = -zck(E,r) > do, (1) - oo(E,r)dr, E(t) = x.  (16)

Thus, using the technique of variation of parameters for pro-
duct integrals (Dollard and Friedman [9]), we see that the
solution of (14) with initial condition u(x,0) = f(x) is
given by

u(x,t) = £(E(s:x))exp(SEa(E(tix),1)d1)

(17)
+f§b(§(r;x),r)exp(fia(z(r;x),T)dr)dr.
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§2. Extension to Higher Order Equations

In order to extend these ideas to higher order equations
we need to introduce the fundamental solution pn(z,t) for
the equation oJu/ot = (-l)(n/z)-l/n! a“u/az“, n even. This
function has the scale property pn(z,t) = t-l/npn(t—l/nz,l),
and pn(z,l) is given by
n

l o A
pn(z,l) b fo cos Az exp(- ET)dA. (1)

Associated with Ba is a generalized Brownian motion e(n)
with transition densities pn(x,t) and infinitesimal:genera-

tor (-l)(n/z)-l/n! a“/axn. This process 6 has been

(n)
studied by several people ([10}, [{12]), [14], [l6]), and is
not a genuine diffusion since its transition densities
pn(x,t) are signed. 1In fact it does not even arise ffoh a
signed probability on path space, since such a measure would
necessarily be of infinite total variation. Nevertheless

if we are willing to work in a finitely additive setting

it can be shown that e(n) generates an nth order analogue to

(t)

Ito's stochastic calculus. In particular if @

(n)

(e(n)l(t)""'e(n)z(t)) is f-dimensional generalized Brownian
motion then
n
S
WORPUR B gy VLD = exp(-(-:-]-'?)‘-!-—- t Zxﬁ); X € IR9", & > W

(2)
This parallels (1.4) and we can again ask about replacing
X = (xl,...,xz) with X = (xl,...,xl) for vector fields

xk = °k +V, 1 <k £ 2. Can we expect
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g-l t

exp ((~1) /n! tzxg) = I Eexp(<X,0 , (du)>)
0
(3)
t
=1 I exp(<X,de(n) (v)>),

0

t
where I exp(<x,de(n)(u)>) is to be interpreted as a random

0

wave operator f(x) b f(E(t;x)) and £ is the solution of the

generalized Stratonovich differential equation
dg = ch(g) °de(n)kl g(o) = X? (4)

The use of the name Stratonovich here simply indicates that
the generator of £ is to have the invariant form

(_l) (n/z) "l

/n! zxﬁ. (C£. [20, §4).) The 6 again indicates
a time reversal 6(t) = 6(t) - 8(t-1), 0 s T < t. The left

equality in (3) can be understood without the need of setting

up a generalized stochastic calculus. The operator T(t)
IEexp(<X,e(n)(t)>) is given by

f(x) b J 1y

f(E(lixrz))pn(Z:t)dzr
IR

where { satisfies d{/dt = szok(g), £(0) = x and pn(z,t)
Hpn(zk,t). Thus the analogue of (l1.13) holds here, with p
replaced by Ppe In particular establishment of the first
part of (3) would lead to the analogous support property for
(o1 P2V LRy xR, |

The right equality in (3) comes in only as a handy cal-
culational tool for the product integral. It shows that the

t
calculus of these product integrals I exp(<x,d9(n)(u)>) is
0
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th

essentially an n order analogue of the ItO calculus. This

is that same "fundamental theorem of calculus" described
above.
In order to allow for lower order terms in the generator

we introduce the generalized Appell polynomials (see Bell

n-1

{1]) ¢n: IR + IR defined by

n 3
=1 3 j
b (¥yreeer¥o ) = 55 v exp(Zyjt Y/ =0* (5)

th

Let 6 be a one-dimensional n order Brownian motion,

(n)
(3) = rt J : = .
and set e(n) (t) = J’o de(n), ls3jsn-1l. (See [10], [16].)

Then
2o

Eexp(Iy 8 (J) (t)) = exp((-1)% to (yy,.eusyy ). (6)

This leads us then to expect the following generalization of

(3). Let xjk = ojk

0 = co « V be smooth vector fields. Let B(n) =

(6 (n)1’°°°" 8 (n) 2) be fL-dimensional. Then

«¥%, 1lgjesn=l, 1 <k < ¢, and

X

n
-1
exp (t(-1)2 2, (e Xy + Xo))

t ]
_ J
= g IEexp(§ ])i xjke(n)k(du) + xodu) (7)
t : j
= ]Eg exp(§ i xjkde(n)k(u), + Xodu),
t ;
and I exp(Z I X. de’ (u) + X du) is to be interpreted as a
0 3k jk  (n)k 0

random wave operator f(x) b £(£(t;x)), where £(1;x) is the

solution of the generalized Stratonovich differential equation
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dg(1) = ; o5y (8) ° @B, (1) + op(e)dr,  €(0) = x. (8)

z
k
Again the use of the name Stratonovich here simply indicates
that the generator of £ is to have the invariant form

_1y (n/2) =1 .

(-1) §¢n(xlk""'xn-lk) + X,. We must explain here,
though, what is meant by ¢n(x1""'xn-l) for vector fields

XyreoosX _+ Our convention is that all monomials are

evaluated as symmetric products. or example if
2
a(yl,yz) = ¥,Y, and b(yl,yz) =YY, then

. |
a(Xl,XZ) =3 (XlX2 + XZXl)

3 2 2
b(X),X,) = 3 (X)X5 + X, XX, + X3X,).

- 3 s
The operator T(A) = IEexp(§ i xjke(n)k(A) + XOA) is given by

Ry = .f

f(g(A;x,2: A))p, (2,t)dz,
R n

£

where { satisfies df¢/dt = I I zg/A 0.y (E) + 04(8), £(0) = x.
C j 0
Another approach to allow for lower order terms, based
on the Cameron-Martin formula, is that of Motoo [14] and
Nishioka [16]). These authors consider what amounts here to

product integrals

t :
J
g exp(<x,de(n)(u)> + g i ajk(x)de(n)k(u) + ao(x)du),

where X = (xl""'xl) are vector fields Xk = ok eV, 1 sk s &,

the maps Oy ¢ " - IRm are Cg-.l and the maps Uy R’ » IR,

J
l<jsn=1l,1=c<k = ¢, and @g R" + R are Cé. Following

our earlier steps one can see that this product integral ought
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to be the random wave operator

£(x) b £(5(t;x))
(9)

+expl/g I T oy (E(1ix)) «d8) (1) + og(E(Tix))at)
j k

where £ is the solution of the generalized Stratonovich dif-
ferential equation (4), and the stochastic integrals in (9)

are generalized Stratonovich integrals. This means that

Eatr) @03 (e) = 1im £L, 3 o) iﬁ%ﬂgli
al(t) ed87 (1) = lim a(t dr.
0 n Ai-ln in

The operator

T(A) = Eexp(<x,9(n) (4)>

(10)
3
+ § ﬁ ajk(x)e(n)k(A) + ao(x)A)
is given by
£(x) b S, £(E(Asx, 2))
IRz A
- exp{/QIZ I oy (E(Tix, Z))z)/ (11)

ik

+ ag(E(Tix, %))]dT}pn(z,A)dzp

where §(1:x,2) satisfies df/dt = szok(a), £(0) = x. The

analogue to (7) is then
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g-l

exp(t(-1) £¢n(xk oy Oopreceray g0) + 0g))
: 3
= g IEexp(<x,e(n)(du)> + § i “jke(n)k(du) + aodu) (12)
: j
= IEg exp(<x,de(n)(u)> + § ﬁajkde(n)k(u) + aodu),

where ajk represents the operator which multiplies a function
by ajk(x). The rule here for evaluating ¢n(X4-a1,a2,...,an_l),

m
+ IR are smooth func-

where X is a veltor field and ;¢ IR
tions, is exactly as above in (7): the monomials in ¢n are
evaluated symmetrically. This representation (12) is
analogous to what Simon [19, §15] calls the Feynman-Kac-Ito
formula.

Actually the form of (9) appearing in Motoo [14] and
Nishioka (16] is the non-symmetric form, involving generalized
I1to rather than Stratonovich integrals. If one replaces the
Stratonovich integrals in (9) with their Ito counterparts,
then the operator T(A), representing the short time average,
would have to be given by

£(x) b J ,£(E(A1x, 2))
IRQ A

(13)
5 exp{§ : ajk(x)z; + ag(x)alp (z,4)dz,

rather than (1ll1). The counterpart to the left equality of
(12) is

7-1

exp(t(-1) i¢n(xk Oy rOgpreeesal gy ) toag))
t (14)
= [ T(du)
0
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but now ¢n(x + 0ys05s--.,0a. _;) has to be evaluated in its non-
symmetric form, where all monomials involving X are evaluated
by applying X first (i.e., on the right). 1In this case the
coefficients ajk need not be smooth, since none of their
derivatives arise in the generator. The different genera-
tors corresponding to (11) and (13) reflect the difference

in the stochastic calculus stemming from the Stratonovich

and Ito integrals, respectively. For the special case

£1, 1 s k s %), which

k
is the case studied by Motoo and Nishioka, the conversion is

E(t;x) = x + e(n)(t) in (9) (i.e., ©

simply based on

fg a(x+6(t) odej(r)

(15)
t 1

e j+k
0 (k+l)!

o 5 o'®) (x40 (1)) a6
k=0

(1)

for 6 one-dimensional. The advantage of the symmetric form
(11) over the non-symmetric form (13) is that the former
arises as a wave operator (namely (10)), whereas the latter
does not. In general wave operators obtained through
stochastic product integrals involve symmetric, or
Stratonovich, stochastic integrals and stochastic differen-
tial equations, and correspondingly the generators take
a symmetric form. .

To prove the left equality of (12) we use a special
case of the version of Chernoff's product formula appearing

in Pierre and Rihani ([18].
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Theorem I: Let A be the generator of a linear contraction

C, semi-group, and let {T(t): t > 0} be a family of linear

0
contractions satisfying

1im ZEEZE = g, £ e D). (16)
t+0
t
Then the strong product integral NI T(du) exists and equals
0

exp (tA) .

We can extend this Theorem so as to allow A to be the
generator of certain non-contractive Co semi-groups. The
operators T(t) can be bounded linear operators satisfying

(16) , provided there exists a constant w 2 0 such that

ITe) || s e®%, &> o. (17)

One simply replaces T(t) with e “®*T(t) and A with A-w, and

then Theorem I applies.
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Characteristic Functions of a Class of Probability Distributions

Siegfried H. Lehnigk, Huntsville, Alabama
Research Directorate
Research, Development, and Engineering Center
U. S. Army Missile Command
Redstone Arsenal, Alabama 35393-5248

Summary. The characteristic function of a class of continuous one-sided
probability distributions i5 being considered. The distribution class
contains three independent parameters; one of them represents scale, the
other two datermine initial and terminal chape of the associated
probability censity function. The analytical properties of the
characteristic function depend heavily on the terminai shape parameter A
which may vary in the interval (- o, 1). If 0 <A < 1, the characteristic
function is many-valued with branch points at zero and infinity. its
principal branch is holomorphic and bounded upon analytic continuation
(into the complex plane cut along the nonnegative real axis) from the
primary element which is holomorphic in the open left-hand plane.

I A =0, the primary element of the characteristic function is
nolomorphic in the half-plane ieft of the vertical iine through the poirit
(b". 0). b being the scale parameter. Upon continuation it becores
either a rational function (if the initial shape pararneter is a nonpositive
integer) with a pole at the point (b".o) or @ many-valued function with
branch points at (b" ,0) and infinity whose principal branch is
holomorphic in the plane cut along the real axis from b™! to infinity. if
A <0, the characteristic function is an entire function of order greater
than unity. It has no real zeros but an infinity of conjugate compiex
pairs of zeros even if the order is an even integer.

(To appear in Complex Variable: Theory and Application)
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Poisson and Extreme Value Limit Theorems for Markov Random Fields*

Simeon M. Berman
Courant Institute of Mathematical Sciences
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251 Mercer Street
New York, NY 1001z

ABSTRAC?T

Lot 2" be the integer lattice in A®, and let I, t 2",
be a Markov random field, Let 1 be a rectangular dbox ia o
with corner points having coordinates of the fors ¢ n. De-
2ine My = max(X,: t €1 ). The extreme value limit prodlem is
as follews: Pind conditions under which there exist.a nonde-
gonerate distridution function G(x) and real sequences (‘n) and
(bn). vith a,> 0, such that the conditional prodadility

r“n-1“n'bu) ¢ x| Given X,t @ € boundary of 1)

converges, for n # ®, to G(x) at all points of continuity, and
for all possidle values of X on the doundary.

Here the extreme value limit prodlem is solved for a gene-
ral class of Markov random fields. The conditions on the
field are stated in terms of the system of nearest neighbor
conditional distridutions. These distributions are assumed to
be. invariant under translatione in Z® (homogeneity). Dodrusin's
condition for regularity and mixing is also assumed to hold,

80 that there exists & unique stationary measurs P.

In addition to these general conditions,the following more
special conditions are also assumed:

1. Jor fixed ¢, the marginal distridution of xg under the
stationary measure delongs to the domain of attraction of an
extreme value limiting distridution function G(x) with nor-
malising sequences (s;) and (b,). This is squivalent to

Uy, o PH(X€ a x0b)) = 6(x).
2. For all possidle values of X for points s which are
neighbors of O,
KXy > u | X,» » & peighbor of 0) = O(P(Xy>u)), for w v @,

This paper has been accepted for publication in Advances
in Applied Probabdility.

nis paper represents results obtained st the Courant Institute of
Mathematical Sciences, New York University, under the sponsorship of
the U.S. Army Research Office, Grant number DAAG-29-85-K-0146.
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A BOUND ON THE VARIATION BETWEEN TWO PROBABILITY MEASURES
IN TERMS OF THE INTENSITIES OF \ DISCRETE POINT PROCESS
RELATIVE TO THESE PROBABILITIES.

G. R. Andersen

U.S. Army Ballistic Research Laboratory (BRL)

1. Introduction: In an application of discrete parameter point processes to a
communication network problem at the BRL there was a need to measure the
robustness of a point process intensity. That is, we wanted to know if small changes in
the intensity of a point process implied small changes in the distribution of the point
process. H. Rost proved such a result for continuous parameter point processes having
absolutely continuous compensators, in the 1984 University of ‘Strasbourg Seminar in
Probability. If Rost had considered the case where the compensator was absolutely
continuous with respect to an increasing process (instead of just Lebesgue measure), it
would have been directly applicable to the discrete point process model. Rather than
extend his result in this direction here, it was decided to see what would be required to
prove an analogous result totally within the framework of discrete point processes.
These processes are sequences of Bernoulli random variables (with no distributional
assumptions or assumptions concerning independence) and so are of fundamental
importance to probability theory.

To derive a discrete parameter analogue of Rost’s result, we will require a sequence of
four Lemmas. These Lemmas are known from the gencral theory (Jacod [1979], Itmi
[1980], Bremaud [1981]) where they are proved in the case of continuous parameter
marked point processes. Bremaud also treats in detail the case where the point process
has an absolutely continuous compensator. The latter case does not apply to discrete
point processes, but the form of the statements and the essential mechanics of the
proofs for the discrete case can be inferred from Bremaud’'s presentation. The
relationship of discrete point processes to the general marked point process of Jacod
[1975] is given in Andersen [1986, Chapter 4]. The mathematical setting considered by
Jacod is general enough to allow one to obtain the ccrrect statements of the Lemmas for
a discrete point process by the simple device of embedding such a process (and
filtration) in a continuous parameter process (and filtration) which is constant between
integer times.

In the case of discrete point processes, however, it is extremely easy and informative to
derive these Lemmas directly from first principles and this is what we will do. The
discrete analogue of Rost’s Theorem simply does not follow from his result and so it is
derived in Section 5. For a discussion on discrete point processes and their use in
approximating continuous parameter point processes one can refer to Brown [1983].

Readers not already familiar with the relatively new martingale techniques might find
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that the discrete form of stochastic calculus provides easy access to this arca. These
techniques have wide applicability to engineering, physics and statistics; for a small
sample of applications to queuing, control, statistics, reliability and design of
experiments see Bremaud. [1981], Jacobsen [1982], Gill [1980]

2. Notation and Preliminaries: Let Z, be the set of non-negative integers. (2, F_,
(F,), P) is called a filtered probability space if F is a o-algebra of subsets of (1 and
P'is a probability measure on F, with F, a sub o-algebra of F, for each neZ_ and the
sequence n—F, is increasing (F, is contained in F ., for all neZ,). X = (X, neZ,)is
said to be a stochastic process if each X, is a random variable on (Q, F_.). Let
AXy:=X,-Xy_, and define the process X_ by setting (X.), := X_; with X_;:=0 for all
neZ,. As always, the conditional expectation of a P-integrable random variable Z given
the o-algebra F is written E(Z | F,). In what follows, a constantly (and silently) used
property of conditional expectation is that if g is a bounded Fy-measurable process, then
E(gZ | F\) = gE(Z | F',), a.s.P; the abbreviation “a.s.P" means “almost surely relative
to the probability P”. Its use with the last equation indicates that the random variables
defined on either side of this equation are only equal on an event whose probability is
one.

Let X = (X,) and V = (V,)) be processes on ({2,F. ). Then the transform of X by V,
denoted V.X = ( (V.X), ), is the process defined by setting

(V.X), (W) = kz"; Vi(w) AXy (W) ,
=0

for all w in Q. If X is a square integrable processes relative to P, then the variance
process of X is denoted by <X,X> and is defined by

n
<XX>, = ¥ E((AXy P | Fyy ),
k=0

a.s.P.

X = (X,) is said to be adapted to the filtration F=(F ) iff X is F, - measurable for
each n, while V = (V) is said to be previsible relative to the filtration F iff V_ is
F,_j-adapted. If X is F-adapted, then X_ is F-previsible.

If M is a discrete parameter process on the filtered probability space ((,F,(F,),P), then
M= (M, F,) is an (F,P)-martingale iff

(i) M is adapted to F,
(ii)) M has finite expectation
(iii) E(M, |Fyy) = M, (asP)

for all neZ,
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2.0.1. Remark: The following examples are immediate consequences of the definitions.
(1°) If M is an (F,P)-martingale and V is I-previsible. Then V.M is an (F,P’)-martingale,
if V.M is P-integrable.

(2°) If M is a square-integrable martingale, then M2 - <M,M> is a martingale.

(3°) If X, V and V.X are square integrable processes, and V is previsible, then
<VXVX>, = V<X X>,, as.P. and E((V.X)?) = E(V2.<X,X>), if X is a mar-
tingale.

Additional notation used includes writing the “indicator function” of a set A as 14.

3. Discrete Point Processes on a Measure Space: Let (f2,F ) be a measurable
space. Suppose that (T, ,neZ,) is a strictly increasing sequence of Z+ i= Z|J{oo}
valued random variables relative to (0,F,). The statement that the sequence is
“strictly increasing” means that for all neZ,,

T, < Toyy on [T, < o] := {wefd:T (w) < o0}.

Thus defined, the sequence (T, ,neZ ) is called a discrete point process (Dpp).

Given a discrete point process (T,,neZ,), it is customary to introduce the process,
N = (N,,t > 0}, corresponding to (T,) by setting

NL == 2 l[TmS‘I (l)
m2>1

for t > 0. N,(w) counts the number of times that members of the sequence
(T,,(w), m>1) fall in the interval (0,t].

In the case treated here the ‘“‘times” T, take their values in Z+; they are ‘‘integer-
valued”. It follows then that

t
N, = 5 T,< (2)
mue}
(This is because, while finite, the T, are strictly increasing and integer-valued functions,
so at most [t] of them can occur before time t.) Note that [t] represents the greatest
integer less than or equal to t. There should be no confusion between this use of brack-
ets and their use in specifying sets, as in [T, <t]:={w:T,(w)<t}.

For each keZ , set

k
Xy(w) := ) Iz, mig(W), (3)
ma=}
and Xg(w) = 0, for all weQ2. Then it is easy to see that
t
N, = {jxk, t > 0. (4)
k=0

(Just insert the right side of (3) for X; in (4) and interchange order of summation.) It is
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sufficient for our purposes then to consider the counting process in (4) as just the sto-
chastic sequence N = (N,neZ,).

Starting with the discrete point process (T,) we have defined the sequence (X ,neZ,) of

Bernoulli 0,1-valued random variables cn (Q,F ). Each of the processes N = (N,) and
X = (X,) are equivalent representations of the discrete point process (T,). For exam-
ple, if we are given a Bernoulli sequence X = (X ,neZ,) relative to (2,F ) we can
define the sequence (T,) by setting Ty := 0 and
T, = inflkeZ, : k> T, ;, X = 1} (6)
form > 1, when { - -} 5 ¢ and equal to oo otherwise. The sequence N = (N,) is
defined by
AN, = N, - Noat = X, (7)
N_; = 0, for neZ,, so that
n
Nn - zxk' (8)
0

4. Discrete Processes on a Filtered Probability Space: We begin with the filtered
probability space (2,F,(F,),P), a P-complete filtration (F, contains all P-null sets) and

Fo = of L>Jan)-

Under this set-up an F-adapted {0,1}-Bernoulli process on (2,F ) with X = 0 on fis
said to be an (F,P)-discrete point process (Dpp).

The process N defined as in (8) is then an F-adapted process also and the sequence
(T,,neZ,) defined by (6) is a sequence of F-stopping times. For the reasons noted earlier
all three sequences are called (F,P)- discrete point processes.

For each neZ,, define the stochastic sequence A\ = (X ,neZ,) by
Ao =E(X, | Fpy), (9)

n>1 and Ay = 0 on . Then the process ) is said to be the (F,P)-intensity of the
underlying (F,P) discrete point process.

When there is no ambiguity about which filtration or probability measure is being used
we will sometimes drop one or both of the qualifiers F, P and just refer to the “inten-
sity”. On the other hand, when we must keep in mind that these processes depend on F
and P we will write, for example, A = (\,F,P)or just \ = (X, F,). It will be under-
stood that the index n is in Z,. The following properties are immediate:

(a) x = (A\,,F,,P) is F-previsibleand 0 < X\, < 1as.P.

' n
(b) N = (N,,F,,P) is F-adapted with compensator A, = Y \,. That is,
k=0
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m, = N-A, (10)

is an (F,P)-martingale.

4.0.1. Remark: As noted in the introduction, the following four Lemmas are known
from the general theory (Jacod [1979], Bremaud [1981]) where they are proved in the
case of continuous parameter marked point processes They are proved here totally
within the framework of discrete point processes for the purpose of exposition and in the
belief that Bernoulli variates are at the heart of most things probabilistic.

4.1. Lemma:

Suppose that N = (N, F|) is a Dpp with F-intensity \ = (\,)F,) Let p = (p,Fy) be a
strictly positive F-previsible process and ¢ := 1+ N(py - 1). Then ¢, > 0 for all
keZ, and

X
n I[k &
k=0 Yk

for neZ, defines a positive F-martingale, . = (L,F,P).

(1)

lln =

4.1.1. Remark: Ly = 1 on Q.

4.1.2. Remark: That 4y is positive for all k follows from (a) by treating the three cases
A =0, =1, and 0 < N\ < 1. To show that L = (L,F,) is a martingale
just realize that since the X's take values in {0,1},

X
mt = X+ (1 - Xp)
Then, by the F-previsibility of g and the definition of A

B | Fio) = L+ M- 1) = (12)
Since 4, is F-previsible, it follows from (12) that
et
k

E(— |F, ) = 1,

( % | Fi)
e
¥n

Hence for n>1, since L, = L, and L,_; is F_; -measurable,

X )
” n
E(Ln I Fn-l) = Ln—lE(’_n_ I F‘n-l) 2= Ln-l'

n
That is, L is an F-martingale and L is clearly positive.
4.1.3. Remark: Notice that since L is a martingale and Ly = 1 on
EL, = ELy = 1 for all n2>0.
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4.1.4. Remark: It is sometimes useful to write ykx“ = 1 + (p)~1)X, in the definition of
L,. This is about all that is needed to prove the following discrete analogue of a result
due to C. Doleans-Dade.

4.2. Lemma: (g, v, and X as in Lemma 4.1. )

Set
g = (# -1)/%. (13)
If
w
LY N
L, = J]~—, 14
then
L, = 1+ (gl._m), (15)

and conversely.

4.2.1. Remark: Just observe that from (13) and (14) with n>1,
Ln"Ln—l =3 Ln-l(l'*'(l‘n - l)xn . wn)/wn m Ln IgnAmn’

where m is defined in (b) as m=N - A, so that Am, = X, - A\,. Summing both sides of
the first equation gives

n
L, Ly = Y Ly ,gdm, = (L g.m),,
k=1

since Amg = X - \g == 0. Because Ly == 1 we have (15). The converse follows by rev-
ersing the argument.

4.2.2. Remark: We continue with A\ = (\,F,P) as the (F,P)-intensity of a Dpp
X = (XpFuP).

4.3. Lemma: . -
Let L, p and ¢ be defined as in Lemma 4.1. Define a probability measure P on (,F )
by setting

P(A) = [L,(w)P(dw), (16)
A

Jor all AeF . Then X = (X,,F,,P) is a Dpp with (F,P)-intensity a, where

o = )\k”k/'pk, a.s.P, (17)
k=12,...,9

4.3.1. Remark: From (17), notice that 0<a, = )\ /(1 - N\ + A ) <1, as.P, as it
should.
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4.3.2. Remark: Following Lemma 4.1, we noticed that the positive martingale of that
Lemma had the property that E(L,) = 1. It follows that the measure P defined above
is a probability measure. If we let EQY denote the expectation of Y relative to the pro-
bability measure Q, then Bucy’s Lemma (Bremaud [1981, p171]) allows us to write

EF(Xn I Fy1)Ep(L, | Fn-l) - EP(Lan | l"‘nul)'

Hence, writing E for Ep,
X
a, = Ep(X,|Foy) = 9;'Elp,"| Fpy),
since
X
E(l‘n I Fn--l) = Ln—lE(”n Y I l;‘n -l)r
\ 7 S X,
E(L Xy [ Fry) = LoE(py " | Fy ) = Lo ¥,

and L, ; > 0. The conclusion of the Lemma then follows by recalling that u is F-
previsible and noting that ;tnx"Xn = X, (X, takes only the values 0 and 1).

4.3.3. Remark: It follows immediately that @ = 1iffA = landa = 0iff \ = 0,
which is useful in attempting to solve (17) for p in Section 5.

4.3.4. Remark:_In the last Lemma we used the positive martingale 1. to define a proba-
bility measure P which was absolutely continuous relative to P. In the next Lemma we
give a “‘converse” of that result. For this purpose we take F|, = FkN: = o(N;, - -+ ,NyJ,
where N is a Dpp with (FN,P) intensity \.

4.4. Lemma: -
Let P and P be a probability measures on (Q,F ), F,, = a(UFkN), and suppose that P 1s
k

absolutely continuous with respect to P,
P << P.
Let l—’n and P, be the restrictions of P and P, respectively, to F N, and define
dP
L, = -,
dP,

the Radon-Nikodym derivative of P relative to P. Then there exists a positive, FN- prev-
isible process (py) such that

(18)

n pkx“
L = {85 19
where, as before, ¥, = 1 + N\ (p-1), and 8o N is an (FN,P) Dpp with (FN,P) intensity
a = N/, (20)

Jor all keZ .
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4.4.1. Remark: The general idea of the proof of this Lemma is to note that L, as
defined in (18), is an (FN,P) - martingale relative to the filtration generated by the
discrete point process. This fact can be used to write L in the form of equation (15) in
such a way that g in this equation is previsible. Lemma 4.2, with g defined through (13)
and g, then applies and L has the required product representation (18). The form of the
new point process intensity then follows from Lemma 4.3.

5. Rost's Theorem for Discrete Point Processes: l.et F be the filtration used in
the last Lemma, FN = o(Ni,k<n).

Let P and P satisfy the assumptions of Lemma 4.4 and define L = (L,,F N.P) as in
equation (18). Then this Lemma together with L.emma 4.2 says that L satisfies the fol-
lowing transform (‘‘integral’’) equation

L, = 1+ (L.§),, (21)
where &, = (g.m), is an (F,,N,P) martingale by 1° of Section 2, since m = N - A as
defined in equation (10) is such a martingale and g given by (13) is FN previsible.

The variation of the two probability measures P and P is connected to the process L
through

PV(A) - I-SV(A) - f (l = Lv) dp: (22)
A

for all AcF\N, where v is some fixed positive integer. Since P, and P, are the restrictions
of P to FN and FN C F_ we can drop the subscripts on the left side of (22).

Roussas {1972} shows that the total variation, Var,(P,P) := Var(P,,P,), between P,
and P, (or between P> and P’ on FN) defined by

Var,(P,P) := sup{ | P(A) - P(A)] : AcF N}
satisfies
Var,(PP) = E((1 - L)1, <), (23)
where the expectation on the right is with respect to the probability P.
Now we follow along the lines of Rost’s proof to obtain a bound on Varv(rs,l’). The

form of his bound is of course different from the one that will be obtained here since his
compensator is absolutely continuous relative to Lebesgue measure.

To obtain a bound on the left member of equation (23), we will decompose the right
member into two parts in such a way that one part is small and the other is small only
when the (FN,P)-intensity a and the (FN,P)-intensity \ are, in some sense, close.

