
'-RIS3 534 GAUSSIAN LIKELIHOOD ESTIMATION 
FOR NEARLY ONSTTIONRY 1/1

ARMI PROCESSES(U) WASHINGTON UNIV SEATTLE DEPT OF N
STATISTICS D D COX JUL 87 TR-99 N9ISI4-84-C-0169

UNCLASSIFIED F/0 123NL



w-LROC(,Pv RESOLUTION TEST CHAH1I

j- ,,2

=. . . -



A ~ ~ Av~tr *~ ~-~W. -li ;4 ~~-

iF~~ 41w.r-
Liw 4.**.sj * f

a~~~~~7 ik / *'

7 .
t .~ *-t4' II 4- A

V~ Vv - .f . . q i, ft Y'#,- b; lIl 45IO t' V--.--6: P

1aO..*snTzxIJLXaiq I p.

*19 *-,t St.. ennis DCox 2 ~~

-,~ C- ,,y4

7 -~ % tL

~ 'w m -l~*~~' L -1 .7

~ . (9wow

VV

If -W
9-*N v

f1 
*at 

e to t u u sI t. ~ 22
1 -%' ifa -OX 4 -sw>estYO 2

~~4-
*V At...'$?j ~ - 1

,TL ~ -~ Q ''~ ,, t9}tX

A. ,. 4 ~ +
a~~~~~~~~V l*t4Ai', j, a- *t~~

*~~~~ e - f- i .' -,Wsigt49~ 5 ~ 4 ~ y t ~ ;

-I 4',tB: v-rtA A, t 4 r2:~ ' >-L.c

NT4 A
r-~ (JJ

4 ~ ~ ~ ~ ~~bi p~u .*£ry ;rt2s aiti1rt {ttk..
-. t7~ 4  a:"~~0-.- ~-*- utiM :JL $.;: " d~~i f. *4 %%p

*.~~~~ f, %3 -~ .. ,r



*.?'

GAUSSIAN LIKELIHOOD ESTIMATION

FOR NEARLY NONSTATIONARY AR(1) PROCESSSES

by Dennis D. Cox '4"

Department of Statistics ,,

University of Illinois
Champaign, Illinois

This research was supported by the Office of Naval Research
under Contract N00014-84-C-0169.

I-or " .

NTIS CRA&I"
!)TIC T -Lu.. '!"oi .. c -J LI """"

J -.
°  I " .. ..- "( ;- "

*'4 ,, ."

4-

1;yz- %



ABSTRACT

An asymptotic analysis is presented for estimation in the three

parameter first order autoregressive model, where the parameters are

the mean, autoregressive coefficient, and variance of the shocks.

The nearly nonstationary asymptotic model is considered wherein the

autoregressive coefficient tends to 1 as sample size tends to

infinity. Three different estimators are considered: the exact

gaussian maximum likelihood estimator, the conditional maximum

likelihood or least squares estimator, and some "naive" estimators.

It is shown that the estimators converge in distribution to

analogous estimators for a continuous time Ornstein-Uhlenbeck

process. Simulation results show that the MLE has smaller

asymptotic mean squared error than the other two, and that the

conditional maximum likelihood estimator gives a very poor estimator

of the process mean.

Key Words and Phrases: likelihood estimation, autoregressive

processes, nearly nonstationary time series, Ornsteln-Uhlenbeck

process.
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1. INTRODUCTION.

Consider a sequence of statistical experiments with observation

vector (Yn(0), ..., yn(n)) given by a three parameter AR(1) process

(1.1) [yn(k+l) - 'n] = ?n[yn(k) - Mn] + a nk+1),

k = 0. 1, .. ., n-1,

The shocks an (1), ... , 4n(n) are assumed i.i.d. with common

distribution independent of n, and FA (1) - 0 , E2 (1) - o2 < C. Wen n 0

suppose that IrnI < 1 for all n and that yn(0) has the stationary

distribution for the process. The parameters vn and Mn will be

allowed to vary with sample size (see (1.2) and (1.3) below).

