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CORRELATION FUNCTIONS IN FINITE )4KORY-TIME RESERVOIR THEORY

Hank F. Arnoldus and Thomas F. George
Departments of Physics & Astronomy and Chemistry

239 Fronczak Hall
State University of New York at Buffalo

Buffalo, New York 14260

ABSTRACT

Interaction of a small system S with a large reservoir R amounts to thermal

relaxation of the reduced system dens.ty operator pS(t). The presence of the

reservoir enters the equation of motion for Ps(t) through the reservoir

correlation functions f kt() (defined in the text), which decay to zero for T * *

on a time scale i c" Commonly, this T c is much smaller than the inverse

relaxation constants for the time evolution of ps(t). Then a series of

approximations can be made, which lead to a Markovian equation of motion for

pS(t). In this paper the assumption of a small reservoir correlation time is

removed. The equation of motion for pS(t) is solved, and it appears that the

memory effect, due to Tc £ 0, can be incorporated in a frequency dependence of
the relaxation operator r(w). Subsequently, (unequal-tim) quantum correlation

functions of two system operators are considered, where explicit expressions for

(the Laplace transform of) the correlation functions are obtained. They involve

again the relaxation operator r(w), which accounts for the time regression.

Additionally it is found that an initial-correlation operator t(w) arises, as a

consequence of the fact that the equal-tim correlation functions do not

factorize as pW(t) times the reservoir density operator. It is pointed out that

the frequency dependence of r(w) and the occurrence of a non-zero f(w) both arise

as a result of T 0, and should therefore be treated on an equal footing.

hxplicit evaluation of t(w) and l(w) shows that their matrix elements can be

expressed entirely in Ik9(w), just as in the Markov approximation. Hence no

essential complications appear if one should go beyond the limits of a small

reservoir correlation time Tc

PACS: 02.90.+p, 05.40.+j
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I. INTRODUCTION

In many practical cases the equation for the evolution of the density

operator P(t) of a quantum system assumes the general form

i lt) - ; +HR + H!'P(t)J , (1.1)

where H' and the HR pertain to separated components S (- system) and R (=

reservoir) of the entire configuration, and H denotes an interaction between S

and R. Probably the most familiar example is spontaneous decay of an excited

atom in empty space. Then, HS equals the atomic Hamiltonian (internal

structure), HR represent the electromagnetic field, and Hi is the dipole coupling

between the atom and the electric component of the radiation field, which causes

the spontaneous transitions. Since HR has a large (infinite) number of

eigenstates, an exact diagonalization of the complete Hamiltonian HS  HR + H is

intractable. The interest is, however, in the behavior of the atom, as it is

determined by its interaction with the radiation field (vacuum or black-body

radiation). Therefore, one introduces the reduced atomic (system) density

operator by

Pslt) - TrRPot) , (1.2)

where the trace runs over all states of the radiation field (the reservoir). The

issue of reservoir, relaxation or heat-bath theory is then to derive an accurate

equation of motion for pS(t), in which the properties of R only enter as simple

(and explicit) parameter functions. In the theory of spontaneous decay these are

the Einstein coefficients and the Lamb shifts.

%p
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Most crucial for the development of a relaxation theory is the concept of a

large reservoir. If the system S were not present, the reservoir would be in a

(thermal equilibrium) state 5R which obeys

(HRp 1 -O , -p1  , Tr R  a , (1.3)

and it is assumed that the interaction between S and R does not substantially

affect this reservoir state. Or more precisely, the state R changes a little

due to the interaction with S, but the effect on the time evolution of the system

density operator ps(t) is negligible. In the quoted example this implies that an

atom in complete vacuum should decay in the same fashion as an atom in space with

a single photon present. As a consequence of this large-reservoir assumption, we

can factorize the density operator as

P(t) Z Ps(t)pR , (1.4)

in places where the value of p(t) determines the strength of the interaction.