Since Ly = 1 and L,>0 on , we decompose the event [L,<1] into the union of two
disjoint events: [1 - e<L,<1] and [0<L,<1 - ¢]. On the first event, 1 - L, is between
0 and € and on the second it is between € and 1. It follows from (23) that

varv(Fsp) S €+ P((<l & Lvsl)' (24)
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Let
S = inflkeZ, :k<vand |1 I;| >c}, (25)
if {---} 5 ¢ and equal v otherwise. Then
P(e<1-L,<1) < P(maxpg, [1-Ly| >¢) < Ple< |1-Lg])

| <
< :2-E((1 -Lg)’) = —E((L £)3), (26)
the last equality being due to (21). Using (3°) of Section 2, we have
E((L..§)$) = E(L2<6>s), (27)
where
ALEE>, = A<gmgm>y = gfA<mm>; = gdh(l - \). (28)

In order to obtain the last equality from A<m,m>, refer to Section 2. Then
B((Xi - M) [Fiy) = E(X@ | Fyy) -20MEX | Pyy) + M
=M1 - M),
since X2 = X,. From equations (25) through (28), we find that

[ dinie 2
Ple<1-L,<1) < -(;ELLk'-ngk"Xk(l“xk)
i

z s
< (#‘) EEPSkz)‘k(l - M, (29)

where we have used the definition of the stopping time S which provides L, _;(w)<1+¢,
for k going from 1 to S(w). Using Remark 4.3.3. and equations (13) and (17), one can
show that

yon [\, =0 or A\ = 1]

(@~ M)/ = N) oon [0 <] (30)

glA (1 - \) =

Therefore, since P(S < v) =1 and the quantities in (30) are non-negative, v.e can
replace S in the expectation on the right of (29) by v to obtain

5.1. _Theorem:
Let P and P be probability measures on the measure space (),F ) with P<<P. Lete be

any real number such that 0<e<1. If N is a discrele point process with an FN.intensity
a relative to P and an FN-intensity \ relative to P, then

Varv(l—)vp) S €+ (#) Ezv:gkzkk(l i )‘k)v (31)
1

where the summands on the right satisfy (30).
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5.1.1. Remark: Recall that the expectation,
Y
C, = EXgeM(1 - N),
1

on the right of (31) does not depend on ¢ and that there are no constraints on ¢ other
than it is in the open interval (0,1). So, if the non-negative quantity C, is less than 1,
we can choose ¢ = CJ3. Then

2
+(-”—) C, = M4 (14 CURCI® < 5C8, (32)

Therefore, (31) and (32) yield the following

5.2. Theorem:
Under the assumptions of Theorem 5.1,

Var (P,P) < 5C)/3. (33)

5.2.1. _ Remark: Notice that since (23) holds and L, > 0, asP, we always have
Var,(P,P) < 1. Hence, (33) is trivial when C, is not less than 1.

5.2.2. Remark: Only the form of C, differs from Rost’s result.

5.2.3. Remark: The bound in (31) or (33) differs considerably from the usual L;-bound
discussed in Kabanov, Liptser and Shiryaev [1983] and Serfling [1978], Lemma 6.1.

5.2.4. Remark: The following example is due to Rost. It illustrates the use of (31) or
(33). Suppose that ay =ay,), 1<k<v, M\ = X\, a constant, and
|ay - 2| = O(v~®) where 1>6>.5. Then
0<EYgN(1 - M) < C(1/v¥!) — o,
1
as v—oo and so Var,(P,P)—0.
By contrast, under these assumptions an L;-bound on the total variation would be

unbounded. This doesn’t mean that either type of bound is better or worse than the
other, just different.
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SOME PROBLEMS OF ESTIMATION FROM
POISSON TYPE COUNTING PROCESSES

Michael J. Phelan
Operations Research & Industrial Engineering
Upson Hall
Cornell University
Ithaca, New York 14853

ABSTRACT. VWe survey some estimation problems in the area of life
history analysis. The problems we describe involve estimating an arbitrary
life-distribution and the trunsition probabilities of a Markov chain. In our
discussion we emphasize the role of the observation scheme, for example
survival testing versus renewal testing, and the role of the product-iimit
estimator. In this connection we demonstrate the need for the family ‘of
Poisson type counting processes in developing a unified methodology fof
solving these problems.

1. INTRODUCTION. Many areas of science such as demography, mediciﬂé,
industrial reliability and epidemiology give rise to phenomena involving life
histories whose description characterize a family of stochastic processes.
Our interest lies, in particular, in problems where individual life histories
are viewed as realizations of a stochastic process moving among states in a
discrete state space (pure jump processes). For such processes the states
denote the status of an individual (insurance policy, technical component,
etc.) and transitions between states denote events of interest.

To fix ideas consider a problem in epidemiology where one studies the
relationship between a particular exposure and the incidence of any disease
that may develop. For example, healthy individuals may be initially
classified with regard to cigarette exposure and followed forward in time to
determine which of heart disease or lung cancer develops. Thus '"health,'
"heart disease'' and '"lung cancer'' are three states in an individual's life
history and an event occurs when the individual moves from a healthy state to
one of the diseased states. This is the subject of cohort analysis where the
object of interest is the effect of exposure on rate of disease incidence
(see Breslow (1985)).

The example above highlights a salient feature of problems in the area
of life history analysis. That is, individual life histories are influenced
by the presence of auxiliary processes, such as cigarette exposure, which are
seen to effect the rate at which events occur. A similar motivation lies

Key words: Life-testing, Markov chains, censoring, product-limit estimator,
martingale, Poisson type counting process.

Partly supported by the U.S. Army Research Office through the Mathematical
Sciences Institute of Cornell University.



behind some random shock and wear models of system reliability where, in
addition to system age, the hazard rate of time to failure depends on
environmental stresses. In recent years statistical analysis for such
dynamical phenomena have relied on counting processes and their
compensators. A germinal paper in this regard is Aalen (1978) who first
introduced the multiplicative intensity model to various life history
problems such as survival analysis. Since then a great deal of activity in
this area has taken place and an excellent exposition of the role of counting
groce;ses in life history analysis is to be found in Andersen and Borgan
1985).

Counting process models based on intensities generalize the Poisson
process as a model for randum events in time. These models assume the
natural time parameter to be continuous. However, some phenomena such as
consumer loan repayment behavior naturally occur in discrete-time. Moreover,
longitudinal data sets in sociology often arise from panel designs which
generate observed stochastic processes with discrete-time parameter. In our
work we have found it useful to consider a family of counting processes
which, in the terminology of Liptser and Shiryaev (1978), we call Poisson
type counting processes. These counting processes are characterized in
section? by their compensators whose pathwise Radon-Nikodym derivative
relative to a fixed Borel measure is an observable predictable process. The
model generalizes the multiplicative intensity and allows for a unified
treatment of mixed discrete and continuous-time problems. We describe
several examples including survival analysis with arbitrary distribution
measure and Markov chains. In statistical applications each example gives
rise to an estimation problem which we reduce to that of estimating the Borel
measure mentioned above. In sections 3 and 4 we survey some recent results
in this area which rely on the martingale dynamics over point processes as
discussed, for example, by Liptser and Shiryaev (1978), Jacod (1975) and Boel
et al. (1975).

2. POISSON TYPE COUNTING PROCESSES. We define the family of Poisson

type counting processes and give a number of worked examples. Let (,%,P)
denote a probability space and F = §3t,t > 0% a given family of sub-o-

algebras of 7 where F is nondecreasing, right-continuous and complete
relative to P. All of the standard terminology used below, such as adapted,
predictal is and compensator, are defined in, for example, Métevier (1982),
and Liptser and Shiryaev (1978).

Let N = SNt,Gt,t 2 0¢ denote a counting process defined on (Q,3,P)
so that the sample paths of N are right continuous step functions with
jumps of size +1, NO = 0 and Nt is a ﬂt-measurable random variable. Let
B denote a fixed Borel measure over the Borel sets in R+ = [0,o) and let

Y = §Y t > 0 denote a nonnegative predictable process.

t’:’t’

Definition 2.1. If N has compensator A = 3At,3t,t > 0 relative to F
given by

A, = Y Bids3,
(0,t]
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then we say N is a Poisson type counting process.B

By definition the process N = ZNt - At,vt,t > 08 is a local square

integrable martingale and, in the terminology of Jacod (1975), the kernel
A$dt$ is the dual predictable projection to N and is unique to within

stochastic equivalence. If Yt =2 >0 is constant for all t >0 and B

denotes Lebesgue measure, then At =2 and N is a simple Poisson point

process. More generally, if B is absolutely continuous relative to
Lebesque measure |, then definition 2.1 gives rise to the multiplicative
intensity model where the intensity is given by YdB/du.

In life history analysis problems involving an event of a single type
Nt denotes the number of occurrences of this event over (0,t] and At
denotes the cumulative conditional rate of event occurrence over (0,t]. The
actual composition of the conditional rate depends explicitly on the
underlying filtration F, often called a history, so that specification of
the relative richness of F is important. In applications 'Y plays the
role of auxiliary process which may be some measure of environmental exposure
or censoring. For example, in epidemiology Y might denote a measure of
cigarette exposure.

Consider the following examples of Poisson type counting processes.

Example 2.1. Survival analysis with censored data. For each n > 1
iet Xi and Ui’ i=1,...,n denote 2n independent positive random
variables defined on a probability space (R,%,P) with Xi or Ui almost

surely finite for each 1i. xi has distribution measure G and Ui has

distribution measure H. The observable random variables ii and 6i are
given by ii = min(Xi,Ui) and éi = l(Xi < Ui)’ where 1(A) is the
indicator function of event A. In applications Xi denotes the survival
time and Ui denotes a censoring time so that this is a model for random

right censorship.
A history F = §9t,t > 0% will have to record the progress in the

lifetimes of the individuals or components under test. In this case the
natural history is given oy

Gt x 30 Vi o—(Xi < s.bil(ii £ 6), $ € &, % 4,...,0)
where 30 contains the P-null sets of ¥ and their subsets.

In the counting process formulation of this model for each i =1,...,n
ve define N(i) = §1(X, <t,8, = 1), t 20} and Y(i) = i1(?£i > t,t > 0)3

and let B denote the Borel measure generated by the function
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B(t) = I (1-6(s-)) 1csdsy , t >0
(o,t]

where G(s-) = limu sG(s). Clearly the process N(i) is a counting process

equal to zero until the ith survival time elapses and has not been censored
while Y(i) is called a risk process and is equal to one as long as the ith
unit remains alive or at risk to failure.

According to theorem 3.1.1, Gill (1980) N(i) has compensator
A(i) = iAt(i),t > 03 relative to F given by

¢
WOX I 1, > s)Bidsi.
0

Since Y(i) is a left-continuous process it is predictable (see for example
Brémaud (1981)) so that A(i) satisfies definition 2.1 and N(i) is a
Poisson type counting process. To prove that A(i) is the compensator to
N(i) one can verify the martingale property directly using properties of
conditional distributions.#

In the example above the function B(t), t > 0 may be interpreted as
the cumulative age-specific mortality rate for an average or baseline
individual. If the sampling population is homogeneous with respect to
mortality, this is a reasonable model of failure rate. On the other hand,
for heterogeneous sampling populations it is preferable to model failure rate
as a function of an auxiliary random variable.

Example 2.2. Failure rate as a function of a random variable. Let
(2,7,P) denote a probability space on which two positive random variables
X and Z are defined. The random variable X models survival time
whereas Z denotes a measure of a characteristic of the unit of observation
fror a heterogeneous population or some environmental exposure. The effect
of Z on failure rate is modeled as follows. Let G(-;Z) denote the
ceorditional distribution of X given Z so that

G(t;2) = P(X < t]|Z) =1 - exp§-2B(t)} , t>0

where B is a continuous function and denotes the cumulative age-specific
mortality rate for a baseline individual (i.e. Z =1). If B admits a
density h relative to Lebesgue measure, then given the event §X > t? and
Z the conditional failure rate at time t is given by

h(t:Z) = G'(t;2)/(1 - G(t;2)) = Zh(t) , t > 0.

The reader will recognize the conditional rate above as the landmark
proportional hazards model introduced to incorporate heterogeneity in life-
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testing problems by Cox (1972). The function h is the baséline hazard and

Z 1is called a covariate.
Let N=§1(X < t),t > 0 denote the survival time counting process

and F = iﬁt.t 2 0§ be the history defined by

gt =0(Z) vo(X < s,s < t).

Then according to the model above N has compensator A ZAt,t > 03

relative to F given by

t
A, = J' 21(X > s)Bids}.
0

We identify Ys = Z1(X > s) in 2.1 and obtain that N is a Poisson type

counting process.
Let G denote the unconditional distribution measure of the random

variable X so that
G(t) =PXgt)=1-expi-B(t)} , t20

where B is some nonnegative continuous function which uniquely determines
G. Ve exploit the martingale approach to survival analysis to determine

by using the innovation theorem (see for example Aalen (1978)) to determine
EX by a,change of history. The problem may be reformulated as follows. Let
F* = §3x,t > 03 denote the internal history to N given by

Gf =o(X<s8,s<t).

Note that for each t > 0 Sf C Gt and consider the problem of determining
the compensator A = izt,t >0 to N relative the FX. By theorem 18.3,

Liptser and Shiryaev (1978) the compensator A is given by

t
T, = [ E)10x 2 9)p1as3
0

where z(s) = E(Z|X > s) so that B is given by [zdB. Ve identify
Ys =1(X2>2s) and B with B in 2.1 to obtain that A is of the Poisson
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type. Note that the change of history from F to Fx leaves N in the
family of Poisson type counting processes, this is a general result.

In some models of heterogeneity the conditional expectation z is easy
to calculate. For exampée suppose Y, is a Gaussian random variable with
mean p and variance o . If Z =Y, then a direct argument using Bayes
rule given in Yashin (1985) shows that the conditional density of Y given
the svent iX thi is aacau sian densiiy vith mean and variance parameter_
u[26"h(t) + 1] and o°“[2¢ 5(t)2+ W=, respec ively. From Egis fact z
is easily calculated to be o"[20"h(t) + 1] ~ + u®[20"h(t) + 1] ".n

Problems in survival analysis generate a counting process which counts a
single event: transition from an initial state to the state ''failure.” In
general, a univariate counting process, such as a renewal counting process,
counts the repeated occurrences of a single event over time. Often problems
in life history analysis involve multiple types of events occurring over time
so that univariate counting processes are not sufficiently general for their
study. For example, Markov chains are widely used in demography (e.g. Hoem
(1971)), econometrics (e.g. Singer (1981)), and illness-death models (e.g.
Mau (1986)) of broad appeal in insurance and medicine. The transitions among
the states of a Markov chain may be viewed as events of different types;
their being one event associated with each possible pairwise transition among
states of the chain. This demands a multivariate counting process which is
essentially a collection of univariate counting process where each member of
the collection is associated with a particular pairwise interstate
transition.

Example 2.3. Non-homogeneous Markov chains. We give a unified
treatment to discrete and continuous-time Markov chains. Let
X = ixt,t 2 03 denote a Markov chain with finite state space E, defined on

a probability space (R,7,P). Assume that the sample paths of X are right-
contiruous with left-hand limits. If X is a discrete-time chain, then X
is derived from a Markov chain ZYn,n 2 0§, say, by putting Xt = Yn for

n<t<n+1. Let Fx = iﬂﬁ,t 2 03 denote the internal history of X
given by

3¥ = 30 v o(xs,s <t)

where 30 contains the P-null set of ¥ and their subsets. Observe that in
the discrete-time case 9% = Uft]. vhere [t] denotes largest integer in

t.
If X is a continuous-time Markov chain, then we assume that X admits
the Q-matrix or intensity Q(t) = (qij(t),i,j €E E) such that for all t >0

and i # j EE

t

a;5(t) > 0, q;;(¥) <0, ;:.‘qij(t) =0 and J;qij(s)ds < ®.

202



In this case the transition probabilities P(s,t) are given by the product
integral

P(s,t) = T (I +Q(upidul) 0<s <t <o,
(s,t

where j denotes Lebesque measure; see e.g. Aalen and Johansen (1978).
Alternatively, if X is a discrete-time Markov chain, then we assume

that for each integer n > 0 X admits the transition probability matrix

P o= (pij(n)) such that for i,j EE

Py () = PO, = jIX = 1).

Using the same notation we define the discrete analog of the Q-matrix as
follows. For each n >0 and i # j EE let qij(t) = pij(n) if
n<t<n+1, qii(t) = —zjziqij(t) and Q(t) = (qij(t),i,j € E). Then it

is easy to verify that the transition probabilities P(s,t) for the discrete-
time chain are given by

P(s,t) = 1 (I+Qm)= 1 (I+Q(wpidu) 0<sgt<o
s<n<t s<ugt

where u denotes counting measure with support $0,1,2,...3. If the product
is empty it is defined to be 1I.
Fix i # j €EE and define N(i,j) = iNt(i,j),t > 0¢ to be a random

process which counts the number of direct transition from i into j for
the Markov chain X. Thus for t >0

N(i,§j) = & 1(X_=j,X__=1i)
t 0<s<t s »

Our object is to show that N(i,j) is a Poisson type

where xs_ = lim
X

x -
ups’u
counting process with compensator A(i,j) = iAt(i,j),t > 03 relative to F

given by

MG = [ 16 = D (uiast
(0,t]

where | is Lebesque measure for continuous-time chains and counting measure
for discrete-time chains.

By virtue of the Lévy formula (see e.g. Brémaud (1981)) it follows that
for any 0 <sgt
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. ' . : |
EQN, (1,3) - N (1,5 |9 = R
Pt ' 1

= E _[ 1%, = Day;(pidui|o(x)

Ls L

B(A, (1,5) - A,(1,3)]9%)

from which the martingale property for N(i,j) - A(i,j) easily follows.
Note that by the Markov property conditioning with respect to Xs is

equivalent to conditioning with respect to 3§. Thus if we identify
Ys = 1(Xs_ = j) and Bidui = qij(u)pidui in 2.1, then N(i,j) is a Poisson

type counting process. The proof of this without using the Lévy formula may
be made directly in the discrete-time case, and Aalen and Johansen (1978)
give an alternative proof for the continuous-time case.l

Consider a life-testing situation in which at time zero a component is
put on test and upon failure is immediately replaced with an identical
component and so on. The lifetimes generated by this test procedure may be
modeled as an ordinary renewal process and applications can be found in
industrial life-testing and animal experimentation.

Example 2.4. Renewa] testing. Let S = iSn,n > 0 denote a renewal

process induced by the arbitrary distribution measure G. Define the renewal
counting process n = int,t > 08 given by

-]
x, = £ 1(S_<t)
t n=1 n

Define the history F = §3t,t >0 as follows. For t >0

I, = o(sn <$s,s<t,n>1)

and consider the problem of finding the compensator A'= iAt.t 208 to x

relative to F.
For each n > 1 let Xn = Sn - Sn_1 (S0 = 0) so that X = ixn,n > 13

is a sequence of independent random variables each with distribution G.
Thus the conditional distribution of Sn given s (see Brémaud (1981)
n-1
for a definition) is given by G" where
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G"(t) = P(S, < t|F3g ) =G(t-s

= n-1

n-l) g

Hence according to proposition 3.1, Jacod (1975) the compensator A is given
by

t x, n L(t)
n dG(L(s i dG(s dG(s
Ay = I T-G(L(s)) = I, I T-G(s-) ' I T-G(s—) * v20
0 0 0
where L(t) =t - Sy is a left-continuous version of the backwards renewal

t_
time. Therefore because of the presence of the L-process with its well known
saw toothed sample paths = is not in general a Poisson type counting
process.
The regenerative structure of the compensator A suggests that the
family of counting processes generated by the interrenewal times an,n > 13

are of the Poisson type. For each n > 1 define a counting process
N(n) = 31(xn <t),t >08 and the history H = th,t > 08 by

N, = o(X <s,sg<t,n21)

Then by virtue of the independence of the Xn it is possible to show directly
that N(n) has compensator A(n) = iAt(n),t > 0} relative to H given by

t
a @ = [ 1 2 0 Sk
0

which is clearly of the Poisson type. This may be proved either by an appeal
to proposition 3.1, Jacod (1975), by virtue of example 2.1, or by directly
verifying the martingale property. This representation is called the sojourn-
time approach by Phelan (1986b) who applies an exten31on of it to problems of
inference from Markov renewal processes.ll

Thus far only example 2.1 involved censoring. In practice censored
processes or incomplete observations are the rule rather than the exception.
Therefore one yardstick of the utility of a given probability model at
analyzing life history data is its ability to incorporate general patterns of
censoring. Poisson type counting processes meet this demand as is
illustrated below.
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5. Ce e e . Let N= iNt,Gt,t > 0¢ denote a
Poisson type counting process with compensator A = iAt,Gt,t > 08 where
F = iﬂi,t > 08 is a given history. Let C = SCt,Gt,t > 08 be a §0,13-valued

predictable process used to model the censoring. Thus the counting process
N is observable only on the set §t: Ct= 1} otherwise we say the process is

censored. This implies that the observable counting process N = Zﬁt,t 2 0%
is given by the pathwise Stieltjes integral

N

t C_dN

z CSANs =
0<s<t

Oy cr

which is often called the censored counting process. Since C is bounded
and: predictable, by the theory of stochastic integration with respect to
counting process martingales (see e.g. Liptser and Shiryaer (1978)) the
process defined by the pathwise Stieltjes integral

t
ut=J'cs(st—dAs) L t>0
0

is a Gt-(local) martingale. Hence N has compensator A = ixt,t > 0%

relative to F given by
t t
X, = J' C dA_ = J' C_Y Bids}
0 0

where Y = th,t 20 and 3 are defined by 2.1. From this expression it is

evident that N is a Poisson type counting with auxiliary process
SCth,t > 08 and Borel measure B which it inherits from N.B

An example of a left-continuous (hence predictable) censoring process
ict = 1(Ui 2 t)? was given in example 2.1. Censoring of Markov chains is

considered by Aalen and Johansen (1978) and Phelan (1986c) for models in
continuous and discrete-time, respectively, and for the renewal process of
example 2.4 by Phelan (1986a). A general discussion of censoring is found in
Gill (1980), and in the context of nonparametric tests for comparison of
counting processes in Andersen et al. (1982).

One can construct numerous other examples of Poisson type counting
processes. For example, Brémaud (1981) constructs a G/M/1 Queue using
Poisson counting processes. His departure process (see page 37) gives an
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example of a censored homogeneous Poisson process and is therefore of the

Poisson type. Although we have not done so it would be of interest to survey

stochastic models of natural phenomena which generate Poisson type counting

processes. Some examples that we are aware of include models for the mating

behavior of fruit flies (Aalen (1978)), labor-force dynamics (Andersen
21985;; and screening carcinogenic chemicals in animal experiments (Mau
1986)).

In practical problems the measure B is unknown and requires
estimation. The estimation of B is usually based on observations of the
bivariate process (N,Y) over a period of time. A general solution to this
problem involves an empirical process called the martingale estimator of B.
This estimation procedure is presented next and is applied in section 4 to
solve some estimation problems drawn from the models developed above.

3. ESTIMATION FROM POISSON TYPE COUNTING PROCESSES. Let N =

iNt,Gt,t > 0§ denote a Poisson type counting process with compensator
A= iAt,Gt,t > 03, auxiliary process Y = th,Gt,t > 03 and measure B.

Definition 2.1 is extended in the following way. Let J = $t: AB(t) > 0%,
where AB(t) = B(t) - B(t-), be the countable set to which B assigns
positive mass. If J is nonempty, then for each t EJ we allow
AN(t) > 1 with positive probability. This extension is used below where the
superposition of Poisson type counting processes has this property. If the
process (N,Y) is observable over a period of time and B is unknown, then
a statistical problem is to estimate § frog (N,Y).

Define the predictable process Y = th,t > 03 given by

(3.1) Y} = (Yt)—ll(Yt > 0) (0/0 = 0 by convention)

and the empirical process B = iﬁt,t > 03 given by the Stieltjes integral
t
(3.2) B, = [ vtan
y t s s’
0

The process B is the proposed estimator of B and is called the martingale
estimator by virtue of the observation that the process

-8 t >0

t

- + = = R

N, = I Yi(an - ) =B, - B, ,
0

is a (local) martingale where ﬁt = 181(73 > 0)Bjds3. This follows, for
example, by an appeal to theorem 18.7, Liptser and Shiryaev (1978).
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The statistical theory of the martingale estﬁmator is based on
asymptotics. Suppose we are given a sequence Y ,h 2 13 of Poisson type
counting Broc Res and their assoclaﬁed aux111ary processes. For each n
define B ,t >0 from (N°,Y™ according to (3.2). We consider the

xmptotlc (1.e. as n - o) properties of the sequence of estimators
,n > 13. Suppose ian,n > 1% is a sequence of positive numbers tending

to infinity as n tends to infinity. If Yn/ai converges uniformly to a

function y in probab1*1ty as n » o, where y is bounded from zero on
[0,a], say, and (N ,Y') 1is derived as the sum of independent Poisson type
counting processes, then the following properties will typic2lly hold:

a. Consistency.

An 3 I3 3 .
SUPg tca IBy ~ B(t)]| » 0 in probability as n -+ e;

b. Weak Convergence. For n > 1 define §a (B - B(t)),t > 0%,

then Y" converges weakly to a Gaussian process Y° of 1ndependent
increments as n + ®. Weak convergence takes place in the space D([0,a])
endowed with the Skorohod topology (see Billingsley (1968)).

To prove these results one employs two fundamental tools: an inequality
due to Lenglart (1977) and functional central limit theorems for
semimartingales as developed in Jacod et al. (1982). To see why observe that
for each n2>1 and t >0

n n
t+ t—B(t)

It has already been noted that M" = iﬁz - ﬁg,t > 0% is a (local)
martingale, and X" = 3§'t‘ - B(t),t > 0}, being the difference between two

monotone processes, is a process of local bounded variation. Hence " isa
semimartingale (see Shiryaev (1981)). The conditions above may be used to
show directly that anX converges to zero in probability as n =+ o. In

this case the Lenglart inequality is applied to " to prove (a). Then
martingale functional central limit theorems are applied to anM to prove

(b). V¥We omit the details but note that in our work we have found it
convenient to appeal to alternative criteria for tightness found in Jacod and
Mémin (1980).

4. SURVEY OF ESTIMATION PROBLEMS . We give a survey of estimation

problems and results in the areas of life-testing and Markov chain analysis.
We begin with the problem of estimating an arbitrary life-distribution G in
life-testing models and then consider the problem of estimating transition
probabilities of a Markov chain. In our discuss’on we emphasize the
importance of the observation scheme, for example survival testing versus
renewal testing, and the role of product-limit estimators.

4.1 Estimating the life-djst glhygl on. ket G denotg an arbitrary life-
distribution and for t > 0 define B(t) = (1 - G(s-)) "G§dsi. For the

problem of estimating G we distinguish among three observation schemes.
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a) Survijval testing. For each n 2 1 we observe n pairs
(Yi.bi),i = 1,...,n of independent censored lifetimes ii and their

associated censoring indicator 1 - 6i. In the notation of example 2.1,
define the aggregate processes N = iN:,t > 03 and "= §Y:,t > 0% by
Np = EyN, (i) and Y = £1(X; 2 t), respectively. The statistic G &)

t 1
is used below to construct the estimator of G.H

b) Renewal testing. A single renewal process S = isn.n > 0% is

observed over an expanding time horizon [O,T]T T > Q. In the notation of
example 2.4, define the aggregate processes N = iNt,t >0} and

o= ZYI,t > 0f by

n(T) x(T)
Nt = f Nt(n) and Yt = f I(Xn > t),

respectively. Here (NT,YT) is the relevant statistic for estimating G.H

c) Renewal testing with finite horizon and repetitions. Fix T > O.

For each n > 1 we observe n independent renewal processes over [0,T].
In the notation of example 2.4, let =n(i) and ixk(i).k > 13 denote the

renewal counting process and lifetimes, respectively, for the ﬁth rggewal
process, i = 1,...,n. Then define the aggregate processes N = iNt,t > 0%

and Y = §T0,t > 0% by

= n x(i;T) ) = n x(i;T-t)
M=z £ 1X@G)<t) andT =5 = 1(X. . (i) > t),
=1 p=1 2 =1 9=0 2+

respectively. e statistic (F",¥"), which is almost equivalent to
aggregating (N',Y') over n independent realizations, is.used to estimate

G..
.n TR each observation scheme we defipe the empirical process
B" = §B,t 208, B" = §B,t 208 and B.,t >0} by
_ t
an n\+,.n
(4.0) By - I () *an®
0
vith BT and B® defined analogously from (NT,YT) and (™, T,

respectively. The processes B, B and B" are the proposed estimators of
the measure B for observation scheme (a), (b) and (c), respectively, and
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are used to constgyct p;?duct-limit estiﬁatorgnof G. Define the processes
G = §Gt,t 203, G = iGt,t 20 and G = §Gt,t 20 by
1 iy ANy
(4.1) Gh=1- n (1-88)=1- x [1-—
0<sgt 0<s<t YS

with GF and @g defined analogously from 8T and B", respectively. The
processes G , G and G are the proposed product-limit estimators of G
from the observation schemes (a), (b) and (c), respectively. The estimator
G was first formally introduced to the statistical literature by Kaplan and
Meier (1958), although i&s historical origins appear to date eag%ier (see
Gill (1980)), whereas G and G are natural extensions of G .

For each t such G(t) <1, lemma 18.8, Liptser and Shiryaev (1978)
implies that

t an
an 1-6
(4.2) ey - [ Ty 1) (B - aB(s))
0

where f(AB(s)) = (1 - AB(s))_li(AB(s) STI). Of_gourse it is possible to
wvrite analogous expressions involving G and G . It turns out that these
expressions are the key to proving the asymptotic properties of the product-
limit estimators since they either define a martingale or can be well
approximated by a marggngg+e in prggability.

The estimators G, G and G are consistent and the normalized
differences converge weakly to a Gaussian process of independent increments
as n, T and n tend to infinity, respectively. BssentigllzT these _
estimators inherit these properties from the estimators B, B° apd B as
may be proved by the methods of section 3. A detailed study of G is given
by Gill (1980, 1983) although his proof of weak convergence relies on an
elaborate construction inABheorem 4.2.2, Gill (1980). An alternative proof
of weak convergence for G is given by Phelan (1986a) which is based on the
methods outline in section 3 and does not rely on any special constructions.
The problemﬂ@f consistency and weak conver gence for the renewal testing
estimator G is considered by Phelan (i986a). His model includes right
censoring of the interrenewal times apd his method is to show that the
equivalent expression to (4.2) for G is well approximated by a martingale
in p§$bability for large T. Then the asymptotic (i.e. T t @) propgrties
of G° are established in a manner consistent with that used for G.
Finally, the estimator G is considered by Gill (1981) when G is
restricted to being either purely discrete or continuous. He does not employ
martingale techniques although we believe the approximation methods of Phelan
(1986a) can be_Eodified for thisagurpose.-TThis would unify the asymptotic
treatment of G with that of G° and G'.