Suppose that the statistician models the process as Gaussian.

Then the maximum likelihood estimate (MLE) of the parameter vector

2in' a ,n) denoted (in 2 r n), is a solution of a rather

complicated system of equations. Assuming that M n a p"0 and rn .

are fixed, ther, one can show that the MLE is asymptotically

equivalent to a simpler estimator obtained by maximizing a

conditional likelihood. The MLE maximizes the full log likelihood

2
,P) : log f, 4 ~ 2 (y(l) ..., y(n)ly(O))

+ log f 2 (y(O)),

whereas the maximum conditional likelihood estimator (MCLI)

maximizes the conditional likelihood

" 2e n(,o ,v) := log f 0 2.(Y(1), ... , y(n)jy(0)).

2

-p -~p - -. '.. ~ ~ s.



The MCLE, denoted ($ian r n is given by some simple formulae. See

(3.12) through (3.15) below. Further details may be found in Fuller

(1976), pages 328-332.

While the MLE and MCLE will be nearly the same with high

probability for "sufficiently large n", they can be quite different

for small to moderate n. Furthermore, the meaning of "large n"

depends on the value of V. If V is close to 1, then the term

log f(y(O)) - (1/2)1og(1-r2)/o 2 1 - (1- 2)[y(0)2-1/1(2c 2)

has a more pronounced effect on the log likelihood, and a much

larger value of n is required before the classical asymptotic

results are useful. As many real series exhibit large lag one

autocorrelation (hence r near 1), it is worthwhile to investigate

the MLE and MCLE under this condition. Furthermore, one is

naturally interested in which estimator is better, or if some other

estimator is even better than either of these. One would conjecture

that the MLE is better than the MCLE, and we present results below

which corroborate this conjecture.

Recently, there has been much interest in "nearly

nonstationary" asymptotics for such time series models. See e.g.

Bobkoskl (1983), Chan and Wei (1985), and Tsay (1985). For the

three parameter AR(1) model, this corresponds to assuming that

(1.2) n 1-0 0/n 00 >0 ,

3
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(1.3) Mn = n1/ 2 M,

where A0 and t 0 are fixed. Since vn - 1, in some sense the process

approaches a nonstationary process as n-. The rationale for the

particular forms of Mn and rn will be evident from the following

discussion.

Define a continuous time "step function" process Y n(t), Osts1

by

Y(t) :- n-1/ 2 yn(Int]),

where [-) denotes the greatest integer. It follows from (1.1) that

Y satisfies the difference equationn

(1.4) AYn(k/n) C -Po[Yn(k/n)-uO]4t + Oo4Wn(k/n), Ok:n-1.

Here, AY n(k/n) := Y n((k+l)/n) - Y n(k/n) is a forward difference

operator, At : 1/n, and

( )(t) a- 1o n- 1 I ntl (k)
n o Lk-l n

is a normalized partial sum process. Since Wn converges weakly to a

Wiener process W(t), OtS1, in D[0,1], and the difference operator 4

4



converges in some sense to a differential operator d, one would

expect that Yn should converge to the solution of the stochastic

differential equation

(1.6) dY(t) = -p 0[Y(t)-i 0 ]dt + a 0dW(t),

0 0Y(O N(U 0 00 /(23 0 ))g

Y(0) independent of (W(t):OStS1),

which defines an Ornstein-Uhlenbeck process. (Equality in

distribution is denoted R.) The weak convergence of Yn to Y follows

from Lemma A.1. in the Appendix.

In Section 3 this weak convergence is used to prove convergence

- 2 -2 1/2n
in (joint) distribution of the ML! (n ,a n,') - (n(1 n),o ,n-

for the sequence of AR(1) processes given by (1.1), (1.2), and (1.3)

to the corresponding MLE's of the parameters in the

Ornetein-Uhlenbeck process given in (1.6). See Theorem 3.1 in

Section 3. The MLK's for the continuous time Ornstein-Uhlenbeck

2
model are denoted (A.;). The MLE for the variance parameter is c

i.e. it can be determined exactly (with probability one) from the

finite sample path (Y(t): Ot~l). Indeed, a 2is the only parameter

5



which is consistently estimable from the sequence of AR(1)

experiments.