In order to derive a relatively simple equation for pS(t), a sequence of

additional approximations is usually made, which rely on the fact that the

reservoir correlation time T is short in comparison with the inverse relaxationc

constants i/r. The idea is as follows. One derives an equation for pS(t) which

contains a quantity of the form <R(t)R(O)>, with R a typical reservoir operator

(for instance, the electric field), and where the angle brackets indicate an

average with the density operator oRD e.g.,

<...> a Tr R R ...).. (I.5)
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Due to the many eigenvalues Ohw of HR and the large cut-off frequency wc , the

function <R(t)R(O)> will decay to zero on a time scale of the order of rc * 11w

On the other hand, as a result of the interaction between S and R, the system

density operator ps(t) will decay on a time scale I/r (with r an Einstein

coefficient, for instance), and in many cases the relation

Fr << 1 (1.6)

holds. The validity of (1.6) allows a series of approximations (see the

Appendix), commonly referred to as the Markov approximation.

For spontaneous decay the restriction (1.6) is rigorously justified, and the
quation of motion for ps(t) is known for more than a decade. 1-3However not

very reservoir has a short correlation time. For instance, an adsorbed atom or

molecule on a surface interacts with the substrate through phonon coupling

(crystals) or electron-hole pair creation (metals). In the case of physisorbed

atoms on a harmonic crystal, the Hamiltonian H ; accounts for the kinetic and

potential energy of the atom. The potential supports bound states, separated by

- 10 - 108 MHz (infrared), which is resonant with the thermal excitations of the

crystal (phonons). Mechanical coupling (vibrations) between the adsorbed atom

and the lattice atoms gives rise to thermal relaxation of the adbond system.
4 6

Typical relaxation constants acquire an order of magnitude of 10 - 6 HBz,

whereas the cut-off frequency (Debye frequency) is of the order of 106 MHz. For

electron-hole pair formation the situation is even worse, where we have rT > so

that a Markov approximation can never be justified."

There exist many relaxation theories. Most notable are the projection

techniques,$ '10 a Langevin formulation, 2 and, as we adopt here, a reservoir

approach.11 -13 A feature of the quoted theories is that they all lead to the

-I

. v,.s),.r. ,' ,%, ., ,•' "_ .' " "..' " -' .'_..,..',',' ". " " " ".. ... ". . . ".- ", - .J , • " '-".".".-- - - -"-"-"-- - - - - - -","-- - - - -"-- -" . "-'"":.""" -.. "" ." .' . ="". ."",
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same result as soon as the Markov approximation is imposed. Several attempts
14-16

have been undertaken to drop this Markov assumption. To the best of our

knowledge, however, a treatment which is free of inconsistencies and leads to

explicit expressions (rather than formal expressions which cannot be evaluated)

was never formulated.

II. RESERVOIR INTEGRAL

In this section we set up the notation and derive an integral of Eq. (1.1),

which is appropriate for imposing the reservoir assumption. The first step is a

redefinition of the system Hamiltonian. We recall that the interaction

Hamiltonian H't is an operator in S+R-space, and therefore its reservoir average

<R> will be an operator in S-space. In order to eliminate so-called secular

terms, we define the new system and interaction Hamiltonians by

, H H' + <H> (2.1)

H I a Hi - <Hj> , (2.2)

and the advantage of this rearrangement comes from the fact that the reservoir

average of HI equals zero. Explicitly,

<HI > - 0 . (2.3)

A compact and transparent representation of reservoir theory can be obtained

with a Liouville-operator formalism. If we introduce the Liouvillians L by

La - 'I(Ha,o] , a S,R,I , (2.4)

N. N %? % r : ? '- .
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which defines their action on an arbitrary operator a in S+R-space, then the

equation of motion (1.1) becomes

itp(t) - (L5 + + L )P(t) . (2.5)

For later purposes we mention a few properties of the Liouvillians. First, LS

and LR commute, since they act on a different part of Liouville space. Second,

LR stands for a commutator, which implies the relation

Tr RLR~O (2.6)

for any a. From [HR,YR - 0. Eq. (1.3). we find

-iat-
iLRt

e PR = R * (2.7)

and due to the shift of the interaction over its average, LI obeys

TrRLI( sR) = 0 . (2.8)

Here and in the following, oS will indicate an aribtrary operator in S-space.