In closing this subsection we recall the model of example 2.2 for life-
testing in heterogeneous populations or random environments. In the
proportional hazards model the random variable Z depends on an unknown
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parameter ©, say, where inference for © is also of interest. This is a
problem in the general theory of partial-likelihood (see Wong (1986)). In
life history analysis this problem has been considered from the modern point
of view using counting processes by Andersen and Giil (1982) (see also
Prentice and Self (1983)). These authors, of course, generalize the problem
to allow Z to be a time-dependent stochastic process depending on 6.

ti i arkov transi bab ies. For fixed T > 0
let P (P(s t),0 <t < T) denote thr transition probabilities for a
nonhomogeneous Markov chain. Consider the problem of estimating P wunder
the following observation sceeme .For each n > 1 we observe n
independent Markov chains X ix 0<t<T:, i=1,....n each with finite

state space E, transition probab111t1es P and arbitrary initial
distribution.

Let p denote either counting measure or Lebesque measure and suppose
P admits a Q-matrix (cf. examgle 2.3)) relative to p. For each i,j EE
and t > 0 define B (t) (s)uidsi and let B(t) = (B (t) i,j € BE).

¥e begin Ry estlmatlgg the matrlx fugction B = (B(t),t > 0). Fgr i#zjEE
define N (i,j) (1 j).t 208, Y (i) §Y (i),t > 08 and B (i,j) =

iBt(l-J).t 2 03 by

Nn(- ~u s k =
(1,3) = E T 1(xt =

k n 2 K
: X;_ = 1), Yp(i) = £ 1(X,_ = i) and

k=1 0<s<t k=1

t
Bp(,i) = [ (gt g
0

~

and put B(i,i) = -zjziﬁ(i’j)° The matrix valued process B"

(ﬁn(i,j),i,j € E) is the martingale estimator of the cumulative rate matrix
B and is used to construct a product-limit estimator of P. For
0<s gt T define the product-limit estimator P by

P(s,t) = m  (I+ Aﬁg).
s<ugt

If the product is empty, then define P(s,t) = I, the identity matrix. The
estimator P is an empirical transition probability matrix which satisfies
the Chapman-Kolmogorov equation and is the proposed estimator for discrete
and continuous-time Markov chajns.

For i #j €E define B (i,j) = iﬁz(i.j),o <t <T by

B5.9) = [ 1005 > 0)qy;(outdsy
0
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and B"(i,i) = -zjziﬁ"(i,j). Let B" = (B{(1.4),0 <t < T.i,j €E) and
define the process " by the product integral

~n
P(s,t) = m  (I+ %2-(u)u§du§) , 0<s<tgT.
s<ugt H

According to theorem 3.1, Aalen and Johanser (1978) the following integral
equation 1s valid

= (B.0F'(0.t) - 1 = [ F0,s-)(aB] - BDFN0.8) , 0t

Ot— =y

where MW" = iuz.o <t < T} is a matrix-valued process whose ijth element is

the sum of terms of the form

cr

_|' P, (0.5-)(aB2(k,m) - dﬁ‘;(k,m)ﬁ"‘j(o,s).

It turns out that N" is a martingale and this fact is key to proving the
asymptotic propertles of P (ef. equation (4.2) for G").

The est1T7§ is uniformly consistent over [0,T] and the normalized
difference (P = P) converges weakly to a matrix-valued Gaussian process
of independent increments as n + ®. This is proved by Aalen and Johansen
(1978) and Phelan (1986b) in the continuous and discrete-time setting,
respectively. Their treatment is general enough to allow for general patterns
¢f censoring.

In closing this subsection we pose the problem of estimating the
sojourn-time distribution G. for each i € E. This is a problem of

estimating a family of life- dlstrx utions. In fact a product-limit estimator
of G can be constructed from B (i,i) (see Aalen and Johansen (1978)) and

may be studied according to the methods of section 4.1.

5. DJISCUSSION. In this paper we have surveyed some éstimation problems
in life-testing and Markov chain analysis involving Poisson type counting
processes. Our discussion underscores the importance of martingale theory
and the product-limit estimator in providing for a unified theory and
methodology.

Other inference problems, such as setting confidence bands, hypothesis
testing and comparison of sub-populations, are covered by some of the
rei'erences cited herein.
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A HIERARCHICAL MULTISCALE PROCESSING OF IMAGES (*)

B. Gidas (**)
Division of Applicd Mathcmatics
Brown University
Providcnce, RI 02912

ABSTRACT

We describe a new mcthod for Digital Image Processing. It is based on a
combination of Renormalization Group idcas and the Markov Random Field modeling
of images. It provides a unifying procedure for performing a hierarchical,
multiscale, coarse-to-finc analysis of image processing tasks such as restoration,
texture classification, coding, motion analysis, ¢tc. The mcthod has been tested by a

number of computer cxperiments. We report here two restoration cxperiments.

I. _The Mcthod.

Image processing problems (restoration, scgmentation, texture classification,
compression and coding, motion analysis, photomosaics, ctc.), and Robotics Vision
(automatic objcct rccognition), dcal with coopcrative featurcs that cxist and intcract
on a large number of Jcngth scales - from the microscopic features of texture
consisting of clementary "grains" to the macroscopic features characterizing large scale

objects. Such multiscale, interdependent fcatures appear in all sitwations of practical

intcrest:  Images obtained from aircrafts, various types of satcllite data, thcrmal

(*) To appcar in Proccedings of thc Fourth Army Confcrence on Applicd
Mathematics and Computing, May 27-30, 1986, Corncll University, Ithaca, NY.

(**) Partially supportcd by ARO DAAG-29-83-K-0116 and NSF Grant DMS
85-16230.
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images, robot vision ficlds, photon cmission tomography and scans from nuclear
magnctic rcsources, ctc. .

Our method [3] processes images in a multiscale, coarsc-to-fine, hicrarchical
fashion. It is bascd on a probabilistic modcling of images (a Bayesian approach
using Gibbs distributions [2]), and Renormalization Group ideas frém Statistical
Physics and Quantum Ficld Thcory [6). The mct‘hod is highly paralle! and cfficiently
implementable on parallcl architecturcs. The procedure gencrates a (vertical) cascade
of images from a given image. The top level of thc cascade is the original image,
whilc the bottom level of thc cascade contains only the largest scale features of the
original imagc. Each intcrmcdiate level represents features of length scale larger
than the lcngth scale of levels below it, and smaller length scale than the levels
abovc it.

The mcthod consists of two major stages, the Rcnormalziation stage and the
Processing stage. The gencral formulation of thc method with a number of computer
cxperiments can be found in [3] Here we present a simple form of the procedure
fand two restoration cxpcriments). We describe first the Rcnormalization stage:
Given a 2Nx2N image L) (to be, for example, restored, scgmented, or coded), we
construct a scquence of M<N images LK) of size 2N'lx2N'|f, k = 1 ,., M (sce Figure

1; here the cascade appears horizontal rather than vertical). The original image L(O®
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Figure 1: Cascade levels
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has the fincst grid (of lattice spacing, say, 1). Each lower image L(k), | e
has a coarsc grid of latticc spacing 2K Each level LK) is obtained from the
previous lcvel Lk-1) by dividing L&D jnto 2x2 disjoint cells and identifying cach
cell by its center. The sct of these centers constitute the pixcls of the level L&), In
Figurc 1, the dotted squarcs of L(®) arc centered at crosses which become the pixcls

of L), The dotted squares of L) are centered at circles which become the pixels

of L(z), and so on. One should think of each L(k ), k = 1 ... M as being the
riginal im view m _larger and 1 distances.

Each image L( k), k = 0 ,.., M, is associated with a Gibbs distribution P(k).
PO s the prior or postcrior distrbution of L(o), dcpending on whether L@ s
undergraded or degraded. The distribution P(®) is cstimated from the given data
(and the degradation charactcristics, if the data arc degraded). The distribution p(1)
is obtained from P(®) via a Renormalization Group transformation R. Similarly, p(2)
is obtained from P(1) yia R, and so on. At cach level k = 1 ., M, thc image LK)
together with the renormalization group transformation R prescrve all the information
contained in the original image L),

The renormalziation group transformation R is specificd in terms of certain

conditional probabilitics Q as follows: Considcr the ith-ccll of level k-1 (sce Figure

th

2). Let "S l), x£2)' xP), xg“), be the gray levels at the four pixcls of the i*"-cell

(1) (2)
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of Lk-1) (if the original image is dcgraded, the x;’s arc unknown). The center of

h pixcl of the k-level.

the ith-cell (denoted by a cross in Figurc 2), will become the it
The gray lecvel xi' of this pixel in L&) s chosen randomly from a conditional

probability Q(x;|x£l) — xg“)). An cxample of such a conditional probability is

(x{1) (4)
BT WO . B . g

' 1 4
( xSl) ’E’ "1(4)) exD[PKi(X(l ) 4.+ xg N

where p is an arbitrary paramcter. If the gray levels are binary, ie., x; = #l, then
taking p-=+* in (1), we obtain thc "majority rule™ If the majority of the xS“)’s is %!,
then xi' is 1, respectively. If there is tic among the xga)'s, then xi' 1S chosen +1
with probability %  Let x = {x; : i€ L(k'l)) and x' = {xi' T i € L(k)), be the

gray level configurations of L(k-1) and L(k), respectively. Then the Rcenormalization

Group transformation R is dcfincd by

P& (x'y=Rrpk-!l . L R(x'|x)P(k")(x) 2)
{x)
where
Rx'/x) = T Qe x{ 1) ,.., x{4) . (3)
“ieL(K)

If the gray lcvels x; arc continuous, the sums in (1) and (2) should be replaced by
intcgrals.
In gcncral, there is [3]) a frcedom in choosing the cclls and tlc¢ conditional

probabilitics Q (i.c., the cclls nced not be squarcs, and Q necd not bc taken of the

form (1)). Any a_priori knowlecdgc about LO® can be accommodatcd in the
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modcling of L(o), as well as in the choice of the cclls and the conditional

probabilitics Q,

The above stage of constructing the pcnormalized Gibbs distributions P(k).
k=1.,. M, from P(o), is thc Renormalization stage of our procedurc (in this stage

we start from the top level LO) of the cascade and procecd towards the bottom level
LM of the cascade). Next comes the Processing stage of our procedure. In imaging
tasks such as rcstoration, tcxturc classification, coding, ctc.,, we start our processing
from the bottom of the cascade. That is, we first proccss thc coarscst-grid image
LM (which contains large scale fcaturcs only, apd has very few degrees of frcedom).
Then we go upwards. Wc transmit the processed information from level M to level
M-1, and process thc pew (smallcr scale) fecaturcs which appcar in L(M-1) but not in
L(M). We continuc the proccss until we reach L(O), and thus process all the fine
detaits of L(0),

During the kth stcp of the processing stage (i.¢., in going from LK) 1o fevel
L(k'l)) the number of possible _intensity images at theg (k-1)-level constrajned by the
processed information_at the k-level is much smaller than the number of all intensity

images at (k-1)-level without any constraint. This reduces drastcally the number of
computational steps nceded to determine the (k-1)-level., This multiscale, coarsc-to-finc
processing of images, rcsults to a rapid convergencc and reduction of the
computational cost.

The present approach to image processing problems is remincscent to the
pyramid structurcs [l] and to the multi-grid mcthod in partial differcntial
equations [4,5). However, our proccdurc is fundamentally diffcrent from these
schemes, as arc its most important propcertics.

In «cstoration problems, we oftcn combine the above procedure with the

anncaling algorithm: Thc posterior distribution PO o L0 dcpends on  the
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temperature T, ic, p(0) . P‘ro) Hcre thc l‘-dcpcndcnce entcrs through 1 H wheftc
H is thce undcrlymg cncrgy functnon Thc T-dependence of tthsubscqucnt
(renormalized) distributions P‘rk) is more complicatcd. The bottor;n level M of the
cascade (which has vcry few degrees of frcedom) can be restorcd by applying the
annealing algorithm to P(I-M) (quntc oftcn however, this lcvcl can be restored by a
simple dctcrmmatnon” .of.: tl,xc .“k')w.cs't "cncrgy) Havmg rcstorcd a level k
(k = M, M-1 ..., 1), 'wc restore the (k-1)-level, by applying the anncaling algorithm to
the conditional probability

RCOOSTY

(kD[ (K)y = Rex(K) ((k-Dy_T__ %
Ppx(k-D]x(k)y = r(x |x ) (k)(x(k)) . . 4)

where x(X)  denotes thé gray intcnsitics of the k-level (alrcady restored), and
x(k-1) the gray intensitics of the (k-1)-lcvel (to be restored).

At cach level of the restoration stage (i.c., in going fronr LK) o L(k")), we

choose an gnnealing schedale of the form
To :
T(t) = TR E N A " (5)
; 1 +,log t . =

The initial temperature Tg nced not be the same at all. cascade levels. In fact,
choosing Tg to incrcasc as we move from the bottom of the cascase (coarse grid)
toward the top of thc cascade (finc grid), the algorithm is somcwhat faster. In our
cx;;crimcnts (Scction 1I), we chosc Top to be the samec at all cascade levels.
However, this Tq  is ih gencral smaller than the To necded for a dircct anrtealing
of the finc grid level L0 only. There is a thcorctical justification of this fact:
thc rcnormalization group “trajcctorics” [6] move towards the trivial zero-tempcrature

"fixed point” as T(t) #0. Also, the overall convergence of the present proccdure is
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(in gencral) faster than the convergence of anncaling applicd dircctly to the fine grid

distribution P‘l‘?z) .

The Image processing mcthod outlincd in Scction I, has becen tested by a
number of computer cxperiments [3).  Figures 3 and 4 show two restoration
expcriments.

Figure 3

The original signal (a) is a binary, "handrawn" signal with 1025 pixels. The
dcgraded data (b) were obtaincd by adding a Gaussian noisc of mean zero and
variance o2 = 1. (c7- ¢g) represent cight rcstoration levels. Notice that the small
picces at the center and end of the original signal, do not appear until level (c3)-
These picces have a length scale smaller than the length scale of the "fcatures"
contained in (cq) - (c4).

In this cxample, cquation (2) can bc solved cxactly, The rcsulting algorithm is
deterministic (i.c., no anncaling or stochastic rclaxation is nccded), and extrcmely
efficient.

Figurc 4

The original image (3) is a 64 x 64 binary image. It was gencrated by the
"spin-flip" algorithm. Thc dcgraded data (b) was gencrated by adding a Gaussian
noise of mecan zcro and variance o2 = 5. (cg) - (cg) rcpresent three restoration
levels: (cg) 16 x 16 , (cy) 32 x 32, and (cg) 64 x 64 . At cach cascade level we
usc.d the anncaling algorithm (applicd to (4)) with an initial temperature Tg = 1.5,
and performed [ivc sweeps per level. For comparison, we restored the degraded
image (b) by applying thc anncaling algorithm dircctly at the top level (64 x 64).
With an initial tempcrature To = 3 and 100 swceps, the result of the anncaling was

not as good as thc rcsult of our proccdure,
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The final restoration (cg) of the present procedure although satisfactory,
contains somc noise at thec boundarics of the various regions. This noise could be
climinated by using (cp) as the initial configuration of a dcterministic descent
algorithm. Since (cp) is very ncar to the truc “global minimum", any detcrministic
descent algorithm starting (cg) would rcach the truc global minimum in a small

number of itcrations.
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Figure_3 (continued)
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Figure 4 (Continued)
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A Maximum Entropy Method for Expert System Construction

ALAN LIPPMAN
Division of Applied Mathematics
Brown University
Providence, R.I. U.S.A. 02912

Abstract We consider the maximum entropy method of expert system construc-
tion. We show that the construction of the expert system is equivalent to the minimization
of a convex function in as many dimensions as there were pieces of knowledge supplied
the system. We show that in the case where the knowledge presented the system is self-
contradictory, the minimization of this function creates an expert system for a set of con-
straints that is consistent and ‘close’ to the original inconsistent constraints. Monte Carlo
methods for minimizing the function are discussed, and illustrated by computer experi-
ment. One of the examples given suggests an approach to the problem of invariant optical
character recognition.

Introduction An expert system is designed to answer questions. We consider prob-
abilistic expert systems — if the system is given an event, it should be able to calculate
its probability. Such an expert system is actually a distribution on the set of all events
we wish to consider. Typically the knowledge the system is based on will be insufficient to
answer all questions. In many cases we wish to consider, the sheer size of the state space
precludes such knowledge. A medical expert system could be asked for the probability of
a disease given some combination of symptoms, yet the set of all possible combinations of
symptoms is huge, and the knowledge base can not be expected to contain all the different
probabilities. We desire our system to answer questions even in such cases, and to do so
in a reasonable manner, much like a human expert would. For this purp~se we consider
‘the principle of maximum entropy’. Of all the distributions which satisfy the knowledge
supplied the system, we will pick the one with maximum entropy to be our expert system.
The entropy H of a distribution p is defined as

Hp) = - pw)logplw)

weN

where w is an event, {1 is the set of all events, and p(w) is the probability of the event
w. Entropy has an information-theoretic meaning; the distribution with maximum entropy
can be viewed as the one containing the least knowledge. By maxinizing the entropy over
all distributions that agree with the knowledge base, we are picking as our expert system
the distribution that makes the fewest unnecessar; ‘assumptions’. For more information
regarding the justification of the principle of maximum entropy, we refer the reader to [1].

1. Knowledge The construction of a probabilistic expert system begins with knowl-
edge. We classify as knowledge anything that answers probabilistic questions; we think of
a probabilistic question as a function of probabilities and we consider an answer to be the
value we say the function will take on. (This brings up a more general way to view knowl-
edge; we could view an answer as specifying that the function, that defines the question,
has a value in a certain range. We will not be using this type of answer.) Using these ideas,
we see that the knowledge supplied the system can be broken up into distinct ‘pieces’ of
knowledge, each of which corresponds to a distinct probabilistic question and its answer.
Each piece of knowledge is a constraint that must be satisfied by the expert system; if the
answer to the question we ask the system is included in the knowledge base, then the expert
system’s answer is constrained to duplicate it. We can write a constraint in its most general

form as
Bp) = c
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We consider a restriction of the above to the case where B is a linear function of p, our
constraint can thus be written as

Y bwpw) = e
wen

The above constraint is the same as specifying that the expected value of b is c¢. Since
¢ = ¢2eq Plw), we consider the function a, where a(w) = b(w) — cp(w), and we re-write

the above constraint as
Y ewhpw) = 0
wEf

It may seem that this form is very restricted, but it is sufficient for several important types
of constraints ({3],/4!). It is capable of representing any piece of knowledge that can be put
in terms of the expected value of a function; it can thus represent knowledge about marginal,
joint and conditional probabilities. To illustrate this consider the following example:

plwe Sjlwe S)=.5
Using Bayes’s rule. we can re-write the above as

p(we 5N Sz) s
= .}
pwe S)

This can be written as
plwe 51N S)- Spwe S)=0

which is the same as

5 (X505 @) 85 @) pl) =0,

weN

where X's denotes the indicator function on the set of events in S; when w € S we will have
Ls(w) =1, when w € S we will have Xs(w) = 0.

1. Lagrange Multipliers Recall our goal. We wish to find a distribution that satisfies
a set of constraints, and has higher entropy than any other such distribution. Using the
form for knowledge that we introduced in the previous section, we can state the problem

as follows:
max (- Y plw)log p(w))
wen
over all p satisfying (1)
Za,-(w)p(w)=0 i=1..m
wefl
D pw)=1
wen

pw)=0 w€ N

With suitable care, we can use Lagrange multipliers to reduce the above, constrained,
problem to an unconstrained problem. In order to apply the theory of Lagrange multipliers
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we must add some assumptions. For the complete details, we refer the reader to {2; here
we will note that the required assumptions are that

{a;(-)} are linearly independent vectors.
3p(w) such that Z e(w)pw)=0Y¢ and p(w)>0Vwe (2)
wen

The Lagrangian is

Y pw)logpw) + f:"-'(za-'(w)ﬂ(w)) 3 5(2?(«1)— 1)

wenN =1 wen weEnN

We know from Lagrange multiplier theory that there exist A = {};,...,A,»} and & such
that the derivative of the Lagrangian (with respect to i, § and p(«)) at A, is zero, and
that such A, § define local extrema. Performing some algebraic manipulations, we arrive at

the following equations
Z exp(- Z X.'&'(«'J)) Vwe Q
=1

p) = exp(- iz:;xfa,-(w)) / b3
E%Zexp(_f:,\,-a‘(w))L:x - 0 Hwi.. W

weEN V=1

The function 3 ¢ exp(— 2=, Aiai(w)) will be denoted Z(A), where A ={);, ..., Am}. The
function Z is sometimes called the partition function. ;

(3)

Notice that Z is a convex function. Hence there is at most one ), corresponding to
the global minimum of Z, at which Z has an extremal point (i.e., 3%-', Z(\)y=: = OV3).

Under the assumptions (2) we know that such a A must exist, hence the maximum entropy
distribution exists and is unique. A interesting property of Z is that when the assumptions
(2) do not hold, Z has no extremal point (see [2] for the details). Hence, if we try to minimize
Z and succeed, we have found the maximum entropy distribution (since the maximum
entropy distribution is defined, through (3), by the A at which the minimum occurs). Our
computational goal (section 4) will thus be to minimize Z. We note that there have been
many ideas and methods for the computation of the maximum entropy distribution, some
involving Lagrange multipliers, others not; some examples are [1],[5-[7]. The method we
use is based on work by Geman|(3] and Geman|4].

3. Contradictions Let us consider the case where the assumptions (2) do not hold.
We will still assume that the a; are linearly independent. a; will usually be a simple function
of w (for example a; is often a combination of indicator functions), in such cases indepen-
dence is relatively easy to verify. If the constraints are dependent, some can be removed so
as to provide independence. Hence, the restriction that the a; be independent is often easy
to satisfy.

More hazardous is the assumption that

Jp(w) such that Z oi(w)p(w) =0Vi and pw)>0Vwe
wen

This assumption can fail in two fundamentally different ways. The first occurs when there
exists distributions p that satisfy the constraints (so 3= cq ai(w)p(w) = 0), but all such
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distributions assign probability zero to some events. The other way this assumption can
fail is when there exists no p that satisfies the constraints. This is the case when the
constraints are self-contradictory. In both the above situations we can show that trying
to minimize the partition function (i.c., driving the gradient of Z close to zero) and using
the form for the probabilities found by the use of Lagrange multipliers (3), does something
useful.

The original constraints we supplied the system with were

Za.-(w)p(w)=0 f=1...,m (4)

wen

Consider the system of constraints

Za,-(w)p(w):c; i=l... m A (5)

wEfl

]
When |l¢|| = (2 +...€%)? is small enough, we would expect the two systems of constraints
to be interchangeable. Now, let p) be defined as follows

o) = - gx.-a,-(w)) /20

where Z is defined with respect to the constraints (4). If Z has an extrema at X then py is
the maximum entropy distribution for the constraints (4). For any A, we can show (see ?2])
that p) is the maximum entropy distribution for the system of constraints

% alwlpl) = 3 ao)exp( - éx.-a.-(w)) /20 =-v.200/ 20

wEN w€nN

where V, is the #" component of the gradient. So, if, for a given A JIVZ(A)/Z(\)| is small
(correspondmg to fle|| being small in (5)), then p, is the maximum entropy distribution for
a system of constraints that is close to the original system of constraints.

Hence, our desire is to find a A such that [VZ(A)/Z())|| is small. In light of this, let
us examine the cases where the assumptions (2) do not hold. When a system of constraints
has as its only solutions distributions p that assign probability zero to some events, we
can show (see [2]) that Z()\) is bounded below by 1. Hence, all we need to do is make
the gradient of Z arbitrarily small, and we will have found a A that defines a maximum
entropy distribution which satisfies constraints arbitrarily close to those originally supplied.
When the constraints are contradictory, we can show (see [2]) that when V Z goes to zero, Z
will also. But, we can also show (see [2]) that using a continuous gradient descent method
(define A(t) by the O.D.E. d/dtA;(t) = —V,Z(A(t))/IIVZ()A(t))l|, with the initial condition
2;(0) = 0V'1) to minimize Z yields a path A(t) such that ||V Z(A(t))/Z(A(t))| decreases as
t increases. In this sense, we get a maximum entropy distribution for a consistent set of
constraints that approximates the iu:-»nsistent set.

4. Minimising the Partition Function = In this section we consider the computational
side of finding a maximum entropy distribution. Recall that finding the maximum entropy
distribution is equivalent to minimizing a convex function, the partition function Z()), as we
showed in section 2. Recall also that Z(A) and VZ()) are defined by sums over all elements
in 1. When Q2 has a small number of elements, computation is simple. The gradient of Z
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can be calculated exactly, and Z minimized by gradient descent. However, even in a small
letter recognition problem, for example, we may have our letters described by ten features,
each feature being able to take on thirty different values. This yields a state space with
30' elements, and a sum of 30'° terms (each of which involves the exponential of a sum of
m terms), as would be necessary to explicitly compute VZ, is beyond the practical limits
of computation. This difficulty can be overcome by estimating the direction of V Z, instead
of calculating it exactly. Before we delve too deeply (for more details see [2]), let us first
outline the general idea. The crucial observation is that we can find a distribution p,, such
that VZ(A)/Z()) is just an expected value (with respect to the distribution p,) of some
simple function. Notice that V Z(X)/Z()) supplies us with both the direction of the gradient
(so we can minimize Z by gradient-descent type methods) and also tells us how close we
are to satisfying our constraints (see section 3). Since by using Monte Carlo type methods
we can simulate such a distribution p,, and since the sample mean from a simulation is
close to the real expected value, we can actually approximate V Z(A)/Z(\) without doing
a size of 12 number of calculations. The idea of using sampling to find the direction of the
gradient of Z, was first proposed by Geman [3].

Consider a distribution p) on the space {2 where the probability of the event w, pj(w)
is defined, as before, as

_exp(- 27, ai(w)A)
Paw) = 2 wen exp(- i,";l ai(w)A)

The expected value of the function f(w) with respect to the distribution p) is

EAU) = Z f(w)p)‘ (w) . Ewen /(w)exP(- 2:;] a{(w)/\,')

wen wen XP(— 22y ai(w)A))

and for the function — a;(w) we have

= Zwen a;(w) exp(- ;'—il ai(w)Ai) o ViZ(\)
2 en exp(— L2, ailw)h) Z(A)

Since all a gradient descent method needs is the direction of the gradient, we can use the
above. Also note that a measure of how close we are, at a certain A, to satisfying the original
constraints is just || Ej (¢;)l| = ||IVZ(X)/Z()\)]| (see section 3).

Now that we have VZ/Z in terms of an expected value we come to the problem of
simulation. The goal is to find an ergodic sequence w' with marginal distribution p). In
this way the sample expected value of f(w) using S samples is

Ex(-a) =

@] —

> 1) ©

y=1

and for S large this should be close to the true value of E) (f).

The method we use to find an ergodic sequence requires that 02 have some sort of
neighborhood structure, we will thus revise our view of the state space {1. For the sake
_of clarity we will consider each event in ) as the state of a 1-dimensional lattice with N
elements. An element w in © will thus be of the form w = {wy,...,wn,}. Furthermore,

each component of w, wy will be restricted to N} different values (2 will thus have l-[iv:l N}
elements). We note that with a lattice structure {1 can get very large, without much effort.
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Our ergodic sequence will start at a random point w! in 2. We will then pick w'
glven w' as follows; we will fix most of the components of w'*! to be the same as the value
for w'. The values we don’t fix will allow w't! to be any element in some subset of §2, call
it T, containing 7 elements, {¢,...,¢t}. We will then randomly pick an element from T,
according to the probabilities pj (t;), to be w'*!. This is done as follows: we first calculate
Z(A): pa(t;) for every t; in T, then we randomly (according to a uniform distribution) pick
a number between 0 and Z(A)- 2_7_, pa(t;). This randomly chosen number will be between

Z(A)- pa(t;) and Z(A)- px(t;+1) for some t; in T, and we will let w'*! = t. Note that
Z(A): pa (t) equals exp)_ ", (- a;(t;)Ai), which Just requires an order of m operations to
calculate. Since we usually have m less than several hundred, we are in good computational
shape. Of course, one has to be carefull when picking T at each step [ (1.e., decide which
components of w' to fix) in order to avoid creating numerical artifacts. This is not too
difficult; one approach is to fix components in a random order and with egual likelihcod.
This method of finding an ergodic sequence is known as Stochastic Relaxation [3| and is
closely related to the Metropolis Algorithm [8].

Now let us say a word about the minimization of Z, given that we have estimates
for the gradient. We note that finding the gradient is still 2 computationally difficult task,
and hence we desire to use a method that requires the direction of the gradient at as few a
number of points as possible. A discrete analog of the continuous gradient descent scheme,
suggested in section 3 for handling contradictions, would prove too costly; we will therefore
assume that the constraints are not self-contradictory, so any method that drives VZ to
zero will be acceptable.

We implement a modification of the standard gradient descent method. Typically,
gradient descent refers to constant small steps in the direction opposite to the gradient.
Instead, to minimize the number of times we need to compute the gradient, we employ a
slight modification. We will still move in the direction opposite to the gradient, but the
size of the step we take will not be constant. When we begin we will pick a value for our
step-size § (positive). We will always start at A° = 0, since this corresponds to the uniform
distribution on 0, a logical starting point. At the point A’ we will find a A"™*! such that
A1 = A~ §V Z()¥)/Z()\') where & is picked as follows. Since Z(A\* ~ 6V Z(X)/Z(\')) is a
convex function of § its derivative (with respect to §) can only be zero for at most one 6,
which we shall call 8. If § does not exist, then Z(A\'— 6V Z()*)/Z()?)) is a decreasing function
of §, and since Z()) is bounded below by zero, we would have V Z(A*— 6V Z(A')/Z()")) going
to zero; so for § large enough A'~ 6V Z(A"'/Z(A\*) would define an adequate solution (section
3). When & does exist, we see that the derivative of Z(\' — 6V Z(X*)/Z(}%)) (thh respect
to §) is negative for all § greater than zero and less than §. Hence, picking 6 between 0
and & would yield Z(A*1) less than Z(\'). However, the closer & is to & the smaller Z(A\"*1)
will be. We will pick 6 between & and &/¢ (¢ around 2) by doing a binary search: if the dot
product VZ())- VZ(\ - 8V Z(\*)/Z()\")) (remember that Z is positive, so the sign of this
term is computable even without normahzmg) is negative we try b=56/ J€, if posmve we try
6 =be. When VZ(\')- VZ(\' = 6V Z(A)/Z()\¥)) switches sign from the last & to the current
6, we will have completed our search in the direction V Z(A’); we will define A**! using the
6 (choosing from either the current or the last) for which the sign was positive. In this
manner we will be sure that Z(A™t!) < Z(A'). Making € smaller (close to, but above, one)
yields higher accuracy, but since our gradients are not exact, and since we would need to
find many more gradients, a computationally expensive task, it is not worth it. We save the
value of & that we used last, for the next step, since it is usually of the correct magnitude.