In order to understand this phenomenon and to define the MLE in

the Ornstein-Uhlenbeck model, it is necessary to develop the

likelihood (i.e. Radon-Nlkodym derivative w.r.t. some dominating

measure on path space) for the Ornstein-Uhlenbeck model. This has

been done by Felgin (1976) for the situation where the only unknown

parameter is A0 and Y(O) is taken as fixed (i.e. that author derives

the conditional likelihood). In Section 2, we extend those results

to the case where the mean v0 is also unknown, and discuss the

"perfect" estimability of the variance parameter 0o, which results

from mutual singularity of the Ornstein-Uhlenbeck measures

corresponding to different variance parameters.

In Theorem 3.2 in Section 3 it is shown that the MCLE

- 2 -_n 2)
(n0nn) (n(1-P n)n,n-1 /2n ) converges in distribution to

(0,0 , where 0 and ; denote the values of p and v which maximize

the conditional likelihood of the Ornstein-Uhlenbeck observation

given the starting value Y(O). Theorem 3.3 gives similar limiting

distribution results for some "naive" estimators, namely the sample

lag one autocorrelation rn as an estimator of rn = (1-o/n), a crude

estimator sn of a and the sample mean of the y (k)'s as an

estimator of M '

6
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While these results give representations for the asymptotic

distribution of the estimators, it is unfortunately very difficult

to carry out any calculations with the limiting distributions.

Bobkoski (1983) gives some results when only A is unknown and

Yn(0)=O. Of course, one can always resort to Monte Carlo, as we do

in Section 4. The results of this paper do provide invariance

principles so that fixed reference distributions can be developed

for samples of different sizes, even if computation of the reference

distributions is difficult. Furthermore, they allow one to obtain

results about the limiting Ornstein-Uhlenbeck case by simulating

discrete time processes.

Some conclusions and conjectures can be drawn from the

simulation results presented in Section 4. Firstly, the MLE appears

to be best estimator in terms of mean squared error, but not

significantly so. All the estimators of P0 considered are biased

upward, especially so for 0 near 0. (Hence, the corresponding

estimators of rn are biased downward, especially for P near 1.)

The MCLE estimator of the mean is quite bad, much worse than the

sample mean or MLE. These results suggest that better estimators of

00 may exist if one can reduce the bias.

7
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2. THE ORNSTEIN-UHLENBECK PROCESS.

In this section we derive the likelihood for a continuous time

observation {Y(t): O~tSl) from the Ornstein-Uhlenbeck process. The

derivation is standard (see scheme (i) on p. 714 of Feigin, 1976),

so It will only be sketched. The dominating measure is a Wiener

process measure modified to account for starting value and scale

change. Calculate the likelihood ratio of the finite dimensional

vector (Y(O), Y(1/n), Y(2/n), ..., Y(1)) under the

Ornstein-Uhlenbeck measure (numerator) and Wiener measure

k(denominator) and let n-.- through the values n - 2

We first derive the conditional likelihood given Y(O) as it has

a simpler form than the unconditional likelihood. The latter can

then be obtained by modification of the former. Let P( I Y(O), v,
2

a, ) be the Ornstein-Uhlenbeck measure on path space C[0,1] with

mean ., scale a, and drift coefficient g, as In (1.6) with

subscripts deleted. Let Q( • Y(O), a2) denote the measure of

oW(t) + Y(O), OStS1, where W is a standard Wiener process. For the

Ornstein-Uhlenbeck process we have the following integral

representation valid for any t~s:

t
(2.1) Y(t)-P - exp[-p(t-s)] [Y(s)-v] + a exp[-p(t-x)]dW(x).