An integral of Eq. (2.5) reads

-MLs+LR) (t-to0)
p(t) a e p(to)

t -i(L+R)tt)

-if dt' e ;i LR)(ttI)LiP,(t') (2.9)
t

0

%%
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and substitution into Eq. (2.5) then yields

d °i(Ls LR)(tto)
i!p(t) - (Ls+LR)p(t) + Lie P(t o )

t -)0

-iLlt dt' e L iP(t') (2.10)
t

0

which is an exact integral of the equation of motion. If we subsequently take

the trace over the reservoir states, the left-hand side becomes idps(t)/dt, which

equals the rate of change of the system density operator due to the free

evolution (the term LSPS(t) on the right-hand side) and the coupling to the

reservoir (terms proportional to LI). Hence the integral in Eq. (2.10) accounts

for the relaxation of ps(t), and its value is proportional to the coupling

strength. Therefore we can adopt the reservoir assumption, Eq. (1.4), on p(t'

in the integrand. We then find the equation of motion for ps(t) to be

i!LPW - P + T L -i(Ls+LR)(t-to ) t
i ''sa) LaP(t) + TrRePt o

idpt S S RI1

-iTrRLJ dt' -i(Ls+LR)(t-t') (2.11)

0

for t > to. It is important to note that the initial value p(t0 ) of the density

operator (not the system part) remains present in the equation of motion for

PS M), in general. Equation (2.5) determines the time evolution of p(t) for

t > to, and the solution of Eq. (2.5) is fixed as soon as an initial value p(t )
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is prescribed. Since p(t ) is not determined by the equation of motion, a

further specification of the initial state p(t ) is necessary.

III. DENSITY OPERATOR

For finite memory-time reservoirs the choice of p(t ) is more than a matter

of convenience. If the system has been in contact with the reservoir prior to

to .then p(t ) is determined by its time evolution in the recent past t < to, and

consequently the value of p(t ) is no longer arbitrary. As a solution, we simply
define the instant of time t as the time point at which the interaction L is

0~ 1

switched on. We can then always take to to be arbitrarily far into the past.

For t < t the reservoir is in its thermal-equilibrium state pR' and the system

density operator ps(t) evolves independently of the reservoir. Therefore, we

have for t < t
0

S-R
p(t) = sWt xR,

Substitution into Eq. (2.11) and applying Eqs. (2.7) and (2.8) then shows that

the term with p(t ) vanishes identically, due to the shift of the interaction
0

Hamiltonian over its average. Then the equation of motion for ps(t) becomes

dS

Ip P(t) - LSPS(t)

t .I(s+LR)(t-t, ) .e

-tTrRL I4 dt' e LI(ps(t') R), (3.2)

0

for t > t • a.

Solving Eq. (3.2) is most easily done in the Laplace domain. If we define

7.:-,
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iw(t-t)Ps)

0

then the transformed equation of motion reads

(w-L ) (W) -ip S(t) 0 iTr RL I wL i L( (w)YR (3.4)

with solution

(Wi P( (3.5)PS ''=w-L S+if(:) S ( 0)

Here we introduced the relaxation operator f(w) as

fwo-TrRLI Li. L (asR P (3.6)

which can equivalently be written as

NOS Tr RLI&d e i( w-L SIR) LI(OSYR (3.7)

From Eq. (3.5) we see that j () and thereby p S(t) for t > t 0  is determined by

PS (t 0) only, and not by pS W) for t < to0. This is of course a result of

assumption (3.1). The memory in the time evolution of p S W is displayed in the

frequency dependence of f(w). In the Appendix we show that NO(w acquires a

constant value (w-independent) in the Markov approximation.

From Eq. (3.7) we notice that ?G~i) has the form of a Laplace transform
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r(w) f dr eiw r(T) , (3.8)

where r(T) is given by

r(r)oS - TrRLI e-i(Ls+LR)[ LI(oSR) (3.9)

for x ) 0. Rewriting the equation of motion (3.2) in terms of r() gives

i P s(t) - LsP(t) - i dt' r(t-tl)psW) (3.10)Sto

0

which reveals that the time width of r(T) (its decay time for T > 0) equals the

me ory time of the reservoir-interaction term. It is the width of r(T) which is

usually termed the reservoir correlation time T c. Then it follows from Eq. (3.8)

that the frequency width of f(w) is of the order of I/rc , and for Tc - 0, (w)

becomes independent of w.