A useful feature of the above method is that it provides a means to test our sampling
method. As we increase §, the dot product VZ(A'): VZ(\' - 6V Z(X*)/Z()\')) should be a
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decreasing function. Likewise as we decrease § it should be an increasing function (keeping
6 positive). If this is true for the sampled values of the dot product, we can have more
confidence in the sampling method. If it is not, we know that our estimate of the gradient is
wrong, in which case we can take appropriate action. We can increase the number of samples
we are averaging over (S in (6)), we can start at multiple begining points (w!,&?,...) and
then average over the different trials ({w!,. ,uw!a!,...,d',..}), we can dxscard the first
n elements of the series to get rid of the eﬁ'ects of the random starting point, etc... There
are many things that can, at the expense of increased computation, be done to improve the
accuracy of the sampling method.

The next, section is composed of two examples. The first is a test of our simulation
methods. We construct a distribution and extract statistics. We then find the maximum
entropy distribution. We then calculate VZ/Z exactly, and see that the simulation was
successful (since the values for VZ/Z are quite small). The state space for this example is
of size 224, 30 the exact calculation of V Z was quite lengthy.

The second example we consider is the problem of letter recognition. Sample letters
were presented and features extracted from them. Statistics of the features conditioned on
the letter served as our knowledge. The maximum entropy distribution was found and used
to identify the sample letters. Considering the primitiveness of the features the results are
encouraging.

5. Results
Example 1: A test of our method

In this section we conduct a test of our simulation methods. We will consider a
distribution on a large state space and use the statistics generated by the distribution to
form constraints. We use sampling methods to conduct the gradient descent (section 4), and
find a point A that will serve as our guess for the extremal point of the partition function.
We then compute VZ(1)/Z()) exactly. This will serve to tell us how the statistics generated
by the distribution generated by A differ from the statistics of the original distribution. We
will present (on the following pages) the statistics of the original distribution, the estimated
value of VZ(X)/Z(X) and the true value of VZ(X)/Z(}).

We will have as our state space, {2, the set of all strings of length 24 composed of 1’s
and -1’s, so N has 22 elements. We plcked this state space so that the exact calculation
of VZ and Z is possible, although quite lengthy. The distribution p we use to generate

statistics is
exp(~ .’1, k-.w.W(:,k)wk s T(i)w)
2 .en exp(- Wi Wi, k)w,,—Z: T ($)wi)

Where W (i,5) was picked randomly to be either +¢ or — ¢, and T(1) was picked randomly
to be either +d or —d. The values of d and ¢ were chosen so that the distribution p is
neither too flat nor too sharp. We used ¢ = 1/5 and d = 1/2. Our constraints are the
expected values of w; and ww; with respect to . Our constrair.ts are thus

plw) =

E(w;) - z wip(w) =0 for all ¢
wEN

Elwwj)— Y_ ww;pw) =0 for all §,j withi> j
w€nN

where Z(w;) and E(ww;), the expected values with respect to , were computed exactly.
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We can write the partition function, Z(A) (where A = {A;,...)300}) as

24 24 24 .
Z(0) =D exp(d_ D A1) (25— (/2)+h- i1 Wiwk = Ewar)) + 3 Aazoilwi = B(wi)))
wefl =1 k=i =1

On the computational sid~ ot things we used 20 starting points in the sampling. Each
sample involved 80 steps, {w*, ...,w®}, the last 50 being kept to form the expected value.
Each step was composed of randomly dividing the 24 components of the string into six
groups (four in each). We then chose a group and, holding the other groups fixed, picked
a value for it according to the distribution p, (see section 4). We repeated this procedure
until each of the six groups had been allowed to vary once.

We note that the computational time taken to conduct all the steps of the gradient
descent (involving the estimation of V Z/Z several hundred times) was less that that needed
to do one exact computation of VZ/Z.

Recalling that A was our estimate, we have (see section 3 and 4)

Es (wiwk) = Elwwi) = V(o 1)25-(i/2)+k i1 Z(A)/Z ()
E5(wi) = E{wi) ~ Vare+iZ(A)/Z(A)

E; being the expected value under the distribution generated by A. The percent error in
EX 1s
the true value of V;2/2
the value of the associated statistic in the original system

One measure of the “fit” of the maximum entropy distribution generated by X is the median
value of the percent error, which was, for the A we found, .07. So, compared to the original
statistics, the errors in the statistics for the maximum entropy distribution generated by A
were typically small.

The results on the following pages contain more detailed information about the be-
havior of the maximum entropy distribution generated by A. They are the statistics of the
original distribution, the estimated value of V.Z(A)/Z()) and the true value of VZ(X)/Z()).
The results are presented in ten row, thirty column tables. (On the first row we will have
{Vi12/2,...,V192/Z}, on the second {V1,2/Z,...,V2Z/Z}, etc.) They are presented in
such a way that the statistics in the first table have the same position in their table as the
gradient associated with that statistic has in its own table. The statistics concerning the
E(wsw;) are thus on the top of the table.
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0.0806
-0.2676
-0.1561

0.2384

0.1153
-0.2566
-0.0611
-0.0626

0.1199
-0.0506

0.0578

0.0747

0.1283
-0.1996

0.1411
-0.1274
-0.1389
-0.0332

0.1225

0.4491

0.0290
-0.3274

0.0815

0.1964
-0.0993
<0.1502

0.0808

0.0553
-0.4085

0.2816

0.0181
0.0526
0.0459
0.0089
-0.0019
-0.0027
-0.0189
0.0076
0.0466
0.0134
0.0137
0.0183
-0.0331
-0.0248
0.0834
0.0240
-0.0263
0.0524
0.0252
0.0516
-0.0406
0.0178
0.0250
-0.0513
0.0016
-0.0863
0.0328
-0.0188
0.0643
-0.7108

0.4255
0.1587
0.1139
-0.1810
-0.2382
-0.0483
0.1214
0.0139
0.1702
0.1471
-0.1158
0.2564
-0.3382
0.1433
0.0855
-0.1325
-0.1806
0.0306
-0.1729
0.1652
0.1046
-0.3316
0.3093
0.1346
«0.1701
0.3540
-0.1662
0.0776
0.1994
0.0204

0.0044
-0.0433
-0.1033
-0.0006
-0.0347

0.0156

0.0001
-0.0114

0.0200

0.0287

0.0614

0.0545

0.0112

0.0096
-0.0871
-0.0730
-0.0442
-0.0090
-0.0466

0.0211
-0.0124
-0.0483

0.0564
-0.0110

0.0281
-0.0077

0.0200

0.0411

0.0026

0.0230

-0.5389
-0.4326
-0.2435
0.1295
0.0820
-0.3900
-0.3010
0.3400
0.4366
-0.3767
-0.2955
-0.0816
0.2184
0.0238
0.1670
0.1253
0.1306
0.1210
-0.0798
0.0285
0.0138
0.1087
-0.1086
0.1088
-0.0309
-0.016%
0.1384
0.1831
0.0478
0.7344

0.0103
0.0646
-0.0199
0.0140
0.0754
0.0104
-0.0323
0.0145
0.0033
0.0575
0.0371
-0.0850
0.0113
0.0528
0.0368
-0.0221
-0.0489
-0.0063
-0.0233
-0.0190
-0.0615
-0.0144
0.0125
-0.0483
-0.0513
-0.0792
-0.0552
0.0186
0.0519
0.0034

0.4194
-0.1210
0.1101
0.1596
0.0935
0.0760
0.1056
0.2608
0.1741
0.1875
0.1812
<0.1574
0.1454
-0.0056
<0.1307
0.0540
0.2210
0.1267
0.0621
-0.1744
«0.0861
-0.0558
0.3438
-0.0214
-0.2673
-0.2966
0.2146
-0.1699
0.3981
0.3949

Table of E(w;wy), E(w;)

-0.0576
0.0483
0.0280
0.0496

-0.0593
0.0496
0.0506

-0.0614

-0.0422

-0.0071

-0.0227

-0.0454
0.0776
0.0885

-0.0412

<0.0180
0.0198
0.0133
0.0099

«0.0821

-0.0315
0.0403

-0.0317

-0.1200
0.0288
0.0160
0.0275
0.0628
0.0365

-0.0136

-0.0858
-0.0087
-0.2267
-0.0861
0.0209
-0.0824
0.2089
-0.3386
-0.0385
-0.4381
-0.1849
-0.0171
0.0056
0.0272
-0.0344
-0.3286
-0.0180
-0.0879
0.1784
0.0841
0.2085
0.0223
0.0098
-0.0820
-0.2077
0.3280
0.1215
-0.1746
0.1448
-0.0182

0.0205
-0.0115
-0.0314
-0.0075
-0.0005
-0.0028
-0.0181
-0.0072

0.0862

0.0232

0.0176

0.0182
-0.0295
-0.0403

0.0673

0.0146

0.0608
-0.0662

0.1209
-0.0714
0.0366
-0.0188
0.0388
0.0142
-0.0883
0.0610
-0.0389

0.1088
-0.56436
0.0143
-0.2118
-0.3710
-0.1789
-0.2099
0.5548
0.1162
-0.2008
0.3361
0.2316
0.0848
-0.307¢
0.0115
0.0894
0.0071
-0.0752
0.1587
0.0775
0.1386
0.1356
0.1848
0.0429
0.1756
-0.1534
-0.0259
-0.0239
-0.0911
-0.0226

0.0128
0.0238
-0.0270
0.0112
-0.0170
0.0264
-0.0392
-0.0147
-0.0520
0.0174
0.0547
0.0142
0.0342
-0.0448
-0.0717
0.0747
-0.0837
-0.0188
-0.0233
-0.0110
0.044)
-0.0200
0.0483
0.0231
-0.0227
0.03G5
-0.0724
-0.0424
-0.0524
0.0168

-0.2769
-0.2733
-0.1123
-0.1079
0.1078
-0.1297
-0.4132
0.3427
<0.1655
-0.1207
0.2009
0.2813
0.1245
-0.1960
-0.0492
-0.1906
-0.2461
-0.2189
0.0587
-0.2494
-0.0243
-0.3817
0.1888
0.2873
-0.2182
0.0202
0.1721
-0.6172
0.4876
0.3911

0.0354

-0.0332
0.0152

-0.0304
0.0162
0.0208

-0.0221

-0.0204
0.0058
0.0195
0.0213
0.0867

Table of estimated v2(3)/2(%)

23%

-0.1605
-0.1378
-0.1405
-0.2927
-0.0810
0.1580
-0.0192
<0.1447
0.0974
-0.2045
-0.0898
0.0894
-0.1346
-0.1132
-0.1187
0.2345
-0.0658
-0.0002
0.2528
0.1086
0.2994
-0.1041
0.3935
0.1646
-0.1013
0.0823
-0.1384
-0.3503
0.1390
0.0047

-0.0573
-0.0582
0.0172
-0.0801
-0.0054
0.0160
-0.0578
-0.0130
0.0025
0.0441
0.0389
0.0347
-0.0370
-0.0560
0.0835
0.0130
-0.0166
-0.0195
-0.0170
0.0075
-0.0273
0.0106
0.0110
-0.0165
0.0133
-0.0463
-0.0108
-0.0346
-0.0826
-0.1384

-0.0471
0.0675
-0.0727
-0.1603
0.0578
<0.5501
-0.2100
0.4044
-0.0307
-0.0289
0.1631
-0.2684
0.2802
-0.2609
0.8927
-0.1451
-0.1536
0.1518
0.0247
-0.0153
0.1015
0.0738
0.1908
-0.1003
0.3897
0.0419
0.3438
-0.5228
-0.2291
-0.8163

-0.0112
0.0352
0.0277

-0.0083

-0.0863

-0.0186

-0.0270

-0.0220
0.0689
0.0726

-0.0030

-0.0603
0.0079

-0.0749

-0.0058

-0.0218

-0.0457
0.0259

-0.0228
0.0340
0.0446
0.0494

-0.0118
0.0306

-0.0107

-0.0299

-0.0077

-0.0599
0.0023
0.0827

-0.4299
-0.2034
0.0058
-0.0798
-0.2163
-0.3170
0.2303
0.2766
0.1474
-0.1637
0.0670
-0.1118
-0.1257
0.1727
0.4310
0.1649
-0.0483
-0.1677
0.0028
0.3228
-0.0400
-0.1794
0.0734
-0.0602
0.1054
-0.2966
-0.0841
0.0238
0.4696
0.3157

-0.0207
0.0075
0.0107

-0.0053

-0.0052

-0.0580

-0.0151

-0.0437
0.0136

-0.0476
0.0127

-0.0647
0.0057
0.0524

-0.0162

-0.0192
0.0396

-0 0263
-0.0543
-0.1162
-0.0770
0.0310
0.0119
0.0304
0.0240
-0.0415
-0.0101
-0.0123
0.0507



0.0004
0.0029
-0.0817
-0.0140
-0.0085
-0.0196
-0.0019
0.0259
0.0281
0.0301
0.0401
0.0045
-0.0001
0.0243
-0.0094
-0.0159
-0.0285

-0.0181
0.0049
0.0070

-0.0039

-0.0107
0.0049

-0.0005

-0.0087
0.0111
0.0229
0.0200
0.0204

0.0116
0.0204
-0.0117
0.0130
0.0215
-0.0130
0.0015
0.0067
-0.0028
0.0062
0.0010
-0.0235
-0.0046
-0.0186
-0.0030
0.0169
-0.0130
0.0815
0.0050
-0.0353
<0.0269
0.0180
-0.0375
-0.0465
-0.0344
-0.0272
0.0008
0.0031
0.0274

-0.0178
0.0477
-0.0152
0.0087
-0.0188
0.0241
0.0801
-0.0064
-0.0001
0.0022
0.0006
-0.011%
0.0067
-0.0180
-0.0065
0.0182
0.0238
0.0142
0.0218
-0.0014
-0.0089
0.0210
-0.0178
-0.0200
0.0008
0.0085
0.0045
0.0017
0.0393
0.0308

Table of true v 2(3)/z(3)

0.0168
0.0017
-0.0069
0.0282
0.0214
-0.0128
-0.0010
0.0000
0.0279
0.0208
-0.0094
0.0045
-0.0079
0.0083
-0.0238
-0.0046
0.0146
0.0012
0.0098
-0.0258
-0.0022
0.0176
-0.0173
-0.0194
-0.0130
0.0050
0.0218
-0.0148
0.0226
-0.0525

2%

0.0138
0.00956
-0.0288
-0.0004
-0.0027
0.0262
-0.0112
<0.0185
-0.0257
0.0093
0.0058
0.0065
0.0034
-0.0144
-0.0071
-0.0230
-0.0065
0.0306
0.0016
-0.0010
0.0189
0.0094
-0.0007
-0.0037
0.0004
-0.0045
-0.0234
0.0223
-0.0146
0.0347

-0.0258
-0.0259
-0.0116
-0.0071
-0.0297
0.0044
0.0188
-0.0128
-0.0167
0.0014
-0.0060
-0.0008
0.0077
-0.0173
-0.0105
-0.0011
0.0043
0.0129
0.0128
«0.0069
-0.0263
-0.0033
0.0311
-0.0021
-0.0170
0.0021
0.0275
-0.0016
0.0206
0.0002

-0.0143

0.0077
-0.0147
<0.0014

0.0244 -

0.0198
-0.0195
-0.0276

0.0059

0.0183

0.0031

0.0152
-0.0069
-0.0136

0.0080

0.0057
-0.0159
-0.0136

-0.0120
-0.0034
0.0144
0.0001
0.0017
-0.0019
-0.0245
-0.0046
-0.0240
0.0019
-0.0478

-0.0304
0.0066

0.0001 .

-0.0171
0.0249
0.0049

-0.0145

<0.0189
0.0068
0.0120
0.0023

-0.0188
0.0025

<0.0128
0.0184

-0.0165

-0.0240

-0.0041

-0.0816
0.0807
0.0195
0.0152
0.0005

-0.0100
0.0167
0.0099
0.0089

-0.0092

-0.0198

-0.017%

-0.0050
0.0386
0.0114
0.0035
0.0135

-0.0208
0.02568
0.0189
0.0244

-0.0009

-0.0132

-0.0328
0.0225
0.0019
0.00587
0.0074
0.0129
0.0124

-0.0288

-0.01587

-0.0142

-0.0099
0.0259

-0.0199

-0.0035

-0.0006

-0.0108

-0.0002

-0.0030
0.0187



Example 2: Letter recognition

Let us consider the problem of invariant letter recognition. We will be presented with
a picture of a letter of unknown size, orientation and font, and we wish to find out which
letter it is. For the sake of simplicity we will use simple images with just two grey levels
(black and white), and we will just consider the capital letters 4, ..., G.

There are many ways to approach this problem, the one we will consider is based on
feature extraction. We will deal with the invariance of the problem by extracting features
(scalars) that are independent of the orientation or size of the letter. Our expert system
will be a distribution on the space of features and labels, where the latter identify the
letter. This distribution will be used to find the probabilities of the labels conditioned on
the observed features (e.g., P( ‘the letter is an A’| feature, = 5, feature; = 6) = .3)

Choosing the features is a crucial task, and should be given as much consideration as
the construction of the expert system that uses them. Features can be roughly separated
into two groups, local and global. Global features deal with the whole picture and are what
we used in the results presented in the following pages. Local features deal with the local
behavior of the picture elements. Hence, local features are ideal for occluded pictures. Local
features seem more powerful and, it is our belief, will be essential for a true solution to the
invariant character recognition problem.

The features we used in our example were non-standard. They were picked because
they seemed reasonable and not too difficult to compute. They mostly deal with holes
and indentations. A hole being a white (non-letter) region completely surrounded by the
letter (typically A has a hole, C does not), and an indentation being a white region that
is connected, is in the convex hull (the convex hull of the set S is the smallest convex set
containing S) of the letter, and yet not a hole. Some thought will show that this is exactly
what we mean by an indentation (typically O has no indentations, T has two). Below are
listed twelve of the features we use.

1 The size of the largest hole / The size of the convex hull of the letter
2 The size of the second largest hole / The size of the convex hull of the letter
3 The size of the third largest hole / The size of the convex hull of the letter
4 The size of the largest indentation / The size of the convex hull of the letter
5 The size of the second largest indentation / The size of the convex hull of the letter
6 The size of the third largest indentation / The size of the convex hull of the letter
7  The ratio of longest to shortest axis of the largest hole

8  The ratio of longest to shortest axis of the largest indentation

9  The ratio of longest to shortest axis of the second largest indentation

10  The ratio of longest to shortest axis of the third largest indentation

11  The total area of the indentations in the largest hole / The size of the letter
12 The total area of the indentations in the largest indentation / The size of the letter

We also have several other features that deal with the points that span the convex
hull. We construct these features as follows. Let our original set of points be the smallest
set that spans the convex hull of the letter. At every step remove one point from our set of
points, picked to maximize the area spanned by the remaining points. Continue doing this
until no points are left. Our final features shall be

13 The number of points that span the convex hull of the letter
14 The area spanned by six remaining points / The area of the convex hull
15 The area spanned by five remaining points / The area of the convex hull
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16 The area spanned by four remaining points / The area of the convex hull
17 The area spanned by three remaining points / The area of the convex hull

These features are useful since they tell us how curved the letter is. For example the
letter ‘E’ is square so the area left after removing all but four points should be large, but
when only three points remain the number should be much smaller.

The knowledge we used to form our expert system deals with the expected values of
the features, the features squared, and the products of selected features, all conditioned on
the letter (eg. E(feature,| the letter is an A) = C,, E((feature, )?| the letter is an A) = Cj,
E(feature, - feature,| the letter is an A) = C3). We also give our system the very important
piece of knowledge that the letters are of equal probability (each of probability 1/7). It
would be nice to use all the products of features as constraints, but with seven letters and
17 features we would have sev:ral thousand constraints and this is computationally difficult.
In the experiment that yielded the results on the following pages we used the conditional
probabilities of only fifteen different products. The total number of constraints was thus
350.

On the computational side we use several techniques to improve the behavior of the
gradient descent. The first technique deals with the constraints themselves. In general
a constraint is of the form E(G;) = C;, where G; is some function and C; is a constant.
Typically we find C; by taking a test sample, and using the sample mean of G;. However
this does have problems. Since our gradient descent is not exact we typically end up with
ViZ/Z small for all 1 and typically of the same order of magnitude, but not exactly zero.
Thus if we have as a constraint E(100- G;) = 100- C; for some j, then E(G;) = C; will
come mucl closer to being true in the resulting maximum entropy distribution than if we
had E(G;) = C; as the constraint. Also, there is a problem caused by wanting our expert
system to recognize things not in the sample that formed our constraints. In the following
results we trained our system with 5 samples of each letter. Now, what will happen if we
try to recognize a letter that was not in the population we used to train the system? We
would like it to be recognized, especially if it is similar to the original population. This
. does not always happen. One particular case of this problem is caused by boundry effects.
If a feature has range O to 1, and all the sample letter C’s had value O for this feature,
then the only way to satisfy the constraint E(feature | letter is a C) = sample mean = 0,
is to have P(feature = 0| letter is a C) = 1. If we present a C which has value .001 for
this feature, it will not be recognized. While this problem could be cured by having a large
sample (and should be), it and the previous problem can both be dealt with by scaling and
slightly modifying the constraint functions. For the full details we refer the reader to [2].

Now let us consider the sampling method itself. In this problem the constraints have
a rather odd form, almost all of them are conditioned on tiie letter. This can lead to
difficulties in the sampling method. When the letter is an A, for example, the features
tend to have certain values, as the constraints specify. At every step in the sampling we go
through the feature vector, holding most of the features fixed and then picking those that
are not fixed according to a distribution. However when the label is ‘A’, the features tend
to stay within a certain range. When it comes time to fix the features and vary the label,
the distribution that we use to pick a label, being generated by features that correspond to
an A, will emphasize the label ‘A’. This is to be expected, since we can think of the label
‘A’ as corresponding to some region in the state space, and forming a sort of ‘well’ in the
energy landscape (a region of very likely events, corresponding to ‘A’s, surrounded by a
region of low probability that corresponds to feature values not associated with any letter).
Once such a ‘well’ is entered it can be difficult to get out of. So, if the label ‘A’ is turned on
it tends to stay on, and our sample will quite possibly over-emphasize one particular letter
at the expense of the rest.

Since all the constraints involving the features are conditional, we can use the following
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change in the sampling method to cure the problem mentioned above. We will first fix label
at ‘A’. We will then conduct gradient descent on Z until the values of V;Z/Z are small for
all the #’s corresponding to constraints conditioned on the label being ‘A’. Then we fix the
label ‘B’ and continue. After we have gone through all the letters (in our case A,...,G) we
start sampling normally (letting the label vary). Since the values of V,Z/Z are small for
all ’s corresponding to conditional constraints, we need only conduct gradient descent until
the constraint that all letters be equally hkely is (close to being) satisfied.

Now let us present the results. The letters we wished to identify are on the following
pages. They are the same letters that were used to find the sample means in the constraints.
The prcbabilities of the labels conditioned on the observed features, given by the maximum
entropy expert system, is provided underneath the letters. Only the top three probabilities
are listed for each letter, in the interest of saving space. The energies are also listed, where
the energy is Y, ~ a;(w)A; (where w is the element of 0 corresponding to the fee’ 1re vector

plus the hypothesized label, and X is the result of our minimization of Z). The energies are
given to provide some compa.rison between different letters (“this E looks more like an E
than that E”).
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PROBABILISTIC FINITE ELEMENTS AND
POTENTIAL APPLICATIONS TO FRACTURE

Wing Kam Liu, Ted Belytschko,
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Evanston, Illinois, 60201, U.S.A.

ABSTRACT. Methodologies for treating random field problems by finite
elements are described. The methods are based on second-moment analysis
procedures, but they are remarkably robust and are able to deal with
substantial nonlinearities. Both static and dynamic problems have been
considered. Some applications to linear and elastic-plastic structures are
described along with potential applications to fracture which are now being
considered.

I. INTRODUCTION. The probabilistic analysis of engineering problems by
finite element methods 1s currently a dynamic area of research. The most
widespread statistical approach for analyzing probabilistic systems is by
simulation, the direct Monte Carlo Simulation [1-3] being the most frequently
us2d. Since the accuracy of the statistical results is dependent on the
number of samples, the analysis can be prohibitively expensive for large
systems. Although simulation techniques can be applied to linear and
nonlinear systems, they are in general quite inefficient. Thus, there is
considerable interest in non-statistical approaches, such as second-moment
analysis and Probabilistic Finite Element Methods (PFEM). For linear systems,
second-moment analysis techniques [3,4] have proven to be effective in
structural mechanics. But, the extension of second-moment analysis to
nonlinear structural dynamics is not currently feasible. Consequently, recent
developments in the statistical analysis of 1linear and nonlinear structural
dynamics have been advanced with PFEM,

Although the development of PFEM is a relatively new area of research,
the amount of literature is quite broad [5-13). The authors' research has
encumpassed both static and dynamic linear PFEM as well as recent advances in
nonlinear PFEM. The development of PFEM for static linear analysis with
material randomness is discussed in Ref. [9]. In the application of PFEM for
linear dynamics, secular terms arise in the statistical distributions causing
erroneous results [8,11,13]. In Refs. [8,9]), the PPEM is extended to static
and dynamic nonlinear analysis with material and geometric nonlinearities.
Extensive research has been done in the application of BFEM for elastic/
plastic materials [9,10]. Recently, the PFEM has been developed using a
potential energy variational principle [11]). In this manner, problems with
random materials, shapes, body forces, and boundary conditions can be easily
incorporated into the PFEM. In Ref. [12], the probabilistic potential energy

*The support of NASA Lewis Grant No. NAG3-535 for this research and the
encouragement of Dr, Christos Chamis are gratefully acknowledged.
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variational principle is extended to a three-field Hu-Washizu variational
principle. The PFEM has proved to be a very efficient means of non-
statistical analysis for linear and nonlinear continuum in statics and
dynamics. Currently, the majority of the research in PFEM i1s directed toward

improved nonlinear analysis.

It has been observed [8] that the secular terms arise in nonlinear
traneient analysis as well., Elimination of these secular terms is not as
straightforward as in linear traneient analysis, and is a current topic of
research. The nonlinear probabilistic analysis herein, is, therefore,
restricted to statics.

In the next sestion, the linear transient PFEM equations and the scheme
for eliminating secularities are outlined. In Section III, the PFEM equations
for nonlinear statics are derived. In Section IV, the effectiveness of PFEM
and the scheme for eliminating secularities are demonstrated. In Section V,
the conclusions and potential applications to fracture are discussed.

I1. PFEM FOR TRANSIENT ANALYSIS. As a consequence of applying PFEM for
transient analysis, secular terms arise in the higher order equations and
hence, all statistical results [8]. Many theoretical methods have been
developed for eliminating secularities and the literature is quite extensive.
Secular terms erroneously result from the perturbation process causing the
higher order equations to increase indefinitely with time or until damped
away. Thus, secularities cause all statistical results such as the
expectation and variance of displacement to be unbounded for long times. The
characteristics of secularities and a method for their removal have been
developed for a single degree-of-freedom random oscillator [13], but to the
authors' knowledge no methods have been developed for PFEM. Consequently,
there is a considerable need to develop means for eliminating secular terms in
PFEM.

Initially, consider a structural dynamic system governed by the following
linear system of equations which are developed from a finite element
discretiztion:

fag g

-5

where M, C, and K are the mass, damping and stiffness matrices, respectively;
F is the external force vector; S is the displacement vector; and a

superscript dot represents time differentiation. The mass is assumed to be
deterministic whereas the stiffness and damping are assumed to be functions of

a generalized variance vector Var(B) where b(f) is a random field. The basic
idea in applying second-moment analysis to develop PFEM involves expanding all
random functions about the mean value of the random field b(x), denoted

by 315). That is, for a small parameter e, the random function g(g,t) is

expanded about Tkg) via a second-order perturbation at a given X and the

random field is discretized along with the random functions as follows:
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d =d

d=4d;+e E d, 8b, + 3¢ I dp  Abab (2.2)

e R 1,i=1 ~ 173 ]

where d , d. , and d represent the mean, the first order variation
~0* bi bibj

about b, and the second order variation about b of the displacement; Abi

represents the first order variation of bi about bi; and q is the number of

random variables. Complete details of this procedure can be found in Refs.
{7,8]. Similar expansions are done for E, 5, and g. Substitution of

these expansions for d, F, K, and C into Eq. (2.1) yields the following three

equations for do, dbi, and 32:
Zeroth Order Equation
Md +Cd +Kd (2.3)

~ ~0 o ~NO0~M0 T A0 ~0
First Order Equation

y;d. + S .d + 52 - E ’ i = l, seey q (204)
bi 0~bi 0 bi lbi
where
E = E = (g é + 5 d ) ’ i= 1, seey (205)
lbi bi bi 0 bi~0

Second Order Equation

Md,+ Cudy +Kyd, = E, (2.9)
where
Iy " : (7 Ebb, ~ 7 %, b, 30 = 7 %5, 5,80 = & & (T
1=] iy 1°1 14
~b b }var(b,)
and
Y o Var(b.) (2.8)
= ar ' .
S277 L Seob, 1

The solution of Eqs. (2.3) and (2.6) yilelds 20 and 22, respectively, whereas
the solution of Eqs. (2.4) requires q solutions to obtain d, . In Eqs. (2.4)

through (2.8) it has been assumed that b; and bj are ur . «d for 1 # jJ,
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thereby enabling the full covariance matrix Cov(bi,bj) to be expressed as a
diagonal variance matrix Var(bi) for 1 = j and zero for 1 ¥ j. It is noted

that in order to reduce the computations further, a transformed random
variable can be introduced [9]. After the zeroth order equation is solved
for 20’ the q first order forcing functions given by Eq. (2.5) can be

evaluated. Since the first order forcing function is a function of the zeroth
order solution, part of its effect will be resonant causing secularities in
the first order solution [11,13]. The second order forcing function is a
function of the first order solution in addition to the second order solution,
thus secularities also result in the second order solution. When damping is
present in the system, the effect of secularities is present until it is
damped away for long durations. The secular terms in the first and second
order solutions erroneously result from the perturbation process.