Js

See e.g. Section 8.3 of Arnold (1974). Thus, the sampled process

Y(O), Y(1/n), ... an AR(1) process with mean v, autoregressive

8~I'.
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coefficient exp[-A/n], and shock variance a (1-exp[-2p/n]). Using

this, the likelihood ratio can be shown to equal

{J n 2/i/n 1-x [-2/n]I
(2.2) exp log

n rr 2p/n i/ri - 1 n 1 2-2. t -exp[-24/n] - l,0

2/(1-exp(-.i/n])o (1 exp -2 / ]) ,0 Y (i/ n ) - v ] A Y ( i / n )

a (1-exp(-2/i/n]) i'o
pn(Z-exp[- /n]) 2 nri 2 1

2 t~~o[Ylt/n)-u] (1/n) .
a (1-exp[-2//n]) 14I f

As in (5.3) of Feigin (1976), we have

Ti 9  2 P 2
(2.3) 4[AY(i/n)] #o .

The convergence is Q( I Y(O), a 2 )-almost sure if n 2k and k-o-,

but is always true in probability by a Chebyshev argument with

respect to either P( I Y(O), P, 2, P) or Q( Y(O), 2). Some

calculus will show that the first two terms in the exponent in (2.2)

cancel each other. After computing the limits of the third and

fourth terms, one obtains that the log likelihood is equal to

12  1  2 1

S- 2[Y(t)-u]dY(t) A r [y(t)u ]2d.
a 0 2a 0

2
For the unconditional likelihood, let P( . u, 2 ,) denote

9 I



the Ornstein-Uhienbeck measure when Y(O) in given Its stationary

distribution. Let Q( Ia 2) be the measure of o(W(t)+Z], OStS1,

where Z is a N(0,1) random variable independent of W(t), OStS1. The

likelihood ratios contain extra terms in the exponent from the ratio

of initial distributions. These are easy to analyze and the

likelihood turns out to be

2 1
(2.5) e (u,40 2) 1 log(20) +-Y(O

2a

- (Y(t)-v.'dY(t) + (YO-]21

- 2.~ [Y~t)-] Y2dt
0o

- r fY(t)-Lo] dt)

(2.6)Cy - d Y(t) d

(2.7) -Y+ (Y(1)-Y(0))/P,

where

1 r
(2.8) Y=rY(t) dt.

JO0

The MLE also exists, but is not so easy to obtain. One can solve

2
for the minimizer over Pi of *(ai,A(a )for each fixed ~,plug that

100



back in, and then note that the resulting expression as a function

of P tends to -. as A-*O or fle.This shows that the MLE exists.



3. MAIN THEOREMS.

This section contains the statements and proofs of the claims

that the parameter estimates for the nearly nonstationary AR(1)

converge to their analogues for the Ornstein-Uhlenbeck process. The

first theorem concerns the MLE and the second concerns the MCLE.

The third theorem is about some "naive" estimators.
- "2 "2

THEOREM 3.1. Let (Mn, ain ~n) be the ML! of (lmnt aO Pn) in

the AR(1) model given In (1.1) through (1.3). Let (m. A) be the MLE

of (0# AO) in the Ornstein-Uhlenbeck model in (1.6) when o02 is
0 0

known. Then

-1/2-

(3.1) n 0

L n(l P")I

PROOF. We will use the variables n1 /2u in place of M and 1-o/n in

place of r. Inessential constants in the log likelihood will be

dropped. The first step is to eliminate P and 02 from the

likelihood maximization problem. The log likelihood can be written

as

12
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(3.2) f nli/2 &o 2 , 1-fI n 1  -((n+l)/2)log a2 - n/(2o 2)s 2