The time evolution of Ps(t) for t > to will have little significance in

general, which is partially due to the factorization at t - to. Due to the

coupling to the reservoir, the density operator PS(t) will relax to a steady

state (thermal equilibrium)

PS = lm Ps(t) (3.11)

on a time scale 1/r, as mentioned in the Introduction. Here, r denotes a typical

matrix element of F(w) (not of r(r)). From the identity

• .- . -.--. ~ ~.-........ .. . '.-5.... '....'-i..-. : S." --.."-'" .'- - : "" -. . . . . . . . ." : f
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PS lim -iWs(w) (3.12)

and Eq. (3.5), we find the equation for PS to be

(Ls-ir(O))S = 0. (3.13)

This shows that the long-time solution of ps(t) is determined by f(w) at w - 0.

Furthermore, we notice that the dependence on the initial value ps(t 0 ) has

disappeared in Eq. (3.13), which reflects that the memory of the preparation of

the system at to is erased.

IV. CORRELATION FUNCTION

Measurement of the steady-state density operator PS of a physical system is

tantamount to the determination of its relaxation constants, which are the matrix

elements of f(o), as displayed in Eq. (3.13). Dynamical properties of the system

in contact with the reservoir, however, are reflected in the time evolution of

Ps(t) before it reaches its steady state Ps. In view of Eq. (3.5), this

transient behavior of ps(t) is governed by the frequency dependence of the

relaxation operator r(w). Besides the fact that a density operator is not

amenable to direct observation, we also see from Eq. (3.5) that the details of

Ps(t) depend on the preparation of the system at t - to. Obviously, it is

impossible to fix Ps(to) (say, the wave function of an atom) at a single instant

of time, and subsequently measure its evolution for t > to .

A standard method of obtaining dynamical information about a system is by

observation of steady-state correlation functions of system operators, say X and

Y. If we take arbitrarily t as the instant of time at which the Schrddinger and
0

Reisenberg pictures coincide, then the time dependence of X is given by

'e :""" "-' ' t "' / ' .,. . . . . . . ..". . .."-. .". .. " "
°

" "" 
' "

" 
"

"-' "
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iL(t-t )
X(t)- •x , (4.1)

where L indicates the Liouvillian L s+LR+LI of the entire system. Then X(to) - X S

is an operator in S-space only, but for t > to, X(t) is an operator in S+R-space,

due to L Hence the time evolution of X(t) carries information on the

interaction with the reservoir. The correlation function of two operators X and

Y is defined as the expectation value

<<X(t')Y(t)>> - Trp(to)X(t')Y(t) • (4.2)

The double-bracket notation indicates an average with the full density operator

of S+R, rather than with PR only (Eq. (1.5)). Transformation of Eq. (4.2) to the

Schrodinger picture gives

<<X(tt)y(t)>> TrY e '((tI)x) (4.3)

or equivalently

<<X(t')Y(t)>> TrX e-iL(t'-t)(yP(t)) (4.4)

We notice that the initial time t has disappeared in Eqs. (4.3) and (4.4), which0

already removes the ambiguities associated with the preparation of pS(to). A

steady-state correlation function is now defined as <<X(t')Y(t) > with t >> t

t' > to and t-t' fixed. Then the system is in state S, which is time

independent and a solution of Eq. (3.13). The time regression of the correlation

functions (their t-t'-dependence) is governed by the same exponential which

determines the time evolution of p(t), and therefore we can extract dynamical

%'

V. : + 'k" - . - * . I.'
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properties of the system by an observation of the steady-state correlation

functions.

Commonly, time regressions are not measured directly. For atoms or

molecules on a solid substrate, for instance, one determines the spectral profile

for the absorption of low-intensity monochromatic laser radiation with frequency

w. The spectral distribution as a function of w and in the steady state is then

given by expressions of the form

I(w) - lim f dt' eiw(tl-t)<<X(t')Y(t)>> , (4.5)

which will further be referred to as the spectrum. It is the goal of this paper

to evaluate I(w) for a system in interaction with a finite memory-time reservoir.