Therefore, the method presented in this paper for removal of secularities in
PFEM involves removing the resonant part from the first and second order
forcing functions,

The mean and variance of displacement are defined by

E[d] = [ d £(b)db (2.9)
and
var(d) = [ (d - 4%(b)ap (2.10)

respectively, where f(b) is the probability density function. Once Egs.

(2.3), (2.4), and (2.6) are solved for dy 4, » and d,, respectively,
i
substitution of the expansion for d given by Eq. (2.2) into Egs. (2.9) and

(2.10) yields the second order accurate expectation and first order accurate
variance of displacement given by

Eld] = dy + 4, (2.11)
and
q 2
Var(g) = 3 (gb ) Var(bi) (2.12)
i=] i
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respectively., Since d, in Eq. (2.11) has secular terms present, the

2
expectation of displacement will increase indefinitely with time. Similarly,
the variance of displacement will also increase indefinitely with time due to
secularities in gb . Similar expressions to Eqs. (2.11) and (2.12) can be

i
developed for strain and stress. The statistical results for strain and
stress will also be invalid for long times. Thus, there is a considerable
need to develop methods to eliminate secularities in PFEM so all statistical
results are bounded.

There is a vast amount of literature available dealing with the
analytical removal of secularities but no methods have been developed for the
numerical elimination of secularities in PFEM. The method presented herein
for numerical elimination of secular terms involves using Fourier Analysis to
separate the resonant and non-resonant parts from the first and second order
forcing functions. By performing Fourier Analysis on the time series
for ¥.. (d,) and F,(d.,d. ) with a Fast Fourier Transform (FFT), the time

~lbi ~0 ~2'~0 ~bi
series can be separated as follows

R NR
F.(d) =F +F (2.13)
~1bi ~0 ~lbi ~lbi

and

F

R NR .
E (dy Sbi) =E, +F (2.14)

2

where the superscripts R and NR represent the resonant and noi--resonant parts,
respectively. Once the forcing functions are separated, only the non-resonant
parts of Elb and 52 are evaluated iIn the first and second order equations

4
given by Eqs. (2.4) and (2.6) yielding solutions which are deveoid of
secularities. 1In order to remove the resonant part of the forcing functions,
the frequency spectra of the system must be known. To aid in this part of the
analysis, a highly eficient eigenvalue routine using Lanczos coordinates is
incorporated to obtain a reduced system tridiagonal eigenproblem [14]. The
resonant part is then remcved by welghting all coefficients in the Fourier
series which fall within a designated range of the system natural frequencies
[13]. That is, coefficients which are very close to the natural frequencies
are almost entirely eliminated whereas coefficients which are separated from
the ratural frequencies are unaffected. Applicable frequency weighting
windows include cosine and (cosine)®. This procedure provides an effective
and efficient procedure for eliminating secularities from PFEM so all
statistical results are bounded. Another advantage to using a Lanczos
coordinate reduced basis is the solution of a reduced system of equations

[15].

II1. PFEM FOR NONLINEAR STATICS. The PFEM equations for nonlinear
statics of a continuum, incorporating material nonlinearities, can be derived
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using the approach followed in Section II. The discretized equilibrium
equations governing the nonlinear statics are:

£(d, b) = E(b) (3.1)
where f, F and g are the internal force, external force and displacement
vectors respectively and B is the discretized random vector of size q, [9].

The randomness could arise from loading and/or material properties. The
zeroth, first and second-order equations corresponding to Eq. (3.1) are:

Zeroth Order Equation

T=F (3.2)
First-Order Equation

—S-Ebi -fi+2 i= l, seey (3.38)
and

Ei+2 = Eb - £b, i = l, eeey q (3.3b)

i i

where g'is the tangent stiffness matrix.
Second-Order Equation

EEZ -:‘iz (304*’)
where

Lowd B B b (3.4b)

d, = I d oV 5 N

2 2 1,4=1 bibj 6 UL |

and

Fo= 1 ;7 -t . =K dy Jeov(b,,b) . (3.4¢)

~2 1,§=1 2 ~bibj 2 ~bibj ~b1~ ) bl

The computational effort in solving Eqs. (3.3) through (3.4) can be
reduced significantly by transforming the full covariance matrix, Cov(bi,bj),

to a diagonal variance matrix, Var{cy) [9]. Usually, only n (n<q) highest

values of Var(ci) are necessary [9,10]. Using the random vector c, the first
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and second order equations are simplified to:

First Order Equations

= Fie2

and

Second~Order Equations

Kd,=F,

where
F,= L [=F -
27 i tE Pegey T
K =[BT B
i Q i

and
T oo 8 R ol
¢y g =45 d=3

Once d, sci and d,

i-l, veey G

i'l, sy q

- K, 4, Jvar(c))

14 171

dq .

displacement can be computed from:

€gl =T+ 3

and

q =
cov(al,ad) = il - dci dcj var(e )} .

r=] r

r
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(3.5a)

(3.5b)

(3.5¢)

(3.6a)

(3.6b)

(3.6c)

(3.6d)

are obtained, the mean and autocovariance matrices of the

(3.7a)

(3.7b)



Next, the mean and autocovariance matrices of the stress can be similarly
computed. At any point (usually an integration point) in the domain R, g is
computed from Eq. (3.2) and:

G, =5 | _+T%Bd (3.8a)
~Tey ~ey d=d T ¢y

(o] =9 _+C Bd +TC BT (3.8b)
~ cici ~egcy ﬂ'ﬂ 'l'ci ci 34 cicj

where [ ] denotes total derivative and ST represents the tangent constitutive
matrix. Thus,

Elg] =g + g, (3.9a)
where
3, =% 1 @ vare)) (3.9b)
g, = g ar(c g
~2 2 {=1 ~ 4% i
and
q
Cov(oi,uj) =]z [;i]c [;d]c Vat(cr)} i (3.9¢)
r=1 r r

Evaluation of Internal Force/Stress Derivatives

It is seen that, in all the first and second-order equations derived in
Eqs. (3.5a) and (3.6b), the derivatives of the internal force and stress are
required. Direct evaluation of these derivatives are not possible, clearly,
as the internal force and stress are implicit functions of the random vector
G Usually in such cases, these derivatives are replaced by their finite-

difference counterparts [16,17]). Employing central-difference approximations,

S| crs—G@ -2 _ (3.10a)
“1|d=d 1 d=d
and
- l - - —
g L (0 =-29+¢g ) (3.10b)
~e ey d=d AciAci ~ o~ lﬂ{g



_‘g‘ = g(c - ASi) (3.10d)
andiAsi are defined as
8y = (0, wuey 0, ey, 0, oeey 0T (3.10e)

The first and second-order derivatives of the internal force can then be
obtained from Eqs. (3.5¢c) and (3.6c), respectively. The derivatives of the
tangent constitutive matrix, in Eqs. (3.6c) and (3.8b), can also be
approximated similarly.,

IV. NUMERICAL EXAMPLES. The method presented in Section II for the
elimination of secularities in transient PFEM is demonstrated by application
to a multiple degree-of~freedom transmission tower. The effectiveness of the
method for removing secularities from PFEM (NOS), is compared to the standard
PFEM solution with secularities (SEC), and a Monte Carlo Simulation (MCS) with
400 samples. The random material properties are incorporated into the system
by choosing Young's Modulus for elements 1-4 and 6-9 as uncorrelated normal
random variables with a coefficient of variation of 5%X. Rayleigh stiffness
proportional damping is added to the system enabling the model to incorporate
random stiffness and random damping. The performance of the method is
presented in Figs. 1 and 2 for sinusoidal excitation,

The problem statement is presented in Fig. 1 for a 15 node/32 bar
transmission tower with 26 degrees-of-freedom. The system has a first mode
natural frequency of 8.7 cps and Rayleigh stiffness proportional damping with
damping ratio equivalent to 0.1%2 of first mode. The expectation and variance
of the x-displacement of node 2 are shown in Figs. 2a and 2b for a (cosine)
weighting window, respectively. Since the second order solution is negligible
compared to the zeroth order solution, secularities are only slightly evident
in the expectation. In Fig. 2b, the variance of displacement exhibits
secularities in the SEC which die out after 6 secs. due to damping. Initially
all three methods are in agreement but the SEC begins to deviate from the MCS
due to secularities until they are damped away. The method presented in this
paper (NOS) removes the secularities from the SEC bringing it into agreement
with the MCS. Initially, the NOS removes too much from SEC which is probably
due to the solution being heavily dominated by the transient part. The method
presented is valid for coefficients of variation up to 20% as in the PFEM.

In the next application, the PFEM procedure for nonlinear statics is
demonstrated. The problem analyzed is an elastic-plastic plate with a
circular hole and subjected to uniform, compressive loading (Fig. 3). The
load is assumed to be random with a coefficient of variation of 10X and a
correlation length (1) of 3L (Fig. 3). The response statistics viz., mean and
variance with respect to incremental loading and the spatial correlation of
the responsc are studied. The mean and variance of the displacement, at Node
400, are plotted in Figs. 4a and 4b. These results show good agreement with
those obtained by Monte Carlo Simulation (MCS) [4,10) of 400 realizations.

The maximum coefficient of variation of the displacement is found to be ~10X.
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The mean and variance of the compressive stress, in Element 15, are
plotted in Figs. 4c and 4d. The mean stress is in good agreement with the
simulation results, whereas the variance of stress shows some disagreement,
particularly at larger loads. As the load is increased, the variance of
stress increases and, after a certain load, starts to decrease, Since the
material is assumed to be elastic-plastic, with a ratio of elastic modulus to
plastic modulus as 100, it is nearly perfectly plastic for large strainms.
Therefore, once the material starts ylelding at a point, the stress is nearly
bounded above by the yleld-stress. This causes the variance of stress to fall
to a near-zero level, with increasing loading (Fig. 4d). The maximum
coefficient of variation of the stress is also found to be ~10%.

The displacement correlation (w.r.t. Node 400) along the y-axis and the
stress correlation (w.r.t. Element 7) along the x-axis are plotted in Figs. 5a
and 5b, The displacement shows almost complete correlation (i.e., 1.0).
However, while the stress shows complete correlation near Element 7, it drops
drastically to very low correlations near the ends. The elements near the
circular hole are in a plastic state and the stresses in these elements are
near the yleld stress. At the same time the elements far from the hole are
elastic and the stresses vary apprecilably with changes in 1lrid. The
correlation between the elastic stress and the plastic stress, which changes
very little with load , 1s very low and this explains the low stress
correlation near the hole. The low stress correlation near the far end of the
x~axis (Fig. 5b) seems due to the low variance of stress there. The mean
stress and the variance of stress along the x-axis are plotted in Figs. 5c and
5d, respectively, for a particular load. The stress variance is low at both
ends and in between, near the hole, it peaks. The stress in this region is in
the transition state from elastic to plastic and so the stress variance is
high.

V. CONCLUSIONS. The validity of PFEM, for uncertainties as large as 10%
(1.e., coefficient of variation is 10Z) and under substantial material
nonlinearity, has been demonstrated in the previous section. Also, the
effectiveness of the scheme in removing secularities from the transient
statistics 1s brought out. Based on this scheme, extension can be made to
remove secularities from nonlinear transient statistics as well., Also, the
PFEM can be extended to handle geometric randomness. Efforts are being made
to achieve these two goals.

The PFEM and related procedures [5-13] have been applied in the past to
study the effect of randomness in structural dynamics, linear and nonlinear
response of continua, and buckling and collapse analysi:. While such wide
applications of PFEM in structural mechanics have been achieved, from the
point of view of rellability and fallure analysis *he statistical aspects of
fracture mechanics uissume importance. Numerical methods, such as PFEM, for
studying these aspects are very scarce. The fracture related quantities such
as fracture toughness, initial and ultimate yleld stress, the number, size and
orientation of the cracks, volds and inclusions are usually hard to determine
exactly. These and other quantities, which govern the crack growth, rate of
crack growth, the direction of crack propagation and the eventual failure of
the structure, can be modelled as random material or geometric quantities.
Fracture studies, incorporating such randomness in PFEM, could give an insight
on the fracture statistics. Based on the experience obtained so far, such
studies using PFEM, scems promising.
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Fig. 1 Problem Statement 1: Transmission Tower with 15 Nodes/32 Bars.

DENSITY (¢) = 0.00776
AREA (A) = 6
YOUNGS MODULUS (E) = 30000000
LENGTH (L) = 60
FIRST NAT. FREQ. (@) = 8.7 CPS
SINUSOIDAL LOADING (F) = 2 CPS
COEFF. OF VARIATION = 5 %
MCS SAMPLES = 400
RANDOM VARIABLE = E

ELEMENTS 1—4,6—9
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Fig. 3 Probler Statement 2: Elastic-Plate with a Circular Hole.

Elastic Plastic Plote with o Hole

hy
1 131111 ) . =
N ki
Kz\ c o 4
X

P

I 1 1 1 11
E =30.X10° 4 Node 2D Cont. Element
E; =30.X10* (Plone Stress)
oy =25000.0 400 Nodes, 360 Elements
(Isotropic Hordening) Node 400  Point A
v =03 tElement 15 Point B
L =6.0,R =3.0 Element 7 Point C

Random Load Charocteristics

Size of Random Load Vector (q)= 12
Coefficient of Variotion= 0.10

Lood Steps 0001 0002 0003 0004 0005 0006 0007 0008
Mean b::sd 2000 4000 4100 4200 4300 4400 4500 4600

Spatial Correlation of Random Load

ROax)=  exp(--ABS(x—x;)/N)
A=3L
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LIMIT THEOREMS FOR THE SIZE EFFECT
IN THE LIFETIME DISTRIBUTION
OF A FIBROUS COMPOSITE

S. Leigh Phoenix and Chia-Chyuan Kuo®
Sibley School of Mechanical and Aerospace Engineering
Cornell University
Ithaca, New York 14853

ABSTRACT. A composite material is a parallel arrangement of
stiff brittle fibers in a flexible matrix. Under load fibers fail, and
the loads of failed fibers are locally redistributed onto nearby
survivors through the matrix. [In this paper we develop a new
technique for computing the probability of failure under a previously
studied mode! of the failure process. In this model, known as the
chain-of-bundles model, failure occurs when all fibers fail in at
least one bundle. A recursion and limit theorem are obtained which
apply separately to static strength and fatigue lifetime depending on
the composite loading and the probability model for the failure of
individual fibers under their own loads. The limit theorem yields an
approximation for the distribution function for coriposite lifetime
which is of the form 1 - [1 - W(t)J™" where W(t) is a characteristic
distribution function and mn is the composite volume, reflecting a
size effect. A similar result holds also for static strength. in both
cases such a result was conjectured several years ago. This limit
theorem is obtained from the recursion upon applying a key theorem
in the theory of the renewal equation. In the proofs three technical
conditions arise which must be verified in specific applications. In
the case of static strength these conditions are quite easy to verify,
but in the case of fatigue lifetime the verification is generally
difficult, and entails considerable numerical computation.

" Present Address: Kendall Company, 95 West St., Wa]pole. MA 02081.
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L INTRODUCTION. In this paper we present a new recursive

technique and a limit theorem for an earlier, idealized model of the
failure process in a fibrous composite material. For previous work
on static strength see Harlow and Phoenix (1978, 1981, 1982),
Harlow (1985), and Smith (1980, 1982, 1983), and in the case of
time dependent fatigue see Tierney (1982) and Phoenix and Tierney
(1983). The present paper is an abbreviated version of a
forthcoming paper by Kuo and Phoenix (1987).

To review the model, we consider a simple composite which is
an arrangement of n parallel filaments along a line to form a planar
tape, or in a circle to form a tube. The loading, which is a specified
function of time, is simple tension in the fiber direction. The actual
failure process to be modeled begins when fibers fail randomly in
both time and position, and locally their original loads are
transferred to adjacent fibers which then become overloaded. In
time some of these overloaded fibers fail too, and clusters of
several contiguous breaks appear. Eventually one of these clusters
grows to an unstable size, turns into a catastrophic crack and fails
the composite.

To model this failure process the composite is partitioned into
a series of m short sections called bundles, each containing n fibers
elements of length §, the effective load transfer length. The failure
process is localized within the bundles, and the composite is treated
as a weakest-link arrangement of its m bundles, each carrying the
externally applied load. The mn fiber elements are treated as
statistically independent entities under an identical prescribed load
history on each (though their failure times within a bundie will be
dependent because of the load transfer process which will cause the
individual fiber load histories to differ); thus the bundles are
statistically independent. Throughout we speak of load on a ‘'force-
per-fiber' basis; that is, the |oad is the total external force on the
composite divided by n. Henceforth our modeling will be in terms of
the fiber elements, and for brevity in the notation we refer to these
as the ‘'fibers'.

Load-sharing rule for fibers. If the bundle load is [, a surviving

fiber carries load K,{ where K, is called a load concentration factor,

and r is the number of consecutive failed fibers immediately
adjacent to this surviver (counting on both sides). Also set Ky = 1.
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As in most previous analyses, the first load-sharing rule we
consider is

(1.1) K,=1+r2, r=012,...,

wherein the load of a failed fiber is redistributed in equal portions
onto its two nearest surviving neighbors, one on each side. In linear
bundles which may have fibers failed at the bundle edge, this rule
has a slight deficiency since there are no exterior fibers to carry
some of the shifted load. To avoid these difficulties we will also
consider circular bundles which have no such edges. Here we need to
take care in the situation where only one last fiber remains since
one would expect that fiber to carry the total load nl, whereas K, [

= (n+1)l/2. Thus we will consider instead K'.; = n.

An alternate rule is based on elastic calculations in a planar
lattice by Gotlib, El'yashevich and Svetlov (1973), namely K, =
(1+r)¥/2 | r =0,1,2,... . This rule more accurately models the fiber
loads once r becomes large and reflects results from fracture
mechanics where the stresses at the crack tip grow as the square
root of the crack length.

An important feature exploited in our later analysis is that
none of the load of a failed fiber is redistributed beyond the two
flanking nearest survivors. The mechanical analysis of Hedgepeth
(1961) shows this assumption to be somewhat oversimplified (as ii
would be for the aiternate rule), but the results of Pitt and Phoenix
(1983) suggest that this shortcoming is minor, provided that most
of the redistributed load appears on the nearest survivors.

Load histories. We let [(t), t= O be the load history which we
apply to the composite. In general [(t) can be any positive function
oft2 0. However, in the setting of static strength we work with
the linear load [(t) = t, since in this case the failure time and the
load at failure will be identical. In fatigue lifetime the simplest
model is [(t) = L, t2 0. Note that the actual fiber load histories will
differ from [(t) as neighboring tibers fail.

Distribution functions for lifetime. We let Hy A(til) be the
distribution function for the failure time of the composite under
load [(t), t=2 0. Also let G,(t;[) be the distribution function for the
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failure time of a single bundle. Since the individual fibers, and thus
the bundles, will be statistically independent entities we have the
simple connection

(1.2) Hpa(til) =1 -[1 - Gy(t:[)m, t=20.
The main task is thus to calculate G,(t:[).

Model for the failure of fibers. We let F(t}A), t2> 0 be the

distribution function for the failure time of a single fiber under its
load history A(t), t2 0. To model fiber failure it is convenient to

use the concept of a standard representative fiber as introduced by
Tierney (1982). First associate with the fiber a random variable Z
which follows the unit exponential distribution

(1.3) I;(z) =1-exp{-z}, z20.

Then given the load history A(t), t = 0 on the fiber, let ©(t;A) be the
cumulative hazard function (CHF) for failure, and assume it to be a
non-anticipating functional of A. Also we assume © (t;A) is
increasing and right-continuous in t 2 0 for fixed A, and ©(t;A) is
monotone in A; that is, if A4(S) 2 A5(s) for all 0 < s < t then ©(t;Ay) 2
©(t;Ap). Then under A, the failure time T of the fiber is the smallest
value of T 2 0 for which

(1.4) e(Ta)22Z.
By this construction we have
(1.5) F(t;A) = 1 - exp{- ©(t;A)} , t20.

Under a common fiber load history A the lifetimes of the
individual fibers are assumed to be statistically independent; that
is, the Z's are independent from fiber to fiber. However, in a bundle
the individual fiber load histories will begin to differ as neighboring
fibers fail, and the fiber lifetimes will become dependent. This is
where the main complication arises.

In the setting of static strength, a fiber has random strength X
which is independent of both its load history, and the strength of
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other fibers. We assume X has distribution function Fg(x), x 2 0,
which we write as

(1.6) Fo(x) = 1 - exp{- ©o(x)}, x20

for some suitable increasing function ©4(x), x 2 0; of course, Fp(x) is
common to all fibers. Then in this case the CHF becomes

(1.7) O(tA) = sup ©g (A(s)) .
0<s<st

-

Some specific cases of this model are as follows: - The first
and simplest case is known as the 'pure flaw' model which has been
considered by Harlow (1985). In this case a fiber is assumed to have
zero strength with probability ¢ and unit strength with probability

1—-¢. Thus

0 : x<0,
(1.8) Op(x) = - In(1-¢) , O<sx<1,
oo : 1<x.

A second case is where fibers follow a Weibull distribution for
strength:

(1.9) Fo(x)=1-exp(-x"), x20

where y > 0 is a constant. This is the model studied by Harlow and
Phoenix (1978, 1981, 1982) and Smith (1980, 1982, 1983) among
others. Then @y(x) » x¥, x2 0. In both these cases the lifetime T

and the strength X are identical under A(t) = t, and the same will be
true for the composite.

In the case of time dependent fatigue we may consider the CHF
of the form

t
(1.10) e(t;x)=(j MslPds)f , 120,
0

where > 0and p > 0 are constants. Various versions of this model
have been studied by Tierney (1982) and Kuo (1983).
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Eailure process in a bundle. For a bundle, we assign the

independent random variables 2,, ..., Z,, one to each fiber, and
assume these also follow (1.3). Then given particular realizations
of the Zj's, the bundle load history [, and the load-sharing K,'s we can
solve explicitly for the fiber failure times denoted T(y), ..., T4 and
for the bundle failure time T, = max{T(y), ..., T;y)}. (See Phoenix and
Tierney (1983) for example.) Note that while the bundle load history
is [(t), t= O, the individual fiber load histories A(t), ..., A,(t) may
involve some K, [(t) as neighbors fail, and these must be used in the
analysis.

Qutline of the paper. The key quantity to consider is Q,(t) = 1 -
Gn(t), t= 0, the probability a bundle survives to time t. (Henceforth

we generally suppress [(t) in the notation unless germane.) In
Section 2 we develop a recursion formula (Theorem 1) for Q,(t) for
both planar and circular bundles. In Section 3 we obtain the main
limit theorem, Theorem 2. In Section 4 we recast this theorem into
a key approximation for G,(t) and Hg ,(t) which involves two
functions: a characteristic distributicn function W(t) and a boundary
function =(t). The form of the approximation is thus Hp n(t) = 1 - [1

- W(t))mn x(t)m. Also n(t) = 1 for circular bundles, and typically
deviates negligibly from one for planar bundles. This theorem and
resulting approximation essentially confirm a conjecture first posed
by Harlow and Phoenix(1978) in the static case and Tierney (1982)
in the time dependent case. Harlow (1985) first confirmed the
conjecture in the simplest case, the pure flaw model.

To use Theorem 2 in specific applications, three technical
conditions, (3.3), (3.4) and (3.5) must be verified. Roughly speaking,
these conditions involve showing that at time t the probability of
having a lone survivor in a bundle of n fibers divided by the survival
probability [1 - W(t)]* is small compared to one, and furthermore
diminishes very rapidly as n — <. In Section 5 we verify these
conditions for the static cases, giving ranges for the model
parameters under which the results hold. However, generally we
cannot give justification in the time dependent model without
introducing additional conditions which are physically justifiable,
but seem to be irrelevant from numerical calculations.
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Il. RECURSION ANALYSIS. For the most part the dependence of

all quantities on time t will be suppressed in the notation. We
consider only values of t for which F(t;l) < 1 since otherwise the
problem is trivial.

Linear bundles. We first consider linear bundles wherein the
fibers are arranged along a line from left to right. For a given fiber
we let the symbols 'X' and 'O' denote failure and survival,
respectively. A bundle of n fibers clearly has 2" configurations of
failed and surviving fibers. For example, for n = 6 a possible
configuration is OXXOXO. Failure is defined as the configuration
XXX...X and we let A, be the set of all 2n - 1 remaining survival
configurations, that is, all configurations of n fibers with at least
one 'O'. Thus we formally define G, = Pr{XXX...X} and Q, = Pr{A,} =1 -

G,

Next we let E; be the configuration of i fibers which has all 'X's
except for an 'O' at the very left, that is, E; = {O}, E; = {OX}, E3 =
{OXX}, and so on. In the analysis to follow we decompose A, into the
disjoint subsets A4, A,2, ..., A, Where A, ; contains all elements
of A, whose right-most i fibers are in the configuration E,. Thus

n
@1 A=UA,

and defining Q,; = Pr{A,;} we have

n
22 Q=2,Q,. n21.
-

For two sets of survival configurations A and B we define the
new set A+B through the operation '+' as the set of all

configurations generated by attaching a configuration from B to the
right end of one from A. By inspection, we have the general
recursive relationships

(28)  Ane11=A,* {0}, n21

and
(2-4) An+1,i = An'i-1 i/ {X} ’ 2 S i S n+1 y
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starting with A; ; = A; = {O}. We will also use the operation '+' to
join two configurations, rather than sets.

Decomposable configurations for linear bundles. A

configuration Y in A, is said to be decomposable if there exist two
adjacent survivors or 'O's in Y. For example, Y = {OXOOX} is
decomposable whereas Y' = {OXOX]} is not. If Y is decomposable then
clearly Y = Y, * Y, for some Y, in A, and Y, in A,., where 1 <r < n-1
and where Y, has a survivor at its right end while Y, has a survivor
at its left end. The importance of this concept is that Pr{Y} = Pr{Y,}
Pr{Y,}. (To see this one must use the concept of standard

representative fibers as described in Section 1.) In other words, the
probability of a decomposable configuration occurring at time t is
the product of the probabilities for the component configurations
viewed as smaller distinct bundles.

For certain configurations which cannot be decomposed, we
will later need bounding probabilities written in terms of
probabilities for smaller configurations, as in the following lemma.

Lemma 1. LetY;e A, and Yo e A, such that either Y, has an 'O’ at its
right end, or Y, has an 'O' at its left end. Then for Y = Y, * Yo e Aq.nm
we have

(2.5) Pr{Y} < Pr{Y,} Pr{Y5}.
Proof: To prove this lemma think in terms of the standard
representative fibers of Section 1 where Z4, ..., Z, and Z,,4, ....Znum

are associated with the fibers which may yield the respective
configurations Y; and Y,, and altogether the configuration Y. First, if
Zy,..,2,,m have values such that Y € A,,n, results at time t where
fiber n is surviving while fiber n+1 is failed, then these same values
will automatically produce Y, e A, and Y, e A,. The reverse,

however, is not true in that some survival configuration other than Y
may result for the bundle of size m+n. Hence Pr{Y} < Pr{Y,} Pr{Y,},

proving the lemma.

Special non-decomposable configurations. Two sets are

crucial to the analysis: The first is F,; which is the subset of A ;
whose elements have an 'O' on the left and are not decomposable.
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The second is R, ; which is the subset of A,; whose elements have an
'X' on the left and are also not decomposable. Define f,;= Pr{F,;} and
rni= Pr{R,;} and also setryy=1,r,,= 0 and otherwise r;; = f;; = 0
for all j < i.

By inspection we see that

26) JOF =R
2.

where the symbol "« " above a set means that each of its

configurations has its entries written down in reverse order. For

example, if B = {XO,XOXXO} then B = {OX,0XXOX}. (We also apply "«" to

a single configuration with the same meaning.) Furthermore, by
studying survival configurations for small n we see the structure

nys N22,

F,,={O}
@7 F,, ={0)
| F,= U F,*E, n23

n,1 im2 : i

where we assume @ * Y=Y+ Q@ = @ for any Y in A,. Itis also true
that

(2.8) Fns1,10 = {0} * Rp 4
and
29) R, = (:':J; R,; v{XX...X})* {O}.

We now obtain some key recursions.

Lemma 2. For linear bundles we have the recursion
n
2100 Q= ]Z. Q. +0. 1Sisn,

starting with Qg =1 and Qq; =0fori22.

275




Proof: It suffices to prove the casei= 1. If n = 1 the result is obvious. Next take
n 22, anci suppose Y € A, butY is not decomposable. Then eitherY e F, , or

Y € R, 4, accounting for j = n in the sum. On the other hand,itY e A, - (F, U

R,.1). then Y is decomposable and there exists some j suchthat Y € Ay;,1 * Fj;
and 1 £j< n-1. The sum follows from disjointedness of the various
configurations.

Circular bundles. In the case of circular bundles, the previous analysis
must be modified. Again we label the fibers consecutively from 1 to n starting
arbitrarily, but fibers 1 and n are now adjacent. We still write out a configuration
in a linear fashion, though with this adjacency of the first and last fibers
understood. This latter aspect forces a modification of the earlier concept of a
decomposable configuration. To be decomposable a configuration Y for a
circular bundle must now have either three adjacent survivors, or, two or more
pairs of adjacent survivors.

We define A, and Q, as before but for n 2 2 let A, , be the subset of A,
whose elements have two or more adjacent survivors. Furthermore, for n 23
we partition A, o into two subsets A, oy and A, oo Where A, o contains exactly
those elements of A, , which are decomposable, and A, 4, contains the rest.
Lastly we let Qq o = Pr{O}, Q; 0 = Pr{OO} and Q, ¢ = Pr{An o}, N23.