+ (1/2)log A +(1/2)log(1-p/(2n)) - BnlU)P/2 A nlM)p2/a

where

S2 := y (k/n)2

n n

An() :n (1/2) 1-n-1 [Y n(O)-u 2 + 7[Yn(k/n)-V]2At}

Bn(&) : [Y (0)-V] 2 + [Yn(k/n)-u]4Y (k/n).
n n L n n

All summations in this proof are from k-0 to n-1, unless otherwise

indicated. For any fixed values of a2 and 0,

LO (P):-r2+,0( 1.J/nl nr (0)(1-0/n) +V n(1) +P' Y (k/n)At1

~ J [Lj+* L n

maximizes I over P. Note that *up Ia' (p)I is bounded in
n, n

probability, since all of the random variables appearing in the

defining expression are bounded in probability by Lemmas A.1 and

A.2, and pZ0. Since An and Bn are continuous and An is bounded

below by a function of Yn only, this implios that V4>O, C1, C2 >0,

C3 , C4 >0, and N such that VnN, the event

13
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E r c - 2En L 1 + C 2pS < BnlUn(P) )P + An(n )) 2

S C3  + c 2 , for V0]O.

satief ies

(3.3) PI(Enl k 1-4.

For each fixed value of 0,

-2 2
(3.4) n( 0) :- [n/(n+l)]s +

(2/(n+l)]r B (un (0))p + An( )),82 1(A.
L nn,

maximizes over a2 the function enn/ 2 zn( , 02, 1-ia/n), provided

an (p) > 0. Note that on the event E a n (p) > 0 for all n

sufficiently large. Also, we have

(3.5) s1n = - L n l k / n l 2

2n-OOOYnk/n)AWn(k/n) + n- 1  2V(k/n).dt.

14
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P 2
The first term on the r.h.s. of (3.5) # ao by the weak law of large

-1
numbers, while the other two terms are Opn ).

With a little algebra, there results

1n /2n(a), 0-2(p), 1-0/n) -

-(n+l)log ;21() + log A + log (1-0/(2n))
n

The next step of the proof consists of showing that An is

bounded away from 0 and a in probability. Using log x S x-1, Vx>O,

on the event N we haven

1/2 2 2 p
(3.7) 2n (n Vn(lO), an(), 1-P/n) + (n+l)log sn >

-22 V.O2
(2/(72)nC 3  + C402 + log p, VpalO,2n).

For all n sufficiently, the expression on the r.h.s. of (3.7)
* *p S S

achieves a maximum at some p n in (0,2n), and An 4 A say. When n

is plugged into the r.h.s. of (3.7), the resulting expression

converges in probability to a constant. Since the supremum of a

lower bound on the likelihood function provides a lower bound on the

15



maximum of the likelihood, it follows that

(3.8) V>O, 3m, N, such that VnN,

r2  (n l/2 0n , 2 1, n/n + (n+l)log s o2 k.1 Z-4.
L n n n n n n n

Hence, the MLE An is with high probability in the set of Ae(0,2n)

which satisfy the inequality In the event in (3.8). In view of

(3.3) and (3.5), we may restrict attention to the set of p's

satisfying OSAS2n and for some constants C5, C6>0, and m

(3.9) Gn (p) :- -(n+1)logr1 + + C 6 11 + log A a M.

It Is easy to check that G is maximized at point An C that
nn

S.

Gn(n ) -(C5+1) - log C6, and that %'(A) is eventually < c < 0

for all A, where c is a constant. These facts imply that there is a

constant b>O such that eventually all values of p satisfying (3.9)

also satisfy ASb. Now Gn (A) - -CC5 +C6A] + log p as n.*a, uniformly

in A.(0,b], and the limit function crosses from above the level m at
*5

some positive value larger than pn For O<ASb, G (A) S C + log A

for all sufficiently large n, where C is some constant, so G must

16



S.

also cross the level m at some point in the interval (O,p n).

Hence,

(3.10) V&>O, 3 a>O, b>a. N such that VnkN,

P [ An exists and a S A n S b] Z 1-.

. .. 2, .