V. SPECTRUM

From Eq. (4.5) we observe that we need the correlation function for t' > t,

and therefore the representation (4.4) is most suitable. Then the occurring

exponential is the same as for the time evolution of p(t). If we introduce the

Hilbert-space operator (Liouville-space vector)

AWt't) -e' iL(t'-t) (yp(t)) 51

then the correlation function can be represented by

<<X(t')Y(t)>> - TrsXAs(t',t) , (5.2)

.'- -: .'' . ..- '.-'-c' '- '-' -------------------------------------------------------------------------- "----"------"-- ' "
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which only involves the system part As(t'.t) Tr A(t',t). In terms of the

Laplace transform with respect to t'

AS(W't) - f.dt' eiW(tS-t)As(tt) * (5.3)
t

the spectrum attains the form

I(w) - li TrsXAs(Wit) (5.4)

Differentiating Eq. (5.1) with respect to t' yields the equation of motion

w
for AWt,t)

idj 7 A(t',t) - (Ls + LR + LI)A(t',t) (5.5)

S.

which has to be solved for t' > t, with initial value

A(tt) - Yp(t) . (5.6)

Equation (5.5) is identical to Eq. (2.5) for p(t), and integrals can be found in

the same way. The difference between a density operator and a correlation 1

function is that for p(t) we can choose the initial value p(t ) arbitrarily,

wbereas for A(t'.t) the initial value is unambiguously given by Eq. (5.6). This

reflects the fact that A(t'.t) is essentially a two-time quantity. Its

regression from t to t' is governed by Eq. (5.5) and its dependence on t enters

through the initial condition, Eq. (5.6). The memory in the time regression, due

to the finite reservoir correlation time, is of course the same as for the

..... ..-. -...- .... o- -
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density operator and can be accounted for by the frequency-dependent relaxation

operator r(w), as we shall show below. As a second effect of a finite T the

density operator p(t) in the initial value will carry a memory of its time

evolution in the recent past. It is tempting to argue that we consider the

steady state t -# -, so that the density operator p(t) is constant in time. By

the large-reservoir assumption we know that the reservoir remains in the state

R' ,whereas the system is in state S for t o -. This would imply the

replacement P(t) -S* R in Eq. (5.6), which in turn would eliminate the explicit

t-dependence of A(t',t), making the limit t 4 - in Eq. (5.4) trivial. We shall

show that this procedure cannot be justified if T c is finite.

Since Eq. (5.5) is identical to Eq. (2.5) for ps(t). we can derive the

appropriate integral along the same lines. The analogue of Eq. (2.11) is

14- As(t',t) a LsAs(t',t) + TrRL I • +R('t (YO(t))
id7 st' .t) S S R I

R to -i(Ls+LR)(t'-t" )

which contains p(t) explicitly. Now we can substitute the right-hand side of Eq.

(2.9) for p(t) and take for p(t0) the value PS(to) R. Then Eq. (5.7) becomes

iAsA(t,,t) - LsAs(t,,t )

-i(Ls+LR)(t'-t) -i(Ls+LR)(t-to )
+ TrRLI e Ly • (Ps(to)5R)

RIi(s+R)L.,,
-iTr R LI e-i(Ls.+LR)(t''t) Ly tdt" e -(SR)t" L IO(t"o)

0

*~~~ ... .% .~ .. * '~*K. . .
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~t, -I (LS+LR)(t'I-t"')
-iTr R LI f •t L (A$(t",t) (5.$)

where we introduced the Liouvillian Ly by

Ys YUs , (5.9)

in order to avoid notations with too many brackets. In the second term on the

right-hand side of Eq. (5.8), the exponentials with LR act only on 5 ' because LR

comutes with L and Ly. Therefore they cancel, according to Eq. (2.7). The

re aining two exponentials and Ly affect only pS(to), and the result is some

operator aS in S-space. With Eq. (2.8) we then find that the whole term is

identically zero. Considering the third term on the right-hand side, we notice

that it has the form of a reservoir integral, as in Eq. (2.10), which implies

that we can factorize p(t") here. Then we define a 'density operator' pSR(t) of

S+R-space by

PSR(t ft d a-i(L s+LR)( t-t') L)(St)R

to

which allows us to write Eq. (5.8) as

idd-T As(t',t) L LAs(t',t)

-iTrRI *-i(LS+LR)(t'-t)

Ift't, -i(Ls+LR)(t1t"1)
-iTrRLIdt" e LI(A$(t"t') R ) (5.11)

J
'I
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Next we take the Laplace transform of Eq. (5.11), recalling that