Lemma 3. For circular bundles we have the recursion
n
(2.11) Qo=nf,+ 121 Qn.j'0 fj’1 , n21,

where Qg o = 0 and f, ; is as defined for linear bundles.

Proof: See Kuo and Phoenix (1987).
Theorem 1. For both linear and circular bundies we have the recursion
(2.12) Q,= D, Qy fy +E,. n21,

starting with Qg = 1, where for linear bundles

(2-13) g z nm1 m1+2rn| zzfnm1 m]

jm2 Mei ju2
and for circular bundles
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n
0) (0)
(214) & =nf ,+ r(n'1 5 lz:, Foit fi1 -

0) . : o -
where 'ﬁ: is analogous to r_ , for linear bundles (and must include all unique

rotations). The proof of this theorem is long and will appear in Kuo and
Phoenix (1987).

Uil BEHAVIOR OF Q, AS n GROWS LARGE. We show here that for both
linear and circular bundles Q, has the structure Q, = x"*(n + 0,) for suitable

functions %, = and o, where 0, —» 0 as n — «. Also, x is the same for both

bundles, and =, which apparently reflects edge effects, is identically one
in the circular case. We begin with some key lemmas, definitions and
assumptions.

Lemma 4. For linear bundles

(3.1) 2 £,
N0

Broof: Recall (2.20) and take i =1, Since roy = 1 we have ﬁ, (s) > 1
whence F(s) < 1. In view of (2.19) Abel's lemma (Karlin and Taylor
(1975)) gives us (3.1).

Next let x be the solution to

(3.2) 2 fn'1 x” =1
N=1

and note that x 2 1 by Lemma 1, since fy y = 0.

Technical conditions. We now make some technical assumptions
needed later. For a linear bundle of n fibers we recall E, was the

configuration {OXX ... X}. Let e, = Pr{E,} and assume two conditions are
satisfied, namely

(3.3) 2 o, X <1

Nu2
and
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(3.4) 2 neyx <e.

nmi
We also let h, be the probability that only one fiber survives in a linear

bundle of n fibers, and assume

(3.5) 2 h X" <.

nai 0
(By the principle of monotone convergence these sums will indeed
converge.) Lastly we assume t is such that x is finite. This is guaranteed

if F(tL) < 1.

We now give several lemmas whose proofs appear in Kuo and Phoenix
(1987).

Lemma §. For linear bundles
(3.6) 2 nf 1 <ee.

n=1

Lemma 6. For linear bundles
37 R, () <.

Lemma 7. For linear bundies
(3.8) R(x) <e.
Lemma 8. For circular bundles

39) RV <e.
Lemma 9. For both circular and linear bundies the sequence
{Q.x"}, is bounded.

Lemma 10. For both linear and circular bundles

(3.10) 21|§,,| X <.

Thus we may state the key result.
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Thegrem 2. For both linear and circular bundles

. n
(3.11) im Q x ==

N =)o

where

ﬁ1 x>/ 2 nf, x" for linear bundles ,
(8.12) == : n=1

for circular bundles .
Proof: From Theorem 1 we may write the renewal equation

n
(3.13) Q"= Z:, Q, 1", 0+ 82"
]-

where &, is given respectively by (2.13) and (2.14) for linear and
circular bundles. To (3.13) we may apply a key theorem in the theory

of the renewal equation as given in Karlin and Taylor (1975).

key conditions for this theorem are (3.2), Lemma 5, Lemma 9, Lemma

10, and

(3.14) ged{n | fn'1 >0}=1,
which is obvious. The theorem yields (3.11) where

(3.15) n=2 §nx"/2nfm X
n=0 n=1

In the linear case &g = ro 1 and (2.13) yields

G162, 61" =R, ° +122 R - () 22 R =R
- l-

n=0

in view of (3.2). In the circular case &, = rf)oz = 1, and (2.14) similarly yields

(3.17) 2 £x = 2 nf ., x -

n=0 Nm=i

Thus (3.12) follows from (3.15) to (3.17), proving the theorem.
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1V, BEHAVIOR OF Hp, o(t) AS m AND n GROW LARGE. We now
recast the results of Theorem 2 into a more useful form from the
point of view of applications. Let

(4.1) W(t) =1-1/x(t), t20.

Then since G,(t) = 1 - Q,(t) we may recast Theorem 2 as
(4.2) G, () =1-[1-wWa)" [=(t) +0 ()], t20,

where 0,(t) > 0 and n —» o for each t 2 0. From (1.2) the distribution
function for the failure time of the composite is

(4.3) Ho o =1-11-WN™ (=) +o,@1", t20.

Shortly we show that W(t) is typically a proper distribution
function in t 2 0. Also n(t), which is identically one for circular
bundles (Theorem 2) is typically very close to one for linear bundles
and usually =(0) = 1. It appears that n(t) plays the role of a bundie
edge term, and may be neglected for larger n. Thus when m and n are
both large and of the same order, the resulting approximation is

(4.4) Ho 0 =1-[1-we)™, t20.
Of course, the accuracy of this approximation depends on the speed
with which o,(t) -» 0. Limited numerical studies show that once n

reaches a moderate size, 0,(t) decreases by orders of magnitude

with each unit increase in n, so that the convergence is extremely
fast.

Because of its importance we call W(t), t =2 0 the

characteristic distribution function for failure. To see that it is
indeed a distribution function we note that for circular bundles

W(t) = 1 - [Qa()]'/" [1 + 0,(1)) 1N .

Since Q,(t) is nondecreasing in t and 0,(t) - 0 as n — o for each t
0, it is easy to argue that W(t) must be nondecreasing. We recall x(t)
2 1 and from the definition (3.2) of x(t) we have f, 4(t)x(t) < 1. Since
fy 1(t) = Pr{0} = 1 - F(t;l) we use (4.1) to obtain

(4.5) O<W(t)< Fitf), t=20.
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Now as t - - we have F(tif) - 1 but it is more difficult to argue
that W(t) —» 1 since this requires %(t) — « and this is not easily
seen from the definition (3.2) of x(t). However, a lower bound W*(t)
on W(t) can be obtained in many cases which satisfies W*(t) — 1as t
— oo. Multiplying (3.7) by %" and summing on n leads to

(4.6) 2 ox21.

j=1
Unfortunately, simple expressions for et) are not usually possible,
but in applications one can usually show that

(4.7) o () SAB()i, 120,

where A is a positive constant and B(t) is some positive function satisfying B(t)
— 0 ast - . Then x*(t) which solves

(48 A 2:, (°(t) B(Y)' = 1

|=
will be a lower bound on x(t). Since %*(t)B(t) must be a constant in
(4.8) we will have x*(t) - « and W(t) - 1 ast— «. Loosely speaking
condition (4.8) will tend to be satisfied when the survival
probability for a single fiber diminishes sharply to zero with
increasing K. (Recall ej = Pr{OXX...X}.) This will depend on both the

upper tail behavior of F(t;A) and how fast K, grows in r.

Numerical Calcylation of W(t). The exact calculaticn of W

requires the calculation of y using (3.2). We let B, be therxr
matrix

[ ]
0 1
0 0 1
(49) B =
0 c 0
fer froeq s fa,1 f1.4
where we recall
f1'1 = Pf{O}
f2'1 = 0

f3,1 = Pr{OXO}

28]



(4.10) f4.1 = PT{OXXO}
f5'1 = Pr{OXOXO, OXXXO}
fa.1 = PrOXXXXO, OXXOXO, OXOXXO}
[ J

e,

these being dependent ont. Then 1 - W = 1/ is the spectral radius
of the infinite matrix

(411) B =lm B,.

[ L

To calculate 1/y numerically, first calculate in succession 1/x, ,
1/¢o , ... as the largest eigenvalues of the respective matrices B,,
B,, ... . This requires being able to calculate probabilities for the
configurations in (4.10), and this is wusually possible for
configurations up to length 12 or so. Since y,— x as r — « choose ¥,
where r is large enough for the convergence to be essentially
complete. In this regard note that Hp ,(t) ~ mnW(t) according to
(4.4), where mn is typically very large (say 109). Thus "essentially
complete” means that changes in mn(y,-1)/x, must be small
compared to one. In any case x, 2 x so that W, = 1 - 1/¢, will be an
upper bound on W. In applications, r of the order of 10 often
suffices.

Behavior of n(t). As mentioned, n(t) appears to play the role of
a boundary or edge term, and is identically one for <circular bundles.
For linear bundles it may be shown that x(0) = 1 when [(0) = 0 even
when F(0;[) = ¢ > 0 as in the pure flaw model. This is shown in Kuo
and Phoenix (1987).

V. APPLICATIONS AND VERIFICATION OF TECHNICAL

ASSUMPTIONS. To apply the previous results in specific cases, we
must verify the key technical assumptions (3.3) to (3.5). Here we do

this for the 'pure flaw' model for fibers to illustrate some useful
procedures and difficulties.

‘Pure flaw' model for fibers. We recall the simple model (1.8)

where a fiber has unit strength with probability 1-¢ or has zero
strength with probability ¢. The composite loading we recall is [(t)
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=t t2 0. Before beginning, we mention that Harlow (1985) used a
very different recursive approach to study the planar case of the
model. He arrived at essentially the same structure (4.3) for Hp, ()

though it is difficult to demonstrate that all his quantities are
equivalent to ours.

Considering t = O first, we are able to evaluate all the major
quantities. First we show W(0) = 0 even though F(0,[) = ¢ > 0. When't
= 0, it may be shown that (4.6) is

(5.1) 2 e]x'=1, (t=0).

ju1
Since e; = Pr{Ej} = ¢/-1(1-¢) we may evaluate the sum in (5.1) to
obtain

(5.2) (1-0)0x/(6(1-0%)) = 1 .

This yields x = 1 so that W(0) = 0. At the end of Section 4 we

pointed out that n(0) = 1 for both circular and linear bundles.
Turning to the three conditions (3.3) to (3.5) we first note that h, =

ne, so that the third is equivalent to the second. Since e, = ¢"-1(1-¢)
and x = 1 we have

iy
zdgenx"=¢<1 and 21 ne,x =1/(1-¢) <e.
N= N=

Finally, it is easy to see that G,(0) = ¢" so from (4.2) the residue
term is 0,(0) = - ¢".

Next we consider t such that 0 <t < 1, and we choose k such
that Kg.4t < 1 £ Kct. The interpretation of k is that under the
composite load t an intact fiber will fail once it develops k failed
neighbors (counting on both sides). To verify the three conditions
(3.3) to (3.5) it is easiest to use a simple upper bound on x(t),
namely 1/(1-F(tl)) = 1/(1-¢). Also e, = ¢"1(1-¢) for 1 < n < k and is
zero otherwise. Thus for the first condition (3.3),

k-1
63 e x'sd oo™ <ot20),
N= 1

N=2
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which is less than one provided ¢ < 1/3. For the second and third
conditions (again h, = ne,)

MDY W' £ 21 nlo/(1-0)1" = (1-4)'1(1-20)°

n=1

which is finite for ¢ < 1/2. Thus all conditions are met inde-

pendently of t for ¢ < 1/3. The case t = 1 is trivial since G,(1) = 1.
Turning to the calculation of W(t), the simplest situation is

when 1/K; <t < 1. Studying (4.10) we get f; ; = (1-¢) and f, ; = O for

n=2 2. Thus (3.2) yields x = 1/(1-¢) so W(t) = ¢. The next simplest
situation is when 1/K, < t < 1/K; so that (4.10) yields f, ; = (1-¢),
foy=0,139=0(1-90)2and f,; = 0 for n 2 4. Thus (3.2) yields

(65) (1-0)x +o(1-0)2x3=1.

While we could solve for x explicitly, we are usually interested in
small values of ¢ in applications. We find x = 1/(1-2¢2) + O(¢3)
whence W(t) = 242 + O(¢3). The next easiest case is 1/K3 < t < 1/K,.
Studying (4.10) we find the new f,, 's are f, y = ¢2(1-¢)2 but
otherwise f,, = 0 for n even and f, = ¢("=1)/2(1-¢)(n+1)/2 for n odd.
The series (3.2) may be evaluated to yield

(5.6)  (1-0)x + 0(1-0)x2 + ¢2(1-0)2x4 - ¢3(1-¢)3x6 = 1,

where in the process we find ¢ < [¢(1-¢)]-1/2. . Then y% is the real
solution to (5.6), and must be determined numerically. For small ¢
we find x = 1/(1 - 3¢3) + O(¢4) whence W(t) = 3¢3 + O(¢4).

For smaller t and k the f, , in (4.10) become more complicated.
However, it appears to be generally true that

(5.7)  W(1) = kok + O(ok+1) , /K <t < 1/K; 4

fork = 1,2,... . Thus we see that W(0) = 0 and W(t) increases in steps
at the time points t, = 1/K, , k = 1,2,... where the number of steps
becomes infinite as t L 0. The above resuits agree with those of
Harlow (1985), who points out that W(t) < k¢k at least for 1 < k < 5.

284




Turning to =(t) for the case of linear bundles, we find from
(8.12) that xn(t) = 1 for 1/Ky S t< 1 and =(t) = 1 + 3¢2 + O(¢3) for 1/K;
S t <1/ Ky. In general it appears that

(5.8) =w(t) = 1 + (k-1)(k+1)¢* + O(p*+1), 1/K(<St< 1/Ki.q .

Lastly we note that Harlow (1985) numerically calculated the

maximum deviation
mn

(59 €= S [Hy 0 {1-[1-WEI )|
for linear bundles and various combinations of m, n and ¢ in order to
study the error in the approximation (4.4). First his results suggest
that (5.7) is an extremely accurate approximation for W(t) for ¢ < 0.1
and k up to 12, which is as far as his results go. Second, almost all
the deviation he observed in (5.9) can to be accounted for by using
the approximation (5.8) for =(t) instead of putting n(t) = 1. In other
words, the boundary effects in the planar composites, though small,
seem to dominate the residue o,(t).

For fibers with Weibull strength (see (1.9)), the calculation of
W(t) and =n(t) must be done numerically and will not be considered
here. Insight into their behavior can be obtained from Harlow and
Phoenix (1981, 1982) where a different recursive approach was used
to study the first occurrence of k adjacent breaks. In fact, the
results here essentially verify a conjecture which arose there.

For the time-dependent fatigue model (1.10),verification of
conditions (3.3) to (3.5) has proven to be elusive except for p=p = 1.

A practical solution is to restrict the load on a fiber to [nay,
that is, to take F(t,[) = 1 as soon as [(t) on a fiber exceeds [nax- [N
practice [nhax would be the theoretical atomic bond strength for the
material. With this limitation, if k is chosen such that Ky 4L < [pay <
KkL then the sums in conditions (3.3) to (3.5) need only be considered
for n up to k. Numerical calculations can be carried out for k up to
about 10, and for Ky = 1 + k/2 this means for L > [,,,/6. This happens
to be sufficient for many applications. Numerical results suggest
that the conditions hold for Bp > 3, and in fact, [y, if sufficiently
large, seems to have little to do with the convergence.
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PHASE SPACE METHODS AND PATH INTEGRATION:
A MICROSCOPIC APPROACH TO DIRECT AND INVERSE WAVE PROPAGATION

Louis Fishman
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ABSTRACT. This project focuses on the development of new, multidimen-
sional algorithms for direct acoustic propagation and generalized acoustic
tomography at the level of the scalar Helmholtz equation. The general aim
is the continued detailed development of the ideas originally outlined sev-
eral years ago. Phase space, or "microscopic," methods and path (function-
al) integral representations provide the appropriate framework to extend
homogeneous Fourier methods to inhomogeneous environments. The path
integrals furnish the principal representation of the Helmholtz propagator
and, subsequently, through direct computation, the basis for the direct
numerical algorithms. There are two complementary approaches to the
analysis and computation of the n-dimensional Helmholtz propagator. The
first is essentially a factorization/parabolic-based (one-way) phase space
path integration/invariant imbedding approach. This results in a marchinc
algorithm which generalizes the Tappert/Hardin split-step FFT algorithm for
one-way wave propagation, a nonperturbative incorporation of backscatter
effects which generalizes Kennett's algorithm in reflection seismology for
two-way wave propagation, and the basis for the formulation and solution
corresponding arbitrary-dimensional nonlinear inverse problems. The
numerical algorithms based on these modern, "microscopic" methods directly
compute pseudo-differential and Fourier integral operators, incorporate
phase space filtering, and are ideally suited for computers which provide
either a vector or a parallel pipe type of operation. Extensive testing
has, so far, been very promising. While the first approach starts from a
transversely inhomogeneous formulation and, subsequently, builds in
backscatter effects, the second approach constructs elliptic-based
(two-way) path integral representations of the propagator for gener:i
range-dependent environments from the outset. A particular approximate
path integral construction (Feynman/Garrod) results in a true path
functional, suggesting the underlying stochastic foundations of the
Helmholtz equation. It appears to be a viable computational approximation
for a useful range of propagation experiments and can be numericaily
evaluated by standard Monte Carlo (statistical) methods. A more detailed
examination and approximate construction of the underlving stochastic
process would provide for both more accurate and widely applicable path
integral representations and direct numerical simulation techniques.

4

I. INTRODUCTION. Direct wave propagation modeling plays a
significant role 1n such fields as underwater communication, radio
transmission through the atmosphere, laser propagation, and earthguake
prediction. Likewise, the corresponding inverse problems are at the heart
of such areas as submarine detection, CAT scan technology, soft-tissue
diffraction tomography, the mapping of the interior earth, and oil
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exploration. In all of these and many other examples, relatively fast and
accurate numerical algorithms are necessary.

The analysis and fast, accurate numerical computation of the wave
equations of classical physics are often quite difficult fcr rapidly
changing, multidimensional environments extending over many wavelengths.
For the most part, classical, "macroscopic" methods have resulted in direct
wave field approximations (perturbation theory, ray-theory asymptotics,
modal analysis, hybrid ray-mode methods), derivations of approximate wave
equations (scaling analysis, field splitting techniques, formal operator
expansions), and discrete numerical approximations (finite differences,
finite elements, spectral methods). In the last several decades, however,
mathematicians studying 1inear partial differential equations have
developed, in the language of physicists, a sophisticated, “microscopic"
phase space analysis. In conjunction with the global functional integral
techniques pioneered by Wiener (Brownian notion? and Feynman (quantum
mechanics), and so successfully applied today in quantum field theory and
statistical physics, the n-dimensional classical physics propagators can be
both represented explicitly and computed directly. The phase space, or
“microscopic,” methods and path (functional) integral representations
provide the appropriate framework to extend homogeneous Fourier methods to
inhomogeneous environments, in addition to suggesting the basis for the
formulation and solution of corresponding arbitrary-dimensional nonlinear
inverse problems. Moreover, it is in phase space, rather than in
configuration space, that, from a mathematical perspective, the interesting
geometry takes place.

I1. PHASE SPACE AND PATH INTEGRAL CONSTRUCTIONS. For the
n-dimensional scalar Helmholtz equation, there are two complementary ap-
proaches to this analysis and computation, as 11lustrated in Figure 1. The
first is essentially a factorization/path integration/invariant imbedding
approach. For transversely inhomogeneous environments, implying medium
homogeneity with respect to a single distinguished direction, the n-
dimensional Helmholtz equation can be exactly factored into separate,
physical forward and backward, one-way wave equations, following from
spectral analysis [1-5]. The forward evolution (one-way) equation

(17603, ¢ (x.x,) + (KP(x,) + (1/RPW, 12 ¢t (x,x,) = 0, (1)

where K(x) is the refractive index field and k is a reference wave number,
is the formally exact wave equation for propagation in a transversely in-
homogeneous half-space supplemented with appropriate outgoing wave radiation
and initial-value condlitions. While functions of a finite set of commuting
self-adjoint operators can be defined through spectral theory, functions of
noncommuting operators are represented by pseudo-differential operators
[2,5]. The formal wave equation (1) 1s now written explicitly as a Weyl
pseudo-differential equation in the form

+ n-1 ' ,
(1/RY, $"(x,x,) + (k/2x) / dxdp,
R2n-2 ’

"OplRe Xy * E)/2) expUIRRL (xe - xt))$*(x,xs) w0, (2)
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In Eq.(2), the symbol nn(g, ) associated with the square root Helmholtz oper-
ator B = (Kz(_q) + (I/Iiz)vq)l/2 satisfies the Weyl composition equation

ag2(p.g) = K2(g) - p° = (k/m?"2 / dtdxdydz fg(t+p, x+q)
4n-4
R

*Qglytp, z+q) exp(2ik(x-y - t-z)) (3)

with 032(223) the symbol associated with the square of B, 82 =z
(Kz(g) + (I/RZ)V’g) [2,3,5]. The generalized Fourier construction procedure

for the square rodt Helmholtz operator can be summarized pictorially by the
following correspondence diagram

B2 g2

T

B & g
where the arrows symbolize the one- and two-way mappings between the appro-
priate quantities.

Exact solutions of the Weyl composition equation (3) can be constructed
in several cases [6]. For example, the symbol OB(p,q) for the two-dimen-

sional (n = 2) quadratic medium, Kz(q) = Kg + wzqz, is given by [6]

ag(p,q) = -(exp(iw/4)51/2/11/2) \/2. dt exp(i(Yt + Xtanht))

3

+t712 (jysecht + ixsecht - (secht)(tanht)) (4)

with X = (1/8)(w2q2 - pz), Y = Kg/s, and € = w/k. Consistent with taking

the square root of the indefinite Helmholtz operator, the corresponding
symbols, generally, have both real and imaginary parts characterized by
oscillatory behavior [4,6], as illustrated in Figure 2. Nonuniform and
uniform perturbation solutions corresponding to definite physical limits
(frequency, propagation angle, field strength, field gradient) recover
several known approximate wave theories (ordinary parabolic, range-
refraction parabolic, Grandvuillemin-extended parabolic, half-space Born,
Thomson-Chapman, rational linear) and systematically lead to several new
full-wave, wide-angle approximations [2-4,6].

The exact pseudo-differential evolution equation (2) and, in general,
the wide-angle extended parabolic approximate equations derived from the
analysis of the composition equation [2-4,6] are singular integro-
differential wave equations. Solution representations for such pseudo-
differential equations can be directly expressed in terms of infinite-
dimensional functional, or path, integrals [7,8], following from the Markov
property of the propagator. In an operator notation, then,

292




N
exp(ikBx) = 1im TT exp(iEBij) (5)
N—>e el

where AxJ = x/N, symbolically representing the propagator in terms of tﬁe

infinitesimal propagator. As the operator symbol is not simply quadratic in
p» the configuration space Feynman path integral formulation is not appro-
priate, necessitating the more general phase space construction [4,7]. This
results in a parabolic-based (one-way) Hamiltonian phase space path integral
representation of the propagator in the form [3,7]

6T (x,x,10,x!) = 1im #2% dx T!T (k/2n)"1d
i Bl =T =1 It e Bt

g(n-1)(2N-1)

N
.eXP“E g (Bjt.(-x-,jt = 5—3’-11’.) + (x/N) H(BJt'EJt’-x-J-lt))) (6)

where

ik = T e el [N A RN MR S
TP ELTY

-10 -8 -6 -4 -2 o 2 4 6 ] 10

Fig. 2. The real (——) and imaginary (----) parts of the n = 2
quadratic medium symbol as a function of X for ¥ = 1.
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H(Esﬂ”,ﬂ') % (E/Z‘lr)n-l didi F(ﬂ"ﬂ' |’§)
Rzn'z

*hg(p,((q''+q')/2) - t) exp(iks-t). (7)

In Eq.(7), F(u,v) and hg(p,q) are related to the operator symbol fg(p,q) by

fig(u,y) = F(u,y) Tiglu,v) (8)
where 68 and %B are the corresponding Fourier transforms [2,3,7].

The nonuniqueness of the lattice-approximation path integral represen-
tation is readily understood in terms of different discretizations, or quad-
ratures, of the symbolic functional integral and corresponds to the repre-
sentation of a given (fixed) operator by different operator-ordering, or
pseudo-differential operator, schemes [2,3,7,8]. More fundamentally, in
analogy with the Schrldinger equation for particle motion on a Riemannian
space and the thermodynamic (Fokker-Planck) equation for particle diffusion,
the algorithmic Helmholtz path integral construction reflects the stochastic
ature of the integration [4,9]. Further, both the macroscopic and micro-
scopic (infinitesimal) half-space propagators can be-formally expressed as
Fourier integral operators with complex phase [4]. The phase space path
integral, thus, represents the macroscopic Fourier integral operator in
terms of the N-fold application of the microscopic, or infinitesimal,
Fourier integral operator in a manner which can be related to the global
geometrical-optics construction of the macroscopic operator [4,5].

The path integral formulation interprets the wave theory in terms of an
infinitesimal propagator summed over all phase space paths. For the Helm-
holtz theory, the exact infinitesimal propagator is not, in general, given
by the locally homogeneous medium propagator, as in the ordinary parabolic
(Schrldinger) propagator construction [8]. The approximate extended para-
bolic wave theories then correspond to approximate infinitesimal propagators
summed over the complete phase space. In retaining the "sum over all
paths," diffraction, or full-wave, effects are incorporated.

For weakly range-dependent environments, range variability can be, at
first, acconmodated at the level of range updating, as in the case of the
parabolic path integral [1,8). For reflection/transmission from a planar
interface separating two (different) transversely inhomogeneous acoustic
half-spaces, the concept of reflection and transmission amplitudes general-
izes to reflection (r) and transmission (t) operators. The reflection and
transmission operators, which, when applied to the incident wave field at
the interface, produce the initial values of the reflected and transmitted
wave fields, are defined within the Weyl pseudo-differential operator
framework and are explicitly determined by enforcing the well-known
interface continuity conditions. The main result [10] is a composition
equation of the form

fp, (P,9) - 8ga(p,q) = (R/w)20-2 dtdxdydz (Rg (t+p, x+q) +
4n-4
R
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Qgp(t+p, x+q)) 8 (y+p, z+q) exp(2ik(x-y - tez))  (9)

for the reflection operator symbol nr(gtg) and an analogous equation for the
transmission operator symbol @,(p,q). The inclusion of a planar transition

region of arbitrary length ard inhomogeneity can be accomplished by factor-
ization methods in conjunction with invariant imbedding [4,11]. Invariant
imbedding constructs the initial-value system for the reflection and trans-
mission operators associated with the transition region, transforming the
Helmholtz boundary-value problem into an initial-value problem. A dis-
cretized formulation [11] provides the extension of Kennett's method [4,11]
in reflection seismology. The resultant forward and backward wave fields
propagating in the transversely inhomogeneous half-spaces are represented by
the one-way path integrals, while, within the transition region, a formal
path integral representation of the propagator can be expressed as a product
integral [8]. This takes the form [4]

v
X

G = exp(ikH(s)ds) = 1im TT exp(iEH(sj)As.) (10)
== ” >eb j=1 = J

=

a

where s‘j =3+ (j-l/Z)Asj, Asj = (x-a)/N, a denotes the transition region
boundary, H is the appropriate first-order Helmholtz equation matrix

operator [5,4], and with the product of exponential factors ordered from
right (lower j) to left (higher j) reflecting the noncommutativity of the
matrix operator H at different x. While product integration-based path

integral constructions have been applied to the problems of nonrelativistic
electron spin and the Dirac equation, such infinite products of matrices
are, generally, only tractable in simple limiting cases [4,8].

Rather than starting from a transversely inhomogeneous formulation and,
subsequently, building in backscatter effects, the generalization of Fourier
methods to arbitrary inhomogeneous environments and the construction of a
dynamical basis for the Helmholtz equation can proceed, in the second ap-
proach, from the construction of truly global configuration space path inte-
gral?, ?hic? attempt to generalize, for example, the homogeneous half-space
result [3,7

N-1
G+‘x’-§t|0’l';:) = ]'im 'I'—T dé't ('”I'XN(n-l)N/z
N—>o j=l J
R(n'l)(N-l)
. ((n-1)N+1)/2 (1) £
‘EKO/Z'S(n-l)N+1) H(("'l)N+l)/Z(Kkos(n-1)n+1)) (11)

where
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N
= - 2 2,1/2
8(n-l)N+1 (N g;; (fjt Ed-lt) +x7) (12)

and Hg})(i) is the Hankel function. These elliptic-based (two-way) con-

structions, originating from the Fourier transform relationship between the
Helmholtz and Schrldinger (parabolic) propagators, result in the approximate
Feynman/Garrod path integral [3,7]

2 N-1 N ! exp(1ksSy)
G(xIx') 2 (-1/2k€) lim TT dx; TT (k/2n) dp (13)
b N—e j=1 7Y j=1 (1/2 - £)
pN(2N-1)
where
S ; ( ) (14)
= 2 Byelxy - x5 14
N 3‘:—;— J = =31
corresponds to an appropriate discretized action and
k. 2
T = (IN) ;:[ (p§/2 + Vix)) (15)

plays a role analogous to an average energy with the identification V(x) =

(-1/2)(K2(5) - 1). For a transversely inhomogeneous half-space, partial
integration of Eq.(13) in coniunction with the reflection principle (or

method of images) results in [3,7]
" : N-1 N n-1
G (x,%y10,x4) % m» }':{ dxg, }:ll' (k/2x) dpsy
r(n-1)(2N-1)
eexplik(s, + 21720172 - ©1/2))  (6)

with SN and T taking on their appropriate forms in one-lower dimension.

Formally reducing both the full- and transversely inhomogeneous
hal f-space phase space Feynman/Garrod path integrals to configuration space
path integrals [7] establishes the path functional character of the
representation. Moreover, the approximate Feynman/Garrod path integral is
exact in the homogeneous medium 1imit, incorporates significant backscatter
information, and contains both the geometrical (ray) acoustic and ordinary
parabolic approximations. This configuration space formulation for the
two-way problem, initially based on a variational principle and phase space
constructions, seeks to express the propagator in terms of a phase
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functional evaluated over an appropriate path space, as symbolically
e:prﬁssed in the Feynman/DeWitt-Morette representation [3,7,9]. This takes
the form

GixIx') = (-1/2%) | D(3) exp(4kA(3)) (17)

where
X

q a3l (1 - 2v(3))}/2 (18)

X

is the analog of the action associated with a "free particle" on a space
with the metric

di? = (1 - 2v(3))M a3 2 (19)
and where E represents the space of paths from x' to x such that
| Ve B (I/t'ﬁftdt ((1/2)1l d3(t)/dt 02+ V(z(t))) (20)
0
with the constraints
%(0) = x',
Z(7) = x . (21)

The dynamical basis of the Helmholtz equation can, thus, be viewed in terms
of a stochastic process embodying fixed “average energy" paths, or,
alternatively, in terms of "free particle" motion [3,7,9].