It now follows that the MLE (tnionAn) - (Un(An) ,an(An)DPn)

exists with arbitrarily high probability for all n sufficiently

large, and furthermore that A n is bounded away from 0 and - in

probability. Now un (A) converges in probability uniformly in

pe(O,b] to

(3.11) (() : 2 + 01 r1 (o) + Y(1) + Ar Y(t) dt1
L J L

-22 -1 P 2
and (I n(A) an + OP(n 0 0 - uniformly in p.(0,b]. Hence

1/2- 2
n (n LO() n n(4),l-P/n) + [(n+1)/2] log 00 + n/2 converges in

probability uniformly in pe(O,bI to e(un(A),), where

2 2 2
(v, ) := (1/2) log A - B(&)A/o 20 A(L) /oo

17



8(u) := Y(O) -LO)2 + r [Y(t)-u] dYt),

A(u) :- (1/2)r [Y(t)-] 2 dt.

Now E(a',P) is the likelihood for the Orntein-Uhlenbeck process

estimation problem (with a2 known, of course), and u(p) is clearly

the MLE of v for each fixed A. It follows that A n - , the MLE of A

in the Ornstein-Uhlenbeck setup. The proof is complete.

Now consider the MCLI. First, define

(3.12) no (t)

Then the MCLI's are given by
- 1 yMt-VOoI(lt+1l-!o]

(3.13) n _ _ y_)__ _ 0 _2 '

(3.14) YO + y(n)-X(O)

0n(1-Pn
(3.15) ;2 1 E - " 2

n [y(t+) ny(t) -(1-P nl ]

The corresponding MCLI's for the Ornsteln-Uhlenbeck process are

given in (2.6) through (2.8). The following theorem can be proved

more simply than the previous one by simply using the explicit

formulae for the estimators and the results in the Appendix.

18
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Theorem 3.2. An n.*-,

nfl1/2- n

n I 0I " I "

[ n(1-?n)J -

Finally, we consider some "naive" estimators. Let

(3.16) Yn 7 y(t+l),
n1 n )

(3.17) =  I -0

(y(t+1)- l](y(t)-O]-

LI il, I 0

-- 2 a d•

We refer to yn n 2,n and rn as the naive estimators of Vn a0, and

rno respectively.

Theorem 3.3. Let

3(Y(1)-Y(O)][Y(1)+Y(O)+2Y] - r[Y(t)-Y]dY(t)

(3.19) Y()]dr[Y(t)-i] 2 dt

Then as n-.e,

i n 0

I n I " I

19
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'4

PROOF. We will assume as in the appendix that all convergences are

taking place on a common probability space so that we may use

convergence in probability rather than convergence in distribution,

Pand - will mean # for the remainder of the proof. Now it is clear

from Lemma A.1 that

(3.20) n-I 2 y -* Y, and n- 2 y . i=0,i.n n"
2 2

Also, sn o0 as already noted below (3.5). Thus, we need only take

care of the convergence result on rn. Put

S2  1 2y(t) 2nt M L nt)il , 1-0,1,

S2 = r[Y(t)-] 2 dt.

Lemma A.1 also implies that n- 2  as n-.. Some algebra will
ni

show that
nS (Sn-Sn) - [y(t) -y]iy(t)

(3.21) n(1-r) - ni nL_0
n

nO n1

Now
S no

Sn (S -Sn) = n n-[y(n)-y(O)[y(n)+y(O)+y +Y0]
n1 no Sn +S

n1nO

1[Yl)-Y(O)][Y(1}+Y(0}+2Y].

If one multiplies numerator and denominator in (3.21) by n and

uses this latter along with Lemma A.2 the desired result follows.

20
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4. MONTE CARLO RESULTS.

Tables 1 through 3 present the results of a simulation study of

the various estimators. The simulation program used the IMSL

subroutine GGNML to generate n+l pseudorandom variates which were

used to construct AR(1) sample paths according to the model (1.1).

We considered 3 estimators of p 0 and t'O (the naive, MCLE, and MLE)

and 4 estimators of (;2 is the ordinary sample variance). All

estimators except the MLE were computed directly from the formulae.

The MLE was computed by a Newton type algorithm using finite

difference approximations to the derivatives of the log likelihood

2function as a function of p with P and a substituted out, as in the

proof of Theorem 3.1. The naive estimator was used as starting

value, and convergence was quite fast, requiring on the average less

than two iterations of the Newton algorithm. The results were

compared with those of the SAS statistical package on selected

sample paths in order to validate the program. All results are

based on 25,000 Monte Carlo replications.