As(t.t) - LYPs(t) . (5.12)

as follows from Eq. (5.6). and rearrange the terms. We then obtain

A (WiFi (Lyps(t) - Tr3 L, L5 L1 Lypst(t)) (5.13)
Jslw t)-L .s+l],(W )  • .Li

The factor in front of the curly brackets is the same as in Eq. (3.5). and it

represent the time regression from t to t' of As(t',t). The first term inside

the brackets, LyPs(t). corresponds to a factorized initial state. If we would

have replaced A(tt) - Yp(t) by Y(ps(t)5R), then it is easy to see that the

second term on the right-hand side of Eq. (5.7) would have disappeared, and

thereby the second term in curly brackets in Eq. (5.13). Conversely, the term

with PSR(t) in Eq. (5.13) accounts for the correlations between S and R in p(t),

which are present at the initial time for the time evolution of A(t'.t) from t to

tio

The explicit time dependence of A (w.t) enters through ps(t) and p5S(t). If
SS

we denote their steady-state values by an overbar, then the spectrum, Eq. (5.4),

becomes

I(w) " TrsLX  i (Ly5S . TrRLI 5

.Ls -'+ir(WT S.s. Rs},(.I)

with

X0 (5.15).
• .O
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Expression (5.14) involves the system-reservoir state PSR' which might seem

cumbersome. From Eq. (S.10) we find the Laplace transform of pSR(t) to be

*S(W - -L ( Y) S (516

in terms of i( ) from Eq. (3.5). Then the steady-state pSR follows from the

identity (3.12), which gives

iSR - (5.17)s"i0,.LS.L Ism

Here, the notation iO+ indicates a small positive imaginary part, which is
p

necessary to assure the convergence of Laplace-transform integrals, or

equivalently, the existence of the inverse of 10+ -L - LR. In the next section we

show how to evaluate the right-hand side of Eq. (5.17). If we define an operator

f(w) by

(W)ot L L I (Os 1 ) , (5.18)
SS S ILRi

then the spectrum attains the form

I(w) - Tr sLX W.L s+ir(w) .L~fW)S(.9

Equation (5.19) is the most condensed and general representation of the result of

this paper. The finite memory-time of the reservoir appears as a frequency

dependence of the relaxation operator F(w), and as a non-vanishing initial-

correlation operator T().
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VI. INTERACTION

Although the result (5.19) is appealing and explicit, the occuring operators

r(w) and f(w), which represent the interaction of the system with the reservoir,

might look awkward in their definitions, Eqs. (3.6) and (5.18). Especially the

reservoir Liouvillian LR in denominators and the appearance of iO+ in Lq. (5.18)

might seem to make an explicit evaluation of r(w) and (w) intractable. Such is

however not the case, as we shall show in this section.

Obviously, an elaboration of f(w) and T(w) requires additional

specifications of the interaction Hamiltonian HI. It will turn out to be

sufficient to assume the form

H"I- A (6.1
k

with 0k (ck ) a pure S- (R-)operator. The form (6.1) pertains to most practical

situations we have encountered. In the case of fluorescence, S signifies the
k%

k-th Cartesian component of the atomic dipole moment, and for adsorbates on a

substrate the subscript k takes on two values, corresponding to the two terms in

the binding (Morse) potential. In fact, the form (6.1) for HI can always be

enforced by an expansion in matrix elements.

Evaluation of the relaxation operator r(w) starts from its representation

(3.9) in the time domain. We expand the two LI s as commutators, which gives

rise to four terms. Then we insert BI from Eq. (6.1), and we notice that every

factor is an operator in S- or R-space only. Combining the R-operators and

taking the trace over the reservoir states then shows that the R contribution can

be accounted for by a single complex-valued function

• - - .- -- .- ." -" •" " ". • " € '_ .', ', - %-' " ' % " " " , " -,'%" "" - "..',,'..'.. ''.-
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f < (k)- r , (6.2)

which will be called the reservoir correlation function. We find

r(-i)S= L£ (fk(,)ko S- ftk( )aS ) . (6.3)

kt

with

Lto s M f8,ss . (6.4)

Expression (6.3) only involves the system operators :k and the Liouvillian LS

for the free evolution of the system. The reservoir enters via the parameter

functions fkt (), which can be found as soon as a particular reservoir is

prescribed. For a harmonic crystal, for instance, the reservoir correlation

functions are given analytically in Ref. 17.