I11. COMPUTATIONAL ALGORITHMS. Direct integration cf the one-way
phase space path integral provides the computational basi: for the pseudo-
differential wave equation (2). Choosing the standard ordering, F(u,v) =
exp(-ikuev/2), in Eqs. (6), (7), and (8) results in a numerically more
efficient post-point marching algorithm in the form

¢* (xvax, x,) & dp, exp(iRp,+x,) (exp(iRaxhg(p,.x,))8*(x,p,))  (22)
gn-1

where 3+ is the Fourier-transformed wave field and

hg(pgoxg) = (K/w)-1 dsdt Qg(s,t) exp(-2iR(xy = E)*(py - s)).  (23)
2n-2
R
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This marching al?orithm provides the generalization of the Tappert/Hardin
split-step FFT algorithm [1] to the full one-way (factored Helmholtz) wave
equation. For a two-dimensional model ocean/bottom propagation environment
with a perfectly reflecting ocean surface, the Fourier transform of the wave
field in Eq.(22) is replaced by a discrete fast sine transform and the in-
verse transform is evaluated by a rectangular rule integration, enabling the
propagated wave field to be expressed in the matrix form

$oemxz,) = 3 Ay (x.p,) (24)

N
for each depth point z,. In Eq.(24), ¢+ and ¢+ are column vectors and the
matrix A is defined by its matrix elements

Anm =nsin(Epmzn + EAxhg(pm,zn)) exp(iKAxhg(pm,zn)) (25)

where hg and hg are the even and odd parts with respect to p of hB(p,z) in
Eq.(23) and M) is an appropriate transform normalization constant [1,4,12].

The principal idea underlying the practical implementation of the phase
space marching algorithm is the construction of a small number of approxi-
mate operator symbols, which, when taken together, allow for wave field
computations over a very wide range of model environments and propagation
parameters. In conjunction with a study of exactly soluble cases of the
Weyl composition equation [6], high-frequency, real Weyl high-frequency,
uniform high-frequency, and low-frequency approximate symbols have been con-
structed [2-4,6]. Of particular significance is the fact that the manner of
marching the radiation field is independent of the medium and any approxi-
mation to the square root Helmholtz operator, resulting in a modular code
architecture and highly versatile propagation program. Moreover, the propa-
gation models constructed and computed through the code correspond to sing-
ular integro-differential equation as well as partial differential equation
approximations to the one-way wave equation. Indeed, this numerical algo-
rithm represents one of the very few attempts to compute directly with
pseudo-differential and Fourier integral operators. For the two-dimensional
case, the range-incrementing procedure is just a sequence of matrix multi-
plications, and, thus, ideally suited for computers which provide either a
vector or a parallel pipe type of operation. Phase space filtering reduces
both the size of the matrix multiplication and the number of matrix elements
initially computed, in particular, reducing the total range-incrementing
gom?utatEogal time by almost an order of magnitude for typical model calcu-

ations [4].

Numerical results of transmission loss (dB re 1 m) as a function of
range (km) for a number of model ocean/bottom propagation experiments
demonstrate the computational viability of the factorization-/path integra-
tion-based phase space marching algorithm [4,12]. Several propagation
experiments are summarized in Figures 3, 5, and 7, with the corresponding
transmission loss curves compared with a reference Fast Field Program (FFP)
algorithm [4,12] in Figures 4, 6, and 8.
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For 400 Hz propagation in the exaggerated double-well model of Figure
3, a wide-angle capability well beyond the ordinary parabolic approximation
is required. Figure 4 illustrates the excellent agreement between the high-
frequency and FFP algorithms over ranges on the order of 500 wavelengths.
Figure 6 illustrates the cumulative growth of a phase shift error at long
range which characterizes the breakdown of the high-frequency algorithm in
the 250 Hz propagation i1n the rapidly changing shallow-water model of Figure
5. Combining Fourier component, or wave number, filtering with the high-
frequency algorithm leads, not only to a more efficient and, thus, faster
algorithm, but also, to a more widely applicable numerical scheme. The
filtering, in addition to removing Fourier components which, in principle,
make no significant contribution to the computed wave field, eliminates
those unnecessary regions of phase space where the small error in the high-
frequency symbol approximation can lead, in a cumulative manner, to serious
discrepancies at sufficiently long ranges. Tnis is particularly well
illustrated in the 60 degree filtered calculation on model environment 2 at
250 Hz which results in the complete elimination of the cumulative phase
shift error (Figure 6), greatly extending the effective computational range.
Sufficiently decreasing the propagation frequency and increasing the jump
discontinuity in the sound speed, as illustrated in the 25 Hz propagation in
the shallow-water model of Figure 7, demonstrate the violation of energy
conservation inherent in the high-frequency wave theory and the now-rapid
decay with increasing range of the corresponding numerical algorithm. This
growth in the wave field, illustrated in Figure 8, is eliminated by the real
Weyl high-frequency algorithm [4], which effectively restores energy
conservation, as is also illustrated in Figure 8. A more detailed
discussion of these and other points is presented elsewhere [1,4,12].

The speed and modest storage requirements of the filtered one-way
algorithm indicate that range-dependent calculations over extended
environments should be feasible with current supercomputer technology. Both
range-updating and the numerical calculation of the reflected and
transmitted- fields from an interface should be possible over distances on

the order of 104 wavelengths. Preliminary computations with range-dependent
Munk-profile deep ocean environments, including propagation through extended
shadow regions, compare well with adiabatic normal-mode calculations.

Both the range-dependent and range-independent Feynman/Garrod path
integral representations can be computed by standard Monte Carlo (statisti-
cal sampling) methods for the numerical evaluation of multiple integrals
(4]). While numerically calculating Helmholtz wave fields as high (in
principle, infinite)-dimensional integrals is quite distinct from the more
traditional finite-difference and finite-element approaches, the Monte Carlo
evaluation of functional integrals has been successfully applied in quantum
mechanical, statistical mechanical, and quantum field theoretical
calculations [4]. For the phase space representations of Eqs. (13) and (16)
in two dimensions (n = 2), the modeling of realistic propagation experiments
can involve the computation of thousand-dimensional oscillatory integrals.
Correlated-sampling variance reduction techniques can dramatically improve
the speed and accuracy of the algorithm [4]. Generally speaking, a large
parallel processing capability should have a very favorable impact on the
numerical computation of path integrals [4].

IV. INVERSE FORMULATION. The phase space-based construction of the
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square root Helmholtz operator provides the basis for a formulation of the
inverse algorithms mentioned in the Introduction. Mathematically, the
refractive index field (or its square) is reconstructed from the full-space
Helmholtz Green's function G through the relationship

Blxgex) = (20/K) Tim d26(x,x,10,x3)). (26)

The symbo! “B(Eﬁﬂ) is then constructed through an inverse Fourier transform
of the kernel function B(x,,x;) and subsequently yields the refractive index

field upon a direct application of the Weyl composition equation (3) forl€J=
0. In the homogeneous medium 1imit, the direct evaluation of the composite

synbol reduces to the square of the symbol, 8g2(p,q) = ng(glg).

The inverse algorithm proceeds around the correspondence diagram (pictorial
summary) in a counterclockwise fashion. The direct propagation algorithm
requires the inversion of Eq.(3) while the inverse propagation algorithm
only requires a direct computation of Eq.(3). Thus the direct propagation
problem has been transformed into an "inverse" problem while the wave field
inversion problem has been reformulated, in an appropriate sense, as a
direct calculation.

The factorization algorithm exactly inverts the inherently nonlinear
relationship between the wave field data and the refractive index field as
reflected in the Lippmann-Schwinger equation for the propagator [3]. Most
importantly, it is a multidimensional formulation. For the "physical
experiment,” a point source is introduced into the medium defining the
initial-value (x = 0) plane. The second derivative with respect to the
range of the wave field is then determined as a function of the point source
and receiver positions. Collecting the data on the initial-value plane
would most probably 1imit the application of the algorithm to specific types
of bore-hole experiments. Moreover, mathematically, the inversion requires
the evaluatiun of singular integrals (generalized functions). Collecting
data on a downfield plane (x > 0) leads to a transmission experiment similar
to the oceanic sound speed profile inversion method of DeSanto [3]. The
downfield wave field provides for an appropriate analytic continuation in
the factorization algorithm and connects the analysis with the inverse
diffraction problem [3].

The transmission, or propagation, formulation is analogous to
tomography. The reference wave number in the factorization analysis
corresponds to 2w/(Planck's constant) as opposed to its square playing the
role of an energy. The source generation and data collection over parallel
planes then naturally correspond to the multidirectional insonifying plane
waves and subsequent angular data collectfon of fixed-energy (frequency)
diffraction tomography [3]. For range-dependent environments, the inclusion
of backscatter effects, even in an approximate manner, would then provide
the basis for a generalized acoustic tomography, extending the diffraction
algorithms based on the Born, Rytov, or distorted-wave Born approximations
[3]. The nonlinear factorization and subsequent weak-backscatter
perturbation theory would extend the linearized weak-scattering treatments
into the nonlinear regime. This can be attempted in two ways. Formal field
splitting analysis provides the basis for a weak-backscatter perturbation
theory within the framework of invariant imbedding [2-4]. The arbitrary-

303



dimensional nature of the factorjzation analysis in conjunction with
mathematical imbedding concepts provides the basis for a spatial-dimensional
perturbation theory [2-4]. This essentially involves treating the spatial
dimension of both the Helmholtz operator, in general, and the refractive
index field, in particular, as a variable and subsequently studying the
structure of the resulting family of systems indexed in this manner. For
the case of two (different) transversely inhomogeneous half-spaces

separated by a planar interface, an inverse algorithm can be initially based
on the composition equation (9).

For a transversely inhomogeneous environment, the factorization
inversion model invites comparison with “effective one-dimensional"
stratified environmental models such as that of Stickler and Deift [4]. In
both models, the location of the field source (finite) and the data measure-
ments is within the scattering region. Most importantly, the factorization
method is a direct inversion of an arbitrary-dimensional propagation
equation which requires less symmetry than those models (i.e.,
Stickler-Deift) reducible to the standard one-dimensional formulation of
Deift-Trubowitz [4] or Gelfand-Levitan [4]. Thus for example, in a general
n-dimensional Cartesian formulation, the refractive index field can be a
function of as many as (n-1) coordinates in the factorization model, while a
function of only one coordinate in an "effective one-dimensional" model.
The experiment envisioned and the distinguished direction differ in the two
models. In the transversely inhomogeneous environment, the direction in
which there is medium homogeneity is distinguished, while in the “"effective
one-dimensional"” model, the one direction in which there is medium inhomo-
geneity is, in effect, distinguished. Data, in both cases, is collected
perpendicular to the distinguished direction. The Stickler-Deift model is
essentially a one-dimensional scattering experiment with the surface data, -
in effect, reflection coefficient data. Thus unlike the transmission
experiment, which extensively samples the region of inhomogeneity, in the
factorization model, the Stickler-Deift analysis does not account for the
presence of "trapped modes" [4]. The formal inclusion of a specific
pressure-release surface within the pseudo-differential operator framework
would allow for a stratified environmental model and the subsequent
quantitative comparison with the Stickler-Deift model.

For applied inverse problems, approximate inversions may prove
adequate. Approximate inversion algorithms follow readily from the pertur-

bative treatments of the Weyl composition equation. Kz(g) is related to
nB(O,g) in a quadratic fashion and through a 1inear integral relationship,

respectively, in the high-frequency (k—>=) and weak-inhomogeneity (Born)
limits. In particular, the high-frequency algorithm is based upon choosing,
in practice, a yp| such that the symbol approaches its asymptotic form,

Qg(p,q) ~ (Kz(g) - p2)12, e approach to the asymptotic regime in phase

space is governed both by the magnitude of Kz(g) - p? (large) and the
variation of the refractive index field on the wavelength scale (small).
Figure 9 illustrates the high-frequency inversion for the case of a
quadratic medium. Applying the full composition equation for the inversion
would result in a linear function in X for the real part and an imaginary
part which is identically zero. Finally, weighted Hilbert space methods for
incorporating prior estimates appear to be applicable to the Fourier-based
factorization approach [4].
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SCALE INVARIANT EQUATIONS FOR RELATIVISTIC WAVES

Richard A, Weiss
Environmental Laboratory
U. S. Army Engineer Waterways Experiment Station
Vicksburg, Mississippi 39180

ABSTRACT. The basic trace equation of relativistic thermodynamics is
decoupled into two Callan-Symanzik type renormalization group equations that
connect the matter fields with the thermodynamic gauge parameters. These
equations determine two characteristic curves along which the solution to
the trace equation assumes a simple form. The differential equation describ-
ing the variation of the Grineisen parameter with pressure is derived. A
perturbation procedure is applied to the potential form of the renormaliza-
tion group equations in order to develop the corresponding potential form of
the renormalization equations for waves in a relativistic medium. A method
for calculating the Debye temperature for the excited states of solids and
quantum liquids is developed. The amplitude and spectrum of waves in ther-
modynamic media are calculated. A simple equation is derived that scales
the wave amplitudes for different material densities (pressures). The re-
sults of this paper will have applications to nuclear blast loadings, the
interaction of directed energy beams with matter, and to various high den-
sity geophysical and astrophysical phenomena.

1. INTRODUCTION. The renormalization group was originally developed
for problems in quantum field theory.l'2 But over the years it has become
an important technique in many areas of physics including, phase transi-
tions, critical phenomena, hydrodynamics, and statistical mechanics.®™®
The renormalization group consists of a set of continuous transformations
that establish a correspondence between sets of parameters that define phys-
ically different states. In particular, the renormalization group gives
a correspondence between systems having different correlation lengths. The
correlation length of a physical system is the distance over which local
particle densities are correlated. Ordinarily the correlation length is
approximately equal to the range of interaction between two component par-
ticles, however, near the critical point of a fluid the correlation length
is much greater than the range of pair interactions.® The renormalization
group is commonly described by a set of differential equations for the
physical state parameters.

A set of renormalization group equations in potential form has been
developed for the ground state parameters of a relativistic thermodynamic
system.7 In this case the correspondence between sets of parameters refers
to a change of the local scale (gauge), and this change of scale is equi-
valent to a change in the correlation length. The potential form of the
renormalization group equations consists of a set of differential equations
for the two gauge parameters of relativistic thermodynamics.7 These equa-
tions are obtained by requiring the basic trace equation of relativistic
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thermodynamics to be invariant under a local scale transformation that corre-~
sponds to a change in the correlation length of the system.

The trace equation of relativistic thermodynamics is written as®

dU (1)

du d
U+ T zf)pv - 3V dv(PV)U v+ (S

)p‘v

where U = relativistic internal energy, P = relativistic pressure, T = abso-
lute temperature, V = volume of substance, and U2 and P2 = corresponding non-
relativistic internal energy and pressure. Throughout this paper the index
"a" will refer to nonrelativistic calculations. The trace equation (1) can
be rewritten as’

(1-b+'1‘3§.f- av)E 3(1+y+v )P (2)

-(1-b‘ b‘va)e‘

vhere E = relativistic energy density = U/V, E® = nonrelativistic energy
density, and where’

V [ 3P
y =L (28 (3)
L),
T(3P/3T),,
b = N (4)
r(ap‘/ar)v
b= a a (5)
* - k%)

where Yy = Grilneisen parameter, Cv- heat capacity at constant volume, and

(),
Kp = -v(%%:)T (7)
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are the relativistic and nonrelativistic values of the bulk modulus respect-
ively. The parameters b and y are the gauge parameters of relativistic
thermodynamics.

For a solid or low temperature quantum system the nonrelativistic state
equation of the ground state is assumed to have the following form®»®

ea-eg+e§ri+ (8)
Pa-P§+P;‘TJ + oee - (9)

where E? and P? = nonrelativistic energy density and pressure respectively,
E8 and Pa = nonrelativistic zero-temperature values of the energy density and
pressure respectively. E4 and P? = nonrelativistic thermal coefficients for
the energy density and pressure respectively, T = absolute temperature of the
system (°K), and j = numerical index havling vzlue~ characteristic of the type
of physical system. Typical examples of systems that are described by equa-
tions (8) and (9) are®

J=1 high temperature solid

j=2 low temperature Fermi gas

i= 5/2 low temperature molecular Bose gas
j= low temperature solid

A commonly used descriptor of the thermal state equations given by equa-
tions (8) and (9) is the nonrelativistic zero-temperature value of the
Grineisen parameter that is defined by®’

a
h) ! 1 d a
P o g M i (10)

except for j = 1, Here Yo = nonrelativistic zero-temperature value of the
Griineisen parameter, and V = volume of the material system. When j =1,
Y3 = 2/3 . The zero_temperature value of the nonrelativistic bulk modulus
18 given by K3 = ndP3/dn , where n = N/V = number of moles per unit volume,
and N = number of moges of a substance.

The corresponding relativistic state equations will be written as®s?®

- j L N )
E E°+Ej'r I (11)
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P=P_ + PjTj + oee (12)
P
Yo-zi- T WO 4

except for j = 1 , when y_ = 2/3 , and where £, and P_ = relativistic zero-
temperature energy density and pressure respectively, Ej and Py = relativis-
tic thermal coefficients for the energy density and pressure respectively,

and y, = relativistic zero-temperature Grlinesien parameter. The relativistic
value of the zero temperature bulk modulus is given by K, = ndP,/dn . Combin-
ing equation (2) with the state equations (8) through (13) yields the follow-
ing ground state equations

E, -3l +y)P, -K]= E: (14)
jy_P dy jy2p?

E.[1+3+ 2 +hm—) =E1+35+—22 (15)

3 ( Po - Ko dn ) 3 Pa 3 K:

The potential forms of the ground state renormalization group equations
for the gauge parameters b and Yy are determined from the requirement of local
scale invariance of equation (2).7 A form of the renormalization group equa-
tions that is commonly used in quantum field theory and the theory of critical
phenomena are the Callan-Symanzik equat:l.ous.l'3 In this paper the Callan-
Symanzik form of the renormalization group equations for the relativistic
ground state of thermal media will be obtained directly from equation (2).

Two forms of the renormalization group equations for radiation in matter
are obtained in this paper. The potential form of these equations is obtained
by a perturbation procedure that is applied to the potential form of the re-
normalization group equations for the ground state. The Callan~-Symanzik form
of the renormalization group equations for radiation will be obtained by a
perturbation procedure applied directly to equation (2).

An important task of modern physics is the determination of the effects
of gauge (scale) invariance on the ground state and excitations of matter.
These effects have been treated for the ground state of a thermodynamic
system.8 An approximate treatment has been developed for waves in solids and
quantum liquids by assuming that the diffuse radiation factor and the radia-
tion GrUneisen parameter arc equal.’ This paper prescats a completely general
procedure for calculating t'.e relatjvistic amplitude and spectrum of elastic
waves in solids and quantum liquids. A set of coupled second crder radiation
equations is developed that determines the relativistic energy density and
Grineisen parameter for radiation in solids and Fermi and Bose liquids.
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2., RENORMALIZATION GROUP EQUATIONS FOR THE GROUND STATE. The ground
state of a relativistic thermodynamic medium is described by equation (2)
where y and b are gauge parameters. Equation (2) can be decoupled into two
independent equations by noting that € and P are related by the Gibbs-
Helmholtz relation as follows

U 13 P
(a—v)T E+ V( W, - T(ﬁ)v - P (16)

With the introduction of a lLangrange undetermined multiplier n , equation (16)
can be rewritten as

(1+v—)E+ ( -Ta—a,r-)P-o 17)

Combining equations (2) and (17) yields the following decoupled equations

] ] a,, 9 a,ra
[T 55 + (-B)V =5 +n+1-b]E'(Tﬁ-bVW+l-b)E (18)
[vl_( --&)Ti-ﬂ+Y+l]P-0 (19)
v - W TIIT T3

The undetermined multiplier n is in general a function of V and T. From
equation (19) it follows that

oP 3P

3. Vg -YTsr + (v + 1P (20)
* p-1&
oT

except when the denominator is zero (as in the case of an ideal gas for
which P = nRT)., For T = 0 , equations (18) through (20) become

3 a
(nOV W Tt l)E = Eo 21)
(v—a--f-‘-’-+ +1)P =90 (22)
oV 3 Yo o
n dP
0 \' 0
T-F;dv +yo+1 (23)
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where n, = the Lagrange undetermined multiplier for T = Q . It is easy to
show that combining equation (21) through (23) by eliminating the Lagrange
multiplier and using the T = 0 form of equation (16) which is

dE

pox W (24)

gives the T = 0 ground state equation (14).

Equations (18) and (19) can be rewritten as

d 9 a
(T-a—,f+f-a-;+M)E-lb (25)
(T=+h->=+NP =0 (26)
aT v
where
Vee' @27
f=n-b» (28)
1
h m (29)
M=¢f+1 (30)
N=h-1 (31)
Ve (T -1 2 pYE (32)
oT v

Equations (25) and (26) are immediately recognized to be similar in form to
the Callan-Symanzik equations that describe the renormalization group.t»?

The physical meaning of equations (25) and (26) is that T and V can be con-
sidered to be arbitrary parameters and that the trace equation of relativistic
thermodynamics is form invariant for any choices of values for T and V, i.e.,
arbitrary values of temperuature and volume are acceptable in equation (2).
Equations (25) and (26) connect the matter fields £ and P to the gauge fields
Yy and b, Using equations (25) and (26) allows f and h to be written as
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Tg—$+E-¢°
f = 55 (33)
P -T %k
aT

P-T
h = ——=t= (34)

P =K
which for the case T = 0 become

6 - &

The functions f and h are the thermodynamic analogs of the Gell-Mann-Low
functions.?!

In analogy to equation (27) the introduction of

T = et 37

allows equutions (25) and (26) to be rewritten in simpler form by evaluating
the derivatives along two characteristic curves as follows

dE a

-d_t-+ ME = y (38)
dp

;3 + NP =0 (39)

The two characteristic curves are defined by

(v, = -2 2 (40)
h(V,T) = %t’- = %9% (41)
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The characteristic equations (38) and (39) can be solved formally as

E= Ce-IMdt + e"fndt[‘#aemdt dt (42)

o De-[th

where C and D are constants. Therefore, along the characteristic curves
the solutions to equations (25) and (26) assume a simple form.

The requirement of local scale (gauge) invariance demands that equation
(2) be invariant under transformations of the form P + P' = Pe~?% and
E~+ E' = Ee~V where ¢ and y are functions of V and T.” These transformations
describe a correspondence between physical states having different correlation
lengths. The scale invariance condition is taken to be analogous to the con-~
dition of local gauge invariance, and yields the following differential equa-
tions for the gauge parameters using the e -¢ and e~V transformations’

FRCRR st e
(&) 'p-igp:rg% @6
db\~ lyf X%
(-"T) 'eiig_s i‘v—% (48>

These are the potential forms of the renormalization group equations for the
relativistic ground state of a thermodynamic 3ystem; they correspond to scale
transformations with negative signs in front of the potential functions ¢ and .

From equations (44) and (45) it is clear that the denominators of these
equations are not symmetrical under ¢ + -¢ and ¢y - -y . In fact, the require-
ment of scale invariance for equation (2) under the transformations
P+ P'=7Pett and E+ E' = Ee*a yields the following result

. L I28_Vae
(Q_) ¢ s 3T ~ 9 oV _
ar Y )
P-Tar -3y
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(db)+_ i?qr" q; i

14 3y
E+V—= w* Ev v

(47)

However, the physical derivatives of the gauge parameters must be independent
of the signs of the potential functions that appear in the scale transforma-
tions, and the simplest way to accomplish this is to assume that the physical
derivatives are given by the following symmetric forms

s . .
F-2|(&) +(F) ] (“8)
®-7|(®) + (@) (“9)

Equations (48) and (49) can be rewritten as

dy (P'Tar)<7¢3% ¢§%)

A R T R ST E)
o (E+vH)(ER- * §3t)
aE (E+v—-E Be+v +£v-a-3) b
Equations (50) and (51) can be rewritten as
%_(P'T%E)g”%%%'%é%) (50a)
(r-1F) -*(r )
%%_ff“’g—v (2%%'1’%%‘?7) (5la)
(e+v ) -E(v§)

Equation (50) has the obvious property that for an ideal gas dy/dP = 0 because
in this case P = nRT, and this agrees with the fact that the Grilneisen para-
meter for an ideal gas is given by vy = 2/3 . Equations (50) and (51) are the
potential forms of the renormalization group equations for the relativistic
thermodynamic ground state.
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temperatures (T > 6p) by ¢ = 8p/T , and for low temperatures (T < 6p) oy
¢ = T/OD + For high temperatures, the use of ¢ = 6p/T in equation (50) gives

) 26
dy (g 3B _ (-1_2 v 2%
aP (T 3T LA LR vt o 6, 3V /() (52)
where
6 26
3p D T %%
AH'T'E)'?'P+PT(1'§—9T) (53)
o 36
ap D T %%
BH-TE-P-PT(I-EEF) (54)

(52a)
dP 5 o2 PR
(Ta_p) -2} ;.

aT T 6, T

Since in general the following conditions hold for ordinary materials at high

aP
Tﬁ>P (55)
v 390 >Y(1 T 36D)
— w2 . S
GD Vv 3D oT (56)

it follows from equation (52) that in general dy/dP < 0 . The slow varying
CrlUneisen parameter condition (dy/dP ~ 0) 1n equation (52) yields’

(57)
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which is a standard equation of high pressure physics.7 If 6p does not depend
appreciably on temperature it follows from equation (57) that

Wl ! |
YE= W (58)

20 26
4 . ) 4 g £ [ Rk
ap (P Tar)|v(t - 5, 8T)+6D v | /(B (59)
where
20
P T T D)
= P=-Tsm+P—|1 - (60)
A 3T eD( 8, 3T
26
ep-T_p,T(;,_T_0D
het-tH PeD(l eDa'r) (61)

(59a)

P " 2
-+ -0 -4 )
oT OD OD oT

The slow varying Grlneisen parameter condition (dy/dP ~ 0) for equation (59)
also yields the result in equation (57). For the case T = 0 , equation (59)

becomes

0
dy 96
0 \'i D
- (”o * oW )/Po : 062)
o OD

where 68 = the T = 0 value of the Debye temperature. The slow varying Griineisen
parameter approximation applied to equation (62) yields

o
aeb

o |
? (63)

)

Yo’-"

o
D
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3. LOCAL GAUGE INVARIANCE FOR PHASE ROTATIONS. The sign of the zero tem-
perature derivative dy,/dP, that appears in equation (62) is not obtained from
the previous analysis. An indication of what this sign is can be obtained by
introducing complex local gauge transformations for the pressure, energy den-
sity, and the gauge parameters Yy and b . This corresponds to phase rotations
of the pressure and energy density relative to the gauge parameters as follows,
~ *iW
be

~ e, ~ > = . * i
B' = Be? gna E' = Ee*lV , and correspondingly y' = Ye i b =

where P o 3 3 ? and b must now be taken as complex numbers whose magnitudes are
respectively P , £, y and b , and where S = S(¢) and W = W{y) are the phase
angles of the y and b gauge parameters respectively. Thus whereas the real ex-
ponentials e*d and e*V correspond to changes in the pressure and energy density,
the complex exponentials correspond to phase rotations where the magnitudes P ,
E, vy, and b are held fixed.

The phase angles S(¢) and W(y) are determined from the condition of local
gauge invariance on the fundamental trace equation (2). It is first noted that
for P, E, vy, and b held fixed it follows that

AL

dy _ x ds db b dd
P do¢ P (63a)

Then it follows that the local gauge invariance conditions and the symmetriza-
tion equations (48) and (49) yield the following remormalization group equations
for phase rotations in analogy to equations (50a) and (5la)

(-13) (35 -5w)

yds _ oT 8. b (63b)

T (e ZY 4 r )

%d_w_(E"'vg_\El)'%%%-b%%%) (63c)
L) ()

Note the positive sign in the denominators.
For high temperatures, ¢ = 6p/T and S = Sp/T , where Sp = characteristic

temperature of the Grlineisen parameter phase angle. In this case equation
(63b) becomes

L) 90
(r22- p)[y(l L) L2

y ds _ aT L GD oT GD
P d¢ 2 2 (63d)
r 38 _p\2, 2\ [, .12
aT T GD oT



where

”_de-fg(l_iis_v)u
v T S, oT
as _ 2 (63e)
d¢ 36 ) 30
b T T N T )
av T OD aT

A comparison of equations (52) and (63d) shows that at high temperatures
dy/dP < 0 and dS/d¢ < 0 .

For low temperatures let ¢ = T/6p and S = T/Sp and get from equation
(63b)

148 _ D D (63f)
F.& 2 2 26
oP 2{ T T D
P T 3T + P e 1 - 3T
D D
where the derivative dS/d¢ is evaluated as follows
T BSD T BSD
l - == ]dT = =— — 4V
3] S, oT S. oV
a8 D D D (63g)
s S 30 36 g
D(l-l—n)dr L2 gv
OD aT OD v

Thus at low temperatures dS/d¢ > 0 and from equations (59) and (63f) it
follows that dy/dP > 0 at low temperatures. In particular the T = 0 case
of equation (63g) is

6°
D

(@), -
S
D

where 68 and sB are the T = 0 values of 6y and S, respectively. Therefore

for T = 0, equation (63f) becomes

o

D

eO

D v

x (Yo *ee3 )/Po (631)
D D

Note that P° < 0 for bound systems such as solids at standard pressure.
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A comparison of equation (62) and (63i) then shows that

o
P_ dy 6
b e . | (633)
y_ dP g°
o o D

and therefore it follows that if 68 > 0 and Sg > 0 then dy,/dP, > 0 , and
from equation (62) one concludes that

96

o
D
W (63k)

°
cfb|<

Since in general dy/dP < 0 at high temperatures, while equation (63j) shows
that dy/dP > 0 at T = 0 , it follows that as the temperature of a solid or
quantum liquid is lowered a value of the temperature is finally reached at
which point the sign of dy/dP changes from a negative to a positive value.