The results indicate that the MLE is the best of the estimators

considered in terms of mean squared error, although not by much in

comparison with the naive. Two surprising results emerge. Firstly,

all estimators of A0 are badly biased, with the bias becoming worse

as j0 becomes smaller. It should be possible to find improved

21



00
estimators of A%0 by "shrinking" towards 0, with the amount of

"shrinkage" becoming larger as say the sample lag one

autocorrelation becomes larger. The bias in the estimators of the

other parameters was negligible compared to the variance and so is

ommitted. A second surprising result is the poor performance of the

MCLE of the location P0 particularly as 0 becomes smaller. This

is also the widely used least squares estimator of location. The -.

main problem here is the term (y(n)-y(O))/O (see equation (3.14)),

which severely inflates the variance. Results presented by Bobkoski
-p

(1983) indicate that there is some probability of obtaining p close

to 0 (it may even be negative, which is why A was not used as the

starting value for the iterative calculation of the MLE). This

inaccuaracy in P does not seem to present a problem for the other
-2-

parameter estimates p or a . As the MCLE is in general the worst of

the estimators, we suggest that one use either the naive estimators

or the full MLE, until something better is found.

2.
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TABLE 1. SUMMARY OF SIMULATION RESULTS
FOR ESTIMATORS OF 0"

NOTES: For all cases, uol and 2I. Estimated standard

errors are shown in parentheses next to the figure.

I I0, IEstlia-oI I.
1 In ator Blas Mean Squared Error

I Ir~ n 4.38 (.03) 42.27 (.53)

15 1 1001 An 4.37 (.03) 43.58 (.54)

I I I An 4.48 (.03) I 39.49 (.51)

r n  4.55 (.03) 46.11 (.57)

5 500 An 4.55 (.03) 47.89 (.59)

I I I o 1 4.22 (.03) 42.87 (.55)

I rr I 4.68 (.03) I 40.21 (.46)

I 21 1ool O 4.68 (.03) 4200 (.48)

I I I 4.27 (.03) I 3621 (.44)
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0,

P

#

TABLE 2. SUMMARY OF SIMULATION RESULTS
FOR ESTIMATORS OF vO .

NOTES: For all cases, U 0  a 21 Estimated standard0 ,
errors are shown in parentheses next to the figure.

0 I IEsti-I Mean Squared Error
I :0 atorI

I I Iin .032 (.000)

i I 100 L .376 (.291) I
I I .n .029(.000) I
In .032 (.000)I

5 500 n .172 (.061)

v I n .00(00

In .139 (.001)I

2 100 L n  286 (257)

I Un I .125 (.001) I
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TABLE 3. SUMMARY OF SIMULATION RESULTS

FOR ESTIMATORS OF a2

NOTES: For all cases, v=1 and a0=1. Estimated standard

errors are shown in parentheses next to the figure.

1 0 1 n IEstm-I Mean Squared Error
I latorI

I ioo all . -020 (.000)

i oo 500 all .0040 (.0003) I

12 I 10 all .020 (.000) I
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APPENDIX.

In this appendix we give the proofs of two technical lemmas.

There is a probability space carrying probabilistic replicas of

4 (n)) for each n and a Wiener process (W(t):Ostsl)

such that the normalized partial sum process W n Mt satisfies

Psup jW(t) - W n(tfl - 0,

n4

P
where -. denotes convergence in probability. See Theorem 13.8 of

Breiman (1968). We assume that our sequence of experiments is

defined on this probability space, and hereafter deal only with

convergence in probability. The results then transfer back to the

P Doriginal probability space provided one replace .0with ~.Let Y(t)

denote the Ornstein-Uhlenbeck process given by the stochastic

differential equation In (1.6), and Yn the normalized AR(i) process.

LEMMA A.1.