The initial correlation operator t(w) from Eq. (5.18) is the Laplace

transform of

-i(Ls+LR)r I
T(T)Os - TrRLI a Ly +. LI(osR) . (6.5)

io L SLR

First we recall that the notation 0+ should be read as

Io i(w-L sLR) '
1 LI(os R) = -i lim fdr' e L I (o) (6.6)

iO+..-LR . .iO+ .

w , p ,,• o 
o

- * . - , ..Wo - . . . . . . f
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Then we insert the form (6.1) for the interaction and rearrange the S- and R-

terms. We then obtain for T(')

.iU s . f - I II

T(t)os a -i Li E Ly) ° d '

k0

X (f (,+') kaS - f* (r+.')a (6.7)Ek kS qk (.7

where the reservoir is again entirely incorporated in the functions f k(-r).

Since the fLk ()'s decay to zero sufficiently fast for T * -, we omitted at this

stage the 10+ in the right-most exponential.

VII. LAPLACE TRANSFORM

Before we can take the Laplce transform of Eqs. (6.3) and (6.7), we must

work out the exponentials. Eigenstates of the system Hamiltonian will be denoted

by la,a>, where a indicates the energy and a any degeneracy. By definition they

obey

HSIa.> - Swajaa> (7.1)

With respect to its own eigenstates we can write HS as

HS 1 Wa ,a. ><a.,I- %W aP a (7.2)

&a a

with



22

P Jacz><a'czQ (7.3)

the projector on the subspace with energy )kia* From the orthonormality of the

states la.cL) we have

P a Pb 6 ab Pa 11 (7.4)

and from the completeness of the set Ja,ci> we find the closure relation

P a-l 1 (7.5)

a

Then it is an easy matter to expand the exponential exp(-iL T) in projectors,

which gives

s 0 e PaSPb(.6
ab

in terms of the level separations

'a b (7.7)

Next we subsitute Eq. (7.6) into Eq. (6.3) and evaluate the Laplace

transform. We obtain

r(WOS - )j LE )IPa(ytk~abaw) fkaS 1*k(-ba-w)OS*4)Pb (7.8)

kL ab

V ~-%. .~j->y.i-...-
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in terms of the Laplace transform fk (W) of fk (T). Because L equals the

comutator with QPV the right-hand side only involves operators e and

projectors. If we insert the closure relation (7.5) in various places in Eq.

(7.8), we imnediately find the matrix representation of O() in terms of matrix

elements of e?,. The result (7.8) is the most compact representation of the

explicit form of f(w).

In the very same way we find the Laplace transform of T(') from Eq. (6.7),

although with considerably more effort, which is due to the double integral (over

T and '). The result is

TMC S L L +w c a
kt abc ac

W(k( (ba) - k(a bc +)) 3 kS

(Ek ba Ek bc-)Sk}b ,'7.9

which has a striking resemblance with Eq. (7.8). Most remarkable is that T(w)

can again be expressed in the reservoir correlation function I (w) which also

determines r(w), and, as shown in the Appendix, the relaxation operator in the

Markov approximation. The distinction is that the functions f () occur with

k1

different arguments.

If w equals a level separation 6ca ac' then the denominator of the first

factor under the triple suimation in Eq. (7.9) becomes zero. For w 6 c we haveca

a + W ib A and hence the difference of the two functions tk in curly

brackets also approaches zero. In the process of deriving Eq. (7.9) we found

that this feature does not constitute a problem. The limit is simply

K........
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lim A +W ( tk (aba t C& bc +)
ac

ac

d in w (7.10)= w - tk( , n = ba

and there is no singularity or discontinuity if w passes across a resonance.

VILI. CONCLUSIONS

If the decay time Tc of the reservoir correlation function fkt () for T

is not small in comparison with the relaxation times I/r, which are determined by

the same function (see Eq. (7.8)), then a Markov approximation cannot be correct.

In this paper we imposed no limits on Tc We only assumed that the system S is

small in comparison with the reservoir R. The finite value of Tc amounts to a

memory in the time evolution of the density operator, which is reflected in a

frequency dependence of the relaxation operator F(w). Correlation functions of

system operators depend on two times, t' and t. The regression from t to tt

exhibits the same memory effect as the time evolution of the density operator.