It should be pointed out that a similar analysis is not possible for the
angles y and W (associated with E and b respectively) that appear in equation
(63c) because the gauge parameter b + O when T + 0 . This condition combined
with equation (63c) suggests that y has the following low temperature form

V(V.T) = ACY) exp ( [G(V,T)dT) (632)

where G(V,T) = some polynomial function of T .

4. RENORMALIZATION GROUP EQUATIONS FOR EXCITATIONS. When electromagnet-
ic or mechanical waves of small amplitude are present in a thermodynamic medi-
um, the renormalization group equations for the excitations can be obtained
either directly as a perturbation on the ground state equation (2) for the
energy density, or as a perturbation on the potential forms of the ground
state renormalization group equations given by equations (44) through (49).
When excitations are present the pressure, energy density, bulk modulus, and
heat capacity become P + P, , E + E,. , K7 + Ky, , and Cy + Cy, respectively,
where P, = radiation pressure, . = radiation energy density, and where

r
apr
KT = n(-—-—) = radiation bulk modulus
r on T

13
Cy. ™ V(-—-E) = radiation heat capacity
v
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The GrUneisen parameter for a thermodynamic medium with excitations is
obtained from equation (3) as follows

o
Cy, +C

9
—(P.+ P ). (64)
v vr T s

Y+6r-

where &, = change in the system Grlineisen parameter due to the presence of
radiation. Expanding equation (64), subtracting equation (3), and keeping
only first order terms gives

5 -l.a_EL( = ).C_VE( -v) (65)
) o cvar Yr Y Cv Y1' Y

where By = Grineisen parameter for the radiation field itself and is given by

aPr E)l:'r
Vg 'W/ T (66)

The gauge parameter b for an excited thermodynamic medium is obtained from
equation (4) to be

(28 + i)
oT 9T

r-P-&r+Pr-KTt

b+ 8

(67)

where B, = change in b parameter due to the presence of radiation in the
system. Expanding equation (67), keeping only first order terms, and sub-
tracting equation (4) gives

) 4
r

oP
'BT_Tﬁ(Pr-Krr)

r P-Kr (P-Kr)z

T

8 (68)

P
Pr'K'l‘r_TTf(Pr-Kl‘r)

rP-Kl. (P'Kr)z

=}

where b, = radiation gauge parameter given by
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%
T —
T (68a)

r By

The parameters y, and b, are the two radiation gauge parameters of the thermal
medium,

The renormalization group equations for radiation can be put into a
Callan-Symanzik form by first combining equation (2) with equations (64) and
(67) as follows

[1-(b+8)+Ta (b + BV ](E+E) (69)

)

-:*l[1~'l-y+6t-i-va (Y+6)T ](P+P)

[1-(b +e)+r - (b% +e)v ](E‘+E:)

where B? is given by the nonrelativistic analog of equation (68). Subtract-
ing equation (2) from equation (69), and keeping only first order radiation
terms yields the following radiation equation

9 9 P
(1-b+Tﬁ--bVW)Er-B(Tﬁ-P) (70)

3 3 3P
-3[1+Y+VW-YTH)P'1‘-6(T-BTI'.-P)]
(l-b +T ok -b"va)e e( ‘

where the following standard thermodynamic relation was used

LU O o3P _
5 E+vav T35 P (71)

Equation (70) is a first order radiation equation that can be applied to
any thermodynamic system such as gases, solids, and quantum liquids.
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Equation (70) can be separated into two radiation equations each of
which is similar in form to the Callan-Symanzik equation. This is done by
using the Gibbs-Helmholtz equation (71), which for radiation becomes

SUr 3Er 3Pr
Wt st ter gt - P, e

Introducing a radiation Lagrange multiplier n, as follows

o oP
n[E+V§r+P Tﬁé]-o (13)

allows equation (70) to be separated as follows

(T%+f a—av-+mr)6r-e( T 3 - P)-w: (74)
(T:—T+hr3§;+Nr)Pr-hc(Tg—¥--p) 0 (75)

where v is defined in equation (27), and where

£ =n_-b (76)
h. = (n/3 -y (77)
K=& ¥l (78)
N.=h -1 (79)
w:-( - b = 4-1-b)Ea B(T-a—"—-P) (80)

Equations (72), (74), and (75) are coupled radiation equations that give E ’
Py , and nr . These equations simplify somewhat for solids and quantum
liquids.

323



The potential form of the renormalization group equations for radiation
will now be obtained by a perturbation procedure that is applied to equations
(44) through (49). When excitations are present the renormalization group
equations (44) through (47) become

(%})- + %fi)- O+ 8% +"¢ ) (M 3 ::r) v (
@\ M A . (81)
(1+"P— P+Pr-T(aT )+(P+P)T(—,—r )
(&) (g oot ahp(#ew)
(1+-j:—r) P+Pr-r(%%+;:—r)'-(P+Pr)'r(—9i+?:;-)

(%—‘E)_+(§§5)— Gy = (%+:$_r ety Wz—m(%‘%+ = )

3t g: 5
r 13 r ) r
(1+FE') el +v(av av)'(E*'Er)v(?%*av)

(83)

(&) (%) whg (@) een gho(#ew

dE F14 v
r 13 _i
(1+<TE—) E+E+v(av+av)+(E+E)v( av

(84)

Expanding equations (81) through (84), keeping only first order terms, and
subtracting equations (44) through (47) gives

& E _ ﬂl)- =
(dsr) — (21) dP, o Ar (dP B, (85)
P dF| @ 3 3%
P-Tap+ T3
+ + ay\t o+
(dﬁr) ) (ﬂ) S IR (86)
dpP dp| dpP _ 9P _ 03¢
P T 3T PT 3T
P
r . dT
® KT " .
dp s & d'r a
Kp*tar®
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9¢ o
.1( 1) _5) he FIAKTY
A =e et YaT +¢(¢av ® ¥
P 3¢
® 5 & el 3 =5
B = b T+ T+ 5
P 3¢
*e b apaziig 3 _ op L
B =P =Ty “ BT -PT 3%
and
= _ db\T =
(dﬁr) _(db‘) dE s Cr-(a-g) Dr
dt de ) dE 14 Y
E+VW—EV WV

D

db)'+ +

E+V-a-‘7

oP of

T r dT
dEr-Er+Pr-Ta—,'r—+——aT na;
dE oP ok dT

E+P-T 5T + 5T ® an

+
8, . [db dE_ " Ce ~ (EE r
dE df ) df 3E . ey U
v

r y 9T av
oF )
a s - ¥ _r
D Er +V v Erv = Ev 5V
213 Y
¥ s 5 3 3y ==k
Dr Er +V 57 + Erv v + EV 3

(87)

(88)

(89)

(90)

(91)

(91a)

(92)

(93)

(94)

where (dy/dP) and (dy/dP)+ are given by equations (44) and (46), while

(db/dE)~ and (db/dE)t are given by equations (45) and (47).

The symmetric equations that describe the variation of the radiation

gauge parameters are then given by
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ds_ l(dsr)’ (dGr)+
F C\TF ) \F (95)

- +
d8 d8
5 * %[(E‘EE) 5 (Ii:'r') ] i

Equations (%7, and (96) are the potential forms of the renormalization group
equations for a thermodynamic system that contains radiation. These equations
determine the radiation potentials ¢, and wr . The potential function ¢, is
related to the radiacive change in the Debye temperature 6p, by ¢, = 6p. /T

for high temperatures and by ¢, = T/6p, for low temperatures. The derivatives
on the left side of equations (95) and (96) can be evaluated using equations
(65) and (68) and the following simple relationships

96 98

F r dT
Pr 2% "3 "dn )
dp ik o 8
k+3T®a
36_ 38
dg ne—>+=—=n 41
3 2 an oT dn (98)
aF E+p-TXE+ EE:n S
3T 3T = dn

5. WAVES IN SOLIDS AND QUANTUM LIQUIDS. Excitations in relativistic
solids and quantum liquids have already been considered using some simplify-
ing assumptions.’ A general procedure for calculating the amplitude and
spectrum of relativistic waves in solids and quantum liquids will be out-
lined here. The energy density and pressure for radiation in these systems
is written as

a = a a J L N ]

Er Eor + Eer + (99)

a = a a J L N ]

Pr Por + Per + (100)

and

- j [ N ]

Er Eor + Eer + (101)
= j [N N )

P Por + PJrT + (102)
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where

E2  and P?_ = nonrelativistic zero-temperature radiation energy
or or
density and pressure respectively

E;r and Pjr = nonrelativistic thermal coefficients for the
radiation energy density and pressure respectively

€ _and P__ = relativistic zero-temperature radiation energy
or or
density and pressure respectively

E,_ and P, = relativistic thermal coefficients for the radiation
jr jr
energy density and pressure respectively

The zero temperature value of the radiation Grilneisen parameter is obtained
from equations (66) and (99) through (102) to be

P P
er 5 —ii Yor - EE (103)
ir ir

The zero temperature values of the nonrelativistic and relativistic radiation
bulk modulus is written as th = ndPgr/dn and Ky ™ ndPor/dn respectively.

The basic relativistic equations describing excitations in solids and
quantum liquids are written as (equations 76 and 77 of Reference 7)

E

a
Eor - 30+ Yo)Por = Kor] -3 Ej_ Po(Yor r Yo) = Eor (104)
a a a.,a
JE (K, = BB) + EpS, jEj(aalcor - %" )+ Rt (105)
where
dF o'or or 2
S;p =1+ +ﬁ n “D vy, = Y,) (106)
£}
™ a1+ 4+-29E (107)
jr P2 - Ka
(o] [¢]
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and where

a,a
Q= ——YO—P—O— aa - _—ng-g——
= 2 a . ga 2
(PO l(0) (PO KO)
a;
B u YOKO B& - YgKO
® -K)? ® - k%2
(o] (o] [o] [o]

(108)

(109)

Equations (104) and (105) can be deduced directly from equation (70) by

using equations (11) and (101).

For example, the expression for ¢, that

appears in equation (65) can be evaluated for the zero temperature case of

solids and quantum liquids to be

E
r
Sor -'Ei_ (or = Yo)

Using the following basic relationships

dE
P = n __ .
or dn or
2
dPor 2 d Eor
K = n = n
or dn d 2
n

allows equations (104) and (105) to be written as

2

d°E dE
2 or or
3n > 3(11 + Yo)n T + (370 + 4)E°r +3
dn
a%E E, s
2 or or r ir
T ey + 8E,, + Lt
n b
2.a a
2 d°E de? E2 T
- 1,22 o _ a( or a r'ir
Ejan 2 8 n = Eor) +-1—E-ij
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(111)
(112)

-:-EP - 2
4 s = el or
(113)

(114)



a
The quantities sjr and Tjr are functions of Yor and Ysr » while the ratios

a

Ejr/Ej ; Ej/Ej , and E?r/EJ are functions of yor » Ygr i and yg #
Equations (113) and (l14) are simultaneous second order differential equations
that determine Eor and y,, in terms of Ear s Yor » and in terms of the para-
meters of the ground state.

Equations (113) and (114) must be solved simultaneously to obtain the
relativistic wave amplitude and the relativistic wave number in terms of the
corresponding nonrelativistic values. However, in order to obtain an approx-
imate value for the relativistic wave amplitude and wave number, only equation
(113) will be used. The zero temperature values of the nonrelativistic and
relativistic radiation energy densities are respectively written as!?

a 1l 2,2

Eor = L KokaAa (115)
1 242

EOI‘ = T Kok A (116)

where k, and A, = nonrelativistic wave number and wave amplitude respectively,
and k and A = relativistic wave number and wave amplitude respectively.
Placing equations (115) and (116) into equation (113) gives

2 dK

3. vl @2 3 o _ d (,2,2 117
7 Kon ';;-(k ) + 7 [Zn . 1+ YO)KO] n dn(k A°) ( )

vl id 2d2Ko K, 1.2.2.a

4 3n dn2 - 3(1 + Yo)n = + (37° + 4)K° + g = 7 kaAaKO

where
Elr

g =3 3 Po(wr0 - Yor) (118)

),

As a crude approximation take v,, = 1/3 , E /E Eor/Eq » and Py v n%0 where
0, = adiabatic index, and assume kA is not explicitly density dependent, and get

l [
g v 3 (o, - Dy, -7 (119)
and
2
d°K dK

202 2 o) o 2 .24
k - — = -

A [3n dnz 3(1 + yo)n I + (SGOYO o, + S)K?] kaAaKo (120)
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Using Ko n %0 in equation (120) gives

szzKa/K

kaAZ = 2a a o (121)
g5 = .79+ 5
o o

o~
-~

2
2 2 300 - 300(2 + Yo) + 3Y° + 4
kaAa

302 - 70 +5
o o

The relative values of kA and kA, at low and high densities depend on
the values of 0, and vy, at these densities. For a low density Fermi gas where
0o = 5/3 and vy, = 2/3 one has kA = 0.77 kaA; ,» for a solid where o, v 8 and
Yo v 3.83 the result is kA = 0.69 kyA; . The high density limit of equatiom
(121) is somewhat more delicate. If the high density limit is associated with
asymptotic freedom, then o, = 4/3 and Yo = 1/3 and kA = kzA; . On the other
hand, if at high densities the interactions increase without limit and oy + = ,
but with y, = constant, then kA = kA, ; However, y, is probably a function of
0o and may be written as vy, = 0, - 4/3 In this case equation (121) goes as
00/(302) as o, + « so that kA/(k A,) - 0 . This behaviour contrasts with the
results of the first order radiation differential equation approximation of
Reference 7, where kA/(kjA;) ~ 30 /o and is large for °o + @ with vy, = con-
stant while kA/(kjA,) ~ oo/c = 1%for 0o > = with v, - 4/3 . .inally for
the case of asymptotlc freedom with o - 4/3 and ¥y l/g the first order dif-
ferential equation approximation gives kA = 0.65 kaAa . Thus the effect of
relativistic thermodynamics on wave amplitudes is system and model dependent.

6. RELATIVISTIC PHASE VELOCITY. A general procedure is given for
determining the relativistic phase velocity for waves in solids and quantum
liquids. The procedure will be first to determine Ea and Y3, from the
values of the nonrelativistic sound speed, then to soive for the relativistic
quantities E or and Y, using quations (113) and (114), and then finally work-
ing backward to deCermine the relativistic sound speed from the relativistic
energy density and Grineisen parameter for the radiation.

The nonrelativistic expression for the phase velocity of mechanical
waves 1is given by

wa : KT 4y T aP ‘
('E') (122)
Z + Y 0
where
a a a apa
=t 4+ P +!(T-Tﬁ- (123)
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a E" ap®
0 T 3T & 50 3T (124)

where W® = nonrelativistic sound speed, and ¢ = light speed. The zero
temperature limit of equation (122) is’»®

a 2 a
wo Ko
Sl e e (i
E°+ P +K
o o o
where wg = gound speed in a T = 0 solid or quantum liquid.
The nonrelativistic diffuse radiation factor is defined to be
s Pr
rr & s (126)
E
r

For isotropic radiation the diffuse radiation factor can be expressed as
follows??®

a
a 1 n dwW
T3 Y adn (127)

The phase velocity that appears in equation (122) through (124) can be
expanded in powers of the temperature, so that the diffuse radiation factor
can be written in the following general form

ard 43 qd .. (128)
E T r

0 3

Therefore the coefficients of the diffuse radiation are expressed, through
the phase velocity W8 , in terms of the ground state functions E3 , P3 , E? 3
and PY

j 3

Using equations (99) and (100) to represent the radiation pressure and
energy density that appear in the defining equation (126) for the diffuse
radiation factor, expanding the denominator, and keeping only first order
terms yields the following results
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o B (129)
Eor
Ea
a _ _15 a _ .a
I'jr Ea (Yor I‘or) (130)
or

where the left hand side of these equations are obtained from the sound speed.

Equations (129) and (130) can be used to determine Egr ; E?r , and v3, .
For instance, placing equation (111) into equation (129) gives

aE?
a n or

1" B enw————
or Ea dn
or

-1 (131)

which is a differential equation that can be solved for £3, , since rad, is
known from the ground state parameters through equations (122) and (127). In
fact, the solution of equation (131) is

n
a a a dn
€5, =, e (112, —n') am

where D3, = constant. The determination of E?r and Ygt from equation (130)
goes as follows. It is easily shown that’

£ o nd® [ T d"] (133
ijr jr exp | - (J' ) J’ YOI‘ "n- )

where Dar = constant. Placing equation (133) into equation (130) gives an
integral equation which can be solved for YS: . In this way the nonrelativ-
istic radiation energy density and Grilneisen parameter, Egr and Ygr respec-
tively, can be determined from the phase velocity.

The corresponding relativistic values of the radiation energy density
E,r and Grireisen parameter y,, are obtained by the solution of the simulta-
neous equations (113) and (114§. The relativistic thermal energy density co-
efficient is then determined by’
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. dn
Ejr r nDjr exp [- (3-1) [ L 7] (134)

where D e constant. The relativistic diffuse radiation factor coefficients
are thea calculated by

R € i (135)
or = o dn

E r
My ™ é—; gy = Top) (136)

The relativistic diffuse radiation factor is then written as

= j LN )
P (n,d) =T __+T T + (137)

i
P
-
=
r

Iinally the relativistic phase velocity is obtained as a solution to the
following equation

d

x

1 n
3%V (138)
which can be written as
W 5 1, dn
- [- £ Ry 3) n ] ' (139)

If it is assumed that the diffuse radiation factor is independent of
temperature it follows from equations (136) and (137) that

F.=T =y (140)
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In this case it follows that P, = YorEor » and the wave equations (104) and
(105) reduce to a set of coupled first order differential equations instead
of the second order differential equations that appear in equations (113) and

(114).”

7. SCALING THE WAVE AMPLITUDE. This section obtains a simple expression
for the wave amplitude in a T = 0 system. Combining equation (135) with the
T = 0 form of equation (138) yields

n dEor 4 n dwo
T_ & "3tu @ (Ls1)
or o

where W, = zero temperature value of the relativistic phase velocity. An
equation analogous to (141) holds for the corresponding nonrelativistic
quantities. The solution of equation (l41) is easily obtained to be

. 4/3
E,, = GMW.n (142)

where G, = constant independent of n. The relationship between wave number
and phase velocity is W, = w/k , where w = angular frequency. Using this in
equation (116) gives the following expression for the radiation energy density

1
- 2 (143)

Combining equation (142) and (143) gives the wave amplitude as

3 4G w3n4/3
A° = P} o (- S (144)

sz
o

Let n and n) be two particle number densities, then it follows from equation
(144) that !

3 4/3
An) 2 . wo(n) o Ko(nl) 55)
A(n,) Wo(nl) n, K (n)

(o)
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which is the scaling equation for wave amplitudes under a change in density
in a T = 0 system. Equation (l45) is expected to be a good approximation
for finite temperature systems if the corresponding finite temperature para-
meters are used.

8. ELECTROMAGNETIC WAVES IN MATTER. The relativistic calculation of
the energy density and phase velocity of electromagnetic waves in matter pro-
ceeds in a manner analogous to the case of mechanical waves. The relativistic
and nonrelativistic electromagnetic energy densities at zero temperature are
given by i

1 2 2
Eor ks (soE +uH ) (146)
a 1 a.2 a 2
EOI‘ ? -f (€0Ea " oHa) (147)

where E and H = relativistic electric and magnetic radiation fields respect-
ively; E; and H, = nonrelativistic electric and magnetic radiation fields re-

spectively; €, , u, and €2 , ug = zero temperature values of the relativistic
and nonrelativistic permittivities and permeabilities respectively. The ther-
mal part of the radiation energy density and pressure is written in the form
of equations (101) through (103), and therefore the determination of Eor and

is necessary for a relativistic description of electromagnetic waves in
matter. The crude approximation y,,. = 1/3 is made in this section, and the
problem is to determine ¢, , Ug » E» and H .

It will be assumed that the nonrelativistic values of the zero tempera-
ture values of the permittivity and permeability can be represented by some

theoretical expressions in terms of the density, pressure and Grlineisen para-
meters as follows

ej - X[n,Pz(n),Yg(n)] (148)

ua = 10,2, v5 ()] (149)

Then the relativistic values ¢, and y, are determined using the same func-
tional relationships but now evaluated for the relativistic values of the
pressure and Grineisen parameter as follows

€ ™ X[n.Po(n).Yo(n)] . (150)

u, = Y[n,P_(n),y_(n)] (151)

The relativistic values of P, and y, are obtained from the solution of the
simultaneous equations (14) and (15). Thus the relativistic values of €, and
Uy are obtained indirectly from the ground state solution of the relativistic
trace equation (1).
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A complete relativistic thermodynamic description of electromagnetic
waves in matter requires the determination of Eor and Y by the simultaneous

solution of equations (113) and (114).
equation (113) can be used with Yo

-1/3o

But for an approximate solution only
Placing equation (146) and (147)

into equation (113) gives the following differential equations for E and H

% eonz -::22-(152) +% [2n :—:9 -1+ yo)eo]n EdrT(EZ) (152)

+ % Ez['}m2 i:-:—;:g -3(1 + yo)n -;;2 + (370 + 4)50] + gp = % egEi

3 u o’ f‘;(u%% [2n 3—:- - @+ v u o £ (v?) (153)
L2 2 40 du, 1 a2

+3H [3n = - 31 + TR =+ OF. 4)uo] * i -—z-u:Ha

dn

where gp and gy are obtained from equations (118) and (119) to be given ap-

proximately as

3 2 1
gl-: o 2z F;oE (oo - l)(Yo - -3.)

gy % uoHZ(c,o - Dy, - %)

(154)

(155)

Combining equations (152) through (155) yields the following equations for
the relativistic values of the electric and magnetic fields in matter as-
suming that E and H are not explicitly density dependent

2. 2 dzeo de, a2

E°[3n _dnz -3+ y)n g+ (Boy, -0 + 5)80] = ¢ E, (156)
2
d®yu du

2 2 0 0 2

H°[3n :l:i— - 3(1 + Yo)n = + (30°Yo o + 5)uo] = ;.|:l-la (157)
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Assuming €, Vv nfo , Ho V n'° , and Py v n%0 in equations (156) and (157)
gives the following approximate equations

2 a
E"e /e
E2 A ao o (158)

3" - 6p° -9, + 3(0o - po)yo +5

~N

2 a
H u /u
H2 - — a’ oo (159)
3vi-6v =0 +3(c_-v)y +5
o o o o o’'o

where

n dPO KO

%P dn " P (160)
n o

o, =22 (161)
0

NEPAP W | (162)

The determination of the relativistic phase velocity for electromagnetic
waves in matter proceeds in a manner similar to that for the case of mechan-
ical waves that was treated in equations (122) through (139) except that the
temperature dependent nonrelativistic phase velocity 1is given by

(w—a) - (e22)! (163)

where €2 and 12 = nonrelativistic permittivity and permeability respectively.
The zero temperature limit of equation (163) is written as

W\
( 0) - (27! (%)
(Q o 0
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From the phase velocities given in equations (1€3) and (164) one can calculate
the nonrelativistic radiation energy density and Grlineisen parameters, Egr

and yar respectively, by the procedure outlined in equations (126) through
(133). Then the solution of equations (113) and (l14) yields the corresponding
relativistic radiation energy density and Grlineisen parameter, Eor and y,, re-
spectively. From E r and v, one obtains an estimate of the relativistic dif-
fuse radiation factor T, by the procedure outlined in equations (134) through
(138). Finally the relativistic phase velocity for elecr:romagnetic waves in
matter is given by

n

g—= exp[-cj" (% 5 B %rl] (165)

If it is assumed that the diffuse radiation factor is independent of temper-
ature the substitution I'. = y,, can be made in equation (165).

9. CONCLUSION. The trace equation of the relativistic thermodynamic
ground state 1is reduced to two Callan-Symanzik type renormalization group
equations that connect the matter fields E and P with the thermodynamic gauge
fields vy and b ., The gauge parameters are necessary to insure that the trace
equation is invariant under a local scale transformation. The assumption of
local scale invariance under changes of the correlation length of the systen
leads in a natural way to a set of differential equations for the gauge para-
meters. These are the potential forms of the renormalization group equations
for the ground state. The renormalization group equations for radiation in
matter can be written in terms of radiation potentials or in the form of
radiative Callan-Symanzik equations. The radiation equations for a general
thermodynamic system are applied to waves in solids and quantum liquids, and
a set of coupled second order differential equations are developed that de-
termine the relativistic radiation energy density and Grineisen parameter.
Finally, a :.mple scaling relation is developed for the amplitude of waves
propagating through materials of different density.

No mass or energy scale occurs in the equations of relativistic thermo-
dynamics, but the temperature and volume scales that appear in these equa-
tions is similar to the mass cutoff parameter that appears in the Callan-
Symanzik equations of quantum field theory.' Therefore in analogy to the
dimensional transmutation of Coleman and Weinberg there may appear a mass
associated with the gauge bosons that correspond with the gauge parameters
Yy and b, . On the other hand, the ground state of a relativistic thermo-
dynamic system may exhibit a broken symmetry in which case the gauge bosons
can become massive by the Higgs mechanism.! 1In either case massive thermal
gauge bosons should exist that are associated with the thermodynamic gauge
parameters vy, and b, . The gauge boson associated with the Grlneisen para-
meter should exist even for T = 0 solids or quantum liquids. Therefore new
physical phenomena are expected to occur in bulk matter that is subjected to
high pressures. In addition, the results of this paper should have engineer-
ing and geophysics applications.
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RELATIVISTIC WAVE EQUATIONS FOR REAL GASES

Richard A. Weiss
Environmental Laboratory
U. S. Army Engineer Waterways Experiment Station
Vicksburg, Mississippi 39180

ABSTRACT. The relativistic wave equation for a generalized thermo-
dynamic system 1s developed. The solution of this equation is obtained
for the real gases whose pressure is described by a virial expansion. A
procedure is given for calculating the relativistic amplitude and phase
velocity for mechanical waves propagating in real gases. The relativistic
wave amplitude is calculated by a virial expansion whose coefficients are
determined from the wave equation. The relativistic effects on wave propa-
gation in gases manifest themselves only through the third virial coeffi-
cient, and therefore these effects are expected to be observed only at high
pressures such as found in atmospheric nuclear explosions, the interaction
of directed energy beams with the atmosphere, stellar atmospheres, and in
high-pressure-physics laboratory experiments. The effects of curvature
waves in spacetime on the pressure of real gases are also considered, and
applications to the detection of gravitational radiation are suggested.

1. INTRODUCTION. Local gauge (scale) invariance plays a fundamental
role in the description of diverse physical phenomena.’~? The requirement
of local scale invariance suggests that relativistic thermodynamics can be
formulated on the basis of a relativistic trace equation that relates the
pressure and internal energy fields to a set of gauge parameters.'>° The
trace equation for a thermodynamic system can be written as a partial dif-
ferential e?uation involving the energy density, pressure, and two gauge
parameters. The scale transformations refer to changes in the correlation
length of the system, and the scale invariance establishes a correspondence
between different physical states of a relativistic thermodynamic system.
This correspondence is encompassed by the renormalization group differential
equations that describe the variation of the gauge parameters with the
magnitude of ambient matter fields such as pressure and energy density.

For the case where the thermodynamic system has a well defined zero
temperature state, such as is the case for solids and quantum liquids, the
trace equation leads to a set of coupled second order differential equations
for the simultaneous determination of the zero temperature values of the
pressure and Grineisen parameter.“ For real gases whose pressure is described
by a virial expansion, the trace equation yields a relativistic expression
for the third virial coefficient.® This paper derives the relativistic
equation for radiation in a generalized thermodynamic system, and then de-
rives the equations that are necessary to calculate the wave amplitudes
and phase velocity for waves in real gases. This is done by a perturbation
procedure that is applied to the basic trace equation !hat describes the
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ground state of a relativistic thermodynamic system.

The trace equation of relativistic thermodynamics is written as"

a
U+ T(%—IT-J-) -3 :—V(PV)U - U2+ T(%-g—) (1)
PV pay

where U = relativistic internal energy, P = relativistic pressure, T = ab-
solute temperature, V = volume of substance, and U2 and P& = corresponding
nonrelativistic internal energy and pressure. Throughout this paper the
index "a'" will refer to nonrelativistic calculations. It is easy to show
that equation (l) can be written as follows"

) au d ouU
ﬁ(TU) - bv 3V 3V[W (PV) - v W] (2)

au?

ardb Ay _ il
31 (TU7) - bV 5

where

v =2 (35), (3)

T(BP/3T)V

b'—(?-:Tr-)- (4)

T(apa/ar)v
5 el o ] (5)
% - kD)

and where y = relativistic Gruneisen parameter, Cy = relativistic heat ca-
pacity at constant volume, and where .

g = - Y(5), ®
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& - - v(3E) (1)

T

are the relativistic and nonrelativistic values of the bulk modulus respec-
tively. The nonrelativistic Griineisen parameter is defined as follows

a
C v
v

where Cv = nonrelativistic heat capacity and constant volume. Equation (2)
can be rewritten in terms of the energy density as follows®

3 ) 3 3
(1 b+TaT-bVW)E—3(1+Y+VW-—YT-a-T)P 9)

(l-b +r—-b"v )

where £ = U/V = relativistic energy density, and E2 = y?/V = nonrelativistic
energy density. The parameters y and b are the two gauge parameters of rel-
ativistic thermodynamics.s

Wave motion in relativistic gases can be of two types. The first
corresponds to mechanical vibrations of the gas which results in pressure
changes in time and space. This type of wave motion is described by a rel-
ativistic wave equation for real gases. Such an equation can be developed
by first considering relativistic waves in a completely general thermodynamic
medium and then specializing to the case of real gases. It is required to
find both the relativistic amplitude and sound speed for waves in real gases.
In order to do this the nonrelativistic wave amplitude and phase velocity
must first be determined. The relativistic effects appear oan in the third
and higher virial coefficients of the real gas state equat