P(A.1) sup IY n(t) - Y(t)I 0
Osts 1

PROOF. It Is convenient to introduce a Gaussian step function

process Y n(t) by

Y ((k+i)/n) r Y (k/n) + cAW(k/n),n n n

26
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- - 2
Yn(t) - Yn (nt]/n), Y n( 0 ") (2p 0 /[n(l-vn)])Y(O),

where Af(k/n) - f((k+l)/n) - f(k/n). We have the representation

Cnt) r [nt]/n [t-n]1

(A.2) Yn (t) - r nt Yn(O) + j 0 rntdWls)

This follows from the usual Inversion formula for an AR(1) process,

e.g. (2.3.3) of Fuller (1976)). Utilizing the analogous formula

(2.1) for the Ornetein-Uhlenbeck process we have

(A.3) IYnl(t) - Ylt)l S

-,a0 t  [nt] 22o/(n(l_ 2))11/2

+ v-1 1 [nt] - t r t V [n]dW(s),

js0t+ • -00 t l 
r t (r-n o ] _,-0 ) dWls)1 ,

+ n mlW(t) - Wl[nt]/n)l

:T n1(t) + T n2(t) + T n3(t) + T n4(t), say.
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Letting f (s) :- r (na] - e , one can show via elementaryn n

inequalities that

(A.4) 0 S fn(s) S C/n

for some constant C (depending on 0). From this and (5.1.5) of

Arnold (1974), we have

-t '
Er sup I 0 fn(s) dW(s)1 2  S 4C2 /n2

LO:S t:S 1 J -

p pand hence that sup Tn3 1t) 0. The proofs that sup Tnilt) - 0 for

i=1,2,4 are even easier.

Now consider

(A.5) Y (k/n) - Yn(k/n) E [Y (0) - Y (0)]n n n n n

k-i
+ EAk)(W (i/n) - AW(i/n)].

L n n

D
Lindeberg's central limit theorem can be used to show Y (0) 0 Y(O),n

so we may assume that our probability space carries a version of

Y n(0) such that JYn(O) - Y(O)j + 0, and then the first term on the

r.h.s. of (A.5) converges to 0 in probability, uniformly in k,

OSkSn. For the second term, apply partial summation to see that It

.
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is equal in absolute value to

(A.6) ,-1 [Wn(k/n) - W(k/n)]- )- ) k- [Wn(i/n) - W(i/n)],n nn iL

-1I k
S (2 - r ) sup W (t) - w(t)i.

Since r 1, -. V- (2-r k is bounded uniformly In k and n, so itSine n  n n,?

follows that suplYn(t) - Y n(t) - 0.

LEMMA A.2.

n~l p rl

(A.7) kO Yn (k/n)4Wn (k/n) -J Y(t)dW(t).

PROOF. We have

fl- Y (k/n)4W (k/n) = -Yn(1)W (1)

ILOn n n n n

+ (rnl - 1)7 Ynlk/n)Wnlk/n)
n - L n n

- (/2)o0-1W2(1 ) - (1/2)a0,n17 (4W (k/n)] 2

0 n nol 0~l OnL n

P j 02
Y(1)W(1) + A3  Y(t)W(t) dt - (1/2)c 0 W (1) - (1/2)o O .
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The first equality is easily checked with some algebra. The

P
convergence of the first three terms on the 1.h.s. of the 0 to the

P
first three terms on the r.h.s. of the + is immediate by Lemma A.1,

and the fourth by the weak law of large numbers. By Ito's formula

and the stochastic differential equation for Y we have

d(Y(t)W(t)l = Y(t)dW(t) - PY(t)W(t)dt + aoW(t)dW(t) + odt

and so lit
f Y(t)dW(t) Y(1)W(l) + A r Y(t)W(t) dt -(1/2)o 0W2 (1) - a/2
J 0

where we used the fact

1 W21r Wlt)dWlt) - (1/2) W2111 - I ,..
Jo I0  .

see e.g. Arnold (1974), page 76. This completes the proof. -"
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