Additionally, the equal-time correlation function, which is the initial value for

the time regression, carries a memory to the recent past. It appears that this

second phenomenon could be accounted for by an initial correlation operator T(w)

in the expression for the spectrum I(w).

Frequency-dependent relaxation operators are widely applied in the

literature. Their Laplace inverse r() is sometimes called a memory kernel,

because it is the finite time-width of r(T) which brings about the memory in the

time evolution, as is most obvious from Eq. (3.10). Initial-correlation

18
operators, however, are rare. Despite the fact that the frequency dependence

of F(w) originates from the same memory mechanism which amounts to a non-

vanishing t(w), the latter is usually not found. As pointed out in the
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derivation of t(i), the disappearance of t() is a consequence of a factorization

of the initial value or state, which cannot be justified in general.
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correlation time of a stochastic process, which drives a multiplicative
stochastic differential equation.
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APPENDIX. MARKOV APPROXIMATION

It is illuminating to compare the results of the present paper with their

equivalents under the Markov approximation. Since we already have Eq. (2.11) we

can start there. First, we state that we are not interested in a time evolution

of Ps(t) on a time scale T which implies that we can factorize p(t ) as

Ps (to)5R. In this fashion we discard the memory of the initial state to its

past, which immediately gives f(w) i 0. or equivalently, the second term on the

right-hand side of Eq. (2.11) is zero. Second. we know that if we work out the

integral in Eq. (2.11), we find reservoir correlation functions f k(t-t'), which

decay to zero on a time scale c . Therefore, the major contribution to the

integral comes from t -'r < t' < t. Because we impose the condition r, << 1,

the density operator Ps(t') in the integrand is not affected significantly by the

relaxation process on this small time interval. Then we can replace ps(t') by

its free evolution

iLs(t-t')

Ps(t') = e Ps(t) , (Al)

and subsequently take p (t) outside the integral. Third, according to the first

assumption we can take t-t 0>> , which gives in combination with the fact that

the integrand is only non-zero on a time interval i c that we can replace to by

minus infinity. Combining everything then yields

idPs(t) = (LS-ir )Ps(t) , (A2)

with

% [ - . -
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ri "L(Ls+LR)L ILSt
ro s - rRLI Jd Ll e (OsOR) • (A3)

The Laplace transform of Eq. (A3) reads

M p (t (A4)w-Lsr S o

and comparison with Eq. (3.5) then shows that rM is the Markovian equivalent of

(w), and indeed, the frequency dependence has disappeared.

There exists an interesting relation between rM and (w), which can be found

as follows. In Eq. (3.9) we substitute exp(iL s)0 S for aS and integrate the

result over r. With Eq. (A3) we then obtain

o iLsr

rM = dr r() e , (AS)

as an operator identity. Then we notice that Eq. (3.8) can be inverted as

r(t) - L. fW e* f'w ) (A6)

for T > 0. Substitution into Eq. (AS) and performing the i integration then

leads to

rM inLfdw r(w)... .()

r !W NO - (A7)

With the projectors of Section VII we can write L S-w as
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(L s'w)°s S (A.b'W)P a0S P b '(AS)

ab

and taking matrix elents of both sides (Aves

<,.QI((LS-w)Os)Ib.> - (a b-w)<,.QlcslbO> (Ag)

This shows that the Liouvillian Ls-w is diagonal with respect to the eigenstates

of HS. and that its matrix elements are Ab-w. Therefore, its inverse l/(L s-W)

has corresponding matrix elements MA b-w), which gives the expansion of

I/(Ls-w) in projectors as

1--1 I Pa~~ (A10) "
- °S = b-w .-S'

ab

If we insert this into Eq. (A7) and remember the general property

for any Laplace transform j(w), we finally obtain

r dMos -T (&b C b) , (A1l)

ab

Another way to derive Eq. (A12) is by substituting the expansion (7.6) for

expliLs) into Eq. (AS) and performing the i integration. Equation (Al2) reveals

that the relaxation operator in the Markov approximation effectively filters out

these w-values in I(') which are in exact resonance with the system frequencies. p

A.
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